max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
models/roleItem.py
salvuswarez/tabManRedux
1
2023263
import logging # setup logger for module _log = logging.getLogger(__name__) class Role_Item(): __role_name = str() __name = str() __description = str() __permissions = list() def __init__(self,name,permissions,dscr=""): self.__name = name self.__description = dscr self.__permissions = permissions self.__load_item() @property def permissions(self): return self.__permissions @property def name(self): return self.__name @property def description(self): return self.__description @description.setter def description(self,dscr): self.__description = dscr def __load_item(self): #load default settings here. pass def add_permission(self,permission): self.__permissions.append(permission) def remove_permission(self,permission): pass def reset_permissions(self): pass # def apply_to(self,recipient): # #this will likely need to apply to either a user or a group item # pass
1,094
mottak-arkiv-service/app/routers/dto/BevaringOverforing.py
omBratteng/mottak
0
2023038
from pydantic import BaseModel from app.domain.models.BevaringOverforing import BevaringOverforingStatus class BevaringOverforing(BaseModel): status: BevaringOverforingStatus
182
app/utils/exceptions.py
mgajewskik/website_scraper_api
0
2022920
from fastapi import HTTPException def raise_not_found(msg: str = "Website not found."): raise HTTPException(status_code=404, detail=msg) def raise_unprocessable_entity(msg: str = "Unprocessable entity."): raise HTTPException(status_code=422, detail=msg) def raise_bad_request(msg: str = "Bad request."): raise HTTPException(status_code=400, detail=msg)
371
Q-7/surface_area_and_volume_of_cuboids.py
gribja/c1pq
0
2023876
width=22 length=23 height=24 surface_area=2*(width*length)+2*(length*height)+2*(height*width) print("Surface Area of the cuboid is %s" % surface_area) volume=width*length*height print("The volume of the cuboid is %s" % volume)
227
Stochastic_engine/stochastic_engine.py
romulus97/HYDROWIRES
0
2023670
# -*- coding: utf-8 -*- """ Created on Wed Sep 19 09:59:48 2018 @author: YSu """ ############################################################################ # HISTORICAL WEATHER AND STREAMFLOW ANALYSIS # Perform statistical analysis of historical meteorological data # Note: this script ('calculatte_cov') only needs to be performed once; after # that stochastic input generation can occur as many times as desired. import time starttime = time.time() ############################################################################# # ############################################################################# # DAILY HYDROPOWER SIMULATION # Now specify a smaller subset of stochastic data to run (must be <= stoch years) # FOR FORECAST MODE, THIS NEEDS TO BE > 1 sim_years = 12 # Run ORCA to get California storage dam releases import main main.sim(sim_years) print('ORCA') # # California Hydropower model import CA_hydropower_daily_forecast CA_hydropower_daily_forecast.hydro(sim_years) print('CA hydropower') #Willamette operational model import Willamette_launch_forecast Willamette_launch_forecast.launch(sim_years) print('Willamette') # # # Federal Columbia River Power System Model (mass balance in Python) import ICF_calc_new ICF_calc_new.calc(sim_years) import FCRPS_forecast FCRPS_forecast.simulate(sim_years) print('FCRPS') ############################################################################# ## ############################################################################## ### HOURLY WIND AND SOLAR POWER PRODUCTION # ## WIND # Specify installed capacity of wind power for each zone PNW_cap = 6445 CAISO_cap = 4915 # Generate synthetic hourly wind power production time series for the BPA and # CAISO zones for the entire simulation period import wind_speed2_wind_power wind_speed2_wind_power.wind_sim(sim_years,PNW_cap,CAISO_cap) print('wind') # SOLAR # Specify installed capacity of wind power for each zone CAISO_solar_cap = 9890 # Generate synthetic hourly solar power production time series for # the CAISO zone for the entire simulation period import solar_production_simulation solar_production_simulation.solar_sim(sim_years,CAISO_solar_cap) print('solar') ############################################################################### ## ############################################################################### ## ELECTRICITY DEMAND AND TRANSMISSION PATH FLOWS # ## Calculate daily peak and hourly electricity demand for each zone and daily ## flows of electricity along each WECC path that exchanges electricity between ## core UC/ED model (CAISO, Mid-C markets) and other WECC zones # import demand_pathflows_forecast print('paths') ############################################################################### ## ############################################################################### ## NATURAL GAS PRICES # NOTE: NEED SCRIPT HERE TO SIMULATE STOCHASTIC NATURAL GAS PRICES # *OR* # ESTIMATE STATIC GAS PRICES FOR EACH ZONE import numpy as np ng = np.ones((sim_years*365,5)) ng[:,0] = ng[:,0]*4.47 ng[:,1] = ng[:,1]*4.47 ng[:,2] = ng[:,2]*4.66 ng[:,3] = ng[:,3]*4.66 ng[:,4] = ng[:,4]*5.13 import pandas as pd NG = pd.DataFrame(ng) NG.columns = ['SCE','SDGE','PGE_valley','PGE_bay','PNW'] NG.to_excel('Gas_prices/NG.xlsx') elapsed = time.time() - starttime print(elapsed) # # # #
3,353
Infosys Assignments/21.py
DivyaMaddipudi/Infosyscc
0
2022737
l1 = ["sofaset", "diningtable", "tvstand", "cupboard"] print("items available are: ",l1) l2= [20000,8500,4599,13920] req = input("enter the furniture:") quantity = int(input("enter quantity:")) bill = 0 if quantity > 0 and req in l1: l = l1.index(req) bill = l2[l] * quantity print(bill) elif req not in l1: print("invalid furniture and bill is",0)
371
setup.py
DAIRLab/contact-nets
16
2022901
from setuptools import setup, find_namespace_packages setup( name='contactnets', packages=find_namespace_packages(include=['contactnets.*']), version='0.1', install_requires=[ 'pillow', 'osqp', 'mplcursors', 'torch', 'tensorflow==1.14.0', 'tensorboard==2.1.0', 'tensorboardX==1.9', 'vpython', 'torchtestcase', 'pygame', 'pyomo', 'click', 'sk-video', 'pyopengl', 'pyopengl_accelerate', 'glfw', 'gitpython', 'psutil', 'moviepy', 'imageio', 'tabulate', 'grpcio' ])
659
aiida_zeopp/parsers/plain.py
yakutovicha/aiida-zeopp
0
2023548
# pylint: disable=useless-super-delegation from __future__ import absolute_import import re import six from six.moves import map from six.moves import range class KeywordParser(object): keywords = { 'keyword1': float, 'keyword2': int, } @classmethod def parse(cls, string): """ Parse zeo++ keyword format Example string: keyword1: 12234.32312 keyword2: 1 parameters ---------- string: string string with keywords return ------ results: dict dictionary of output values """ results = {} regex = "{}: ([\d\.]*)" for keyword, ktype in six.iteritems(cls.keywords): regex_rep = regex.format(re.escape(keyword)) match = re.search(regex_rep, string) if match is None: raise ValueError("Keyword {} not specified".format(keyword)) value = match.group(1) if value == "": value = 0 # uncomment this when #1 is fixed #raise ValueError( # "No value specified for keyword {}".format(keyword)) results[keyword] = ktype(value) return results @classmethod def parse_aiida(cls, string): from aiida.orm.data.parameter import ParameterData return ParameterData(dict=cls.parse(string)) class PoreVolumeParser(KeywordParser): keywords = { 'Unitcell_volume': float, 'Density': float, 'POAV_A^3': float, 'POAV_Volume_fraction': float, 'POAV_cm^3/g': float, 'PONAV_A^3': float, 'PONAV_Volume_fraction': float, 'PONAV_cm^3/g': float, } @classmethod def parse(cls, string): """ Parse zeo++ .volpo format Example volpo string: @ EDI.volpo Unitcell_volume: 307.484 Density: 1.62239 POAV_A^3: 131.284 POAV_Volume_fraction: 0.42696 POAV_cm^3/g: 0.263168 PONAV_A^3: 0 PONAV_Volume_fraction: 0 PONAV_cm^3/g: 0 parameters ---------- string: string string in volpo format return ------ results: dict dictionary of output values """ return super(PoreVolumeParser, cls).parse(string) class AVolumeParser(KeywordParser): keywords = { 'Unitcell_volume': float, 'Density': float, 'AV_A^3': float, 'AV_Volume_fraction': float, 'AV_cm^3/g': float, 'NAV_A^3': float, 'NAV_Volume_fraction': float, 'NAV_cm^3/g': float, } @classmethod def parse(cls, string): """ Parse zeo++ .vol format Example vol string: @ EDI.vol Unitcell_volume: 307.484 Density: 1.62239 AV_A^3: 22.6493 AV_Volume_fraction: 0.07366 AV_cm^3/g: 0.0454022 NAV_A^3: 0 NAV_Volume_fraction: 0 NAV_cm^3/g: 0 parameters ---------- string: string string in volpo format return ------ results: dict dictionary of output values """ return super(AVolumeParser, cls).parse(string) class SurfaceAreaParser(KeywordParser): keywords = { 'Unitcell_volume': float, 'Density': float, 'ASA_A^2': float, 'ASA_m^2/cm^3': float, 'ASA_m^2/g': float, 'NASA_A^2': float, 'NASA_m^2/cm^3': float, 'NASA_m^2/g': float, 'Number_of_channels': int, 'Channel_surface_area_A^2': float, 'Number_of_pockets': int, 'Pocket_surface_area_A^2': float, } @classmethod def parse(cls, string): """ Parse zeo++ .sa format Example sa string: @ HKUST-1.sa Unitcell_volume: 18280.8 Density: 0.879097 ASA_A^2: 3545.59 ASA_m^2/cm^3: 1939.51 ASA_m^2/g: 2206.26 NASA_A^2: 0 NASA_m^2/cm^3: 0 NASA_m^2/g: 0 Number_of_channels: 1 Channel_surface_area_A^2: 3545.59 Number_of_pockets: 0 Pocket_surface_area_A^2: parameters ---------- string: string string in sa format return ------ results: dict dictionary of output values """ return super(SurfaceAreaParser, cls).parse(string) class ResParser(KeywordParser): keywords = ( 'Largest_included_sphere', 'Largest_free_sphere', 'Largest_included_free_sphere', ) @classmethod def parse(cls, string): """ Parse zeo++ .res format Example res string: HKUST-1.res 13.19937 6.74621 13.19937 Containing the diameters of * the largest included sphere * the largest free sphere * the largest included sphere along free sphere path parameters ---------- string: string string in res format return ------ res: dict dictionary of output values """ res = {} values = string.split() if len(values) != 4: raise ValueError("Found more than 4 fields in .res format") for i in (0, 1, 2): res[cls.keywords[i]] = float(values[i + 1]) return res class ChannelParser(object): @classmethod def parse(cls, string): # pylint: disable=too-many-locals """ Parse zeo++ .chan format Example chan string:: P8bal_P1.chan 2 channels identified of dimensionality 3 3 Channel 0 9.92223 3.85084 9.92223 Channel 1 9.92222 3.85084 9.92222 P8bal_P1.chan summary(Max_of_columns_above) 9.92223 3.85084 9.92223 probe_rad: 1.8 probe_diam: 3.6 parameters ---------- string: string string in chan format return ------ results: list dictionary of output values """ lines = string.splitlines() # remove empty lines lines = [l for l in lines if l.strip()] nlines = len(lines) # parse header line match = re.search( r'(\d+) channels identified of dimensionality([\d\s]*)', lines[0]) if not match: raise ValueError( "The following string was not recognized as a valid header of the .chan format:\n" + lines[0]) nchannels = int(match.group(1)) if nchannels == 0: dimensionalities = [] else: dimensionalities = list(map(int, match.group(2).split())) if nchannels != len(dimensionalities): raise ValueError( "Number of channels {} does not match number of dimensionalities {}" .format(nchannels, len(dimensionalities))) if nchannels != nlines - 2: raise ValueError( "Number of lines in file {} does not equal number of channels {}+2" .format(nlines, nchannels)) # parse remaning lines (last line is discarded) dis, dfs, difs = [], [], [] for i in range(1, nchannels + 1): _c, _i, di, df, dif = lines[i].split() dis.append(float(di)) dfs.append(float(df)) difs.append(float(dif)) pm_dict = { 'Channels': { 'Largest_included_spheres': dis, 'Largest_free_spheres': dfs, 'Largest_included_free_spheres': difs, 'Dimensionalities': dimensionalities, } } return pm_dict @classmethod def parse_aiida(cls, string): from aiida.orm.data.parameter import ParameterData return ParameterData(dict=cls.parse(string))
7,774
src/perf/data_pipe_perf/py_trio_queue_perf.py
random-python/data_pipe
14
2022966
""" """ import gc import time import trio count = int(1e5) # number of objects to transfer async def buffer_perf(): gc.collect() # start with clean memory source = [index for index in range(count)] # pre-allocate data source target = [None for index in range(count)] # pre-allocate data target async def producer(writer): async with writer: for value in source: await writer.send(value) async def consumer(reader): async with reader: index = 0 async for value in reader: target[index] = value index += 1 async def transfer(): async with trio.open_nursery() as nursery: writer, reader = trio.open_memory_channel(256) nursery.start_soon(producer, writer) nursery.start_soon(consumer, reader) time_start = time.time() await transfer() time_finish = time.time() time_diff = time_finish - time_start assert source == target # verify data integrity return time_diff def invoke_perf(session_size:int=3): for session in range(session_size): print(f"--- session={session} ---") time_diff = trio.run(buffer_perf) # total test time time_unit = int(1e6 * time_diff / count) # per-unit test time, microseconds print(f"count={count} time_diff={time_diff:.3f} time_unit={time_unit} micro") invoke_perf()
1,440
src/linux_things/media_server/rename_files.py
gmihaila/raspberry_projects
0
2023438
""" Need to rename and structure files in the following order: /TV Shows /My Show /Season 01 My Show - s01e01.format My Show - s01e02-03.format Run: python src/linux_things/media_server/rename_files.py --show_name 'My Show' --target_path 'where to move' --use_path 'where is the show' --dry_run """ import os import re import argparse import warnings from utils import move_folder def main(): parser = argparse.ArgumentParser(description='Description') parser.add_argument('--show_name', help='Name of the TV Show.', type=str) parser.add_argument('--target_path', help='Where to move the renamed files.', type=str) parser.add_argument('--use_path', help='Where to find the files that need to be renamed.', type=str) parser.add_argument('--dry_run', help='Perform dry run before moving files.', default=False, action='store_true') # parse arguments args = parser.parse_args() print(args) # Add show name to target path target_path = os.path.join(args.target_path, args.show_name) os.mkdir(target_path) if not os.path.isdir(target_path) else print( f"Folder '{args.show_name}' already exists in '{target_path}'") # Deal with each season. folder_content = os.listdir(args.use_path) # Keep only folders and not files. all_folders = [folder for folder in folder_content if os.path.isdir(os.path.join(args.use_path, folder))] for folder in all_folders: folder_path = os.path.join(args.use_path, folder) season = re.search('[sS]\d{1,2}', os.path.basename(folder_path)).group() season = re.sub('[sS]', '', season).lstrip('0') season = f'0{season}' if len(season) < 2 else season print(f"For season '{season}'") addon_target_path = f'Season {season}' seaon_target_path = os.path.join(target_path, addon_target_path) os.mkdir(seaon_target_path) if not os.path.isdir(seaon_target_path) else print( f"Folder '{addon_target_path}' already existst in '{target_path}'") files = os.listdir(folder_path) # import pdb; pdb.set_trace() move_folder(files, args.show_name, season, folder_path, seaon_target_path, args.dry_run) if args.dry_run: warnings.warn("This was a dry run! No files were moved yer! Don't use --dry_run in order to move files!", Warning) if __name__ == '__main__': main()
2,430
excel/liangai/mod2017.py
ty68/alped
0
2023511
from xlutils.copy import copy import xlrd #打开一个excel文档,赋值给book,book是一个打开的excel对象 book = xlrd.open_workbook('2017.xlsx') #利用xlutils.copy拷贝一份book为newbook newbook = copy(book) #用原始的book获取第一个sheet orisheet = book.sheet_by_index(0) #用拷贝的book获取一份sheet sheet = newbook.get_sheet(0) # 利用原始sheet获取sheet的行数和列数 rows = orisheet.nrows cols = orisheet.ncols print('这个sheet一共{0}行,{1}列'.format(rows,cols)) # # 循环修改每一行的数据 for row in range(1,29996): #利用原始sheet获取指定单元格数据 .value celldata = orisheet.cell(row, 1).value # celldata是str类型,利用字符串方法replace替换指定字符串 newdata = celldata.replace(celldata[6:],'*'* len(celldata[6:])) #利用拷贝的book里的sheet写入newdata到指定单元格 sheet.write(row, 1, newdata) #保存写入sheet的数据 newbook.save('new2017.xls') print('第{1}行,旧身份证信息:{2},新数据已经插入:{0}'.format(newdata,row,celldata))
815
post_it/migrations/0004_remove_session_session_id.py
constantin-kuehne/IdeaPostProduction
0
2023252
# Generated by Django 3.1.2 on 2020-11-28 18:07 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('post_it', '0003_post_it_zindex'), ] operations = [ migrations.RemoveField( model_name='session', name='session_id', ), ]
329
example.py
kiok46/swipetodelete
18
2023198
from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.uix.scrollview import ScrollView from kivy.properties import ObjectProperty,ListProperty,NumericProperty,BooleanProperty from kivy.garden.swipetodelete import SwipeBehavior from kivy.lang import Builder kvdemo=''' <DragWidget>: size_hint: (None,None) size: (625,100) swipe_rectangle: self.x, self.y , self.width, self.height swipe_timeout: 1000000 swipe_distance: 1 spacing:5 BoxLayout: orientation: "horizontal" spacing:5 Label: size_hint: .4,1 text: "Timing :" font_size: 16 canvas.before: Color: rgba: 0.398,.310,.562,1 Rectangle: size: self.size pos: self.pos Spinner: background_color: 0.398,.310,.562,1 font_size: 16 text: 'Select' values: {'08:00 AM','09:00 AM','10:00 AM','11:00 AM'} Button: id: btn text: "Ok" background_color: 0.398,.310,.562,1 size_hint: .2,1 <SwipeToDeleteContainer>: layout_container: layout_container size_hint: (None, None) size: (675, 520) pos_hint: {'x':.065,'y':.065} do_scroll_x: False bar_width:'5dp' GridLayout: cols: 1 padding: 20 spacing: 20 canvas.before: Color: rgba: 0.933,.956,.956,1 Rectangle: pos: self.pos size: self.size size_hint_y: None id: layout_container Button: markup: True text: "[color=000000]Swipe To Delete (Click Me!)[/color]" font_size: 32 size_hint: (None,None) size: (625,80) on_release: root.add_new() DragWidget: left_percentage: 10 right_percentage: 10 DragWidget: left_percentage: 70 right_percentage: 70 DragWidget: animation_type: 'in_bounce' animation_duration: 2 DragWidget: remove_from_right: False remove_from_left: False DragWidget: ''' class DragWidget(SwipeBehavior,BoxLayout): def on_touch_down(self, touch): if self.collide_point(touch.x, touch.y): self.move_to = self.x,self.y return super(DragWidget, self).on_touch_down(touch) def on_touch_move(self, touch): if self.collide_point(touch.x, touch.y): self.reduce_opacity() return super(DragWidget, self).on_touch_move(touch) def on_touch_up(self, touch): if self.collide_point(touch.x, touch.y): self.check_for_left() self.check_for_right() return super(DragWidget, self).on_touch_up(touch) class SwipeToDeleteContainer(ScrollView): layout_container = ObjectProperty(None) '''The container which contains dragable widgets. :attr:`layout_container` is a :class:`~kivy.properties.ObjectProperty`, defaults to None. ''' def __init__(self,**kwargs): super(SwipeToDeleteContainer,self).__init__(**kwargs) self.layout_container.bind(minimum_height=self.layout_container.setter('height')) def add_new(self): self.ids.layout_container.add_widget(DragWidget()) class MainApp(App): def build(self): Builder.load_string(kvdemo) return SwipeToDeleteContainer() if __name__ == '__main__': app = MainApp() app.run()
3,650
sanic_restplus/cors.py
alex-ip/sanic-restplus
0
2023832
# -*- coding: utf-8 -*- # from asyncio import iscoroutinefunction from datetime import timedelta from functools import update_wrapper from sanic.constants import HTTP_METHODS from sanic.request import Request as sanic_request from sanic.response import HTTPResponse from sanic.views import HTTPMethodView def crossdomain(origin=None, methods=None, headers=None, expose_headers=None, max_age=21600, attach_to_all=True, automatic_options=True, credentials=False): if methods is not None: m = list(sorted(x.upper() for x in methods)) if 'OPTIONS' not in m: m.append('OPTIONS') methods = ', '.join(m) if headers is not None and not isinstance(headers, str): headers = ', '.join(x.upper() for x in headers) if expose_headers is not None and not isinstance(expose_headers, str): expose_headers = ', '.join(x.upper() for x in expose_headers) if not isinstance(origin, str): origin = ', '.join(origin) if isinstance(max_age, timedelta): max_age = max_age.total_seconds() def get_methods(): if methods is not None: return methods # Todo: # This is wrong for now, we need a way to find # only the methods the httpmethodview contains return ', '.join(HTTP_METHODS) def decorator(f): async def wrapped_function(*args, **kwargs): orig_args = list(args) args_len = len(orig_args) rt = RuntimeError("Must only use crossdomain decorator on a function that takes 'request' as " "first or second argument") if args_len < 1: #weird, no args raise rt elif args_len < 2: request = orig_args.pop(0) args = (request,) else: next_arg = orig_args.pop(0) args = list() if isinstance(next_arg, HTTPMethodView) or issubclass(next_arg, HTTPMethodView): args.append(next_arg) # self or cls next_arg = orig_args.pop(0) request = next_arg args.append(request) args.extend(orig_args) args = tuple(args) if not isinstance(request, sanic_request): raise rt do_await = iscoroutinefunction(f) if automatic_options and request.method == 'OPTIONS': resp = HTTPResponse() else: resp = f(*args, **kwargs) if do_await: resp = await resp if isinstance(resp, str): resp = HTTPResponse(resp) elif isinstance(resp, tuple): if len(resp) < 2: resp = HTTPResponse(resp[0]) elif len(resp) < 3: resp = HTTPResponse(resp[0], status=resp[1]) else: resp = HTTPResponse(resp[0], status=resp[1], headers=resp[2]) if not isinstance(resp, HTTPResponse): raise RuntimeError("crossorigin wrapper did not get a valid response from the wrapped function") if not attach_to_all and request.method != 'OPTIONS': return resp h = resp.headers h['Access-Control-Allow-Origin'] = origin h['Access-Control-Allow-Methods'] = get_methods() h['Access-Control-Max-Age'] = str(max_age) if credentials: h['Access-Control-Allow-Credentials'] = 'true' if headers is not None: h['Access-Control-Allow-Headers'] = headers if expose_headers is not None: h['Access-Control-Expose-Headers'] = expose_headers return resp f.provide_automatic_options = False return update_wrapper(wrapped_function, f) return decorator
3,950
