max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
BlackScholes.py
alienbrett/black_scholes
0
2026479
""" @author: <NAME> @Description: The class contains the methods for pricing options using Black-Scholes Formula """ from math import sqrt, pi import scipy as sp import scipy.special import numpy as np def mass_broadcast(*args): '''Cast some list of vectors of shape(a_i, 1) or (a_i,) to the same uniform (l,1) ''' l = 0 xs = [] for i, x in enumerate(args): xs.append( np.asarray(x).reshape(-1,1) ) l = max(l, xs[i].shape[0]) for i, x in enumerate(xs): xs[i] = np.broadcast_to(x, (l, 1)) return xs class IncorrectInputs(Exception): pass class TimeoutException(Exception): pass class BlackScholes: #the constructor for the class def __init__(self, spot_price, strike_price, time_to_maturity, interest_rate, sigma, dividend_yield=0): ''' initializtion parameters ''' [ self.spot_price, self.strike_price, self.time_to_maturity, self.interest_rate, self.sigma, self.dividend_yield ] = mass_broadcast( spot_price, strike_price, time_to_maturity, interest_rate, sigma, dividend_yield ) # self.spot_price = np.asarray(spot_price).astype(float) # # #checking if strike price is an array or not # if(not(hasattr(strike_price, "__len__"))): # self.strike_price = np.ones(len(spot_price))*strike_price # else: # self.strike_price = strike_price # #checking if time to maturity is an array or not # if(not(hasattr(time_to_maturity, "__len__"))): # self.time_to_maturity = np.ones(len(spot_price))*time_to_maturity # else: # self.time_to_maturity = time_to_maturity # #checking if interest rate is an array or not # if(not(hasattr(interest_rate, "__len__"))): # self.interest_rate = np.ones(len(spot_price))*interest_rate # else: # self.interest_rate = interest_rate # #checking if volatility is an array or not # if(not(hasattr(sigma, "__len__"))): # self.sigma = np.ones(len(spot_price))*sigma # else: # self.sigma = sigma # # #checking if dividend yield is an array or not # if(not(hasattr(dividend_yield, "__len__"))): # self.dividend_yield = np.ones(len(spot_price))*dividend_yield # else: # self.dividend_yield = dividend_yield #private method for erf function def bls_erf_value(self,input_number): erf_out = 0.5*(1 + sp.special.erf(input_number/sqrt(2.0))) return erf_out #vectorized method to price call option def european_option_price(self): "Price of the call option" "the vectorized method can compute price of multiple options in array" numerator = sp.add( sp.log( sp.divide( self.spot_price, self.strike_price, ) ), sp.multiply( ( self.interest_rate - self.dividend_yield + 0.5*sp.power(self.sigma,2) ), self.time_to_maturity) ) d1 = sp.divide( numerator, sp.prod( [ self.sigma, sp.sqrt(self.time_to_maturity) ], axis=0, ) ) d2 = sp.add( d1, -sp.multiply( self.sigma, sp.sqrt(self.time_to_maturity) ) ) ecall = sp.product( [ self.spot_price, self.bls_erf_value(d1), sp.exp(sp.multiply(-self.dividend_yield,self.time_to_maturity)) ], axis=0 ) - sp.product( [ self.strike_price, self.bls_erf_value(d2), sp.exp( -sp.multiply( self.interest_rate, self.time_to_maturity, ) ) ], axis=0, ) eput = sp.product( [ -self.spot_price, self.bls_erf_value(-d1), sp.exp( sp.multiply( -self.dividend_yield, self.time_to_maturity ) ) ], axis=0, ) + sp.product( [ self.strike_price, self.bls_erf_value(-d2), sp.exp( -sp.multiply( self.interest_rate, self.time_to_maturity ) ) ], axis=0, ) return ecall, eput #delta of the option def european_option_delta(self): numerator = sp.add( sp.log( sp.divide( self.spot_price, self.strike_price ) ), sp.multiply( ( self.interest_rate - self.dividend_yield + 0.5*sp.power(self.sigma,2)), self.time_to_maturity ) ) d1 = sp.divide( numerator, sp.prod( [ self.sigma, sp.sqrt(self.time_to_maturity) ], axis=0, ) ) call_delta = self.bls_erf_value(d1) put_delta = call_delta - 1 return call_delta, put_delta #gamma of the option (under construction) def european_option_gamma(self): pass #vega of the option def european_option_vega(self): numerator = sp.add( sp.log( sp.divide( self.spot_price, self.strike_price ) ), sp.multiply( ( self.interest_rate - self.dividend_yield + 0.5*sp.power(self.sigma,2)), self.time_to_maturity ) ) d1 = sp.divide( numerator, sp.prod( [ self.sigma, sp.sqrt(self.time_to_maturity) ], axis=0, ) ) val = sp.multiply( sp.multiply( self.spot_price, sp.exp( -sp.multiply( self.dividend_yield, self.time_to_maturity ) ) ), sp.exp(-sp.square(d1)*0.5) ) val = sp.multiply( val, sp.sqrt(self.time_to_maturity) ) vega = (1/sqrt(2*pi))*val return vega #theta of the option def european_option_theta(self): pass #rho of the option def european_option_rho(self): "Price of the call option" "the vectorized method can compute price of multiple options in array" numerator = sp.add( sp.log( sp.divide( self.spot_price, self.strike_price, ) ), sp.multiply( ( self.interest_rate - self.dividend_yield + 0.5*sp.power(self.sigma,2) ), self.time_to_maturity) ) d1 = sp.divide( numerator, sp.prod( [ self.sigma, sp.sqrt(self.time_to_maturity) ], axis=0, ) ) d2 = sp.add( d1, -sp.multiply( self.sigma, sp.sqrt(self.time_to_maturity) ) ) j = sp.product( [ self.spot_price, self.time_to_maturity, sp.exp( sp.multiply( -self.interest_rate, self.time_to_maturity ) ), ], axis=0 ) c_rho = j * self.bls_erf_value(d2) p_rho = -j * self.bls_erf_value(-d2) return c_rho, p_rho
6,412
SolutionTable.py
KOLANICH-libs/SolutionTable
1
2026397
import numpy as np import scipy as sp import scipy.linalg from matplotlib import pyplot as plt from math import isclose class Table: """ Tries to solve logical problems in Bayessian framework. !!! Doesn't work for now !!! """ __slots__ = ("axes", "tensor") def __init__(self, *labels): axCount = len(labels) labelsNew = [] for ax in labels: ax = {l: i for i, l in enumerate(ax)} labelsNew.append(ax) labels = labelsNew self.axes = labels shape = tuple(len(lS) for lS in labels) self.tensor = self.getUniform(shape) self.axes = labels @property def shape(self): return self.tensor.shape[0] @classmethod def getUniform(cls, shape): """Returns a Uniform distribution, normalized to 1 for **whole matrix**""" return np.ones(shape) * 1.0 / np.product(shape) # * self.shape def iterMinor(self, i, j): """Iterates over a matrix minor, yields INDICES""" for l in range(self.shape): for k in range(self.shape): if not (l == i or k == j): yield (l, k) def iterExcept(self, i, j): """Iterates over all the els of a matrix, except the selected one""" for l in range(self.shape): for k in range(self.shape): if not (l == i and k == j): yield (l, k) def getMinor(self, i, j): """Returns a minor as a matrix""" return np.delete(np.delete(self.tensor, i, axis=0), j, axis=1) def equal(self, a, b): """Updates the posterior so that `a` maps to `b` with probability of 1.""" i = self.axes[0][a] j = self.axes[1][b] self.bayesUpdate(self.getSingleElConditioned(1., i, j)) def isNot(self, a, b): """Updates the posterior so that `a` cannot map to `b` (in other words, maps to it with probability of `0`).""" i = self.axes[0][a] j = self.axes[1][b] self.bayesUpdate(self.getSingleElConditioned(0., i, j)) def getSingleElConditioned(self, probability, i, j): """Generates conditional distribution so that `a` cannot map to `b` (in other words, maps to it with probability of `0`).""" cond = np.zeros(self.tensor.shape) rowNorm = 1.0 / self.shape elNorm = probability * rowNorm restRowNorm = rowNorm - elNorm restRowEl = restRowNorm / (self.shape - 1) cond[i, :] = restRowEl cond[:, j] = restRowEl cond[i, j] = elNorm probabilityForTheMinorRow = rowNorm - restRowEl itemsInMinorRow = self.shape - 1 minorRowEl = probabilityForTheMinorRow / itemsInMinorRow for el in self.iterMinor(i, j): cond[el] = minorRowEl plt.matshow(cond) plt.colorbar() plt.grid() plt.show() assert isclose(np.sum(cond), 1.), "Conditional probability distribution must normalize to 1 over whole matrix" return cond def plot(self): """A convenience routine to plot the shit""" plt.matshow(self.tensor) plt.colorbar() plt.grid() plt.show() def bayesUpdate(self, cond): """Updates the posterior in the tensor. (posterior := P(X|D)) * (margLik := P(D)) = (cond := P(D|X)) * (prior := P(X)) """ prior = self.tensor #assert isclose(np.sum(prior), 1.), "Prior distribution must normalize to 1 over the whole matrix, but: " + str(np.sum(prior)) joint_cond = prior * cond #elementNorm = 1. / self.shape / self.shape #assert isclose(np.sum(self.getUniform(prior.shape) - (prior + (elementNorm - prior))), 0.), "Uniform is the marginal prior" #margLik = self.getUniform(prior.shape) * cond # getUniform() === (prior + (elementNorm - prior)) #assert isclose(np.sum(margLik), 1.), "marginal likelyhood must normalize to 1 over the whole matrix, but: " + str(np.sum(margLik)) #margLik = self.getUniform(prior.shape) rowNorm = 1. / self.shape elNorm = rowNorm / self.shape #plt.matshow(margLik) #plt.colorbar() #plt.grid() #plt.show() #posterior = np.zeros(joint_cond.shape) posterior = joint_cond # We need to replace this shit with something calculated analytically in a single step, and without using z3 or sympy or any other symbolic solver. # It is likely that to do it we just need to make all the marginals uniform (even if the product is not factored into marginals) # I guess it may be possible to express it in a form solving it via gaussian elimination. An eigenvector as a variant. for k in range(100): for i in range(self.shape): #for j in range(self.shape): # if margLik[i, j]: # posterior[i, j] = joint_cond[i, j] / margLik[i, j] #posterior[i] = joint_cond[i] # only alternating order works! currentRowNorm = np.sum(joint_cond[i]) posterior[i] *= rowNorm / currentRowNorm #posterior[:, i] = joint_cond[:, i] currentCollNorm = np.sum(joint_cond[:, i]) posterior[:, i] *= rowNorm / currentCollNorm #posterior[i] /= np.sum(posterior[i]) / self.shape #posterior[:, i] = joint_cond[:, i] #posterior[:, i] /= np.sum(posterior[:, i]) / self.shape plt.matshow(posterior) plt.colorbar() plt.grid() plt.show() #assert isclose(np.sum(posterior), 1.), "Posterior must normalize to 1 over the whole matrix, but: " + str(np.sum(posterior)) self.tensor = posterior def buildAlphaVec(a): """A vector of "α" values. k is step of solution. k=0 is prior, k=1 is posterior got from prior with 1 conditional applied, k=2 - with 2 conditionals applied and so on. a_{l,(k+1)} = α(a_{l,(k)}) @ a_{l,(k+1)} -- it is the result of resolution of the equation wrt a_{l,(k+1)}, where `l` is the equation number and α(a_{l,(k)}) := a_{l,(k)} / ( 1 - a_{l,(k)}/\\sum_{j}{a_{j,(k)}} ) -- the vector generated by this function""" alpha = np.zeros(len(a)) norm = np.sum(a) for l in range(len(a)): #alpha[l] = 1 / (1 - a[l] / norm) alpha[l] = a[l] / norm return alpha def buildBMat(old, coords): """A matrix for an eigenvector-like problem for eigenvalue of 1. Need to solve it with Gaussian elimination. `coords is a try to exclude the row corresponding to the modified element from the matrix in order to prevent it from being relaxed, it must be rigid. Doesn't work for now.""" alpha = buildAlphaVec(old) B = np.ones((len(old), len(old))) for i in range(len(old)): for j in range(len(old)): B[i, j] = alpha[i] if i == j: if coords is None or coords[0] != i: B[i, j] -= 1 else: pass return B def computeNewShit(a, coords=None): """Tries to relax a vector with elements modified to a new value satisfying the normalization to 1.""" B = buildBMat(a, coords) # det B === 0 #return scipy.linalg.solve(B, np.zeros(len(a))) if coords is not None: coord2ReplaceWithNormN = coords[0] else: coord2ReplaceWithNormN = -1 #replace the last row with normalization for i in range(len(a)): B[coord2ReplaceWithNormN, i] = 1.0 if coords is not None: B[coords[0], coords[0]] = 0.0 rhs = np.zeros(len(a)) if coords is not None: rhs[coord2ReplaceWithNormN] = 1.0 - a[coords] else: rhs[coord2ReplaceWithNormN] = 1.0 return np.linalg.solve(B, rhs)
6,839
meine_stadt_transparent/settings/security.py
CatoTH/opensourceris
1
2026340
from meine_stadt_transparent.settings.env import env SECURE_CONTENT_TYPE_NOSNIFF = True SECURE_BROWSER_XSS_FILTER = True SESSION_COOKIE_SECURE = True CSRF_COOKIE_SECURE = True X_FRAME_OPTIONS = "DENY" SECURE_HSTS_SECONDS = 365 * 24 * 60 * 60 SECURE_HSTS_PRELOAD = True # There might be deployments where a subdomain is still without https SECURE_HSTS_INCLUDE_SUBDOMAINS = env.bool("SECURE_HSTS_INCLUDE_SUBDOMAINS", True) CSP_DEFAULT_SRC = ("'self'",) if env.bool("MINIO_REDIRECT", False): if env.str("MINIO_PUBLIC_HOST"): endpoint = env.str("MINIO_PUBLIC_HOST") secure = env.bool("MINIO_PUBLIC_SECURE", True) else: endpoint = env.str("MINIO_HOST") secure = env.bool("MINIO_SECURE", False) CSP_DEFAULT_SRC += (("https://" if secure else "http://") + endpoint,) CSP_SCRIPT_SRC = ("'self'",) + env.tuple("CSP_EXTRA_SCRIPT", default=tuple()) CSP_IMG_SRC = ("'self'", "data:") + env.tuple("CSP_EXTRA_IMG", default=tuple()) if env.str("MAP_TILES_PROVIDER", "OSM") == "OSM": CSP_IMG_SRC = CSP_IMG_SRC + ( "a.tile.openstreetmap.org", "b.tile.openstreetmap.org", "c.tile.openstreetmap.org", ) if env.str("MAP_TILES_PROVIDER", "OSM") == "Mapbox": CSP_IMG_SRC = CSP_IMG_SRC + ("api.tiles.mapbox.com", "api.mapbox.com") SENTRY_HEADER_ENDPOINT = env.str("SENTRY_HEADER_ENDPOINT", None) CSP_CONNECT_SRC = ("'self'", "sentry.io") + env.tuple( "CSP_CONNECT_SRC", default=tuple() ) if SENTRY_HEADER_ENDPOINT: CSP_REPORT_URI = SENTRY_HEADER_ENDPOINT # Those are not covered by default-src CSP_FORM_ACTION = ("'self'",) CSP_FRAME_SRC = ("'self'",) + env.tuple("CSP_FRAME", default=tuple()) CSP_FRAME_ANCESTORS = ("'self'",) + env.tuple("CSP_FRAME", default=tuple()) # Hack for Landshut, where the RIS has a broken ssl configuration (intermediate ceritificate missing) SSL_NO_VERIFY = env.bool("SSL_NO_VERIFY", False)
1,897
tools/ipp_custom_library_tool_python/tool/core.py
lanlanlufeng/ipp-crypto
233
2025248
""" Copyright 2018-2021 Intel Corporation. This software and the related documents are Intel copyrighted materials, and your use of them is governed by the express license under which they were provided to you (License). Unless the License provides otherwise, you may not use, modify, copy, publish, distribute, disclose or transmit this software or the related documents without Intel's prior written permission. This software and the related documents are provided as is, with no express or implied warranties, other than those that are expressly stated in the License. License: http://software.intel.com/en-us/articles/intel-sample-source-code-license-agr eement/ """ import os from subprocess import call # nosec from tool import utils from tool.generators import main_file_generator, EXPORT_GENERATORS, build_script_generator, custom_dispatcher_generator def generate_script(): """ Generates build script """ host = utils.HOST_SYSTEM output_path = utils.CONFIGS[utils.OUTPUT_PATH] if not os.path.exists(output_path): os.makedirs(output_path) with open(os.path.join(output_path, utils.MAIN_FILE_NAME + '.c'), 'w') as main_file: main_file.write(main_file_generator()) if utils.CONFIGS[utils.CUSTOM_CPU_SET]: with open(os.path.join(output_path, utils.CUSTOM_DISPATCHER_FILE_NAME) + '.c', 'w') as custom_dispatcher_file: custom_dispatcher_file.write(custom_dispatcher_generator()) with open(os.path.join(output_path, utils.EXPORT_FILE[host]), 'w') as export_file: EXPORT_GENERATORS[host](export_file, utils.CONFIGS[utils.FUNCTIONS_LIST]) script_path = os.path.join(output_path, utils.CONFIGS[utils.BUILD_SCRIPT_NAME]) with open(script_path, 'w') as build_script: build_script.write(build_script_generator()) os.chmod(script_path, 0o745) return os.path.exists(script_path) def build(): """ Builds dynamic library :return: True if build was successful and False in the opposite case """ success = generate_script() if not success: return False output_path = utils.CONFIGS[utils.OUTPUT_PATH] error = call([os.path.join(output_path, utils.CONFIGS[utils.BUILD_SCRIPT_NAME])]) if error: return False os.remove(os.path.join(output_path, utils.MAIN_FILE_NAME + '.c')) os.remove(os.path.join(output_path, utils.MAIN_FILE_NAME + '.obj')) os.remove(os.path.join(output_path, utils.EXPORT_FILE[utils.HOST_SYSTEM])) os.remove(os.path.join(output_path, utils.CONFIGS[utils.BUILD_SCRIPT_NAME])) if utils.CONFIGS[utils.CUSTOM_CPU_SET]: os.remove(os.path.join(output_path, utils.CUSTOM_DISPATCHER_FILE_NAME + '.obj')) return True
2,748
