max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
edk2toollib/uefi/edk2/parsers/inf_parser.py
mikeytdisco/edk2-pytool-library
32
2026793
# @file inf_parser.py # Code to help parse EDK2 INF files # # Copyright (c) Microsoft Corporation # # SPDX-License-Identifier: BSD-2-Clause-Patent ## from edk2toollib.uefi.edk2.parsers.base_parser import HashFileParser import os AllPhases = ["SEC", "PEIM", "PEI_CORE", "DXE_DRIVER", "DXE_CORE", "DXE_RUNTIME_DRIVER", "UEFI_DRIVER", "SMM_CORE", "DXE_SMM_DRIVER", "UEFI_APPLICATION"] class InfParser(HashFileParser): def __init__(self): HashFileParser.__init__(self, 'ModuleInfParser') self.Lines = [] self.Parsed = False self.Dict = {} self.LibraryClass = "" self.SupportedPhases = [] self.PackagesUsed = [] self.LibrariesUsed = [] self.ProtocolsUsed = [] self.GuidsUsed = [] self.PpisUsed = [] self.PcdsUsed = [] self.Sources = [] self.Binaries = [] self.Path = "" def ParseFile(self, filepath): self.Logger.debug("Parsing file: %s" % filepath) if(not os.path.isabs(filepath)): fp = self.FindPath(filepath) else: fp = filepath self.Path = fp f = open(fp, "r") self.Lines = f.readlines() f.close() InDefinesSection = False InPackagesSection = False InLibraryClassSection = False InProtocolsSection = False InGuidsSection = False InPpiSection = False InPcdSection = False InSourcesSection = False InBinariesSection = False for line in self.Lines: sline = self.StripComment(line) if(sline is None or len(sline) < 1): continue if InDefinesSection: if sline.strip()[0] == '[': InDefinesSection = False else: if sline.count("=") == 1: tokens = sline.split('=', 1) self.Dict[tokens[0].strip()] = tokens[1].strip() # # Parse Library class and phases in special manor # if(tokens[0].strip().lower() == "library_class"): self.LibraryClass = tokens[1].partition("|")[0].strip() self.Logger.debug("Library class found") if(len(tokens[1].partition("|")[2].strip()) < 1): self.SupportedPhases = AllPhases elif(tokens[1].partition("|")[2].strip().lower() == "base"): self.SupportedPhases = AllPhases else: self.SupportedPhases = tokens[1].partition("|")[2].strip().split() self.Logger.debug("Key,values found: %s = %s" % (tokens[0].strip(), tokens[1].strip())) continue elif InPackagesSection: if sline.strip()[0] == '[': InPackagesSection = False else: self.PackagesUsed.append(sline.partition("|")[0].strip()) continue elif InLibraryClassSection: if sline.strip()[0] == '[': InLibraryClassSection = False else: self.LibrariesUsed.append(sline.partition("|")[0].strip()) continue elif InProtocolsSection: if sline.strip()[0] == '[': InProtocolsSection = False else: self.ProtocolsUsed.append(sline.partition("|")[0].strip()) continue elif InGuidsSection: if sline.strip()[0] == '[': InGuidsSection = False else: self.GuidsUsed.append(sline.partition("|")[0].strip()) continue elif InPcdSection: if sline.strip()[0] == '[': InPcdSection = False else: self.PcdsUsed.append(sline.partition("|")[0].strip()) continue elif InPpiSection: if sline.strip()[0] == '[': InPpiSection = False else: self.PpisUsed.append(sline.partition("|")[0].strip()) continue elif InSourcesSection: if sline.strip()[0] == '[': InSourcesSection = False else: self.Sources.append(sline.partition("|")[0].strip()) continue elif InBinariesSection: if sline.strip()[0] == '[': InBinariesSection = False else: self.Binaries.append(sline.partition("|")[0].strip()) continue # check for different sections if sline.strip().lower().startswith('[defines'): InDefinesSection = True elif sline.strip().lower().startswith('[packages'): InPackagesSection = True elif sline.strip().lower().startswith('[libraryclasses'): InLibraryClassSection = True elif sline.strip().lower().startswith('[protocols'): InProtocolsSection = True elif sline.strip().lower().startswith('[ppis'): InPpiSection = True elif sline.strip().lower().startswith('[guids'): InGuidsSection = True elif sline.strip().lower().startswith('[pcd') or \ sline.strip().lower().startswith('[patchpcd') or \ sline.strip().lower().startswith('[fixedpcd') or \ sline.strip().lower().startswith('[featurepcd'): InPcdSection = True elif sline.strip().lower().startswith('[sources'): InSourcesSection = True elif sline.strip().lower().startswith('[binaries'): InBinariesSection = True self.Parsed = True
6,153
backend/api/views.py
kh-026-webui-python/backend
0
2025526
""" Views for api app """ import os import shutil from io import TextIOWrapper import psycopg2 from django.contrib.auth.models import User from django.core.exceptions import ValidationError from django.core.files.storage import FileSystemStorage from django.db.utils import IntegrityError from django.http import JsonResponse from rest_framework import viewsets, status from rest_framework.response import Response from rest_framework.views import APIView from utils.FileValidator import FileValidator from utils.parser import CSVParser from utils.user_manager import UserManager from .models import Document, Course from .serializers import UserSerializer, CourseSerializer class UserViewSet(viewsets.ModelViewSet): # pylint: disable=too-many-ancestors """ API endpoint for USERS """ queryset = User.objects.all().order_by('-date_joined') serializer_class = UserSerializer class HealthCheckView(APIView): """ Ping server and database """ def get(self, request): """ Making JSON response for endpoint's get request """ try: psycopg2.connect(host=os.environ.get('DB_HOST', None), database=os.environ.get('DB_NAME', 'db.postgres'), user=os.environ.get('DB_USER', ''), password=os.environ.get('DB_PASSWORD', '')) except psycopg2.OperationalError as error: print(error) database = "error" else: database = "pong" return JsonResponse({"server": "pong", "database": database}, status=status.HTTP_200_OK) class UploadResumeView(APIView): """ Validate and save file on server """ validator = FileValidator( allowed_extensions=['pdf'], allowed_mimetypes=['application/pdf'], min_size=307, max_size=3 * 1024 * 1024 ) def post(self, request): """ Handle post request on server's endpoint """ if request.data.get('file'): uploaded_file = request.data.get('file') try: self.validator(uploaded_file) except ValidationError as error: print(error) return JsonResponse({'error': error.message}, status=status.HTTP_400_BAD_REQUEST) else: return JsonResponse({'error': "there is no file"}, status=status.HTTP_400_BAD_REQUEST) folder = 'CVs/' filename = uploaded_file.name storage = FileSystemStorage(location=folder) temp_cv = Document() temp_cv.path = f"{storage.location}/{filename}" try: temp_cv.save() storage.save(filename, uploaded_file) except IntegrityError as error: print(error.args[0]) message = {'error': 'file with same name already exists'} return JsonResponse(message, status=status.HTTP_400_BAD_REQUEST) return Response(status=status.HTTP_201_CREATED) def delete(self, request): Document.objects.all().delete() path = FileSystemStorage("CVs/") shutil.rmtree(f"{path.location}") return Response(status=status.HTTP_200_OK) class FileUploadView(APIView): """ API endpoint for CSV File upload """ def post(self, request, filename, format=None): file = TextIOWrapper(request.FILES[filename].file, encoding=request.encoding) user_data = CSVParser.read_from_memory(file) user_serializer = UserSerializer() response = [] for user in user_data: current_user = UserManager.to_user_data(user) verified_data = user_serializer.validate(current_user) responce_data = verified_data.copy() try: existing_user = User.objects.get(username=verified_data['username']) except User.DoesNotExist: user_serializer.create(verified_data) else: responce_data['error'] = str(existing_user.username) + ' already exist' response.append(responce_data) return Response(response) class CoursesView(APIView): """ View that help manipulate with courses """ def get(self, request): """ :param request: :return: TODO JsonResponse with courses """ all_courses = list(Course.objects.all()) dict = {} for course in all_courses: dict[course.id] = CourseSerializer(course).data return JsonResponse(dict)
4,573
rl/high-card-poker/tf-pfhc-rl/pfhc_env.py
Simsso/Machine-Learning-Tinkering
2
2026911
from player import Player from pfhc_game import PreFlopHighCardGame class HighCardEnv: """ Environment class for the pre-flop high card poker game. In every round, each of the player gets a single card. """ INITIAL_STACK = 100 def __init__(self, player1: Player, player2: Player): self.p1 = player1 self.p2 = player2 self.game: PreFlopHighCardGame = None self.reset() def step(self, action): """ :param action: Tuple containing a char ['b', 'f', 'c'] and a positive integral value. The latter is only taken into account if 'b' is chosen, as it is the bet size. :return: Tuple (new state, rewards, game over, misc). Rewards is an array with two elements, one reward for each player. It is [0, 0] unless a payout has happened. The new state is, as seen from the perspective of the player who is acting next. This might be the same player as the one who is conducting the current action. """ action_code = action[0] bet_size = action[1] game = self.game player = game.next_player count_ba = game.round_count # round count before action if action_code == 'b': # scale bet size to [0, player stack] game.bet(bet_size=max(0, min(player.stack(), bet_size))) elif action_code == 'c': game.call() else: game.fold() reward = [0, 0] if count_ba < game.round_count: # new round (showdown has taken place or a player folded) reward = game.last_gain return self.get_state(game.next_player), reward, game.over, {} def reset(self): """ Resets the environment. That is resetting the players (but keeping the object instances) and creating a new pre-flop high card game object. """ self.p1.reset() self.p2.reset() self.game = PreFlopHighCardGame(self.p1, self.p2) def get_state(self, me: Player): """ :return: The private game state, i.e. game as seen from one player's point of view. A 5-tuple containing (card, stack, opponent stack, bet size, opponent bet size) """ game = self.game opponent = game.other(me) state = [me.get_card().get_rank(), me.stack(), opponent.stack(), me.bet_size(), opponent.bet_size()] return state def __str__(self): return str(str(self.p1.name) + "'s state: " + str(self.get_state(self.p1))) + \ str(str(self.p2.name) + "'s state: " + str(self.get_state(self.p2)))
2,663
testapp/workflows.py
PrimarySite/django-transitions
19
2026584
# -*- coding: utf-8 -*- """Example Lifecycle workflow.""" from django.utils import timezone from django_transitions.workflow import StateMachineMixinBase from django_transitions.workflow import StatusBase from transitions import Machine class LiveStatus(StatusBase): """Workflow for Lifecycle.""" # Define the states as constants DEVELOP = 'develop' LIVE = 'live' MAINTENANCE = 'maintenance' DELETED = 'deleted' # Give the states a human readable label STATE_CHOICES = ( (DEVELOP, 'Under Development'), (LIVE, 'Live'), (MAINTENANCE, 'Under Maintenance'), (DELETED, 'Deleted'), ) # Define the transitions as constants PUBLISH = 'publish' MAKE_PRIVATE = 'make_private' MARK_DELETED = 'mark_deleted' REVERT_DELETED = 'revert_delete' # Give the transitions a human readable label and css class # which will be used in the django admin TRANSITION_LABELS = { PUBLISH : {'label': 'Make live', 'cssclass': 'default'}, MAKE_PRIVATE: {'label': 'Under maintenance'}, MARK_DELETED: {'label': 'Mark as deleted', 'cssclass': 'deletelink'}, REVERT_DELETED: {'label': 'Revert Delete', 'cssclass': 'default'}, } # Construct the values to pass to the state machine constructor # The states of the machine SM_STATES = [ DEVELOP, LIVE, MAINTENANCE, DELETED, ] # The machines initial state SM_INITIAL_STATE = DEVELOP # The transititions as a list of dictionaries SM_TRANSITIONS = [ # trigger, source, destination { 'trigger': PUBLISH, 'source': [DEVELOP, MAINTENANCE], 'dest': LIVE, }, { 'trigger': MAKE_PRIVATE, 'source': LIVE, 'dest': MAINTENANCE, }, { 'trigger': MARK_DELETED, 'source': [ DEVELOP, LIVE, MAINTENANCE, ], 'dest': DELETED, }, { 'trigger': REVERT_DELETED, 'source': DELETED, 'dest': MAINTENANCE, }, ] class LifecycleStateMachineMixin(StateMachineMixinBase): """Lifecycle workflow state machine.""" status_class = LiveStatus machine = Machine( model=None, finalize_event='wf_finalize', auto_transitions=False, **status_class.get_kwargs() # noqa: C815 ) @property def state(self): """Get the items workflowstate or the initial state if none is set.""" if self.wf_state: return self.wf_state return self.machine.initial @state.setter def state(self, value): """Set the items workflow state.""" self.wf_state = value return self.wf_state def wf_finalize(self, *args, **kwargs): """Run this on all transitions.""" self.wf_date = timezone.now()
2,924
Assignments/Assignment 6/leap_year copy.py
Emilysav/CMPT-120L-910-20F
0
2024543
# """ # - Add code in the defined function to figure out whether or not the given year is a leap year or not. # - Every year that is exactly divisible by four is a leap year, except for years that are exactly # # divisible by 100, but these centurial years are leap years if they are exactly divisible by 400. For example, # # the years 1700, 1800, and 1900 are not leap years, but the years 1600 and 2000 are. - Wikipedia # - Take in a parameter called year and return “Is a leap year” or “Not a leap year” # """ def leap_year(year): remainder1 = year % 4 remainder2 = year % 100 remainder3 = year % 400 print(remainder1, remainder2, remainder3) if remainder1 == 0 and remainder2 == 0 and remainder3 == 0: print("Is a leap year") elif remainder1 == 0 and remainder2 != 0: print("Is a leap year") else: print("Not a leap year") if __name__ == "__main__": years = [2000, 1994, 1912, 3002, 1700, 1400] answers = [] for year in years: answers.append(leap_year(year)) print(answers)
1,106
tests/policy/test_action_alertmanager.py
Spellchaser/powerfulseal
1,362
2026579
import pytest from mock import MagicMock, patch from tests.fixtures import action_alertmanager, ActionUnmuteAlertManager, ActionAlertManager # single target cases def test_happy_path(action_alertmanager): mock_resp = 'silence_id' action_alertmanager.mute = MagicMock( return_value=mock_resp ) action_alertmanager.execute() # muting should store silence id assert(action_alertmanager.silences == { 'http://example.com': 'silence_id' }) assert(action_alertmanager.proxies == dict(http='http',https='https')) # test default silence duration action_alertmanager.mute.assert_called_once_with('http://example.com', 900) # muting should push unmuting action for cleaning up cleanup_action = action_alertmanager.cleanup_actions[0] assert(type(cleanup_action) is ActionUnmuteAlertManager) assert(cleanup_action.silence_id == 'silence_id') assert(cleanup_action.alertmanager_url == 'http://example.com') assert(cleanup_action.proxies == dict(http='http',https='https')) def test_no_proxy(action_alertmanager): action_alertmanager.proxies = {} action_alertmanager.mute = MagicMock() action_alertmanager.execute() assert(action_alertmanager.cleanup_actions[0].proxies == {}) # autoUnmute is set to false def test_autounmute_disabled(action_alertmanager): action_alertmanager.schema["actions"][0]["mute"] = {'autoUnmute': False} action_alertmanager.mute = MagicMock() action_alertmanager.execute() # no clean up action when autoUnmute is false assert(len(action_alertmanager.cleanup_actions) == 0) # what if 'mute' is None def test_mute_is_none(action_alertmanager): action_alertmanager.schema["actions"][0]["mute"] = None action_alertmanager.mute = MagicMock() action_alertmanager.execute() # test default silence duration action_alertmanager.mute.assert_called_once_with('http://example.com', 900) def test_duration_override(action_alertmanager): action_alertmanager.schema["actions"][0]["mute"] = {'duration': 123} action_alertmanager.mute = MagicMock() action_alertmanager.execute() # test default silence duration action_alertmanager.mute.assert_called_once_with('http://example.com', 123) # multiple targets cases @patch.object(ActionAlertManager, 'mute') def test_multiple_targets_happy_path(mute): mute.side_effect = ['silence_1', 'silence_2'] logger = MagicMock() action_alertmanager = ActionAlertManager( name="test alert manager action", schema=dict( targets = [ dict(url="http://example1.com"), dict(url="http://example2.com") ], actions= [ dict(mute = dict()) ], proxies=dict(http='http',https='https') ), logger=logger, ) action_alertmanager.execute() assert(action_alertmanager.silences == { 'http://example1.com': 'silence_1', 'http://example2.com': 'silence_2' }) cleanup_action = action_alertmanager.cleanup_actions assert(len(cleanup_action) == 2)
3,111
python/one-liner/runner_up.py
Hamng/python-sources
0
2026353
# -*- coding: utf-8 -*- """ Created on Sat Feb 23 19:18:55 2019 @author: Ham HackerRanch Challenge: Find the Runner-Up Score! Given the participants' score sheet for your University Sports Day, you are required to find the runner-up score. You are given N scores. Store them in a list and find the score of the runner-up. Input Format The first line contains N. The second line contains an array A of N integers each separated by a space. Constraints Output Format Print the runner-up score. Sample Input 0 5 2 3 6 6 5 Sample Output 0 5 """ if __name__ == '__main__': #n = int(input()) #arr = map(int, input().split()) arr = '2 3 6 6 5'.split() print(sorted(list(set(arr)), reverse=True)[1])
760
klaverjas/game/meld.py
liacs/klaverjas
0
2026646
from .cards import Card, Rank, Suit meld_20 = [] meld_50 = [] meld_100 = [] for suit in Suit: for idx in range(6): meld_20.append({Card(suit, Rank(rank)) for rank in range(idx, idx + 3)}) for idx in range(5): meld_50.append({Card(suit, Rank(rank)) for rank in range(idx, idx + 4)}) for rank in Rank: meld_100.append({Card(suit, rank) for suit in Suit}) def meld_points(trick, trump_suit): for meld in meld_100: if meld <= set(trick): return 100 points = 0 royal = {Card(trump_suit, Rank.QUEEN), Card(trump_suit, Rank.KING)} if royal <= set(trick): points = 20 for meld in meld_50: if meld <= set(trick): return points + 50 for meld in meld_20: if meld <= set(trick): return points + 20 return points
878
dcnn_visualizer/traceable_chain.py
tochikuji/DNN-Visualizer
3
2025603
import contextlib import chainer from chainercv.links import PickableSequentialChain class TraceableChain(PickableSequentialChain): """ A traceable chain that can pick all intermediate layers and backtrace the calculation chains. The forward propagation must be sequential, that means forward propagation can be written as a composite of callable objects. >>> class MLP(TraceableChain): ... def __init__(self): ... with self.init_scope(): ... self.fc1 = L.Linear(None, 100) ... self.fc1_relu = F.relu ... self.fc2 = L.Linear(None, 10) ... self.fc2_relu = F.relu ... self.fc3 = L.Linear(None, 10) ... self.fc3_pred = F.softmax The instance of TraceableChain is callable. Its `__call__` performs as a forward propagation. All intermediate activations will be retained automatically, and picked with `pick`, e.g., >>> y = model(x) >>> act_fc2 = model.pick('fc2') """ def __init__(self): super().__init__() self.pick = self.layer_names def renew_pick(self): self.pick = self.layer_names @contextlib.contextmanager def init_scope(self): try: with super().init_scope(): yield finally: self.renew_pick() if __name__ == '__main__': import chainer.functions as F import numpy from dcnn_visualizer.traceable_nodes import TraceableLinear class TraceableModel(TraceableChain): def __init__(self): super().__init__() with self.init_scope(): self.fc1 = TraceableLinear(10, 10) self.fc1_relu = F.relu self.fc2 = TraceableLinear(10, 10) self.fc2_relu = F.relu self.fc3 = TraceableLinear(10, 1) self.fc3_sigm = F.sigmoid model = TraceableModel() x = numpy.random.rand(1, 10).astype('f') # noinspection PyTypeChecker v = model(x) print({model.layer_names[i]: y for i, y in enumerate(v)})
2,105
dashedbot/utils.py
rhg/dashedbot
0
2025167
from json import load, dump import logging import sys def get_logger(name: str) -> logging.Logger: '''returns a logger with the given name with an info level and write to stderr''' logger = logging.getLogger(name=name) logger.setLevel(logging.DEBUG) logger.addHandler(logging.StreamHandler(stream=sys.stderr)) return logger logger = get_logger('dashedbot.utils') def read_json(name: str, *, default={}): '''load json from a file''' try: with open(name, 'r') as f: logger.debug('loaded %s', name) return load(f) except FileNotFoundError: logger.debug('%s not found', name) return default def write_json(obj, name: str): '''write json to a file''' with open(name, 'w') as f: dump(obj, f) logger.debug('wrote %s', name) def map_values(f, d: dict) -> dict: return {k: f(v) for (k, v) in d.items()}
916
test/hello/main.py
oxr463/setup-buildozer
0
2025314
#!/usr/bin/env python from kivy.app import App from kivy.uix.widget import Widget from kivy.uix.label import Label class helloWorld(App): def build(self): lbl=Label(text='Hello World!') return lbl if __name__ == '__main__': helloWorld().run()
270
tests.py
wa-pis/api-cloudvps-py
0
2026633
import unittest import cloudvps class CloudTestCase(unittest.TestCase): def setUp(self): self.api = cloudvps.Api("some_fake_token") def testCheckVersion(self): self.assertEqual(cloudvps.__version__, "0.1.7") def testHelpfullFunction(self): pass if __name__ == "__main__": unittest.main()
334
ramsay/ramsay/settings/prod.py
cjswedes/real-wear
0
2025573
from .base import * DEBUG = False ALLOWED_HOSTS += ['ramsay-project-env.i5empc3jzg.us-east-2.elasticbeanstalk.com', 'localhost']
134
userapp/urls.py
cy4ok/my-region
0
2025500
import userapp.views as userapp from django.urls import path app_name = 'userapp' urlpatterns = [ path('instructors/', userapp.InstructorList.as_view(), name='instructor_list'), # path('create/', userapp..as_view(), name='user_create'), path('traveler_details/<int:pk>/', userapp.TravelerDetailView.as_view(), name='traveler_details'), path('instructor_details/<int:pk>/', userapp.InstructorDetailView.as_view(), name='instructor_details'), path('traveler_profile/', userapp.TravelerProfileView.as_view(), name='traveler_profile'), path('instructor_profile/', userapp.InstructorDetailView.as_view(), name='instructor_profile'), ]
655
benchmarking/experiments/nermodel.py
ltgoslo/norBERT
19
2023401
from transformers import BertModel from torch import nn class NERmodel(nn.Module): def __init__(self, ner_vocab, model_path=None, freeze=False): super().__init__() self._bert = BertModel.from_pretrained( model_path if model_path else "bert-base-multilingual-cased" ) hidden_size = self._bert.config.hidden_size self._linear = nn.Linear(hidden_size, len(ner_vocab)) if freeze: for param in self._bert.parameters(): param.requires_grad = False def forward(self, batch, mask): b = self._bert( input_ids=batch["input_ids"], attention_mask=batch["attention_mask"] ) pooler = b.last_hidden_state[:, mask].diagonal().permute(2, 0, 1) return self._linear(pooler)
799
tests/model_tests/test_uvvisSpectrum.py
edbeard/chemdataextractor-uvvis2018
6
2026750
import unittest from chemdataextractor.model import UvvisSpectrum, UvvisPeak class TestUvvisSpectrum(unittest.TestCase): #def test_merge_uvvis(self): # self.fail() #def test_merge_peaks_and_uvvis(self): # self.fail() #def test_merge_peaks(self): # self.fail() def test_just_value_one_value(self): '''Tests just value for a spectrum with one value''' u = UvvisSpectrum() peak = UvvisPeak() peak.value = 467 u.peaks.append(peak) self.assertEqual(u.just_value(), True) def test_just_value_one_extinction(self): '''Tests just value for failure case with one extinction''' u = UvvisSpectrum() peak = UvvisPeak() peak.extinction = 12345 u.peaks.append(peak) self.assertEqual(u.just_value(), False) def test_just_value_multiple_values(self): u = UvvisSpectrum() peaks = [UvvisPeak(),UvvisPeak(),UvvisPeak()] values = [467,234,123] for i, peak in enumerate(peaks): peak.value = values[i] u.peaks.append(peak) self.assertEqual(u.just_value(), True) #def test_just_extinction(self): # self.fail() if __name__ == '__main__': unittest.main()
1,261
docs/architecture/termination/issues/issue_23395.py
karahbit/radical.pilot
47
2026835
#!/usr/bin/env python # https://bugs.python.org/issue23395 import signal, threading, thread, time signal.signal(signal.SIGINT, signal.SIG_DFL) # or SIG_IGN def thread_run(): # NOTE: This should interrupt the main thread w/o an error, but # We see an error (int not callable) thread.interrupt_main() t = threading.Thread(target=thread_run) t.start() time.sleep(1)
387
setup.py
mredolatti/mmh3cffi
1
2025410