tools/specification_parser/lint_json_output.py
open-feature/spec
16
2022735
from os.path import curdir, abspath, join, splitext from os import walk import json import sys def main(dir): jsons = [] for root_path, _, file_paths, in walk(dir): for file_path in file_paths: absolute_file_path = join(root_path, file_path) _, file_extension = splitext(absolute_file_path) if file_extension == ".json": jsons.append(absolute_file_path) errors = 0 for j in jsons: with open(j) as jfile: spec = json.load(jfile) entries = spec; for entry in spec: for child in entry.get('children', []): entries.append(child) try: for entry in entries: if entry.get('RFC 2119 keyword') is None and \ 'condition' not in entry['id'].lower(): print(f"{j}: Rule {entry['id']} is missing a RFC 2119 keyword", file=sys.stderr) errors += 1 pass except Exception as k: print(f"Non json-spec formatted file found: {j}", file=sys.stderr) sys.exit(errors) def has_errors(entry): pass if __name__ == '__main__': main(sys.argv[1])
1,259
orc8r/gateway/python/magma/ctraced/trace_manager.py
chandra-77/magma
1
2023788
""" Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import errno import logging import os import pathlib import subprocess import time from typing import List from subprocess import SubprocessError from .command_builder import get_trace_builder from collections import namedtuple _TRACE_FILE_NAME = "call_trace" _TRACE_FILE_NAME_POSTPROCESSED = "call_trace_postprocessed" _TRACE_FILE_EXT = "pcapng" _MAX_FILESIZE = 4000 # ~ 4 MiB for a trace _POSTPROCESSING_TIMEOUT = 10 # 10 seconds for TShark to apply display filters EndTraceResult = namedtuple('EndTraceResult', ['success', 'data']) class TraceManager: """ TraceManager is a wrapper for TShark specifically for starting and stopping call/interface/subscriber traces. Only a single trace can be captured at a time. """ def __init__(self, config): self._is_active = False # is call trace being captured self._proc = None self._trace_directory = config.get("trace_directory", "/var/opt/magma/trace") # type: str # Specify southbound interfaces self._trace_interfaces = config.get("trace_interfaces", ["eth0"]) # type: List[str] # Should specify absolute path of trace filename if trace is active self._trace_filename = "" # type: str self._trace_filename_postprocessed = "" # type: str # TShark display filters are saved to postprocess packet capture files self._display_filters = "" # type: str self._tool_name = config.get("trace_tool", "tshark") # type: str self._trace_builder = get_trace_builder(self._tool_name) def start_trace( self, capture_filters: str, display_filters: str, ) -> bool: """Start a call trace. Note: The output file location is appended to the custom run options, matching trace_directory in ctraced.yml Args: capture_filters: Capture filters for running TShark. Equivalent to the -f option of TShark. Syntax based on BPF (Berkeley Packet Filter) display_filters: Display filters for running TShark. Equivalent to the -Y option of TShark. Returns: True if successfully started call trace """ if self._is_active: logging.error("TraceManager: Failed to start trace: " "Trace already active") return False self._build_trace_filename() command = self._trace_builder.build_trace_command( self._trace_interfaces, _MAX_FILESIZE, self._trace_filename, capture_filters, ) self._display_filters = display_filters return self._execute_start_trace_command(command) def end_trace(self) -> EndTraceResult: """Ends call trace, if currently active. Returns: success: True if call trace finished without issue data: Call trace file in bytes """ # If trace is active, then stop it if self._is_active: stopped = self._stop_trace() if not stopped: return EndTraceResult(False, None) while True: if self._ensure_trace_file_exists(): logging.info("TraceManager: Trace file written!") break logging.info("TraceManager: Waiting 1s for trace file to be " "written...") time.sleep(1) # Perform postprocessing of capture file with TShark display filters if len(self._display_filters) > 0: succeeded = self._postprocess_trace() if not succeeded: return EndTraceResult(False, None) # Read trace data into bytes with open(self._trace_filename_postprocessed, "rb") as trace_file: data = trace_file.read() # type: bytes else: # Read trace data into bytes with open(self._trace_filename, "rb") as trace_file: data = trace_file.read() # type: bytes # Ensure the tmp trace file is deleted self._ensure_tmp_file_deleted() self._trace_filename = "" self._is_active = False logging.info("TraceManager: Call trace has ended") # Everything cleaned up, return bytes return EndTraceResult(True, data) def _stop_trace(self) -> bool: # If the process has ended, then _proc isn't None self._proc.poll() return_code = self._proc.returncode if self._proc.returncode is None: logging.info("TraceManager: Ending call trace") self._proc.terminate() else: logging.info("TraceManager: Tracing process return code: %s", return_code) logging.debug("TraceManager: Trace logs:") logging.debug("<" * 25) while True: line = self._proc.stdout.readline() if not line: break logging.debug("| %s", str(line.rstrip())) logging.debug(">" * 25) if return_code is not None: self._is_active = False return False return True def _postprocess_trace(self) -> bool: command = self._trace_builder.build_postprocess_command( self._trace_filename, self._display_filters, self._trace_filename_postprocessed ) logging.info("TraceManager: Starting postprocess, command: [%s]", ' '.join(command)) try: self._proc = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as e: self._is_active = False logging.error("TraceManager: Failed to postprocess trace: %s", str(e)) return False self._proc.wait() logging.debug("<" * 25) while True: line = self._proc.stdout.readline() if not line: break logging.debug("| %s", str(line.rstrip())) logging.debug(">" * 25) logging.info("TraceManager: Finished postprocess") return True def _build_trace_filename(self): # Example filename path: # /var/opt/magma/trace/call_trace_1607358641.pcap self._trace_filename = "{0}/{1}_{2}.{3}".format( self._trace_directory, _TRACE_FILE_NAME, int(time.time()), _TRACE_FILE_EXT) self._trace_filename_postprocessed = "{0}/{1}_{2}.{3}".format( self._trace_directory, _TRACE_FILE_NAME_POSTPROCESSED, int(time.time()), _TRACE_FILE_EXT) def _execute_start_trace_command(self, command: List[str]) -> bool: """Executes a command to start a call trace Args: command: Shell command with each token ordered in the list. example: ["tshark", "-i", "eth0"] would be for "tshark -i eth0" Returns: True if successfully executed command """ logging.info("TraceManager: Starting trace with %s, command: [%s]", self._tool_name, ' '.join(command)) self._ensure_trace_directory_exists() # TODO(andreilee): Handle edge case where only one instance of the # process can be running, and may have been started # by something external as well. try: self._proc = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) except SubprocessError as e: logging.error("TraceManager: Failed to start trace: %s", str(e)) return False self._is_active = True logging.info("TraceManager: Successfully started trace with %s", self._tool_name) return True def _ensure_trace_file_exists(self) -> bool: return os.path.isfile(self._trace_filename) def _ensure_tmp_file_deleted(self): """Ensure that tmp trace file is deleted. Uses exception handling rather than a check for file existence to avoid TOCTTOU bug """ try: os.remove(self._trace_filename) if os.path.isfile(self._trace_filename_postprocessed): os.remove(self._trace_filename_postprocessed) except OSError as e: if e.errno != errno.ENOENT: logging.error("TraceManager: Error when deleting tmp trace " "file: %s", str(e)) def _ensure_trace_directory_exists(self) -> None: pathlib.Path(self._trace_directory).mkdir(parents=True, exist_ok=True)
9,427
olympe-final/usr/lib/python3.8/site-packages/olympe/app.py
mbyzhang/olympe-ros-docker
73
2023254
#!/usr/bin/env python # -*- coding: UTF-8 -*- # Copyright (C) 2019 Parrot Drones SAS # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of the Parrot Company nor the names # of its contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # PARROT COMPANY BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS # OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT # OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. from __future__ import unicode_literals from __future__ import print_function import argparse import os import sys import olympe from sphinx.cmd.build import main as sphinx_build if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( '-v', '--version', action="store_true", help=u'Displays version' ) parser.add_argument( '--gendoc', dest="doc_out_directory", help="Generate olympe documentation" ) parser.add_argument( '--gendoc_context_path', dest="doc_context", help="Documentation context path" ) ns = parser.parse_args() args = vars(ns) if args['doc_out_directory']: cmd = ["-b", "html"] if args["doc_context"]: cmd += ["-D", "custom_html_context_path={}".format(args["doc_context"])] cmd += ["{}/doc".format(os.path.dirname(olympe.__file__))] cmd += [args['doc_out_directory']] sys.exit(sphinx_build(cmd)) if 'version' in args and args['version']: print(olympe.VERSION_STRING) sys.exit(0)
2,699
loss.py
shirsenh/SRResGAN-Improved-Perceptual
0
2023184
import torch import torch.nn as nn from torch.autograd import Variable class GeneratorLoss(nn.Module): def __init__(self, vgg_network, writer, steps): super(GeneratorLoss, self).__init__() self.vgg_network = vgg_network # self.dis_network = dis_network self.writer = writer self.steps = steps self.mse_loss = nn.MSELoss().cuda() self.bce_loss = nn.BCELoss().cuda() self.huber_loss = nn.SmoothL1Loss().cuda() def forward(self, out_labels, out_images, target_images, opt): # self.steps += out_images.shape[0] # print("Image loss: {}".format(image_loss.item())) overall_loss = 0 self.ones_const = Variable(torch.ones(out_images.size()[0])).cuda() image_loss = self.huber_loss(out_images, target_images) self.writer.add_scalar("Image Loss", image_loss, self.steps) overall_loss += opt.mse_loss_coefficient * image_loss if opt.adversarial_loss: adversarial_loss = self.bce_loss(out_labels, self.ones_const) self.writer.add_scalar("Gen Adversarial Loss", adversarial_loss, self.steps) overall_loss += opt.adversarial_loss_coefficient*adversarial_loss if opt.vgg_loss: vgg_perception_loss = self.mse_loss(self.vgg_network(out_images), self.vgg_network(target_images)) self.writer.add_scalar("VGG Perception Loss", vgg_perception_loss, self.steps) overall_loss += opt.vgg_loss_coefficient*vgg_perception_loss return overall_loss
1,555
_site/MCAT_pkg/MCAT_pkg/model_assessment.py
rjeeda/rjeeda.github.io
0
2023889
import numpy as np import pandas as pd import scipy import scipy.stats as st import bebi103 import bokeh.io def ecdf(x, data): """Give the value of an ECDF at arbitrary points x Parameters __________ x : array points to calculate ECDF for data : array input data to generate the ECDF based on Returns __________ output : array of ECDF values for each point in x """ y = np.arange(len(data) + 1) / len(data) return y[np.searchsorted(np.sort(data), x, side="right")] def AIC(params, log_likelihood_fun, data): """Calculates the AIC (akaike criterion) Parameters _________ params : tuple MLE parameters for distribution log_likelihood_fun : function calculates the log likelihood for the desired distribution data : array empirical dataset to calculate log likelihood with respect to Returns _________ output : float AIC value """ L = log_likelihood_fun(params, data); return -2*(L) + 2*len(params) def predictive_ecdf(data, gen_function, params, size = 1000, title = None, xlabel = "Time to Catastrophe (s)", color = "blue", data_color = "gray"): """ Compares ECDF of theoretical distribution to experimental Parameters __________ data : array input data array gen_function : function generative function to sample from params : tuple parameters to use for generative function size : int (optional), default = 1000 number of samples to draw from the generative distribution palette : list (optional), default = ["blue"] if given, used as palette argument to bebi103.viz.fill_between """ single_samples = np.array([gen_function(*params, size = len(data)) for _ in range (size)]) n_theor = np.arange(0, single_samples.max() + 1) p = bebi103.viz.predictive_ecdf( samples = single_samples, data = data, discrete = True, color = color, data_color=data_color, x_axis_label=xlabel, y_axis_label="ECDF", ) if(title != None): p.title.text = title return p def QQ_plot(data, gen_function, params, size = 1000, axis_label = None, title = None, color = "green"): """ creates a QQ_plot comparing the empirical and theoretical value Parameters __________ data : array input data gen_function : function function to generate points from the desired distribution params : tuple MLE parameters size : int (optional), default = 1000 number of samples to generate from the generative distribution axis_label : string (optional) if given, axis_label is used as the label for both axes of the returned plot title : string (optional) if given, used as the title for the returned plot palette : list (optional) if given, used as the argument to palette in bebi103.viz.qqplot Returns ________ output : p (bokeh figure) """ single_samples = np.array([gen_function(*params, size = len(data)) for _ in range (size)]) p = bebi103.viz.qqplot( data=data, samples=single_samples, patch_kwargs = {"color":color}, line_kwargs = {"color":color} ) if(axis_label != None): p.xaxis.axis_label = axis_label p.yaxis.axis_label = axis_label if(title != None): p.title.text = title return p
3,444
codes/models/layers/subpixel.py
ishine/AFILM
12
2024140
import tensorflow as tf def SubPixel1D(I, r): """One-dimensional subpixel upsampling layer Calls a tensorflow function that directly implements this functionality. We assume input has dim (batch, width, r) """ with tf.name_scope('subpixel'): X = tf.transpose(I, [2,1,0]) # (r, w, b) X = tf.compat.v1.batch_to_space_nd(X, [r], [[0,0]]) # (1, r*w, b) X = tf.transpose(X, [2,1,0]) return X
426
workspace/core/settings.py
jacksmith15/workspace-cli
2
2023147
from __future__ import annotations import os from dataclasses import dataclass from functools import lru_cache @dataclass class Settings: filename: str = "workspace.json" @classmethod def from_env(cls): env_prefix = "WORKSPACE_" params = { name: os.environ[env_prefix + name.upper()] for name, field in cls.__dataclass_fields__.items() if env_prefix + name.upper() in os.environ and field.init } return cls(**params) @lru_cache(maxsize=None) def get_settings() -> Settings: return Settings.from_env()
591
empower_vbs_emulator/main.py
5g-empower/empower-vbs-emulator
0
2023697
#!/usr/bin/env python3 # # Copyright (c) 2020 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Main module.""" import sys import json from argparse import ArgumentParser import tornado.ioloop from empower_vbs_emulator.vbs import VBS def main(): """Main module.""" # parse arguments parser = ArgumentParser() parser.add_argument("-a", "--address", dest="address", type=str, default="127.0.0.1", help="The 5G-EmPOWER runtime address") parser.add_argument("-p", "--port", dest="port", type=int, default=5533, help="The 5G-EmPOWER runtime port") parser.add_argument("-s", "--scenario", dest="scenario", type=str, required=True, help="Path to JSON file describing the scenario") parsed, _ = parser.parse_known_args(sys.argv[1:]) scenario = {} # load json with open(parsed.scenario) as json_file: scenario = json.load(json_file) # instantiate VBS with configuration scenario vbs = VBS(address=parsed.address, port=parsed.port, scenario=scenario) # start VBS vbs.start() # start tornado loop tornado.ioloop.IOLoop.instance().start()
1,911
main.py
sumitsk/HER
4
2024104
import torch import os import numpy as np import datetime from copy import deepcopy import utils from arguments import get_args from learner import Learner from policy import Policy import logger from tensorboard_logger import configure, log_value if __name__ == '__main__': args = get_args() logid = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S-%f") if args.logid is None else str(args.logid) logdir = os.path.join('save', logid) utils.check_logdir(logdir) logger.configure(logdir) configure(logdir) params = vars(args) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') params['device'] = device params['cached_env'] = utils.get_cached_env(params['env_name']) policy = Policy(params) train_envs = utils.make_parallel_envs(params['env_name'], params['seed'], params['num_processes']) trainer_params = deepcopy(params) trainer_params['envs'] = train_envs trainer_params['exploit'] = False trainer = Learner(policy, trainer_params) eval_seed = np.random.randint(0, 100) eval_num_processes = params['num_processes'] eval_envs = utils.make_parallel_envs(params['env_name'], eval_seed, eval_num_processes) evaluator_params = deepcopy(params) evaluator_params['num_processes'] = eval_num_processes evaluator_params['envs'] = eval_envs evaluator_params['exploit'] = True evaluator = Learner(policy, evaluator_params) n_test_rollouts = 10 best_success_rate = -1 latest_policy_path = os.path.join(logger.get_dir(), 'policy_latest.pt') best_policy_path = os.path.join(logger.get_dir(), 'policy_best.pt') periodic_policy_path = os.path.join(logger.get_dir(), 'policy_{}.pt') n_batches = trainer_params['n_batches']*trainer_params['num_processes'] for epoch in range(params['n_epochs']): trainer.clear_history() policy.set_train_mode() for i in range(params['n_cycles']): episode = trainer.generate_rollouts() policy.store_episode(episode) for _ in range(n_batches): critic_loss, policy_loss = policy.train() step = epoch*params['n_cycles']+i log_value('critic_loss', critic_loss, step) log_value('policy_loss', policy_loss, step) # policy.update_target_net() evaluator.clear_history() policy.set_eval_mode() for _ in range(n_test_rollouts): evaluator.generate_rollouts() # log statistics logger.record_tabular('epoch', epoch) test_stats = evaluator.logs() for key, val in test_stats.items(): logger.record_tabular('test/'+key, val) train_stats = trainer.logs() for key, val in train_stats.items(): logger.record_tabular('train/'+key, val) for key, val in policy.logs(): logger.record_tabular(key, val) logger.dump_tabular() log_value('train_success_rate', train_stats['success_rate'], epoch) log_value('test_success_rate', test_stats['success_rate'], epoch) success_rate = test_stats['success_rate'] if success_rate >= best_success_rate: best_success_rate = success_rate logger.info('New best success rate: {}. Saving policy to {} ...'.format(best_success_rate, best_policy_path)) policy.save(epoch, best_policy_path) policy.save(epoch, latest_policy_path) if epoch % params['save_every'] == 0: policy_path = periodic_policy_path.format(epoch) logger.info('Saving periodic policy to {} ...'.format(policy_path)) policy.save(epoch, policy_path)
3,683
PersonalWebsite/main/migrations/0001_initial.py
justokarell/PersonalWebsite
0
2023136
# Generated by Django 3.0.4 on 2020-03-31 12:47 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='AreaMap', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('map_title', models.CharField(max_length=200)), ('map_updated', models.DateTimeField(verbose_name='last updated')), ], ), ]
576
doc/_static/draw_tree.py
U8NWXD/vivarium
13
2023668
import networkx as nx from matplotlib import pyplot as plt def main(): G = nx.Graph() edges = [ ('root', 'cell'), ('root', 'global'), ('root', 'injector'), ('root', 'glucose_phosphorylation'), ('root', 'my_deriver'), ('cell', 'ATP'), ('cell', 'ADP'), ('cell', 'G6P'), ('cell', 'GLC'), ('cell', 'HK'), ('global', 'initial_mass'), ('global', 'mass'), ] fig, ax = plt.subplots(figsize=(15, 5)) G.add_edges_from(edges) nx.draw_networkx( G, pos=nx.nx_pydot.graphviz_layout(G, prog="dot"), with_labels=True, node_size=2000, font_size=14, ax=ax ) plt.savefig('tree.png') if __name__ == '__main__': main()
782
main.py
CocoaPods/keith-as-a-service
1
2022895
from flask import Flask, request from flask.views import MethodView import hashlib import hmac import json import os import requests import sys class GithubHook(MethodView): def post(self): try: signature = request.headers["X-Hub-Signature"] except Exception, e: print "No hub signature %s : %s" % (request.headers, request.get_json()) return "This is sketchy, I'm leaving" try: secret = os.environ["hook_secret"] hash_string = hmac.new(secret.encode('utf-8'), msg=request.data, digestmod=hashlib.sha1).hexdigest() expected_hash = "sha1=" + hash_string except Exception, e: print "Building expected hash failed: %s" % e return "Building expected hash failed", 500 if signature != expected_hash: return "Wrong hash, gtfo" request_json = request.get_json() pull_request = request_json.get("pull_request") if request_json.get("action") != "opened": return "Meh, only care about opens" links = pull_request.get("_links") pull_request_link = links.get("self").get("href") comments_url = links.get("comments").get("href") message_file = os.path.join(os.path.dirname(__file__), "message.md") with open(message_file, "r") as file: message = file.read() comment_body = {"body": message} close_state = {"state": "closed"} auth = (os.environ["github_user"], os.environ["github_pass"]) try: requests.post(comments_url, data=json.dumps(comment_body), auth=auth) requests.patch(pull_request_link, data=json.dumps(close_state), auth=auth) except Exception, e: print "Exception: ", e return "42" app = Flask(__name__) app.add_url_rule('/', view_func=GithubHook.as_view('counter')) if __name__ == "__main__": if len(sys.argv) != 2: print "Usage: %s <PORT>" % sys.argv[0] sys.exit(1) app.run(port=int(sys.argv[1]), host="0.0.0.0")
2,298
CodesComplete/CleanCode/descriptor.py
vinimmelo/python
0
2022965