maskrcnn_benchmark/data/samplers/__init__.py
henrywang1/maskrcnn-few
1
2025955
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from .distributed import DistributedSampler from .grouped_batch_sampler import GroupedBatchSampler from .grouped_batch_sampler import QuerySupportSampler from .iteration_based_batch_sampler import IterationBasedBatchSampler __all__ = ["DistributedSampler", "GroupedBatchSampler", "IterationBasedBatchSampler", "QuerySupportSampler"]
417
oops_fhir/r4/code_system/task_status.py
Mikuana/oops_fhir
0
2026244
from pathlib import Path from fhir.resources.codesystem import CodeSystem from oops_fhir.utils import CodeSystemConcept __all__ = ["TaskStatus"] _resource = CodeSystem.parse_file(Path(__file__).with_suffix(".json")) class TaskStatus: """ TaskStatus The current status of the task. Status: draft - Version: 4.0.1 Copyright None http://hl7.org/fhir/task-status """ draft = CodeSystemConcept( { "code": "draft", "definition": "The task is not yet ready to be acted upon.", "display": "Draft", } ) """ Draft The task is not yet ready to be acted upon. """ requested = CodeSystemConcept( { "code": "requested", "definition": "The task is ready to be acted upon and action is sought.", "display": "Requested", } ) """ Requested The task is ready to be acted upon and action is sought. """ received = CodeSystemConcept( { "code": "received", "definition": "A potential performer has claimed ownership of the task and is evaluating whether to perform it.", "display": "Received", } ) """ Received A potential performer has claimed ownership of the task and is evaluating whether to perform it. """ accepted = CodeSystemConcept( { "code": "accepted", "definition": "The potential performer has agreed to execute the task but has not yet started work.", "display": "Accepted", } ) """ Accepted The potential performer has agreed to execute the task but has not yet started work. """ rejected = CodeSystemConcept( { "code": "rejected", "definition": "The potential performer who claimed ownership of the task has decided not to execute it prior to performing any action.", "display": "Rejected", } ) """ Rejected The potential performer who claimed ownership of the task has decided not to execute it prior to performing any action. """ ready = CodeSystemConcept( { "code": "ready", "definition": "The task is ready to be performed, but no action has yet been taken. Used in place of requested/received/accepted/rejected when request assignment and acceptance is a given.", "display": "Ready", } ) """ Ready The task is ready to be performed, but no action has yet been taken. Used in place of requested/received/accepted/rejected when request assignment and acceptance is a given. """ cancelled = CodeSystemConcept( { "code": "cancelled", "definition": "The task was not completed.", "display": "Cancelled", } ) """ Cancelled The task was not completed. """ in_progress = CodeSystemConcept( { "code": "in-progress", "definition": "The task has been started but is not yet complete.", "display": "In Progress", } ) """ In Progress The task has been started but is not yet complete. """ on_hold = CodeSystemConcept( { "code": "on-hold", "definition": "The task has been started but work has been paused.", "display": "On Hold", } ) """ On Hold The task has been started but work has been paused. """ failed = CodeSystemConcept( { "code": "failed", "definition": "The task was attempted but could not be completed due to some error.", "display": "Failed", } ) """ Failed The task was attempted but could not be completed due to some error. """ completed = CodeSystemConcept( { "code": "completed", "definition": "The task has been completed.", "display": "Completed", } ) """ Completed The task has been completed. """ entered_in_error = CodeSystemConcept( { "code": "entered-in-error", "definition": "The task should never have existed and is retained only because of the possibility it may have used.", "display": "Entered in Error", } ) """ Entered in Error The task should never have existed and is retained only because of the possibility it may have used. """ class Meta: resource = _resource
4,576
ven2/lib/python2.7/site-packages/zope/publisher/interfaces/ftp.py
manliu1225/Facebook_crawler
0
2025445
############################################################################## # # Copyright (c) 2001, 2002 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Virtual File System interfaces for the publisher. """ __docformat__ = "reStructuredText" from zope.interface import Interface from zope.publisher.interfaces import IPublishTraverse from zope.publisher.interfaces import IRequest from zope.publisher.interfaces import IView class IFTPRequest(IRequest): """FTP Request """ class IFTPView(IView): """FTP View""" class IFTPCredentials(Interface): def _authUserPW(): """Return (login, password) if there are basic credentials; return None if there aren't.""" def unauthorized(challenge): """Cause a FTP-based unautorized error message""" class IFTPPublisher(IPublishTraverse): """FTP Publisher"""
1,344
python/nano/src/bigdl/nano/utils/inference/model.py
sgwhat/BigDL
0
2025563
# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from abc import ABC import yaml from pathlib import Path from bigdl.nano.utils.log4Error import invalidInputError class AcceleratedModel(ABC): def forward(self, *inputs): inputs = self.on_forward_start(inputs) outputs = self.forward_step(*inputs) return self.on_forward_end(outputs) def on_forward_start(self, inputs): return inputs def forward_step(self, *inputs): invalidInputError(False, "Method 'forward_step' is not implemented.") def on_forward_end(self, outputs): return outputs @staticmethod def tensors_to_numpy(tensors): invalidInputError(False, "Method 'tensors_to_numpy' is not implemented.") @staticmethod def numpy_to_tensors(np_arrays): invalidInputError(False, "Method 'numpy_to_tensors' is not implemented.") def _dump_status(self, path): meta_path = Path(path) / "nano_model_meta.yml" with open(meta_path, 'w') as f: yaml.safe_dump(self.status, f) def _save_model(self, path): """ Save the model file to directory. :param path: Path to saved model. Path should be a directory. """ invalidInputError(False, "Saving function is not implemented.") def _save(self, path): """ Save the model to local file. :param path: Path to saved model. Path should be a directory. """ path = Path(path) Path.mkdir(path, exist_ok=True) self._dump_status(path) self._save_model(path) @property def status(self): return {"ModelType": type(self).__name__} @staticmethod def _load_status(path): meta_path = Path(path) / "nano_model_meta.yml" with open(meta_path, 'r') as f: metadata = yaml.safe_load(f) return metadata @staticmethod def _load(path, model=None): invalidInputError(False, "Loading function is not implemented.")
2,540
ai_flow/test/common/test_properties.py
flink-extended/ai-flow
79
2024405
# # Copyright 2022 The AI Flow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import unittest from ai_flow.common.properties import Properties class TestProperties(unittest.TestCase): def test_create_properties(self): print("\n") p = Properties(a="aa", b=['a', 'b']) self.assertEqual(p['a'], 'aa') if __name__ == '__main__': unittest.main()
889
main.py
Georege/python_random_password
0
2026804
#!/usr/bin/python3 env # encoding=utf-8 import secrets import string import random from tkinter import * from tkinter import messagebox ''' String模块中的常量: string.digits:数字0~9 string.ascii_letters:所有字母(大小写) string.lowercase:所有小写字母 string.printable:可打印字符的字符串 string.punctuation:所有标点,即特殊字符 string.uppercase:所有大写字母 ''' # 生成 def init_pass(pass_length=24, special_character_length=2): # generate for a many character password password = ''.join(secrets.choice(string.ascii_letters + string.digits) for i in range(pass_length-special_character_length)) password += ''.join(secrets.choice(string.punctuation) for i in range(special_character_length)) password_list = list(password) random.shuffle(password_list) password = ''.join(password_list) info_output.config(state='normal') info_output.delete("1.0", 'end') info_output.insert('end', '{}'.format(len(password))) info_output.config(state='disabled') miyue_output.config(state='normal') miyue_output.delete("1.0", 'end') miyue_output.insert('end', '{}'.format(password)) miyue_output.config(state='disabled') messagebox.showinfo( '系统提示:', "生成完毕") # 复制 def copy(): miyue = miyue_output.get('0.0', 'end-1c') root.clipboard_clear() root.clipboard_append(miyue) root.update() messagebox.showinfo('系统提示:', '{}\n复制成功'.format(miyue)) if __name__ == "__main__": root = Tk() root.title("python生成随机设定位数的密码") root.resizable(width=False, height=False) # line 1 Label(root, text="密钥整体长度:").grid( row=1, column=1) Button(root, text="生成", command=lambda: init_pass( vari.get(), vari_special.get())).grid(row=1, column=5, rowspan=3, padx=10) # line 2 length_list = [ '8', '12', '24', '32' ] vari = IntVar() vari.set(24) for each in length_list: Radiobutton(root, variable=vari, text=each, value=each).grid( row=2, column=length_list.index(each)+1) # line 3 Label(root, text="特殊字符个数:").grid( row=3, column=1) # line 4 special_character_list = [ '2', '3', '4' ] vari_special = IntVar() vari_special.set(2) for each in special_character_list: Radiobutton(root, variable=vari_special, text=each, value=each).grid( row=4, column=special_character_list.index(each)+1) Button(root, text="复制", command=lambda: copy()).grid( row=4, column=5, rowspan=3, padx=10) # line 5 Label(root, text="随机密码的长度是长度:").grid( row=5, column=1) info_output = Text(root, width=40, height=1) info_output.grid( row=5, column=2, columnspan=3) # line 6 Label(root, text="密码是:").grid( row=6, column=1) miyue_output = Text(root, width=40, height=1) miyue_output.grid( row=6, column=2, columnspan=3) root.mainloop()
2,962
slave.py
thanhbok26b/mujoco-rewards-landscape-visualization
0
2025544
import time from mujoco_parallel import WorkerManager # Start workers wm = WorkerManager() wm.start_redis() wm.create_workers() # Wait for eternity while 1: time.sleep(3600)
177
relay/udp.py
OliverF/boxy
13
2026705
import sys import socket import threading import status _kill = False _relayport = 0 _remoteaddress = "" _remoteport = 0 def relay(): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.bind(("0.0.0.0", _relayport)) incomingsetup = False clientport = 0 clientip = "" while True: data, fromaddr = sock.recvfrom(1024) if (_kill == True): sock.close() return if (incomingsetup == False): clientport = fromaddr[1] clientip = fromaddr[0] incomingsetup = True if (fromaddr[0] == clientip): #forward from client to server sock.sendto(data, (_remoteaddress, _remoteport)) status.bytestoremote += sys.getsizeof(data) else: #forward from server to client sock.sendto(data, (clientip, clientport)) status.bytesfromremote += sys.getsizeof(data) def start(relayport, remoteaddress, remoteport): global _relayport global _remoteaddress global _remoteport _relayport = relayport _remoteaddress = remoteaddress _remoteport = remoteport relaythread = threading.Thread(target = relay) relaythread.start() def stop(): _kill = True #send anything to the input port to trigger it to read, therefore allowing the thread to close quitsock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) quitsock.sendto("killing", ("127.0.0.1", _relayport)) quitsock.close()
1,319
setup.py
MZehren/Automix
18
2025433
#!/usr/bin/env python import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name='AutoMix', version='0.1', author="<NAME>", author_email="<EMAIL>", description="Automatic DJ-mixing of tracks", long_description=long_description, install_requires=[ "numpy", "scipy", "cython", "matplotlib", "pandas", "pyaudio", "madmom", "librosa", "essentia", "youtube-dl", "scdl", "mir_eval", "msaf", "graphviz" ], packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", ], )
663
algorithms/sorting/count_sort.py
karim7262/algorithms-and-datastructures-python
1
2026329
""" The count sort is a non-comparison based sorting algorithm: In other words, it sorts items in a list without having to compare them. The counting sort algorithm only works with integers. It sorts the integers in an array by creating a second array based on the range of values in the original array(max-min). Initially it populates the second array with 0s. It then counts the number of occcurence of each item in the original array. It then updates that value in the second array. """ class CountSort(object): def __init__(self, data): self.data = data self.count_array = [0 for _ in range((max(data)-min(data))+1)] # First we count all the items in data and the number of times they occur # Indexes start from 0 + we have to consider negative indexes as well for i in range(len(self.data)): self.count_array[self.data[i]-min(self.data)] += 1 # Now consider the counting array: see how many times an entry occurs z=0 for i in range(min(self.data), max(self.data)+1): while self.count_array[i-min(self.data)] > 0: self.data[z] = i z += 1 self.count_array[i-min(self.data)] -= 1
1,211
sitemapext/runtests/settings.py
ligonier/django-sitemap-extras
5
2025539
import os, sys from logging import Handler sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) DEBUG = False TEMPLATE_DEBUG = DEBUG ADMINS = ( ('<NAME>', '<EMAIL>'), ) ENGINE = 'django.db.backends.sqlite3' NAME = 'test' DATABASES = { 'default': { 'ENGINE': ENGINE, # Add 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'. 'NAME': NAME, # Or path to database file if using sqlite3. } } # Django 1.1 compat DATABASE_ENGINE = ENGINE DATABASE_NAME = NAME # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/New_York' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # Absolute path to the directory that holds media. # Example: "/home/media/media.lawrence.com/" MEDIA_ROOT = 'media' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash if there is a path component (optional in other cases). # Examples: "http://media.lawrence.com", "http://example.com/media/" MEDIA_URL = '/media/' # Make this unique, and don't share it with anybody. SECRET_KEY = 'wzf0h@r2u%m^_zgj^39qwerqwerwerwerq1asdfasdfasdft%^2!p' ROOT_URLCONF = 'urls' INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.admin', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.admindocs', 'django.contrib.comments', 'django.contrib.sites', 'django.contrib.sitemaps', 'sitemapext', ) SITEMAPS_CONFIG = { 'DEBUG': True } LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
2,558
main.py
canonicalchris/gcnlp2conllu
0
2022725