from setuptools import setup, find_packages setup( name='mmh3cffi', version='0.1.1', packages=find_packages(exclude=['test, csrc']), setup_requires=['cffi>=1.4.0', 'pytest-runner'], install_requires=['cffi>=1.4.0', 'future'], tests_require=['pytest'], cffi_modules=['build_mmh3cffi.py:FFI_BUILDER'] )
330
src/xia2/Modules/Analysis/__init__.py
graeme-winter/xia2
10
2026594
from collections import OrderedDict from libtbx import phil from dials.pychef import dose_phil_str batch_phil_scope = """\ batch .multiple = True { id = None .type = str range = None .type = ints(size=2, value_min=0) } """ phil_scope = phil.parse( """\ d_min = None .type = float(value_min=0) d_max = None .type = float(value_min=0) resolution_bins = 20 .type = int anomalous = False .type = bool use_internal_variance = False .type = bool .help = Use internal variance of the data in the calculation of the merged sigmas .short_caption = "Use internal variance" eliminate_sys_absent = False .type = bool .help = Eliminate systematically absent reflections before computation of merging statistics. .short_caption = "Eliminate systematic absences before calculation" range { width = 1 .type = float(value_min=0) min = None .type = float(value_min=0) max = None .type = float(value_min=0) } cc_half_significance_level = 0.01 .type = float(value_min=0, value_max=1) cc_half_method = *half_dataset sigma_tau .type = choice chef_min_completeness = None .type = float(value_min=0, value_max=1) .help = "Minimum value of completeness in outer resolution shell used to " "determine suitable resolution cutoff for CHEF analysis" %s xtriage_analysis = True .type = bool include_radiation_damage = True .type = bool %s """ % (dose_phil_str, batch_phil_scope) ) class separate_unmerged: def __init__(self, unmerged_intensities, batches_all, id_to_batches=None): intensities = OrderedDict() batches = OrderedDict() if id_to_batches is None: run_id_to_batch_id = None run_id = 0 unique_batches = sorted(set(batches_all.data())) last_batch = None run_start = unique_batches[0] for i, batch in enumerate(unique_batches): if ( last_batch is not None and batch > (last_batch + 1) or (i + 1) == len(unique_batches) ): if (i + 1) == len(unique_batches): last_batch += 1 batch_sel = (batches_all.data() >= run_start) & ( batches_all.data() <= last_batch ) batches[run_id] = batches_all.select(batch_sel) intensities[run_id] = unmerged_intensities.select(batch_sel) run_id += 1 run_start = batch last_batch = batch else: run_id_to_batch_id = OrderedDict() run_id = 0 for batch_id, batch_range in id_to_batches.items(): run_id_to_batch_id[run_id] = batch_id run_start, last_batch = batch_range batch_sel = (batches_all.data() >= run_start) & ( batches_all.data() <= last_batch ) batches[run_id] = batches_all.select(batch_sel) intensities[run_id] = unmerged_intensities.select(batch_sel) run_id += 1 self.run_id_to_batch_id = run_id_to_batch_id self.intensities = intensities self.batches = batches
3,264
backend/rethinkdb_tools/db_classes.py
al-indigo/vmemperor
1
2023722
CREATE_DB_FOR_CLASSES = set() def create_db_for_me(cl): CREATE_DB_FOR_CLASSES.add(cl) CREATE_DB_FOR_CLASSES_WITH_ACL = set() def create_acl_db_for_me(cl): CREATE_DB_FOR_CLASSES_WITH_ACL.add(cl)
208
src/database/guid.py
roycoding/thumbs-up-api
3
2022838
#!/usr/bin/env python3 """ GUID type for SQLAlchemy See: https://docs.sqlalchemy.org/en/latest/core/custom_types.html#backend-agnostic-guid-type """ from sqlalchemy.types import TypeDecorator, CHAR import uuid class GUID(TypeDecorator): """Uses CHAR(32), storing as stringified hex values.""" impl = CHAR def load_dialect_impl(self, dialect): return dialect.type_descriptor(CHAR(32)) def process_bind_param(self, value, _): if value is None: return value else: if not isinstance(value, uuid.UUID): return "%.32x" % uuid.UUID(value).int else: # hexstring return "%.32x" % value.int def process_result_value(self, value, _): if value is None: return value else: if not isinstance(value, uuid.UUID): value = uuid.UUID(value) return value
939
LeetCode-All-Solution/Python3/LC-1614-Maximum-Nesting-Depth-of-the-Parentheses.py
YuweiYin/Algorithm_YuweiYin
0
2026895
#!/usr/bin/env python # -*- coding:utf-8 -*- """================================================================= @Project : Algorithm_YuweiYin/LeetCode-All-Solution/Python3 @File : LC-1614-Maximum-Nesting-Depth-of-the-Parentheses.py @Author : [YuweiYin](https://github.com/YuweiYin) @Date : 2022-01-07 ==================================================================""" # import functools import sys import time # from typing import List """ LeetCode - 1614 - (Easy) - Maximum Nesting Depth of the Parentheses https://leetcode.com/problems/maximum-nesting-depth-of-the-parentheses/ Description: A string is a valid parentheses string (denoted VPS) if it meets one of the following: It is an empty string "", or a single character not equal to "(" or ")", It can be written as AB (A concatenated with B), where A and B are VPS's, or It can be written as (A), where A is a VPS. We can similarly define the nesting depth depth(S) of any VPS S as follows: depth("") = 0 depth(C) = 0, where C is a string with a single character not equal to "(" or ")". depth(A + B) = max(depth(A), depth(B)), where A and B are VPS's. depth("(" + A + ")") = 1 + depth(A), where A is a VPS. For example, "", "()()", and "()(()())" are VPS's (with nesting depths 0, 1, and 2), and ")(" and "(()" are not VPS's. Requirement: Given a VPS represented as string s, return the nesting depth of s. Example 1: Input: s = "(1+(2*3)+((8)/4))+1" Output: 3 Explanation: Digit 8 is inside of 3 nested parentheses in the string. Example 2: Input: s = "(1)+((2))+(((3)))" Output: 3 Constraints: 1 <= s.length <= 100 s consists of digits 0-9 and characters '+', '-', '*', '/', '(', and ')'. It is guaranteed that parentheses expression s is a VPS. """ class Solution: def maxDepth(self, s: str) -> int: # exception case if not isinstance(s, str) or len(s) <= 0: return 0 # border case if len(s) == 1: # assert s != "(" and s != ")" return 0 if len(s) == 2: # assert (s[0] != "(" and s[1] != ")") or s == "()" return 1 if s == "()" else 0 # main method: dfs & Stack return self._maxDepth(s) def _maxDepth(self, s: str) -> int: # now, 3 <= len(s) len_s = len(s) # op_set = {"+", "-", "*", "/"} # operator set (Do NOT care about numbers and operators!) paren_stack = [] # store the index of every "(" max_stack_depth = 0 # this is just the answer: the max depth of stack == the max depth of paired parentheses cur_index = 0 cur_stack_depth = 0 while cur_index < len_s: # scan every char from leftmost to rightmost cur_char = s[cur_index] if cur_char == "(": paren_stack.append(cur_index) # put "(" into stack cur_stack_depth += 1 # stack depth plus 1 max_stack_depth = max(max_stack_depth, cur_stack_depth) # update max stack depth elif cur_char == ")": paren_stack.pop() # pop "(" out of stack cur_stack_depth -= 1 # stack depth minus 1 else: pass # do nothing cur_index += 1 return max_stack_depth def main(): # Example 1: Output: 3 s = "(1+(2*3)+((8)/4))+1" # Example 2: Output: 3 # s = "(1)+((2))+(((3)))" # init instance solution = Solution() # run & time start = time.process_time() ans = solution.maxDepth(s) end = time.process_time() # show answer print('\nAnswer:') print(ans) # show time consumption print('Running Time: %.5f ms' % ((end - start) * 1000)) if __name__ == "__main__": sys.exit(main())
3,843
test/torch_basics_test.py
IcevorHu/bluefog
1
2026844
# Copyright 2020 Bluefog Team. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import inspect import os import warnings import unittest import numpy as np import networkx as nx import pytest import torch from common import mpi_env_rank_and_size import bluefog.torch as bf from bluefog.torch import ( ExponentialGraph, RingGraph, StarGraph, MeshGrid2DGraph, FullyConnectedGraph, ) from bluefog.torch import ( IsTopologyEquivalent, InferDestinationFromSourceRanks, InferSourceFromDestinationRanks, ) warnings.filterwarnings("ignore", message="numpy.dtype size changed") warnings.filterwarnings("ignore", message="numpy.ufunc size changed") class BasicsTests(unittest.TestCase): """ Tests for basics.py """ def __init__(self, *args, **kwargs): super(BasicsTests, self).__init__(*args, **kwargs) warnings.simplefilter("module") os.environ['BLUEFOG_NODES_PER_MACHINE'] = '2' def test_bluefog_rank(self): """Test that the rank returned by bf.rank() is correct.""" true_rank, _ = mpi_env_rank_and_size() bf.init() rank = bf.rank() # print("Rank: ", true_rank, rank) assert true_rank == rank def test_bluefog_size(self): """Test that the size returned by bf.size() is correct.""" _, true_size = mpi_env_rank_and_size() bf.init() size = bf.size() # print("Size: ", true_size, size) assert true_size == size def test_bluefog_local_size(self): _, true_size = mpi_env_rank_and_size() bf.init() local_size = bf.local_size() assert local_size == min(2, true_size) def test_bluefog_local_rank(self): true_rank, true_size = mpi_env_rank_and_size() bf.init() local_rank = bf.local_rank() assert true_rank % min(2, true_size) == local_rank def test_set_topology_fail_with_win_create(self): bf.init() size = bf.size() if size <= 1: fname = inspect.currentframe().f_code.co_name warnings.warn("Skip {} due to size 1".format(fname)) return tensor = torch.FloatTensor([1]) window_name = "win_create_test" is_created = bf.win_create(tensor, window_name) assert is_created, "bf.win_create do not create window object successfully." if size == 1: expected_topology = nx.from_numpy_array( np.array([[0.5]]), create_using=nx.DiGraph ) elif size == 2: expected_topology = nx.from_numpy_array( np.array([[0, 0.2], [0.2, 0]]), create_using=nx.DiGraph ) else: expected_topology = RingGraph(size) is_set = bf.set_topology(expected_topology) assert not is_set, "bf.set_topology do not fail due to win_create." topology = bf.load_topology() assert isinstance(topology, nx.DiGraph) assert IsTopologyEquivalent(topology, ExponentialGraph(size)) is_freed = bf.win_free() assert is_freed, "bf.win_free do not free window object successfully." def test_set_and_load_topology(self): bf.init() size = bf.size() if size == 4: expected_topology = nx.DiGraph( np.array( [ [1 / 3.0, 1 / 3.0, 1 / 3.0, 0.0], [0.0, 1 / 3.0, 1 / 3.0, 1 / 3.0], [1 / 3.0, 0.0, 1 / 3.0, 1 / 3.0], [1 / 3.0, 1 / 3.0, 0.0, 1 / 3.0], ] ) ) elif size == 1: expected_topology = nx.DiGraph(np.array([[1.0]])) else: expected_topology = ExponentialGraph(size) topology = bf.load_topology() assert isinstance(topology, nx.DiGraph) assert IsTopologyEquivalent(expected_topology, topology) def test_in_out_neighbors_expo2(self): bf.init() rank = bf.rank() size = bf.size() assert bf.set_topology(ExponentialGraph(size)) in_neighbors = bf.in_neighbor_ranks() out_neighbors = bf.out_neighbor_ranks() degree = int(np.ceil(np.log2(size))) expected_in_neighbors = sorted( [(rank - 2 ** i) % size for i in range(degree)]) expected_out_neighbors = sorted( [(rank + 2 ** i) % size for i in range(degree)]) assert sorted(in_neighbors) == expected_in_neighbors assert sorted(out_neighbors) == expected_out_neighbors def test_in_out_neighbors_biring(self): bf.init() rank = bf.rank() size = bf.size() assert bf.set_topology(RingGraph(size)) in_neighbors = bf.in_neighbor_ranks() out_neighbors = bf.out_neighbor_ranks() expected_in_neighbors = list( set(map(lambda x: x % size, [rank - 1, rank + 1]))) expected_out_neighbors = list( set(map(lambda x: x % size, [rank - 1, rank + 1])) ) if size <= 1: expected_in_neighbors = [] expected_out_neighbors = [] assert sorted(in_neighbors) == expected_in_neighbors assert sorted(out_neighbors) == expected_out_neighbors @pytest.mark.parametrize( "topo_func", [ExponentialGraph, RingGraph, StarGraph, MeshGrid2DGraph, FullyConnectedGraph], ) def test_infer_destination_from_source_ranks(topo_func): bf.init() size = bf.size() bf.set_topology(topo_func(size)) topo = bf.load_topology() in_neighbors = bf.in_neighbor_ranks() out_neighbors = bf.out_neighbor_ranks() # Make the W into average rule. expected_W = (nx.to_numpy_array(topo) > 0).astype(float) expected_W /= expected_W.sum(axis=0) src_ranks, W = InferDestinationFromSourceRanks( src_ranks=in_neighbors, construct_adjacency_matrix=True ) assert sorted(src_ranks) == out_neighbors np.testing.assert_allclose(W, expected_W) @pytest.mark.parametrize( "topo_func", [ExponentialGraph, RingGraph, StarGraph, MeshGrid2DGraph, FullyConnectedGraph], ) def test_infer_source_from_destination_ranks(topo_func): bf.init() size = bf.size() bf.set_topology(topo_func(size)) topo = bf.load_topology() in_neighbors = bf.in_neighbor_ranks() out_neighbors = bf.out_neighbor_ranks() # Make the W into average rule. expected_W = (nx.to_numpy_array(topo) > 0).astype(float) expected_W /= expected_W.sum(axis=0) dst_ranks, W = InferSourceFromDestinationRanks( dst_ranks=out_neighbors, construct_adjacency_matrix=True ) assert sorted(dst_ranks) == in_neighbors np.testing.assert_allclose(W, expected_W) if __name__ == "__main__": unittest.main()
7,480
webui/views.py
aidun/seite50
0
2026987
from django.shortcuts import render from api.models.book import Book def index(request): book_list = Book.objects.all() context = { 'book_list': book_list, } return render(request, 'book/index.html', context)
235
DiscordBot/main.py
Pradhyuman12/your-awesome-projects
7
2025956
import discord import os import requests import json from alive import keep_alive client = discord.Client() @client.event async def on_message(message): if message.author == client.user: return msg = message.content if msg.startswith('pls hello'): await message.channel.send("Hello Noob") elif msg.startswith('pls bye'): await message.channel.send("Bye! Get Lost") keep_alive() client.run(os.getenv('YOUR BOT TOKEN')
444
extensions/xmpp/management/commands/ejabberd_cmd.py
nirgal/ngw
0
2026969
import logging import subprocess from django.conf import settings from django.core.management.base import BaseCommand, CommandError from ngw.core.models import FIELD_LOGIN, ContactFieldValue, ContactGroup def check_login_exists(login): try: ContactFieldValue.objects.get(contact_field_id=FIELD_LOGIN, value=login) except ContactFieldValue.DoesNotExist: raise CommandError('User "{}" does not exist'.format(login)) def call(*args): 'Call subprocess with arguments, log' logging.debug("Subprocess call: %s", args) return subprocess.check_output(args) def get_roster(login): raw = call('sudo', '/usr/sbin/ejabberdctl', 'get_roster', login, settings.XMPP_DOMAIN) raw = str(raw, encoding='utf-8') return [line.split('\t') for line in raw.split('\n')] def cross_subscribe(login1, login2): ''' login1 & 2 must exists. Check before calling. ''' def _subscribe1(login1, login2): call('sudo', '/usr/sbin/ejabberdctl', 'add_rosteritem', login1, settings.XMPP_DOMAIN, login2, settings.XMPP_DOMAIN, login2+'@'+settings.XMPP_DOMAIN, settings.XMPP_ROSTERNAME, 'both') _subscribe1(login1, login2) _subscribe1(login2, login1) def subscribe_everyone(login, allusers, exclude=None): logging.info('subscribe_everyone for %s. Exclude=%s', login, exclude) exclude = exclude or [] check_login_exists(login) for user in allusers: username = user.get_fieldvalue_by_id(FIELD_LOGIN) if username == login or username in exclude: continue # skip logging.debug('Cross subscribe %s:%s', login, username) cross_subscribe(login, username) class Command(BaseCommand): help = 'ngw/ejabberd synchronisation tools' def add_arguments(self, parser): parser.add_argument( '-x', '--exclude', action='append', dest='exclude', default=[], metavar='USERNAME', help="exclude username from suball") parser.add_argument( '--subs', action='append', dest='add_subs', default=[], metavar='USERNAME1:USERNAME2', help="user1:user2 cross subscribe user1 and user2") parser.add_argument( '--suball', action='store', dest='suball', metavar='USERNAME', help="Subscribe a user to everyone") def handle(self, *args, **options): verbosity = options.get('verbosity', '1') if verbosity == '3': loglevel = logging.DEBUG elif verbosity == '2': loglevel = logging.INFO elif verbosity == '1': loglevel = logging.WARNING else: loglevel = logging.ERROR logging.basicConfig(level=loglevel, format='{asctime} {levelname} {message}', style='{') user_set = (ContactGroup.objects.get(pk=settings.XMPP_GROUP) .get_all_members()) for logins in options['add_subs']: login1, login2 = logins.split(':') check_login_exists(login1) check_login_exists(login2) cross_subscribe(login1, login2) if options['suball']: subscribe_everyone(login=options['suball'], allusers=user_set, exclude=options['exclude'])
3,554
examples/python/http_api/hello_fastapi.py
estebanza20/ie0317
0
2025195
""" Hello world FastAPI module This module is to test if FastAPI can run correctly. """ from fastapi import FastAPI app = FastAPI() @app.get("/") def root(): return {"message": "Hello world!"}
202
src/lasso_winequality1.py
AnaharaYasuo/mlPractice
0
2025678
import lasso import numpy as np import csv if __name__ == "__main__": Xy = [] with open("winequality-red.csv") as fp: for row in csv.reader(fp, delimiter=";"): Xy.append(row) Xy = np.array(Xy[1:], dtype=np.float64) np.random.seed(0) np.random.shuffle(Xy) train_X = Xy[:-1000, :-1] train_y = Xy[:-1000, -1] test_X = Xy[-1000:, :-1] test_y = Xy[-1000:, -1] for lambda_ in [1., 0.1, 0.01]: model = lasso.Lasso(lambda_) model.fit(train_X, train_y) y = model.predict(test_X) print("--- lamda = {} ---".format(lambda_)) print("coefficients:") print(model.w_) mse = ((y - test_y) ** 2).mean() print("MSE:{:.3f}".format(mse))
744
source/Record.py
duanduan2015/Termine
1
2025294
import os.path from datetime import date import curses class Record: def __init__(self, recordWin): self.win = recordWin def displayRecords(self, fileName, highLightTime): fileIsExist = os.path.isfile(fileName) if fileIsExist: recordsFile = open(fileName, "r") else: recordsFile = open(fileName, "w") recordsFile.close() recordsFile = open(fileName, "r") self.drawRecordWindow() starty = 4 attr = curses.A_BOLD | curses.color_pair(2) line = recordsFile.readline() records = [] highLighted = False if line != '': records = line.split('#') for r in records: if r == '': continue strings = r.split(' ') highLight = curses.A_BOLD | curses.color_pair(4) if highLightTime != None and float(strings[1]) == round(highLightTime, 2) and highLighted == False: highLighted = True self.win.addstr(starty, 2, strings[0], highLight) self.win.addstr(starty, 12, strings[1] + 's', highLight) else: self.win.addstr(starty, 2, strings[0], attr) self.win.addstr(starty, 12, strings[1] + 's', attr) starty = starty + 1 recordsFile.close() star = ord('*') | attr self.win.border(star, star, star, star, star, star, star, star) self.win.refresh() return def addNewRecord(self, fileName, totalTime): fileIsExist = os.path.isfile(fileName) if fileIsExist: recordsFile = open(fileName, "r") else: recordsFile = open(fileName, "w") recordsFile.close() recordsFile = open(fileName, "r") #time = int(totalTime) time = round(totalTime, 2) today = date.today().strftime("%d/%m/%y") records = [] line = recordsFile.readline() if line != '': oldRecords = line.split('#') for x in range(len(oldRecords) - 1): records.append(oldRecords[x]) added = False for x in range(len(records)): r = records[x].split(' ') #t = int(r[1]) t = float(r[1]) if t > time: newLine = today + ' ' + str(time) records.insert(x, newLine) added = True break if not added: newLine = today + ' ' + str(time) records.append(newLine) else: newLine = today + ' ' + str(time) records.append(newLine) recordsFile.close() recordsFile = open(fileName, 'w+') newFile = '' num = 0 for line in records: num = num + 1 newFile = newFile + line + ' ' + '#' if num == 10: break recordsFile.write(newFile) recordsFile.close() def drawRecordWindow(self): attr = curses.A_BOLD | curses.color_pair(2) height, width = self.win.getmaxyx() star = ord('*') | attr self.win.border(star, star, star, star, star, star, star, star) self.win.addstr(1, 9, 'RECORDS', attr) self.win.addstr(2, 2, 'Date', attr) self.win.addstr(2, 12, 'Time', attr) def eraseRecord(self): self.win.erase() self.win.refresh()
3,552
selfdrive/crash.py
1Thamer/openpilot1
0
2026117
"""Install exception handler for process crash.""" import os import sys import threading import capnp from selfdrive.version import version, dirty from selfdrive.swaglog import cloudlog if os.getenv("NOLOG") or os.getenv("NOCRASH"): def capture_exception(*exc_info): pass def bind_user(**kwargs): pass def bind_extra(**kwargs): pass def install(): pass else: from raven import Client from raven.transport.http import HTTPTransport import json error_tags = {'dirty': dirty, 'username': 'char_error'} try: with open("/data/data/ai.comma.plus.offroad/files/persistStore/persist-auth", "r") as f: auth = json.loads(f.read()) auth = json.loads(auth['commaUser']) tags = ['username', 'email'] for tag in tags: try: error_tags[tag] = ''.join(char for char in auth[tag].decode('utf-8', 'ignore') if char.isalnum()) except: pass except: pass try: with open("/data/params/d/CommunityPilotUser", "r") as f: auth = json.loads(f.read()) tags = ['username', 'email'] for tag in tags: try: error_tags[tag] = ''.join(char for char in auth[tag].decode('utf-8', 'ignore') if char.isalnum()) except: pass except: pass logging_data = {"branch": "/data/params/d/GitBranch", "commit": "/data/params/d/GitCommit", "remote": "/data/params/d/GitRemote"} for key in logging_data: try: with open(logging_data[key], "r") as f: error_tags[key] = str(f.read()) except: error_tags[key] = "unknown" client = Client('https://84d713b5bd674bcbb7030d1b86115dcb:[email protected]/1405628', install_sys_hook=False, transport=HTTPTransport, release=version, tags={'dirty': dirty}) def capture_exception(*args, **kwargs): exc_info = sys.exc_info() if not exc_info[0] is capnp.lib.capnp.KjException: client.captureException(*args, **kwargs) cloudlog.error("crash", exc_info=kwargs.get('exc_info', 1)) def capture_warning(warning_string): client.captureMessage(warning_string, level='warning') def bind_user(**kwargs): client.user_context(kwargs) def bind_extra(**kwargs): client.extra_context(kwargs) def install(): # installs a sys.excepthook __excepthook__ = sys.excepthook def handle_exception(*exc_info): if exc_info[0] not in (KeyboardInterrupt, SystemExit): capture_exception(exc_info=exc_info) __excepthook__(*exc_info) sys.excepthook = handle_exception """ Workaround for `sys.excepthook` thread bug from: http://bugs.python.org/issue1230540 Call once from the main thread before creating any threads. Source: https://stackoverflow.com/a/31622038 """ init_original = threading.Thread.__init__ def init(self, *args, **kwargs): init_original(self, *args, **kwargs) run_original = self.run def run_with_except_hook(*args2, **kwargs2): try: run_original(*args2, **kwargs2) except Exception: sys.excepthook(*sys.exc_info()) self.run = run_with_except_hook threading.Thread.__init__ = init
3,164
itunesdb/test/web/crud/albums/test_create_album.py
paul-ko/itunes-to-sqlite
0
2023407
from typing import Optional import pytest from sqlalchemy.exc import IntegrityError from sqlalchemy.orm import Session from itunesdb.web import crud from itunesdb.web import models from itunesdb.web import schemas @pytest.mark.parametrize( "name, artist, compilation, year", [ ("name", "artist", False, 1900), (None, "artist", False, 1900), ("artist", "artist", True, None), ("name", "artist", True, 1900), (None, "artist", True, 1900), ("artist", "artist", False, None), ], ) def test_create_album_successfully( db: Session, genre_ambient: models.Genre, name: Optional[str], artist: str, compilation: bool, year: Optional[int], ): album = schemas.AlbumCreate( name=name, artist=artist, year=year, compilation=compilation, genre_id=genre_ambient.id, ) created_album = crud.create_album(album, db) assert created_album is not None assert created_album.name == name assert created_album.artist == artist assert created_album.compilation == compilation assert created_album.year == year assert created_album.genre_id == genre_ambient.id assert created_album.id > 0 def test_create_album_unique_constraint_violation( db: Session, album_ambient_1: models.Album ): album = schemas.AlbumCreate( name=album_ambient_1.name, artist=album_ambient_1.artist, compilation=False, genre_id=album_ambient_1.genre_id, ) with pytest.raises(IntegrityError): crud.create_album(album, db) def test_create_album_genre_foreign_key_violaton(db: Session): album = schemas.AlbumCreate(name="abc", artist="def", compilation=False, genre_id=1) with pytest.raises(IntegrityError): crud.create_album(album, db)
1,824
pdf2txt.py
singulart/pyutilz
0
2026229