class NonDataDescriptor: def __get__(self, instance, value): if instance is None: return self print('Descriptor test!') return 42 class DataDescriptor: def __get__(self, instance, value): if instance is None: return self print('Descriptor test!') return 42 def __set__(self, instance, value): print('Setting descriptor') instance.__dict__["descriptor"] = value class Dog: descriptor = DataDescriptor() def __init__(self, legs, eyes): self.legs = legs self.eyes = eyes def bark(self): return f"Legs: {self.legs} Eyes: {self.legs}"
672
test_frame/test_broker/test_publish.py
DJMIN/funboost
333
2023418
import time from test_frame.test_broker.test_consume import f f.clear() for i in range(1000000): # time.sleep(0.2) if i == 0: print(time.strftime("%H:%M:%S"), '发布第一条') if i == 99999: print(time.strftime("%H:%M:%S"), '发布第100000条') f.push(i, i * 2) if __name__ == '__main__': pass # f.multi_process_pub_params_list([{'a':i,'b':2*i} for i in range(100000)],process_num=5)
411
Python/StringTyping.py
Zardosh/code-forces-solutions
0
2022786
n = int(input()) s = input() word = '' biggest_repetition = 1 for i in range(len(s)): word += s[i] if word in s[i + 1:i + len(word) + 1]: biggest_repetition = max(biggest_repetition, len(word)) print(len(s) - biggest_repetition + 1)
252
app/app.py
Ollen/FileCarver
1
2023698
import sys, os, time sys.path.append('../controller') from head_file import * from init_drive import * from model_app import * from burn_drive import * from flask import Flask, render_template, request, redirect, jsonify, Response app = Flask(__name__) # Global Variables doCopy = -1 selectedDrive = None selectRawPath = None copyRawPath = None copyRawName = None fileList = None filePrefix = "" scanOption = None extractLocation = None fullDriveList = None selectedShredOption = None drive = None # Start page of the application @app.route("/") def start(): return render_template('start.html') # Select a drive page. @app.route("/select", methods=['GET','POST']) def select(): global fullDriveList fullDriveList = listDrive() return render_template('select.html', drive_list = fullDriveList) # Select a raw image Page @app.route("/selectRaw", methods=['GET','POST']) def selectRaw(): return render_template('selectRaw.html') @app.route("/selectShred", methods=['GET', 'POST']) def selectShred(): global fullDriveList fullDriveList = listDrive() return render_template('selectShred.html', drive_list = fullDriveList) @app.route("/burnDrive", methods=['GET', 'POST']) def burnDrive(): global selectedDrive global selectedShredOption global drive selectedDrive = request.form['drive']; selectedShredOption = request.form['option']; drive = getDrive(fullDriveList, int(selectedDrive)); return render_template('loadShred.html'); @app.route("/startBurn", methods=['GET', 'POST']) def startBurn(): print("=-=-=-=-=--=-=-=-= START BURN -=-=-=-=-=--==-=-", file=sys.stderr) rawTotal = getDriveTotal(drive); print(drive, file=sys.stderr) print(rawTotal, file=sys.stderr) print(selectedShredOption, file=sys.stderr) rand_data = "0123456789ABCDEF" rand_char = "ABCDEF" rand_numb = "1234567890" block_total = int(math.ceil(rawTotal / 8192)) if selectedShredOption == "0": return Response(cleanDrive(drive, block_total, 8192, "0") ,mimetype= 'text/event-stream') if selectedShredOption == "1": return Response(cleanDrive(drive, block_total, 8192, rand_data) ,mimetype= 'text/event-stream') # Set the user input in the select page @app.route("/setSelect", methods=['GET', 'POST']) def setSelectGlobal(): global drive driveText = request.form['drive'] path = request.form['copyPath'] name = request.form['copyName'] copy = request.form['copy'] setSelect(driveText, copy, path, name) # print(selectedDrive, file=sys.stderr) # print(copyRawPath, file=sys.stderr) # print(copyRawName, file=sys.stderr) # print(option, file=sys.stderr) # sys.stdout.flush() drive = getDrive(fullDriveList, int(selectedDrive)) print(drive, file=sys.stderr) if not name or not path : print('redirect to config', file=sys.stderr) return redirect('http://localhost:5000/config') else: print('redirect to copy', file=sys.stderr) return redirect('http://localhost:5000/copy') @app.route("/setSelectRaw", methods=['GET', 'POST']) def setRaw(): global drive drive = request.form['rawPath'] return redirect('http://localhost:5000/config') # Configure extraction page. @app.route("/config", methods=['GET','POST']) def config(): return render_template('config.html') # Copy raw image loading page. @app.route("/copy", methods=['GET','POST']) def copy(): return render_template('loadCopy.html') # Extract retireved files loading page. @app.route("/extract", methods=['GET','POST']) def extract(): setConfig(request.form.getlist('checklist'),request.form['scanOption'], request.form['extractLocation'], request.form['filePrefix']) #print(drive, file=sys.stderr) print(extractLocation, file=sys.stderr) print(fileList, file=sys.stderr) print(scanOption, file=sys.stderr) if scanOption == "1": print('[+] Initializing Fast Scan', file=sys.stderr) elif scanOption == "2": print('[+] Initializing Normal Scan', file=sys.stderr) elif scanOption == "3": print('[+] Initializing Deep Scan', file=sys.stderr) rawExtractLocation = extractLocation.replace('\\','\\\\') print(rawExtractLocation, file=sys.stderr) return render_template('loadExtract.html', copy = doCopy, location = rawExtractLocation) # Extract directly from drive @app.route('/scanExtract') def scanExtract(): print (drive, file=sys.stderr) (lst_srt, lst_end, lst_buf) = compileRegs(fileList) if scanOption == '1': print ('Extracting (Fast-Scan): ', file=sys.stderr) fullPrefix = namingFile(extractLocation, filePrefix) return Response(fastReadImage(drive, fullPrefix, lst_srt, lst_end, fileList, lst_buf), mimetype= 'text/event-stream') elif scanOption == '2': print ('Extracting (Standard-Scan): ', file=sys.stderr) fullPrefix = namingFile(extractLocation, filePrefix) return Response(standardReadImage(drive, fullPrefix, lst_srt, lst_end, fileList, lst_buf), mimetype= 'text/event-stream') elif scanOption == '3': print ('Extracting (Standard-Scan): ', file=sys.stderr) fullPrefix = namingFile(extractLocation, filePrefix) return Response(deepReadImage(drive, fullPrefix, lst_srt, lst_end, fileList, lst_buf), mimetype= 'text/event-stream') # Extract from copied raw Image @app.route('/scanExtractCopy') def scanCopy(): rawPath = copyRawPath + copyRawName + ".dd" print (rawPath, file=sys.stderr) (lst_srt, lst_end, lst_buf) = compileRegs(fileList) if scanOption == '1': print ('Extracting (Fast-Scan): ', file=sys.stderr) fullPrefix = namingFile(extractLocation, filePrefix) return Response(fastReadImage(rawPath, fullPrefix, lst_srt, lst_end, fileList, lst_buf), mimetype= 'text/event-stream') elif scanOption == '2': print ('Extracting (Standard-Scan): ', file=sys.stderr) fullPrefix = namingFile(extractLocation, filePrefix) return Response(standardReadImage(drive, fullPrefix, lst_srt, lst_end, fileList, lst_buf), mimetype= 'text/event-stream') elif scanOption == '3': print ('Extracting (Standard-Scan): ', file=sys.stderr) fullPrefix = namingFile(extractLocation, filePrefix) return Response(deepReadImage(drive, fullPrefix, lst_srt, lst_end, fileList, lst_buf), mimetype= 'text/event-stream') @app.route('/scanExtractRaw') def scanExtractRaw(): print ('ScanExtractRaw', file=sys.stderr) print (drive, file=sys.stderr) (lst_srt, lst_end, lst_buf) = compileRegs(fileList) if scanOption == '1': print ('Extracting (Fast-Scan): ', file=sys.stderr) fullPrefix = namingFile(extractLocation, filePrefix) return Response(fastReadImage(drive, fullPrefix, lst_srt, lst_end, fileList, lst_buf), mimetype= 'text/event-stream') elif scanOption == '2': print ('Extracting (Standard-Scan): ', file=sys.stderr) fullPrefix = namingFile(extractLocation, filePrefix) return Response(standardReadImage(drive, fullPrefix, lst_srt, lst_end, fileList, lst_buf), mimetype= 'text/event-stream') elif scanOption == '3': print ('Extracting (Standard-Scan): ', file=sys.stderr) fullPrefix = namingFile(extractLocation, filePrefix) return Response(deepReadImage(drive, fullPrefix, lst_srt, lst_end, fileList, lst_buf), mimetype= 'text/event-stream') # Copy Raw Image @app.route("/copyImage") def copyImage(): return Response(toRawImage(copyRawName, copyRawPath, drive), mimetype= 'text/event-stream') # Set the drive, rawpath, and rawname global variables. def setSelect(drive, copy, rawPath = None, rawName = None): global selectedDrive global copyRawPath global copyRawName global doCopy selectedDrive = drive doCopy = copy copyRawName = rawName copyRawPath = rawPath def setConfig(listFile, option, location, prefix = ""): global fileList global filePrefix global scanOption global extractLocation fileList = listFile filePrefix = prefix scanOption = option extractLocation = location if __name__ == "__main__": print('Starting...') sys.stdout.flush() app.run()
8,337
conf/settings/local.py
pincoin/iclover
1
2024196
from .base import * DEBUG = Secret.DEBUG # SECURITY WARNING: Keep them secret! SECRET_KEY = Secret.SECRET_KEY ALLOWED_HOSTS = Secret.ALLOWED_HOSTS DATABASES = Secret.DATABASES if DEBUG: # Static files (CSS, JavaScript, Images) STATIC_URL = '/assets/' STATIC_ROOT = os.path.join(BASE_DIR, 'assets/') STATICFILES_DIRS = [ ] # Media files (Uploaded files) MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media/') # logging LOGGING = { 'version': 1, # 기존의 로깅 설정을 비활성화 할 것인가? 'disable_existing_loggers': False, # 포맷터 # 로그 레코드는 최종적으로 텍스트로 표현됨 # 이 텍스트의 포맷 형식 정의 # 여러 포맷 정의 가능 'formatters': { 'format1': { 'format': '[%(asctime)s] %(levelname)s [%(name)s:%(lineno)s] %(message)s', 'datefmt': '%d/%b/%Y %H:%M:%S' }, 'format2': { 'format': '%(levelname)s %(message)s' }, }, # 핸들러 # 로그 레코드로 무슨 작업을 할 것인지 정의 # 여러 핸들러 정의 가능 'handlers': { # 콘솔(터미널)에 출력 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'format2', } }, # 로거 # 로그 레코드 저장소 # 로거를 이름별로 정의 'loggers': { 'django.db.backends': { 'handlers': ['console'], 'level': 'DEBUG', }, }, } else: # AWS Setting AWS_REGION = Secret.AWS_REGION AWS_STORAGE_BUCKET_NAME = Secret.AWS_STORAGE_BUCKET_NAME AWS_ACCESS_KEY_ID = Secret.AWS_ACCESS_KEY_ID AWS_SECRET_ACCESS_KEY = Secret.AWS_SECRET_ACCESS_KEY AWS_QUERYSTRING_AUTH = False AWS_S3_HOST = f's3.{AWS_REGION}.amazonaws.com' AWS_S3_CUSTOM_DOMAIN = f'{AWS_STORAGE_BUCKET_NAME}.s3.amazonaws.com' AWS_DEFAULT_ACL = None # Static Setting STATIC_URL = '/assets/' # Media Setting MEDIA_URL = '/media/' DEFAULT_FILE_STORAGE = 'conf.settings.storage.MediaStorage' STATICFILES_STORAGE = 'conf.settings.storage.StaticStorage' MEDIAFILES_LOCATION = 'media' STATICFILES_LOCATION = 'assets' REST_FRAMEWORK_TOKEN = 'e8b0ddbbe7152d35771a20c6669d1c2016175580' # Our own apps INSTALLED_APPS += [ 'core', 'member', 'design', 'managing', 'api', 'imagekit', 'mathfilters', 'storages', ] SESSION_COOKIE_AGE = 609600 SESSION_SAVE_EVERY_REQUEST = True
2,496
mlxtk/simulation_set/cmd_qdel.py
f-koehler/mlxtk
2
2023341
import argparse from mlxtk.cwd import WorkingDir from mlxtk.simulation_set.base import SimulationSetBase def cmd_qdel(self: SimulationSetBase, args: argparse.Namespace): del args if not self.working_dir.exists(): self.logger.warning( "working dir %s does not exist, do nothing", self.working_dir ) with WorkingDir(self.working_dir): for simulation in self.simulations: simulation.main(["qdel"])
460
calling_linear_pig.py
Aurametrix/HDFS
1
2024178
#!/usr/bin/env python import os import sys import shutil import random import tempfile import Queue from org.apache.pig.scripting import Pig from org.codehaus.jackson.map import ObjectMapper EPS = 10e-6 # maximum distance between consective weights for convergence pig_script = sys.argv[1] # pig script to run iteratively data_dir = sys.argv[2] # directory where intermediate weights will be written features = sys.argv[3] # location, inside data_dir, where the data to fit exists num_features = sys.argv[4] # number of features # # Cleanup data dir # cmd = "rmr %s/weight-*" % data_dir Pig.fs(cmd) # # Initialize weights # w0_fields = [] weights = [] for i in xrange(int(num_features)): weights.append(str(random.random())) w0_fields.append({"name":"w%s" % i,"type":25,"schema":None}) # See Pig's DataType.java path = tempfile.mkdtemp() w0 = open("%s/part-r-00000" % path, 'w') w0.write("\t".join(weights)+"\n") w0.close() # # Create schema for weights, place under weight-0 dir # w0_schema = {"fields":w0_fields,"version":0,"sortKeys":[],"sortKeyOrders":[]} w0_schema_file = open("%s/.pig_schema" % path, 'w') ObjectMapper().writeValue(w0_schema_file, w0_schema); w0_schema_file.close() # # Copy initial weights to fs # copyFromLocal = "copyFromLocal %s %s/%s" % (path, data_dir, "weight-0") Pig.fs(copyFromLocal) # # Iterate until converged # features = "%s/%s" % (data_dir,features) script = Pig.compileFromFile(pig_script) weight_queue = Queue.Queue(25) # for moving average avg_weight = [0.0 for i in xrange(int(num_features))] converged = False prev = 0 weight_dir = tempfile.mkdtemp() while not converged: input_weights = "%s/weight-%s" % (data_dir,prev) output_weights = "%s/weight-%s" % (data_dir,prev+1) bound = script.bind({'input_weights':input_weights,'output_weights':output_weights,'data':features}) bound.runSingle() # # Copy schema for weights to each output # copyOutputSchema = "cp %s/.pig_schema %s/.pig_schema" % (input_weights, output_weights) Pig.fs(copyOutputSchema) # # The first few iterations the weights bounce all over the place # if (prev > 1): copyToLocalPrev = "copyToLocal %s/part-r-00000 %s/weight-%s" % (input_weights, weight_dir, prev) copyToLocalNext = "copyToLocal %s/part-r-00000 %s/weight-%s" % (output_weights, weight_dir, prev+1) Pig.fs(copyToLocalPrev) Pig.fs(copyToLocalNext) localPrev = "%s/weight-%s" % (weight_dir, prev) localNext = "%s/weight-%s" % (weight_dir, prev+1) x1 = open(localPrev,'r').readlines()[0] x2 = open(localNext,'r').readlines()[0] x1 = [float(x.strip()) for x in x1.split("\t")] x2 = [float(x.strip()) for x in x2.split("\t")] weight_queue.put(x1) avg_weight = [x[1] + (x[0] - x[1])/(prev-1.0) for x in zip(x1,avg_weight)] # # Make sure to collect enough weights into the average before # checking for convergence # if (prev > 25): first_weight = weight_queue.get() avg_weight = [(x[0] - x[1]/25.0 + x[2]/25.0) for x in zip(avg_weight, first_weight, x1)] # # Compute distance from weight centroid to new weight # d = sum([(pair[0] - pair[1])**2 for pair in zip(x2,avg_weight)]) converged = (d < EPS) os.remove(localPrev) os.remove(localNext) prev += 1 # # Cleanup # shutil.rmtree(path) shutil.rmtree(weight_dir)
3,661
fedhf/component/sampler/__init__.py
beiyuouo/fedhf
2
2023403
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : fedhf\component\sampler\__init__.py # @Time : 2022-05-03 16:00:35 # @Author : <NAME> # @Email : <EMAIL> # @License : Apache License 2.0 __all__ = ["build_sampler", "RandomSampler", "NonIIDSampler", "sampler_factory", "BaseSampler"] from .base_sampler import BaseSampler from .random_sampler import RandomSampler from .noniid_sampler import NonIIDSampler sampler_factory = { 'random': RandomSampler, 'non-iid': NonIIDSampler, } def build_sampler(sam_name: str): if sam_name not in sampler_factory.keys(): raise ValueError(f'Sampler {sam_name} not found.') sampler = sampler_factory[sam_name] return sampler
717
src/ia/random_playeria.py
yoyonel/2018_papayoo
0
2024105
""" """ import random # from ia.playeria import PlayerIA class RandomPlayerIA(PlayerIA): def __init__(self, player_id, player_name=None): """ :param player_id: :param player_name: """ super().__init__(player_id, player_name) def do_discards(self, discard): """ :param discard: :type discard: DiscardCards :return: :rtype: list[Cards] """ def _choose_discard_cards(): id_cards = list(range(len(self._cards))) random.shuffle(id_cards) return [ self._cards[id_card] for id_card in id_cards[:discard.nb_cards] ] # discard_cards = _choose_discard_cards() # self.remove_cards(discard_cards) # return discard_cards def get_from_discards(self, cards): """ :param cards: :type cards: list[Cards] :return: """ # self.add_cards(cards) self.add_discard_cards(cards) def play(self, cards_already_played): """ :param cards_already_played: :type cards_already_played: list[tuple(int, Cards)] :return: :rtype: Cards """ cards_playable = self._cards # filter cards we can play if cards_already_played: first_card_play = cards_already_played[0] filter_suit = first_card_play.suit filter_cards_playable = [ card for card in self._cards if card.suit == filter_suit ] if filter_cards_playable: cards_playable = filter_cards_playable # play_card = random.choice(cards_playable) self.remove_cards([play_card]) return play_card
1,872
applications/Ma-Net/networks/decoder.py
Simon-liusheng/PaddleVideo
1
2023664
import math import paddle import paddle.nn as nn import paddle.nn.functional as F from utils.api import kaiming_normal_ class Decoder(nn.Layer): def __init__(self, num_classes, backbone, BatchNorm): super(Decoder, self).__init__() if backbone == 'resnet' or backbone == 'drn' or backbone == 'resnet_edge': low_level_inplanes = 256 elif backbone == 'xception': low_level_inplanes = 128 elif backbone == 'mobilenet': low_level_inplanes = 24 else: raise NotImplementedError self.conv1 = nn.Conv2D(low_level_inplanes, 48, 1, bias_attr=False) self.bn1 = BatchNorm(48) self.relu = nn.ReLU(True) self.last_conv = nn.Sequential( nn.Conv2D(304, 256, kernel_size=3, stride=1, padding=1, bias_attr=False), BatchNorm(256), nn.ReLU(True), nn.Sequential(), nn.Conv2D(256, 256, kernel_size=3, stride=1, padding=1, bias_attr=False), BatchNorm(256), nn.ReLU(True), nn.Sequential()) self._init_weight() def forward(self, x, low_level_feat): low_level_feat = self.conv1(low_level_feat) low_level_feat = self.bn1(low_level_feat) low_level_feat = self.relu(low_level_feat) x = F.interpolate(x, size=low_level_feat.shape[2:], mode='bilinear', align_corners=True) x = paddle.concat((x, low_level_feat), axis=1) x = self.last_conv(x) return x def _init_weight(self): for m in self.sublayers(): if isinstance(m, nn.Conv2D): kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2D): from utils.api import fill_ fill_(m.weight, 1) from utils.api import zero_ zero_(m.bias) def build_decoder(num_classes, backbone, BatchNorm): return Decoder(num_classes, backbone, BatchNorm)
2,219
Shared/dtos/GameActionDto.py
GeorgeVelikov/Werewolf-Framework
1
2023203
class GameActionDto(): def __init__(self, gameIdentifier, player, targetPlayerIdentifier, additionalData = None): self.__gameIdentifier = gameIdentifier; self.__player = player; self.__targetPlayerIdentifier = targetPlayerIdentifier; self.__additionalData = additionalData; @property def GameIdentifier(self): return self.__gameIdentifier; @property def Player(self): return self.__player; @property def TargetPlayerIdentifier(self): return self.__targetPlayerIdentifier; @property def AdditionalData(self): return self.__additionalData;
642
oswin_tempest_plugin/exceptions.py
openstack/oswin-tempest-plugin
6
2024010
# Copyright 2017 Cloudbase Solutions SRL # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest.lib import exceptions class ResizeException(exceptions.TempestException): message = ("Server %(server_id)s failed to resize to the given " "flavor %(flavor)s") class NotFoundException(exceptions.TempestException): message = "Resource %(resource)s (%(res_type)s) was not found." class WSManException(exceptions.TempestException): message = ('Command "%(cmd)s" failed on host %(host)s failed with the ' 'return code %(return_code)s. std_out: %(std_out)s, ' 'std_err: %(std_err)s')
1,194
Feature Detection/edge_corner.py
tuhinmallick/cv_course
2
2024058
""" Created on May 9, 2020. @authors: <NAME> <<EMAIL>> https://github.com/starasteh/ <NAME> <<EMAIL>> https://github.com/aminheydarshahi/ """ import cv2 import numpy as np from skimage.feature import peak_local_max from scipy.signal import argrelextrema def show(name, img, x, y): windowStartX = 10 windowStartY = 50 windowXoffset = 5 windowYoffset = 40 w = img.shape[0] + windowXoffset h = img.shape[1] + windowYoffset cv2.namedWindow(name) cv2.moveWindow(name, windowStartX + w * x, windowStartY + h * y) cv2.imshow(name, img) cv2.waitKey(0) def harrisResponseImage(img): ''' Compute the spatial derivatives in x and y direction. :param img: input image :return: Harris response of the image ''' dIdx = cv2.Sobel(img, cv2.CV_32F, 1, 0) dIdy = cv2.Sobel(img, cv2.CV_32F, 0, 1) show("dI/dx", abs(dIdx), 1, 0) show("dI/dy", abs(dIdy), 2, 0) ########################################################## ## Compute Ixx, Iyy, and Ixy with ## Ixx = (dI/dx) * (dI/dx), ## Iyy = (dI/dy) * (dI/dy), ## Ixy = (dI/dx) * (dI/dy). ## Note: The multiplication between the images is element-wise (not a matrix ## multiplication)!! Ixx = dIdx ** 2 Iyy = dIdy ** 2 Ixy = dIdx * dIdy show("Ixx", abs(Ixx), 0, 1) show("Iyy", abs(Iyy), 1, 1) show("Ixy", abs(Ixy), 2, 1) ########################################################## ## Compute the images A,B, and C by blurring the ## images Ixx, Iyy, and Ixy with a ## Gaussian filter of size 3x3 and standard deviation of 1. kernelSize = (3, 3) sdev = 1 A = cv2.GaussianBlur(Ixx, kernelSize, sdev) B = cv2.GaussianBlur(Iyy, kernelSize, sdev) C = cv2.GaussianBlur(Ixy, kernelSize, sdev) show("A", abs(A) * 5, 0, 1) show("B", abs(B) * 5, 1, 1) show("C", abs(C) * 5, 2, 1) ########################################################## ## Compute the harris response with the following formula: ## R = Det - k * Trace*Trace ## Det = A * B - C * C ## Trace = A + B k = 0.06 trace = A + B det = A * B - C * C response = det - k * (trace ** 2) ## Normalize the response image dbg = (response - np.min(response)) / (np.max(response) - np.min(response)) dbg = dbg.astype(np.float32) show("Harris Response", dbg, 0, 2) ########################################################## cv2.imwrite("dIdx.png", (abs(dIdx) * 255.0)) cv2.imwrite("dIdy.png", (abs(dIdy) * 255.0)) cv2.imwrite("A.png", (abs(A) * 5 * 255.0)) cv2.imwrite("B.png", (abs(B) * 5 * 255.0)) cv2.imwrite("C.png", (abs(C) * 5 * 255.0)) cv2.imwrite("response.png", np.uint8(dbg * 255.0)) return response def harrisKeypoints(response, threshold=0.1): ''' Generate a keypoint for a pixel, if the response is larger than the threshold and it is a local maximum. Don't generate keypoints at the image border. Note 1: Keypoints are stored with (x,y) and images are accessed with (y,x)!! Note 2: with changing k in the R equation, we detect different number of corners. k = 0.005 is the best according to this image. :param response: Harris response of an image :param threshold: Minimum intensity of peaks :return: list of the keypoints ''' points = [] maxima = peak_local_max(response, min_distance=1, threshold_abs=threshold) for maximum in maxima: points.append(cv2.KeyPoint(maximum[1], maximum[0], 1)) return points def harrisEdges(input, response, edge_threshold=-0.01): ''' Set edge pixels to red. A pixel belongs to an edge, if the response is smaller than a threshold and it is a minimum in x or y direction. Don't generate edges at the image border. :param input: input image :param response: harris response of the image :param edge_threshold: Maximum intensity ''' result = input.copy() # 1) if the response is smaller than a threshold response = np.where(response > edge_threshold, np.inf, response) # 2) it is a minimum in x or y direction for x, y in zip(range(response.shape[0]), range(response.shape[1])): minima_x = argrelextrema(response[:, y], np.less) minima_y = argrelextrema(response[x], np.less) result[minima_x, x] = (0, 0, 255) result[y, minima_y] = (0, 0, 255) return result def main(): input_img = cv2.imread('blox.jpg') ## read the image input_gray = cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY) ## convert to grayscale input_gray = (input_gray - np.min(input_gray)) / (np.max(input_gray) - np.min(input_gray)) ## normalize input_gray = input_gray.astype(np.float32) ## convert to float32 for filtering ## Obtain Harris Response, corners and edges response = harrisResponseImage(input_gray) points = harrisKeypoints(response) edges = harrisEdges(input_img, response) imgKeypoints1 = cv2.drawKeypoints(input_img, points, outImage=None, color=(0, 255, 0)) show("Harris Keypoints", imgKeypoints1, 1, 2) show("Harris Edges", edges, 2, 2) cv2.imwrite("edges.png", edges) cv2.imwrite("corners.png", imgKeypoints1) if __name__ == '__main__': main()