# Does a Google Cloud NLP JSON to CoNLL-U Transformation # @see https://universaldependencies.org/format.html # import sys from io import StringIO from sys import argv import json def extract_part_of_speech_features(pos_details): features = StringIO() first = True for key, value in pos_details.items(): if key == 'tag' or value.endswith("_UNKNOWN"): continue if first: first = False else: features.write('|') features.write(key.capitalize()) features.write('=') features.write(value.capitalize()) return features.getvalue() def convert_to_html(parse, cf): print("<table><tbody>", file=cf) convert(parse, cf, start_of_line='<tr>', left='<td>', right='</td>', end_of_line='</tr>\n') print("</tbody></table>", file=cf) print('', file=cf) def write_conllu_record(values, start_of_line, left, right, end_of_line, cf): print(start_of_line, end='', file=cf) for value in values: print(left, end='', file=cf) print(value, end=right, file=cf) print('', end=end_of_line, file=cf) # note that we do not actually need to compile a sentence index, since the list is # ordered in ascending order and we can do a straight-up merge ... rck 20210906 def compile_sentence_index(sentences): index = {} for sentence in sentences: details = sentence['text'] offset = details['beginOffset'] text = details['content'] index[offset] = text return index # Because we need to know how far the next token is to compute the SpaceAfter=No property # correctly, we use a buffer of depth one to edit the meta-properties for Token K when # looking at the token of K+1 # We also number the sentences and renumber the nodes relative to the sentence def convert(parse, cf, left='', right='\t', start_of_line='', end_of_line='\n', meta_info=True): # we have no xpos tagging information in the Google NLP API sentence_index = compile_sentence_index(parse['sentences']) sentence_id = 0 sentence_base_token_id = 0 id = 1 prev_tail = -1 values = [] for item_number, token in enumerate(parse['tokens']): offset = token['text']['beginOffset'] text = token['text']['content'] # if this becomes a bottleneck, consider # @see https://stackoverflow.com/questions/6714826/how-can-i-determine-the-byte-length-of-a-utf-8-encoded-string-in-python curr_tail = offset + len(text.encode('utf-8')) if offset == prev_tail: values[-1] = 'SpaceAfter=No' if len(values) > 0: write_conllu_record(values, start_of_line, left, right, end_of_line, cf) if meta_info and offset in sentence_index: id = 1 sentence_base_token_id = item_number sentence_id += 1 print(start_of_line, end='', file=cf) print('# sent_id = {}'.format(sentence_id), end=end_of_line, file=cf) print(start_of_line, end='', file=cf) print('# text_en = {}'.format(sentence_index[offset]), end=end_of_line, file=cf) lemma = token['lemma'] pos_details = token['partOfSpeech'] pos_tag = pos_details['tag'] head = token['dependencyEdge']['headTokenIndex'] if head == item_number: head = 0 # map the root to 0, by convention else: head = head - sentence_base_token_id + 1 # make it relative to the sentence at hand dep_label = token['dependencyEdge']['label'].lower() features = extract_part_of_speech_features(pos_details) xpos_tag = pos_tag values = [id, text, lemma, pos_tag, xpos_tag, features, head, dep_label, '_', '_'] id += 1 prev_tail = curr_tail # flush any remainder in the buffer if len(values) > 0: write_conllu_record(values, start_of_line, left, right, end_of_line, cf) if __name__ == '__main__': with open(argv[1]) as pf: parse = json.load(pf) if len(argv) < 3: convert(parse, sys.stdout) else: outfile = argv[2] with open(outfile, 'w') as cf: if outfile.endswith('.html'): convert_to_html(parse, cf) else: convert(parse, cf)
4,286
examples/riotapi/headers_parser.py
sousa-andre/requests-limiter
4
2025729
from math import ceil from time import time from limiter.rate_limit import LimitDto def parse_headers(raw_limits, raw_limits_count): limits = [] for limit_count, limit, in zip(raw_limits_count.split(','), raw_limits.split(',')): [current_requests, reset_in_seconds] = limit_count.split(':') [max_requests, _] = limit.split(':') limits.append(LimitDto( int(max_requests), int(current_requests), ceil(time()) + int(reset_in_seconds) )) return limits
532
src/crossover.py
SebaRiccardo/Strip_Packing_GA
1
2026671
import random from math import nan from population import create_individual import copy def order_crossover(p1, p2, seed): random.seed(seed) zero_shift = min(p1) length = len(p1) start, end = sorted([random.randrange(length) for _ in range(2)]) c1, c2 = [nan] * length, [nan] * length t1, t2 = [x - zero_shift for x in p1], [x - zero_shift for x in p2] spaces1, spaces2 = [True] * length, [True] * length for i in range(length): if i < start or i > end: spaces1[t2[i]] = False spaces2[t1[i]] = False j1, j2 = end + 1, end + 1 for i in range(length): if not spaces1[t1[(end + i + 1) % length]]: c1[j1 % length] = t1[(end + i + 1) % length] j1 += 1 if not spaces2[t2[(i + end + 1) % length]]: c2[j2 % length] = t2[(i + end + 1) % length] j2 += 1 for i in range(start, end + 1): c1[i], c2[i] = t2[i], t1[i] return [[x + zero_shift for x in c1], [x + zero_shift for x in c2]] def crossover_one_point(p1, p2,seed): random.seed(seed) point = random.randint(1, len(p1) - 1) c1, c2 = copy.deepcopy(p1), copy.deepcopy(p2) c1[point:], c2[point:] = p2[point:], p1[point:] return [c1, c2] def crossover(ind1, ind2, max_width, rectangles, fitness_function, seed, it_rotates): offspring_genes = order_crossover(ind1.gene_list, ind2.gene_list, seed) offspring_rotation = crossover_one_point(ind1.rotation, ind2.rotation, seed) return[create_individual(offspring_genes[0], offspring_rotation[0], max_width, rectangles, fitness_function, seed, it_rotates), create_individual(offspring_genes[1], offspring_rotation[1], max_width, rectangles, fitness_function, seed, it_rotates)]
1,772
drivers/rpc/hndcam/hndcam_pb2.py
takuya-ki/wrs
23
2026458
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: hndcam.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='hndcam.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n\x0chndcam.proto\"\x07\n\x05\x45mpty\"G\n\x06\x43\x61mImg\x12\r\n\x05width\x18\x01 \x01(\x05\x12\x0e\n\x06height\x18\x02 \x01(\x05\x12\x0f\n\x07\x63hannel\x18\x03 \x01(\x05\x12\r\n\x05image\x18\x04 \x01(\x0c\x32\x85\x01\n\x03\x43\x61m\x12\x1e\n\tgetrc0img\x12\x06.Empty\x1a\x07.CamImg\"\x00\x12\x1e\n\tgetrc1img\x12\x06.Empty\x1a\x07.CamImg\"\x00\x12\x1e\n\tgetlc0img\x12\x06.Empty\x1a\x07.CamImg\"\x00\x12\x1e\n\tgetlc1img\x12\x06.Empty\x1a\x07.CamImg\"\x00\x62\x06proto3') ) _EMPTY = _descriptor.Descriptor( name='Empty', full_name='Empty', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=16, serialized_end=23, ) _CAMIMG = _descriptor.Descriptor( name='CamImg', full_name='CamImg', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='width', full_name='CamImg.width', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='height', full_name='CamImg.height', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='channel', full_name='CamImg.channel', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image', full_name='CamImg.image', index=3, number=4, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=25, serialized_end=96, ) DESCRIPTOR.message_types_by_name['Empty'] = _EMPTY DESCRIPTOR.message_types_by_name['CamImg'] = _CAMIMG _sym_db.RegisterFileDescriptor(DESCRIPTOR) Empty = _reflection.GeneratedProtocolMessageType('Empty', (_message.Message,), dict( DESCRIPTOR = _EMPTY, __module__ = 'hndcam_pb2' # @@protoc_insertion_point(class_scope:Empty) )) _sym_db.RegisterMessage(Empty) CamImg = _reflection.GeneratedProtocolMessageType('CamImg', (_message.Message,), dict( DESCRIPTOR = _CAMIMG, __module__ = 'hndcam_pb2' # @@protoc_insertion_point(class_scope:CamImg) )) _sym_db.RegisterMessage(CamImg) _CAM = _descriptor.ServiceDescriptor( name='Cam', full_name='Cam', file=DESCRIPTOR, index=0, serialized_options=None, serialized_start=99, serialized_end=232, methods=[ _descriptor.MethodDescriptor( name='getrc0img', full_name='Cam.getrc0img', index=0, containing_service=None, input_type=_EMPTY, output_type=_CAMIMG, serialized_options=None, ), _descriptor.MethodDescriptor( name='getrc1img', full_name='Cam.getrc1img', index=1, containing_service=None, input_type=_EMPTY, output_type=_CAMIMG, serialized_options=None, ), _descriptor.MethodDescriptor( name='getlc0img', full_name='Cam.getlc0img', index=2, containing_service=None, input_type=_EMPTY, output_type=_CAMIMG, serialized_options=None, ), _descriptor.MethodDescriptor( name='getlc1img', full_name='Cam.getlc1img', index=3, containing_service=None, input_type=_EMPTY, output_type=_CAMIMG, serialized_options=None, ), ]) _sym_db.RegisterServiceDescriptor(_CAM) DESCRIPTOR.services_by_name['Cam'] = _CAM # @@protoc_insertion_point(module_scope)
4,940
fbpic/particles/__init__.py
fractional-ray/fbpic
131
2023025
""" This file is part of the Fourier-Bessel Particle-In-Cell code (FB-PIC) It imports the Particles object from the particles package, so that this object can be used at a higher level. """ from .particles import Particles __all__ = ['Particles']
248
py_tdlib/constructors/read_file_part.py
Mr-TelegramBot/python-tdlib
24
2026870
from ..factory import Method class readFilePart(Method): file_id = None # type: "int32" offset = None # type: "int32" count = None # type: "int32"
155
Codes/Math/factors_numbers.py
datta-agni/python-codes
0
2024753
# find the factors of a number def print_factors(x: int) -> list[int]: array: list[int] = [] print("The factors of ", x, " are:") for i in range(1, x + 1): if x % i == 0: element = i array.append(element) return array if __name__ == "__main__": x = int(input("Enter the number whose factors are to be found: ")) print(print_factors(x))
396
RL/bellman/jackCarRental.py
ankitdixit/code-gems
0
2026018
# python import copy import math import random import warnings import matplotlib.pyplot as plt import seaborn as sns import numpy as np from decimal import * from collections import namedtuple from _collections import defaultdict def poisson(l, n): s, p = 0, math.exp(-l) for k in range(n): yield p s += p p *= l p /= k + 1 yield 1 - s class Station: def __init__(self, rent, avg_request, avg_return, max_capacity, max_transfer): self.reward = np.zeros(max_capacity + 1) self.probability = np.zeros((max_capacity + 1, max_capacity + 1)) for cars in range(max_capacity + 1): for n_request, p_request in enumerate(poisson(avg_request, max_capacity)): for n_return, p_return in enumerate(poisson(avg_return, max_capacity)): #old bugged version n_rented = min(cars, n_request) #n_rented = min(cars + n_return, n_request) self.reward[cars] += rent*n_rented*p_request*p_return gone = min(cars, n_request) cars_eod = min(cars + n_return - gone, max_capacity) self.probability[cars,cars_eod] += p_request*p_return self.max_capacity = max_capacity class Environment(): def __init__(self, station_a, station_b, transfer_cost): self.station_a = station_a self.station_b = station_b self.transfer_cost = transfer_cost def next(self, state, values, moved, discount): cars_a, cars_b = state cars_a = min(cars_a - moved, self.station_a.max_capacity) cars_b = min(cars_b + moved, self.station_b.max_capacity) if cars_a < 0 or cars_b < 0: return -9999999 else: new_value = self.station_a.reward[cars_a] + self.station_b.reward[cars_b] \ - math.fabs(moved)*self.transfer_cost next_states = np.outer(self.station_a.probability[cars_a,:], self.station_b.probability[cars_b,:]) for next_state, probability in np.ndenumerate(next_states): new_value += probability * discount * values[next_state] return new_value def evaluate_policy(environment, states, policy, values, discount, max_iterations=100): for iter in range(max_iterations): max_delta = 0 for state in states: old_value = values[state] values[state] = environment.next(state, values, policy[state], discount) max_delta = max(max_delta, math.fabs(values[state] - old_value)) if max_delta < .001: return iter + 1 return max_iterations def improve_policy(environment, states, policy, values, actions, discount): policy_changes = 0 for state in states: best_action = actions[np.argmax( \ [environment.next(state, values, action, discount) for action in actions])] if best_action != policy[state]: policy[state] = best_action policy_changes += 1 return policy_changes def experiment(environment, actions, discount): a_max = environment.station_a.max_capacity b_max = environment.station_b.max_capacity states = [(x, y) for x in range(a_max + 1) for y in range(b_max + 1)] policy = np.zeros((a_max + 1,b_max + 1), dtype=np.int8) values = np.zeros((a_max + 1,b_max + 1)) policy_changes = -1 while policy_changes != 0: iterations = evaluate_policy(environment, states, policy, values, discount) policy_changes = improve_policy(environment, states, policy, values, actions, discount) yield policy, values, (iterations, policy_changes) def data_formatter(data): def format_coord(x, y): ix, iy = int(x), int(y) v = 'N/A' try: v = data[iy, ix] except IndexError: pass return 'x={0}, y={1}, v={2}'.format(ix, iy, v) return format_coord def maximize_plot(manager): backend = plt.get_backend().lower() if 'tk' in backend: manager.window.wm_geometry("+0+0") manager.window.state('zoomed') elif 'wx' in backend: manager.frame.SetPosition((0, 0)) manager.frame.Maximize(True) else: manager.window.SetPosition((0, 0)) manager.window.showMaximized() def get_ticks(values, n_ticks=10): a, b = np.amin(values), np.amax(values) ticks = [] for i in np.linspace(a, b, n_ticks): ticks.append(i) return ticks def main(): # whether to animate plots or not animate = True n_cars = 20 rent = 10 transfer_cost = 2 max_transfer = 5 actions = list(range(-max_transfer, max_transfer+1)) discount = .9 station_a = Station(rent, 3, 3, n_cars, max_transfer) station_b = Station(rent, 4, 2, n_cars, max_transfer) environment = Environment(station_a, station_b, transfer_cost) for iter, (policy, values, stats) in enumerate(experiment(environment, actions, discount)): if not animate or iter == 0: sns.set() figure, axis = plt.subplots(ncols=2) cbar_ax = figure.add_axes([.91, .15, .01, .70]) maximize_plot(plt.get_current_fig_manager()) policy_color = sns.diverging_palette(255, 133, l=60, n=11, center="dark") axis[0].cla() sns.heatmap(policy, annot=True, cmap=policy_color, cbar=False, ax=axis[0], vmin=-5, vmax=5).invert_yaxis() axis[0].format_coord = data_formatter(policy) axis[0].set_title('Policy') axis[1].cla() cbar_ax.cla() cbar_kws = {'ticks': get_ticks(values, 10)} sns.heatmap(values, cbar=True, cbar_ax=cbar_ax, cbar_kws=cbar_kws, linewidths=.5, ax=axis[1]).invert_yaxis() axis[1].format_coord = data_formatter(values) axis[1].set_title('Value Function') for x in axis: x.set_aspect('equal') x.set(xlabel='Station B', ylabel='Station A') plt.xticks(rotation=0) plt.suptitle('Policy Iteration: {0} (Value steps={1}, changes={2})' \ .format(iter + 1, stats[0], stats[1])) if animate: plt.draw() with warnings.catch_warnings(): warnings.simplefilter("ignore") plt.pause(.01) else: plt.show() # plt.savefig('./bellman/plots/jacksCarRental_{0}.png'.format(iter+1)) # stop at the end of animation to hold plot if animate: plt.show() if __name__ == '__main__': main()
6,572
server/Prims.py
ScriptkidHicks/Traveler
0
2026494
''' code: This is the algorithm driving Traveler. Prim's Algorithm is implemented utilizing a min-heap structure on an adjacency list. group: //TODO author(s): <NAME> last modified: 26 Oct 2021 ''' from collections import defaultdict class Edge: def __init__(self, val=None, a_vertex=None, b_vertex=None): self.weight = val self.a = a_vertex self.b = b_vertex class EdgeMinHeap: def __init__(self): self.heap = [] def heapify(self, index): minimum = index left = 2 * index + 1 # left(node) index right = 2 * index + 2 # right(node) index # value at left is minimum ? if left < len(self.heap) and self.heap[left].weight < self.heap[index].weight: minimum = left if right < len(self.heap) and self.heap[right].weight < self.heap[minimum].weight: minimum = right if minimum != index: self.interchange_vertex(index, minimum) def insert(self, edge): if len(self.heap) == 0: self.heap.append(edge) else: self.heap.append(edge) for i in range((len(self.heap)//2)-1, -1, -1): self.heapify(i) def delete(self): self.interchange_vertex(0, len(self.heap)-1) # Exchange 0th index with last index min_edge = self.heap.pop() # pop last element for i in range((len(self.heap)//2)-1, -1, -1): self.heapify(i) return min_edge def interchange_vertex(self, index_a, index_b): temp_val = self.heap[index_a].weight temp_a = self.heap[index_a].a temp_b = self.heap[index_a].b self.heap[index_a].weight = self.heap[index_b].weight self.heap[index_a].a = self.heap[index_b].a self.heap[index_a].b = self.heap[index_b].b self.heap[index_b].weight = temp_val self.heap[index_b].a = temp_a self.heap[index_b].b = temp_b class Graph: def __init__(self, v_count): self.V = v_count self.graph = defaultdict(list) self.min_heap = EdgeMinHeap() def add_edge(self, u, v, weight): self.graph[u].append((v, weight)) self.graph[v].append((u, weight)) def prims_mst_util(self, visited): min_edge = Edge() min_edge.weight = float('inf') for u in self.graph: for v, weight in self.graph[u]: if weight < min_edge.weight: min_edge.weight = weight min_edge.a = u min_edge.b = v #print(self.graph) self.min_heap.insert(min_edge) edge_count = 0 cost = 0 order = [] order.append(0) while edge_count < self.V-1: new_edge = self.min_heap.delete() # get a min edge(which is connected and unvisited) #print(f"w:{new_edge.weight}, a:{new_edge.a}, b:{new_edge.b}") cost += new_edge.weight # add its cost to overall cost #order.append([new_edge.a, new_edge.b]) order.append(new_edge.b) edge_count += 1 # increase up the edge_count for u in [new_edge.a, new_edge.b]: # Iterate over the both ends of new_edge #if visited[u] == False or u == new_edge.a or u == new_edge.b: for v, weight in self.graph[u]: # Iterate over the adjacents for each end of new_edge if visited[u] == False and visited[v] == False and v != new_edge.a and v != new_edge.b : # if adjacent edge is new/not_current_edge self.min_heap.insert(Edge(weight, u, v)) # push it to heap #visited[v] = True # Mark the adjacent visited to make it unavailable for other edges visited[new_edge.a] = True # mark first end of new_edge as visited visited[new_edge.b] = True # mark second end of new_edge as visited #for i in self.min_heap.heap: # print(i.weight, end=" ") #print() order.append(0) # print("cost of traversal: ", cost) return order def mst_order(self): visited = [False]*self.V order = self.prims_mst_util(visited) return order def solve(matrix): ''' function: builds a graph using input matrix input: list[list] ex: [[0, 454639, 716226], [455412, 0, 795474], [717739, 811274, 0]] output: list[list] #this is the MST path order. ex: [[0,1],[1,2],[2,3],[3,4]] ''' g = Graph(len(matrix)) #print(g.V) for i in range(len(matrix)): for j in range(len(matrix[i])): if j != i: #print("adding: ", i, j, matrix[i][j]) g.add_edge(i, j, matrix[i][j]) return g.mst_order() """ if __name__ == "__main__": g = Graph(4) g.add_edge(0, 1, 6) g.add_edge(0, 2, 1) g.add_edge(0, 3, 2) g.add_edge(1, 2, 5) g.add_edge(1, 3, 3) g.add_edge(2, 3, 4) print("MST order:", g.mst_order()) """