from pathlib import Path import pdftotext import sys def main(argv): with open('output.txt', 'w') as out: path = Path(argv[0]).glob("**/*.pdf") for src_file in path: print('Processing %s' % src_file.absolute()) with open(src_file, 'rb') as f: pdf = pdftotext.PDF(f) for page in pdf: out.write(page) if __name__ == "__main__": main(sys.argv[1:])
449
ansible/lib/ansible/modules/extras/windows/win_acl.py
kiv-box/kafka
0
2026143
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright 2015, <NAME> <<EMAIL>> # Copyright 2015, <NAME> # Copyright 2015, <NAME> <<EMAIL>> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # this is a windows documentation stub. actual code lives in the .ps1 # file of the same name DOCUMENTATION = ''' --- module: win_acl version_added: "2.0" short_description: Set file/directory permissions for a system user or group. description: - Add or remove rights/permissions for a given user or group for the specified src file or folder. options: path: description: - File or Directory required: yes user: description: - User or Group to add specified rights to act on src file/folder required: yes default: none state: description: - Specify whether to add C(present) or remove C(absent) the specified access rule required: no choices: - present - absent default: present type: description: - Specify whether to allow or deny the rights specified required: yes choices: - allow - deny default: none rights: description: - The rights/permissions that are to be allowed/denyed for the specified user or group for the given src file or directory. Can be entered as a comma separated list (Ex. "Modify, Delete, ExecuteFile"). For more information on the choices see MSDN FileSystemRights Enumeration. required: yes choices: - AppendData - ChangePermissions - Delete - DeleteSubdirectoriesAndFiles - ExecuteFile - FullControl - ListDirectory - Modify - Read - ReadAndExecute - ReadAttributes - ReadData - ReadExtendedAttributes - ReadPermissions - Synchronize - TakeOwnership - Traverse - Write - WriteAttributes - WriteData - WriteExtendedAttributes default: none inherit: description: - Inherit flags on the ACL rules. Can be specified as a comma separated list (Ex. "ContainerInherit, ObjectInherit"). For more information on the choices see MSDN InheritanceFlags Enumeration. required: no choices: - ContainerInherit - ObjectInherit - None default: For Leaf File, None; For Directory, ContainerInherit, ObjectInherit; propagation: description: - Propagation flag on the ACL rules. For more information on the choices see MSDN PropagationFlags Enumeration. required: no choices: - None - NoPropagateInherit - InheritOnly default: "None" author: <NAME> (@schwartzmx), <NAME> (@trondhindenes), <NAME> (@h0nIg) ''' EXAMPLES = ''' # Restrict write,execute access to User Fed-Phil $ ansible -i hosts -m win_acl -a "user=Fed-Phil path=C:\Important\Executable.exe type=deny rights='ExecuteFile,Write'" all # Playbook example # Add access rule to allow IIS_IUSRS FullControl to MySite --- - name: Add IIS_IUSRS allow rights win_acl: path: 'C:\inetpub\wwwroot\MySite' user: 'IIS_IUSRS' rights: 'FullControl' type: 'allow' state: 'present' inherit: 'ContainerInherit, ObjectInherit' propagation: 'None' # Remove previously added rule for IIS_IUSRS - name: Remove FullControl AccessRule for IIS_IUSRS path: 'C:\inetpub\wwwroot\MySite' user: 'IIS_IUSRS' rights: 'FullControl' type: 'allow' state: 'absent' inherit: 'ContainerInherit, ObjectInherit' propagation: 'None' # Deny Intern - name: Deny Deny path: 'C:\Administrator\Documents' user: 'Intern' rights: 'Read,Write,Modify,FullControl,Delete' type: 'deny' state: 'present' '''
4,255
nodeconductor/iaas/tests/test_admin.py
p-p-m/nodeconductor
0
2026942
import mock from django.contrib.auth import get_user_model from django.core.urlresolvers import reverse from django.test import TestCase from nodeconductor.core.models import SynchronizationStates from nodeconductor.iaas.tests import factories class BaseAdminTestCase(TestCase): def setUp(self): self.login() def login(self): username = 'admin' password = '<PASSWORD>' user = get_user_model().objects.create_user(username, '<EMAIL>', password) user.is_staff = True user.is_superuser = True user.save() self.client.login(username=username, password=password) def apply_action(self, url, action, items): pks = [str(item.pk) for item in items] data = { 'action': action, '_selected_action': pks } return self.client.post(url, data, follow=True) @mock.patch('nodeconductor.iaas.admin.send_task') class RecoverCloudProjectMembershipTest(BaseAdminTestCase): def test_erred_cpm_is_passed_to_backend_task(self, mock_task): erred_cpm = factories.CloudProjectMembershipFactory( state=SynchronizationStates.ERRED) response = self.recover_cpm([erred_cpm]) self.assertContains(response, 'One cloud project membership scheduled for recovery') mock_task('structure', 'recover_erred_services').assert_called_with([erred_cpm.to_string()]) def test_synced_cpm_is_skipped(self, mock_task): synced_cpm = factories.CloudProjectMembershipFactory( state=SynchronizationStates.IN_SYNC) response = self.recover_cpm([synced_cpm]) self.assertFalse(mock_task.called) def recover_cpm(self, items): url = reverse('admin:iaas_cloudprojectmembership_changelist') return self.apply_action(url, 'recover_erred_cloud_memberships', items)
1,859
primeii_ros_bridge/nodes/primeii_ros_bridge.py
QuartzYan/PrimeIIRosBridge
0
2026912
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import time import json import socket import threading import rospy from primeii_ros_msgs.msg import FingerFlex, GloveData, GlovesData, GloveHaptic sub = None pub = None client = None fingerNames = [ "thumb", "index", "middle", "ring", "pinky" ] def callBack(msg): for i in range(len(msg.hapticPower)): if msg.hapticPower[i] > 1.0: rospy.logwarn("GloveHaptic message hapticPower data error!!!") return jj = {'dongleid':msg.dongleid, 'handtype':msg.handtype, 'power':msg.hapticPower} ss = json.dumps(jj) try: client.send(ss) except: rospy.logwarn("send message faild!!!") def str2RosMsg(string): try: jj = json.loads(string) except ValueError as ee: #rospy.logerr() return None msg = GlovesData() msg.header.stamp = rospy.Time.now() msg.header.frame_id = '' for i in range(len(jj)): glove = GloveData() gloveNum = 'glove' + str(i+1) glove.deviceid = jj[gloveNum]['deviceid'] glove.dongleid = jj[gloveNum]['dongleid'] glove.handtype = jj[gloveNum]['handtype'] glove.wristIMU.x = jj[gloveNum]['wristIMU']['x'] glove.wristIMU.y = jj[gloveNum]['wristIMU']['y'] glove.wristIMU.z = jj[gloveNum]['wristIMU']['z'] glove.wristIMU.w = jj[gloveNum]['wristIMU']['w'] fingersFlex = jj[gloveNum]['fingers']['fingersFlex'] for j in range(len(fingersFlex)): glove.fingersFlex[j].Joint1Spread = fingersFlex[fingerNames[j]]['Joint1Spread'] glove.fingersFlex[j].Joint1Stretch = fingersFlex[fingerNames[j]]['Joint1Stretch'] glove.fingersFlex[j].Joint2Stretch = fingersFlex[fingerNames[j]]['Joint2Stretch'] glove.fingersFlex[j].Joint3Stretch = fingersFlex[fingerNames[j]]['Joint3Stretch'] fingersIMU = jj[gloveNum]['fingers']['fingersIMU'] for j in range(len(fingersIMU)): glove.fingersIMU[j].x = fingersIMU[fingerNames[j]]['x'] glove.fingersIMU[j].y = fingersIMU[fingerNames[j]]['y'] glove.fingersIMU[j].z = fingersIMU[fingerNames[j]]['z'] glove.fingersIMU[j].w = fingersIMU[fingerNames[j]]['w'] msg.glovesData.append(glove) return msg def main(): global sub, pub, client rospy.init_node("primeii_ros_bridge") #get param hostname = rospy.get_param("~hostname", default="192.168.3.141") hostport = rospy.get_param("~hostport", default=10086) #init Subscriber and Publisher sub = rospy.Subscriber("GloveHaptic", GloveHaptic, callBack) pub = rospy.Publisher("GlovesData", GlovesData, queue_size=1) client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.settimeout(5) while not rospy.is_shutdown(): er = client.connect_ex((hostname, hostport)) if er == 0: rospy.loginfo("connect %s successful...", hostname) break else: rospy.loginfo("connect faild, error num:%d", er) rospy.loginfo("try connect %s again", hostname) time.sleep(1) def loop(): r = rospy.Rate(300) while not rospy.is_shutdown(): try: string = client.recv(4096) except: rospy.logwarn("read message timeout!!!") continue #print len(string) msg = str2RosMsg(string) if msg: pub.publish(msg) else: pass r.sleep() t = threading.Thread(target=loop) t.start() rospy.spin() if __name__ == "__main__": try: main() except rospy.ROSInterruptException: pass
3,423
strain_detangler/cli.py
lauren-mak/strain-detangler
0
2026649
import click from .api import ( build_pangenome, find_strains, ) @click.group() def main(): pass @main.command('pangenome') def cli_pangenome(): """Do something pangenome related.""" build_pangenome(logger=lambda x: click.echo(x, err=True)) @main.command('find-strains') def cli_find_strains(): """Do something related to finding strains.""" find_strains(logger=lambda x: click.echo(x, err=True)) if __name__ == '__main__': main()
473
tests/unit/concurrently/test_CommunicationChannel.py
shane-breeze/AlphaTwirl
0
2026092
# <NAME> <<EMAIL>> import logging import pytest try: import unittest.mock as mock except ImportError: import mock from alphatwirl.concurrently import CommunicationChannel, TaskPackage ##__________________________________________________________________|| @pytest.fixture() def dropbox(): return mock.MagicMock() @pytest.fixture() def obj(dropbox): return CommunicationChannel(dropbox=dropbox) ##__________________________________________________________________|| def test_repr(obj): repr(obj) def test_begin_end(obj, dropbox): dropbox.open.assert_not_called() dropbox.close.assert_not_called() obj.begin() dropbox.open.assert_called_once() dropbox.close.assert_not_called() obj.begin() dropbox.open.assert_called_once() # don't open twice dropbox.close.assert_not_called() obj.end() dropbox.open.assert_called_once() dropbox.close.assert_called_once() obj.end() dropbox.open.assert_called_once() dropbox.close.assert_called_once() # don't close twice obj.begin() assert 2 == dropbox.open.call_count # can open again dropbox.close.assert_called_once() def test_begin_terminate_end(obj, dropbox): obj.begin() assert 0 == dropbox.terminate.call_count obj.terminate() assert 1 == dropbox.terminate.call_count obj.end() def test_put_when_closed(obj, dropbox, caplog): task1 = mock.MagicMock(name='task1') with caplog.at_level(logging.WARNING, logger='alphatwirl'): obj.put(task1) assert len(caplog.records) == 1 assert caplog.records[0].levelname == 'WARNING' assert 'CommunicationChannel' in caplog.records[0].name assert 'the drop box is not open' in caplog.records[0].msg dropbox.put.assert_not_called() def test_receive_when_closed(obj, dropbox, caplog): result1 = mock.MagicMock(name='result1') dropbox.receive = mock.MagicMock(return_value=[(0, result1)]) with caplog.at_level(logging.WARNING, logger='alphatwirl'): result = obj.receive() assert len(caplog.records) == 1 assert caplog.records[0].levelname == 'WARNING' assert 'CommunicationChannel' in caplog.records[0].name assert 'the drop box is not open' in caplog.records[0].msg assert result is None obj.end() ##__________________________________________________________________||
2,352
remote_procedure_call/rabbit_remote_procedure_call.py
id23cat/DMC-compute-nodes
0
2026929
# -*- coding: utf-8 -*- import time import uuid from logs import get_logger from rabbitmq.rabbitmq import Rabbitmq from remote_procedure_call.base_remote_procedure_call import ( RPCFunctionListenerInterface, RPCFunctionCallerInterface ) from typing import Dict, NoReturn, Tuple, Optional from pika.adapters.blocking_connection import BlockingChannel from pika.spec import Basic, BasicProperties RPC_EXCHANGE_NAME = 'rpc' RPC_REQUEST_ROUTING_KEY_PATTERN = 'rpc.request.' logger = get_logger(__name__) class RabbitRPCFunctionListener(RPCFunctionListenerInterface): AUTO_DELETE_QUEUE = False QUEUE_TTL = None def __init__(self, *args, **kwargs): super(RabbitRPCFunctionListener, self).__init__(*args, **kwargs) if self.namespace: self.name_of_function = '{}.{}'.format(self.namespace, self.name_of_function) self.queue_name = RPC_REQUEST_ROUTING_KEY_PATTERN + self.name_of_function self.request_rabbit = Rabbitmq() self.response_rabbit = Rabbitmq() self.consumer_tag = self.name_of_function + '.' + str(uuid.uuid4()) self._init_rabbit() self.message_is_requested = False self.gotten_data = None def _init_rabbit(self): self.request_rabbit.check_connect() self.request_rabbit.declare_rpc_exchange(RPC_EXCHANGE_NAME) self.request_rabbit.declare_rpc_function_queue( self.queue_name, self.queue_name, RPC_EXCHANGE_NAME, auto_delete=self.AUTO_DELETE_QUEUE, expires_at=self.QUEUE_TTL ) def _rabbit_consumer(self, channel, method, properties, body): # type: (BlockingChannel, Basic.Deliver, BasicProperties, bytes) -> None if not self.message_is_requested: # protecting of processing multiple message per one time channel.basic_nack(method.delivery_tag) return channel.basic_ack(method.delivery_tag) self.message_is_requested = False reply_to = properties.reply_to correlation_id = properties.correlation_id self.gotten_data = ({'reply_to': reply_to, 'correlation_id': correlation_id}, body) def receive_call(self): # type: () -> Tuple[Dict[str, str], bytes] # important to be 1 to prevent consumer work under multiple messages if not self.request_rabbit.check_connect(reconnect=False): self._init_rabbit() self.request_rabbit.start_consuming(self.queue_name, self.consumer_tag, self._rabbit_consumer, prefetch_count=1) self.message_is_requested = True flag = self.request_rabbit.process_one_message() if not flag: logger.info('ERROR while process one message, try to reconnect to rabbit') while not self.request_rabbit.check_connect(): logger.info('connect to rabbit failed. try again in 5 second') time.sleep(5) self._init_rabbit() self.request_rabbit.stop_consuming(self.consumer_tag) self.request_rabbit.process_one_message() gotten_data = self.gotten_data self.gotten_data = None return gotten_data def send_return(self, call_properties, return_data, content_type=None): # type: (Dict[str, str], bytes, Optional[str]) -> None self.response_rabbit.send_msg( RPC_EXCHANGE_NAME, call_properties.get('reply_to'), return_data, custom_properties=BasicProperties( correlation_id=call_properties.get('correlation_id'), content_type=content_type, ), ignore_routing_key_project_autofill=True ) class TemporaryRabbitRPCFunctionListener(RabbitRPCFunctionListener): QUEUE_TTL = 60 * 1000 class RabbitRPCFunctionCaller(RPCFunctionCallerInterface): RPC_QUEUE_RETURN_NAME_PATTERN = 'rpc.' RPC_RESPONSE_BIND_PATTERN = 'rpc.response.{}.' def __init__(self, *args, **kwargs): super(RabbitRPCFunctionCaller, self).__init__(*args, **kwargs) if self.namespace: self.name_of_function = '{}.{}'.format(self.namespace, self.name_of_function) self.response_bind_pattern = self.RPC_RESPONSE_BIND_PATTERN.format(self.name_of_function) self.rabbit = Rabbitmq() self._init_rabbit() self.gotten_message = None self.id_of_call = None self.name_of_queue = None def _init_rabbit(self): self.rabbit.declare_rpc_exchange(RPC_EXCHANGE_NAME) def _rabbit_consumer(self, channel, method, properties, body): # type: (BlockingChannel, Basic.Deliver, BasicProperties, bytes) -> NoReturn self.gotten_message = body channel.basic_ack(method.delivery_tag) def call(self, params, content_type=None): # type: (bytes, Optional[str]) -> NoReturn self.rabbit.check_connect() self.id_of_call = str(uuid.uuid4()) self.name_of_queue = self.RPC_QUEUE_RETURN_NAME_PATTERN + self.name_of_function + '.' + self.id_of_call self.rabbit.init_queue(self.name_of_queue, auto_delete=True, exclusive=True) self.rabbit.binding_to_the_exchange( RPC_EXCHANGE_NAME, self.name_of_queue, self.response_bind_pattern + self.id_of_call ) self.rabbit.start_consuming(self.name_of_queue, self.name_of_queue, self._rabbit_consumer, 1) self.rabbit.send_msg( RPC_EXCHANGE_NAME, RPC_REQUEST_ROUTING_KEY_PATTERN + self.name_of_function, params, custom_properties=BasicProperties( reply_to=self.response_bind_pattern + self.id_of_call, correlation_id=self.id_of_call, content_type=content_type ) ) def fetch_response(self): # type: () -> bytes self.rabbit.process_one_message() self.rabbit.stop_consuming(self.name_of_queue) self.rabbit.disconnect() gotten_message, self.gotten_message = self.gotten_message, None # clear variable and assign to new one return gotten_message class RabbitNoReturnRPCFunctionCaller(RPCFunctionCallerInterface): def __init__(self, *args, **kwargs): super(RabbitNoReturnRPCFunctionCaller, self).__init__(*args, **kwargs) if self.namespace: self.name_of_function = '{}.{}'.format(self.namespace, self.name_of_function) self.rabbit = Rabbitmq() self._init_rabbit() def _init_rabbit(self): self.rabbit.declare_rpc_exchange(RPC_EXCHANGE_NAME) def call(self, params, content_type=None): # type: (bytes, Optional[str]) -> NoReturn self.rabbit.check_connect() self.rabbit.send_msg( RPC_EXCHANGE_NAME, RPC_REQUEST_ROUTING_KEY_PATTERN + self.name_of_function, params, custom_properties=BasicProperties( reply_to=None, correlation_id=None, content_type=content_type ) ) def fetch_response(self): # type: () -> bytes raise NotImplemented
6,179
tests/conftest.py
aratz-lasa/aio-multiplexer
3
2026601
from asyncio import StreamReader, StreamWriter from unittest.mock import MagicMock import pytest @pytest.fixture def connection_mock(event_loop): reader_mock, writer_mock = ( MagicMock(spec_set=StreamReader, wraps=StreamReader(loop=event_loop)), MagicMock(spec_set=StreamWriter), ) yield reader_mock, writer_mock
344
wallace/wallace.py
zhangcong2019/gaussian-random-number
0
2026531
import numpy as np import random import math class Wallace(): def __init__(self, seed=0): self.seed = seed random.seed(self.seed) self.R = 2 self.L = 1024 self.K = 4 self.N = self.L * self.K m = [-1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1] self.A = [np.zeros([self.K, self.K]), np.zeros([self.K, self.K])] for i in range(self.K): for j in range(self.K): self.A[0][i][j] = m[i * self.K + j] self.A[0] *= 0.5 self.A[1] = -self.A[0] self.pool = np.random.randn(self.K * self.L) self.shuffle = [i for i in range(self.N)] for i in range(self.N - 1): j = random.randint(i, self.N - 1) [self.shuffle[i], self.shuffle[j]] = [self.shuffle[j], self.shuffle[i]] def generate(self) -> list: for i in range(self.N - 1): j = random.randint(i, self.N - 1) [self.shuffle[i], self.shuffle[j]] = [self.shuffle[j], self.shuffle[i]] for i in range(self.R): for j in range(self.L): pos = self.shuffle[(j * self.K) : (j * self.K) + self.K] x = self.pool[pos] x = np.reshape(x,[4,1]) x_ = np.matmul(self.A[i], x) for z in range(self.K): self.pool[pos[z]] = x_[z] # s = math.sqrt(math.fabs(self.pool[self.N -1])) return self.pool[:-1] if "__main__" == __name__: print("this is wallace grng") grng_ = Wallace(seed=99) list_gauss = [] for i in range(10000): listTemp = grng_.generate() for g in listTemp: list_gauss.append(g) import os, sys scriptPath = os.path.realpath(os.path.dirname(sys.argv[0])) sys.path.append(scriptPath + "/..") import grng grng.plot(list_gauss)
1,921
geometria_archivos/geometria_archivos.py
jabaier/iic1103.20152.s5
0
2025192
from graphics import * from getchar import * class color: def __init__(self,red,green,blue): self.red=red self.green=green self.blue=blue class vector: def __init__(self,x,y): self.x=x self.y=y def __add__(self,v): return vector(self.x+v.x,self.y+v.y) def __sub__(self,v): return vector(self.x-v.x,self.y-v.y) def __str__(self): return "("+str(self.x)+","+str(self.y)+")" class cuadrado: def __init__(self,x,y,lado,c=color(0,0,0)): self.x=x self.y=y self.lado=lado self.color=c self.r="undef" def pintar(self,color): self.color=color def escalar(self,escala): self.lado = self.lado*escala def __str__(self): return "Cuadrado en ("+str(self.x)+","+str(self.y)+") con lado "+str(self.lado) def desplazar(self,v): self.x=self.x+v.x self.y=self.y+v.y def inscribir(self,circ): self.lado = circ.radio*(2**.5) self.x = circ.x - self.lado/2 self.y = circ.y - self.lado/2 def dibujar(self,window): if self.r != "undef": self.r.undraw() self.r=Rectangle(Point(self.x,self.y),Point(self.x+self.lado,self.y+self.lado)) self.r.setOutline(color_rgb(self.color.red,self.color.green,self.color.blue)) self.r.draw(window) def codificar(self): # retorna un string que corresponde a la codificacion del circulo return " ".join(['cuadrado',str(self.x),str(self.y),str(self.lado)]) class circulo: def __init__(self,x,y,radio): self.x=x self.y=y self.radio=radio self.color=color(0,0,0) self.r = "undef" def escalar(self,escala): self.radio = self.radio*escala def desplazar(self,vec): self.x = self.x + vec.x self.y = self.y + vec.y def inscribir(self,cuad): self.radio = cuad.lado/2 self.x = cuad.x + self.radio self.y = cuad.y + self.radio def __str__(self): return "Circulo en ("+str(self.x)+","+str(self.y)+") con radio "+str(self.radio) def dibujar(self,window): if self.r != "undef": self.r.undraw() self.r=Circle(Point(self.x,self.y),self.radio) self.r.setOutline(color_rgb(self.color.red,self.color.green,self.color.blue)) self.r.setWidth(2) self.r.draw(window) def codificar(self): # retorna un string que corresponde a la codificacion del circulo return " ".join(['circulo',str(self.x),str(self.y),str(self.radio)]) class lienzo: def __init__(self,tamano_x,tamano_y): self.objetos=[] self.ventana = GraphWin("Una ventana",tamano_x,tamano_y) def dibujar(self): for obj in self.objetos: obj.dibujar(self.ventana) def agregar(self,nuevo_objeto): ## agrega un objeto al lienzo self.objetos.append(nuevo_objeto) def listar(self): i = 0 while i < len(self.objetos): print(str(i)+": ",self.objetos[i]) i += 1 def seleccionar_objeto(self): self.listar() indice=-1 while not indice in range(len(self.objetos)): indice = int(input("Indice del objeto a modificar: ")) return self.objetos[indice] def guardar(self, filename): #filename es el nombre del archivo a Guardar f = open(filename,'w') for obj in self.objetos: f.write(obj.codificar()+"\n") f.close() def leer(self, filename): f = open(filename,'r') for linea in f: l = linea.split() if l[0] == "cuadrado": objeto = cuadrado(int(l[1]),int(l[2]),float(l[3])) elif l[0] == "circulo": objeto = circulo(int(l[1]),int(l[2]),float(l[3])) self.agregar(objeto) f.close() def modificar_objeto(self,objeto): getch=Getch() D=10 up = vector(0,-D) down = vector(0,D) left = vector(-D,0) right = vector(D,0) print("'a': agrandar, 'z': achicar, flechas para mover y 'f' para salir") c='' while c!='f': c=getch() if c == 'a': objeto.escalar(1.05) elif c == 'z': objeto.escalar(1/1.05) elif ord(c) == 27: c1=getch() c=getch() if ord(c1)==91: desplazamiento=vector(0,0) if ord(c) == 68: desplazamiento=left elif ord(c) == 67: desplazamiento=right elif ord(c) == 65: desplazamiento=up elif ord(c) == 66: desplazamiento=down objeto.desplazar(desplazamiento) self.dibujar() def pregunta_opcion(): ## muestra el menu en pantalla y retorna la opcion ingresada opciones_legales = [str(x+1) for x in range(6)] while True: print("Cuadrados y Círculos") print("\t1. Crear un Círculo") print("\t2. Crear un Cuadrado") print("\t3. Modificar Objeto") print("\t4. Guardar a un Archivo") print("\t5. Leer desde un Archivo") print("\t6. Salir") opt = input("Opcion? ") if opt in opciones_legales: return opt def pregunta_circulo(): ## pregunta por un circulo, lo crea y lo retorna while True: linea=input("Ingresa [radio] [pos_x] [pos_y]: ") l = linea.split() if len(l) == 3 and l[0].isnumeric() and l[1].isnumeric() and l[2].isnumeric(): break print("Ingresa un input válido de tres numeros!") c = circulo(int(l[1]),int(l[2]),int(l[0])) return c def pregunta_cuadrado(): ## pregunta por un cuadrado y lo crea while True: linea=input("Ingresa [lado] [pos_x] [pos_y]: ") l = linea.split() if len(l) == 3 and l[0].isnumeric() and l[1].isnumeric() and l[2].isnumeric(): break print("Ingresa un input válido de tres numeros!") cuad = cuadrado(int(l[1]),int(l[2]),int(l[0])) return cuad def get_nombre_archivo(): return input("Nombre del archivo: ") canvas=lienzo(500,500) opcion='-1' ## valor arbitrario para entrar al while while opcion != '6': opcion = pregunta_opcion() if opcion == '1': circ = pregunta_circulo() canvas.agregar(circ) canvas.dibujar() elif opcion == '2': cuad = pregunta_cuadrado() canvas.agregar(cuad) canvas.dibujar() elif opcion == '3': objeto=canvas.seleccionar_objeto() canvas.modificar_objeto(objeto) elif opcion == '4': print("Guardar") fname = get_nombre_archivo() canvas.guardar(fname) elif opcion == '5': print("Leer") fname = get_nombre_archivo() canvas.leer(fname) canvas.dibujar() print("Nos vemos!")