5,268
setup.py
maximmenshikov/sphinx_redactor_theme
0
2024074
# -*- coding: utf-8 -*- from setuptools import setup from sphinx_redactor_theme import __version__ setup( name='sphinx_redactor_theme', version='0.0.2.dev0', url='https://github.com/testthedocs/sphinx_redactor_theme', license='MIT', author='TestTheDocs Community', author_email='<EMAIL>', description='Sphinx theme for redactor docs.', long_description=open('README.rst').read(), zip_safe=False, packages=['sphinx_redactor_theme'], package_data={ 'sphinx_redactor_theme': [ 'theme.conf', '*.html', 'static/css/*.css', 'static/js/*.js', 'static/font/*.*' ] }, entry_points={ 'sphinx.html_themes': [ 'sphinx_redactor_theme = sphinx_redactor_theme', ] }, include_package_data=True, classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: BSD License', 'Environment :: Console', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Operating System :: OS Independent', 'Topic :: Documentation', 'Topic :: Software Development :: Documentation', ], )
1,318
tests/__init__.py
Storj/metadisk-client-python
0
2024239
from . test_rest import * # NOQA from . test_api_usage import * # NOQA if __name__ == "__main__": unittest.main()
123
src/models/score.py
leudom/german-fake-news-classifier
0
2022816
# -*- coding: utf-8 -*- """FakeNewsClassifier Scoring Script (Entry Point) This script serves as an entry point to ACI Deployment """ # %% Imports import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger() import os import json import numpy as np from joblib import load from azureml.core.model import Model #%% from dotenv import find_dotenv, load_dotenv load_dotenv(find_dotenv()) #MODEL_PATH = os.path.join(os.getenv('PROJECT_DIR'), 'bin', 'models', 'model.pkl') #model = load(MODEL_PATH) #type(model) #X = ["Das ist ein Test, ob dieser Text als Fake News klassifiziert wird", "Ein weiterer Test"] #results = model.predict_proba(X) #results.tolist() # %% Define entry point def init(): global model model_path = Model.get_model_path(os.getenv('MODEL_NAME')) logging.info('Model path is %s' % str(model_path)) model = load(model_path) logging.info('Model successfully loaded') def run(data): try: data = json.loads(data) result = model.predict_proba(data['data']) return {'data': result.tolist(), 'message': "Successfully classified news"} except Exception as e: error = str(e) return {'data': error, 'message': "Failed to classify news"}
1,239
bigbuild/tests/test_commands.py
datadesk/django-bigbuild
28
2024012
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import logging import bigbuild from bigbuild.tests import TestBase from bigbuild.tests import BUILD_DIR from django.test import override_settings from bigbuild.models import PageList, Page from bigbuild import get_archive_directory from django.core.management import call_command from django.core.management.base import CommandError logging.disable(logging.CRITICAL) class TestCommands(TestBase): def test_build(self): Page.create(slug="yet-another-fake-page") Page.create(slug="my-archived-page") call_command("build") self.assertTrue(os.path.exists(BUILD_DIR)) expected_index = os.path.join( BUILD_DIR, PageList()['yet-another-fake-page'].get_absolute_url().lstrip("/"), 'index.html' ) self.assertTrue(os.path.exists(expected_index)) PageList()[0].build() with override_settings(BUILD_DIR=''): bigbuild.get_build_directory() @override_settings(BIGBUILD_GIT_BRANCH='test', BIGBUILD_BRANCH_BUILD=True) def test_branch_build(self): call_command("build") self.assertTrue(os.path.exists(os.path.join(BUILD_DIR, 'test'))) self.assertTrue('test' in bigbuild.get_base_url()) @override_settings(BIGBUILD_BRANCH_BUILD=False) def test_base_url(self): bigbuild.get_base_url() @override_settings(BAKERY_GZIP=True) def test_gzip(self): call_command("build") def test_validatepages(self): call_command("validatepages") def test_createpage(self): call_command("createpage", "test-page") with self.assertRaises(ValueError): call_command("createpage", "test-page") call_command("createpage", "test-page", force=True) def test_archivepage(self): p = Page.create(slug='test-archived-page') call_command("archivepage", p.slug) with self.assertRaises(CommandError): call_command("archivepage", p.slug) with self.assertRaises(CommandError): call_command("archivepage", "hello-wtf") call_command("unarchivepage", "test-archived-page") def test_cache(self): """ Test the page caching """ before = PageList() cache_path = os.path.join(get_archive_directory(), '.cache') if os.path.exists(cache_path): os.remove(cache_path) call_command("cachepages") after = PageList() self.assertEqual(before[0].slug, after[0].slug) call_command("cachepages")
2,590
model/keypoint_detector.py
netjerikhet/ai-human-emotions
0
2022805
from torch import nn import torch import torch.nn.functional as F from model.util import Hourglass, make_coordinate_grid, AntiAliasInterpolation2d class KPDetector(nn.Module): """ Detecting the keypoints. Return keypoint positions and jacobian near each point """ def __init__(self, block_expansion, num_kp, num_channels, max_features, num_blocks, temperature, estimate_jacobian=False, scale_factor=1, single_jacobian_map=False, pad=0): super(KPDetector, self).__init__() self.predictor = Hourglass(block_expansion, in_features=num_channels, max_features=max_features, num_blocks=num_blocks) self.kp = nn.Conv2d(in_channels=self.predictor.out_filters, out_channels=num_kp, kernel_size=(7,7), padding=pad) if estimate_jacobian: self.num_jacobian_maps = 1 if single_jacobian_map else num_kp self.jacobian = nn.Conv2d(in_channels=self.predictor.out_filters, out_channels=4 * self.num_jacobian_maps, kernel_size=(7, 7), padding=pad) self.jacobian.weight.data.zero_() self.jacobian.bias.data.copy_(torch.tensor([1, 0, 0, 1] * self.num_jacobian_maps, dtype=torch.float)) else: self.jacobian = None self.temperature = temperature self.scale_factor = scale_factor if self.scale_factor != 1: self.down = AntiAliasInterpolation2d(num_channels, self.scale_factor) def gaussian2kp(self, heatmap): """ Extract the mean and from a heatmap """ shape = heatmap.shape heatmap = heatmap.unsqueeze(-1) grid = make_coordinate_grid(shape[2:], heatmap.type()).unsqueeze_(0).unsqueeze_(0) value = (heatmap * grid).sum(dim=(2, 3)) kp = {'value': value} return kp def forward(self, x): if self.scale_factor != 1: x = self.down(x) feature_map = self.predictor(x) prediction = self.kp(feature_map) final_shape = prediction.shape heatmap = prediction.view(final_shape[0], final_shape[1], -1) heatmap = F.softmax(heatmap / self.temperature, dim=2) heatmap = heatmap.view(*final_shape) out = self.gaussian2kp(heatmap) if self.jacobian is not None: jacobian_map = self.jacobian(feature_map) jacobian_map = jacobian_map.reshape(final_shape[0], self.num_jacobian_maps, 4, final_shape[2], final_shape[3]) heatmap = heatmap.unsqueeze(2) jacobian = heatmap * jacobian_map jacobian = jacobian.view(final_shape[0], final_shape[1], 4, -1) jacobian = jacobian.sum(dim=-1) jacobian = jacobian.view(jacobian.shape[0], jacobian.shape[1], 2, 2) out['jacobian'] = jacobian return out def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False, use_relative_movement=False, use_relative_jacobian=False): if adapt_movement_scale: source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area) else: adapt_movement_scale = 1 kp_new = {k: v for k, v in kp_driving.items()} if use_relative_movement: kp_value_diff = (kp_driving['value'] - kp_driving_initial['value']) kp_value_diff *= adapt_movement_scale kp_new['value'] = kp_value_diff + kp_source['value'] if use_relative_jacobian: jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian'])) kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian']) return kp_new
3,937
grn_learn/grn_learn/viz.py
manuflores/grn_learn
1
2023613
import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd import squarify from matplotlib import rcParams def bokeh_style(): ''' Formats bokeh plotting enviroment. Based on the RPgroup PBoC style created by <NAME> and <NAME>. ''' theme_json = {'attrs':{'Axis': { 'axis_label_text_font': 'Helvetica', 'axis_label_text_font_style': 'normal' }, 'Legend': { 'border_line_width': 1.5, 'background_fill_alpha': 0.5 }, 'Text': { 'text_font_style': 'normal', 'text_font': 'Helvetica', 'text_font_size': 18 }, 'Title': { #'background_fill_color': '#FFEDC0', 'text_font_style': 'normal', 'align': 'center', 'text_font': 'Helvetica', 'offset': 2, }}} return theme_json # + # ------- PLOTTING FUNCTIONS ------------------------- def set_plotting_style(): """ Plotting style parameters, based on the RP group. """ tw = 1.5 rc = {'lines.linewidth': 2, 'axes.labelsize': 18, 'axes.titlesize': 21, 'xtick.major' : 16, 'ytick.major' : 16, 'xtick.major.width': tw, 'xtick.minor.width': tw, 'ytick.major.width': tw, 'ytick.minor.width': tw, 'xtick.labelsize': 'large', 'ytick.labelsize': 'large', 'font.family': 'sans', 'weight':'bold', 'grid.linestyle': ':', 'grid.linewidth': 1.5, 'grid.color': '#ffffff', 'mathtext.fontset': 'stixsans', 'mathtext.sf': 'fantasy', 'legend.frameon': True, 'legend.fontsize': 12, "xtick.direction": "in","ytick.direction": "in"} plt.rc('text.latex', preamble=r'\usepackage{sfmath}') plt.rc('mathtext', fontset='stixsans', sf='sans') sns.set_style('ticks', rc=rc) #sns.set_palette("colorblind", color_codes=True) sns.set_context('notebook', rc=rc) rcParams['axes.titlepad'] = 20 def ecdf(x, plot = None, label = None): ''' Compute and plot ECDF. ---------------------- Inputs x: array or list, distribution of a random variable plot: bool, if True return the plot of the ECDF label: string, label for the plot Outputs x_sorted : sorted x array ecdf : array containing the ECDF of x ''' x_sorted = np.sort(x) n = len (x) ecdf = np.linspace(0, 1, len(x_sorted)) if label is None and plot is True: plt.scatter(x_sorted, ecdf, alpha = 0.7) elif label is not None and plot is True: plt.scatter(x_sorted, ecdf, alpha = 0.7, label = label) return x_sorted, ecdf def make_treemap(x_keys, x_counts): ''' Wrapper function to plot treemap using the squarify module. ------------------------------------------- x_keys = names of the different categories x_counts = counts of the given categories ''' norm = mpl.colors.Normalize(vmin=min(x_counts), vmax=max(x_counts)) colors = [mpl.cm.Greens(norm(value)) for value in x_counts] plt.figure(figsize=(14,8)) squarify.plot(label= x_keys, sizes= x_counts, color = colors, alpha=.6) plt.axis('off'); def make_radar_chart(x_keys, x_counts): ''' Wrapper function to make radar chart. ------------------------------------------ x_keys = names of the different categories x_counts = counts of the given categories ''' categories = list(x_keys) N = len(categories) if N > 30: print('The categories are too big to visualize in a treemap.') else: values = list(x_counts) values.append(values[0]) values_sum = np.sum(values[:-1]) percentages= [(val/values_sum)*100 for val in values] #angles angles = [n / float(N) * 2 * pi for n in range(N)] angles += angles[:1] sns.set_style('whitegrid') # Initialize figure plt.figure(1, figsize=(7, 7)) # Initialise the polar plot ax = plt.subplot(111, polar=True) # Draw one ax per variable + add labels labels yet plt.xticks(angles[:-1], categories, color='grey', size=12) #Set first variable to the vertical axis ax.set_theta_offset(pi / 2) #Set clockwise rotation ax.set_theta_direction(-1) #Set yticks to gray color ytick_1, ytick_2, ytick_3 = np.round(max(percentages)/3),np.round((max(percentages)/3)*2),np.round(max(percentages)/3)*3 plt.yticks([ytick_1, ytick_2, ytick_3], [ytick_1, ytick_2, ytick_3], color="grey", size=10) plt.ylim(0, int(max(percentages)) + 4) # Plot data ax.plot(angles, percentages, linewidth=1,color = 'lightgreen') # Fill area ax.fill(angles, percentages, 'lightgreen', alpha=0.3); def plot_distplot_feature(data, col_name): """ Get a histogram with the y axis in log-scale """ plt.hist(data[col_name].values, bins = int(data.shape[0]/10000), color = 'dodgerblue') plt.yscale('log') plt.xlabel(col_name) plt.ylabel('frequency') def plot_boxplot_feature(data, col_name, hue_col_name): """ Get a boxplot with the variable in the x axis, in log scale. You also need to provide a hue column name. """ sns.boxplot(data = data, x = col_name, y = hue_col_name, palette = 'RdBu') plt.xscale('log') def palette(cmap = None): palette = sns.cubehelix_palette(start = 0, rot=0, hue = 1, light = 0.9, dark = 0.15) if cmap == True: palette = sns.cubehelix_palette(start = 0, rot=0, hue = 1, light = 0.9, dark = 0.15, as_cmap = True) return palette
6,014
tests/expect-fail/recipe-174786.py
JohannesBuchner/pystrict3
1
2023477
import random h,t,sumh,sumt=0,0,0,0 for j in range(1,101): for i in range(1,101): x=random.randint(1,2) if (x==1): h=h+1 else: t=t+1 print("Heads are:", h, "Tails are", t) sumh=sumh+h sumt=sumt+t h,t=0,0 print("Heads are:", sumh, "Tails are", sumt)
317
tests/test_provider_jeremmfr_iptables.py
mjuenema/python-terrascript
507
2022771
# tests/test_provider_jeremmfr_iptables.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:19:14 UTC) def test_provider_import(): import terrascript.provider.jeremmfr.iptables def test_resource_import(): from terrascript.resource.jeremmfr.iptables import iptables_nat from terrascript.resource.jeremmfr.iptables import iptables_nat_ipv6 from terrascript.resource.jeremmfr.iptables import iptables_project from terrascript.resource.jeremmfr.iptables import iptables_project_ipv6 from terrascript.resource.jeremmfr.iptables import iptables_raw from terrascript.resource.jeremmfr.iptables import iptables_raw_ipv6 from terrascript.resource.jeremmfr.iptables import iptables_rules from terrascript.resource.jeremmfr.iptables import iptables_rules_ipv6 # TODO: Shortcut imports without namespace for official and supported providers. # TODO: This has to be moved into a required_providers block. # def test_version_source(): # # import terrascript.provider.jeremmfr.iptables # # t = terrascript.provider.jeremmfr.iptables.iptables() # s = str(t) # # assert 'https://github.com/jeremmfr/terraform-provider-iptables' in s # assert '1.2.0' in s
1,227
machine-learning/small-tasks/f-score.py
nothingelsematters/university
1
2023179
def harmonic_mean(a, b): return 0 if a + b == 0 else 2 * a * b / (a + b) size = int(input()) elements = [list(map(int, input().split())) for x in range(size)] row = [sum(i) for i in elements] column = [sum(map(lambda x: x[i], elements)) for i in range(size)] full = sum(row) precision = 0 recall = 0 score = 0 for i in range(size): local_precision = 0 if row[i] == 0 else elements[i][i] / row[i] local_recall = 0 if column[i] == 0 else elements[i][i] / column[i] weight = row[i] precision += local_precision * weight recall += local_recall * weight score += harmonic_mean(local_precision, local_recall) * weight # macro print(harmonic_mean(precision, recall) / full) # micro print(score / full)
729
pyccuweather/utils.py
chrisvoncsefalvay/pyccuweather
4
2022938
# coding=utf-8 """ Pyccuweather The Python Accuweather API (c) <NAME>, 2015. http://www.github.com/chrisvoncsefalvay/pyccuweather/ """ import json from time import gmtime from datetime import date def wloads(content): """ Decodes incoming JSON with UTF-8. :param content: JSON formatted content :return: JSON formatted content loaded as object and decoded with UTF-8. """ return json.loads(content.decode('utf-8')) def get_woy(epochdate): """ Converts an epoch date into week of year. :param epochdate: Epoch date :return: week of year """ _time = gmtime(epochdate) return date(_time.tm_year, _time.tm_mon, _time.tm_mday).isocalendar()[1]
701
export_to_csv.py
minhht-0134/redmine_sample
0
2023224
import pandas def export(data, file_name): df = pandas.DataFrame(data=data) df.to_csv(file_name)
107
helpers/preprocess.py
alishazal/qalb
2
2023847
import sys import unicodedata as ud import re def allNonAscii(word): for char in word: if ord(char) < 128: return False return True def copyNonAscii(input_line, copy_marker, output_line, is_prediction): input_words = input_line.split() if not is_prediction: output_words = output_line.split() for i in range(len(input_words)): if allNonAscii(input_words[i]): input_words[i] = copy_marker if not is_prediction: output_words[i] = copy_marker if is_prediction: return " ".join(input_words) return " ".join(input_words), " ".join(output_words) def isPunctuation(word): for char in word: if char not in ".,?!'\":;-()[]}{": return False return True def copyTextEmojiAndPunctuation(input_line, copy_marker, output_line, is_prediction): input_words = input_line.split() if not is_prediction: output_words = output_line.split() for i in range(len(input_words)): if isPunctuation(input_words[i]): input_words[i] = copy_marker if not is_prediction: output_words[i] = copy_marker else: # Handling <3 separately first match = re.search(r'(<3)+', input_words[i], re.IGNORECASE) if match and match.group(0) == input_words[i]: input_words[i] = copy_marker if not is_prediction: output_words[i] = copy_marker match = re.search(r'[=:;8xX>^()$*@][-_.\'"]*[XxOoPpsSDVv)(\][/\\Cc3><}{@|:;=0*L$^~]+', input_words[i], re.IGNORECASE) if match: emoticon = match.group(0) if emoticon == input_words[i]: input_words[i] = copy_marker if not is_prediction: output_words[i] = copy_marker if is_prediction: return " ".join(input_words) return " ".join(input_words), " ".join(output_words) def removeAccents(line): newLine = [] for word in line.split(" "): nfkd_form = ud.normalize('NFKD', word) res = "".join([c for c in nfkd_form if not ud.combining(c)]) newLine.append(res.replace(' ', '')) return " ".join(newLine) def compress(line, limit): ans = "" currChar = "" currCharCounter = 1 compressThese = '23567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_ ' for i in line: if i == currChar: currCharCounter += 1 else: currChar = i currCharCounter = 1 if currCharCounter < limit + 1 or i not in compressThese: ans += i return ans def copy_tokens(input_line, output_line, copy_marker): input_line = input_line.split() output_line = output_line.split() new_output = [] for word in range(len(output_line)): if input_line[word] == output_line[word]: new_output.append(copy_marker) else: new_output.append(output_line[word]) return " ".join(new_output) def preprocess(all_input_lines, all_output_lines, is_train, is_predict, alignment, copy_unchanged_tokens, copy_marker, writing_system): if is_train: for line in range(len(all_input_lines)): input_line = all_input_lines[line].strip() output_line = all_output_lines[line].strip() #convert unchanged words to a special character (default: #) to protect them in output if is_train and copy_unchanged_tokens and alignment == "word": output_line = copy_tokens(input_line, output_line, copy_marker) #preprocessing input_line = compress(input_line, 2) input_line = input_line.lower() input_line = removeAccents(input_line) if alignment == "word": if writing_system == "latin": input_line, output_line = copyNonAscii(input_line, copy_marker, output_line, False) input_line, output_line = copyTextEmojiAndPunctuation(input_line, copy_marker, output_line, False) all_input_lines[line] = input_line all_output_lines[line] = output_line return all_input_lines, all_output_lines if is_predict: for line in range(len(all_input_lines)): input_line = all_input_lines[line].strip() #preprocessing input_line = compress(input_line, 2) input_line = input_line.lower() input_line = removeAccents(input_line) if alignment == "word": if writing_system == "latin": input_line = copyNonAscii(input_line, copy_marker, None, True) input_line = copyTextEmojiAndPunctuation(input_line, copy_marker, None, True) all_input_lines[line] = input_line return all_input_lines
4,826
adding_more_strings.py
agolla0440/my_python_workbook
0
2023830
""" in this program i will be adding multiple strings to one string """ def add_strings(first, second, third, fourth, fifth, sixth, seventh): value = first + " " + second + " " + third + " " + fourth + " " + fifth + " " + sixth + " " + seventh return value statement = add_strings("Jeff", "Bezos", "is", "the", "CEO", "of", "amazon") print(statement, ".") print("$" * 100000)
388
macaroon/macaroon/playback/__init__.py
javihernandez/accerciser-mirror
2
2024130