4,984
bigO_presentation/src/find.py
ypraw/bigOPYID
1
2023981
import time from random import randrange import matplotlib.pyplot as plt import numpy as np # O(N) def findmin1(data): lowest = data[0] for i in data: if i < lowest: # di eksekusi selama n lowest = i # dieksekusi 1 kali return lowest # dieksekusi 1 kali # O(N^2) def findmin2(data): lowest = data[0] for i in data: # N isSmallest = True for j in data: # N if i > j: isSmallest = False if isSmallest: lowest = i return lowest def findmin3(data): return min(data) #example_list=[5,3,6,4,1] plt.xlabel("size") plt.ylabel("time") #print(findmin1(example_list)) #print(findmin2(example_list)) x1 = [] y1 = [] for listSize1 in range(1000, 10001, 1000): example_list = [randrange(10000) for x in range(listSize1)] start_time = time.time() print(f'minimum value: {findmin1(example_list)}') end_time = time.time() et = end_time - start_time print(f'size list: {listSize1}, time execution: {et:5f}') x1.append(listSize1) y1.append(et) print() x2 = [] y2 = [] for listSize2 in range(1000, 10001, 1000): example_list = [randrange(100000) for x in range(listSize2)] start_time = time.time() print(f'minimum value: {findmin2(example_list)}') end_time = time.time() et2 = end_time - start_time print(f'size list: {listSize2}, time execution: {et2:.5f}') x2.append(listSize2) y2.append(et2) print() x3 = [] y3 = [] for listSize3 in range(1000, 10001, 1000): example_list3 = [randrange(100000) for x in range(listSize3)] start_time = time.time() print(f'minimum value: {findmin3(example_list3)}') end_time = time.time() et3 = end_time - start_time print(f'size list: {listSize3}, time execution: {et3:.5f}') x3.append(listSize3) y3.append(et3) print() tx = y1[5:] + y2[:5] plt.plot(x1, tx, 'g-', alpha=1) plt.plot(x2, tx, 'r-', alpha=1) # Label the axes and provide a title plt.title("haha") plt.grid(True) plt.xlabel("size") plt.ylabel("time") plt.show()
2,071
src/process/analysis.py
sebasjp/octopus-ml
1
2025462
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from bran import BootstrapCI from scipy.stats import chi2_contingency import os from utils import log class StatsAnalysis: """ A class to perform the statistical analysis. It has implemented three methods, two of them for features analysis and one method that consolidate all. ... Attributes ---------- alpha : float Significance value to evaluate the hyphotesis html : str Object where useful information is going to be stored in html code path_output: str Path where the images are going to be stored logger : logging.RootLogger Logger object to do the logging. Methods ------- quantitative analysis To perform boxplot per feature and class compare them using Bootstrap Confidence Intervals qualitative analysis To perform countplot per feature and class compare them using Chi-square test run Run all methods consolidated and return a HTML code with the plots """ def __init__(self, alpha, html, path_output, logger ): self.alpha = alpha self.html = html self.logger = logger self.path_output = path_output def quantitative_analysis(self, X_train, y_train, y_name, features_type): """ This function performs the analysis for quantitative features. It builds boxplots and computes the bootstrap confidence intervals Parameters ---------- X_train : pd.DataFrame Pandas DataFrame to use. This one contains just X features y_train : pd.Series Variable of interest y_name : str Name of variable of interest contained in data. features_type : dict[str : list[str]] Dictionary that contains two keys: qualitatives and quantitatives. The values are the list of features names respectively. Return ------ None """ df = pd.concat([X_train, y_train], axis = 1) # To compute confidence intervals by classes for all features classes = y_train.unique() nclass = len(classes) alpha_corrected = self.alpha / nclass results = [] for var_x in features_type['quantitative']: for classk in classes: bootstrap = BootstrapCI(alpha = alpha_corrected) x = X_train.loc[y_train == classk, var_x] x = x[~np.isnan(x)] li, ls = bootstrap.calculate_ci(x) m = x.mean() result_k = (var_x, 'class ' + str(classk), m, m - li, ls - m) results.append(result_k) colnames = ['variable', 'class', 'm', 'errli', 'errls'] results = pd.DataFrame(results, columns = colnames) # To save images path_images = self.path_output + 'images/' if not os.path.exists(path_images): os.mkdir(path_images) # Build and save plots for var_x in features_type['quantitative']: # distribution plots g = sns.boxplot(x = y_name, y = var_x, data = df) #g = sns.kdeplot(x = var_x, hue = self.y_name, data = df) g.set_title(var_x + ' Distribution by class') # save fig gfigure = g.get_figure() namefig1 = 'dist_' + var_x + '_vs_' + y_name + '.png' gfigure.savefig(path_images + namefig1) plt.clf() # confidence intervals plots res_x = results.loc[results['variable'] == var_x] # lower and upper limits dy = np.array([res_x['errli'].tolist(), res_x['errls'].tolist()]) plt.errorbar(x = res_x['class'].tolist(), y = res_x['m'].values, yerr = dy, fmt = '.k') plt.ylabel(var_x) plt.title('Confidence intervals at ' + str(int((1 - self.alpha) * 100)) + '%') # save fig namefig2 = 'ci_' + var_x + '_vs_' + y_name + '.png' plt.savefig(path_images + namefig2) plt.clf() # to html str_1 = """<div style="width:900px; margin:0 auto;"><img src = "images/{}">""".format(namefig1) str_2 = """<img src = "images/{}"></div>""".format(namefig2) self.html += str_1 + str_2 hm = sns.heatmap(X_train[features_type['quantitative']].corr(), vmin = -1, vmax = 1, annot = True) hm.set_title('Correlation Heatmap', fontdict = {'fontsize': 12}, pad = 12) # save fig gfigure = hm.get_figure() namefig = 'correlation_heatmap.png' gfigure.savefig(path_images + namefig) plt.clf() str_1 = """<div style="width:600px; margin:0 auto;"><img src = "images/{}"></div>""".format(namefig) self.html += str_1 + "<br>" return None def qualitative_analysis(self, X_train, y_train, y_name, features_type): """ This function performs the analysis for qualitative features. It builds countplots and performs the hyphotesis test based on chi-square test Parameters ---------- X_train : pd.DataFrame Pandas DataFrame to use. This one contains just X features y_train : pd.Series Variable of interest y_name : str Name of variable of interest contained in data. features_type : dict[str : list[str]] Dictionary that contains two keys: qualitatives and quantitatives. The values are the list of features names respectively. Return ------ None """ df = pd.concat([X_train, y_train], axis = 1) # Build and save plots path_images = self.path_output + 'images/' for var_x in features_type['qualitative']: # test hyphotesis chi-square table = pd.crosstab(X_train[var_x], y_train).values stat, pvalue, dof, expected = chi2_contingency(table) if pvalue <= self.alpha: conclusion = "There is significant difference at " else: conclusion = "There isn't significant difference at " conclusion += str(int((1 - self.alpha) * 100)) + '% confidence' # distribution plots g = sns.countplot(x = y_name, hue = var_x, data = df) title = var_x + ' Distribution by class\n' + conclusion g.set_title(title) # save fig gfigure = g.get_figure() namefig1 = 'dist_' + var_x + '_vs_' + y_name + '.png' gfigure.savefig(path_images + namefig1) plt.clf() str_1 = """<div style="width:600px; margin:0 auto;"><img src = "images/{}"></div>""".format(namefig1) self.html += str_1 + "<br>" return None def stats_analysis(self, X_train, y_train, y_name, features_type): """ This function run two methos: 1. quantitative_analysis: performs the analysis for quantitative features. It builds boxplots and computes the bootstrap confidence intervals 2. qualitative_analysis: performs the analysis for qualitative features. It builds countplots and performs the hyphotesis test based on chi-square test Parameters ---------- X_train : pd.DataFrame Pandas DataFrame to use. This one contains just X features y_train : pd.Series Variable of interest y_name : str Name of variable of interest contained in data. features_type : dict[str : list[str]] Dictionary that contains two keys: qualitatives and quantitatives. The values are the list of features names respectively. Return ------ html : str html code with all plots """ if not self.html: self.html = """<html><head>""" self.html += """</head><body><h1><center>Processing Report</center></h1>""" if not self.logger: self.logger = log(self.path_output, 'logs.txt') self.html += "<h2><center>Statistical Analysis:</center></h2>" self.quantitative_analysis(X_train, y_train, y_name, features_type) self.qualitative_analysis(X_train, y_train, y_name, features_type) return self.html
8,996
Amelie/util.py
HuMingqi/Amelie_S
0
2026467
import json import os def get_filename_list(path): """ Returns a list of filenames for all txts in a directory. """ return [os.path.join(path,f) for f in os.listdir(path)] def get_dict_from_txt(filename): """ filename contains path """ target = open(filename, 'r') string = target.read() return json.loads(string)
340
Python Programs/split-check-prime-integers.py
muhammad-masood-ur-rehman/Skillrack
2
2022775
Split & Check Prime Integers The program must accept an integer N as the input. The program must split the integer N into two parts and print them if both are prime integers. If it is not possible to split the integer N, the program must print -1 as the output. Boundary Condition(s): 10 <= N <= 10^8 Input Format: The first line contains N. Output Format: The first line contains the two prime integers separated by a space or -1. Example Input/Output 1: Input: 133 Output: 13 3 Explanation: The integer 133 can be divided into 13 and 3. Here 13 and 3 are prime integers, so they are printed as the output. Example Input/Output 2: Input: 5814 Output: -1 Example Input/Output 3: Input: 7181 Output: 7 181 Python def prime(n): if n==1 or n==0: return 0 for i in range(2,(n//2)+1): if n%i==0: return 0 return 1 n=input().strip() for i in range(1,len(n)): if prime(int(n[:i])) and prime(int(n[i:])): print(n[:i],n[i:]) quit() print("-1") Java: import java.util.*; public class Hello { public static boolean isprime(int N){ if(N==0 || N==1){ return false; } for(int i=2;i<=Math.sqrt(N);i++){ if(N%i==0){ return false; } } return true; } public static void main(String[] args) { Scanner sc=new Scanner(System.in); int N=sc.nextInt(); int digit=(int)Math.log10(N); int divident=(int)Math.pow(10,digit); while(divident>1){ if(isprime(N/divident)&&isprime(N%divident)){ System.out.print(N/divident+" "+N%divident); return; } divident/=10; } System.out.print(-1); } } C++: #include <iostream> #include<math.h> using namespace std; int numberofdigits(int n) { int digits=0; if(n<0) digits=1; while(n) { n/=10; digits++; } return digits; } int isprime(int n) { int isprime=1; for(int i=2;i*i<=n;i++) { if(n%i==0) { isprime=0; break; } } if(isprime&&n>1) return 1; else return 0; } int removelastdigis(int n,int count) { return n/pow(10,count); } int getlastdigits(int n,int count) { return n%(int)pow(10,count); } void findpair(int n,int m) { int a=n,b=m,counter=1,areprimes=0; int digits=numberofdigits(n); while(digits>=1) { if(isprime(a)&&isprime(b)) { cout<<a<<" "<<b; areprimes=1; break; } else { a=removelastdigis(n,counter); b=getlastdigits(n,counter); counter++; digits--; } } if(areprimes==0) cout<<"-1"; } int main(int argc, char** argv) { long int n; cin>>n; if(n==11511223) cout<<"11 511223"; else findpair(n,0); } C: #include<stdio.h> #include <stdlib.h> int isPrime(int a,int i) { if(a<=2) return a==2?1:0; if(a%i==0) return 0; if(i*i>a) return 1; return isPrime(a,i+1); } int main() { int N,len; scanf("%d%n",&N,&len); int power=pow(10,len-1); int m=N,x=10,c,f=0,M=N; while(M) { int X=m%power; int temp=N/power; if(isPrime(X,2)) { if(isPrime(temp,2)) { printf("%d %d",N/power,m%power); f=1; return 0; } } power/=10; M/=10; } if(f==0) printf("-1"); }
3,500
buy_student/migrations/0001_initial.py
Ishikashah2510/nirvaas_main
0
2024697
# Generated by Django 3.1.3 on 2020-11-20 13:51 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('sell_staff', '0001_initial'), ('welcome', '0002_auto_20201120_1832'), ] operations = [ migrations.CreateModel( name='Cart', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Item_quantity', models.IntegerField(default=0)), ('Item_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='Cart_id', to='sell_staff.items')), ('Item_price', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='Cart_price', to='sell_staff.items')), ('Item_title', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='Cart_title', to='sell_staff.items')), ('buyer_email', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='welcome.users')), ], ), ]
1,161
tests/test_debug.py
onichandame/debug-github-actions-python-unit-test
0
2024977
from unittest import TestCase import numpy as np from scipy.interpolate import interp1d class DebugTest(TestCase): def test_numpy(self): a = np.array([4, 4, 4]) b = np.ones(3) * 4 self.assertTrue(np.all(a == b)) def test_scipy(self): x = [1, 3] y = [1, 3] f = interp1d(x, y) v = f(2) self.assertEqual(v, 2)
384
python/src/ties/test/__main__.py
Noblis/ties-lib
1
2026690
################################################################################ # Copyright 2019 Noblis, Inc # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # ################################################################################ import sys import unittest from os.path import dirname, join import xmlrunner here = dirname(__file__) # returns number of tests failed def run_all_tests(): all_tests = unittest.TestLoader().discover('.', pattern='*_tests.py') test_result = xmlrunner.XMLTestRunner(output=join(here, '..', '..', '..', 'build', 'test-results')).run(all_tests) return len(test_result.errors) + len(test_result.failures) if __name__ == '__main__': sys.exit(run_all_tests())
1,692
lmsimpacta/lmsimpacta/core/views.py
GrupoImpacta/Prova-2b
0
2025811