7,048
lib/testing.py
willwill2will54/MATSimCheck
0
2026936
def tester(table, MAT, algorithm=['geormsd', 'wgt', '500'], number=None, testing=False, go=1): from collections import Counter from tinydb import TinyDB, Query from pprint import pprint import defaults as defs import numpy as np from tinydb.storages import JSONStorage from tinydb.middlewares import CachingMiddleware MATs = TinyDB('./dbs/MATS.json', storage=CachingMiddleware(JSONStorage)) core = TinyDB('./dbs/Core.json', storage=CachingMiddleware(JSONStorage)) tab = MATs.table(table) cand = tab.all() tested = tab.get(Query()['Trust name'] == MAT) algorithm2 = [] for a, b, c, d in zip(algorithm[:-3:4], algorithm[1:-2:4], algorithm[2:-1:4], algorithm[3::4]): algorithm2 += [a + b, c, d] algorithm = algorithm2 try: assert all(x in ['wgt', 'is', 'isnot'] or x.endswith('gets') for x in algorithm[1:-1:3]) except AssertionError: raise try: assert 'wgt' in algorithm[1:-1:3] except AssertionError: raise crits = list(zip(algorithm[:-2:3], algorithm[1:-1:3], algorithm[2::3])) cand = list([x for x in cand if x['Trust name'] not in (tested['Trust name'], '')]) for x in cand: x['sims'] = 0 for key, method, value in crits: try: if method == 'is': if value is 'same': value = tested[key] cand[:] = [x for x in cand if str(x[key]) == str(value)] elif method == 'isnot': if value is 'same': value = tested[key] cand[:] = [x for x in cand if str(x[key]) != str(value)] elif method.endswith('notgets'): method = method[:-7] if method is 'same': method = tested[key] for x in cand: try: if str(x[key]) != str(method): x['sims'] += float(value) except Exception as e: print(x, flush=True) pprint(cand) raise e elif method.endswith('gets'): method = method[:-4] if method is 'same': method = tested[key] for x in cand: try: if str(x[key]) == str(method): x['sims'] += float(value) except Exception as e: print(x, flush=True) pprint(cand) raise e elif method == 'wgt': donecand = [] errorcount = 0 if not any(key in x.keys() for x in cand): print('{} has not been calculated. Purge and recompile, \ then try again if you want to use this variable.'.format(key)) continue elif key not in tested.keys(): print('{} has not been calculated for the tested MAT. Purge and recompile, \ then try again if you want to use this variable.'.format(key), flush=True) continue for x in cand: try: x['sims'] += (abs((float(tested[key]) - float(x[key])) / float(tested[key]))) * float(value) * 100 except ZeroDivisionError: pass except KeyError as e: x['sims'] += float(value) errorcount += 1 donecand.append(dict(x)) if errorcount > 0 and go == 0: print('Weight exception: \'{}\' not found ({}/{})'.format(key, errorcount, len(cand)), flush=True) cand = donecand[:] except KeyError: print(x, tested, key, flush=True) raise MATs.close() for x in cand: x['sims'] *= 1000 simsmax = max([x['sims'] for x in cand]) simsmin = min([x['sims'] for x in cand]) counterpack = list(cand) for x in counterpack: x['sims'] = simsmax - x['sims'] counter = Counter({x['Trust name']: x['sims'] for x in counterpack}) finlist = [(a, int((b / (simsmax + 1)) * 100)) for a, b in counter.most_common()] if testing: lastthing = finlist else: dict1 = {x: [] for x in defs.ProgressScoreHeaders} dict2 = {x: [] for x in defs.ProgressScoreHeaders} for x in finlist[:number]: for ID in next(item for item in counterpack if item['Trust name'] == x[0])['IDs']: school = core.get(doc_id=ID) for y, z in school.items(): if y in defs.ProgressScoreHeaders: dict1[y].append(float(z)) for ID in tested['IDs']: school = core.get(doc_id=ID) for y, z in school.items(): if y in defs.ProgressScoreHeaders: dict2[y].append(float(z)) resultavg = {} subjectavg = {} for x, y in dict1.items(): if len(y) > 0: resultavg['Average ' + x] = round(np.average(np.array(y)), 2) else: resultavg['Average ' + x] = 'NaN' for x, y in dict2.items(): if len(y) > 0: subjectavg['Subject ' + x] = round(np.average(np.array(y)), 2) else: subjectavg['Subject ' + x] = 'NaN' lastthing = (subjectavg, resultavg) return (['{} (Score: {}%)'.format(a, b) for a, b in finlist[:number]], lastthing, MAT) """for x in cand: if x['sims'] == simsmin: return x"""
5,733
coleta_dados_fiis.py
lucasHashi/coleta-dados-acoes-bdrs-b3
0
2024476
import pandas as pd import json from time import sleep from datetime import datetime from selenium.common.exceptions import NoSuchElementException from selenium import webdriver from selenium.webdriver.chrome.options import Options from fake_useragent import UserAgent from webdriver_manager.chrome import ChromeDriverManager from auxiliar_constantes import URL_LINKS_FIIS def main(): df_fiis = coletar_dados_todos_fiis_B3() PASTA_DE_DADOS = 'dados_coletados' NOME_ARQUIVO_fiis = 'dados_completos_fiis' data_mes_hoje = datetime.today().strftime('%Y-%m') df_fiis.to_excel('{}\\{}_{}.xlsx'.format(PASTA_DE_DADOS, NOME_ARQUIVO_fiis, data_mes_hoje), index=False) df_fiis.to_pickle('{}\\{}_{}.pickle'.format(PASTA_DE_DADOS, NOME_ARQUIVO_fiis, data_mes_hoje)) print(df_fiis)
805
murano-7.0.0/murano/tests/unit/dsl/test_extension_methods.py
scottwedge/OpenStack-Stein
91
2026542
# Copyright (c) 2016 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from yaql.language import exceptions from yaql.language import specs from yaql.language import yaqltypes from murano.dsl import dsl from murano.tests.unit.dsl.foundation import object_model as om from murano.tests.unit.dsl.foundation import test_case class TestExtensionMethods(test_case.DslTestCase): def setUp(self): @dsl.name('extcls.Extender') class PythonClass(object): def __init__(self, arg): self.value = arg @staticmethod @specs.meta('Usage', 'Extension') @specs.parameter('arg', yaqltypes.Integer()) def python_extension(arg): return arg * arg @classmethod @specs.meta('Usage', 'Extension') @specs.parameter('arg', yaqltypes.Integer()) def python_extension2(cls, arg): return cls(2 * arg).value super(TestExtensionMethods, self).setUp() self.package_loader.load_class_package( 'extcls.Extender', None).register_class(PythonClass) self._runner = self.new_runner(om.Object('extcls.TestClass')) def test_call_self_extension_method(self): self.assertEqual([123, 123], self._runner.testSelfExtensionMethod()) def test_call_imported_extension_method(self): self.assertEqual( [246, 246], self._runner.testImportedExtensionMethod()) def test_call_nullable_extension_method(self): self.assertEqual( [123, None], self._runner.testNullableExtensionMethod()) def test_extensions_precedence(self): self.assertEqual(111, self._runner.testExtensionsPrecedence()) def test_explicit_call(self): self.assertEqual(222, self._runner.testCallExtensionExplicitly()) def test_explicit_call_on_instance_fails(self): self.assertRaises( exceptions.NoMatchingMethodException, self._runner.testExplicitCallDoenstWorkOnInstance) def test_call_on_primitive_types(self): self.assertEqual('qWERTy', self._runner.testCallOnPrimitiveTypes()) def test_call_python_extension(self): self.assertEqual(16, self._runner.testCallPythonExtension()) def test_call_python_extension_explicitly(self): self.assertEqual(25, self._runner.testCallPythonExtensionExplicitly()) def test_call_python_classmethod_extension(self): self.assertEqual(14, self._runner.testCallPythonClassmethodExtension())
3,068
bites/bite221.py
ChidinmaKO/Chobe-bitesofpy
0
2026769
import requests import json YOUR_KEY = '123abc' DEFAULT_LIST = 'hardcover-nonfiction' URL_NON_FICTION = (f'https://api.nytimes.com/svc/books/v3/lists/current/' f'{DEFAULT_LIST}.json?api-key={YOUR_KEY}') URL_FICTION = URL_NON_FICTION.replace('nonfiction', 'fiction') def get_best_seller_titles(url=URL_NON_FICTION): """Use the NY Times Books API endpoint above to get the titles that are on the best seller list for the longest time. Return a list of (title, weeks_on_list) tuples, e.g. for the nonfiction: [('BETWEEN THE WORLD AND ME', 86), ('EDUCATED', 79), ('BECOMING', 41), ('THE SECOND MOUNTAIN', 18), ... 11 more ... ] Dev docs: https://developer.nytimes.com/docs/books-product/1/overview """ with requests.Session() as request: response = request.get(url) try: data = response.json() except json.JSONDecodeError: print(f"JSON Decode Error") outcome = data['results']['books'] # result = [(book['title'], book['weeks_on_list']) for book in outcome] # sorted_result = sorted(result, key=lambda result: result[1], reverse=True) # return sorted_result sorted_weeks = sorted(outcome, key=lambda outcome: outcome['weeks_on_list'], reverse=True) title_week_tuple = [(book['title'], book['weeks_on_list']) for book in sorted_weeks] return title_week_tuple if __name__ == '__main__': ret = get_best_seller_titles() print(ret) # tests import json from pathlib import Path from unittest.mock import patch from urllib.request import urlretrieve # from nyt import (get_best_seller_titles, URL_NON_FICTION, URL_FICTION) TMP = Path('/tmp') FICTION = TMP / 'nyt-fiction.json' if not FICTION.exists(): urlretrieve('https://bit.ly/2L7S5zz', FICTION) NON_FICTION = TMP / 'nyt-nonfiction.json' if not NON_FICTION.exists(): urlretrieve('https://bit.ly/2LhVvyr', NON_FICTION) def mocked_requests_get(*args, **kwargs): """https://stackoverflow.com/a/28507806""" class MockResponse: def __init__(self, json_data, status_code): self.json_data = json_data self.status_code = status_code def json(self): return self.json_data url = args[0] fname = NON_FICTION if 'nonfiction' in url else FICTION with open(fname) as f: return MockResponse(json.loads(f.read()), 200) return MockResponse(None, 404) @patch('requests.get', side_effect=mocked_requests_get) def test_response_nonfiction(mock_get): assert get_best_seller_titles(url=URL_NON_FICTION) == [ ('BETWEEN THE WORLD AND ME', 86), ('EDUCATED', 79), ('BECOMING', 41), ('THE SECOND MOUNTAIN', 18), ('THE PIONEERS', 16), ('MAYBE YOU SHOULD TALK TO SOMEONE', 14), ('UNFREEDOM OF THE PRESS', 14), ('RANGE', 9), ('THREE WOMEN', 7), ('<NAME>', 3), ('HOW TO BE AN ANTIRACIST', 2), ('KOCHLAND', 2), ('THANK YOU FOR MY SERVICE', 1), ('THE OUTLAW OCEAN', 1), ('GODS OF THE UPPER AIR', 1) ] @patch('requests.get', side_effect=mocked_requests_get) def test_response_fiction(mock_get): assert get_best_seller_titles(url=URL_FICTION) == [ ('WHERE THE CRAWDADS SING', 51), ('THE SILENT PATIENT', 25), ('<NAME> STARTS OVER', 7), ('THE NICKEL BOYS', 6), ('ASK AGAIN, YES', 6), ('ONE GOOD DEED', 5), ('THE INN', 3), ('THE TURN OF THE KEY', 3), ('OUTFOX', 3), ('THE BITTERROOTS', 2), ('INLAND', 2), ('OLD BONES', 1), ('THE LAST WIDOW', 1), ('THE WHISPER MAN', 1), ('TIDELANDS', 1) ]
3,758
smallpebble/nn/training.py
AdityaKane2001/SmallPebble
84
2026901
# Copyright 2021 The SmallPebble authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict import math import numpy import smallpebble.array_library as np import smallpebble.core as core # ---------------- SMALLPEBBLE OPERATIONS # Operations on variables, that return variables. # The operations are either, # written in terms of NumPy/CuPy operations, # in which case local_gradients needs to be defined, # or, # written in terms of other SmallPebble operations, in which case, # local_gradients doesn't need to be defined. def leaky_relu(a, alpha=0.02): "Elementwise leaky relu." multiplier = np.where(a.array > 0, np.array(1, a.dtype), np.array(alpha, a.dtype)) value = a.array * multiplier local_gradients = [(a, lambda path_value: path_value * multiplier)] return core.Variable(value, local_gradients) def softmax(a, axis=-1): "Softmax on `axis`." exp_a = core.exp(a - core.Variable(np.max(a.array))) # ^ Shift to improve numerical stability. See: # https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/ sum_shape = list(a.shape) sum_shape[axis] = 1 return exp_a / core.reshape(core.sum(exp_a, axis=axis), sum_shape) # ---------------- LEARNABLES def learnable(variable): "Flag `variable` as learnable." variable.is_learnable = True return variable def get_learnables(lazy_node): "Get `variables` where is_learnable=True from a lazy graph." learnable_vars = [] def find_learnables(node): for child in getattr(node, "arguments", []): if getattr(child, "is_learnable", False): learnable_vars.append(child) find_learnables(child) find_learnables(lazy_node) return learnable_vars # ---------------- # ---------------- NEURAL NETWORKS # ---------------- # Helper functions for creating neural networks. class Adam: """Adam optimization for SmallPebble variables. See Algorithm 1, https://arxiv.org/abs/1412.6980 <NAME>. Adam: A Method for Stochastic Optimization. 2017. """ def __init__(self, alpha=0.001, beta1=0.9, beta2=0.999, eps=1e-8): self.alpha = alpha self.beta1 = beta1 self.beta2 = beta2 self.eps = eps self.t = defaultdict(lambda: 0) self.m = defaultdict(lambda: 0) self.v = defaultdict(lambda: 0) def training_step(self, variables, gradients): for variable in variables: self.t[variable] += 1 g = gradients[variable] self.m[variable] = self.beta1 * self.m[variable] + (1 - self.beta1) * g self.v[variable] = self.beta2 * self.v[variable] + (1 - self.beta2) * g ** 2 m_ = self.m[variable] / (1 - self.beta1 ** self.t[variable]) v_ = self.v[variable] / (1 - self.beta2 ** self.t[variable]) variable.array = variable.array - self.alpha * m_ / (np.sqrt(v_) + self.eps) def batch(X, y, size, seed=None): "Yield sub-batches of X,y, randomly selecting with replacement." assert (y.ndim == 1) and (X.shape[0] == y.size), "unexpected dimensions." if seed: np.random.seed(seed) while True: idx = np.random.randint(0, y.size, size) yield X[idx, ...], y[idx] def convlayer(height, width, depth, n_kernels, padding="VALID", strides=(1, 1)): "Create a convolutional neural network layer." sigma = np.sqrt(6 / (height * width * depth + height * width * n_kernels)) kernels_init = sigma * (np.random.random([height, width, depth, n_kernels]) - 0.5) kernels = learnable(core.Variable(kernels_init)) def func(images, kernels): return core.conv2d(images, kernels, padding, strides) return lambda images: core.Lazy(func)(images, kernels) def cross_entropy(y_pred: core.Variable, y_true: np.array, axis=-1) -> core.Variable: """Cross entropy. Args: y_pred: A sp.Variable instance of shape [batch_size, n_classes] y_true: A NumPy array, of shape [batch_size], containing the true class labels. Returns: A scalar, reduced by summation. """ indices = (np.arange(len(y_true)), y_true) return core.neg(sum(core.log(core.getitem(y_pred, indices)))) def he_init(insize, outsize) -> np.array: "He weight initialization." sigma = np.sqrt(4 / (insize + outsize)) return np.random.random([insize, outsize]) * sigma - sigma / 2 def linearlayer(insize, outsize) -> core.Lazy: "Create a linear fully connected neural network layer." weights = learnable(core.Variable(he_init(insize, outsize))) bias = learnable(core.Variable(np.ones([outsize], np.float32))) def func(a, weights, bias): return core.matmul(a, weights) + bias return lambda a: core.Lazy(func)(a, weights, bias) def onehot(y, n_classes) -> np.array: "Onehot encode vector y with classes 0 to n_classes-1." result = np.zeros([len(y), n_classes]) result[np.arange(len(y)), y] = 1 return result def sgd_step(variables, gradients, learning_rate=0.001) -> None: "A single step of gradient descent. Modifies each variable.array directly." for variable in variables: gradient = gradients[variable] variable.array -= learning_rate * gradient
5,789
typeidea/typeidea/settings/develop.py
persue/typeidea
0
2024847
# -*- coding: utf-8 -*- from .base import * # NOQA DEBUG = True # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases ''' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } ''' DATABASES = { 'default':{ 'ENGINE': 'django.db.backends.mysql', 'NAME':'typeidea_db', 'USER':'root', 'PASSWORD':'<PASSWORD>', 'HOST':'127.0.0.1', 'PORT':3306, #'CONN_MAx_AGE':5*60, 'OPTIONS':{'charset':'utf8mb4'}, } } INSTALLED_APPS += [ 'debug_toolbar', ] MIDDLEWARE += [ 'debug_toolbar.middleware.DebugToolbarMiddleware', ] DEBUG_TOOLBAR_PANELS = [ 'debug_toolbar.panels.versions.VersionsPanel', 'debug_toolbar.panels.timer.TimerPanel', 'debug_toolbar.panels.settings.SettingsPanel', 'debug_toolbar.panels.headers.HeadersPanel', 'debug_toolbar.panels.request.RequestPanel', 'debug_toolbar.panels.sql.SQLPanel', 'debug_toolbar.panels.staticfiles.StaticFilesPanel', 'debug_toolbar.panels.templates.TemplatesPanel', 'debug_toolbar.panels.cache.CachePanel', 'debug_toolbar.panels.signals.SignalsPanel', 'debug_toolbar.panels.logging.LoggingPanel', 'debug_toolbar.panels.redirects.RedirectsPanel', ] CONFIG_TOOLBAR_CONFIG = { # Toolbar options 'JQUERY_URL': '//cdn.bootcss.com/jquery/3.3.1/jquery.min.js', } INTERNAL_IPS = ['127.0.0.1'] STATIC_ROOT = os.path.join(BASE_DIR, 'static_files/') # cache CACHES ={ 'default':{ 'BACKEND':'django.core.cache.backends.locmem.LocMemCache', 'LOCATION':'unique-snowflake', } }
1,668
piperci_gman/orm/models.py
AFCYBER-DREAM/piedpiper-gman
0
2024055
import uuid from urllib.parse import urlparse, urlunparse, ParseResult from marshmallow import fields as marshmallow_fields from marshmallow_peewee import ModelSchema, Related from marshmallow_peewee.convert import ModelConverter from peewee import (DatabaseProxy, DateTimeField, ForeignKeyField, IntegerField, Model, DoesNotExist, SqliteDatabase, TextField) import subresource_integrity as integrity db = DatabaseProxy() class ZeroResults(DoesNotExist): pass class QueryFailed(Exception): pass class SRIField(TextField): '''A field type that stores an HTML SRI value Value must be of from hash: hashvalue. ''' def db_value(self, value): if isinstance(value, integrity.Hash): return str(value) else: try: return str(integrity.parse(value)[0]) except IndexError: raise ValueError('This does not appear to be of type "Hash" or "str"') def python_value(self, value): return integrity.parse(value)[0] class URIField(TextField): def db_value(self, value): if isinstance(value, ParseResult): return urlunparse(value) elif isinstance(value, str): return urlunparse(urlparse(value)) else: raise ValueError(f'Non urlparse parseable type {type(value)}') def python_value(self, value): if isinstance(value, ParseResult): return value elif isinstance(value, str): return urlparse(value) else: raise ValueError(f'Non urlparse parseable type {type(value)}') def _serialize(self, value, attr, obj, **kwargs): return urlunparse(value) def _deserialize(self, value, attr, data, **kwargs): return urlparse(value) class Task(Model): task_id = TextField(primary_key=True, default=uuid.uuid4) run_id = TextField(null=False) project = TextField(null=False) caller = TextField(null=False) parent_id = TextField(null=True) thread_id = TextField(null=True) class Meta: database = db class TaskEvent(Model): event_id = TextField(primary_key=True, default=uuid.uuid4) task = ForeignKeyField(Task) timestamp = DateTimeField() status = TextField(null=False, choices=(('started', 'started'), ('completed', 'completed'), ('failed', 'failed'), ('delegated', 'delegated'), ('received', 'received'), ('info', 'info'))) message = TextField(null=False) return_code = IntegerField(null=True) class Meta: database = db class ExtendedConverter(ModelConverter): def __new__(cls, **kwargs): cls.TYPE_MAPPING.append((URIField, marshmallow_fields.String)) return ModelConverter.__new__(cls) def convert_field(self, field, **kwargs): converted = super(ExtendedConverter, self).convert_field(field, **kwargs) if hasattr(field, '_deserialize'): converted._deserialize = field._deserialize if hasattr(field, '_serialize'): converted._serialize = field._serialize return converted class TaskSchema(ModelSchema): class Meta: model = Task class TaskEventSchema(ModelSchema): task = Related() class Meta: model = TaskEvent class Artifact(Model): artifact_id = TextField(primary_key=True, default=uuid.uuid4) uri = URIField(null=False) sri = SRIField(null=False) status = TextField(null=False, choices=(('unique', 'unique'), ('collision', 'collision'), ('deleted', 'deleted'), ('unknown', 'unknown'))) type = TextField(null=False, choices=(('log', 'log'), ('container', 'container'), ('artifact', 'artifact'), ('source', 'source'))) task = ForeignKeyField(Task) event_id = ForeignKeyField(TaskEvent) class Meta: database = db class ArtifactSchema(ModelSchema): task = Related() class Meta: model = Artifact model_converter = ExtendedConverter def db_init(db_config): if db_config.type == 'sqlite': db_run = SqliteDatabase(db_config.uri, pragmas={'foreign_keys': 1}) else: raise Exception(f'Database type {db_config.type}' ' not yet supported') # Configure our proxy to use the db we specified in config. db.initialize(db_run) db.connect() db.create_tables([Task, TaskEvent, Artifact], safe=True)
5,032
api/tests/opentrons/protocol_api_experimental/test_well.py
anuwrag/opentrons
235
2026102
"""Tests for the Protocol API v3 Well interface.""" import pytest from decoy import Decoy from opentrons.protocols.models import WellDefinition from opentrons.protocol_engine.clients import SyncClient as ProtocolEngineClient from opentrons.protocol_api_experimental import Labware, Well from opentrons_shared_data.labware import dev_types @pytest.fixture def engine_client(decoy: Decoy) -> ProtocolEngineClient: """Get a mock instance of a ProtocolEngineClient.""" return decoy.mock(cls=ProtocolEngineClient) @pytest.fixture def labware(decoy: Decoy) -> Labware: """Get a mock instance of a Labware.""" lw = decoy.mock(cls=Labware) lw.labware_id = "labware_id" # type: ignore return lw @pytest.fixture def min_well_definition( minimal_labware_def: dev_types.LabwareDefinition, ) -> WellDefinition: """Create a well definition fixture.""" well_def = minimal_labware_def["wells"]["A1"] return WellDefinition.parse_obj(well_def) @pytest.fixture def subject( decoy: Decoy, engine_client: ProtocolEngineClient, labware: Labware, min_well_definition: WellDefinition, ) -> Well: """Get a Well test subject with its dependencies mocked out.""" decoy.when( engine_client.state.labware.get_well_definition( labware_id="labware_id", well_name="well_name" ) ).then_return(min_well_definition) return Well(engine_client=engine_client, labware=labware, well_name="well_name") def test_max_volume(subject: Well) -> None: """Test Well has max_volume property.""" assert subject.max_volume == 100 def test_diameter(subject: Well) -> None: """Test Well has diameter property.""" assert subject.diameter == 30.0 def test_depth(subject: Well) -> None: """Test Well has depth property.""" assert subject.depth == 40.0 def test_equality( decoy: Decoy, engine_client: ProtocolEngineClient, labware: Labware, min_well_definition: WellDefinition, subject: Well, ) -> None: """Two same-named Wells in the same labware should be considered equal.""" decoy.when( engine_client.state.labware.get_well_definition( labware_id="labware_id", well_name="well_name" ) ).then_return(min_well_definition) well1 = Well(engine_client=engine_client, labware=labware, well_name="well_name") well2 = Well(engine_client=engine_client, labware=labware, well_name="well_name") assert well1 == well2
2,467
math/approxes/val_in_point_on_equallyspaced_points.py
dasfex/Algorithms
1
2026632
#! /usr/bin/env python3 import sympy as sp import numpy as np from datetime import datetime as dt def F(x): return np.exp(-x * x) def getEquallySpacedPoints(l, r, count): X, Y = [], [] sh = (r - l) / (count - 1) for i in np.arange(l, r + 0.0000001, sh): X.append(i) Y.append(F(i)) return [X, Y, sh] def newtonPolynomial(X, Y): x = sp.symbols('x') polynom = 0 for i in range(len(X)): res = Y[0][i] for j in range(i): res *= (x - X[j]) polynom += res polynom = sp.simplify(polynom) return polynom def value_in_point(X, sh, count, point): nghbr_points = [] nghbr = 0 for i in range(count): if np.abs(X[i] - point) <= sh: nghbr_points.append(X[i]) nghbr = i nghbr -= 1 Y = np.zeros(shape=(count, count)) for i in range(2): Y[i][i] = F(nghbr_points[i]) Y[0][1] = (Y[0][0] - Y[1][1]) / (-sh) x = sp.symbols('x') current_val = newtonPolynomial(nghbr_points, Y).subs(x, point) new_val = current_val + 1 offset, add, sign, ind = -1, -1, -1, 1 while abs(current_val - new_val) > 1e-10: nghbr_points.append(X[nghbr + add]) sz = len(nghbr_points) - 1 for i in range(sz, -1, -1): if i == sz: Y[i][sz] = F(nghbr_points[sz]) else: Y[i][sz] = (Y[i][sz - 1] - Y[i + 1][sz]) / \ (nghbr_points[i] - nghbr_points[sz]) offset *= sign if offset > 0: ind += 1 if 0 <= nghbr + offset * ind < count: add = offset * ind elif nghbr + offset * ind >= count: offset, sign = 1, 1 add = -ind elif nghbr + offset * ind < 0: sign = 1 add += 1 current_val = new_val new_val = newtonPolynomial(nghbr_points, Y).subs(x, point) return new_val, len(nghbr_points) def value_in_points(l, r, count, xs): info = getEquallySpacedPoints(l, r, count) for point in xs: start = dt.now() val, cnt = value_in_point(info[0], info[2], count, point) end = dt.now() print('Value in {} point ended in {} seconds. ' 'Value is {}. {} knots.' .format(point, end - start, val, cnt)) def main(): l, r = -5, 5 value_in_points(l, r, 100, [np.sqrt(2) / 2, np.pi / 7]) main()
2,424
src/reversion_rest_framework/mixins.py
anudeepsamaiya/django-reversion-rest-framework
0
2026891
import reversion from rest_framework import status from rest_framework.decorators import action from rest_framework.response import Response from rest_framework.serializers import ModelSerializer from reversion.models import Version from .serializers import VersionSerializer class HistoryModelMixin: version_model = None version_serializer = VersionSerializer def _get_version_model(self): if self.version_model: return self.version_model serializer_class = self.get_serializer_class() if issubclass(serializer_class, ModelSerializer): return serializer_class.Meta.model @action(detail=True, methods=['GET'], name='Get History') def history(self, request, pk=None): object = self.get_object() versions = Version.objects.get_for_object(object) serializer = self.version_serializer(versions, many=True) return Response(serializer.data) @action(detail=False, methods=['GET'], name='Get Deleted') def deleted(self, request): versions = Version.objects.get_deleted(self._get_version_model()) versions = versions.order_by('-revision__date_created') serializer = self.version_serializer(versions, many=True) return Response(serializer.data) @action(detail=True, methods=['POST'], name='Revert Version', url_path='aaaa/(?P<version_pk>\d+)') def revert(self, request, pk=None, version_pk=None, *args, **kwargs): if not version_pk: return Response( {'error': 'Invalid Version Id'}, status=status.HTTP_400_BAD_REQUEST, ) object = self.get_object() versions = Version.objects.get_for_object_reference(object, pk) version = versions.filter(pk=version_pk).first() if not version: return Response( {'error': 'Version Not Found'}, status=status.HTTP_404_NOT_FOUND, ) try: version.revision.revert() object.refresh_from_db() with reversion.create_revision(): object.save() reversion.set_user(request.user) reversion.set_comment( 'Reverted to version {}'.format(version_pk)) except Exception as e: return Response( {'error': 'Reverting Failed', 'msg': str(e)}, status=status.HTTP_400_BAD_REQUEST, ) serializer = self.version_serializer(version) return Response(serializer.data)
2,571
proj/config/configer.py
NanYoMy/mmregnet
7
2027024