from sequence import * from wait_actions import * from keypress_actions import * from sequence_step import *
109
bitcoin/TamanioHorarioBloques.py
JaimePerez89/Bitcoin
0
2022793
import datetime from bitcoin import PlotColumns def media_size_bloque_hr(block_data, representar='N'): ''' Función que agrupa el tamaño de cada bloque en función de la hora de inicio y devuelve por pantalla el tamaño medio horario. Si se indica con el parámetro "representar", junto al mensaje se representan gráficamente los resultados mediante un gráfico de barras :param block_data: diccionario con la información de bloques (resultante de ejecutar la función de lectura. :param representar: 'Y' la función representa por pantalla la gráfica junto al mensaje. 'N' (valor por defecto) la función no representa la gráfica junto al mensaje :return: results (dict): diccionario con los resultados mensaje por pantalla con info sobre el tamaño medio de los bloques en función de la hora de inicio 'A4_TamañoMedioBloques.png' en la carpeta de proyecto 'img' ''' # Inicializamos dos listas que nos servirán para representar los # resultados hora_ejex = [] tamanio_medio_y = [] # Inicializo un diccionario que retornaremos como solucion results = {} # Inicializamos un diccionario donde guardaremos los resultados media_bloque = {} for i in block_data: # Obtengo el dato del tamaño del bloque size = block_data[i]['size'] # Obtengo la hora de inicio del bloque time = block_data[i]['time'] time = datetime.datetime.fromtimestamp(time) hora = time.hour # Vamos a insertar el tamaño en una lista dentro de un diccionario # La key del diccionario identificará la hora # Para no crear de antemano todas las opciones del diccionario # Recurrimemos a un try-except para cuando no exista la key, crearla try: # Si ya existe la key, agregamos el tamaño a la lista media_bloque[hora].append(size) except: # Si no existe la key, devolverá un error y se ejecutará este código # que creará esa key e iniciará una lista con el valor del tamaño media_bloque[hora] = [size] # Recorremos el diccionario con los resultados para mostrar por pantalla # la media de los tamaños. # Para que nos salga ordenado, vamos a recorrer hora a hora, y no por keys for j in range(24): # Obtenemos el valor medio para esa hora try: valor_medio = sum(media_bloque[j]) / len(media_bloque[j]) except: # En caso de no tener bloques para esa hora, asignamos al valor # medio el valor cero valor_medio = 0 print("El valor medio de los tamaños para la hora {} es {}" .format(j, valor_medio)) # Además de mostrar el resultado, agregamos la info a las lista que nos # servirán para representar los ejes en la gráfica hora_ejex.append(j) tamanio_medio_y.append(valor_medio) # Añadimos la info a un diccionario que retornaremos como solución results[j] = valor_medio # Definimos datos para el eje x y para el eje y x = hora_ejex y = tamanio_medio_y titulo_x = 'Hora del día' titulo_y = 'Tamaño medio de los bloques' plot_title = 'TAMAÑO MEDIO DE LOS BLOQUES PARA CADA HORA' size = (20, 10) # Parámetro con el tamaño del gráfico resultante plot_name = 'A4_TamañoMedioBloques.png' # Llamamos a la función que dibuja el gráfico PlotColumns.plot_col_graph(x, y, titulo_x, titulo_y, plot_title, size, plot_name, representar) return results
3,704
Todo/todo_app/models.py
LukaszRemkowicz/ToDo_Django
0
2023311
from django.db import models from django.conf import settings User = settings.AUTH_USER_MODEL """Profile, maybe for later use. Not used now""" class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) todo_link = models.CharField(max_length=100) def __str__(self): return self.user.username class TodoList(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) name = models.CharField(max_length=100) shared = models.BooleanField(default=False) class TodoDetails(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) text = models.CharField(max_length=30, null=True) description = models.CharField(max_length=400, null=True) link = models.CharField(max_length=400, null=True) complete = models.BooleanField(default=False) date_added = models.DateField(auto_now_add=True) todo = models.ForeignKey(TodoList, on_delete=models.CASCADE) def __str__(self): return f'{self.todo}' class SharedRelationModel(models.Model): todo = models.ForeignKey(TodoList, on_delete=models.CASCADE) user = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return f'{self.user} {self.todo}'
1,256
job_hunter_crawler/job_hunter/spiders/spider.py
HowardHowonYu/Crawling_project
0
2022821
import scrapy import requests from scrapy.http import TextResponse import time import datetime from job_hunter.items import JobHunterItem class Spider(scrapy.Spider): name = "JobkoreaCrawler" allow_domain = ["https://www.jobkorea.co.kr/"] start_urls = [] # 아규먼트를 받을수 있게 지정해 줬습니다. # careerType =1 은 신입을 말합니다. 추후 경력직 까지 크롤링 할때 생성자 함수에 아규먼트를 추가할수 있습니다. def __init__(self, serach_keyword="데이터 분석", careerType=1, page=1, **kwargs): self.start_urls = ["https://www.jobkorea.co.kr/Search/?stext={}&careerType={}&tabType=recruit&Page_No={}".format(serach_keyword,careerType,page)] super().__init__(**kwargs) # 5초 딜레이 막힘 def parse(self, response): # 크롤링시 잡코리아에서 ip를 차단해 버리기 떄문에 딜레이를 걸어줬습니다. time.sleep(30) total_pages = int(response.xpath('//*[@id="content"]/div/div/div[1]/div/div[2]/div[2]/div/div[3]/ul/li[2]/span/text()')[0].extract()) for page in range(1, total_pages): # 문자열의 마지막 글자만 잡아서 total_pages의 숫자만큼 url을 만들고 yield로 get_content()함수에 던져줍니다. page_url = self.start_urls[0][:-1]+"{}".format(page) yield scrapy.Request(page_url, callback=self.get_content) def get_content(self, response): # 크롤링시 잡코리아에서 ip를 차단해 버리기 떄문에 딜레이를 걸어줬습니다. time.sleep(30) links = response.xpath('//*[@id="content"]/div/div/div[1]/div/div[2]/div[2]/div/div[1]/ul/li/div/div[2]/a/@href').extract() # 이 과정에서 각 페이지 별로 가지고 있는 구인 공고들의 링크를 만들어 yield로 get_details()함수에 던져줍니다. links = ["http://www.jobkorea.co.kr" + link for link in links if "gamejob.co.kr" not in link if "&siteCode=WN" not in link] for link in links: yield scrapy.Request(link, callback=self.get_details) def get_details(self, response): time.sleep(30) item = JobHunterItem() item['date'] = datetime.datetime.now() item["company_name"] = response.xpath('//*[@id="container"]/section/div/article/div[1]/h3/span/text()')[0].extract().strip() try: item["deadline"] = str(datetime.datetime.now().year) + "." + response.xpath('//*[@id="tab02"]/div/article[1]/div/dl[2]/dd[2]/span/text()')[0].extract()[5:] except: item["deadline"] = "수시채용" item['link'] = response.url item["position"] = response.xpath('//*[@id="container"]/section/div/article/div[1]/h3/text()')[1].extract().strip() item['location'] = ",".join(response.xpath('//*[@id="container"]/section/div/article/div[2]/div/dl/dd/a/text()').extract()) item["keyword"] = ", ".join(response.xpath('//*[@id="artKeywordSearch"]/ul/li/button/text()').extract()) for_select_salary_condition = " ".join(response.xpath('//*[@id="container"]/section/div/article/div[2]/div[2]/dl/dd/span[@class="tahoma"]/text()').extract()).strip().split(" ")[0] if len(for_select_salary_condition) <= 2: item["salary_condition"] = "회사 내규에 따름" else : item["salary_condition"] = for_select_salary_condition + "만원" # 구인 공고 링크 안으로 들어가 사업 분야에 대한 더 자세한 정보를 가져옵니다. # 여기 오류 생김 고쳐야 함. # url = "http://www.jobkorea.co.kr" + response.xpath('//*/article[contains(@class, "artReadCoInfo") and contains(@class, "divReadBx")]/div/div/p/a/@href')[0].extract() # req = requests.get(url) # response_detail_page = TextResponse(req.url,body=req.text,encoding='utf-8') item["business"] = response.xpath('//*[@id="container"]/section/div/article/div[2]/div[3]/dl/dd/text()')[0].extract().strip() yield item
3,756
asset_app/admin.py
orlandofv/sianna
0
2022942
from django.contrib import admin from .models import (Component, Company, Maintenance, MaintenanceSchedule, Division, Branch, Position, Group, System, Type, SubType, Vendor, Allocation) class ComponentAdmin(admin.ModelAdmin): list_display = ('name', 'manufacturer', 'stock_code', 'notes',) class MaintenanceAdmin(admin.ModelAdmin): list_display = ('frequency', 'schedule', 'type', 'time_allocated', 'action') class MaintenanceScheduleAdmin(admin.ModelAdmin): list_display = ('name', 'maintenance') class CompanyAdmin(admin.ModelAdmin): list_display = ('name', 'address', 'manager', 'contacts', 'notes',) class DivisionAdmin(admin.ModelAdmin): list_display = ('name', 'company', 'address', 'contacts', 'notes',) class BranchAdmin(admin.ModelAdmin): list_display = ('name', 'division', 'notes',) class PositionAdmin(admin.ModelAdmin): list_display = ('name', 'branch', 'notes',) class GroupAdmin(admin.ModelAdmin): list_display = ('name', 'notes',) class SystemAdmin(admin.ModelAdmin): list_display = ('name', 'group', 'notes',) class TypeAdmin(admin.ModelAdmin): list_display = ('name', 'system', 'notes',) class SubtypeAdmin(admin.ModelAdmin): list_display = ('name', 'type', 'notes',) class AllocationAdmin(admin.ModelAdmin): list_display = ('allocation_no', 'component', 'date_allocated','serial_number', 'status') class VendorAdmin(admin.ModelAdmin): list_display = ('name', 'notes') admin.site.register(Component, ComponentAdmin) admin.site.register(Company, CompanyAdmin) admin.site.register(Division, DivisionAdmin) admin.site.register(Branch, BranchAdmin) admin.site.register(Position, PositionAdmin) admin.site.register(Group, GroupAdmin) admin.site.register(System, SystemAdmin) admin.site.register(Type, TypeAdmin) admin.site.register(SubType, SubtypeAdmin) admin.site.register(Allocation, AllocationAdmin) admin.site.register(Maintenance, MaintenanceAdmin) admin.site.register(MaintenanceSchedule, MaintenanceScheduleAdmin) admin.site.register(Vendor, VendorAdmin)
2,075
DarkPrior.py
Avashist1998/Morning_view_mode
1
2024215
import cv2 import numpy as np from utils import read_image, rgb_min_image, min_filter class DarkPrior(): def __init__(self, epsilon=10**-8): self.epsilon = epsilon def dark_channel(self, image): # output the dark channel as the image new_image = image.copy() # perfroming the 15 x 15 min filter min_image = min_filter(new_image) # perfroming the color min operation dark_prior = rgb_min_image(min_image) return dark_prior def transmission_map(self, image,A,w): #finds the transmission map for the image image_new = np.divide(image,A).astype(float) # finding the dark channel of the divide image new_dark = self.dark_channel(image_new) # Saling and subtracting the image transmission = 1 - w*new_dark return transmission def A_estimator(self, image,dark_prior): #Used the information extracted from the dark prior #find a value for A image_copy = image.copy() [row,col,dem] = image_copy.shape dark_copy = dark_prior.copy() # finding the number of 0.01% values num = np.round(row*col*0.001).astype(int) j = sorted(np.asarray(dark_copy).reshape(-1), reverse=True)[:num] # getting the location of the top 0.01% ind = np.unravel_index(j[0], dark_copy.shape) # Pefroming a search for the max value in the group max_val = image_copy[ind[0],ind[1],:] for element in j: ind = np.unravel_index(element, dark_copy.shape) if (sum(max_val[:]) < sum(image_copy[ind[0],ind[1],:])): max_val[:] = image_copy[ind[0],ind[1],:] # creating a color image of the max value A = image_copy A[:,:,:] = max_val[:] return A def Radience_cal(self, image,A,Transmission_map,t_not): #Used information from the transmit map to remove haze from the image. image_copy = image.copy() Transmission_map_copy = (Transmission_map.copy()).astype(float) # Pefroming the min operation between Ttransmission map and 0.1 divisor = np.maximum(Transmission_map_copy,t_not) radience = (image.copy()).astype(float) # Perfroming the eqution 3 for every color channel for i in range(3): radience[:,:,i] = np.divide(((image_copy[:,:,i]).astype(float) - A[0,0,i]),divisor) + A[0,0,i] # Capping all of the out of bound values #radience = radience - np.min(radience) #radience = 255*(radience/np.max(radience)) radience[radience>255]=255 radience[radience<0]=0 return radience.astype('uint8') def guided_filter(self, image,guide,diameter,epsilon): w_size = diameter+1 # Exatrcation the mean of the image by blurring meanI=cv2.blur(image,(w_size,w_size)) mean_Guide=cv2.blur(guide,(w_size,w_size)) # Extracting the auto correlation II=image**2 corrI=cv2.blur(II,(w_size,w_size)) # Finding the correlation between image and guide I_guide=image*guide corrIG=cv2.blur(I_guide,(w_size,w_size)) # using the mean of the image to find the variance of each point varI=corrI-meanI**2 covIG=corrIG-meanI*mean_Guide #covIG normalized with a epsilon factor a=covIG/(varI+epsilon) #a is used to find the b b=mean_Guide-a*meanI meanA=cv2.blur(a,(w_size,w_size)) meanB=cv2.blur(b,(w_size,w_size)) # using the mean of a b to fix refine the transmission map transmission_rate=meanA*image+meanB # normalizaing of the transimational map transmission_rate = transmission_rate/np.max(transmission_rate) return transmission_rate def Haze_Remover(path=None, image=None): ''' This function is used to dehaze a image from an image path or from a cv2 image object ''' if path is None and image is None: print("There is not path and image enter to the function. Please add a image or a path to the model") return None else: if image is none: image = read_image(path) min_image = min_filter(image) dark_prior = rgb_min_image(min_image) A = A_estimator(image,dark_prior) img_gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) Transmition_image = self.transmission_map(image,A,0.95) refine_Transmission_image = self.guided_filter(img_gray.astype(np.float32),Transmition_image.astype(np.float32),100,self.epsilon) refine_radience_image = self.Radience_cal(image,A,refine_Transmission_image,0.1) self.output = {'Input':image, 'Min_Image':min_image, 'A':A_estimator,'Gray_Image':img_gray, 'Transmition_Map':Transmition_image, 'Refine_Transmition_Map':refine_Transmission_image, 'DeHaze_Image':refine_radience_image} return output def Save_image(self, path='output.jpg', key='DeHaze_Image'): ''' Input is path/filename Key is the file you want to save key = [Input, Min_Image, A, Gray_Image, Transmition_Map, Refine_Transmition_Map, DeHaze_Image] saves the image to the path ''' cv2.imwrite(path,output[key]) print('file name {} has been saved').format(path)
5,450
src/agent/k8s-rest-agent/src/api/models/user.py
tianxuanhong/cello
865
2024153
from django.contrib.auth.models import AbstractUser from django.db import models from django.db.models.signals import post_save from api.utils.db_functions import make_uuid class User(AbstractUser): roles = [] id = models.UUIDField( primary_key=True, help_text="ID of user", default=make_uuid, editable=True, ) username = models.CharField(default="", max_length=128, unique=True) def __str__(self): return self.username class Profile(models.Model): user = models.OneToOneField( User, related_name="profile", on_delete=models.CASCADE ) created_at = models.DateTimeField(auto_now_add=True) def __str__(self): return "%s's profile" % self.user class Meta: ordering = ("-created_at",) def create_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) post_save.connect(create_user_profile, sender=User) # Create your models here.
1,001
spirl/data/block_stacking/src/robosuite/__init__.py
kouroshHakha/fist
8
2024120
import os from spirl.data.block_stacking.src.robosuite.environments.base import make from spirl.data.block_stacking.src.robosuite.environments.sawyer_lift import SawyerLift from spirl.data.block_stacking.src.robosuite.environments.sawyer_stack import SawyerStack from spirl.data.block_stacking.src.robosuite.environments.sawyer_pick_place import SawyerPickPlace from spirl.data.block_stacking.src.robosuite.environments.sawyer_nut_assembly import SawyerNutAssembly from spirl.data.block_stacking.src.robosuite.environments.baxter_lift import BaxterLift from spirl.data.block_stacking.src.robosuite.environments.baxter_peg_in_hole import BaxterPegInHole from spirl.data.block_stacking.src.robosuite.environments.baxter_modified import BaxterChange __version__ = "0.3.0" __logo__ = """ ; / ,--. ["] ["] ,< |__**| /[_]\ [~]\/ |// | ] [ OOO /o|__| """
898
kornia/augmentation/_2d/__init__.py
Ishticode/kornia
418
2023289
from kornia.augmentation._2d.geometric import * from kornia.augmentation._2d.intensity import * from kornia.augmentation._2d.mix import *
138
workers/admin.py
addiebarron/django-workers
18
2023708
from django.contrib import admin from .models import Task @admin.register(Task) class TaskAdmin(admin.ModelAdmin): list_display = ('handler', 'run_at', 'schedule', 'status') list_filter = ('status',)
211
tests/unit/core/adapters/test_cmd_runner.py
meaningfy-ws/ted-sws
1
2024144
#!/usr/bin/python3 """ """ from ted_sws.core.adapters.cmd_runner import CmdRunner def test_cmd_runner(caplog): cmd_runner = CmdRunner(name="TEST_CMD_RUNNER") cmd_runner.run() assert "CMD :: BEGIN" in caplog.text assert "CMD :: END" in caplog.text
267
src/python/dart/engine/redshift/actions/stop_datastore.py
RetailMeNotSandbox/dart
18
2024203
import logging from dart.engine.redshift.admin.cluster import RedshiftCluster _logger = logging.getLogger(__name__) def stop_datastore(redshift_engine, datastore, action): """ :type redshift_engine: dart.engine.redshift.redshift.RedshiftEngine :type datastore: dart.model.datastore.Datastore :type action: dart.model.action.Action """ cluster = RedshiftCluster(redshift_engine, datastore) cluster.stop_cluster() action = redshift_engine.dart.patch_action(action, progress=.1) cluster.wait_for_cluster_deleted() redshift_engine.dart.patch_action(action, progress=1)
609
ibsec/__main__.py
dissolved/ibsec
0
2022944
from fire import Fire from .ibsec import lookup def main(): Fire(lookup) if __name__ == '__main__': main()
117
src/arch/x86/isa/insts/simd512/floating_point/arithmetic/vsubps.py
jyhuang91/gem5-avx
2
2023236
microcode = ''' def macroop VSUBPS_XMM_XMM { vsubf dest=xmm0, src1=xmm0v, src2=xmm0m, size=4, VL=16 vclear dest=xmm2, destVL=16 }; def macroop VSUBPS_XMM_M { ldfp128 ufp1, seg, sib, "DISPLACEMENT + 0", dataSize=16 vsubf dest=xmm0, src1=xmm0v, src2=ufp1, size=4, VL=16 vclear dest=xmm2, destVL=16 }; def macroop VSUBPS_XMM_P { rdip t7 ldfp128 ufp1, seg, riprel, "DISPLACEMENT + 0", dataSize=16 vsubf dest=xmm0, src1=xmm0v, src2=ufp1, size=4, VL=16 vclear dest=xmm2, destVL=16 }; def macroop VSUBPS_YMM_YMM { vsubf dest=xmm0, src1=xmm0v, src2=xmm0m, size=4, VL=32 vclear dest=xmm4, destVL=32 }; def macroop VSUBPS_YMM_M { ldfp256 ufp1, seg, sib, "DISPLACEMENT + 0", dataSize=32 vsubf dest=xmm0, src1=xmm0v, src2=ufp1, size=4, VL=32 vclear dest=xmm4, destVL=32 }; def macroop VSUBPS_YMM_P { rdip t7 ldfp256 ufp1, seg, riprel, "DISPLACEMENT + 0", dataSize=32 vsubf dest=xmm0, src1=xmm0v, src2=ufp1, size=4, VL=32 vclear dest=xmm4, destVL=32 }; def macroop VSUBPS_ZMM_ZMM { vsubf dest=xmm0, src1=xmm0v, src2=xmm0m, size=4, VL=64 }; def macroop VSUBPS_ZMM_M { ldfp512 ufp1, seg, sib, "DISPLACEMENT + 0", dataSize=64 vsubf dest=xmm0, src1=xmm0v, src2=ufp1, size=4, VL=64 }; def macroop VSUBPS_ZMM_P { rdip t7 ldfp512 ufp1, seg, riprel, "DISPLACEMENT + 0", dataSize=64 vsubf dest=xmm0, src1=xmm0v, src2=ufp1, size=4, VL=64 }; '''
1,428
Interface/modules.py
kamilbaskut/Midterm-Project
0
2023928
import cv2 import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt import skimage.io as io from skimage.transform import resize from skimage.io import imread import keras from keras.metrics import categorical_crossentropy from keras.models import model_from_json from keras.models import load_model from keras.optimizers import SGD, Adam, Adamax from keras.preprocessing import image # gelen modelin hangi optimizer da iyi olduğunu öğren modeli compile etmek için def test_model(dataset, model, directory): if(len(directory) > 0): img_size = 0 classes = [] opt = '' # Datasete göre resmin boyutu hesaplandı if(dataset == 'HuSHeM'): img_size = 131 classes = ['Normal', 'Tapered', 'Pyriform', 'Amorphous'] if(model == 'GoogleNet'): # 1.durum için opt = 'sgd' elif(model == 'MobileNet'): # 2.durum için opt = 'adamax' else: # 3.durum için opt = 'adam' else: img_size = 170 classes = ['Abnormal', 'Boya', 'Sperm'] if(model == 'GoogleNet'): # 4.durum için opt = 'adamax' elif(model == 'MobileNet'): # 5.durum için opt = 'sgd' else: # 6.durum için opt = 'adamax' # Json yükleniyor json_file = open(dataset+model+'.json', 'r') loaded_model_json = json_file.read() json_file.close() # Model oluşturuluyor loaded_model = model_from_json(loaded_model_json) # Modelin ağırlıkları yükleniyor loaded_model.load_weights(dataset+model+'.h5') # Yeni model compile ediliyor loaded_model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=['accuracy']) # Resim okunuyor... img = io.imread(directory) img = resize(img, (img_size, img_size, 3), anti_aliasing=True) image = np.asarray(img) image = np.expand_dims(image, axis=0) # Resim test ediliyor pred = loaded_model.predict(image) # En yüksek değere sahip sınıf y_pred = np.argmax(pred) # pred[count] şekline sokuluyor pred.shape = (len(classes), 1) # Sınıflarıyla birlikte text e çevriliyor text = "" x = 0.0 for n in range(len(pred)): x += pred[n] for n in range(len(pred)): text += (classes[n]+str((pred[n]/x)*100)+'%\n') return text, classes[y_pred] else: return "Lütfen image yolunu belirtiniz", "Null"
2,655
corescrape/threads/corescrape_thread.py
anewmanvs/corescrape
0
2024159