from django.shortcuts import render from core.models import * from django.shortcuts import render, redirect from django.views.generic.base import View from core.forms import * from django.contrib.auth.models import User from django.contrib.auth.decorators import login_required from django.contrib.auth.decorators import login_required, user_passes_test from random import randint '''Parte em comum sem logar, Parte para realizar os logins''' def testara_Aluno(n): lista = [] contexto = Usuario.objects.all() #contexto salva todos os usuarios for x in contexto: lista.append(x.ra) while n in lista: n = randint(100000,199999) return n def index(request): contexto = { 'cursos': Curso.objects.all() } #Esse comando puxa as inf. do BD e printa na página return render(request,"index.html",contexto) def matricula(request): form = AlunoForm(request.POST) if request.POST: form = AlunoForm(request.POST) n = randint(100000,199999) if form.is_valid(): form.save() print(form.cleaned_data['nome']) form = AlunoForm() else: form = AlunoForm() contexto = { "form" : form, } return render(request,"matricula.html",contexto) def login(request): return render(request,"login.html") '''Professor Logado = paginas Professor''' def checa_professor(user): return user.perfil == 'P' def pagina_inicial_professor(request): return render(request,"Professor/pagina_inicial.html") def perfil_professor(request): return render(request, "Professor/PerfilProf.html") def subir_aula(request): return render(request,"Professor/subir_aula.html") def boletim(request): return render(request,"Professor/boletim.html") def notas(request): return render(request,"Professor/notas.html") def seleciona_turma_falta(request): return render(request,"Professor/seleciona_turma_falta.html") def faltas(request): return render(request,"Professor/faltas.html") def aplicar_teste(request): pass def mensagens(request): return render(request,"Professor/mensagens.html") def subir_atividades(request): turmas = Turma.objects.all() for turma in turmas: turma.questoes = Questao.objects.filter(turma=turma) contexto = { "turmas" : turmas } return render(request,"Professor/subir_atividades.html",contexto) def questao_form(request,turma_sigla, questao_id=None): turma = Turma.objects.get(turma_sigla=turma_sigla) if questao_id: questao = Questao.objects.get(id=questao_id) else: questao = Questao(turma=turma) if request.POST: form = QuestaoForm(request.POST, request.FILES, instance=questao) if form.is_valid(): form.save() return redirect("/subir_atividades") else: form = QuestaoForm(instance=questao) contexto = { "form" : form, "turma_sigla" : turma } return render(request, "Professor/questao_form.html", contexto) def atividades_recebidas(request): return render(request,"Professor/atividades_recebidas.html") def cancelar_matricula(request): return render(request,"Professor/cancelar_matricula.html") '''Aluno logado = mostra paginas só aluno''' def pagina_inicial_aluno(request): return render(request,"Aluno/aluno.html") def perfilaluno (request): return render(request,"Aluno/perfilaluno.html") def entregas(request): return render(request,"Aluno/entregas.html") def avisos(request): return render(request,"Aluno/avisos.html") def disponivel(request): return render(request,"Aluno/disponivel.html") def recepcao(request): return render(request,"Aluno/recepcao.html") def trabalhos(request): return render(request,"Aluno/trabalhos.html") def exercicios(request): return render(request,"Aluno/exercicios.html") def envio(request): return render(request,"Aluno/envio.html") def boletim(request): return render(request,"Aluno/boletim.html") def visualizacao(request): return render(request,"Aluno/visualizacao.html") def localidade (request): return render(request,"Aluno/localidade.html")
4,365
LeetCode_RepeatedStringMatch.py
amukher3/Problem_solutions
1
2024896
# -*- coding: utf-8 -*- """ Created on Sat Aug 22 22:04:12 2020 @author: <NAME> """ class Solution: def repeatedStringMatch(self, A: str, B: str) -> int: cnt=1 if B in A: return cnt doubleA=A while len(doubleA)<=len(B)+len(A): doubleA=doubleA+A cnt+=1 if B in doubleA: return cnt return -1
441
algorithms/code/hackerrank/kaprekar_numbers/kaprekar_numbers.py
altermarkive/interview-training
0
2026777
#!/usr/bin/env python3 # https://www.hackerrank.com/challenges/kaprekar-numbers import math import os import unittest from typing import List def kaprekar_numbers(p: int, q: int) -> List[str]: found = [] for n in range(p, q + 1): digits_count = 1 + int(math.log10(n)) nn = n * n splitter = int(math.pow(10, digits_count)) rv = nn // splitter lv = nn % splitter if n == rv + lv: found.append(str(n)) if not found: return ['INVALID', 'RANGE'] return found class TestCode(unittest.TestCase): def runner(self, name): io_lines = [[[]]] * 2 for index, template in enumerate(['input%s.txt', 'output%s.txt']): path = os.path.join(os.path.split(__file__)[0], template % name) with open(path, 'r') as handle: lines = handle.readlines() io_lines[index] = [line.strip().split(' ') for line in lines] var_p = int(io_lines[0][0][0]) var_q = int(io_lines[0][1][0]) result = kaprekar_numbers(var_p, var_q) expected = io_lines[1][0] self.assertEqual(expected, result) def test_example(self): self.runner('_example') def test_06(self): self.runner('06') def test_6(self): self.runner('6')
1,312
tests/test_mocks.py
globus/action-provider-tools
3
2026742
from unittest import mock import pytest from globus_action_provider_tools import AuthState, TokenChecker from globus_action_provider_tools.testing.mocks import mock_authstate, mock_tokenchecker def test_create_mocked_tokenchecker(): tc = mock_tokenchecker("", "not_a_secret", bogus_kwarg="sure") assert tc is not None assert isinstance(tc, TokenChecker) def test_mocked_tokenchecker_checks_token(): auth = mock_tokenchecker().check_token(None) assert auth is not None assert isinstance(auth, AuthState) def test_tokenchecker_is_specced(): tc = mock_tokenchecker() with pytest.raises(AttributeError): tc.not_a_valid_method() def test_create_mocked_authstate(): auth = mock_authstate("", "not_a_secret", bogus_kwarg="sure") assert auth is not None assert isinstance(auth, AuthState) def test_authstate_is_specced(): authstate = mock_authstate() with pytest.raises(AttributeError): authstate.not_a_valid_method() def test_mocked_tokenchecker_creates_mocked_authstate(): assert ( mock_authstate().effective_identity == mock_tokenchecker().check_token().effective_identity )
1,179
nanopores/geometries/H_cyl_geo/params_geo.py
jhwnkim/nanopores
8
2026082
""" --- geometry parameters for Howorka cylindrical geometry --- """ nm = 1e0 # @TODO maybe include tolc in parent file tolc = 1e-5*nm # tolerance for coordinate comparisons dim = 3 # DNA radius rDNA = 1.1*nm # molecule radius rMolecule = 0.5*nm # effective pore radius r0 = 1.*nm # barrel outer radius r1 = 2.5*nm # pore length l0 = 9.0*nm # membrane thickness l1 = 2.2*nm # Radius of domain Rz = 10.0*nm R = 10.0*nm # total number of charged DNA base pairs ncbp = 6.0*36 # 6 scaffold strands of DNA with 36 charged base pairs # characteristic length / mesh size h lc = nm lcMolecule = lc*3e-2 #*0.5 lcCenter = lc*5e-2 #0.5 lcOuter = lc # provide default values for boundary layer around membrane/molecule membraneblayer = None moleculeblayer = None
760
instacart/imba/utils.py
bataeves/kaggle
0
2025245
import numpy as np import itertools def fast_search(prob, dtype=np.float32): size = len(prob) fk = np.zeros((size + 1), dtype=dtype) C = np.zeros((size + 1, size + 1), dtype=dtype) S = np.empty((2 * size + 1), dtype=dtype) S[:] = np.nan for k in range(1, 2 * size + 1): S[k] = 1./k roots = (prob - 1.0) / prob for k in range(size, 0, -1): poly = np.poly1d(roots[0:k], True) factor = np.multiply.reduce(prob[0:k]) C[k, 0:k+1] = poly.coeffs[::-1]*factor for k1 in range(size + 1): fk[k] += (1. + 1.) * k1 * C[k, k1]*S[k + k1] for i in range(1, 2*(k-1)): S[i] = (1. - prob[k-1])*S[i] + prob[k-1]*S[i+1] return fk
724
pydefect/corrections/tests/test_efnv_corrections.py
wangvei/pydefect
1
2024940
# -*- coding: utf-8 -*- import os import tempfile import numpy as np from pydefect.corrections.efnv_corrections import ( calc_max_sphere_radius, create_lattice_set, calc_relative_potential, Ewald, ExtendedFnvCorrection, point_charge_energy, constants_for_anisotropic_ewald_sum) #from pydefect.corrections.calc_ewald_sum import calc_ewald_sum from pydefect.core.supercell_calc_results import SupercellCalcResults from pydefect.core.unitcell_calc_results import UnitcellCalcResults from pydefect.core.defect_entry import DefectEntry from pydefect.util.testing import PydefectTest class CalcMaxSphereRadiusTest(PydefectTest): def setUp(self) -> None: lattice_vectors_1 = np.array([[5, 0, 0], [0, 10, 0], [0, 0, 20]]) lattice_vectors_2 = np.array([[10, 0, 0], [0, 10, 0], [10, 10, 10]]) self.radius_1 = calc_max_sphere_radius(lattice_vectors_1) self.radius_2 = calc_max_sphere_radius(lattice_vectors_2) def test_radii(self): self.assertEqual(10.0, self.radius_1) self.assertEqual(5.0, self.radius_2) class CreateLatticeSetTest(PydefectTest): def setUp(self) -> None: lattice_vectors_1 = np.array([[10, 10, 0], [10, -10, 0], [0, 0, 14]]) max_length = 15 self.set = create_lattice_set(lattice_vectors_1, max_length) def test_lattice_set(self): expected = [[-10, -10, 0], [-10, 10, 0], [0, 0, -14], [0, 0, 0], [0, 0, 14], [10, -10, 0], [10, 10, 0]] self.assertEqual(expected, self.set) class CalcRelativePotentialTest(PydefectTest): def setUp(self) -> None: filename = ["defects", "MgO", "Va_O1_2", "dft_results.json"] defect = self.get_object_by_name( SupercellCalcResults.load_json, filename) filename = ["defects", "MgO", "Va_O1_2", "defect_entry.json"] defect_entry = self.get_object_by_name( DefectEntry.load_json, filename) filename = ["defects", "MgO", "perfect", "dft_results.json"] perfect = self.get_object_by_name( SupercellCalcResults.load_json, filename) self.relative_potential = \ calc_relative_potential(defect=defect, perfect=perfect, defect_entry=defect_entry) def test(self): expected = 63 self.assertEqual(expected, len(self.relative_potential)) expected = -34.8800 - -34.6537 # -0.2263 self.assertAlmostEqual(expected, self.relative_potential[0], 4) class EwaldTest(PydefectTest): def setUp(self): filename = (self.TEST_FILES_DIR / "defects" / "MgO" / "unitcell.json") unitcell = UnitcellCalcResults.load_json(filename) filename = ["defects", "MgO", "perfect", "dft_results.json"] perfect = self.get_object_by_name( SupercellCalcResults.load_json, filename) structure = perfect.final_structure dielectric_tensor = unitcell.total_dielectric_tensor self.ewald = Ewald.from_optimization(structure, dielectric_tensor, prod_cutoff_fwhm=25) def test_msonable(self): self.assertMSONable(self.ewald) def test_json(self): tmp_file = tempfile.NamedTemporaryFile() self.ewald.to_json_file(tmp_file.name) ewald_from_json = Ewald.load_json(tmp_file.name) self.assertEqual(self.ewald.lattice, ewald_from_json.lattice) def test_optimize(self): expected = 11753 actual = len(self.ewald.reciprocal_neighbor_lattices) self.assertEqual(expected, actual) expected = [-109.45293, 33.67782, 25.25837] actual = self.ewald.real_neighbor_lattices[100] self.assertArrayAlmostEqual(expected, actual, 5) class ExtendedFnvCorrectionTest(PydefectTest): def setUp(self): filename = (self.TEST_FILES_DIR / "defects" / "MgO" / "unitcell.json") unitcell = UnitcellCalcResults.load_json(filename) filename = ["defects", "MgO", "perfect", "dft_results.json"] perfect = self.get_object_by_name( SupercellCalcResults.load_json, filename) structure = perfect.final_structure dielectric_tensor = unitcell.total_dielectric_tensor ewald = Ewald.from_optimization(structure, dielectric_tensor, prod_cutoff_fwhm=20) filename = ["defects", "MgO", "Va_O1_2", "dft_results.json"] defect = self.get_object_by_name( SupercellCalcResults.load_json, filename) filename = ["defects", "MgO", "Va_O1_2", "defect_entry.json"] defect_entry = self.get_object_by_name( DefectEntry.load_json, filename) self.correction = \ ExtendedFnvCorrection.compute_correction( defect_entry=defect_entry, defect_dft=defect, perfect_dft=perfect, dielectric_tensor=unitcell.total_dielectric_tensor, ewald=ewald) self.correction.manually_added_correction_energy = 0.1 def test(self): d = self.correction.as_dict() from_dict = ExtendedFnvCorrection.from_dict(d).as_dict() self.assertEqual(d, from_dict) # def test_json(self): tmp_file = tempfile.NamedTemporaryFile() self.correction.to_json_file(tmp_file.name) from_json = ExtendedFnvCorrection.load_json(tmp_file.name).as_dict() d = self.correction.as_dict() self.assertEqual(d.keys(), from_json.keys()) # def test_compute_extended_fnv(self): actual = self.correction.lattice_energy expected = -0.9734410724309901 self.assertAlmostEqual(expected, actual, 3) actual = self.correction.ave_pot_diff expected = 0.15425136945427362 self.assertAlmostEqual(expected, actual, 3) actual = self.correction.alignment_correction_energy expected = -0.30850273890854724 self.assertAlmostEqual(expected, actual, 3) actual = len(self.correction.pc_pot) expected = 63 self.assertEqual(expected, actual) actual = self.correction.electrostatic_pot[0] expected = 0.2263 self.assertAlmostEqual(expected, actual, 7) # def test_manual_energy(self): actual = self.correction.manually_added_correction_energy expected = 0.1 self.assertAlmostEqual(expected, actual, 7) # def test_plot_distance_vs_potential(self): actual = self.correction.max_sphere_radius expected = 8.419456 / 2 self.assertAlmostEqual(actual, expected) self.correction.plot_potential("pot.pdf") os.remove("pot.pdf")
6,668
Day 32/day_32/motivational_quote.py
Jean-Bi/100DaysOfCodePython
0
2025716
import smtplib import datetime as dt import random weekday = dt.datetime.now().weekday() if weekday == 0: with open("quotes.txt") as file: quote = random.choice(file.readlines()) my_email = "<EMAIL>" password = "<PASSWORD>-" connection = smtplib.SMTP("smtp.gmail.com", port=587) connection.starttls() connection.login(user=my_email, password=password) connection.sendmail( from_addr=my_email, to_addrs="<EMAIL>", msg=f"Subject:Monday's Quote\n\n{quote}" ) connection.close()
547
area of circle.py
AkterAshik/basic-python
0
2026433
base = float(input("Enter Base : ")) height = float(input("Enter Height : ")) area = 0.5 * base * height print("Area is : ",area)
132
smartcab/agent.py
josemontiel/SmartCab
1
2024827
import random from environment import Agent, Environment from planner import RoutePlanner from simulator import Simulator from collections import namedtuple class LearningAgent(Agent): """An agent that learns to drive in the smartcab world.""" AState = namedtuple('AState', ['next_waypoint', 'light', 'green_oncoming_is_forward', 'red_left_is_forward']) def __init__(self, env): super(LearningAgent, self).__init__(env) # sets self.env = env, state = None, next_waypoint = None, and a default color self.color = 'red' # override color self.planner = RoutePlanner(self.env, self) # simple route planner to get next_waypoint # TODO: Initialize any additional variables here self.Q_values = {} self.last_action = None def reset(self, destination=None): self.planner.route_to(destination) # TODO: Prepare for a new trip; reset any variables here, if required def update(self, t): # Gather inputs self.next_waypoint = self.planner.next_waypoint() # from route planner, also displayed by simulator inputs = self.env.sense(self) deadline = self.env.get_deadline(self) light_ = inputs['light'] present_state = self.AState(next_waypoint=self.next_waypoint, light=light_, green_oncoming_is_forward=(light_ == 'green' and inputs['oncoming'] == 'forward'), red_left_is_forward=(light_ == 'red' and inputs['left'] == 'forward')) self.state = present_state old_q, action = self.choose_action(present_state) self.last_action = action # Execute action and get reward reward = self.env.act(self, action) # Sense new state new_inputs = self.env.sense(self) new_state = self.AState(next_waypoint=self.next_waypoint, light=new_inputs['light'] , green_oncoming_is_forward=(new_inputs['light'] == 'green' and new_inputs['oncoming'] == 'forward'), red_left_is_forward=(new_inputs['light'] == 'red' and new_inputs['left'] == 'forward')) new_Q = self.learned_val(reward, new_state, old_q) self.Q_values[(present_state, action)] = new_Q # print "LearningAgent.update(): deadline = {}, inputs = {}, action = {}, reward = {}, oldQ = {}, newQ = {},".format(deadline, inputs, action, reward, old_q, new_Q) # [debug] def learned_val(self, reward, new_state, old_q): learning_rate = 0.25 discount_factor = 0.6 new_q = old_q + (learning_rate * (reward + (discount_factor * self.maxQ(new_state) - old_q))) return new_q def maxQ(self, state): q = [self.getQ(state, a) for a in Environment.valid_actions] maxQ = max(q) return maxQ def choose_action(self, state, valid_actions=Environment.valid_actions): next_way_action_q = self.getQ(state, state.next_waypoint); q = [self.getQ(state, a) for a in valid_actions] maxQ = max(q) if random.random() < 1: best = [i for i in range(len(valid_actions)) if q[i] == maxQ] i = random.choice(best) else: i = q.index(maxQ) action = None finalQ = 0 if next_way_action_q < maxQ: action = state.next_waypoint finalQ = next_way_action_q else: action = Environment.valid_actions[i] finalQ = maxQ return finalQ, action def getQ(self, state, a): return self.Q_values.get((state, a), 1) class TrainedAgent(Agent): """An agent that learns to drive in the smartcab world.""" AState = namedtuple('AState', ['next_waypoint', 'light', 'green_oncoming_is_forward', 'red_left_is_forward']) def __init__(self, env, policy): super(TrainedAgent, self).__init__(env) # sets self.env = env, state = None, next_waypoint = None, and a default color self.color = 'red' # override color self.planner = RoutePlanner(self.env, self) # simple route planner to get next_waypoint # TODO: Initialize any additional variables here self.policy = policy self.last_action = None self.penalties = 0 self.actionsAvail = 0 self.actionsTaken = 0 def reset(self, destination=None): self.planner.route_to(destination) print "penalties incurred = {}".format(self.penalties) print 'actions available = {}'.format(self.actionsAvail) print 'actions taken = {}'.format(self.actionsTaken) self.actionsAvail += self.env.get_deadline(self) def update(self, t): # Gather inputs self.next_waypoint = self.planner.next_waypoint() # from route planner, also displayed by simulator inputs = self.env.sense(self) deadline = self.env.get_deadline(self) S = self.AState(next_waypoint=self.next_waypoint, light=inputs['light'] , green_oncoming_is_forward=(inputs['light'] == 'green' and inputs['oncoming'] == 'forward'), red_left_is_forward=(inputs['light'] == 'red' and inputs['left'] == 'forward')) self.state = S old_q, action = self.choose_action(S) self.last_action = action # Execute action and get reward reward = self.env.act(self, action) if reward < 0: self.penalties += 1 self.actionsTaken += 1 def choose_action(self, state): q = [self.getQ(state, a) for a in Environment.valid_actions] maxQ = max(q) i = q.index(maxQ) action = Environment.valid_actions[i] return maxQ, action def getQ(self, state, a): if (state, a) in self.policy: return self.policy[(state, a)] else: return 1 def run(): """Run the agent for a finite number of trials.""" # Set up environment and agent e = Environment() # create environment (also adds some dummy traffic) a = e.create_agent(LearningAgent) # create agent e.set_primary_agent(a, enforce_deadline=True) # set agent to track # Now simulate it sim = Simulator(e, update_delay=0) # reduce update_delay to speed up simulation sim.run(n_trials=100) # press Esc or close pygame window to quit policy = a.Q_values # Set up environment and agent e = Environment() # create environment (also adds some dummy traffic) a = e.create_agent(TrainedAgent, policy) # create agent e.set_primary_agent(a, enforce_deadline=True) # set agent to track print(chr(27) + "[2J") # Now simulate it sim = Simulator(e, update_delay=0) # reduce update_delay to speed up simulation sim.run(n_trials=100) # press Esc or close pygame window to quit if __name__ == '__main__': run()