import configparser import os import sys class RegParser: def __init__(self, argv='', config_type='all'): filename_=None nargs_ = len(argv) if nargs_ == 3 or nargs_==4: if (argv[1] == '-h') or (argv[1] == '-help'): self.print_help() exit() filename_ = argv[1] else: # filename_ = os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), "../config_demo.ini")) # print('Reading default config dirutil in: %s.' % filename_) # exit(-9999) pass self.config_file = configparser.ConfigParser() if filename_ is not None: self.config_file.read(filename_) else: print('Using defaults due to missing config dirutil.') self.config_type = config_type.lower() self.config = self.get_defaults() self.check_defaults() self.print() def check_defaults(self): for section_key in self.config.keys(): if section_key in self.config_file: for key, value in self.config[section_key].items(): if key in self.config_file[section_key] and self.config_file[section_key][key]: if type(value) == str: self.config[section_key][key] = os.path.expanduser(self.config_file[section_key][key]) else: self.config[section_key][key] = eval(self.config_file[section_key][key]) # else: # print('Default set in [''%s'']: %s = %s' % (section_key, key, value)) # else: # print('Default section set: [''%s'']' % section_key) def __getitem__(self, key): return self.config[key] def print(self): print('') for section_key, section_value in self.config.items(): for key, value in section_value.items(): print('[''%s'']: %s: %s' % (section_key, key, value)) print('') def get_defaults(self): home_dir = os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), "../")) network = {'network_type': 'local'} data = {'dir_moving_image': os.path.join(home_dir, 'data/train/mr_images'), 'dir_fixed_image': os.path.join(home_dir, 'data/train/us_images'), 'dir_moving_label': os.path.join(home_dir, 'data/train/mr_labels'), 'dir_fixed_label': os.path.join(home_dir, 'data/train/us_labels'), 'ori_train_img':"error", 'ori_train_lab':'error', 'structure':'heart', 'tag':'error', 'ori_test_img':'error', 'ori_test_lab':'error', 'mannual_train_crop_img':"error", 'mannual_train_crop_lab':'error', 'mannual_test_crop_img':'error'} loss = {'similarity_type': 'dice', 'similarity_scales': [0, 1, 2, 4, 8, 16], 'regulariser_type': 'bending', 'regulariser_weight': 0.5, 'consistent_weight':0.01} train = {'total_iterations': int(1e5), 'learning_rate': 1e-5, 'minibatch_size': 2, 'freq_info_print': 100, 'freq_model_save': 500, 'file_model_save': os.path.join(home_dir, 'data/model.ckpt')} inference = {'file_model_saved': train['file_model_save'], 'dir_moving_image': os.path.join(home_dir, 'data/test/mr_images'), 'dir_fixed_image': os.path.join(home_dir, 'data/test/us_images'), 'dir_save': os.path.join(home_dir, 'data/'), 'dir_moving_label': '', 'dir_fixed_label': '', 'ori_test_img':'error', 'ori_test_lab':'error'} if self.config_type == 'training': config = {'Data': data, 'Network': network, 'Loss': loss, 'Train': train} elif self.config_type == 'inference': config = {'Network': network, 'Inference': inference} else: config = {'Data': data, 'Network': network, 'Loss': loss, 'Train': train, 'Inference': inference} return config @staticmethod def print_help(): print('\n'.join([ '', '************************************************************', ' Weakly-Supervised CNNs for Multimodal Image Registration', ' 2018 <NAME> <<EMAIL>> ', ' LabelReg package is licensed under: ', ' http://www.apache.org/licenses/LICENSE-2.0', '************************************************************', '', 'Training script:', ' python3 training_20.py myConfig.ini', '', 'Inference script:', ' python3 _inference_test_20.py myConfig.ini', '', 'Options in config dirutil myConfig.ini:', ' network_type: {local, global, composite}', ' similarity_type: {dice, cross-entropy, mean-squared, jaccard}', ' regulariser_type: {bending, gradient-l2, gradient-l1}', 'See other parameters in the template config dirutil config_demo.ini.', '' ])) # reg_config = RegParser(sys.argv, 'all') class VoteNetParser(RegParser): def __init__(self, argv='', config_type='all'): filename_=None nargs_ = len(argv) if nargs_ == 3 or nargs_==4: if (argv[1] == '-h') or (argv[1] == '-help'): self.print_help() exit() filename_ = argv[2] else: # filename_ = os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), "../config_demo.ini")) # print('Reading default config dirutil in: %s.' % filename_) # exit(-9999) print("") self.config_file = configparser.ConfigParser() if filename_ is not None: self.config_file.read(filename_) else: print('Using defaults due to missing config dirutil.') self.config_type = config_type.lower() self.config = self.get_defaults() self.check_defaults() self.print() def get_defaults(self): home_dir = os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), "../")) network = {'network_type': 'local'} generator={ 'output_train_dir':"error", 'output_test_dir':"error", 'reg_model': "error" } data = {'dir_atlas_image': "error", 'dir_target_image': "error", 'dir_atlas_label': "error", 'dir_target_label': "error", 'structure':'myo', 'tag':'error'} loss = {'similarity_type': 'dice', 'similarity_scales': [0, 1, 2, 4, 8, 16], 'regulariser_weight': 0.5 } train = {'total_iterations': int(1e5), 'learning_rate': 1e-5, 'minibatch_size': 2, 'freq_info_print': 100, 'freq_model_save': 500, 'file_model_save': os.path.join(home_dir, 'data/model.ckpt')} inference = {'file_model_saved': train['file_model_save'], 'dir_atlas_image': "", 'dir_target_image': "", 'dir_save': "", 'dir_atlas_label': '', 'dir_target_label': '', 'fusion_out':'', 'forward_process_start_dir':''} if self.config_type == 'training': config = {'Data': data, 'Network': network, 'Loss': loss, 'Train': train} elif self.config_type == 'inference': config = {'Network': network, 'Inference': inference} elif self.config_type=='generator': config = {'Generator':generator} else: config = {'Data': data, 'Network': network, 'Loss': loss,'Generator':generator, 'Train': train, 'Inference': inference} return config # vote_config = VoteNetParser(sys.argv, 'all') # if vote_config["Generator"]['reg_model']!= reg_config['Train']['file_model_save']: # print("error!!!!! the model didn't match") # exit(-998) def get_reg_config(): global reg_config if reg_config==None: reg_config=RegParser(sys.argv, 'all') return reg_config def get_vote_config(): global vote_config if vote_config==None: vote_config=VoteNetParser(sys.argv, 'all') return vote_config
8,802
pycon/migrations/0005_edusummittalkproposal.py
azkarmoulana/pycon
154
2026832
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('proposals', '0003_set_cached_tags'), ('pycon', '0004_specialevent'), ] operations = [ migrations.CreateModel( name='EduSummitTalkProposal', fields=[ ('proposalbase_ptr', models.OneToOneField(parent_link=True, auto_created=True, primary_key=True, serialize=False, to='proposals.ProposalBase')), ('audience_level', models.IntegerField(help_text='Level of audience expertise assumed in Python.', verbose_name='Python level', choices=[(1, 'Novice'), (3, 'Intermediate'), (2, 'Experienced')])), ('overall_status', models.IntegerField(default=1, help_text='The status of the proposal.', choices=[(1, b'Not Yet Reviewed'), (2, b'In Kittendome'), (3, b'In Thunderdome'), (4, b'Accepted'), (5, b'Damaged'), (6, b'Rejected')])), ('damaged_score', models.IntegerField(help_text="Numerical indicator of the amount of interest in a talk set to 'damaged' status.", null=True, blank=True)), ('rejection_status', models.IntegerField(blank=True, help_text='The reason the proposal was rejected.', null=True, choices=[(1, b'Suggest re-submission as poster.'), (2, b'Suggest lightning talk.'), (3, b'Re-submitted under appropriate category.'), (4, b'Duplicate'), (5, b'Administrative Action (Other)'), (6, b"No really: rejected. It's just plain bad.")])), ('recording_release', models.BooleanField(default=True, help_text="By submitting your talk proposal, you agree to give permission to the Python Software Foundation to record, edit, and release audio and/or video of your presentation. If you do not agree to this, please uncheck this box. See <a href='https://us.pycon.org/2017/speaking/recording/' target='_blank'>PyCon 2017 Recording Release</a> for details.")), ('additional_requirements', models.TextField(help_text="Please let us know if you have any specific needs (A/V requirements, multiple microphones, a table, etc). Note for example that 'audio out' is not provided for your computer unless you tell us in advance.", verbose_name='Additional requirements', blank=True)), ('category', models.ForeignKey(to='pycon.PyConProposalCategory')), ], options={ 'verbose_name': 'Python Education Summit talk proposal', }, bases=('proposals.proposalbase',), ), ]
2,581
vae/vae.py
Taoerwang/tensorflow-models-with-simple-ways
2
2026249
from __future__ import print_function, division import tensorflow as tf from tensorflow import keras import numpy as np from keras.utils import np_utils import matplotlib.pyplot as plt import os class VAE: model_name = "VAE" paper_name = "Auto-Encoding Variational Bayes(变分自编码器)" paper_url = "https://arxiv.org/abs/1312.6114" data_sets = "MNIST and Fashion-MNIST" def __init__(self, data_name): self.data_name = data_name self.img_counts = 60000 self.img_rows = 28 self.img_cols = 28 self.dim = 1 self.noise_dim = 100 (self.train_images, self.train_labels), (self.test_images, self.test_labels) = self.load_data() self.train_images = np.reshape(self.train_images, (-1, self.img_rows * self.img_cols)) / 255 self.test_images = np.reshape(self.test_images, (-1, self.img_rows * self.img_cols)) / 255 self.train_labels_one_dim = self.train_labels self.test_labels_one_dim = self.test_labels self.train_labels = np_utils.to_categorical(self.train_labels) self.test_labels = np_utils.to_categorical(self.test_labels) def load_data(self): if self.data_name == "fashion_mnist": data_sets = keras.datasets.fashion_mnist elif self.data_name == "mnist": data_sets = keras.datasets.mnist else: data_sets = keras.datasets.mnist return data_sets.load_data() def encoder(self, e): with tf.variable_scope('encoder', reuse=tf.AUTO_REUSE): e = tf.layers.dense(e, 1024, tf.nn.relu, name='e_1') e = tf.layers.dense(e, 512, tf.nn.relu, name='e_2') e = tf.layers.dense(e, 256, tf.nn.relu, name='e_3') out_mean = tf.layers.dense(e, 2, name='e_4') out_stddev = 1e-6 + tf.layers.dense(e, 2, tf.nn.softplus, name='e_4') return out_mean, out_stddev def decoder(self, d): with tf.variable_scope('decoder', reuse=tf.AUTO_REUSE): d = tf.layers.dense(d, 128, tf.nn.relu, name='d_1') d = tf.layers.dense(d, 256, tf.nn.relu, name='d_2') d = tf.layers.dense(d, 512, tf.nn.relu, name='d_3') out = tf.layers.dense(d, 784, name='d_4') return out def build_model(self, learning_rate=0.0002): x_real = tf.placeholder(tf.float32, [None, self.img_rows * self.img_cols]) z_noise = tf.placeholder(tf.float32, [None, 2]) z_mean, z_stddev = self.encoder(x_real) # 我们选择拟合logσ2而不是直接拟合σ2,是因为σ2总是非负的, # 需要加激活函数处理,而拟合logσ2不需要加激活函数,因为它可正可负。 # guessed_z = z_mean + tf.exp(z_log_stddev2 / 2) * samples samples = tf.random_normal(tf.shape(z_stddev), 0, 1, dtype=tf.float32) guessed_z = z_mean + z_stddev * samples x_fake = self.decoder(guessed_z) z_real = self.decoder(z_noise) # marginal_likelihood = -tf.reduce_sum( # x_real * tf.log(1e-8 + x_fake) + (1 - x_real) * tf.log(1e-8 + 1 - x_fake),1) # 用下面的函数接口,计算方法和上述一样,当最后输出是去除sigmoid激活函数 marginal_likelihood = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=x_fake, labels=x_real), reduction_indices=1) # # 拟合logσ2 # kl_divergence = -0.5 * tf.reduce_sum(1 + z_stddev - tf.pow(z_mean, 2) - tf.exp(z_stddev), # reduction_indices=1) # 拟合σ kl_divergence = 0.5 * tf.reduce_sum( tf.square(z_mean) + tf.square(z_stddev - 1), 1) # kl_divergence = 0.5 * tf.reduce_sum( # tf.square(z_mean) + tf.square(z_stddev) - tf.log(1e-8 + tf.square(z_stddev)) - 1, 1) cost = tf.reduce_mean(marginal_likelihood + kl_divergence) t_vars = tf.trainable_variables() e_d_vars = [var for var in t_vars if 'encoder' or 'decoder' in var.name] optimizer = tf.train.AdamOptimizer(0.0001).minimize(cost, var_list=e_d_vars) return x_real, x_fake, cost, optimizer, z_noise, z_real, guessed_z def train(self, train_steps=100000, batch_size=100, learning_rate=0.001, save_model_numbers=3): x_real, x_fake, cost, optimizer, z_noise, z_real, guessed_z = self.build_model(learning_rate) saver = tf.train.Saver(max_to_keep=save_model_numbers) if not os.path.exists('out/'): os.makedirs('out/') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # merged_summary_op = tf.summary.merge_all() # summary_writer = tf.summary.FileWriter('log/mnist_with_summaries', sess.graph) for i in range(train_steps): batch_index = np.random.randint(0, self.img_counts, batch_size) batch_real = self.train_images[batch_index] sess.run(optimizer, feed_dict={x_real: batch_real}) if i % 1000 == 0: auto_encoder_loss_curr = sess.run(cost, feed_dict={x_real: batch_real}) print('step: ' + str(i)) print('D_loss: ' + str(auto_encoder_loss_curr)) print() saver.save(sess, 'ckpt/mnist.ckpt', global_step=i) x_fake_ = sess.run(x_fake, feed_dict={x_real: batch_real}) r, c = 10, 10 fig, axs = plt.subplots(r, c) cnt = 0 for p in range(r): for q in range(c): axs[p, q].imshow(np.reshape(batch_real[cnt], (28, 28)), cmap='gray') axs[p, q].axis('off') cnt += 1 fig.savefig("out/%d_real.png" % i) plt.close() r, c = 10, 10 fig, axs = plt.subplots(r, c) cnt = 0 for p in range(r): for q in range(c): axs[p, q].imshow(np.reshape(x_fake_[cnt], (28, 28)), cmap='gray') axs[p, q].axis('off') cnt += 1 fig.savefig("out/%d_fake.png" % i) plt.close() test_z = sess.run(guessed_z, feed_dict={x_real: self.train_images}) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.scatter(test_z[:, 0], test_z[:, 1], c=self.train_labels_one_dim, s=1) fig.savefig("out/%d_prediction.png" % i) plt.close() def restore_model(self): x_real, x_fake, cost, optimizer, z_noise, z_real, guessed_z = self.build_model() saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) model_file = tf.train.latest_checkpoint('ckpt/') saver.restore(sess, model_file) test_z = sess.run(guessed_z, feed_dict={x_real: self.test_images}) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) # ax.imshow(np.reshape(test_z, (28, 28)), cmap='gray') ax.scatter(test_z[:, 0], test_z[:, 1], c=self.test_labels_one_dim, s=1) # ax.scatter(test_z[:, 0], test_z[:, 1], s=10) # ax.scatter(x[:, 0], x[:, 2], x[:, 3], c=y, s=10) plt.show() if __name__ == '__main__': data = ['fashion_mnist', 'mnist'] model = VAE(data[1]) model.train() # model.restore_model()
7,549
run.py
rajacuannih/Yahu
0
2024448
#!/usr/bin/env python import os, uuid, pause, json, sys from subprocess import call from faker import Faker def gen_uname(full_name): a = full_name.split() b = str(uuid.uuid4()).split("-")[-1].join([v for v in a]) return b if __name__=="__main__": fake = Faker() a = open('n.txt').read().splitlines() i = 0 for b in a: try: i+=1 fake_name = fake.name() fname = fake_name.split()[0] lname = fake_name.split()[1] full_name = fname + " " + lname username = gen_uname(full_name) data = { "first_name":fname, "last_name":lname, "phone_number":b, "username":username } with open("data.json", "a+") as f: f.write(json.dumps(data, indent=4) + "\n") f.close() pause.seconds(5) ARGUMENT = f"{data['first_name']},{data['last_name']},{username},{data['phone_number']}" call(f"start cmd /c python main.py {ARGUMENT}", cwd=r'C:\\Users\\botpo\\john-doe\\python\\Yahoo', shell=True) if i%2==0: x= input("Press any key to the next 2 numbers..") except KeyboardInterrupt: x=input("Press any key to continue..") if "y" in x: continue else: sys.exit(0) except Exception as e: continue
1,217
kubeconform/analyse.py
kirecek/dockerfiles
20
2026368
#!/usr/bin/env python3 # # This script iterates over all kustomize overlays under specified # directory, renders the resulting manifests and performs a kubeconform check on them import subprocess import tempfile import argparse import os.path import sys from pathlib import Path parser = argparse.ArgumentParser() parser.add_argument('analyse_dir', nargs='?', default='.') parser.add_argument('-schema-location', action='append') args = parser.parse_args() kubeconform_cache = os.environ.get('KUBECONFORM_CACHE') if not kubeconform_cache: kubeconform_cache = tempfile.mkdtemp() k8s_version = os.environ.get('KUBECONFORM_K8S_VERSION') def analyse_overlay(overlay_dir): print(f"🧐 {overlay_dir}: \t", end='', flush=True) extra_args = [] if args.schema_location: for location in args.schema_location: extra_args.extend(['-schema-location', location]) if k8s_version: extra_args.extend(['-kubernetes-version', k8s_version]) p1 = subprocess.Popen(["kubectl", "kustomize", overlay_dir], stdout=subprocess.PIPE) p2 = subprocess.Popen( ["kubeconform", "-summary", "-exit-on-error", "-cache", kubeconform_cache, *extra_args], stdin=p1.stdout, ) p1.stdout.close() # Allow p1 to receive a SIGPIPE if p2 exits. return_code = p2.wait() if return_code != 0: raise SystemExit(return_code) def analyse_k8s(dir): overlays_dir = Path(dir) / 'overlays' if overlays_dir.is_dir(): overlay_dirs = list(overlays_dir.glob('*')) else: overlay_dirs = list(Path(dir).glob('*/overlays/*')) if len(overlay_dirs) == 0: print('No overlay directories found', file=sys.stderr) raise SystemExit(1) for overlay_dir in overlay_dirs: analyse_overlay(overlay_dir) if __name__ == '__main__': os.makedirs(kubeconform_cache, exist_ok=True) analyse_k8s(args.analyse_dir)
1,908
beta_rec/experiment/experiment.py
mengzaiqiao/TVBR
126
2026147
# coding=utf-8 """ This is the implementation of experimental pipeline. This class is still under development. """ import pandas as pd from tabulate import tabulate def print_result_as_table(results, tag=None): """Print results as a table.""" eval_infos = set() for result in results: eval_infos.update(result.keys()) eval_infos = list(eval_infos) print("-" * 80) if tag is not None: print(tag) for result in results: for eval_info in eval_infos: if eval_info not in result: result["eval_info"] = "--" df = pd.DataFrame(results) df = df.set_index("model") df = df.T print(tabulate(df, headers=df.columns, tablefmt="psql")) print("-" * 80) class Experiment: """This enables the flow of an experiment with the beta-rec platform. Args: datasets: array of :obj: '<beta_rec.datasets>', required the experimental datasets (e.g. MovieLens) eval_methods: : array of string, required the evaluation method (e.g. ['load_leave_one_out']) models: array of :obj:`<beta_rec.recommenders>`, required A collection of recommender models to evaluate, e.g., [MF, GCN]. metrics: array of string, default: None and every model has its default evaluation metrics in the configuration file. A collection of metrics to use to evaluate all the recommender models, e.g., ['ndcg', 'precision', 'recall']. eval_score: array of integer, default: None and every model has its default evaluation score in the configuration file. A list integer values to define evaluation scope on, \ e.g., [1, 10, 20]. model_dir: str, optional, default: None Path to a directory for loading a pretrained model save_dir: str, optional, default: None Path to a directory for storing trained models and logs. If None, models will NOT be stored and logs will be saved in the current working directory. result_file: str, optional, default: None and every model will be saved in a result file that indicated in the configuration. The name of the result saving file, which starts with the model name and followed by the given result file string as the affix. """ def __init__( self, datasets, models, metrics=None, eval_scopes=None, model_dir=None, result_file=None, save_dir=None, ): """Initialise required inputs for the expriment pipeline.""" self.datasets = datasets self.models = models self.metrics = metrics self.eval_scopes = eval_scopes self.result_file = result_file self.save_dir = save_dir self.update_config() def run(self): """Run the experiment.""" results = [] for data in self.datasets: for model in self.models: model.train(data) result = model.test(data.test[0]) results.extend(result) print_result_as_table(results) def load_pretrained_model(self): """Load the pretrained model.""" for data in self.datasets: for model in self.models: model.init_engine(data) model.load(model_dir=self.model_dir) model.predict(data.test[0]) def update_config(self): """Update the configuration of models.""" if self.metrics is not None: for model in self.models: model.config["system"]["metrics"] = self.metrics if self.eval_scopes is not None: for model in self.models: model.config["system"]["k"] = self.eval_scopes if self.result_file is not None: for idx, model in enumerate(self.models): model.config["system"]["result_file"] = ( "model_" + str(idx) + "_" + self.config["model"]["model"] + "_" + self.result_file ) if self.save_dir is not None: for model in self.models: model.config["system"]["result_dir"] = self.save_dir
4,273
ejercicios/basico/ejercicios/problema_11.py
carlosviveros/Soluciones
1
2026120
"""AyudaEnPython: https://www.facebook.com/groups/ayudapython Escribir un programa para una empresa que tiene salas de juegos para todas las edades y quiere calcular de forma automática el precio que debe cobrar a sus clientes por entrar. El programa debe preguntar al usuario la edad del cliente y mostrar el precio de la entrada. Si el cliente es menor de 4 años puede entrar gratis, si tiene entre 4 y 8 años debe pagar S/.5 y si es mayor a 18 años, S/.10. """ edad = int(input("Ingresar edad: ")) if edad < 4: print("Entrada gratis") elif 4 <= edad <= 8: print("Entrada S/.5") else: print("Entrada S/.10")
624
Sidekick_4.5/xgrid_insertion_efficiency_from_file.py
hallba/Sidekick
0
2026507
#!/usr/bin/python import sys,os import HAConf from random import randint import time starting_point = os.getcwd() if "-d" in sys.argv: print "Daemonizing..." time.sleep(5) #To allow for very long gaps between submissions turn into a daemon to start with import daemonize daemonize.daemonize('/dev/null',starting_point + "/submission.log",starting_point + "/submission.log") print "Submission Daemon started with pid %d" % os.getpid() print "Started %s" % time.ctime() os.chdir(starting_point) from xgrid_tools import * input_file = sys.argv[1] number_of_repeats = 50 job_list =[] seed_packet = [randint(0,100000) for i in range(number_of_repeats)] #Tree structure is different here #Type/Sequence/Repeats os.mkdir("Rotation-Translation") os.chdir("Rotation-Translation") sequences = [line[:-1] for line in open(starting_point + "/" + input_file,'r')] for mutant in sequences: print mutant #mutant_directory = starting_point + "/" + mutant try: os.mkdir(mutant) except: continue os.chdir(mutant) #Now create run directories and run job_list.append(job_submit(HAConf.programs['hippo_tr'] + " " + mutant + " -dAgg ")) os.chdir("..") os.chdir(starting_point) os.mkdir("MARTINI") os.chdir("MARTINI") for mutant in sequences: print mutant try: os.mkdir(mutant) except: continue os.chdir(mutant) for random_seed in seed_packet: os.mkdir(str(random_seed)) os.chdir(str(random_seed)) job_list.append(job_submit(HAConf.programs['Insertion_Efficiency'] + " " + mutant + " " + str(random_seed) + " -dAgg ")) os.chdir("..") #Finally, return to the starting directory os.chdir("..") os.chdir(starting_point) #Hang around and collect the results as a daemon collect_results_daemon(job_list,starting_point+"/daemon.log",starting_point+"/restart.pickle") #Scrape off the calculated insertion efficiencies from each MARTINI run and produce a net efficiency for each sequence martini_location = starting_point + "/MARTINI" summary_table = open(starting_point + "/MARTINI_Insertion_Summary.txt", "w") for mutant in sequences: sequence_location = martini_location + "/" + mutant efficiency = 0 for random_seed in seed_packet: efficiency_file = sequence_location + "/" + str(seed) + "/efficiency.dat" efficiency += float(efficiency_file.readline()) efficiency_file.close() efficiency /= len(seed_packet) print >> summary_table, mutant, efficiency summary_table.close()
2,642
main.py
woog-life/potsdam-booking-scraper
0
2025123