""" Core Scrape Threading Thread control for this package. """ import signal from warnings import warn from queue import Queue from threading import Thread from . import corescrape_event from core import CoreScrape from core.exceptions import CoreScrapeTimeout # pylint: disable=invalid-name, too-few-public-methods, multiple-statements # pylint: disable=bare-except, too-many-arguments, too-many-instance-attributes def alarm_handler(signum, frame): """Handles the alarm.""" raise CoreScrapeTimeout class CoreScrapeThread(CoreScrape): """ Core Scrape Thread. Uses multiples threads to request pages and parse its content. A valid rotator must be passed to produce each request using a new proxy and make it less likely to be red flagged as a bot or scrapper by internet service providers. The user could pass a parser (CoreScrape class or custom class with a 'parse' method) to parse the response and avoid having the need to store the whole page for postprocessing. This controller also gives the user the option to set up a timer, in seconds, to raise a timeout. The timer is set if the user provided an integer to param 'timeout' during 'start_threads' method processing. The timer is unset in 'wait_for_threads' method. Params: nthreads: int. Desired number of threads. Once the method 'start_threads' is called, the controller will try to split the given input into chunks of number 'nthreads'. If it is not possible to split in 'nthreads' chunks, then the actual number of threads is available in 'actualnthreads'. rotator: corescrape.proxy.Rotator (preferably). Uses this rotator to make requests using different proxies and user agents. There is always the possibility to pass the 'requests' module to this parameter, but that is not advised as the control of proxies and user-agents is not automatic. parser: corescrape.pgparser.SimpleParser, based on or None. Uses this to parse the page content and extract the useful information, making it less memory expensive. If no argument is given, the thread controller will return a list of the full pages collected. timeout: int or None. Time in seconds to configure the timeout process. Set up a timer to raise an event and stop the threads once the time is reached. logoperator: corescrape.logs.LogOperator or None. Log to be fed with process runtime information. """ def __init__(self, nthreads, rotator, parser=None, timeout=None, logoperator=None): """Constructor.""" if timeout is not None and not isinstance(timeout, int): raise TypeError("Param. 'timeout' must be 'int' or 'NoneType'") # inputs self.nthreads = nthreads self.actualnthreads = nthreads self.rotator = rotator self.parser = parser self.timeout = timeout # CAREFUL! This is not timeout for requests self.timeoutset = False # control attrs self.queue = Queue() self.event = corescrape_event.CoreScrapeEvent(logoperator=logoperator) self.threads = [] super().__init__(logoperator=logoperator) def __split(self, a): """ Tries to split the input into chunks for each thread. Input must be a list. """ if not isinstance(a, list): raise TypeError("Param 'a' must be 'list'") n = self.nthreads # desired number of threads k, m = divmod(len(a), n) split = [a[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n)] split = [part for part in split if part] # drops empty chunks # actual number of threads. Sometimes differs from 'nthreads' self.actualnthreads = len(split) return split def __warn_wait_threads(self): """Produce warning to wait for threads if needed.""" if self.threads: warn( 'There are threads running. Wait for them to stop before calling ' 'this method' ) return True return False def __set_timeout(self): """ If seconds for timeout were informed in the constructor, will set an alarm for timeout. Once timeout is reached, the iteration is broken and return as expected. """ if self.timeout: signal.signal(signal.SIGALRM, alarm_handler) signal.alarm(self.timeout) self.log('CoreScrapeThread set the timeout for {} seconds.'.format( self.timeout), tmsg='info') self.timeoutset = True def __disarm_timeout(self): """Turn off the timeout.""" if self.timeoutset: self.timeoutset = False signal.alarm(0) self.log('CoreScrapeThread disarmed the timeout.', tmsg='info') def __check_am_i_the_last(self): """Check if this thread is the last and if it should set an event.""" condition = self.queue.qsize() + 1 >= self.actualnthreads condition = condition and self.event.state.is_EXECUTING() if condition: self.event.state.set_DUTY_FREE() def __iterate(self, threadid, data, *args): """Do iterations in threads, each one calling the passed code.""" # pylint: disable=unused-argument self.log('Starting iteration in threadid {} for {} items'.format( threadid, len(data))) res = [] for url in data: # the reason here does not matter. If it is set, break out if self.event.is_set(): break try: page = self.rotator.request(url, self.event, threadid=threadid) except: self.event.state.set_ABORT_THREAD() break if page is None: continue # not able to retrieve the page if self.parser is None: res.append(page) self.log('Storing whole response for {}. Thread {}'.format( url, threadid)) elif page.status_code == 404: self.log('URL {} returned a 404. Thread {}'.format(url, threadid), tmsg='warning') res.append({url: None}) # points it was collected but useless else: _res = self.parser.parse(page, threadid=threadid) if not _res: self.log('URL {} could not be parsed. Thread {}'.format( url, threadid)) continue # no info collected, must go on self.log('URL {} collected. Thread {}'.format(url, threadid), tmsg='header') res.append({url: _res}) self.__check_am_i_the_last() return res def start_threads(self, to_split_params, *fixed_args): """Starts threads.""" def test_if_urls(p): return [a.startswith('http://') or a.startswith('https://') for a in p] # pylint: disable=no-value-for-parameter abort = self.__warn_wait_threads() if abort: return False if not all(test_if_urls(to_split_params)): raise ValueError('List of strings must begin with protocol') self.log('Starting threads for {} items'.format(len(to_split_params))) self.threads = [] self.event.state.set_EXECUTING() for threadid, split in enumerate(self.__split(to_split_params)): pargs = (threadid, split, *fixed_args) thread = Thread( target=lambda q, *args: q.put(self.__iterate(*args)), args=(self.queue, *pargs) ) thread.start() self.threads.append(thread) self.__set_timeout() return True def wait_for_threads(self): """Wait lock for threads.""" try: self.event.wait() except KeyboardInterrupt: self.event.state.set_ABORT_USER() except CoreScrapeTimeout: self.event.state.set_TIMEOUT() finally: self.__disarm_timeout() for thread in self.threads: thread.join() self.event.clear() self.threads = [] def join_responses(self): """Join responses from the threads.""" abort = self.__warn_wait_threads() if abort: return [] res = [] while not self.queue.empty(): res += self.queue.get() return res def is_sentenced(self): """ Informs if the thread controller is sentenced due to the last event state. """ sentenced = self.event.state.is_sentenced() if sentenced: self.event.state.set_FINISHED() return sentenced
8,973
src/main.py
thealah/imdb-import
0
2022900
#!/usr/bin/python3 import os import logging import psycopg2 import psycopg2.extras import schema from relation_type import RelationType import sys import configargparse from contextlib import contextmanager from pathlib import Path from batch_iterator import batch_iterator # Configure loging root = logging.getLogger() root.setLevel(logging.INFO) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(message)s - %(name)s - %(levelname)s', "%m-%d %H:%M:%S") ch.setFormatter(formatter) root.addHandler(ch) logger = logging.getLogger(__name__) logging.getLogger("aiohttp.access").setLevel(logging.WARNING) def configure(): config_dir = os.environ["NOMAD_TASK_DIR"] if "NOMAD_TASK_DIR" in os.environ else ".." config_path = str(Path(config_dir) / "config.yaml") parser = configargparse.ArgumentParser(default_config_files=[config_path], description="Get data for config") parser.add_argument("--rds_server", env_var="RDS_SERVER", type=str, help="RDS Server", required=True) parser.add_argument("--rds_database", env_var="RDS_DATABASE", type=str, help="RDS Database", required=True) parser.add_argument("--rds_user", env_var="RDS_USER", type=str, help="RDS User", required=True) parser.add_argument("--rds_password", env_var="RDS_PASSWORD", type=str, help="RDS Password", required=True) parser.add_argument("--ingestion_type", env_var="INGESTION_TYPE", type=str, help="Ingestion Type", required=True) args, unknown = parser.parse_known_args() if unknown: logger.info("received unknown arguments " + unknown) return args @contextmanager def open_cursor(rds_server, rds_database, rds_user, rds_password, readonly=True): connection = psycopg2.connect(dbname=rds_database, user=rds_user, password=<PASSWORD>, host=rds_server) connection.set_session(readonly=readonly, autocommit=True) cursor = connection.cursor(cursor_factory=psycopg2.extras.DictCursor) yield cursor cursor.close() connection.close() def iterate_over_file(filename, read_line_function): with open(filename) as file_handle: i = 0 for line in file_handle: if i > 0: yield read_line_function(line) i += 1 def iterate_over_principals(): for titlePrincipals in iterate_over_file("title.principals.tsv", schema.read_title_principals_line): for name_id in titlePrincipals["nameIds"]: name_id = name_id.strip() title_id = titlePrincipals["titleId"].strip() yield { "nameId": name_id, "titleId": title_id, "relationType": RelationType.PRINCIPAL.value } def main( rds_server, rds_database, rds_user, rds_password, ingestion_type ): ingestion_type = ingestion_type.lower() logger.info(ingestion_type) with open_cursor(rds_server, rds_database, rds_user, rds_password, readonly=False) as cursor: total = 0 def title_exists(title): return title["titleId"] in title_ids if ingestion_type == "titles": for titles in batch_iterator(iterate_over_file("title.basics.tsv", schema.read_title_line)): schema.store_titles(cursor, titles) total += len(titles) if total % 100000 == 0: print("Titles inserted: " + str(total)) return if ingestion_type == "ratings": cursor.execute("truncate imdb.titleRatingsIngestion") for ratings in batch_iterator(iterate_over_file("title.ratings.tsv", schema.read_title_ratings_line)): schema.store_title_ratings_ingestion(cursor, ratings) for i in range(100): logger.info("Running title ratings ingestion insert partition :" + str(i)) cursor.execute(""" insert into imdb.titleRatings (titleId, averageRating, numVotes) select i.titleId, i.averageRating, i.numVotes from imdb.titleRatingsIngestion i inner join imdb.titleBasics tb on tb.titleId = i.titleId where i.numVotes %% 100 = %(iterator_i)s ON CONFLICT (titleId) DO UPDATE SET averageRating = excluded.averageRating, numVotes = excluded.numVotes; """, { "iterator_i": i }) cursor.execute("truncate imdb.titleRatingsIngestion") return if ingestion_type == "names": cursor.execute("truncate imdb.titleNameIngestion") for names in batch_iterator(iterate_over_file("name.basics.tsv", schema.read_name_line)): schema.store_names(cursor, names) known_for_title_ids = [{ "titleId": known_for_title.strip(), "nameId": name["nameId"], "relationType": RelationType.KNOWN_FOR.value } for name in names for known_for_title in name["knownForTitles"]] for name_title_ids in batch_iterator(known_for_title_ids): schema.store_title_names_ingestion(cursor, name_title_ids) total += len(names) if total % 100000 == 0: print("Names inserted: " + str(total)) for i in range(1000): logger.info("Running title name ingestion insert partition :" + str(i)) cursor.execute(""" insert into imdb.titleName (titleId, nameId, relationType) select i.titleId, i.nameId, i.relationType from imdb.titleNameIngestion i inner join imdb.titleBasics tb on tb.titleId = i.titleId inner join imdb.nameBasics nb on nb.nameId = i.nameId where i.id %% 1000 = %(iterator_i)s ON CONFLICT (titleId, nameId, relationType) DO NOTHING; """, { "iterator_i": i }) cursor.execute("truncate imdb.titleNameIngestion") return if ingestion_type == "principals": cursor.execute("truncate imdb.titleNameIngestion") for title_principals in batch_iterator(iterate_over_principals()): schema.store_title_names_ingestion(cursor, title_principals) for i in range(1000): logger.info("Running title name ingestion insert partition :" + str(i)) cursor.execute(""" insert into imdb.titleName (titleId, nameId, relationType) select i.titleId, i.nameId, i.relationType from imdb.titleNameIngestion i inner join imdb.titleBasics tb on tb.titleId = i.titleId inner join imdb.nameBasics nb on nb.nameId = i.nameId where i.id %% 1000 = %(iterator_i)s ON CONFLICT (titleId, nameId, relationType) DO NOTHING; """, { "iterator_i": i }) cursor.execute("truncate imdb.titleNameIngestion") if __name__ == "__main__": main(**configure().__dict__)
7,584
tools/gen_region_bin.py
JadeArkadian/reshade
2
2024033
import urllib.request, json f_out = open("region.bin", "wb") url = "https://api.guildwars2.com/v2/maps" response = urllib.request.urlopen(url) data = json.loads(response.read()) barray = [0]*(data[-1] + 1) print("Size : " + str(len(barray))) for id in data: print("%.2f" % ((id/len(barray))*100) + "%", end="\r") map_url = url + "/" + str(id) map_response = urllib.request.urlopen(map_url) map_data = json.loads(map_response.read()) if "region_id" not in map_data: continue barray[id] = map_data["region_id"] f_out.write(bytearray(barray)) f_out.close() print("Done.")
603
routes/router.py
harlericho/python_api_programming
1
2024077
from flask import Blueprint, request, redirect, jsonify from flask.helpers import flash from utils.db import db from models.programming import Programming programming = Blueprint('router', __name__) @programming.route('/') def index(): try: data = Programming.query.all() list = [] for i in data: file = { 'id': i.id, 'names': i.names, 'description': i.description, } list.append(file) return jsonify({'programming': list}) except Exception as e: return jsonify({'error': str(e)}) @programming.route('/<int:id>', methods=['GET']) def get(id): try: data = Programming.query.get(id) if data != None: file = { 'id': data.id, 'names': data.names, 'description': data.description, } return jsonify({'programming': file}) else: return jsonify({'error': 'Programming not found'}) except Exception as e: return jsonify({'error': str(e)}) @programming.route('/', methods=['POST']) def create(): try: json = request.get_json() if request.method == 'POST': names = json['names'] description = json['description'] data = Programming(names, description) db.session.add(data) db.session.commit() return jsonify({'programming': 'Programming created'}) except Exception as e: return jsonify({'error': str(e)}) @programming.route('/<int:id>', methods=['PUT']) def update(id): try: file = Programming.query.get(id) if file != None: json = request.get_json() if request.method == 'PUT': file.names = json['names'] file.description = json['description'] db.session.commit() return jsonify({'programming': 'Programming updated'}) else: return jsonify({'error': 'Programming not found'}) except Exception as e: return jsonify({'error': str(e)}) @programming.route('/<int:id>', methods=['DELETE']) def delete(id): try: file = Programming.query.get(id) if file != None: db.session.delete(file) db.session.commit() return jsonify({'programming': 'Programming deleted'}) else: return jsonify({'error': 'Programming not found'}) except Exception as e: return jsonify({'error': str(e)})
2,565
_version.py
Slater-Victoroff/pyjaco
0
2023258
from os.path import join, dirname from platform import system, version from re import findall, match, IGNORECASE from subprocess import Popen, PIPE version_file = join(dirname(__file__),'VERSION') class GITExecutable(object): """ Attempts to find git. Returns the best guess at the path for a git executable. """ def __new__(self): cmd = 'which' if system() == 'Windows': try: major, minor = [int(x) for x in version().split('.',2)[0:2]] # version number information # http://msdn.microsoft.com/en-us/library/ms724834%28v=VS.85%29.aspx # (6, 0) is Vista or Windows Server 2008 # (6, 1) is Windows 7 or Server 2008 RC2 if (major, minor) > (6, 0): # Windows 7 brings the # where command with # functionality similar # to which on unix. cmd = 'where' except: pass try: p = Popen([cmd, 'git'], stdout=PIPE, stderr=PIPE) p.stderr.close() path = p.stdout.next().strip() except: path = None return path or 'git' GIT_EXECUTABLE = GITExecutable() def get_version(): file_version = get_file_version() version = get_repo_version() or file_version if version is None: raise ValueError('Could not determine version.') if version != file_version: put_file_version(version) return version def get_file_version(): try: with open(version_file, 'rb') as fp: version = fp.next().strip() except: version = None return version def put_file_version(version): with open(version_file, 'wb') as fp: fp.write(version) def get_repo_version(): """ Repo tags are assumed to be in the format: Major.Minor Example: 0.1 Function returns a version string of the form: Major.Minor.Patch+CommitHash Example: 0.1.1+c58ec0d """ try: p = Popen([GIT_EXECUTABLE, 'describe'], stdout=PIPE, stderr=PIPE) p.stderr.close() parts = findall('[a-zA-Z0-9]+',p.stdout.next().strip()) if parts: version = "%s.%s" % (parts[0],parts[1]) if len(parts) > 2: version = "%s.%s+%s" % (version,parts[2],parts[3][1:]) else: version = "%s.0" % version else: raise ValueError('git describe did not return a valid version string.') except: version = None return version def parse_version(version): """ input version string of the form: 'Major.Minor.Patch+CommitHash' like: '0.1.5+95ffef4' ------ or ------ '0.1.0' returns version_info tuple of the form: (major,minor,patch,hash) like: (0, 1, 5, '95ffef4') -------- or -------- (0, 1, 0, '') """ matches = match( '(?P<major>[0-9]+)\.(?P<minor>[0-9]+)\.(?P<patch>[0-9]+)(g(?P<hash>[a-z0-9]*))?', version, IGNORECASE ) if matches: major = int(matches.group('major')) minor = int(matches.group('minor')) patch = int(matches.group('patch')) hash = matches.group('hash') or '' return (major,minor,patch,hash) else: raise ValueError("Version string, '%s' could not be parsed. It should be of the form: 'Major.Minor.Patch+CommitHash'." % version) if __name__ == '__main__': print get_version()
3,736
http_proxy.py
darkless456/Python
0
2024070
# http_proxy.py import socket import _thread # thread import urllib.parse # urlparse import select BUFLEN = 8192 class Proxy(object): def __init__(self,conn,addr): self.source = conn self.request = "" self.headers = {} self.destnation = socket.socket(socket.AF_INET,socket.SOCK_STREAM) self.run() def get_headers(self): header = '' while True: header += self.source.recv(BUFLEN) index = header.find('\n') if index > 0: break firstLine = header[:index] self.request = header[index+1:] self.headers['method'],self.headers['path'],self.headers['protocol'] = firstLine.split() def conn_destnation(self): url = urllib.parse.urlparse(self.headers['path']) hostname = url[1] port = '80' if hostname.find(':') > 0: addr.port = hostname.split(':') else: addr = hostname port = int(port) ip = socket.gethostbyname(addr) print(ip,port) self.destnation.connect((ip,port)) data = '%s %s %s\r\n' # %(self.headers['method'],self.headers['path'],headers['protocol']) self.destnation.send(data + self.request) print(data + self.request) def renderto(self): readsocket = [self.destnation] while True: data = '' (rlist,wlist,elist) = select.select(readsocket,[],[],3) if rlist: data = rlist[0].recv(BUFLEN) if len(data) > 0: self.source.send(data) else: break def run(self): self.get_headers() self.conn_destnation() self.renderto() class Server(object): def __init__(self,host,port,handler = Proxy): self.host = host self.port = port self.server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.server.bind((host, port)) self.server.listen(5) self.handler = handler def start(self): while True: try: conn, addr = self.server.accept() _thread.start_new_thread(self.handler, (conn, addr)) except: pass if __name__ == '__main__': s = Server('127.0.0.1', 8080) s.start()
2,424
document/signals.py
Zarah-Project/zarah-db-api
0
2023756
from django.db.models.signals import post_save, pre_delete from django.dispatch import receiver from document.indexer import DocumentIndexer from document.models import Document @receiver([post_save], sender=Document) def do_index(sender, instance, **kwargs): indexer = DocumentIndexer(instance) indexer.index() @receiver([pre_delete], sender=Document) def remove_index(sender, instance, **kwargs): indexer = DocumentIndexer(instance) indexer.remove_record()
480
upho/phonon/sf_fitter.py
sheikhahnaf/upho
0
2023498
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) import h5py import numpy as np from scipy.optimize import curve_fit from upho.analysis.functions import FittingFunctionFactory from upho.irreps.irreps import extract_degeneracy_from_ir_label __author__ = '<NAME>' class SFFitter(object): def __init__(self, filename='sf.hdf5', name='gaussian'): self._name = name with h5py.File(filename, 'r') as f: self._band_data = f self._run() def _run(self): band_data = self._band_data npaths, npoints = band_data['paths'].shape[:2] frequencies = band_data['frequencies'] frequencies = np.array(frequencies) self._is_squared = np.array(band_data['is_squared']) filename_sf = 'sf_fit.hdf5' with h5py.File(filename_sf, 'w') as f: self.print_header(f) for ipath in range(npaths): for ip in range(npoints): print(ipath, ip) group = '{}/{}/'.format(ipath, ip) peak_positions, widths, norms, fiterrs, sf_fittings = ( self._fit_spectral_functions( frequencies, point_data=band_data[group], ) ) self._write(f, group, peak_positions, widths, norms, fiterrs, sf_fittings) def _fit_spectral_functions(self, frequencies, point_data, prec=1e-6): partial_sf_s = point_data['partial_sf_s'] num_irreps = np.array(point_data['num_irreps']) dfreq = frequencies[1] - frequencies[0] fitting_function = FittingFunctionFactory( name=self._name, is_normalized=False).create() peak_positions = [] widths = [] norms = [] fiterrs = [] sf_fittings = [] for i in range(num_irreps): sf = partial_sf_s[:, i] if np.sum(sf) < prec: peak_position = np.nan width = np.nan norm = np.nan fiterr = np.nan sf_fitting = np.full(frequencies.shape, np.nan) else: peak_position = self._create_initial_peak_position(frequencies, sf) width = self._create_initial_width() if self._is_squared: norm = self._create_initial_norm(frequencies, sf) else: ir_label = str(point_data['ir_labels'][i], encoding='ascii') norm = float(extract_degeneracy_from_ir_label(ir_label)) def f(x, p, w): return fitting_function(x, p, w, norm) p0 = [peak_position, width] maxfev = create_maxfev(p0) fit_params, pcov = curve_fit( f, frequencies, sf, p0=p0, maxfev=maxfev) fiterr = np.sqrt(np.sum((f(frequencies, *fit_params) - sf) ** 2)) * dfreq peak_position = fit_params[0] width = fit_params[1] norm = fit_params[2] if len(fit_params) == 3 else norm sf_fitting = f(frequencies, *fit_params) peak_positions.append(peak_position) widths .append(width) norms .append(norm) fiterrs.append(fiterr) sf_fittings.append(sf_fitting) peak_positions = np.array(peak_positions) widths = np.array(widths) norms = np.array(norms) fiterrs = np.asarray(fiterrs) sf_fittings = np.asarray(sf_fittings) return peak_positions, widths, norms, fiterrs, sf_fittings def _create_initial_peak_position(self, frequencies, sf, prec=1e-12): position = frequencies[np.argmax(sf)] # "curve_fit" does not work well for extremely small initial guess. # To avoid this problem, "position" is rounded. # See also "http://stackoverflow.com/questions/15624070" if abs(position) < prec: position = 0.0 return position def _create_initial_width(self): width = 0.1 return width def _create_initial_norm(self, frequencies, sf): dfreq = frequencies[1] - frequencies[0] norm = np.sum(sf) * dfreq return norm def print_header(self, file_output): file_output.create_dataset('function' , data=self._name) file_output.create_dataset('is_squared', data=self._is_squared) file_output.create_dataset('paths' , data=self._band_data['paths']) file_output['frequencies'] = self._band_data['frequencies'][...] def _write(self, file_out, group_name, peak_positions_s, widths_s, norms_s, fiterrs, sf_fittings): group = file_out.create_group(group_name) keys = [ 'natoms_primitive', 'elements', 'distance', 'pointgroup_symbol', 'num_irreps', 'ir_labels', ] for k in keys: file_out.create_dataset( group_name + k, data=np.array(self._band_data[group_name + k]) ) group.create_dataset('peaks_s', data=peak_positions_s) group.create_dataset('widths_s', data=widths_s) group.create_dataset('norms_s', data=norms_s) group['fitting_errors'] = fiterrs group['partial_sf_s'] = sf_fittings group['total_sf'] = np.nansum(sf_fittings, axis=0) def create_maxfev(p0): maxfev = 20000 * (len(p0) + 1) return maxfev