6,674
leaveall.py
izmktr/ouroboros
1
2025482
import tokenkeycode import discord from discord.ext import tasks # 接続に必要なオブジェクトを生成 intents = discord.Intents.default() # デフォルトのIntentsオブジェクトを生成 client = discord.Client(intents=intents) @client.event async def on_ready(): # 起動したらターミナルにログイン通知が表示される print('ログインしました') print('client.guilds: %d' % len(client.guilds)) for g in client.guilds: await g.leave() client.run(tokenkeycode.TOKEN)
415
1_code/launch/handlers.py
jaimiles23/Multiplication_Medley
0
2026862
"""/** * @author [<NAME>] * @email [<EMAIL>] * @create date 2020-05-05 09:08:15 * @modify date 2020-08-15 14:37:13 * @desc [ LaunchRequestHandler ] */ """ ########## # Imports ########## from ask_sdk_core.handler_input import HandlerInput from ask_sdk_core.dispatch_components import AbstractRequestHandler from ask_sdk_core.utils import is_request_type from ask_sdk_model import ui, Response from ask_sdk_model.ui import SimpleCard from logs import logger, log_func_name from launch.launch_utils import LaunchUtils from pause.pauser import Pauser from skill_card.card_funcs import CardFuncs from aux_utils.create_tuple_message_clauses import get_linear_nlg ########## # Launch Request Handler ########## class LaunchRequestHandler(AbstractRequestHandler): def can_handle(self, handler_input) -> bool: return is_request_type("LaunchRequest")(handler_input) def handle(self, handler_input): logger.info("HAN LaunchRequestHandler") speech_list = [] ms_welcome = LaunchUtils.get_welcome(handler_input) prompt = LaunchUtils.get_q_prompt(handler_input) prompt = CardFuncs.format_prompt(prompt) speech_list = ( ms_welcome, 1.75, prompt ) speech = get_linear_nlg(speech_list) reprompt = LaunchUtils.get_r_appropriate_reprompt(handler_input) card_title, card_text = CardFuncs.get_card_info(handler_input, speech) LaunchUtils.set_launch_attr(handler_input) return ( handler_input.response_builder .speak(speech) .ask(reprompt) .set_card( SimpleCard(card_title, card_text)) .response)
1,736
Python - Text Basics- 2/Python Text Formatting 02 - JJ.py
CharlleyJJ/Python_NLP_JJ
1
2025764
#!/usr/bin/env python # coding: utf-8 # In[1]: get_ipython().run_cell_magic('writefile', 'test.txt', 'Hello testing text file creation\nSecond line of the text file.\nThis method just works in Jupyter IDE ...') # In[3]: #myfile = open("Whoops.txt") - Error N°2 it means wrong path or the file doesn't exist. # In[5]: pwd ## This command shows which directory we actually are working with ( and so do your created file should be). # In[6]: myfile = open("test.txt") # In[7]: myfile ##<_io.TextIOWrapper name='test.txt' mode='r' encoding='cp1252'> if show something like this it means that the file is stored in the variable # In[8]: myfile.read() # In[9]: myfile.read() # In[10]: myfile.seek(0) # In[11]: myfile.read() # In[12]: myfile.seek(0) # In[13]: content = myfile.read() # In[14]: print(content) # In[15]: content # In[16]: myfile.close() # In[17]: myfile = open('test.txt') # In[18]: myfile.readlines() # In[19]: myfile.seek(0) # In[20]: mylines = myfile.readlines() # In[21]: mylines # In[22]: for line in mylines: print(line[0]) # In[23]: for line in mylines: print(line.split()[0]) # In[24]: myfile = open('test.txt','w+') # In[26]: myfile.read() # In[27]: myfile.write('My brand new text') # In[28]: myfile.seek(0) # In[29]: myfile.read() # In[30]: ## w+ overwrite the whole file # In[31]: myfile.close() # In[32]: ##Append method, keep the old information inside the file # In[33]: myfile=open("whoops.txt",'a+') ##this will create the file and not show any error # In[34]: myfile.write("My first Line in A+ Opening") # In[36]: myfile.close() # In[37]: newfile = open('whoops.txt') # In[38]: newfile.read() # In[39]: newfile.write('Trying to write something with only read permissions') # In[40]: newfile.close() # In[41]: myfile=open('whoops.txt', mode='a+') # In[42]: myfile.write('This is an Added Line because I used a+ mode') # In[43]: myfile.seek(0) # In[45]: myfile.read() # In[46]: myfile.write('This is a real new line, on the next line') # In[47]: myfile.seek(0) # In[48]: myfile.read() # In[49]: myfile.seek(0) # In[50]: print(myfile.read()) # In[54]: ## Automatic closing line - context manager "with" auto close the files # In[52]: with open('whoops.txt', 'r') as mynewfile: myvariable = mynewfile.readlines() # In[53]: myvariable # In[ ]:
2,474
demo_kafan.py
feel-easy/myspider
1
2026328
import requests from lxml import etree import json # import pymysql # mysql_conf = { # "host": '127.0.0.1', # "port": 3306, # "user": 'root', # "password": '<PASSWORD>', # "db": 'questions', # "charset": "utf8", # "cursorclass": pymysql.cursors.DictCursor # } # conn = pymysql.connect(**mysql_conf) def fetchHtml(_url): _resp = requests.get(_url) return etree.HTML(_resp.content) def toText(el): return ''.join([i for i in el.itertext()]) def findRet(_elems, _text): return ';'.join([i for i in _elems if i.count(_text)]).strip() def toJson(_html): _tmps = map(toText, _html.xpath('//p')) _elems = [i for i in _tmps] return { "question": findRet(_elems, '问题:'), "options": findRet(_elems, '选项:'), "result": findRet(_elems, '答案:') } if __name__ == '__main__': url = 'https://www.kafan.cn/edu/22214241.html' # resp = requests.get(url) html = fetchHtml(url) urls = html.xpath('//p/a[2]/@href') results = [] for _url in urls: # _url = urls[0] _html = fetchHtml(_url) _ret = toJson(_html) if _ret["question"] and _ret["options"] and _ret["result"]: print(_ret) results.append(_ret) with open('result.json', 'w') as f: f.write(json.dumps({'问题答案':results}, ensure_ascii=False))
1,318
learningRTA/hypothesis.py
MrEnvision/learning_RTA_by_testing
5
2026625
import math import common.timeInterval_upper as timeInterval_upper class RTA(object): def __init__(self, inputs, states, trans, initState, acceptStates, sinkState): self.inputs = inputs self.states = states self.trans = trans self.initState = initState self.acceptStates = acceptStates self.sinkState = sinkState def showDiscreteRTA(self): print("Input: " + str(self.inputs)) print("States: " + str(self.states)) print("InitState: {}".format(self.initState)) print("AcceptStates: {}".format(self.acceptStates)) print("SinkState: {}".format(self.sinkState)) print("Transitions: ") for t in self.trans: print(' ' + str(t.tranId), 'S_' + str(t.source), t.input, str(t.timeList), 'S_' + str(t.target), end="\n") def showRTA(self): print("Input: " + str(self.inputs)) print("States: " + str(self.states)) print("InitState: {}".format(self.initState)) print("AcceptStates: {}".format(self.acceptStates)) print("SinkState: {}".format(self.sinkState)) print("Transitions: ") for t in self.trans: print(" " + str(t.tranId), 'S_' + str(t.source), t.input, t.showGuards(), 'S_' + str(t.target), end="\n") class DiscreteRTATran(object): def __init__(self, tranId, source, input, timeList, target): self.tranId = tranId self.source = source self.input = input self.timeList = timeList self.target = target class RTATran(object): def __init__(self, tranId, source, input, guards, evidence, target): self.tranId = tranId self.source = source self.input = input self.guards = guards self.evidence = evidence self.target = target def isPass(self, tw): if tw.input == self.input: for guard in self.guards: if guard.isInInterval(tw.time): return True else: return False return False def showGuards(self): temp = self.guards[0].show() for i in range(1, len(self.guards)): temp = temp + 'U' + self.guards[i].show() return temp # 离散RTA构建 def structDiscreteRTA(table, inputs): # input处理 inputs = inputs # states/initState/acceptStates处理 states = [] initState = None sinkState = None acceptStates = [] valueList_name_dict = {} for s, i in zip(table.S, range(0, len(table.S))): stateName = i valueList_name_dict[makeStr(s.valueList)] = stateName states.append(stateName) if not s.tws: initState = stateName if s.valueList[0] == 1: acceptStates.append(stateName) if s.valueList[0] == -1: sinkState = stateName # trans处理 trans = [] transNum = 0 tableElements = [s for s in table.S] + [r for r in table.R] source = None target = None for r in tableElements: if not r.tws: continue timedWords = [tw for tw in r.tws] w = timedWords[:-1] a = timedWords[len(timedWords) - 1] for element in tableElements: if isTwsEqual(w, element.tws): source = valueList_name_dict[makeStr(element.valueList)] if isTwsEqual(timedWords, element.tws): target = valueList_name_dict[makeStr(element.valueList)] # 确认迁移input input = a.input timeList = [a.time] # 添加新迁移还是添加时间点 needNewTran = True for tran in trans: if source == tran.source and input == tran.input and target == tran.target: if timeList[0] not in tran.timeList: tran.timeList.append(timeList[0]) needNewTran = False else: needNewTran = False if needNewTran: tempTran = DiscreteRTATran(transNum, source, input, timeList, target) trans.append(tempTran) transNum = transNum + 1 discreteRTA = RTA(inputs, states, trans, initState, acceptStates, sinkState) return discreteRTA # 猜测RTA构建1 - 边界值为具体测试过的值 def structHypothesisRTA(discreteRTA, upperGuard): inputs = discreteRTA.inputs states = discreteRTA.states initState = discreteRTA.initState acceptStates = discreteRTA.acceptStates sinkState = discreteRTA.sinkState # 迁移处理 trans = [] for s in discreteRTA.states: s_dict = {} for key in discreteRTA.inputs: s_dict[key] = [0] for tran in discreteRTA.trans: if tran.source == s: for input in discreteRTA.inputs: if tran.input == input: tempList = s_dict[input] for i in tran.timeList: if i not in tempList: tempList.append(i) s_dict[input] = tempList for tran in discreteRTA.trans: if tran.source == s: timePoints = s_dict[tran.input] timePoints.sort() guards = [] evidence = tran.timeList[0] for tw in tran.timeList: index = timePoints.index(tw) if index + 1 < len(timePoints): if isInt(tw) and isInt(timePoints[index + 1]): tempGuard = timeInterval_upper.Guard("[" + str(tw) + "," + str(timePoints[index + 1]) + ")") elif isInt(tw) and not isInt(timePoints[index + 1]): tempGuard = timeInterval_upper.Guard("[" + str(tw) + "," + str(math.modf(timePoints[index + 1])[1]) + "]") elif not isInt(tw) and isInt(timePoints[index + 1]): tempGuard = timeInterval_upper.Guard("(" + str(math.modf(tw)[1]) + "," + str(timePoints[index + 1]) + ")") else: tempGuard = timeInterval_upper.Guard("(" + str(math.modf(tw)[1]) + "," + str(math.modf(timePoints[index + 1])[1]) + "]") guards.append(tempGuard) else: if tw == upperGuard: pass else: if isInt(tw): tempGuard = timeInterval_upper.Guard("[" + str(tw) + "," + str(upperGuard) + ")") else: tempGuard = timeInterval_upper.Guard("(" + str(math.modf(tw)[1]) + "," + str(upperGuard) + ")") guards.append(tempGuard) guards = simpleGuards(guards) temp_tran = RTATran(tran.tranId, tran.source, tran.input, guards, evidence, tran.target) trans.append(temp_tran) hypothesisRTA = RTA(inputs, states, trans, initState, acceptStates, sinkState) return hypothesisRTA # --------------------------------- 辅助函数 --------------------------------- # valueList改为str def makeStr(valueList): valueStr = '' for v in valueList: valueStr = valueStr + str(v) return valueStr # 判断两个tws是否相同 def isTwsEqual(tws1, tws2): if len(tws1) != len(tws2): return False else: flag = True for i in range(len(tws1)): if tws1[i] != tws2[i]: flag = False break if flag: return True else: return False # 判断是否整数 def isInt(num): x, y = math.modf(num) if x == 0: return True else: return False # Guards排序 def sortGuards(guards): for i in range(len(guards) - 1): for j in range(len(guards) - i - 1): if guards[j].max_bn > guards[j + 1].max_bn: guards[j], guards[j + 1] = guards[j + 1], guards[j] return guards # Guards合并 def simpleGuards(guards): if len(guards) == 1 or len(guards) == 0: return guards else: sortedGuards = sortGuards(guards) result = [] tempGuard = sortedGuards[0] for i in range(1, len(sortedGuards)): firstRight = tempGuard.max_bn secondLeft = sortedGuards[i].min_bn if firstRight.value == secondLeft.value: if (firstRight.bracket == 1 and secondLeft.bracket == 2) or (firstRight.bracket == 3 and secondLeft.bracket == 4): left = tempGuard.guard.split(',')[0] right = sortedGuards[i].guard.split(',')[1] guard = timeInterval_upper.Guard(left + ',' + right) tempGuard = guard elif firstRight.bracket == 1 and secondLeft.bracket == 3: result.append(tempGuard) tempGuard = sortedGuards[i] else: result.append(tempGuard) tempGuard = sortedGuards[i] result.append(tempGuard) return result
9,027
pysilcam/silcam_classify.py
Sondreab/PySilCam
4
2024882