import dataclasses import inspect import json import logging import os import socket import sys from dataclasses import dataclass from datetime import datetime, timedelta from typing import Tuple, Optional, Callable, Union, NewType, List, Dict import pytz import requests import urllib3 from bs4 import BeautifulSoup, Tag from requests import Response from telegram import Bot BOOKING_URL = "https://www.blp-shop.de/de/eticket_applications/select_timeslot_list/10/{}/" # noinspection HttpUrlsUsage # cluster internal communication BACKEND_URL = os.getenv("BACKEND_URL") or "http://api:80" BACKEND_PATH = os.getenv("BACKEND_PATH") or "lake/{}/booking" UUID = os.getenv("POTSDAM_UUID") API_KEY = os.getenv("API_KEY") WATER_INFORMATION = NewType("WaterInformation", Tuple[str, float]) @dataclass class EventDetails: booking_link: str begin_time: datetime end_time: datetime sale_start: datetime is_available: bool def __repr__(self): return f"is_available={self.is_available} ({self.booking_link})" def json(self) -> Dict[str, Union[bool, str, int]]: return { "bookingLink": self.booking_link, "isAvailable": self.is_available, "beginTime": f"{self.begin_time.isoformat()}Z", "endTime": f"{self.end_time.isoformat()}Z", "saleStartTime": f"{self.sale_start.isoformat()}Z", } def _utc(input_time: datetime) -> datetime: naive_time = input_time.replace(tzinfo=None) input_tz = pytz.timezone("Europe/Berlin") local_time = input_tz.localize(naive_time) utc_time = local_time.astimezone(pytz.utc) return utc_time.replace(tzinfo=None) def create_logger(name: str, level: int = logging.DEBUG) -> logging.Logger: logger = logging.Logger(name) ch = logging.StreamHandler(sys.stdout) formatting = "[{}] %(asctime)s\t%(levelname)s\t%(module)s.%(funcName)s#%(lineno)d | %(message)s".format(name) formatter = logging.Formatter(formatting) ch.setFormatter(formatter) logger.addHandler(ch) logger.setLevel(level) return logger def send_telegram_alert(message: str, token: str, chatlist: List[str]): logger = create_logger(inspect.currentframe().f_code.co_name) if not token: logger.error("TOKEN not defined in environment, skip sending telegram message") return if not chatlist: logger.error("chatlist is empty (env var: TELEGRAM_CHATLIST)") for user in chatlist: Bot(token=token).send_message(chat_id=user, text=f"Error while executing: {message}") def get_website(date: str) -> Tuple[str, bool]: logger = create_logger(inspect.currentframe().f_code.co_name) url = BOOKING_URL.format(date) logger.debug(f"Requesting {url}") response = requests.get(url) content = response.content.decode("ISO-8859-1") logger.debug(content) return content, response.status_code == 200 def parse_website_xml(xml: str) -> BeautifulSoup: return BeautifulSoup(xml, "html.parser") def extract_table_row(html: BeautifulSoup): logger = create_logger(inspect.currentframe().f_code.co_name) table = html.find("table") if not table: logger.error(f"table not found in html {html}") return None rows = table.find_all("tr") if not rows or len(rows) < 2: logger.error(f"tr not found or len(rows) < 2 in {table}") return None try: for idx, row in enumerate(rows): columns = row.find_all("td") if columns: return row except IndexError: pass logger.error("Couldn't find a row for bookings") return None def get_tag_text_from_xml(xml: Union[BeautifulSoup, Tag], name: str, conversion: Callable) -> Optional: tag = xml.find(name) if not tag: return None return conversion(tag.text) def get_booking_information(soup: BeautifulSoup, date: str) -> Optional[Tuple[datetime, datetime, bool, str]]: logger = create_logger(inspect.currentframe().f_code.co_name) start_slot_col = soup.find("td", attrs={"data-title": "Von"}) end_slot_col = soup.find("td", attrs={"data-title": "Bis"}) available_slots_col = soup.find("td", attrs={"data-title": "Freie E-Tickets"}) childs = list(soup.children) booking_link_a = [td.find("a", attrs={"title": "<NAME>"}) for td in soup.find_all("td") if td.find("a")] if not (start_slot_col and end_slot_col and available_slots_col): logger.error(f"{start_slot_col}, {end_slot_col}, {available_slots_col}, {booking_link_a})") return None time = datetime.strptime(f"{date} {start_slot_col.text.strip()}", "%d.%m.%Y %H:%M Uhr") start_slot = _utc(time) time = datetime.strptime(f"{date} {end_slot_col.text.strip()}", "%d.%m.%Y %H:%M Uhr") end_slot = _utc(time) is_available = booking_link_a and not "ausverkauft" in available_slots_col.text.lower() if not is_available: is_available = False booking_link = booking_link_a[0].get("href") if is_available else "https://not.available" # noinspection PyTypeChecker # at this point pycharm doesn't think that the return type can be optional despite the many empty returns beforehand return start_slot, end_slot, is_available, booking_link def send_data_to_backend(variation: str, details: List[EventDetails]) -> Tuple[ Optional[Response], str]: logger = create_logger(inspect.currentframe().f_code.co_name) path = BACKEND_PATH.format(UUID) url = "/".join([BACKEND_URL, path]) try: body = { "variation": "Stadtbad Babelsberg", "events": [event.json() for event in details], } response = requests.put( url, json=body, headers={"Authorization": f"Bearer {API_KEY}"} ) logger.debug(f"success: {response.ok} | content: {response.content}") except (requests.exceptions.ConnectionError, socket.gaierror, urllib3.exceptions.MaxRetryError): logger.exception(f"Error while connecting to backend ({url})", exc_info=True) return None, url return response, url def main() -> Tuple[bool, str]: if not UUID: root_logger.error("POTSDAM_UUID not defined in environment") return False, "POTSDAM_UUID not defined" elif not API_KEY: root_logger.error("API_KEY not defined in environment") return False, "API_KEY not defined" logger = create_logger(inspect.currentframe().f_code.co_name) today = datetime.now().replace(hour=0, minute=0, second=0, microsecond=0) sale_start_time = _utc(today) details = [] for i in range(14): date = today + timedelta(days=i) content, success = get_website(date.strftime("%Y-%m-%d")) if not success: message = f"Couldn't retrieve website: {content}" logger.error(message) return False, message soup = parse_website_xml(content) booking_row = extract_table_row(soup) if not booking_row: logger.error("Couldn't find correct row") return False, "Couldn't find correct row" booking_information = get_booking_information(booking_row, date.strftime("%d.%m.%Y")) if not booking_information: message = f"Couldn't retrieve water information from {soup}" logger.error(message) return False, message start_time, end_time, is_available, booking_link = booking_information detail = EventDetails(booking_link=booking_link, begin_time=start_time, end_time=end_time, sale_start=sale_start_time, is_available=is_available) details.append(detail) response, generated_backend_url = send_data_to_backend("Stadtbad Babelsberg", details) if not response or not response.ok: message = f"Failed to put data 'variation': 'Stadtbad Badelsberg', 'events': {details}) to backend: {generated_backend_url}\n{response.content}" logger.error(message) return False, message return True, "" root_logger = create_logger("__main__") success, message = main() if not success: root_logger.error(f"Something went wrong ({message})") token = os.getenv("TOKEN") chatlist = os.getenv("TELEGRAM_CHATLIST") or "139656428" send_telegram_alert(message, token=token, chatlist=chatlist.split(",")) sys.exit(1)
8,506
cornflow-server/cornflow/models/dag_permissions.py
ggsdc/corn
2
2025626
from cornflow_core.models import TraceAttributesModel from cornflow_core.shared import db # from .meta_model import TraceAttributes from .dag import DeployedDAG class PermissionsDAG(TraceAttributesModel): __tablename__ = "permission_dag" __table_args__ = (db.UniqueConstraint("dag_id", "user_id"),) id = db.Column(db.Integer, primary_key=True, autoincrement=True) dag_id = db.Column( db.String(128), db.ForeignKey("deployed_dags.id"), nullable=False ) user_id = db.Column(db.Integer, db.ForeignKey("users.id"), nullable=False) user = db.relationship("UserModel", viewonly=True) def __init__(self, data): super().__init__() self.dag_id = data.get("dag_id") self.user_id = data.get("user_id") def __repr__(self): return f"<DAG permission user: {self.user_id}, DAG: {self.dag_id}>" @classmethod def get_user_dag_permissions(cls, user_id): return cls.query.filter_by(user_id=user_id).all() @staticmethod def add_all_permissions_to_user(user_id): dags = DeployedDAG.get_all_objects() permissions = [ PermissionsDAG({"dag_id": dag.id, "user_id": user_id}) for dag in dags ] for permission in permissions: permission.save() @staticmethod def delete_all_permissions_from_user(user_id): permissions = PermissionsDAG.get_user_dag_permissions(user_id) for perm in permissions: perm.delete() @staticmethod def check_if_has_permissions(user_id, dag_id): permission = PermissionsDAG.query.filter_by( user_id=user_id, dag_id=dag_id ).first() if permission is None: return False return True
1,742
uniman/model/network_conf.py
TrackMan/uniman
0
2027053
from typing import Any, List from statham.schema.constants import Maybe from statham.schema.elements import ( Array, Boolean, Element, Integer, Object, String, ) from statham.schema.property import Property class Meta(Object): rc: str = Property(String(), required=True) class WanProviderCapabilities(Object): upload_kilobits_per_second: int = Property(Integer(), required=True) download_kilobits_per_second: int = Property(Integer(), required=True) class DataItem(Object): _id: Maybe[str] = Property(String()) attr_no_delete: Maybe[bool] = Property(Boolean()) attr_hidden_id: Maybe[str] = Property(String()) wan_networkgroup: Maybe[str] = Property(String()) site_id: Maybe[str] = Property(String()) purpose: Maybe[str] = Property(String()) name: Maybe[str] = Property(String()) wan_type: Maybe[str] = Property(String()) wan_provider_capabilities: Maybe[WanProviderCapabilities] = Property(WanProviderCapabilities) report_wan_event: Maybe[bool] = Property(Boolean()) wan_ip_aliases: Maybe[List[Any]] = Property(Array(Element())) wan_type_v6: Maybe[str] = Property(String()) wan_load_balance_type: Maybe[str] = Property(String()) wan_load_balance_weight: Maybe[int] = Property(Integer()) wan_egress_qos: Maybe[str] = Property(String()) wan_dhcp_options: Maybe[List[Any]] = Property(Array(Element())) wan_dns1: Maybe[str] = Property(String()) vlan_enabled: Maybe[bool] = Property(Boolean()) ip_subnet: Maybe[str] = Property(String()) ipv6_interface_type: Maybe[str] = Property(String()) domain_name: Maybe[str] = Property(String()) is_nat: Maybe[bool] = Property(Boolean()) dhcpd_enabled: Maybe[bool] = Property(Boolean()) dhcpd_start: Maybe[str] = Property(String()) dhcpd_stop: Maybe[str] = Property(String()) dhcpdv6_enabled: Maybe[bool] = Property(Boolean()) ipv6_ra_enabled: Maybe[bool] = Property(Boolean()) lte_lan_enabled: Maybe[bool] = Property(Boolean()) networkgroup: Maybe[str] = Property(String()) dhcpd_leasetime: Maybe[int] = Property(Integer()) dhcpd_dns_enabled: Maybe[bool] = Property(Boolean()) dhcpd_gateway_enabled: Maybe[bool] = Property(Boolean()) dhcpd_time_offset_enabled: Maybe[bool] = Property(Boolean()) ipv6_pd_start: Maybe[str] = Property(String()) ipv6_pd_stop: Maybe[str] = Property(String()) gateway_type: Maybe[str] = Property(String()) enabled: Maybe[bool] = Property(Boolean()) dhcp_relay_enabled: Maybe[bool] = Property(Boolean()) nat_outbound_ip_addresses: Maybe[List[Any]] = Property(Array(Element())) dpi_enabled: Maybe[bool] = Property(Boolean()) dpigroup_id: Maybe[str] = Property(String()) dhcpd_dns_1: Maybe[str] = Property(String()) dhcpd_dns_2: Maybe[str] = Property(String()) ipsec_interface: Maybe[str] = Property(String()) vpn_type: Maybe[str] = Property(String()) route_distance: Maybe[int] = Property(Integer()) ipsec_profile: Maybe[str] = Property(String()) remote_vpn_subnets: Maybe[List[str]] = Property(Array(String())) ipsec_key_exchange: Maybe[str] = Property(String()) ipsec_encryption: Maybe[str] = Property(String()) ipsec_hash: Maybe[str] = Property(String()) ipsec_dh_group: Maybe[int] = Property(Integer()) ipsec_ike_dh_group: Maybe[int] = Property(Integer()) ipsec_esp_dh_group: Maybe[int] = Property(Integer()) ipsec_pfs: Maybe[bool] = Property(Boolean()) ipsec_dynamic_routing: Maybe[bool] = Property(Boolean()) x_ipsec_pre_shared_key: Maybe[str] = Property(String()) ipsec_local_ip: Maybe[str] = Property(String()) ipsec_peer_ip: Maybe[str] = Property(String()) ifname: Maybe[str] = Property(String()) class NetworkConf(Object): meta: Maybe[Meta] = Property(Meta) data: Maybe[List[DataItem]] = Property(Array(DataItem))
3,943
Z_ALL_FILE/Py1/socks_srv.py
omikabir/omEngin
0
2025789
#ref: https://rushter.com/blog/python-socks-server/ from socketserver import ThreadingMixIn, TCPServer, StreamRequestHandler class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass class SocksProxy(StreamRequestHandler): def handle(self): # Our main logic will be here pass if __name__ == '__main__': with ThreadingTCPServer(('127.0.0.1', 9011), SocksProxy) as server: server.serve_forever()
432
ddpg/critic.py
Jash-2000/reinforcement_learning
97
2025596
# Deep Deterministic Policy Gradient # following paper: Continuous control with deep reinforcement learning # (https://arxiv.org/pdf/1509.02971.pdf) # # --- # @author <NAME> # @email luyiren [at] seas [dot] upenn [dot] edu # # MIT License import tensorflow as tf import tf_utils class CriticNetwork(object): def __init__(self, state_size, action_size, lr, n_h1=400, n_h2=300, tau=0.001): self.state_size = state_size self.action_size = action_size self.optimizer = tf.train.AdamOptimizer(lr) self.tau = tau self.n_h1 = n_h1 self.n_h2 = n_h2 self.input_s, self.action, self.critic_variables, self.q_value = self._build_network("critic") self.input_s_target, self.action_target, self.critic_variables_target, self.q_value_target = self._build_network("critic_target") self.target = tf.placeholder(tf.float32, [None]) self.l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in self.critic_variables]) self.loss = tf.reduce_mean(tf.square(self.target - self.q_value)) + 0.01*self.l2_loss self.optimize = self.optimizer.minimize(self.loss) self.update_target_op = [self.critic_variables_target[i].assign(tf.multiply(self.critic_variables[i], self.tau) + tf.multiply(self.critic_variables_target[i], 1 - self.tau)) for i in range(len(self.critic_variables))] self.action_gradients = tf.gradients(self.q_value, self.action) def _build_network(self, name): input_s = tf.placeholder(tf.float32, [None, self.state_size]) action = tf.placeholder(tf.float32, [None, self.action_size]) with tf.variable_scope(name): layer_1 = tf_utils.fc(input_s, self.n_h1, scope="fc1", activation_fn=tf.nn.relu, initializer=tf.contrib.layers.variance_scaling_initializer(mode="FAN_IN")) # tf.concat((layer_1, action), 1) layer_2 = tf_utils.fc(tf.concat((layer_1, action), 1), self.n_h2, scope="fc2", activation_fn=tf.nn.relu, initializer=tf.contrib.layers.variance_scaling_initializer(mode="FAN_IN")) q_value = tf_utils.fc(layer_2, 1, scope="out", initializer=tf.random_uniform_initializer(-3e-3, 3e-3)) critic_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=name) return input_s, action, critic_variables, tf.squeeze(q_value) def get_qvalue_target(self, state, action, sess): return sess.run(self.q_value_target, feed_dict={ self.input_s_target: state, self.action_target: action }) def get_gradients(self, state, action, sess): return sess.run(self.action_gradients, feed_dict={ self.input_s: state, self.action: action }) def train(self, state, action, target, sess): _, loss = sess.run([self.optimize, self.loss], feed_dict={ self.input_s: state, self.action: action, self.target: target }) return loss def update_target(self, sess): sess.run(self.update_target_op)
2,917
file name and extension.py
Max143/Python_programs
0
2025788
""" Input a filename and print the extension of that """ filename = input("Input the Filename : ") file_extension = filename.split(".") print("The extension of the file is : " + repr(file_extension[-1]))
219
generative_models/VanillaGAN_TensorFlow/models.py
kumayu0108/model-zoo
43
2025278
import tensorflow as tf from tensorflow.keras.layers import Dense, Dropout, Input, BatchNormalization,LeakyReLU from tensorflow.keras.models import Model,Sequential from tensorflow.keras.optimizers import Adam def adam_optimizer(learning_rate,beta_1): return Adam(lr=learning_rate, beta_1=beta_1) def create_generator(learning_rate,beta_1,encoding_dims): generator=Sequential() generator.add(Dense(units=256,input_dim=encoding_dims)) generator.add(LeakyReLU(0.2)) generator.add(BatchNormalization(momentum=0.8)) generator.add(Dense(units=512)) generator.add(LeakyReLU(0.2)) generator.add(BatchNormalization(momentum=0.8)) generator.add(Dense(units=1024)) generator.add(LeakyReLU(0.2)) generator.add(BatchNormalization(momentum=0.8)) generator.add(Dense(units=784, activation='tanh')) generator.compile(loss='binary_crossentropy', optimizer=adam_optimizer(learning_rate,beta_1)) return generator def create_discriminator(learning_rate,beta_1): discriminator=Sequential() discriminator.add(Dense(units=1024,input_dim=784)) discriminator.add(LeakyReLU(0.2)) discriminator.add(Dropout(0.3)) discriminator.add(Dense(units=512)) discriminator.add(LeakyReLU(0.2)) discriminator.add(Dropout(0.3)) discriminator.add(Dense(units=256)) discriminator.add(LeakyReLU(0.2)) discriminator.add(Dense(units=1, activation='sigmoid')) discriminator.compile(loss='binary_crossentropy', optimizer=adam_optimizer(learning_rate,beta_1)) return discriminator def create_gan(discriminator, generator,encoding_dims): discriminator.trainable=False gan_input = Input(shape=(encoding_dims,)) x = generator(gan_input) gan_output= discriminator(x) gan= Model(inputs=gan_input, outputs=gan_output) gan.compile(loss='binary_crossentropy', optimizer='adam') return gan
1,883
callmail_project/aboutus/admin.py
q8groups/callnmail
0
2026820
from django.contrib import admin from .models import StaticContents # Register your models here. admin.site.register(StaticContents)
132
utils.py
greerviau/BetterRobotIdeas
21
2026879
def load_text(filename): file = open(filename, 'r') text = file.read() file.close() return text def clean_text(doc): import string, os doc = doc.replace('\n',' ') tokens = doc.split() table = str.maketrans('','',string.punctuation) tokens = [w.translate(table) for w in tokens] tokens = [word for word in tokens if word.isalpha()] tokens = [word.lower() for word in tokens] return tokens def save_text(lines, filename): data = '\n'.join(lines) file = open(filename, 'w') file.write(data) file.close()
556
shopify_api_py/session.py
stcstores/shopify_api
0
2026814
"""Session manager for the shopify API.""" from pathlib import Path from typing import Any, Callable, Optional, Union import shopify import toml from .exceptions import LoginCredentialsNotSetError class ShopifyAPISession: """Session manager for the shopify API.""" SHOP_URL = None API_VERSION = None API_PASSWORD = <PASSWORD> CONFIG_FILENAME = ".shopify_api.toml" def __enter__(self) -> shopify.Session: if not self.__class__.credentails_are_set(): config_path = self.__class__.find_config_filepath() if config_path is not None: self.__class__.load_from_config_file(config_file_path=config_path) if not self.__class__.credentails_are_set(): raise LoginCredentialsNotSetError() session = shopify.Session( shop_url=self.__class__.SHOP_URL, version=self.__class__.API_VERSION, token=self.__class__.API_PASSWORD, ) shopify.ShopifyResource.activate_session(session) return session def __exit__(self, exc_type: None, exc_value: None, exc_tb: None) -> None: shopify.ShopifyResource.clear_session() @classmethod def set_login( cls, shop_url: Optional[str] = None, api_version: Optional[str] = None, api_password: Optional[str] = None, ) -> None: """Set required login credentials (shop url, API version and API password).""" cls.SHOP_URL = shop_url cls.API_VERSION = api_version cls.API_PASSWORD = <PASSWORD> @classmethod def credentails_are_set(cls) -> bool: """Return True if all login credentials are set, otherwise False.""" if None in (cls.SHOP_URL, cls.API_VERSION, cls.API_PASSWORD): return False else: return True @classmethod def find_config_filepath(cls) -> Optional[Path]: """ Return the path to a shopify config file or None. Recursivly scan backwards from the current working directory and return the path to a file matching cls.CONFIG_FILENAME if one exists, otherwise returns None. """ path = Path.cwd() while path.parent != path: config_file = path / cls.CONFIG_FILENAME if config_file.exists(): return config_file path = path.parent return None @classmethod def load_from_config_file(cls, config_file_path: Union[Path, str]) -> None: """Set login credentials as specified in a toml file located at config_file_path.""" with open(config_file_path) as f: config = toml.load(f) cls.set_login( shop_url=config.get("SHOP_URL"), api_version=config.get("API_VERSION"), api_password=config.get("API_PASSWORD"), ) def shopify_api_session(func: Callable) -> Callable: """Use a shopify API session as a method decorator.""" def wrapper_shopify_api_session(*args: Any, **kwargs: Any) -> Any: with ShopifyAPISession(): return func(*args, **kwargs) return wrapper_shopify_api_session
3,153
tests/test_loss.py
assansanogo/TransformerTTS
894
2026914
import unittest import numpy as np from utils.losses import new_scaled_crossentropy, masked_crossentropy class TestCharTokenizer(unittest.TestCase): def test_crossentropy(self): scaled_crossent = new_scaled_crossentropy(index=2, scaling=5) targets = np.array([[0, 1, 2]]) logits = np.array([[[.3, .2, .1], [.3, .2, .1], [.3, .2, .1]]]) loss = scaled_crossent(targets, logits) self.assertAlmostEqual(2.3705523014068604, float(loss)) scaled_crossent = new_scaled_crossentropy(index=2, scaling=1) loss = scaled_crossent(targets, logits) self.assertAlmostEqual(0.7679619193077087, float(loss)) loss = masked_crossentropy(targets, logits) self.assertAlmostEqual(0.7679619193077087, float(loss))
819
video/core/migrations/0004_video_scores.py
eltonjncorreia/youtube-deeper
0
2024017
# Generated by Django 2.0.5 on 2018-05-21 17:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0003_theme_points'), ] operations = [ migrations.AddField( model_name='video', name='scores', field=models.DecimalField(decimal_places=2, default=1, max_digits=5), preserve_default=False, ), ]
441
microbepy/tests/common/test_schema.py
ScienceStacks/MicrobEPy
1
2026699
from microbepy.common.schema \ import Schemas, ColumnSchemas, TableSchemas, FunctionalDependency from microbepy.common import constants as cn import copy import collections import unittest COL_A = 'col_a' COL_B = 'col_b' COL_C = 'col_c' DATA = range(5) COLUMN_SCHEMAS = {COL_A: DATA, COL_B: DATA} TABLE_A = 'table_a' TABLE_B = 'table_b' ######################################## class TestSchema(unittest.TestCase): def setUp(self): self.schemas = Schemas() def testConstructor(self): self.assertTrue(isinstance(self.schemas.schemas, dict)) def testGet(self): self.schemas.schemas = COLUMN_SCHEMAS self.assertEqual(self.schemas.getSchema(COL_A), DATA) def testValidate(self): self.schemas.schemas = COLUMN_SCHEMAS # The following should not generate an exception self.schemas.validate(COL_A, is_present=True) self.schemas.validate(COL_C, is_present=False) self.schemas.validate([COL_A, COL_B], is_present=True) # with self.assertRaises(ValueError): self.schemas.validate(COL_C, is_present=True) with self.assertRaises(ValueError): self.schemas.validate(COL_B, is_present=False) class TestColumnSchemas(unittest.TestCase): def setUp(self): self.schemas = ColumnSchemas() def testConstructor(self): self.assertTrue(isinstance(self.schemas.schemas, dict)) def testAdd(self): self.schemas.addSchema(COL_A, data_type=int) self.assertEqual(self.schemas.getType(COL_A), int) self.schemas.addSchema(COL_B) self.assertEqual(self.schemas.getType(COL_B), str) with self.assertRaises(ValueError): self.schemas.addSchema(COL_B) class TestTableSchemas(unittest.TestCase): def setUp(self): self.schemas = TableSchemas() def testConstructor(self): self.assertTrue(isinstance(self.schemas.schemas, dict)) def testAddSchema(self): self.schemas.column_schemas.addSchema( [COL_A, COL_B], data_type=int) self.schemas.addSchema(TABLE_A, [COL_A, COL_B], COL_A) self.assertEqual(self.schemas.getSchema(TABLE_A).name, TABLE_A) def testAddFD(self): self.schemas.column_schemas.addSchema( [COL_A, COL_B], data_type=int) self.schemas.addFD(COL_A, COL_B) self.assertEqual(self.schemas.functional_dependencies[0], FunctionalDependency(ind=COL_A, dep=COL_B)) def testGetColumns2(self): columns = cn.TABLE_SCHEMAS.getColumns([ cn.TABLE_MUTATION, cn.TABLE_ISOLATE_MUTATION_LINK, cn.TABLE_ISOLATE, cn.TABLE_GENE_DESCRIPTION, ]) self.assertTrue(cn.KEY_ISOLATE in columns) if __name__ == '__main__': unittest.main()
2,634
esp8266/accesspointWS/blinky.py
dbadb/robodyn
2
2026913
import time import asyncio import websockets # https://websockets.readthedocs.io/en/stable/intro.html async def doit(): url = "ws://192.168.4.1:81" l = "1" async with websockets.connect(url) as websocket: res = await websocket.recv() print(res) await websocket.send("/ard?verbose=1&") res = await websocket.recv() print("verbose 1: " + res) v = 0 while True: v += 1 # print(l) for i in range(2): # handshake if i == 0: if v == 100: await websocket.send("/ard?verbose=0") res = await websocket.recv() print("verbose 0: " + res); l = "0" if l == "1" else "1" msg = "/ard?led=%s&" % l else: msg = "/esp?led=%s&" % l # print(msg) await websocket.send(msg) res = await websocket.recv() if res == "break": break elif res != "ok": print("unknown ack: %s" % res) time.sleep(.1) # first request ard to send esp an update, this # could be automatic, but for now... await websocket.send("/ard/ping") res = await websocket.recv() if res == "ok": # retrieve the esp-side ping state await websocket.send("/esp/getping") res = await websocket.recv() print(res) time.sleep(.1) asyncio.get_event_loop().run_until_complete(doit())
1,706
test/visualization/visualize_smbo.py
usualwitch/lite-bo
1
2026416
import os import sys import numpy as np from ConfigSpace.hyperparameters import UniformFloatHyperparameter sys.path.append(os.getcwd()) from litebo.optimizer.generic_smbo import SMBO from litebo.utils.config_space import ConfigurationSpace def branin(x): xs = x.get_dictionary() x1 = xs['x1'] x2 = xs['x2'] a = 1. b = 5.1 / (4. * np.pi ** 2) c = 5. / np.pi r = 6. s = 10. t = 1. / (8. * np.pi) ret = a * (x2 - b * x1 ** 2 + c * x1 - r) ** 2 + s * (1 - t) * np.cos(x1) + s return {'objs': (ret,)} cs = ConfigurationSpace() x1 = UniformFloatHyperparameter("x1", -5, 10, default_value=0) x2 = UniformFloatHyperparameter("x2", 0, 15, default_value=0) cs.add_hyperparameters([x1, x2]) bo = SMBO(branin, cs, advisor_type='default', max_runs=50, time_limit_per_trial=3, task_id='hp1') bo.run() inc_value = bo.get_incumbent() print('BO', '=' * 30) print(inc_value) # Execute the following command: # Step 1: `python test/visualization/visualize_smbo.py` # Step 2: `tensorboard --logdir logs/hp1`
1,041
03-opencv-lab/haar_cascade.py
iproduct/course-robotics-npmg
0
2026546
import cv2 as cv import sys WIDTH = 640 HEIGHT = 480 if __name__ == '__main__': faceCascade = cv.CascadeClassifier(cv.data.haarcascades + 'haarcascade_frontalface_default.xml') video = cv.VideoCapture(0) video.set(cv.CAP_PROP_FRAME_WIDTH, WIDTH) video.set(cv.CAP_PROP_FRAME_HEIGHT, HEIGHT) video.set(cv.CAP_PROP_BRIGHTNESS, 170) while True: success, img = video.read() if not success: sys.exit("Could not find video.") gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=9, minSize=(30, 30), flags=cv.CASCADE_SCALE_IMAGE ) for result in faces: x,y,w,h = result x1, y1 = x+w, y+w cv.rectangle(img, (x,y), (x1,y1), (0, 0, 255), 2) cv.imshow("Video", img) if cv.waitKey(30) & 0xFF == 27: break; video.release() cv.destroyAllWindows() sys.exit(0)
1,034
app/schemas/base.py
neurothrone/project-dot
0
2026924
from typing import TypeVar from sqlmodel import SQLModel TSQLModel = TypeVar("TSQLModel", bound="SQLModel") class SQLModelBase(SQLModel): pass
151
overthewire/leviathan/leviathan4.py
GambuzX/Cybersecurity_Practice
1
2026264
binary = "01010100 01101001 01110100 01101000 00110100 01100011 01101111 01101011 01100101 01101001 00001010" password = ''.join([chr(int(x, 2)) for x in binary.split(' ')]) print password
191
vise/tests/test_user_settings.py
kumagai-group/vise
16
2026984
# -*- coding: utf-8 -*- # Copyright (c) 2020. Distributed under the terms of the MIT License. import os import pytest from vise.defaults import UserSettings @pytest.fixture def user_settings(tmpdir): second_last_dir = tmpdir os.chdir(second_last_dir) second_last_dir.join("test.yaml").write(""" float: 0.01 dict: d1: 5 d2: 3""") terminal_dir = tmpdir.join("terminal_dir") terminal_dir.mkdir() os.chdir("terminal_dir") terminal_dir.join("test.yaml").write(""" str: s1 s2 dict: d1: 10 d2: 3""") return UserSettings("test.yaml"), second_last_dir, terminal_dir def test_get_yaml_filenames(user_settings): user_settings, second_last_dir, terminal_dir = user_settings actual = user_settings.yaml_files_from_root_dir expected = [second_last_dir / "test.yaml", terminal_dir / "test.yaml"] assert actual == expected def test_overridden_user_settings(user_settings): user_settings, _, _ = user_settings actual = user_settings.user_settings expected = {"float": 0.01, "dict": {"d1": 10, "d2": 3}, "str": "s1 s2"} assert actual == expected def test_parse_hidden_file(tmpdir): os.chdir(tmpdir) tmpdir.join("test.yaml").write(""" float: 0.01""") user_settings = UserSettings(yaml_filename="test.yaml") actual = user_settings.user_settings expected = {"float": 0.01} assert actual == expected def test_add_absolute_path(tmpdir): os.chdir(tmpdir) tmpdir.join("test.yaml").write(""" path: a/b""") user_settings = UserSettings(yaml_filename="test.yaml") actual = user_settings.user_settings["path"] expected = tmpdir / "a/b" assert actual == expected
1,775
scripts/plot_bpass_fesc.py
lconaboy/seren3
1
2026236