5,734
tests/unit/preorders/test_forms.py
etienne86/oc_p13_team_spirit
0
2022808
"""Contain the unit tests related to the forms in app ``preorders``.""" from django.core.files.uploadedfile import UploadedFile from django.test import TestCase from teamspirit.catalogs.models import Catalog, Product from teamspirit.core.models import Address from teamspirit.preorders.forms import AddToCartForm, DropFromCartForm from teamspirit.preorders.models import ShoppingCart, ShoppingCartLine from teamspirit.profiles.models import Personal from teamspirit.users.models import User class PreordersFormsTestCase(TestCase): """Test the forms in the app ``preorders``.""" def setUp(self): super().setUp() # a user in database self.address = Address.objects.create( label_first="1 rue de l'impasse", label_second="", postal_code="75000", city="Paris", country="France" ) self.personal = Personal.objects.create( phone_number="01 02 03 04 05", address=self.address ) self.user = User.objects.create_user( email="<EMAIL>", password="<PASSWORD>", first_name="Toto", last_name="<NAME>", personal=self.personal ) # log this user in self.client.login(email="<EMAIL>", password="<PASSWORD>") # some other data self.shopping_cart = ShoppingCart.objects.create( user=self.user, ) self.catalog = Catalog.objects.create( name="Catalogue de vêtements", ) self.image = UploadedFile() self.product = Product.objects.create( name="Débardeur homme", image=self.image, is_available=True, is_free=False, price=25, catalog=self.catalog, ) self.shopping_cart_line = ShoppingCartLine.objects.create( shopping_cart=self.shopping_cart, product=self.product, quantity=2, size='XS' ) def test_add_to_cart_form_success(self): """Unit test - app ``preorders`` - form ``AddToCartForm`` Test the 'product add to cart' form with success. """ # count the records in database: before records_before = ShoppingCartLine.objects.all().count() # process the form form_data = { 'shopping_cart': self.shopping_cart, 'product': self.product, 'quantity': 1, 'size': 'M', } form = AddToCartForm(data=form_data) self.assertTrue(form.is_valid()) form.save() expected_shopping_cart_line = ShoppingCartLine( shopping_cart=self.shopping_cart, product=self.product, quantity=1, size='M' ) # count the records in database: after records_after = ShoppingCartLine.objects.all().count() # is one record added in database? self.assertEqual(records_after, records_before + 1) # is this last record as expected? last_record = ShoppingCartLine.objects.all()[records_after - 1] self.assertEqual( last_record.shopping_cart, expected_shopping_cart_line.shopping_cart ) self.assertEqual( last_record.product, expected_shopping_cart_line.product ) self.assertEqual( last_record.quantity, expected_shopping_cart_line.quantity ) self.assertEqual( last_record.size, expected_shopping_cart_line.size ) def test_drop_from_cart_form_success(self): """Unit test - app ``preorders`` - form ``DropFromCartForm`` Test the 'product drop from cart' form with success. """ # count the records in database: before records_before = ShoppingCartLine.objects.all().count() # process the form form = DropFromCartForm( data={}, request_user=self.user, line_id=self.shopping_cart_line.id, shopping_cart_line=self.shopping_cart_line ) self.assertTrue(form.is_valid()) # count the records in database: after records_after = ShoppingCartLine.objects.all().count() # is one record added in database? self.assertEqual(records_after, records_before - 1)
4,406
bin/eoddcreatereport.py
remotesensinginfo/eodatadown
3
2024134
#!/usr/bin/env python """ EODataDown - Setup/Update the system. """ # This file is part of 'EODataDown' # A tool for automating Earth Observation Data Downloading. # # Copyright 2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Purpose: Command line tool for running the system. # # Author: <NAME> # Email: <EMAIL> # Date: 26/11/2019 # Version: 1.0 # # History: # Version 1.0 - Created. import argparse import logging import os import os.path import datetime import rsgislib import eodatadown.eodatadownrun from eodatadown import EODATADOWN_SENSORS_LIST logger = logging.getLogger('eoddcreatereport.py') if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-c", "--config", type=str, default="", help="Path to the JSON config file.") parser.add_argument("-o", "--output", type=str, required=True, help="The output PDF report file.") parser.add_argument("--start", type=str, required=True, help="The start date (recent), with format YYYYMMDD.") parser.add_argument("--end", type=str, required=True, help="The start date (earliest), with format YYYYMMDD.") parser.add_argument("-s", "--sensor", type=str, required=False, choices=EODATADOWN_SENSORS_LIST, help='''Specify the sensor for which this process should be executed (Optional)''') parser.add_argument("-p", "--platform", type=str, required=False, help='''Specify the platform for which this process should be executed (Optional)''') parser.add_argument("--order_desc", action='store_true', default=False, help="Specify that the scenes should be in descending order.") parser.add_argument("--record_db", action='store_true', default=False, help="Specify that the report should be stored in database.") args = parser.parse_args() config_file = args.config main_config_value = os.getenv('EDD_MAIN_CFG', None) if (config_file == '') and (main_config_value is not None): config_file = main_config_value print("'" + config_file + "'") if not os.path.exists(config_file): logger.info("The config file does not exist: '" + config_file + "'") raise Exception("Config file does not exist") t = rsgislib.RSGISTime() t.start(True) start_date = datetime.datetime.strptime(args.start, '%Y%m%d').date() end_date = datetime.datetime.strptime(args.end, '%Y%m%d').date() eodatadown.eodatadownrun.create_date_report(config_file, args.output, start_date, end_date, args.sensor, args.platform, args.order_desc, args.record_db) t.end(reportDiff=True, preceedStr='EODataDown processing completed ', postStr=' - eoddcreatereport.py.')
3,273
python/cvi_toolkit/model/onnx_model.py
sophgo/tpu_compiler
3
2023171
from .base_model import model_base import onnxruntime import onnx from onnx import helper import os import numpy as np class OnnxModel(model_base): def __init__(self): self.net = None def get_shape(self, sess): """ Onnxruntime output shape maybe wrong, we print here to check """ for output in sess.get_outputs(): print("output name {}\n".format(output.name)) print("output shape {}".format(output.shape)) def load_model(self, model_file, wegiht_file=None): self.model_file = model_file self.net = onnxruntime.InferenceSession(model_file) self.onnx_model = onnx.load(model_file) def inference(self, inputs): return self._infernece(inputs) def _infernece(self, inputs, onnx_model=None): if onnx_model: ort_session = onnxruntime.InferenceSession(onnx_model) # self.get_shape(ort_session) ort_outs = ort_session.run(None, inputs) else: ort_outs = self.net.run(None, inputs) return ort_outs def get_all_tensor(self, input_data): output_keys = ['output'] onnx_model = self.onnx_model for node in onnx_model.graph.node: _intermediate_tensor_name = list(node.output) intermediate_tensor_name = ",".join(_intermediate_tensor_name) intermediate_layer_value_info = helper.ValueInfoProto() intermediate_layer_value_info.name = intermediate_tensor_name onnx_model.graph.output.append(intermediate_layer_value_info) output_keys.append(intermediate_layer_value_info.name + '_' + node.op_type) dump_all_onnx = "all_{}".format(self.model_file.split("/")[-1]) onnx.save(onnx_model, dump_all_onnx) print("dump multi-output onnx all tensor at ", dump_all_onnx) # dump all inferneced tensor ort_outs = self._infernece(input_data, onnx_model=dump_all_onnx) output_dict = dict(zip(output_keys, map(np.ndarray.flatten, ort_outs))) return output_dict def get_inputs(self, ): return self.net.get_inputs() def get_op_info(self): raise RuntimeError("Todo")
2,213
web_tests/the_rules.py
SalamiArmy/InfoBoet
1
2023968
def run(thorin, incoming): return """The rules are: 1. A robot may not injure a human being or, through inaction, allow a human being to come to harm. 2. A robot must obey orders given it by human beings except where such orders would conflict with the First Law. 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law."""
402
docker/optimization/pyOpt/tags/v1.2.0/pyOpt/pyMMFD/__init__.py
liujiamingustc/phd
3
2022837
#!/usr/bin/env python try: from pyMMFD import MMFD __all__ = ['MMFD'] except: __all__ = [] #end
109
AbstractSearchEngine/indexing/UnifiedSearch.py
canuse/arXiv_explorer
0
2024122
from AbstractSearchEngine.indexing.BM25 import BM25 from AbstractSearchEngine.utils.ranking import borda_count from AbstractSearchEngine.indexing.TFIDF import TFIDF from functools import lru_cache @lru_cache() def search_by_words(word_list): """[summary] Args: word_list ([type]): [description] Returns: list: list of article_id。不需要score。 """ bm25_result, wc1 = BM25.search_by_words(word_list, 200) tfidf_result, wc2 = TFIDF.search_by_words(word_list, 200) result = borda_count([bm25_result, tfidf_result]) return [x[0] for x in result][:200], max(wc1, wc2) def query_expansion(word_list, nrel=10, nexp=2, allow_dup=True): """[summary] Args: word_list ([type]): [description] nrel (int, optional): [description]. Defaults to 10. nexp (int, optional): [description]. Defaults to 2. allow_dup (bool, optional): [description]. Defaults to True. Returns: list: list of expended query。预计返回stem过之后的["apple banana fruit","apple banana orange".....] """ bm25_result = BM25.query_expansion(word_list, nrel=nrel, nexp=nexp, allow_dup=allow_dup) tfidf_result = TFIDF.query_expansion(word_list, nrel=nrel, nexp=nexp, allow_dup=allow_dup) result = borda_count([bm25_result, tfidf_result], algorithm='vote') return result @lru_cache() def get_relative_article(arxivID_list, nart=10): """[summary] Args: arxivID_list ([type]): [description] nart (int, optional): [description]. Defaults to 10. Returns: list: list of article_id。不需要score。 """ bm25_result = BM25.get_relative_article(arxivID_list, nart=10) tfidf_result = TFIDF.get_relative_article(arxivID_list, nart=10) result = borda_count([bm25_result, tfidf_result]) return [x[0] for x in result]
1,824
main.py
SuhelMehta9/TrackSystemLogin
2
2023172
from time import sleep import socket from capture_image import captureImage from config import * # Capture image image_files = captureImage(config["IMAGE_DIR"]) # Check internet connectivity while True: try: host = socket.gethostbyname("www.google.com") s = socket.create_connection((host, 80), 2) s.close() break except: sleep(20) pass if config["SEND_EMAIL"]: # Send email from send_mail import sendMail sendMail( config["FROM_EMAIL_ADDRESS"], config["PASSWORD_OF_FROM_EMAIL_ADDRESS"], config["TO_EMAIL_ADDRESS"], config["EMAIL_SUBJECT"], config["EMAIL_BODY"], config["SMTP_SERVER_ADDRESS"], config["SMTP_SSL_PORT"], image_files, ) if config["GIT_COMMIT"]: # Create git commit from git_commit import gitCommit if ( config["GITHUB_USERNAME_OR_API_TOKEN"] and config["GITHUB_USER_PASSWORD"] ): gitCommit( config["GITHUB_REPOSITORY"], image_files, config["GIT_COMMIT_MESSAGE"], config["GITHUB_USERNAME_OR_API_TOKEN"], config["GITHUB_USER_PASSWORD"], ) elif config["GITHUB_USERNAME_OR_API_TOKEN"]: gitCommit( config["GITHUB_REPOSITORY"], image_files, config["GIT_COMMIT_MESSAGE"], config["GITHUB_USERNAME_OR_API_TOKEN"], )
1,439
Beginner_Contest/115/C_Christmas_Eve/main.py
Tao4free/atcoder
0
2024146
def readraw(typ=None): if typ is None: return input().strip() else: return typ(input().strip()) def readarray(typ=None): inpt_list = input().split() if typ is None: return [int(x) if x.isdigit() else x for x in inpt_list] else: return list(map(typ, inpt_list)) if __name__ == "__main__": n, k = readarray() tree = [readraw(int) for _ in range(n)] tree.sort() ans = min(tree[i+k-1] - tree[i] for i in range(n-k+1)) print(ans)
503
13-work-with-basic-auth/python/basic_auth_2.py
tourdedave/selenium-tips
251
2022627
# -*- coding: utf-8 -*- """ Implementation of http://elementalselenium.com/tips/13-work-with-basic-auth """ import unittest from selenium import webdriver class BasicAuth1(unittest.TestCase): def setUp(self): self.driver = webdriver.Firefox() self.driver.get('http://admin:[email protected]/basic_auth') def tearDown(self): self.driver.quit() def test_visit_basic_auth_secured_page(self): driver = self.driver driver.get('http://the-internet.herokuapp.com/basic_auth') page_message = driver.find_element_by_css_selector('.example p').text assert page_message == 'Congratulations! You must have the proper credentials.' if __name__ == "__main__": unittest.main()
756
nbdev_colab_helper/core.py
pete88b/nbdev_colab_helper
5
2023327
# AUTOGENERATED! DO NOT EDIT! File to edit: 00_core.ipynb (unless otherwise specified). __all__ = ['IN_COLAB', 'setup_git', 'git_push', 'read_config', 'setup_project', 'init_notebook'] # Cell IN_COLAB = 'google.colab' in str(get_ipython()) # Cell import os, subprocess, urllib, shlex def _run_commands(commands, password=None): "Run a list of commands making sure we mask `password` when printing commands" for cmd in commands: process = subprocess.Popen(shlex.split(cmd), stdout=subprocess.PIPE) output, err = process.communicate() if password: cmd = cmd.replace(password, '*****') print(cmd) if output or err: print(' ', output.decode('utf8').strip() if output else '', err or '') def setup_git(git_url:str, git_branch:str, name:str, password:str, email:str): "Link your mounted drive to GitHub" password = urllib.parse.quote(password) _run_commands([ f"git config --global user.email {email}", f"git config --global user.name {name}", f"git init", f"git remote rm origin", f"git remote add origin {git_url.replace('://git', f'://{name}:{password}@git')}", f"git pull origin {git_branch}", # TODO: do we need --allow-unrelated-histories? f"git checkout {git_branch}", f"git push --set-upstream origin {git_branch}"], password) def git_push(git_branch:str, message:str): "Convert notebooks to scripts and then push to the library" _run_commands([ f'nbdev_install_git_hooks', f'nbdev_build_lib', f'git add *', # TODO: allow specific files to be pushed f'git commit -m "{message}"', f'git push origin {git_branch}']) # TODO: show message when push fails! # Cell from configparser import ConfigParser from pathlib import Path def read_config(project_name): config_path = Path('/content/drive/My Drive/nbdev_colab_projects.ini') config = ConfigParser() config.read(config_path) if project_name not in config: print(f'Error: [{project_name}] section not found in {config_path}') print(f'Please add a section for [{project_name}] and run `setup_project` again') print('See https://pete88b.github.io/nbdev_colab_helper/core.html for details') return config, None return config, config[project_name] # Cell def setup_project(project_name): "Set-up the colab runtime for `project_name`" assert IN_COLAB, "You do not appear to be running in Colab" if not Path('/content/drive/My Drive').exists(): print('Connecting to google drive') from google.colab import drive drive.mount('/content/drive') config, project_config = read_config(project_name) if project_config is None: return config, project_config project_path = Path(project_config['project_parent'])/project_name git_url, git_branch = project_config['git_url'], project_config['git_branch'] if project_path.is_dir(): print(f'Clone of {project_name} already exists in {project_path.parent}') else: project_path.parent.mkdir(parents=True, exist_ok=True) _run_commands([f'git clone {git_url} "{project_path}"']) get_ipython().magic(f'cd {project_path}') _run_commands(['pip install fastscript==1.0.0 fastcore==1.0.8 nbdev==1.0.14']) setup_git(git_url, git_branch, project_config['git_user_name'], project_config['git_user_password'], project_config['git_user_email']) return config, project_config # Cell def init_notebook(project_name): print('Connecting to google drive') from google.colab import drive drive.mount('/content/drive') config, project_config = read_config(project_name) if project_config is None: return config, project_config project_path = Path(project_config['project_parent'])/project_name get_ipython().magic(f'cd {project_path}') _run_commands(['pip install fastscript==1.0.0 fastcore==1.0.8 nbdev==1.0.14']) from nbdev.imports import Config get_ipython().magic(f'cd {Config().nbs_path}') # TODO is there a better way to know which dir the nb is in? # TODO: de-duplicate with setup_project # TODO: Read `requirements` section in `settings.ini` and install all reqs here
4,084
library/forms.py
Mohirbeck/Libraryapp
0
2024152
from django.contrib.auth.models import Group from django.core.exceptions import ValidationError from django.forms.widgets import RadioSelect from .models import Book from django import forms from django.core.validators import MinLengthValidator class BookForm(forms.ModelForm): class Meta: model = Book fields = "__all__" class StudentForm(forms.Form): first_name = forms.CharField(max_length=255) last_name = forms.CharField(max_length=255) group = forms.CharField(max_length=31) faculty = forms.CharField(max_length=63) username = forms.CharField(max_length=63) pwd1 = forms.CharField(max_length=127, required=True, widget=forms.PasswordInput, validators=[MinLengthValidator(8)], label="Password") pwd2 = forms.CharField(max_length=127, required=True, widget=forms.PasswordInput, validators=[MinLengthValidator(8)], label="Confirm Password") def clean_pwd2(self): if self.cleaned_data['pwd1'] != self.cleaned_data['pwd2']: raise ValidationError('Passwords must be the same!') else: SpecialSym = ['$', '@', '#', '%', '/'] if len(self.cleaned_data['pwd2']) < 8: raise ValidationError('length should be at least 8') else: if not any(char.isdigit() for char in self.cleaned_data['pwd2']): raise ValidationError( 'Password should have at least one numeral') else: if not any(char.isupper() for char in self.cleaned_data['pwd2']): raise ValidationError( 'Password should have at least one uppercase letter') else: if not any(char.islower() for char in self.cleaned_data['pwd2']): raise ValidationError( 'Password should have at least one lowercase letter') else: if not any(char in SpecialSym for char in self.cleaned_data['pwd2']): raise ValidationError( 'Password should have at least one of the symbols $@#') return self.cleaned_data['pwd2']
2,487
soli/aria/models/plant.py
rcdixon/soli
0
2023331
from aria.models import Crop from aria.models.validation.plant import * from django.db import models from django.core.validators import MinValueValidator, MaxValueValidator class Plant(models.Model): class Meta: db_table = "plant" app_label = "aria" crop = models.ForeignKey(Crop, on_delete=models.CASCADE) pattern = models.CharField( choices=GROW_STYLE, max_length=1, blank=False, default=None ) spacing = models.SmallIntegerField( validators=[ MinValueValidator(0) ] ) frost = models.CharField( choices=FROST, max_length=1, blank=False, default=None ) date = models.SmallIntegerField( default=1, validators=[ MinValueValidator(-180), MaxValueValidator(180) ] ) location = models.CharField( choices=LOCATION, max_length=1, blank=False, default=None ) transplant = models.ForeignKey( "self", null=True, db_column="pl_transplant", on_delete=models.CASCADE) temperature = models.SmallIntegerField( null=True, validators=[ MinValueValidator(-50), MaxValueValidator(50) ] ) germination = models.SmallIntegerField( null=True, validators=[ MinValueValidator(1), MaxValueValidator(365) ] ) depth = models.SmallIntegerField( null=True, validators=[ MinValueValidator(0), MaxValueValidator(1000) ] )
1,643
example_style_transfer/python/modules/forward.py
natxopedreira/ofxTensorFlow2
65
2023973