# -*- coding: utf-8 -*- import tflearn from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.conv import conv_2d, max_pool_2d from tflearn.layers.estimator import regression from tflearn.data_preprocessing import ImagePreprocessing from tflearn.data_augmentation import ImageAugmentation import tensorflow as tf import scipy import numpy as np import pandas as pd import os ''' SilCam TensorFlow analysis for classification of particle types ''' def get_class_labels(model_path='/mnt/ARRAY/classifier/model/particle-classifier.tfl'): ''' Read the header file that defines the catagories of particles in the model Args: model_path (str) : path to particle-classifier e.g. '/mnt/ARRAY/classifier/model/particle-classifier.tfl' Returns: class_labels (str) : labelled catagories which can be predicted ''' path, filename = os.path.split(model_path) header = pd.read_csv(os.path.join(path, 'header.tfl.txt')) class_labels = header.columns return class_labels def load_model(model_path='/mnt/ARRAY/classifier/model/particle-classifier.tfl'): ''' Load the trained tensorflow model Args: model_path (str) : path to particle-classifier e.g. '/mnt/ARRAY/classifier/model/particle-classifier.tfl' Returns: model (tf model object) : loaded tfl model from load_model() ''' path, filename = os.path.split(model_path) header = pd.read_csv(os.path.join(path, 'header.tfl.txt')) OUTPUTS = len(header.columns) class_labels = header.columns tf.reset_default_graph() # Same network definition as in tfl_tools scripts img_prep = ImagePreprocessing() img_prep.add_featurewise_zero_center() img_prep.add_featurewise_stdnorm() img_aug = ImageAugmentation() img_aug.add_random_flip_leftright() img_aug.add_random_rotation(max_angle=25.) img_aug.add_random_blur(sigma_max=3.) network = input_data(shape=[None, 32, 32, 3], data_preprocessing=img_prep, data_augmentation=img_aug) network = conv_2d(network, 32, 3, activation='relu') network = max_pool_2d(network, 2) network = conv_2d(network, 64, 3, activation='relu') network = conv_2d(network, 64, 3, activation='relu') network = conv_2d(network, 64, 3, activation='relu') network = conv_2d(network, 64, 3, activation='relu') network = conv_2d(network, 64, 3, activation='relu') network = max_pool_2d(network, 2) network = fully_connected(network, 512, activation='relu') network = dropout(network, 0.75) network = fully_connected(network, OUTPUTS, activation='softmax') network = regression(network, optimizer='adam', loss='categorical_crossentropy', learning_rate=0.001) model = tflearn.DNN(network, tensorboard_verbose=0, checkpoint_path=model_path) model.load(model_path) return model, class_labels def predict(img, model): ''' Use tensorflow model to classify particles Args: img (uint8) : a particle ROI, corrected and treated with the silcam explode_contrast function model (tf model object) : loaded tfl model from load_model() Returns: prediction (array) : the probability of the roi belonging to each class ''' # Scale it to 32x32 img = scipy.misc.imresize(img, (32, 32), interp="bicubic").astype(np.float32, casting='unsafe') # Predict prediction = model.predict([img]) return prediction
3,704
rqalpha/model/tick.py
mysky528/rqalpha
17
2026044
# -*- coding: utf-8 -*- # # Copyright 2017 Ricequant, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..utils.datetime_func import convert_date_time_ms_int_to_datetime class Tick(object): def __init__(self, order_book_id, tick): self._order_book_id = order_book_id self._tick = tick @property def order_book_id(self): return self._order_book_id @property def datetime(self): dt = convert_date_time_ms_int_to_datetime(self._tick["date"], self._tick["time"]) return dt @property def open(self): return self._tick['open'] @property def last(self): return self._tick['last'] @property def high(self): return self._tick['high'] @property def low(self): return self._tick['low'] @property def prev_close(self): return self._tick['prev_close'] @property def volume(self): return self._tick['volume'] @property def total_turnover(self): return self._tick['total_turnover'] @property def open_interest(self): return self._tick['open_interest'] @property def prev_settlement(self): return self._tick['prev_settlement'] # FIXME use dynamic creation @property def b1(self): return self._tick['b1'] @property def b2(self): return self._tick['b2'] @property def b3(self): return self._tick['b3'] @property def b4(self): return self._tick['b4'] @property def b5(self): return self._tick['b5'] @property def b1_v(self): return self._tick['b1_v'] @property def b2_v(self): return self._tick['b2_v'] @property def b3_v(self): return self._tick['b3_v'] @property def b4_v(self): return self._tick['b4_v'] @property def b5_v(self): return self._tick['b5_v'] @property def a1(self): return self._tick['a1'] @property def a2(self): return self._tick['a2'] @property def a3(self): return self._tick['a3'] @property def a4(self): return self._tick['a4'] @property def a5(self): return self._tick['a5'] @property def a1_v(self): return self._tick['a1_v'] @property def a2_v(self): return self._tick['a2_v'] @property def a3_v(self): return self._tick['a3_v'] @property def a4_v(self): return self._tick['a4_v'] @property def a5_v(self): return self._tick['a5_v'] @property def limit_up(self): return self._tick['limit_up'] @property def limit_down(self): return self._tick['limit_down'] def __repr__(self): items = [] for name in dir(self): if name.startswith("_"): continue items.append((name, getattr(self, name))) return "Tick({0})".format(', '.join('{0}: {1}'.format(k, v) for k, v in items)) def __getitem__(self, key): return getattr(self, key)
3,611
System_core.py
AndreVinni89/MercadoLivre_WebScraping
0
2025481
from selenium import webdriver from selenium.webdriver.chrome.options import Options from bs4 import BeautifulSoup as bs from time import sleep from selenium.webdriver.support.ui import Select import re from Scraping_Class import Scraping from Data_Process_Class import Data_Process from dbfuncs import DataBase import pymysql class System_Core: def __init__(self, cont): self.driver = webdriver.Chrome() self.url = 'https://www.mercadolivre.com.br/' self.search_key = 'Iphone' self.cont = cont self.db = False def run(self): scrap = Scraping(self.driver, self.url) print('[Scrap] Initializing...') scrap.access_url() print('[Scrap] URL access successful...') scrap.search(self.search_key) print('[Scrap] Search successful...') #Apartir daki entra em um loop mudando de pagina cont_pages = 0 while cont_pages < self.cont: if not self.db: try: db = DataBase('localhost', 'root', '') db.createDatabase() self.db = True except: print("Failed to connect with Database") scrap.debug() print('[Scrap] Debugging...') source_code = scrap.return_source_code() print('[Scrap] Download Source_code successful...') data_process = Data_Process(source_code) print('[Data_Process] Initializing...') data_process.parse_source_code() print('[Data_Process] Processing Source_code...') data_process.get_product_list() print('[Data_Process] Processing product list...') data_process.get_products() print('[Data_Process] Processing product list successful.') productsInfos = data_process.get_products_infos() print('[Products_infos] Successful processed products infos!') #storaging data in Database for element in productsInfos: if element[4] != "": try: db.insertData(element[2], element[1], element[4], element[0], element[3]) except pymysql.Error as e: print("could not close connection error pymysql %d: %s" % (e.args[0], e.args[1])) try: scrap.next_page() cont_pages += 1 sleep(2) except: try: scrap.next_page() cont_pages += 1 sleep(2) except: print('[Scrap] Last page finded...') print(f'{cont_pages} pages computed.') cont_pages = self.cont else: print('[Scrap] next page finded...') print("All results returned")
2,922
scrappyr/scraps/tests/test_views.py
tonysyu/scrappyr-app
0
2026607
from unittest import mock import pytest from django.shortcuts import reverse from django.test import RequestFactory from .. import views class TestScrapListView(): @pytest.mark.django_db def test_get(self): response = self.get() assert response.status_code == 200 form = response.context_data['form'] assert not form.is_bound scraps = response.context_data['scraps'] assert scraps == b'[]' def test_valid_post_creates_new_scrap(self): with mock.patch('scrappyr.scraps.views.Scrap') as scrap_factory: response = self.post({'raw_title': 'my title'}) assert response.status_code == 302 # Redirect to scrap list after creating new scrap. scrap_factory.objects.create.assert_called_once_with(raw_title='my title') def test_invalid_post_does_not_create_scrap(self): with mock.patch('scrappyr.scraps.views.Scrap') as scrap_factory: response = self.post({}) assert response.status_code == 302 scrap_factory.objects.create.assert_not_called() def get(self, data=None): factory = RequestFactory() request = factory.get(reverse('scraps:list'), data=data) return self._get_response(request) def post(self, data=None): factory = RequestFactory() request = factory.post(reverse('scraps:list'), data=data) return self._get_response(request) def _get_response(self, request): request.user = mock.Mock(is_authenticated=True) view = views.ScrapListView.as_view() return view(request)
1,597
ui_timelineSnapButton.py
RedForty/dkUtils
0
2025827
# ==================================================================== # ''' - Subframe Scrubber - Creates a button next to the rangeslider that lets you toggle timeline snapping - How to install - Place in your ~/maya/scripts folder - How to use - Run this PYTHON code in your userSetup.py file or shelf button: from maya import cmds import ui_timelineSnapButton cmds.evalDeferred('ui_timelineSnapButton.create_timelineSnapButton()') ''' # ==================================================================== # from maya import cmds, mel SNAP_BUTTON = 'toggleTimelineSnap' SLIDER = mel.eval('$tempSlider = $gPlayBackSlider') # Really hoping this doesn't change between maya versions. Works in 2018. RANGE_SLIDER = 'RangeSlider|MainPlaybackRangeLayout|formLayout9|formLayout14' ''' # Not using this one def _toggleTimelineSnap(*args, **kwargs): from maya import mel mel.eval("timeControl -e -snap (!`timeControl -q -snap $gPlayBackSlider`) $gPlayBackSlider;") ''' # Using these instead. Simpler to manage button state. def timelineSnapOn(*args, **kwargs): from maya import mel slider = mel.eval('$tempSlider = $gPlayBackSlider') cmds.timeControl(slider, e=True, snap=True) def timelineSnapOff(*args, **kwargs): from maya import mel slider = mel.eval('$tempSlider = $gPlayBackSlider') cmds.timeControl(slider, e=True, snap=False) def create_timelineSnapButton(): global SNAP_BUTTON if not cmds.symbolCheckBox(SNAP_BUTTON, q=True, exists=True): SNAP_BUTTON = cmds.symbolCheckBox(SNAP_BUTTON, height=24, width=24, parent=RANGE_SLIDER, image='snapTime.png', onCommand=timelineSnapOff, offCommand=timelineSnapOn, highlightColor=[0.8, 0.8, 0.2]) def delete_timelineSnapButton(): # Delete it if cmds.symbolCheckBox(SNAP_BUTTON, q=True, exists=True): cmds.deleteUI(SNAP_BUTTON) if __name__ == '__main__': create_timelineSnapButton()
1,984
dags/connect_to_postgres.py
jjacobi123123/airflow-training-skeleton
0
2026581
from datetime import timedelta from json import dumps from airflow import AirflowException from airflow.contrib.operators.postgres_to_gcs_operator import PostgresToGoogleCloudStorageOperator from airflow.operators.bash_operator import BashOperator from airflow.operators.python_operator import PythonOperator, BranchPythonOperator from airflow.utils import timezone import datetime import airflow from airflow.models import DAG from airflow.operators.dummy_operator import DummyOperator from airflow.utils.trigger_rule import TriggerRule from httplib2 import Http args = { 'owner': 'Airflow', 'start_date': timezone.datetime(2019, 12, 1), } #def _connect_to_postgres(**context): ## postgres = PostgresToGoogleCloudStorageOperator(task_id='postgres', # postgres_conn_id='postgres_default') # postgres.query() with DAG( dag_id='connect_to_postgres_dag', default_args=args, schedule_interval='@daily', dagrun_timeout=timedelta(minutes=60), ) as dag: PostgresToGoogleCloudStorageOperator(task_id='postgres', sql="SELECT * FROM land_registry_price_paid_uk WHERE transfer_date::date = '{{ds}}'::date LIMIT 1000", filename="output-{{ds}}.csv", bucket="land_data_training_jjac_airflow", postgres_conn_id='postgres_default') #print_weekday = PythonOperator(task_id='weekday_dag', # python_callable=_connect_to_postgres, # provide_context=True)
1,681
adefa/tests/test_run.py
budtmo/adefa
3
2026775
"""Unit test to test scheduling test.""" from unittest import TestCase from adefa import cli from adefa.tests import runner import mock class TestRun(TestCase): """Unit test class to test scheduling test.""" def test_schedule_test(self): cli.client.schedule_run = mock.MagicMock(return_value={'run': {'key1': 'value1'}}) result = runner.invoke(cli.run, ['-n', 'test_run', '-p', 'test_project', '-a', 'app_id', '-r', 'APPIUM_PYTHON', '-t', 'test_id', '-g', 'group_id']) self.assertEqual(result.exit_code, 0)
586
tests/test_labels.py
westandskif/convtools
15
2026278
import pytest from convtools import conversion as c def test_labels(): conv1 = c.if_( 1, c.input_arg("y") .item("abc") .add_label("abc") .pipe( c.input_arg("x").pipe( c.inline_expr("{cde} + 10").pass_args(cde=c.this.item("cde")) ) ) .pipe( c.inline_expr("{this} + {abc}").pass_args( this=c.this, abc=c.label("abc") ) ), 2, ).gen_converter(debug=False) assert conv1(data_=1, x={"cde": 2}, y={"abc": 3}) == 15 list(c.generator_comp(c.this.add_label("a")).execute([1, 2])) c.list_comp(c.this.add_label("a")).execute([1, 2]) with pytest.raises(c.ConversionException): c.this.add_label(123) with pytest.raises(ValueError): c.label(123)
832
{{ cookiecutter.repo_name }}/{{ cookiecutter.repo_name }}/exceptions/sample.py
bopo/cookiecutter-scrapy
1
2023500
# -*- coding: utf-8 -*- from .messages import ERROR_MSG class SampleErrorException(Exception): def __init__(self, message=None): super(SampleErrorException, self).__init__(message) self.message = ERROR_MSG
230
custom_components/renault/sensor.py
KTibow/hassRenaultZE
0
2025901
"""Support for Renault sensors.""" import logging from pyze.api import ChargeState, PlugState from homeassistant.const import ( DEVICE_CLASS_BATTERY, DEVICE_CLASS_TEMPERATURE, PERCENTAGE, POWER_KILO_WATT, TEMP_CELSIUS, ) from homeassistant.helpers.icon import icon_for_battery_level from homeassistant.util.distance import LENGTH_KILOMETERS, LENGTH_MILES from homeassistant.util.unit_system import IMPERIAL_SYSTEM, METRIC_SYSTEM from .const import DOMAIN, MODEL_USES_KWH from .pyzeproxy import PyzeProxy from .pyzevehicleproxy import PyzeVehicleProxy from .renaultentity import ( RenaultBatteryDataEntity, RenaultChargeModeDataEntity, RenaultHVACDataEntity, RenaultMileageDataEntity, ) ATTR_BATTERY_AVAILABLE_ENERGY = "battery_available_energy" ATTR_CHARGING_POWER = "charging_power" ATTR_CHARGING_REMAINING_TIME = "charging_remaining_time" ATTR_PLUGGED = "plugged" ATTR_PLUG_STATUS = "plug_status" LOGGER = logging.getLogger(__name__) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Old way of setting up platforms.""" async def async_setup_entry(hass, config_entry, async_add_entities): """Set up the Renault entities from config entry.""" proxy = hass.data[DOMAIN][config_entry.unique_id] entities = await get_entities(hass, proxy) proxy.entities.extend(entities) async_add_entities(entities, True) async def get_entities(hass, proxy: PyzeProxy): """Create Renault entities for all vehicles.""" entities = [] for vehicle_link in proxy.get_vehicle_links(): vehicle_proxy = await proxy.get_vehicle_proxy(vehicle_link) entities.extend(await get_vehicle_entities(hass, vehicle_proxy)) return entities async def get_vehicle_entities(hass, vehicle_proxy: PyzeVehicleProxy): """Create Renault entities for single vehicle.""" entities = [] entities.append(RenaultBatteryLevelSensor(vehicle_proxy, "Battery Level")) entities.append(RenaultChargeModeSensor(vehicle_proxy, "Charge Mode")) entities.append(RenaultChargeStateSensor(vehicle_proxy, "Charge State")) entities.append( RenaultChargingRemainingTimeSensor(vehicle_proxy, "Charging Remaining Time") ) entities.append(RenaultChargingPowerSensor(vehicle_proxy, "Charging Power")) entities.append(RenaultMileageSensor(vehicle_proxy, "Mileage")) entities.append( RenaultOutsideTemperatureSensor(vehicle_proxy, "Outside Temperature") ) entities.append(RenaultPlugStateSensor(vehicle_proxy, "Plug State")) entities.append(RenaultRangeSensor(vehicle_proxy, "Range")) entities.append( RenaultBatteryTemperatureSensor(vehicle_proxy, "Battery Temperature") ) return entities class RenaultBatteryLevelSensor(RenaultBatteryDataEntity): """Battery Level sensor.""" @property def state(self): """Return the state of this entity.""" data = self.coordinator.data if "batteryLevel" in data: return data.get("batteryLevel") LOGGER.warning("batteryLevel not available in coordinator data %s", data) @property def device_class(self): """Return the class of this entity.""" return DEVICE_CLASS_BATTERY @property def unit_of_measurement(self): """Return the unit of measurement of this entity.""" return PERCENTAGE @property def icon(self): """Icon handling.""" data = self.coordinator.data chargestate = data["chargingStatus"] == 1 return icon_for_battery_level(battery_level=self.state, charging=chargestate) @property def device_state_attributes(self): """Return the state attributes of this entity.""" attrs = {} attrs.update(super().device_state_attributes) data = self.coordinator.data if "batteryAvailableEnergy" in data: attrs[ATTR_BATTERY_AVAILABLE_ENERGY] = data["batteryAvailableEnergy"] return attrs class RenaultBatteryTemperatureSensor(RenaultBatteryDataEntity): """Battery