import seren3 iout = 108 # sim = seren3.load("RT2") sin_sim = seren3.load("2Mpc_BPASS_SIN") bin_sim = seren3.load("2Mpc_BPASS_BIN") sin_snap = sin_sim[iout] bin_snap = bin_sim[iout] cosmo = sin_snap.cosmo import matplotlib import matplotlib.pylab as plt from seren3.analysis.plots import fit_scatter, fit_median nbins=5 # In[60]: import numpy as np import pickle import random from seren3.scripts.mpi import write_fesc_hid_dict def load_fesc(snapshot): db = write_fesc_hid_dict.load_db(snapshot.path, snapshot.ioutput) hids = db.keys() mvir = np.zeros(len(hids)) fesc = np.zeros(len(hids)) nphotons = np.zeros(len(hids)) count=0.0 for i in range(len(hids)): hid = hids[i] res = db[hid] ifesc = res["fesc"] if ifesc > 1. and ifesc < 10.: # if ifesc > 1.: fesc[i] = random.uniform(0.9, 1.0) count += 1.0 elif ifesc > 0. and ifesc <= 1.: fesc[i] = ifesc else: # if (res["fesc"] > 10.): # print "%e %e" % (res["tot_mass"], res["fesc"]) continue mvir[i] = res["hprops"]["mvir"] Nion_d_now = db[hid]["Nion_d_now"].in_units("s**-1 Msol**-1") star_mass = db[hid]["star_mass"].in_units("Msol") nphotons[i] = (Nion_d_now * star_mass).sum() print count/float(len(mvir)) print len(mvir) ix = np.where(fesc > 0) fesc = fesc[ix] mvir = mvir[ix] nphotons = nphotons[ix] log_mvir = np.log10(mvir) log_fesc = np.log10(fesc) # ix = np.where(np.logical_and(log_mvir >= 7.5, np.log10(fesc*100.) >= -1)) # ix = np.where(log_mvir >= 7.5) # log_mvir = log_mvir[ix] # fesc = fesc[ix] # nphotons = nphotons[ix] ix = np.where(~np.isnan(fesc)) log_mvir = log_mvir[ix] fesc = fesc[ix] nphotons = nphotons[ix] print 'Loaded data for %d halos' % len(log_mvir) return log_mvir, fesc, nphotons # fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(18,6)) # axs = axes[0,:] # iouts = [ [108, 108], [bin_sim.redshift(8), sin_sim.redshift(8)], [sin_sim.redshift(9), sin_sim.redshift(9)] ] # for ax, iout_lst in zip(axs.flatten(), iouts): # data = {"BIN" : load_fesc(bin_sim[iout_lst[0]]), "SIN" : load_fesc(sin_sim[iout_lst[0]])} # binned_data = {} # cosmo = bin_sim[iout_lst[0]].cosmo # for key, ls, lw, c in zip(data.keys(), ["-", "--"], [3., 1.5], ["r", "b"]): # log_mvir, fesc, nphotons = data[key] # if (iout_lst[0] == 108): # cosmo["z"] = 6 # if (iout_lst[0] == bin_sim.redshift(8)): # cosmo["z"] = 8 # if (iout_lst[0] == bin_sim.redshift(9)): # cosmo["z"] = 9 # # log_mvir, fesc, tint_fesc, nphotons = data[key] # # fesc_percent = tint_fesc * 100. # fesc_percent = fesc * 100. # bin_centres, mean, std, sterr = fit_scatter(log_mvir, fesc_percent, nbins=nbins, ret_sterr=True) # binned_data[key] = (bin_centres, mean, std) # # bin_centres, median = fit_median(log_mvir, fesc_percent, nbins=nbins) # ax.scatter(log_mvir, fesc_percent, alpha=0.25, color=c, s=15, marker=".") # e = ax.errorbar(bin_centres, mean, yerr=std, color=c, label='%s z=%1.2f' % (key, cosmo['z']), fmt="o", markerfacecolor=c, mec='k', capsize=2, capthick=2, elinewidth=2, linestyle=ls, linewidth=lw) # print binned_data["BIN"][1] / binned_data["SIN"][1] # axs[0].set_ylabel(r'f$_{\mathrm{esc}}$(t) [%]', fontsize=20) # for ax in axs.flatten(): # ax.legend(loc="lower right", frameon=False, prop={"size":16}) # # ax.set_xlabel(r'log$_{10}$ M$_{\mathrm{vir}}$ [M$_{\odot}$/h]', fontsize=20) # # ax.set_ylabel(r'f$_{\mathrm{esc}}$ (<t$_{\mathrm{H}}$) [%]', fontsize=20) # ax.set_yscale("log") # ax.set_ylim(1e-1, 1.e2) # ax.set_xlim(7.5, 10.) # axs = axes[1,:] # iouts = [ [108, 108], [bin_sim.redshift(8), sin_sim.redshift(8)], [sin_sim.redshift(9), sin_sim.redshift(9)] ] # for ax, iout_lst in zip(axs.flatten(), iouts): # data = {"BIN" : load_fesc(bin_sim[iout_lst[0]]), "SIN" : load_fesc(sin_sim[iout_lst[0]])} # binned_data = {} # cosmo = bin_sim[iout_lst[0]].cosmo # for key, ls, lw, c in zip(data.keys(), ["-", "--"], [3., 1.5], ["r", "b"]): # log_mvir, fesc, nphotons = data[key] # if (iout_lst[0] == 108): # cosmo["z"] = 6 # if (iout_lst[0] == bin_sim.redshift(8)): # cosmo["z"] = 8 # if (iout_lst[0] == bin_sim.redshift(9)): # cosmo["z"] = 9 # # log_mvir, fesc, tint_fesc, nphotons = data[key] # # fesc_percent = tint_fesc * 100. # log_nphotons_esc = np.log10(nphotons * fesc) # bin_centres, mean, std, sterr = fit_scatter(log_mvir, log_nphotons_esc, nbins=nbins, ret_sterr=True) # binned_data[key] = (bin_centres, mean, std) # # bin_centres, median = fit_median(log_mvir, fesc_percent, nbins=nbins) # ax.scatter(log_mvir, log_nphotons_esc, alpha=0.25, color=c, s=15, marker=".") # e = ax.errorbar(bin_centres, mean, yerr=std, color=c, label='%s z=%1.2f' % (key, cosmo['z']), fmt="o", markerfacecolor=c, mec='k', capsize=2, capthick=2, elinewidth=2, linestyle=ls, linewidth=lw) # print binned_data["BIN"][1] / binned_data["SIN"][1] # axs[0].set_ylabel(r'log$_{10}$ $\dot{\mathrm{N}}_{\mathrm{ion}}(t)$ f$_{\mathrm{esc}}$ ($t$) [#/s]', fontsize=20) # for ax in axs.flatten(): # ax.legend(loc="lower right", frameon=False, prop={"size":16}) # ax.set_xlabel(r'log$_{10}$ M$_{\mathrm{vir}}$ [M$_{\odot}$/h]', fontsize=20) # ax.set_xlim(7.5, 10.) # ax.set_ylim(43.5, 54) # plt.tight_layout() # plt.show() def load_tint_fesc(snapshot): # fname = "%s/pickle/ConsistentTrees/fesc_database_%05i.p" % (snapshot.path, snapshot.ioutput) fname = "%s/pickle/ConsistentTrees/time_int_fesc_all_halos_%05i.p" % (snapshot.path, snapshot.ioutput) data = pickle.load(open(fname, "rb")) db = write_fesc_hid_dict.load_db(snapshot.path, snapshot.ioutput) mvir = [] fesc = [] tint_fesc = [] # hids = [] nphotons = [] for i in range(len(data)): res = data[i].result ifesc = res["fesc"][0] # if ifesc > 1. and ifesc < 10.: if ifesc > 1.: fesc.append(random.uniform(0.9, 1.0)) elif ifesc > 0. and ifesc <= 1.: fesc.append(ifesc) else: # if (res["fesc"] > 10.): # print "%e %e" % (res["tot_mass"], res["fesc"]) continue mvir.append(res["Mvir"]) tint_fesc.append(res["tint_fesc_hist"][0]) hid = int(data[i].idx) # hids.append(hid) Nion_d_now = db[hid]["Nion_d_now"].in_units("s**-1 Msol**-1") star_mass = db[hid]["star_mass"].in_units("Msol") nphotons.append( (Nion_d_now * star_mass).sum() ) mvir = np.array(mvir) fesc = np.array(fesc) tint_fesc = np.array(tint_fesc) # hids = np.array(hids) nphotons = np.array(nphotons) # print count/float(len(mvir)) ix = np.where(fesc > 0) fesc = fesc[ix] tint_fesc = tint_fesc[ix] mvir = mvir[ix] # hids = hids[ix] nphotons = nphotons[ix] log_mvir = np.log10(mvir) log_fesc = np.log10(fesc) # ix = np.where(np.logical_and(log_mvir >= 7.5, log_fesc > -3)) # ix = np.where(log_mvir >= 7.4) ix = np.where(np.logical_and(log_mvir >= 6.5, log_mvir <= 8.)) log_mvir = log_mvir[ix] fesc = fesc[ix] tint_fesc = tint_fesc[ix] # hids = hids[ix] nphotons = nphotons[ix] ix = np.where(~np.isnan(tint_fesc)) log_mvir = log_mvir[ix] fesc = fesc[ix] tint_fesc = tint_fesc[ix] # hids = hids[ix] nphotons = nphotons[ix] print 'Loaded data for %d halos' % len(log_mvir) return log_mvir, fesc, tint_fesc, nphotons from scipy import interpolate nbins=5 ax = plt.gca() cosmo["z"] = 6 data = {"BIN" : load_tint_fesc(bin_snap), "SIN" : load_tint_fesc(sin_snap)} cols = ["r", "b"] binned_data = {} for key, ls, lw, c in zip(data.keys(), ["-", "--"], [3., 1.5], cols): # log_mvir, fesc, tint_fesc, hids = data[key] log_mvir, fesc, tint_fesc, nphotons = data[key] fesc_percent = tint_fesc * 100. bin_centres, mean, std = fit_scatter(log_mvir, fesc_percent, nbins=nbins) binned_data[key] = (bin_centres, mean, std) # bin_centres, median = fit_median(log_mvir, log_fesc, nbins=nbins) ax.scatter(log_mvir, fesc_percent, alpha=0.1, color=c, s=5) fn = interpolate.interp1d(bin_centres, np.log10(mean), fill_value="extrapolate") mass_milky_way = 1e12 # approx halo mass in solar masses fesc_milky_way = 10**fn(np.log10(mass_milky_way)) print key, "fesc Milky Way = %1.2f" % fesc_milky_way x = np.linspace(8, 12, 100) y = 10**fn(x) # ax.plot(x, y, color=c, linestyle=":", linewidth=5) # e = plt.errorbar(bin_centres, median, yerr=std, color=c, label='%s z=%1.2f' % ("BPASS_BIN", cosmo['z']),\ # fmt="o", markerfacecolor=c, mec='k', capsize=2, capthick=2, elinewidth=2, linestyle='-', linewidth=2.) e = ax.errorbar(bin_centres, mean, yerr=std, color=c, label='%s z=%1.2f' % (key, cosmo['z']), fmt="o", markerfacecolor=c, mec='k', capsize=2, capthick=2, elinewidth=2, linestyle=ls, linewidth=lw) print binned_data["BIN"][1] / binned_data["SIN"][1] ax.legend(loc="lower right", frameon=False, prop={"size":16}) ax.set_xlabel(r'log$_{10}$ M$_{\mathrm{vir}}$ [M$_{\odot}$/h]', fontsize=20) ax.set_ylabel(r'$\langle$f$\rangle$$_{\mathrm{esc}}$ ($\leq t_{\mathrm{H}}$) [%]', fontsize=20) ax.set_yscale("log") # ax.set_xlim(7.5, 10.) ax.set_ylim(1e0, 1.e2) plt.show()
9,716
chromewhip/helpers.py
spinda/chromewhip
97
2025996
import copy import json import logging import re import sys class PayloadMixin: @classmethod def build_send_payload(cls, method: str, params: dict): return { "method": ".".join([cls.__name__, method]), "params": {k: v for k, v in params.items() if v is not None} } @classmethod def convert_payload(cls, types: dict): def convert(result: dict): """ :param result: :return: """ types_ = copy.copy(types) for name, val in result.items(): try: expected_ = types_.pop(name) expected_type_ = expected_['class'] except KeyError: raise KeyError('name %s not in expected payload of %s' % (name, types)) if issubclass(expected_type_, ChromeTypeBase): result[name] = expected_type_(**val) elif re.match(r'.*Id$', name) and isinstance(val, str): result[name] = expected_type_(val) elif not isinstance(val, expected_type_): raise ValueError('%s is not expected type %s, instead is %s' % (val, expected_type_, val)) for rn, rv in types_.items(): if not rv.get('optional', False): raise ValueError('expected payload param "%s" is missing!' % rn) return result return convert log = logging.getLogger(__name__) class BaseEvent: js_name = 'chromewhipBaseEvent' hashable = [] is_hashable = False def hash_(self): hashable_params = {} for k, v in self.__dict__.items(): if k in self.hashable: hashable_params[k] = v else: try: hashable_params['%sId' % k] = v.id except KeyError: pass except AttributeError: # TODO: make better, fails for event that has 'timestamp` as a param pass serialized_id_params = ','.join(['='.join([p, str(v)]) for p, v in hashable_params.items()]) h = '{}:{}'.format(self.js_name, serialized_id_params) log.debug('generated hash = %s' % h) return h # TODO: how do def json_to_event(payload) -> BaseEvent: try: prot_name, js_event = payload['method'].split('.') except KeyError: log.error('invalid event JSON, must have a "method" key') return None except ValueError: log.error('invalid method name "%s", must contain a module and event joined with a "."' % payload['method']) return None module_name = 'chromewhip.protocol.%s' % prot_name.lower() try: prot_module = sys.modules[module_name] except KeyError: msg = '"%s" is not available in sys.modules!' % module_name log.error(msg) raise KeyError(msg) py_event_name = '{}{}Event'.format(js_event[0].upper(), js_event[1:]) event_cls = getattr(prot_module, py_event_name) try: result = event_cls(**payload['params']) except TypeError as e: raise TypeError('%s unable to deserialise: %s' % (event_cls.__name__, e)) return result class ChromeTypeBase: def to_dict(self): return self.__dict__ class ChromewhipJSONEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, BaseEvent): return {'method': obj.js_name, 'params': obj.__dict__} if isinstance(obj, ChromeTypeBase): return obj.__dict__ return json.JSONEncoder.default(self, obj)
3,651
animations/stacked_animation.py
onlyjus/qt_examples
0
2025379
import sys from PyQt4 import QtCore, QtGui COLOR_LIST = ['red', 'blue', 'green', 'black', 'cyan', 'magenta'] ANIMATION_SPEED = 400 def make_callback(func, *param): ''' Helper function to make sure lambda functions are cached and not lost. ''' return lambda: func(*param) class App(QtGui.QMainWindow): def __init__(self, app, parent=None): QtGui.QMainWindow.__init__(self, parent) # reference to qapp instance self.app = app self.animating = False self.stack_animation = None self.resize(QtCore.QSize(500, 200)) # widgets self.mainwidget = QtGui.QWidget() self.setCentralWidget(self.mainwidget) self.listwidget = QtGui.QListWidget() self.listwidget.addItems(COLOR_LIST) self.listwidget.itemSelectionChanged.connect(self.change_color) self.stackedwidget = QtGui.QStackedWidget() for color in COLOR_LIST: widget = QtGui.QWidget() widget.setStyleSheet('QWidget{' ' background-color: '+color+';' '}') widget.setObjectName(color) self.stackedwidget.addWidget(widget) # layouts self.hlayout = QtGui.QHBoxLayout(self.mainwidget) self.mainwidget.setLayout(self.hlayout) self.hlayout.addWidget(self.listwidget) self.hlayout.addWidget(self.stackedwidget) def change_color(self): new_color = str(self.listwidget.currentItem().text()) old_color = str(self.stackedwidget.currentWidget().objectName()) old_index = self.stackedwidget.currentIndex() new_index = 0 for i in range(self.stackedwidget.count()): widget = self.stackedwidget.widget(i) if new_color == str(widget.objectName()): new_index = i break print('Changing from:', old_color, old_index, 'To:', new_color, new_index) self.animate(old_index, new_index) def animate(self, from_, to, direction='vertical'): """ animate changing of qstackedwidget """ # check to see if already animating if self.animating and self.stack_animation is not None: self.stack_animation.stop() from_widget = self.stackedwidget.widget(from_) to_widget = self.stackedwidget.widget(to) # get from geometry width = from_widget.frameGeometry().width() height = from_widget.frameGeometry().height() # offset # bottom to top if direction == 'vertical' and from_ < to: offsetx = 0 offsety = height # top to bottom elif direction == 'vertical' and from_ > to: offsetx = 0 offsety = -height elif direction == 'horizontal' and from_ < to: offsetx = width offsety = 0 elif direction == 'horizontal' and from_ > to: offsetx = -width offsety = 0 else: return # move to widget and show # set the geometry of the next widget to_widget.setGeometry(0 + offsetx, 0 + offsety, width, height) to_widget.show() # animate # from widget animnow = QtCore.QPropertyAnimation(from_widget, "pos") animnow.setDuration(ANIMATION_SPEED) animnow.setEasingCurve(QtCore.QEasingCurve.InOutQuint) animnow.setStartValue( QtCore.QPoint(0, 0)) animnow.setEndValue( QtCore.QPoint(0 - offsetx, 0 - offsety)) # to widget animnext = QtCore.QPropertyAnimation(to_widget, "pos") animnext.setDuration(ANIMATION_SPEED) animnext.setEasingCurve(QtCore.QEasingCurve.InOutQuint) animnext.setStartValue( QtCore.QPoint(0 + offsetx, 0 + offsety)) animnext.setEndValue( QtCore.QPoint(0, 0)) # animation group self.stack_animation = QtCore.QParallelAnimationGroup() self.stack_animation.addAnimation(animnow) self.stack_animation.addAnimation(animnext) self.stack_animation.finished.connect( make_callback(self.animate_stacked_widget_finished, from_, to) ) self.stack_animation.stateChanged.connect( make_callback(self.animate_stacked_widget_finished, from_, to) ) self.animating = True self.stack_animation.start() def animate_stacked_widget_finished(self, from_, to): """ cleanup after animation """ if self.stack_animation.state() == QtCore.QAbstractAnimation.Stopped: self.stackedwidget.setCurrentIndex(to) from_widget = self.stackedwidget.widget(from_) from_widget.hide() from_widget.move(0, 0) self.animating = False def animate_state_changed(self, from_, to): """ check to see if the animation has been stopped """ self.animate_stacked_widget_finished(from_, to) if __name__ == '__main__': qapp = QtGui.QApplication(sys.argv) app = App(qapp) app.show() qapp.exec_() qapp.deleteLater() sys.exit()
5,366
navicatGA/fitness_functions_selfies.py
lcmd-epfl/NaviCatGA
1
2026038
import logging from navicatGA.score_modifiers import score_modifier from navicatGA.wrappers_selfies import ( sc2logp, sc2ilogp, sc2mw, sc2mv, sc2nmw, sc2mwilogp, sc2levenshtein_to_target, sc2tanimoto_to_target, sc2krr, ) from navicatGA.quantum_wrappers_selfies import sc2gap, sc2ehomo, sc2elumo logger = logging.getLogger(__name__) def fitness_function_target_property( target, function_number=1, score_modifier_number=1, parameter=1 ): if function_number == 1: # sc2logp logp return lambda chromosome: score_modifier( sc2logp(chromosome), target, score_modifier_number, parameter ) if function_number == 3: # sc2mw molecular weight return lambda chromosome: score_modifier( sc2mw(chromosome), target, score_modifier_number, parameter ) if function_number == 6: # sc2mv molecular volume return lambda chromosome: score_modifier( sc2mv(chromosome), target, score_modifier_number, parameter ) if function_number == 9: # sc2gap homo-lumo gap return lambda chromosome: score_modifier( sc2gap(chromosome), target, score_modifier_number, parameter ) def fitness_function_target_selfies(target_selfie, function_number=1): if function_number == 1: # Tanimoto distance return lambda chromosome: sc2tanimoto_to_target(chromosome, target_selfie) if function_number == 2: # Levenshtein distance return lambda chromosome: sc2levenshtein_to_target(chromosome, target_selfie) def fitness_function_selfies(function_number=1): if function_number == 1: # sc2logp logp return lambda chromosome: sc2logp(chromosome) if function_number == 2: # sc2ilogp inverse logp return lambda chromosome: sc2ilogp(chromosome) if function_number == 3: # sc2mw molecular weight return lambda chromosome: sc2mw(chromosome) if function_number == 4: # sc2nmw negative molecular weight to avoid singularity return lambda chromosome: sc2nmw(chromosome) if function_number == 5: # sc2mwilogp product of mw and inverse logp return lambda chromosome: sc2mwilogp(chromosome) if function_number == 6: # sc2mv molecular volume return lambda chromosome: sc2mv(chromosome) if function_number == 7: # sc2ehomo homo energy return lambda chromosome: sc2ehomo(chromosome) if function_number == 8: # sc2elumo lumo energy return lambda chromosome: sc2elumo(chromosome) if function_number == 9: # sc2gap gap return lambda chromosome: sc2gap(chromosome)
2,651
tunobase/commenting/tasks.py
unomena/tunobase
0
2026048
""" Commenting App This module provides an interface to Celery tasks for removing flagged comments. """ from celery.decorators import task from tunobase.commenting import models @task(ignore_result=True) def remove_flagged_comments(): """Delete flagged comments.""" models.CommentModel.objects.remove_flagged_comments()
334
examples/请求重试.py
Jie-Yuan/MeUtils
3
2025851
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Project : MeUtils. # @File : retry_demo # @Time : 2021/2/3 12:18 上午 # @Author : yuanjie # @Email : <EMAIL> # @Software : PyCharm # @Description : https://www.cnblogs.com/wuzhibinsuib/p/13443622.html from meutils.pipe import * from tenacity import retry, stop_after_delay, stop_after_attempt a = 0 s = time.time() # @retry(stop=stop_after_delay(0.001) | stop_after_attempt(100), reraise=True) # reraise抛出原始错误 # def test_retry(): # global a # a += 1 # print(f"请求第{a}次") # print(time.time() - s) # # raise Exception # # # test_retry() # from tenacity import retry, stop_after_attempt, retry_if_result # # def return_last_value(retry_state): # print("执行回调函数") # return retry_state.outcome.result() #表示原函数的返回值 # # def is_false(value): # return value is False # # @retry(stop=stop_after_attempt(3), retry_error_callback=return_last_value, # retry=retry_if_result(is_false)) # def test_retry(): # print("等待重试.....") # return False # # print(test_retry()) # from meutils.http_utils import request # # request() if __name__ == '__main__': print(__file__)
1,196
exercises/Palindrome/Method2.py
Justobioma/master-to-pythonista
12
2025987
# Iterative Method: Run a loop from starting to length/2 and check the first character to the last character of the string and second to second last one and so on …. # If any character mismatches, the string wouldn’t be a palindrome. # Below is the implementation of above approach: # function to check string is # palindrome or not def isPalindrome(str): # Run loop from 0 to len/2 for i in range(0, int(len(str)/2)): if str[i] != str[len(str)-i-1]: return False return True # main function s = "malayalam" ans = isPalindrome(s) if (ans): print("Yes") else: print("No")
590
bulk-screen-capture.py
chkk525/bulk-screen-capture
0
2026210
# -*- coding: utf-8 -*- import sys import importlib # START: Frawned approach to change default encoding # But I intentionally take this approach since it's easy and believe it non-problematic in this limited program. # See discussion detail here. # https://stackoverflow.com/questions/3828723/why-should-we-not-use-sys-setdefaultencodingutf-8-in-a-py-script # importlib.reload(sys) # sys.setdefaultencoding('UTF8') # END: Frawned approach to change default encoding import io import os from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains from PIL import Image import time import errno from optparse import OptionParser import re import hashlib def mkdir_p(path): try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def get_filename(text): if re.search('[^\w\.\-_]', text): return hashlib.sha256(text.encode('utf-8')).hexdigest() else: return text def save_snapshot(driver, word, idx): fname = os.path.join(Options.dir, "%s.jpg" % get_filename(Options.prefix + word)) idx = "%03d" % (idx + 1) if os.path.isfile(fname) and (not Options.force_save): print((" ! %s: %s exists!" % (idx, fname))) return url_template = Engines[Options.engine] driver.get(url_template % word) if Options.js_before_save: with open(Options.js_before_save) as f: driver.execute_script(f.read()) driver.execute_script("document.body.style.overflow = 'hidden';") # See: https://gist.github.com/jsok/9502024 screen_png = driver.get_screenshot_as_png() screen_io = io.BytesIO(screen_png) image = Image.open(screen_io) image.convert("RGB").save(fname, 'JPEG', optimize=True) print((" %s %s: %s" % ('\u2713', idx, fname))) time.sleep(Options.sleep) def get_words_from_file(fname): with open(fname) as f: content = f.readlines() content = [x.split("\t")[0].rstrip() for x in content] return content def retrieve_snapshot_for_words(driver, words): for idx, word in enumerate(words): save_snapshot(driver, word, idx) Options = {} Engines = { "google": 'https://www.google.com/search?gl=us&hl=en&pws=0&gws_rd=cr&tbm=isch&safe=active&q=%s', "google_unsafe": 'https://www.google.com/search?gl=us&hl=en&pws=0&gws_rd=cr&tbm=isch&q=%s', "bing": 'https://www.bing.com/images/search?safeSearch=Moderate&mkt=en-US&q=%s', "bing_unsafe": 'https://www.bing.com/images/search?safeSearch=Off&mkt=en-US&q=%s', } def main(): global Options usage = "usage: %prog [options] word-list" scroll_to_first_image_of_google = "document.getElementById('islmp').scrollIntoView(true)" scroll_to_first_carousel_of_google = "document.getElementsByTagName('scrolling-carousel')[0].scrollIntoView()" parser = OptionParser(usage=usage) parser.add_option("-d", "--dir", dest="dir", help="Directory to write captured images.", default="slideshow/imgs") parser.add_option("-j", "--js-before-save", dest="js_before_save", help="Eval js file before save mainly to scroll to element", default="") parser.add_option("-f", "--force-save", action="store_true", dest="force_save", help="Overwrite existing file if exists", default=False) parser.add_option("-p", "--prefix", dest="prefix", help="Prefix for filename", default="") parser.add_option("-w", "--window", dest="window", help="Window size. 1280x720 by default.", default="1280x720") parser.add_option("-e", "--engine", dest="engine", help="Image search engine to use one of %s" % list(Engines.keys()), default="google") parser.add_option("-s", "--show", action="store_true", dest="show", help="Do not hide chrome browser", default=False) parser.add_option("--sleep", dest="sleep", type="float", help="Sleep duration on each take", default=1.0) (Options, args) = parser.parse_args() if Options.engine not in Engines: print(("Engine must be one of %s" % list(Engines.keys()))) exit(1) chrome_options = webdriver.ChromeOptions() if not Options.show: chrome_options.add_argument('--headless') chrome_options.add_argument('--hide-scrollbars') driver = webdriver.Chrome(options=chrome_options) (screen_width, screen_height) = Options.window.split("x") driver.set_window_size(screen_width, screen_height) print(Options) mkdir_p(Options.dir) for file in args: print((file + ': start')) retrieve_snapshot_for_words(driver, get_words_from_file(file)) driver.quit() main()
4,652
usaspending_api/transactions/management/commands/transfer_assistance_records.py
g4brielvs/usaspending-api
217
2026392
from django.core.management.base import BaseCommand from usaspending_api.transactions.agnostic_transaction_loader import AgnosticTransactionLoader from usaspending_api.transactions.models.source_assistance_transaction import SourceAssistanceTransaction class Command(AgnosticTransactionLoader, BaseCommand): help = "Upsert assistance transactions from a Broker database into an USAspending database" broker_source_table_name = SourceAssistanceTransaction().broker_source_table delete_management_command = "delete_assistance_records" destination_table_name = SourceAssistanceTransaction().table_name extra_predicate = [{"field": "is_active", "op": "EQUAL", "value": "true"}] last_load_record = "source_assistance_transaction" lookback_minutes = 15 shared_pk = "afa_generated_unique" working_file_prefix = "assistance_load_ids" broker_full_select_sql = 'SELECT "{id}" FROM "{table}" WHERE "is_active" IS TRUE' broker_incremental_select_sql = """ select "{id}" from "{table}" where "is_active" is true and "submission_id" in ( select "submission_id" from "submission" where "d2_submission" is true and "publish_status_id" in (2, 3) {optional_predicate} ) """
1,391
tests/test_meta.py
vkvam/fpipe
18
2025251
import hashlib from unittest import TestCase from fpipe.gen import Program, Meta from fpipe.meta import MD5, Path, Size from fpipe.exceptions import FileDataException from fpipe.meta.stream import Stream from test_utils.test_file import ReversibleTestFile, TestStream class TestMeta(TestCase): @staticmethod def __checksum(data: bytes): sig = hashlib.md5() sig.update(data) return sig.hexdigest() def test_chaining_test_stream(self): stream_sizes = [2 ** i for i in range(18, 23)] # Get expected results from FileDataGenerators md5_of_files = [ self.__checksum(ReversibleTestFile(s).read()) for s in stream_sizes ] md5_of_reversed_files = [ self.__checksum(bytes(reversed(ReversibleTestFile(s).read()))) for s in stream_sizes ] # Get checksum for initial files gen = Meta(MD5, Size).chain( TestStream(s, f'{s}', reversible=True) for s in stream_sizes ) # Reverse stdout gen = Program("rev").chain(gen) gen = Program("tr -d '\n'").chain(gen) # Get checksum for reversed files for f in Meta(MD5, Size).chain(gen): d = f[Stream].read(1) # Assert that we are not able to retrieve calculated data before # files have been completely read with self.assertRaises(FileDataException): x = f[MD5] with self.assertRaises(FileDataException): x = f[Size] f[Stream].read() # Assert that checksum created in two different ways are equal self.assertEqual(f.parent.parent[MD5], md5_of_files.pop(0)) self.assertEqual(f[MD5], md5_of_reversed_files.pop(0)) self.assertEqual(f[Path], str(f[Size])) # Assert that we've checked all files self.assertEqual(len(md5_of_files) + len(md5_of_reversed_files), 0)
1,948
tests/iscsi/CEPH-10572_10460_10450.py
jennkimerson/cephci
0
2026471