""" Feed-forward network to generate the stylized result. """ import tensorflow as tf class instance_norm(tf.keras.layers.Layer): def __init__(self, epsilon=1e-3): super(instance_norm, self).__init__() self.epsilon = epsilon def build(self, input_shape): self.beta = tf.Variable(tf.zeros([input_shape[3]])) self.gamma = tf.Variable(tf.ones([input_shape[3]])) def call(self, inputs): mean, var = tf.nn.moments(inputs, axes=[1, 2], keepdims=True) x = tf.divide(tf.subtract(inputs, mean), tf.sqrt(tf.add(var, self.epsilon))) return self.gamma * x + self.beta class conv_2d(tf.keras.layers.Layer): def __init__(self, filters, kernel, stride): super(conv_2d, self).__init__() pad = kernel // 2 self.paddings = tf.constant([[0, 0], [pad, pad],[pad, pad], [0, 0]]) self.conv2d = tf.keras.layers.Conv2D(filters, kernel, stride, use_bias=False, padding='valid') self.instance_norm = instance_norm() def call(self, inputs, relu=True): x = tf.pad(inputs, self.paddings, mode='REFLECT') x = self.conv2d(x) x = self.instance_norm(x) if relu: x = tf.nn.relu(x) return x class resize_conv_2d(tf.keras.layers.Layer): def __init__(self, filters, kernel, stride): super(resize_conv_2d, self).__init__() self.conv = conv_2d(filters, kernel, stride) self.instance_norm = instance_norm() self.stride = stride def call(self, inputs): new_h = inputs.shape[1] * self.stride * 2 new_w = inputs.shape[2] * self.stride * 2 x = tf.image.resize(inputs, [new_h, new_w], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) x = self.conv(x) # return x """ Redundant """ x = self.instance_norm(x) return tf.nn.relu(x) class tran_conv_2d(tf.keras.layers.Layer): def __init__(self, filters, kernel, stride): super(tran_conv_2d, self).__init__() self.tran_conv = tf.keras.layers.Conv2DTranspose(filters, kernel, stride, padding='same') self.instance_norm = instance_norm() def call(self, inputs): x = self.tran_conv(inputs) x = self.instance_norm(x) return tf.nn.relu(x) class residual(tf.keras.layers.Layer): def __init__(self, filters, kernel, stride): super(residual, self).__init__() self.conv1 = conv_2d(filters, kernel, stride) self.conv2 = conv_2d(filters, kernel, stride) def call(self, inputs): x = self.conv1(inputs) return inputs + self.conv2(x, relu=False) class feed_forward(tf.keras.models.Model): def __init__(self): super(feed_forward, self).__init__() # [filters, kernel, stride] self.conv1 = conv_2d(32, 9, 1) self.conv2 = conv_2d(64, 3, 2) self.conv3 = conv_2d(128, 3, 2) self.resid1 = residual(128, 3, 1) self.resid2 = residual(128, 3, 1) self.resid3 = residual(128, 3, 1) self.resid4 = residual(128, 3, 1) self.resid5 = residual(128, 3, 1) #self.tran_conv1 = tran_conv_2d(64, 3, 2) #self.tran_conv2 = tran_conv_2d(32, 3, 2) self.resize_conv1 = resize_conv_2d(64, 3, 2) self.resize_conv2 = resize_conv_2d(32, 3, 2) self.conv4 = conv_2d(3, 9, 1) def call(self, inputs): x = self.conv1(inputs) x = self.conv2(x) x = self.conv3(x) x = self.resid1(x) x = self.resid2(x) x = self.resid3(x) x = self.resid4(x) x = self.resid5(x) x = self.resize_conv1(x) x = self.resize_conv2(x) x = self.conv4(x, relu=False) return (tf.nn.tanh(x) * 150 + 255. / 2) # for better convergence
3,860
abc/abc119/abc119c.py
c-yan/atcoder
1
2023261
from itertools import product N, A, B, C, *l = map(int, open(0).read().split()) result = float('inf') for p in product(range(4), repeat=N): c = [0, 0, 0, 0] v = [0, 0, 0, 0] for i in range(N): c[p[i]] += 1 v[p[i]] += l[i] if min(c[:3]) == 0: continue t = abs(A - v[0]) + abs(B - v[1]) + abs(C - v[2]) + (sum(c[:3]) - 3) * 10 result = min(result, t) print(result)
413
PyFBA/tests/test_compound.py
SysSynBio/PyFBA
24
2024198
import unittest import PyFBA """ A class to test the compound class. """ class TestCompound(unittest.TestCase): def setUp(self): """This method is called before every test_ method""" self.compound = PyFBA.metabolism.Compound("t1", "test compound") self.compound.abbreviation = "Cool" self.compound.add_attribute('What', "Everything") self.compound_with_loc = PyFBA.metabolism.CompoundWithLocation.from_compound(self.compound, "extracellular") def test_equals(self): """Test that our equals function works""" othercompound = PyFBA.metabolism.Compound("t2", "test compound") self.assertEqual(self.compound, othercompound) othercompound.name = "Another compound" self.assertNotEqual(self.compound, othercompound) def test_hash(self): """Test that our hash function works""" self.assertEqual(hash(self.compound), hash(("t1", "test compound"))) def test_in_reactions(self): """Test which reactions the compound is in""" self.compound.add_reactions({"a", "b", "c"}) self.compound.add_reactions({"d"}) self.assertTrue(self.compound.has_reaction("a")) self.assertEqual(self.compound.number_of_reactions(), 4) # check that it is a set self.compound.add_reactions({"a", "b", "c"}) self.assertEqual(self.compound.number_of_reactions(), 4) # check that we are provided with a set self.assertRaises( TypeError, self.compound.add_reactions, "A reaction" ) def test_abbreviation(self): """ Did we get the new abbreviation?""" self.assertEqual(self.compound.abbreviation, "Cool") def test_adding_attributes(self): """ Did we add the new attributes""" self.assertEqual(self.compound.get_attribute("What"), "Everything") def test_compound_with_location(self): """Test the location of a compound""" self.assertEqual(self.compound_with_loc.location, 'extracellular') def test_comp_with_loc_copied(self): """Test we copied all attributes properly""" self.assertEqual(self.compound_with_loc.get_attribute("What"), "Everything")
2,234
pure1_check_new_array.py
sile16/pypure_examples
0
2024183
from pypureclient import pure1 import json # app id is from Pure1 REST settings. (need to be set as admin to use) app_id = "pure1:apikey:0ichbc6p0crIhWQm" key_file = "mattapp_priv.pem" # leave password blank if none private_key_password = "" # create client and authenticate pure1Client = pure1.Client(private_key_file=key_file, private_key_password=private_key_password, app_id=app_id) # get Arrays pure1Client.get_arrays() response = pure1Client.get_arrays() resources = [] # check to see if the response was valid and then pull out items if response is not None: resources = list(response.items) # load previous saved arrays from file: try: existing_arrays = {} with open("pure1_arrays.json") as f: existing_arrays = json.load(f) except Exception: pass # go through list of arrays from Pure1 # because for a in resources: if a.id not in existing_arrays: existing_arrays[a.id] = a.name print("New array found {}".format(a.name)) # check to see if array was renamed elif existing_arrays[a.id] != a.name: print("Array: {} was renamed to -> {} but is not new.".format( existing_arrays[a.id], a.name)) # save new set of arrays to file with open("pure1_arrays.json", "w") as f: json.dump(existing_arrays, f)
1,371
src/test.py
dreamer121121/F3Net
0
2024221
#!/usr/bin/python3 #coding=utf-8 import os import sys sys.path.insert(0, '../') sys.dont_write_bytecode = True import cv2 import numpy as np import matplotlib.pyplot as plt plt.ion() import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from tensorboardX import SummaryWriter import dataset from net import F3Net from transform import * import pydensecrf.densecrf as dcrf class Test(object): def __init__(self, Dataset, Network, path): ## dataset self.cfg = Dataset.Config(datapath=path, snapshot=args.model, mode='test') self.data = Dataset.Data(self.cfg) self.loader = DataLoader(self.data, batch_size=1, shuffle=False, num_workers=8) ## network self.net = Network(self.cfg) self.net.train(False) self.net.to('cuda:1') self.path = path def save(self): with torch.no_grad(): import datetime #start = datetime.datetime.now() cnt = 1 total = datetime.datetime(1999,1,1) for image, mask, shape, name in self.loader: #image.shape (1,3,352,352) #shape: init img shape ,which is for pre_mask to match the size of init img image = image.to('cuda:1').float() start = datetime.datetime.now() out1u, out2u, out2r, out3r, out4r, out5r = self.net(image, shape) total += datetime.datetime.now()-start print("inference time: ",(total-datetime.datetime(1999,1,1))/cnt) out = out2u pred = (torch.sigmoid(out[0,0])*255).cpu().numpy() # # Q = None # if args.crf: # Q = self.dense_crf(user_img.numpy().astype(np.uint8),pred) head = '../eval/maps/F3Net/'+ self.cfg.datapath.split('/')[-1] if not os.path.exists(head): os.makedirs(head) cv2.imwrite(head+'/'+name[0]+'.png', np.round(pred)) # import sys # sys.exit(0) #print("inference time: ",(datetime.datetime.now()-start)/cnt) cnt +=1 @torch.no_grad() def save_fig(self): normalize = Normalize(mean=self.cfg.mean, std=self.cfg.std) resize = Resize(352, 352) totensor = ToTensor() fr = open(self.path+'/test.txt','r') file_list = fr.readlines() fr.close() import datetime cnt = 1 total = datetime.datetime(1999, 1, 1) for name in file_list: name = name.replace('\n','') user_image = cv2.imread(self.path+'/image/'+name+'.jpg') start = datetime.datetime.now() input_data = user_image[:,:,::-1].astype(np.float32) shape = [torch.tensor([int(input_data.shape[0])]),torch.tensor([int(input_data.shape[1])])] input_data = normalize(input_data) input_data = resize(input_data) input_data = totensor(input_data) input_data = input_data[np.newaxis,:,:,:] image = input_data.to('cuda:1').float() user_image = torch.from_numpy(user_image).to('cuda:1').float() alpha = torch.ones(user_image.size()[0],user_image.size()[1],1).to('cuda:1')*255 user_image = torch.cat((user_image,alpha),dim=2) out1u, out2u, out2r, out3r, out4r, out5r = self.net(image, shape) out = out2u pred = (torch.sigmoid(out[0, 0])) # if args.crf: # Q = self.dense_crf(user_image.astype(np.uint8), pred.cpu().numpy()) # print('--Q--', Q) # cv2.imwrite('./crf_test.png',np.round(Q*255)) # import sys # sys.exit(0) mask = pred.unsqueeze(dim=2) outimg = torch.mul(mask, user_image).detach().cpu().numpy() # for w in range(outimg.shape[0]): # for h in range(outimg.shape[1]): # if all(outimg[w][h] == [0, 0, 0]): # alpha[w][h] = 0 # else: # alpha[w][h] = 255 # 看看能否优化速度 # # outimg = np.dstack([outimg, alpha]) head = '../eval/results/F3Net/'+ self.cfg.datapath.split('/')[-1] if not os.path.exists(head): os.makedirs(head) cv2.imwrite(head+'/'+name+'.png', np.round(outimg)) total += datetime.datetime.now() - start print("inference time: ", (total - datetime.datetime(1999, 1, 1)) / cnt) cnt += 1 def dense_crf(slef,img, output_probs): # img为输入的图像,output_probs是经过网络预测后得到的结果 h = output_probs.shape[0] # 高度 w = output_probs.shape[1] # 宽度 output_probs = np.expand_dims(output_probs, 0) output_probs = np.append(1 - output_probs, output_probs, axis=0) d = dcrf.DenseCRF2D(w, h, 2) # NLABELS=2两类标注,车和不是车 U = -np.log(output_probs) # 得到一元势 U = U.reshape((2, -1)) # NLABELS=2两类标注 U = np.ascontiguousarray(U) # 返回一个地址连续的数组 img = np.ascontiguousarray(img) d.setUnaryEnergy(U) # 设置一元势 img = img.squeeze() d.addPairwiseGaussian(sxy=20, compat=3) # 设置二元势中高斯情况的值 d.addPairwiseBilateral(sxy=30, srgb=20, rgbim=img, compat=10) # 设置二元势众双边情况的值 Q = d.inference(5) # 迭代5次推理 Q = np.argmax(np.array(Q), axis=0).reshape((h, w)) # 得列中最大值的索引结果 return Q if __name__=='__main__': #for path in ['../data/ECSSD', '../data/PASCAL-S', '../data/DUTS', '../data/HKU-IS', '../data/DUT-OMRON']: import argparse parser = argparse.ArgumentParser() parser.add_argument('--mode', type=str, default='mask') parser.add_argument('--dataset', type=str, nargs='+', default=[], ) parser.add_argument('--model', type=str) parser.add_argument('--crf', action='store_true') args = parser.parse_args() for path in args.dataset: print("="*30+"path:"+"="*30,path) t = Test(dataset, F3Net, '../data/'+path) if args.mode == 'mask': t.save() elif args.mode == 'fig': t.save_fig() # t.show()
6,488
asetk/atomistic/__init__.py
ltalirz/asetk
18
2023957
"""Provide atomistic classes Describes atomistic objects, such as atoms, energy levels, spectra etc. """
106
orders/migrations/0024_recivedorders.py
M4yankChoudhary/Pizza
1
2023225
# Generated by Django 3.0.6 on 2020-05-30 09:04 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('orders', '0023_auto_20200529_1351'), ] operations = [ migrations.CreateModel( name='RecivedOrders', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=65)), ('all_items', models.TextField()), ('price', models.DecimalField(decimal_places=2, max_digits=5)), ], ), ]
654
cytopy/tests/conftest.py
JANHMS/CytoPy
41
2023639
from cytopy.tests import assets from ..data.population import Population from ..data.project import Project from ..data.experiment import FileGroup from mongoengine.connection import connect, disconnect import pandas as pd import numpy as np import pytest import shutil import sys import os @pytest.fixture(scope='session', autouse=True) def setup(): """ Setup testing database Yields ------- None """ sys.path.append("/home/ross/CytoPy") os.mkdir(f"{os.getcwd()}/test_data") connect("test", host="mongomock://localhost", alias="core") yield shutil.rmtree(f"{os.getcwd()}/test_data", ignore_errors=True) disconnect(alias="core") @pytest.fixture def example_populated_experiment(): """ Generate an example Experiment populated with a single FileGroup "test sample" Yields ------- Experiment """ test_project = Project(project_id="test", data_directory=f"{os.getcwd()}/test_data") exp = test_project.add_experiment(experiment_id="test experiment", panel_definition=f"{assets.__path__._path[0]}/test_panel.xlsx") exp.add_fcs_files(sample_id="test sample", primary=f"{assets.__path__._path[0]}/test.FCS", controls={"test_ctrl": f"{assets.__path__._path[0]}/test.FCS"}, compensate=False) yield exp test_project.reload() test_project.delete() os.mkdir(f"{os.getcwd()}/test_data") def reload_filegroup(project_id: str, exp_id: str, sample_id: str): """ Reload a FileGroup Parameters ---------- project_id: str exp_id: str sample_id: str Returns ------- FileGroup """ fg = (Project.objects(project_id=project_id) .get() .get_experiment(exp_id) .get_sample(sample_id)) return fg def create_example_populations(filegroup: FileGroup, n_populations: int = 3): """ Given a FileGroup add the given number of example populations. Parameters ---------- filegroup: FileGroup n_populations: int (default=3) Total number of populations to generate (must be at least 2) Returns ------- FileGroup """ for pname, parent in zip([f"pop{i + 1}" for i in range(n_populations)], ["root"] + [f"pop{i + 1}" for i in range(n_populations - 1)]): parent_df = filegroup.load_population_df(population=parent, transform="logicle") x = parent_df["FS Lin"].median() idx = parent_df[parent_df["FS Lin"] >= x].index.values p = Population(population_name=pname, n=len(idx), parent=parent, index=idx, source="gate") filegroup.add_population(population=p) filegroup.save() return filegroup def create_logicle_like(u: list, s: list, size: list): assert len(u) == len(s), "s and u should be equal length" lognormal = [np.random.lognormal(mean=u[i], sigma=s[i], size=int(size[i])) for i in range(len(u))] return np.concatenate(lognormal) def create_linear_data(): x = np.concatenate([np.random.normal(loc=3.2, scale=0.8, size=100000), np.random.normal(loc=0.95, scale=1.1, size=100000)]) y = np.concatenate([np.random.normal(loc=3.1, scale=0.85, size=100000), np.random.normal(loc=0.5, scale=1.4, size=100000)]) return pd.DataFrame({"x": x, "y": y}) def create_lognormal_data(): x = np.concatenate([np.random.normal(loc=4.2, scale=0.8, size=50000), np.random.lognormal(mean=4.2, sigma=0.8, size=50000), np.random.lognormal(mean=7.2, sigma=0.8, size=50000), np.random.lognormal(mean=0.8, sigma=0.95, size=50000)]) y = np.concatenate([np.random.normal(loc=3.2, scale=0.8, size=50000), np.random.lognormal(mean=4.1, sigma=0.8, size=50000), np.random.lognormal(mean=6.2, sigma=0.8, size=50000), np.random.lognormal(mean=1.4, sigma=0.7, size=50000)]) return pd.DataFrame({"x": x, "y": y})
4,329
Proyecto_final/plot.py
maherreramu/Algoritmos
0
2024285
import networkx as nx import matplotlib.pyplot as plt from graph import G plot = nx.spring_layout(G) nx.draw_networkx_nodes(G, plot) nx.draw_networkx_edges(G, plot, edgelist=G.edges()) nx.draw_networkx_labels(G, plot) plt.show()
230
Python/Linear Regression in Python/Linear Regression.py
tanisha-bhadani/hacktoberfest2021-1
380
2023607
#!/usr/bin/env python # coding: utf-8 # In[1]: #importing the required packages import pandas as pd import seaborn as sns import numpy as np from sklearn.metrics import mean_squared_error, r2_score from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split #reading the data dataset= pd.read_excel("C:/Users/ASUS/Linear Regression.xlsx", sheet_name="Linear Regression") #defined a function to take the independent variables as input def reg(col_name): #gaining insights about the data dataset.head() dataset.isnull().sum() dataset.describe() dataset.corr() print("for", col_name) sns.pairplot(dataset) print('---------------------------------------------------------------') #dividing the data into x and y x=dataset[[col_name]] y=dataset[['price']] #splitting the training data and testing data x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=0.3,random_state=10) reg= LinearRegression() #fitting the model reg.fit(x_train,y_train) #predicting on the unseen data prediction= reg.predict(x_test) #getting the RMSE valuse and r2 value and printing them RMSE=np.sqrt(mean_squared_error(y_test,prediction)) r2=r2_score(y_test, prediction) #print("for", col_name) print("R Sqaure value is", r2) print("Root mean square is ", RMSE) #predicting and priniting the estimated price unseen_pred=reg.predict(np.array([[2]])) print("The estiamted price is",unseen_pred) print('---------------------------------------------------------------') #passing values (the independent varibles) to the function reg('sqft_living') reg('bedrooms') reg('bathrooms') reg('floors') # In[ ]:
1,750
src/ef/field/expression.py
fizmat/ef_python
1
2023749
import ast import operator as op import inject import numpy from simpleeval import SimpleEval from ef.field import Field from ef.util.inject import safe_default_inject class FieldExpression(Field): @safe_default_inject @inject.params(xp=numpy) def __init__(self, name, electric_or_magnetic, expression_x, expression_y, expression_z, xp=numpy): super().__init__(name, electric_or_magnetic) self._xp = xp self.expression_x = expression_x self.expression_y = expression_y self.expression_z = expression_z self._ev = SimpleEval(functions={"sin": xp.sin, "cos": xp.cos, "sqrt": xp.sqrt}, operators={ast.Add: op.add, ast.Sub: op.sub, ast.Mult: op.mul, ast.Div: op.truediv, ast.FloorDiv: op.floordiv, ast.Pow: op.pow, ast.Mod: op.mod, ast.Eq: op.eq, ast.NotEq: op.ne, ast.Gt: op.gt, ast.Lt: op.lt, ast.GtE: op.ge, ast.LtE: op.le, ast.Not: op.not_, ast.USub: op.neg, ast.UAdd: op.pos, ast.In: lambda x, y: op.contains(y, x), ast.NotIn: lambda x, y: not op.contains(y, x), ast.Is: lambda x, y: x is y, ast.IsNot: lambda x, y: x is not y, } ) # todo: inherit SimpleEval and define math functions inside # todo: add r, theta, phi names def get_at_points(self, positions, time: float) -> numpy.ndarray: positions = self._xp.asarray(positions) self._ev.names["t"] = time self._ev.names["x"] = positions[:, 0] self._ev.names["y"] = positions[:, 1] self._ev.names["z"] = positions[:, 2] result = self._xp.empty_like(positions) result[:, 0] = self._ev.eval(self.expression_x) result[:, 1] = self._ev.eval(self.expression_y) result[:, 2] = self._ev.eval(self.expression_z) return result
2,370
python/run.py
bretmulvey/azure-iot-central-arm-sdk-samples
0
2023822
import os import random from azure.identity._credentials.browser import InteractiveBrowserCredential from azure.mgmt.iotcentral import IotCentralClient from azure.mgmt.iotcentral.models import App, AppSkuInfo, SystemAssignedServiceIdentityType region = "westus" resourceGroup = "myResourceGroup" skuName = "ST2" # Get subscription info from environment. tenantId = os.environ["AZURE_TENANT_ID"] subscriptionId = os.environ["AZURE_SUBSCRIPTION_ID"] if (tenantId is None) or (subscriptionId is None): raise Exception("Expected environment variables.") # Make IOTC client. credential = InteractiveBrowserCredential(tenant_id = tenantId) iotc = IotCentralClient(credential, subscriptionId) # Choose app name. appName = f"pysdk-{random.randint(100000, 999999)}-{random.randint(100000, 999999)}" # Define the app configuration. app = App(location = region, sku = AppSkuInfo(name = skuName)) app.subdomain = appName app.display_name = appName app.identity = { "type": "SystemAssigned" } # Create the app. print(f"\nCreating {appName}. Check browser window for login.") poller = iotc.apps.begin_create_or_update(resourceGroup, appName, app) result = poller.result() if result.state != "created": raise Exception("Expected 'created' state.") print("OK") # Make sure it's idempotent. print(f"\nUpdating {appName}.") poller = iotc.apps.begin_create_or_update(resourceGroup, appName, app) result = poller.result() if result.state != "created": raise Exception("Expected 'created' state.") print("OK") # List all the apps in the resource group. print(f"\nListing IoT Central apps in '{resourceGroup}'") appsInGroup = iotc.apps.list_by_resource_group(resourceGroup) for item in appsInGroup: print(item) # Update the app tags. print(f"\nUpdating {appName} tags.") tag = "mytag" value = "myvalue" app.tags = { tag: value } poller = iotc.apps.begin_create_or_update(resourceGroup, appName, app) result = poller.result() if result.tags[tag] != value: raise Exception("Expected updated tag.") print("OK") # Delete the app. print(f"\nDeleting {appName}") poller = iotc.apps.begin_delete(resourceGroup, appName) result = poller.result() if result: print(result) raise Exception("Expected 'None'.") print("OK") # Verify that we can't create in geography as we could before. print("\nMake sure we can't use geography.") app.location = "unitedstates" appName = "us-" + appName app.subdomain = app.display_name = appName try: poller = iotc.apps.begin_create_or_update(resourceGroup, appName, app) result = poller.result() print("It worked but it shouldn't have!") except: print("OK") # Verify that S1 SKU is no longer allowed. print(f"\nMake sure we can't use S1 SKU.") appNameS1 = "s1-" + appName app = App(location = region, sku = AppSkuInfo(name = "S1")) app.subdomain = appNameS1 app.display_name = appNameS1 try: poller = iotc.apps.begin_create_or_update(resourceGroup, appNameS1, app) result = poller.result() print("It worked but it shouldn't have!") except: print("OK")
3,063
wave_visualizer.py
Animenosekai/AudioVisualization.py
0
2022682
import pyaudio import struct import matplotlib.pyplot as plt import numpy as np mic = pyaudio.PyAudio() FORMAT = pyaudio.paInt16 CHANNELS = 1 RATE = 5000 CHUNK = int(RATE/5) stream = mic.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, output=True, frames_per_buffer=CHUNK) fig, ax = plt.subplots(figsize=(14,6)) x = np.arange(0, 2 * CHUNK, 2) ax.set_ylim(-200, 200) ax.set_xlim(0, CHUNK) #make sure our x axis matched our chunk size line, = ax.plot(x, np.random.rand(CHUNK)) while True: data = stream.read(CHUNK) data = np.frombuffer(data, np.int16) line.set_ydata(data) fig.canvas.draw() fig.canvas.flush_events() plt.pause(0.01)
672