import datetime import logging from time import sleep from ceph.parallel import parallel from tests.iscsi.iscsi_utils import IscsiUtils log = logging def run(**kw): log.info("Running test") ceph_nodes = kw.get('ceph_nodes') test_data = kw.get('test_data') iscsi_util = IscsiUtils(ceph_nodes) iscsi_initiators = iscsi_util.get_iscsi_initiator_linux() initiatorname = iscsi_util.get_initiatorname() iscsi_util.write_multipath(iscsi_initiators) iscsi_util.write_chap(initiatorname, iscsi_initiators) no_of_luns = test_data['no_of_luns'] rc = [] device_list = iscsi_util.get_devicelist_luns(no_of_luns) iscsi_util.create_directory_with_io( device_list, iscsi_initiators, io_size="1G") with parallel() as p: p.spawn(iscsi_util.do_ios, iscsi_initiators, device_list) p.spawn(do_failover, iscsi_initiators, device_list, ceph_nodes) for op in p: rc.append(op) uuid = [] iscsi_initiators.exec_command( sudo=True, cmd="cp /etc/fstab /etc/fstab.backup") out, err = iscsi_initiators.exec_command(sudo=True, cmd="cat /etc/fstab") output = out.read().decode() fstab = output.rstrip("\n") for device in device_list: out, err = iscsi_initiators.exec_command( sudo=True, cmd="blkid /dev/mapper/mpa" + device + "" " -s UUID -o value", long_running=True) output = out.rstrip("\n") uuid.append(output) for i in range(no_of_luns): temp = "\nUUID=" + uuid[i] + "\t/mnt/" + \ device_list[i] + "/\text4\t_netdev\t0 0" fstab += temp fstab_file = iscsi_initiators.write_file( sudo=True, file_name='/etc/fstab', file_mode='w') fstab_file.write(fstab) fstab_file.flush() mnted_disks = list_mnted_disks(iscsi_initiators) iscsi_initiators.exec_command(sudo=True, cmd="reboot", check_ec=False) sleep(200) iscsi_initiators.reconnect() iscsi_util.do_iptables_flush() mnted_disks_after_reboot = list_mnted_disks(iscsi_initiators) log.info("i/o exit code: {}, failover exit code{}".format(rc[0], rc[1])) log.info("disks before reboot:\n" + str(mnted_disks)) log.info("disks after reboot:\n" + str(mnted_disks_after_reboot)) log.info("number number of disks before reboot:" + str(len(mnted_disks))) log.info("number number of disks after reboot:" + str(len(mnted_disks_after_reboot))) if sum(rc) == 0 and mnted_disks_after_reboot == mnted_disks: iscsi_util.umount_directory(device_list, iscsi_initiators) iscsi_util.dissconect_linux_initiator(iscsi_initiators) iscsi_initiators.exec_command( sudo=True, cmd="mv /etc/fstab.backup /etc/fstab") return 0 else: return 1 def list_mnted_disks(iscsi_initiator): out, err = iscsi_initiator.exec_command( sudo=True, cmd="df -h | grep '/dev/mapper/mpa'| awk '{print $1}'") disks = out.read().decode() disks = disks.rstrip() disks = sorted(disks.split()) return disks def do_failover(iscsi_initiators, device_list, ceph_nodes): sleep(10) out, err = iscsi_initiators.exec_command( sudo=True, cmd="multipath -ll |grep -A 9 mpa" + device_list[0] + " " "|grep -A 1 status=active |awk -F " '" "'" '{print $(NF - 4)}'") active_device = out.read().decode() active_device = active_device.rstrip("\n") active_device = active_device.split() out, err = iscsi_initiators.exec_command( sudo=True, cmd="ls -l /dev/disk/by-path | grep " "" + active_device[1] + " |awk -F " '" "' " '{print $(NF - 2)}' |cut -d: -f1 | uniq", long_running=True) ip_to_restart = out ip_to_restart = ip_to_restart.rstrip("\n") ip_to_restart = ip_to_restart.split("-") for node in ceph_nodes: if node.role == "osd": out, err = node.exec_command(cmd="hostname -I") output = out.read().decode() output = output.rstrip() if output == ip_to_restart[1]: node.exec_command(sudo=True, cmd="reboot", check_ec=False) sleep(5) break sleep(40) out, err = iscsi_initiators.exec_command( sudo=True, cmd="multipath -ll |grep -A 9 mpa" + device_list[0] + " " "|grep -A 1 status=active |awk -F " '" "'" '{print $(NF - 4)}'") active_device_after_reboot = out.read().decode() active_device_after_reboot = active_device_after_reboot.rstrip("\n") active_device_after_reboot = active_device_after_reboot.split() t1 = datetime.datetime.now() time_plus_5 = t1 + datetime.timedelta(minutes=15) log.info("wating to get failed device active") while (1): t2 = datetime.datetime.now() if (t2 <= time_plus_5): sleep(40) out, err = iscsi_initiators.exec_command( sudo=True, cmd="multipath -ll |grep -A 9 mpa" "" + device_list[0] + " |grep -B 1 " + active_device[1] + " " "|awk -F " '" "' " '{print $(NF - 2)}'") active_device_status = out.read().decode() active_device_status = active_device_status.rstrip("\n") active_device_status = active_device_status.split() print(active_device_status) if (active_device_status[1] == "active"): rc = "active" break else: for node in ceph_nodes: if node.role == "osd": out, err = node.exec_command(cmd="hostname -I") output = out.read().decode() output = output.rstrip() if output == ip_to_restart[1]: node.exec_command(sudo=True, cmd="iptables -F") sleep(5) else: log.info("failed device didn't came up to active") rc = "not" print(active_device_status) print(active_device) print(active_device_after_reboot) if active_device[1] != active_device_after_reboot[1] and rc == "active": return 0 else: return 1
6,212
AI Based Augmented Writing Tools/code/process.py
AozakiHayate/RESEARCH-CV-NLP
0
2026052
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import pandas as pd import MeCab # 数据预处理 def preprocess(mecab, doc, stopwords): doc = doc.strip() if len(doc) > 0: seg_line = mecab.parse(doc) # 分词 # print(seg_line) return seg_line if __name__ == '__main__': # 读取停用词表 # stopwords = [w.strip() for w in open('data/stopwordslist.txt', 'r', encoding='utf-8').readlines()] stopwords = [] #分词第一步,第二部是停用词处理 #词性筛选 分词之后 根据任务, # 读取数据集 data = pd.read_csv("ldgourmet/ratings.csv") data_text = data['body'].tolist() # 评论数据集 # print(data_text) # mecab = MeCab.Tagger("-Ochasen") # 带词性标注 # おわかち mecab = MeCab.Tagger("-Owakati") # 仅仅分词 # 数据预处理 corpus = [preprocess(mecab, line, stopwords) for line in data_text if len(line) > 0] print(corpus) # 输出语料 with open("result/corpus.text", 'w', encoding="utf-8") as f: for text in corpus: f.write(text + '\n')
1,016
tools/python/get_submodules.py
codemzs/onnxruntime
4
2025712
from operator import attrgetter from pathlib import Path import argparse import configparser import json import re import pygit2 def format_component(submod): return {"component": {"type": "git", "git": {"commitHash": str(submod.head_id), "repositoryUrl": submod.url}}} def lookup_submodule(repo, submodule_path): submodule = repo.lookup_submodule(submodule_path) try: # Some submodules have names which don't correspond to the actual path in the repo # (e.g. 'git submodule init' was called with the --name option, or the submodule # was moved and the old name was kept). listall_submodules() returns submodule paths, # but pygit up to 1.0.1 requires the submodule name (not the path) in lookup_submodule # to be able to access the URL and other properties. # This seems to be a bug in pygit2, since its documentation says the submodules can # be opened by path. # If accessing the URL throws a RuntimeError, we get the submodule name manually from # .gitmodules. submodule.url return submodule except RuntimeError: pass config = configparser.ConfigParser() config.read(Path(repo.workdir, '.gitmodules')) for section in config.sections(): if config[section]['path'] == submodule_path: name = re.fullmatch('submodule "(.*)"', section).group(1) submodule = repo.lookup_submodule(name) return submodule raise NotImplementedError() # should not be reached def process_component(repo): return [lookup_submodule(repo, submod) for submod in repo.listall_submodules()] def recursive_process(base_repo): processed_subs = [] repos_to_process = [base_repo] while repos_to_process: repo = repos_to_process.pop() submodules = process_component(repo) processed_subs.extend(submodules) repos_to_process.extend([mod.open() for mod in submodules]) return {"Registrations":[format_component(component) for component in processed_subs]} def main(repo_path, output_file): repo = pygit2.Repository(repo_path) registrations = recursive_process(repo) with open(output_file, 'w') as f: json.dump(registrations, f, indent=4, sort_keys=True) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("base_repository", help="path to base repository to get registrations for.") parser.add_argument("-o", "--output", help="output file name.", default="cgmanifest.json") args = parser.parse_args() main(args.base_repository, args.output)
2,608
archive/colorgenetics_v2.py
austinpursley/audio-evo-algo
0
2025348
# color_evolution_v5.py # <NAME> # 5/6/2017 # The use of evolvetools for use with colors. import evolvetools as et import itertools import random import math class Palette: # class for color values and functions to change those values. def __init__(self): self.num_colors = 0 self.palette = [] self.rgb_palette = [] def set_num_colors(self, num_colors): self.num_colors = num_colors def create_palette_rand(self, num_colors): self.rgb_palette.clear() self.num_colors = num_colors for i in range(0, self.num_colors): self.rgb_palette.append([]) for j in range(0, 3): self.rgb_palette[i].append(random.randint(0,255)) self.palette.append("#%02x%02x%02x" % ((self.rgb_palette[i])[0], (self.rgb_palette[i])[1], (self.rgb_palette[i])[2])) def rgb_child(rgb_parent1, rgb_parent2, mutate=0): """ From two parents color values, make child color. :param rgb_parent1: List of int values corresponding to RGB colors. :param rgb_parent2: Second list of RGB colors. :param mutate: Optional probability value for if bit will mutate. :return: a RGB color list with bits from both parents. """ rgb_color = [0, 0, 0] for j in range(0, 3): rgb_color[j] = et.offspring(rgb_parent1[j], rgb_parent2[j],mutate) return rgb_color def palette_child(parent1, parent2, mutate = 0): """ Palete is list of colors. From two palettes, make similar child palette. :param parent1: A list of RGB colors. :param parent2: A list of RGB colors. :param mutate: Optional probability value for if bit will mutate. :return: A palette with bits from from both parents. """ plte_child = Palette() plte_child.num_colors = parent1.num_colors for i in range(plte_child.num_colors): mom = parent1.rgb_palette[i] dad = parent2.rgb_palette[i] child = rgb_child(mom, dad, mutate) plte_child.rgb_palette.append(child) plte_child.palette.append("#%02x%02x%02x"%(child[0],child[1],child[2])) return(plte_child) def palette_child_comb(parents,min_ospring_num, mutate = 0): """ Return a child for all combination of parents from a list of parents. :param parents: list of parents. :param min_ospring_num: A minimum number of children to make. :param mutate: Optional probability value for if bit will mutate. :return: A list of children made from parents. """ palette_child_list = [] L = len(parents) parent_pair_num = int(math.factorial(L)/math.factorial(L-2)) opp = int(round(min_ospring_num / parent_pair_num)) + 1 for p in itertools.permutations(parents, 2): mom = p[0] dad = p[1] for i in range(opp): palette_child_list.append(palette_child(mom, dad, mutate)) return palette_child_list
3,072
flod_sak/api/rapport_resource.py
Trondheim-kommune/Tilskuddsbasen
0
2026789
# -*- coding: utf-8 -*- from flask import request from flask.ext.restful import abort, marshal from flask.ext.bouncer import requires, ensure, POST, PUT, GET from api.fields import rapport_fields from base_resource import BaseResource from domain.models import Rapport from repo.rapport_repo import RapportRepo from validation.rapport_validator import RapportValidator class RapportResource(BaseResource): repo = RapportRepo() type_name = "rapport" @requires(GET, Rapport) def get(self, soknad_id=None, rapport_id=None): if rapport_id: rapport = self.get_by_id(rapport_id) if rapport.soknad_id != soknad_id: abort(403) ensure(GET, rapport) return marshal(rapport, rapport_fields) else: if soknad_id: rapporter = self.repo.find_by_where("soknad_id", soknad_id) return marshal(rapporter, rapport_fields) abort(404) @requires(PUT, Rapport) def put(self, soknad_id=None, rapport_id=None): data = request.get_json() rapport = self.get_by_id(rapport_id) if rapport.soknad_id != soknad_id: abort(403) ensure(PUT, rapport) self.validate_put_fields(data) rapport = self.repo.save(rapport, data) return marshal(rapport, rapport_fields) @staticmethod def validate_put_fields(data): validator = RapportValidator(data).validate_put_fields() if validator.has_errors(): abort(400, __error__=validator.errors) @requires(POST, Rapport) def post(self, soknad_id): rapport = Rapport() rapport.soknad_id = soknad_id ensure(POST, rapport) rapport = self.repo.create(rapport) return marshal(rapport, rapport_fields), 201
1,823
play.py
h-mayorquin/sequence_storage_capacity
0
2026605
from pprint import pprint import numpy as np m = 12 k = 4 o = 2 p = 3 # Initialize arrays p_array = np.ones(m) * p overlap_array = np.ones(m) * (o + 1) overlaps_dic = {} array = np.array([], dtype='int').reshape(0, m) sequences = [] index = 0 capacity = 0 flag = True #while(flag): for i in range(2): # Initialize the array array_line = np.zeros(m, dtype='int') # Throw a sequence bulding_sequence_index = 0 while bulding_sequence_index < k: # Get p_index p_index = index # Check p_index if p_array[p_index] > 0: p_flag = True # Get o index # o_index = index # Check overlap index # if overlap_array[o_index] > 0: # o_flag = True # Check for local overlaps overlaps_dic[capacity] = {index:0 for index in range(0, capacity)} o_dic = overlaps_dic[capacity] # Check every element of past sequencesif o_dic[sequence_index] local_overlap_flag = True for sequence_index in range(capacity): if o_dic[sequence_index] > o: local_overlap_flag = False # Lay the element if p_flag and local_overlap_flag: array_line[index] = capacity + 1 p_array[index] -= 1 bulding_sequence_index += 1 index += 1 else: index += 1 # Add overlap for sequence_index in range(capacity): # If there is an element if array[sequence_index, index] == 1: o_dic[sequence_index] += 1 # After finishing adding the sequence capacity += 1 array = np.vstack((array, array_line)) pprint(array)
1,700
app.py
cipherLord/Kronos
20
2026838
from flask import Flask, request,render_template, url_for, redirect, send_file, send_from_directory import string import json from SearchGrades import SearchGrades app = Flask(__name__) numberRecords = 0 jsonFile = open("data/Grades/yearWiseGrades.json", "r") data = json.load(jsonFile) jsonFile.close() courses = [] with open("data/courses.json","r") as f: courses_having_data = json.load(f) for key in data: string = "" try: string = key + " : " + courses_having_data[key]["name"] except: string = key courses.append(string) Grades = {} @app.route('/', methods = ['GET','POST']) def home(): if request.method == "POST": code = request.form.get('getCode') code = code.upper() code = "".join(code.split()) code = code[:7] Courselink = "" with open("data/data_file.json","r") as read_file: data = json.load(read_file) for key in data.keys(): if(key == code ): Courselink = "https://wiki.metakgp.org" + data[key] Grades = SearchGrades(code) numberRecords = len(Grades) if( Grades == 'NA'): if len (code) == 7 and code[:2].isalpha() and code[-5:].isdigit() : return render_template('kronos.html',courseCode = code, Grades = Grades, result = "no-data", courses = courses) else: return render_template('kronos.html',courseCode = code, Grades = Grades, result = "invalid-code", courses = courses) else: return render_template('kronos.html',courseCode = code, Grades = Grades, result = "show-grades",courses = courses, Cwikilink = Courselink) else: Grades = {} return render_template('kronos.html',courseCode = '', Grades = Grades, result = "on-start",courses = courses) if __name__=="__main__" : app.run() else: print(__name__)
1,920
docker-branch-tagging/docker_branch_tagging.py
Tethik/lame-cli-programs
1
2026938
import os import json import sys import re import subprocess from pathlib import Path import click TEMPLATE = """ { "develop": ["latest","{git_branch}"], "feature/(.+)": ["{git_branch}"], "master": ["master","{git_latest_version_tag}"] } """ CIRCLECI_TEMPLATE = """ { "develop": ["latest","develop-{CIRCLE_BUILD_NUM}","{git_branch}"], "feature/(.+)": ["{git_branch}"], "master": ["master","master-{CIRCLE_BUILD_NUM}","{git_latest_version_tag}"] } """ FILENAME = '.docker-branch-tagging' @click.group() @click.pass_context def cli(ctx): f = Path(FILENAME) if not f.exists(): init.invoke(ctx) ctx.obj['config'] = json.loads(f.read_text()) @cli.command() @click.option('--circleci', default=False, is_flag=True) def init(circleci=False): template = CIRCLECI_TEMPLATE if circleci else TEMPLATE Path(FILENAME).write_text(template.strip()) click.secho('Wrote sample {FILENAME} file'.format(FILENAME=FILENAME), color="blue") def tag_name(template, extras): locals().update(os.environ) # magic ;) locals().update(extras) return template.format(**locals()).replace("/", "-") def git_branch(): cmd = 'git rev-parse --abbrev-ref HEAD' return subprocess.check_output([cmd], shell=True).decode('utf-8').strip() def git_latest_version_tag(): try: cmd = 'git describe --abbrev=0 --match=[0-9]*.[0-9]*.[0-9]*' return subprocess.check_output([cmd], shell=True).decode('utf-8').strip() except: return 'unknown_version' def tag_names(ctx, image_name): extras = { 'git_branch': git_branch(), 'git_latest_version_tag': git_latest_version_tag() } print(extras['git_branch']) for branch_name_pattern, tags in ctx.obj['config'].items(): if re.match(branch_name_pattern, extras['git_branch']): return ["{image_name}:{tag_name_text}".format(image_name=image_name, tag_name_text=tag_name(template, extras)) for template in tags] @cli.command() @click.argument('image_name') @click.option('--dockerfile') @click.option('--build-arg', multiple=True) @click.pass_context def build(ctx, image_name, dockerfile=None, build_arg=None): tags = tag_names(ctx, image_name) if not tags: print("No build needed.") return if dockerfile: dockerfile = "-f {dockerfile}".format(dockerfile=dockerfile) else: dockerfile = "" tag_text = " -t ".join(tags) options = ["-t {tag_text}".format(tag_text=tag_text)] if build_arg: for b in build_arg: options.append("--build-arg {b}".format(b=b)) cmd = 'docker build {dockerfile} {options} .'.format(dockerfile=dockerfile, options=" ".join(options)) print(cmd) r = os.system(cmd) if r != 0: sys.exit(1) @cli.command() @click.argument('image_name') @click.pass_context def push(ctx, image_name): tags = tag_names(ctx, image_name) if not tags: print("No push needed.") return for tag in tags: cmd = "docker push {tag}".format(tag=tag) print(cmd) r = os.system(cmd) if r != 0: sys.exit(1) def main(): cli(obj={}) if __name__ == "__main__": main()
3,209
datasets/pedes.py
wettera/PersonReID-NAFS
47
2026022
import torch.utils.data as data import numpy as np import os import pickle import h5py import json from PIL import Image from utils.directory import check_exists from scipy.misc import imread, imresize import datasets.preprocess as preprocess class Namespace: def __init__(self, **kwargs): self.__dict__.update(kwargs) class CuhkPedes(data.Dataset): ''' Args: root (string): Base root directory of dataset where [split].pkl and [split].h5 exists split (string): 'train', 'val' or 'test' transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed vector. E.g, ''transform.RandomCrop' target_transform (callable, optional): A funciton/transform that tkes in the targt and transfomrs it. ''' def __init__(self, image_root, anno_root, split, max_length, transform=None, target_transform=None, \ cap_transform=None, vocab_path='', min_word_count=0): self.image_root = image_root self.anno_root = anno_root self.max_length = max_length self.transform = transform self.target_transform = target_transform self.cap_transform = cap_transform self.split = split.lower() self.vocab_path = vocab_path self.min_word_count = min_word_count if not check_exists(self.image_root): raise RuntimeError('Dataset not found or corrupted.' + 'Please follow the directions to generate datasets') print('Reading data from json') data = self.get_data_from_json() self.read_data(data) def add_caption_to_data(self, split_data, data): fname_dict = {jj['file_path']:jj for jj in split_data} judge = {jj['file_path']: 0 for jj in split_data} for fname in data['images_path']: judge[fname] = judge[fname] + 1 caption = [] for fname in data['images_path']: jj = fname_dict[fname] caption.append(jj['captions'][judge[fname] - 1]) judge[fname] = judge[fname] - 1 assert len(caption) == len(data['images_path']) data['captions'] = caption return data def get_data_from_json(self): args = Namespace(min_word_count=self.min_word_count, remove_stopwords = None, out_root=None) split_data = self.load_split(self.split) if self.vocab_path == '': print('Building vocabulary...') vocab = preprocess.build_vocab(split_data, args, write=False) else: print('Loading vocabulary from {}'.format(self.vocab_path)) vocab = self.load_vocab(self.vocab_path) split_metadata = preprocess.process_metadata(self.split, split_data, args, write=False) split_decodedata = preprocess.process_decodedata(split_metadata, vocab) data = preprocess.process_dataset(self.split, split_decodedata, args, write=False) data = self.add_caption_to_data(split_data, data) return data def load_split(self, split): split_root = os.path.join(self.anno_root, split + '_reid.json') with open(split_root, 'r') as f: split_data = json.load(f) print('load {} data from json done'.format(split)) return split_data def load_vocab(self, vocab_path): with open(os.path.join(vocab_path), 'rb') as f: word_to_idx = pickle.load(f) vocab = preprocess.Vocabulary(word_to_idx, len(word_to_idx)) print('load vocabulary done') return vocab def read_data(self, data): if self.split == 'train': self.train_labels = data['labels'] self.train_captions = data['captions'] self.train_images = data['images_path'] elif self.split == 'val': self.val_labels = data['labels'] self.val_captions = data['captions'] self.val_images = data['images_path'] elif self.split == 'test': self.test_labels = data['labels'] self.test_captions = data['captions'] self.test_images = data['images_path'] unique = [] new_test_images = [] for test_image in self.test_images: if test_image in new_test_images: unique.append(0) else: unique.append(1) new_test_images.append(test_image) self.unique = unique else: raise RuntimeError('Wrong split which should be one of "train","val" or "test"') def __getitem__(self, index): """ Args: index(int): Index Returns: tuple: (images, labels, captions) """ if self.split == 'train': img_path, caption, label = self.train_images[index], self.train_captions[index], self.train_labels[index] elif self.split == 'val': img_path, caption, label = self.val_images[index], self.val_captions[index], self.val_labels[index] else: img_path, caption, label = self.test_images[index], self.test_captions[index], self.test_labels[index] middle_path = "CUHK-PEDES/imgs" if middle_path not in img_path: img_path = os.path.join(self.image_root, middle_path, img_path) else: img_path = os.path.join(self.image_root, img_path) img = imread(img_path) img = imresize(img, (384,128)) if len(img.shape) == 2: img = np.dstack((img,img,img)) img = Image.fromarray(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: label = self.target_transform(label) return img, caption, label def __len__(self): if self.split == 'train': return len(self.train_labels) elif self.split == 'val': return len(self.val_labels) else: return len(self.test_labels)
6,224
rental_property/migrations/0016_rentalunit_rent_amount.py
shumwe/rental-house-management-system
1
2025561
# Generated by Django 4.0.2 on 2022-03-24 10:30 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rental_property', '0015_alter_maintanancenotice_maintanance_status'), ] operations = [ migrations.AddField( model_name='rentalunit', name='rent_amount', field=models.DecimalField(blank=True, decimal_places=2, max_digits=9, null=True), ), ]
468
nfv/nfv-vim/nfv_vim/tables/_tenant_table.py
SidneyAn/nfv
2
2025876
# # Copyright (c) 2015-2016 Wind River Systems, Inc. # # SPDX-License-Identifier: Apache-2.0 # from nfv_vim import database from nfv_vim.tables._table import Table _tenant_table = None class TenantTable(Table): """ Tenant Table """ def __init__(self): super(TenantTable, self).__init__() def _persist_value(self, value): database.database_tenant_add(value) def _unpersist_value(self, key): database.database_tenant_delete(key) def tables_get_tenant_table(): """ Get the tenant table """ return _tenant_table def tenant_table_initialize(): """ Initialize the tenant table """ global _tenant_table _tenant_table = TenantTable() _tenant_table.persist = False tenants = database.database_tenant_get_list() for tenant in tenants: _tenant_table[tenant.uuid] = tenant _tenant_table.persist = True def tenant_table_finalize(): """ Finalize the tenant table """ global _tenant_table del _tenant_table
1,035
tests/test_base.py
Salaah01/df-data-cleaner
5
2026304
"""Unitests for the `base` module.""" from unittest import TestCase from types import SimpleNamespace import pandas as pd from pandas_data_cleaner import base, exceptions from tests.utils import strategies class TestCleaningStrategy(TestCase): """Unittests for the `CleaningStrategy` class.""" def test_info(self): """Test that the `info` method returns a formated version of the docstring. """ self.assertIsInstance(base.CleaningStrategy.info(), str) def test_can_use_cleaner_pass(self): """Test that the `can_use_cleaner` method indicates `True` when a model has the attributes the method expects. """ instance = SimpleNamespace( dataframe=None, required_options=['option_1'], option_1=1, ) self.assertEqual( base.CleaningStrategy.can_use_cleaner(instance), (True, []) ) def test_can_use_cleaner_fail(self): """Test that the `can_use_cleaner` method indicates `False` when a model does not have the attributes the method expects. """ instance = SimpleNamespace( dataframe=None, required_options=['option_1'], ) can_use, missing_opts = base.CleaningStrategy.can_use_cleaner(instance) self.assertFalse(can_use, missing_opts) self.assertEqual(len(missing_opts), 1) def test_validate_options_pass(self): """Test that the `validate_options` method does not raise an error when the model has the attributes the method expects. """ instance = SimpleNamespace( can_use_cleaner=lambda: (True, []), ) base.CleaningStrategy.validate_options(instance) def test_validate_options_fail(self): """Test that the `validate_options` method raises an error when the model does not have the attributes the method expects. """ instance = SimpleNamespace( dataframe=None, model=SimpleNamespace(), can_use_cleaner=lambda: (False, ["Failed"]), ) with self.assertRaises(exceptions.MissingOptionsError): base.CleaningStrategy.validate_options(instance) class TestCleanData(TestCase): """Unittests for the `clean_data` function.""" def test_can_apply_strategies(self): """Test that the method is able to apply various cleaning strategies on a dataframe. """ # Create a test dataframe. dataframe = pd.DataFrame({ "col1": [1, 2, 3], "col2": [4, 5, 6], "col3": [7, 8, 9], }) # make a copy of the dataframe to test that the strategies are applied # in the correct order. results = base.clean_data( dataframe, [strategies.ReverseStrategy, strategies.FirstXRowsStrategy], x_top_rows=2 ).reset_index(drop=True) expected_results = pd.DataFrame({ "col1": [3, 2], "col2": [6, 5], "col3": [9, 8], }) self.assertTrue( results.equals(expected_results), f"\nActual:\n{results}\nExpected:\n{expected_results}", ) def test_no_mutations(self): """Test that the original dataframe is not mutated.""" dataframe = pd.DataFrame({ "col1": [1, 2, 3], "col2": [4, 5, 6], "col3": [7, 8, 9], }) dataframe_copy = dataframe.copy() base.clean_data(dataframe, [strategies.ReverseStrategy]) self.assertTrue(dataframe.equals(dataframe_copy))
3,661