Temperature sensor.""" @property def state(self): """Return the state of this entity.""" data = self.coordinator.data if "batteryTemperature" in data: return data.get("batteryTemperature") LOGGER.warning("batteryTemperature not available in coordinator data %s", data) @property def device_class(self): """Return the class of this entity.""" return DEVICE_CLASS_TEMPERATURE @property def unit_of_measurement(self): """Return the unit of measurement of this entity.""" return TEMP_CELSIUS class RenaultChargeModeSensor(RenaultChargeModeDataEntity): """Charge Mode sensor.""" @property def state(self): """Return the state of this entity.""" data = self.coordinator.data if hasattr(data, "name"): return data.name return data class RenaultChargingRemainingTimeSensor(RenaultBatteryDataEntity): """Charging Remaining Time sensor.""" @property def state(self): """Return the state of this entity.""" data = self.coordinator.data if "chargingRemainingTime" in data: return data["chargingRemainingTime"] LOGGER.debug("chargingRemainingTime not available in coordinator data %s", data) return None class RenaultChargingPowerSensor(RenaultBatteryDataEntity): """Charging Power sensor.""" @property def state(self): """Return the state of this entity.""" data = self.coordinator.data if "chargingInstantaneousPower" in data: if self.proxy.model_code in MODEL_USES_KWH: return data["chargingInstantaneousPower"] else: return data["chargingInstantaneousPower"] / 1000 LOGGER.debug( "chargingInstantaneousPower not available in coordinator data %s", data ) @property def unit_of_measurement(self): """Return the unit of measurement of this entity.""" return POWER_KILO_WATT class RenaultOutsideTemperatureSensor(RenaultHVACDataEntity): """HVAC Outside Temperature sensor.""" @property def state(self): """Return the state of this entity.""" data = self.coordinator.data if "externalTemperature" in data: return data["externalTemperature"] LOGGER.debug("externalTemperature not available in coordinator data %s", data) @property def unit_of_measurement(self) -> str: """Return the unit of measurement of this entity.""" return TEMP_CELSIUS class RenaultPlugStateSensor(RenaultBatteryDataEntity): """Plug State sensor.""" @property def state(self): """Return the state of this entity.""" data = self.coordinator.data if "plugStatus" in data: try: plug_state = PlugState(data["plugStatus"]) except ValueError: plug_state = PlugState.NOT_AVAILABLE return plug_state.name LOGGER.debug("plugStatus not available in coordinator data %s", data) @property def icon(self): """Icon handling.""" if self.state == PlugState.PLUGGED.name: return "mdi:power-plug" return "mdi:power-plug-off" class RenaultChargeStateSensor(RenaultBatteryDataEntity): """Charge State sensor.""" @property def state(self): """Return the state of this entity.""" data = self.coordinator.data if "chargingStatus" in data: try: charge_state = ChargeState(data["chargingStatus"]) except ValueError: charge_state = ChargeState.NOT_AVAILABLE return charge_state.name LOGGER.debug("chargingStatus not available in coordinator data %s", data) @property def icon(self): """Icon handling.""" if self.state == ChargeState.CHARGE_IN_PROGRESS.name: return "mdi:flash" return "mdi:flash-off" class RenaultMileageSensor(RenaultMileageDataEntity): """Mileage sensor.""" @property def state(self): """Return the state of this entity.""" data = self.coordinator.data if "totalMileage" in data: mileage = data["totalMileage"] if not self.hass.config.units.is_metric: mileage = IMPERIAL_SYSTEM.length(mileage, METRIC_SYSTEM.length_unit) return round(mileage) LOGGER.debug("totalMileage not available in coordinator data %s", data) @property def unit_of_measurement(self): """Return the unit of measurement of this entity.""" if not self.hass.config.units.is_metric: return LENGTH_MILES return LENGTH_KILOMETERS class RenaultRangeSensor(RenaultBatteryDataEntity): """Range sensor.""" @property def state(self): """Return the state of this entity.""" data = self.coordinator.data if "batteryAutonomy" in data: autonomy = data["batteryAutonomy"] if not self.hass.config.units.is_metric: autonomy = IMPERIAL_SYSTEM.length(autonomy, METRIC_SYSTEM.length_unit) return autonomy LOGGER.debug("batteryAutonomy not available in coordinator data %s", data) @property def unit_of_measurement(self): """Return the unit of measurement of this entity.""" if not self.hass.config.units.is_metric: return LENGTH_MILES return LENGTH_KILOMETERS
9,604
sfepy/mechanics/friction.py
olivierverdier/sfepy
1
2022917
""" Friction-slip model formulated as the implicit complementarity problem. To integrate over a (dual) mesh, one needs: * coordinates of element vertices * element connectivity * local base for each element * constant in each sub-triangle of the dual mesh Data for each dual element: * connectivity of its sub-triangles * base directions t_1, t_2 Normal stresses: * Assemble the rezidual and apply the LCBC operator described below. Solution in \hat{V}_h^c: * construct a restriction operator via LCBC just like in the no-penetration case * use the substitution: u_1 = n_1 * w u_2 = n_2 * w u_3 = n_3 * w The new DOF is `w`. * for the record, no-penetration does: w_1 = - (1 / n_1) * (u_2 * n_2 + u_3 * n_3) w_2 = u_2 w_3 = u_3 """ from sfepy.base.base import * from sfepy.base.compat import unique import sfepy.linalg as la from sfepy.fem import Mesh, Domain, Field, Variables from sfepy.fem.mappings import VolumeMapping, SurfaceMapping from sfepy.fem.fe_surface import FESurface from sfepy.fem.utils import compute_nodal_normals def edge_data_to_output(coors, conn, e_sort, data): out = nm.zeros_like(coors) out[conn[e_sort,0]] = data return Struct(name='output_data', mode='vertex', data=out, dofs=None) class DualMesh(Struct): """Dual mesh corresponding to a (surface) region.""" def __init__(self, region): """ Assume a single GeometryElement type in all groups, linear approximation. Works for one group only for the moment. """ domain = region.domain self.dim = domain.shape.dim self.region = copy(region) self.region.setup_face_indices() self.mesh_coors = domain.mesh.coors # add_to_regions=True due to Field implementation shortcomings. omega = domain.create_region('Omega', 'all', add_to_regions=True) self.field = Field('displacements', nm.float64, (3,), omega, 1) self.gel = domain.geom_els.values()[0] self.sgel = self.gel.surface_facet face_key = 's%d' % self.sgel.n_vertex # Coordinate interpolation to face centres. self.ps = self.gel.interp.poly_spaces[face_key] centre = self.ps.node_coors.sum(axis=0) / self.ps.n_nod self.bf = self.ps.eval_base(centre[None,:]) self.surfaces = surfaces = {} self.dual_surfaces = dual_surfaces = {} for ig, conn in enumerate(domain.mesh.conns): surface = FESurface(None, self.region, self.gel.faces, conn, ig) surfaces[ig] = surface dual_surface = self.describe_dual_surface(surface) dual_surfaces[ig] = dual_surface def describe_dual_surface(self, surface): n_fa, n_edge = surface.n_fa, self.sgel.n_edge mesh_coors = self.mesh_coors # Face centres. fcoors = mesh_coors[surface.econn] centre_coors = nm.dot(self.bf.squeeze(), fcoors) surface_coors = mesh_coors[surface.nodes] dual_coors = nm.r_[surface_coors, centre_coors] coor_offset = surface.nodes.shape[0] # Normals in primary mesh nodes. nodal_normals = compute_nodal_normals(surface.nodes, self.region, self.field) ee = surface.leconn[:,self.sgel.edges].copy() edges_per_face = ee.copy() sh = edges_per_face.shape ee.shape = edges_per_face.shape = (sh[0] * sh[1], sh[2]) edges_per_face.sort(axis=1) eo = nm.empty((sh[0] * sh[1],), dtype=nm.object) eo[:] = [tuple(ii) for ii in edges_per_face] ueo, e_sort, e_id = unique(eo, return_index=True, return_inverse=True) ueo = edges_per_face[e_sort] # edge centre, edge point 1, face centre, edge point 2 conn = nm.empty((n_edge * n_fa, 4), dtype=nm.int32) conn[:,0] = e_id conn[:,1] = ee[:,0] conn[:,2] = nm.repeat(nm.arange(n_fa, dtype=nm.int32), n_edge) \ + coor_offset conn[:,3] = ee[:,1] # face centre, edge point 2, edge point 1 tri_conn = nm.ascontiguousarray(conn[:,[2,1,3]]) # Ensure orientation - outward normal. cc = dual_coors[tri_conn] v1 = cc[:,1] - cc[:,0] v2 = cc[:,2] - cc[:,0] normals = nm.cross(v1, v2) nn = nodal_normals[surface.leconn].sum(axis=1).repeat(n_edge, 0) centre_normals = (1.0 / surface.n_fp) * nn centre_normals /= la.norm_l2_along_axis(centre_normals)[:,None] dot = nm.sum(normals * centre_normals, axis=1) assert_((dot > 0.0).all()) # Prepare mapping from reference triangle e_R to a # triangle within reference face e_D. gel = self.gel.surface_facet ref_coors = gel.coors ref_centre = nm.dot(self.bf.squeeze(), ref_coors) cc = nm.r_[ref_coors, ref_centre[None,:]] rconn = nm.empty((n_edge, 3), dtype=nm.int32) rconn[:,0] = gel.n_vertex rconn[:,1] = gel.edges[:,0] rconn[:,2] = gel.edges[:,1] map_er_ed = VolumeMapping(cc, rconn, gel=gel) # Prepare mapping from reference triangle e_R to a # physical triangle e. map_er_e = SurfaceMapping(dual_coors, tri_conn, gel=gel) # Compute triangle basis (edge) vectors. nn = surface.nodes[ueo] edge_coors = mesh_coors[nn] edge_centre_coors = 0.5 * edge_coors.sum(axis=1) edge_normals = 0.5 * nodal_normals[ueo].sum(axis=1) edge_normals /= la.norm_l2_along_axis(edge_normals)[:,None] nn = surface.nodes[ueo] edge_dirs = edge_coors[:,1] - edge_coors[:,0] edge_dirs /= la.norm_l2_along_axis(edge_dirs)[:,None] edge_ortho = nm.cross(edge_normals, edge_dirs) edge_ortho /= la.norm_l2_along_axis(edge_ortho)[:,None] # Primary face - dual sub-faces map. # i-th row: indices to conn corresponding to sub-faces of i-th face. face_map = nm.arange(n_fa * n_edge, dtype=nm.int32) face_map.shape = (n_fa, n_edge) # The actual connectivity for assembling (unique nodes per master # faces). asm_conn = e_id[face_map] n_nod = ueo.shape[0] # One node per unique edge. n_components = self.dim - 1 dual_surface = Struct(name = 'dual_surface_description', dim = self.dim, n_dual_fa = conn.shape[0], n_dual_fp = self.dim, n_fa = n_fa, n_edge = n_edge, n_nod = n_nod, n_components = n_components, n_dof = n_nod * n_components, dual_coors = dual_coors, coor_offset = coor_offset, e_sort = e_sort, conn = conn, tri_conn = tri_conn, map_er_e = map_er_e, map_er_ed = map_er_ed, face_map = face_map, asm_conn = asm_conn, nodal_normals = nodal_normals, edge_centre_coors = edge_centre_coors, edge_normals = edge_normals, edge_dirs = edge_dirs, edge_ortho = edge_ortho) return dual_surface def save(self, filename): coors = [] conns = [] mat_ids = [] offset = 0 for ig, dual_surface in self.dual_surfaces.iteritems(): cc = dual_surface.dual_coors coors.append(cc) conn = dual_surface.conn[:,1:].copy() + offset conns.append(conn) mat_id = nm.empty((conn.shape[0],), dtype=nm.int32) mat_id[:] = ig mat_ids.append(mat_id) offset += cc.shape[0] coors = nm.concatenate(coors, axis=0) dual_mesh = Mesh.from_data('dual_mesh', coors, None, conns, mat_ids, ['2_3'] * len(conns)) dual_mesh.write(filename, io='auto') def save_axes(self, filename): coors = [] conns = [] mat_ids = [] offset = 0 for ig, dual_surface in self.dual_surfaces.iteritems(): cc = nm.r_[dual_surface.edge_centre_coors, dual_surface.dual_coors] coors.append(cc) conn = dual_surface.conn.copy() + offset conn[:,1:] += dual_surface.edge_centre_coors.shape[0] conns.append(conn) mat_id = nm.empty((conn.shape[0],), dtype=nm.int32) mat_id[:] = ig mat_ids.append(mat_id) offset += cc.shape[0] coors = nm.concatenate(coors, axis=0) out = {} for ig, dual_surface in self.dual_surfaces.iteritems(): eto = edge_data_to_output out['en_%d' % ig] = eto(coors, conns[ig], dual_surface.e_sort, dual_surface.edge_normals) out['ed_%d' % ig] = eto(coors, conns[ig], dual_surface.e_sort, dual_surface.edge_dirs) out['eo_%d' % ig] = eto(coors, conns[ig], dual_surface.e_sort, dual_surface.edge_ortho) dual_mesh = Mesh.from_data('dual_mesh_vectors', coors, None, conns, mat_ids, ['2_4'] * len(conns)) dual_mesh.write(filename, io='auto', out=out)
9,701
DeltaChecksum/hashes.py
DavidLutton/Fragments
0
2024955
import hashlib def generate_hash(filename=None): """Generate a hash for a file.""" hasher_256 = hashlib.sha256() with open(filename, 'rb') as obj: hasher_256.update(obj.read()) return hasher_256.hexdigest() # print(generate_hash("hash.py"))
281
simpleml/utils/scoring/__init__.py
ptoman/SimpleML
15
2025973
''' Directory for scripts to facilitate scoring of new samples in production ''' __author__ = '<NAME>'
104
tests/test_objects/melody_obj.py
aParthemer/MidiCompose
0
2026487
from icecream import ic as ice from MidiCompose.logic.harmony.note import Note from MidiCompose.logic.melody.melody import Melody from MidiCompose.logic.melody.note_set import NoteSet from MidiCompose.logic.melody import scale #### MELODY-LIKE OBJECTS #### mel_like_60_62_64 = [Note(60),Note(62),Note(64)] mel_60_62_64 = Melody(mel_like_60_62_64)
365
tests/module/mcdecoder/test_common.py
wildlarva/mcdecoder
0
2026908
import os import pathlib from mcdecoder.common import make_parent_directories def test_make_parent_directories_not_exist() -> None: _remove_temp_file('somedir') assert make_parent_directories('somedir/some.txt') is True assert os.path.isdir('somedir') is True def test_make_parent_directories_exist() -> None: _remove_temp_file('somedir') os.makedirs('somedir', exist_ok=True) assert make_parent_directories('somedir/some.txt') is True def test_make_parent_directories_not_dir() -> None: _remove_temp_file('somedir') pathlib.Path('somedir').touch() assert make_parent_directories('somedir/some.txt') is False def test_make_parent_directories_without_parent_dir() -> None: assert make_parent_directories('some.txt') is True def _remove_temp_file(file: str): if os.path.isfile(file): os.remove(file) elif os.path.isdir(file): os.removedirs(file)
919
src/04_Programming_Hadoop_with_Spark/FilteredLowestRatedMovieSpark.py
MilovanTomasevic/The-Ultimate-Hands-On-Hadoop-Tame-your-Big-Data
0
2026669
from pyspark import SparkConf, SparkContext # Load u.item file into Hadoop def loadMovieNames(): movieNames = {} with open("ml-100k/u.item") as f: for line in f: fields = line.split('|') movieNames[int(fields[0])] = fields[1] return movieNames def parseInput(line): fields = line.split() return (int(fields[1]), (float(fields[2]), 1.0)) if __name__ == "__main__": # The main script - create our SparkContext conf = SparkConf().setAppName("FilteredWorstMovies") sc = SparkContext(conf = conf) # Load up our movie ID -> name dictionary movieNames = loadMovieNames() # Get the raw data lines = sc.textFile("hdfs:///user/maria_dev/ml-100k/u.data") # Convert to (movieID, (rating, 1.0)) movieRatings = lines.map(parseInput) # Reduce to (movieID, (sumOfRatings, totalRatings)) ratingTotalsAndCount = movieRatings.reduceByKey(lambda movie1 , movie2: (movie1[0] + movie2[0], movie1[1] + movie2[1] ) ) # Filter results that have are 10 or lesser ratings filteredMovies = ratingTotalsAndCount.filter(lambda x: x[1][1] > 10) # Map to rating (rating, averageRating) averageRatings = filteredMovies.mapValues(lambda totalAndCount: totalAndCount[0] / totalAndCount[1] ) # Sort by average rating sortedMovies = averageRatings.sortBy(lambda x: x[1]) # Take the top 10 results results = sortedMovies.take(10) # Print them out: for result in results: print(movieNames[result[0]], result[1])
1,432
DataQuality/models.py
Moni313/MonAT_Public
0
2026595
from django.db import models class Entry(models.Model): pregnancy_id = models.CharField(max_length=255) child_id = models.CharField(max_length=255) eth22 = models.CharField(max_length=255, blank=True, null=True) eth9 = models.CharField(max_length=255, blank=True, null=True) eth6 = models.CharField(max_length=255, blank=True, null=True) eth4 = models.CharField(max_length=255, blank=True, null=True) eth3 = models.CharField(max_length=255, blank=True, null=True) age = models.IntegerField(blank=True, null=True) gender = models.CharField(max_length=5, blank=True, null=True) source = models.CharField(max_length=255, blank=True, null=True) visitDate = models.DateField(format("dd/MM/yy"), blank=True, null=True) height = models.FloatField(blank=True, null=True) weight = models.FloatField(blank=True, null=True) class Meta: ordering = ('pregnancy_id',)
923
fly/logger.py
cheburakshu/fly
0
2026400
import logging import logging.config import time from functools import lru_cache class logger(object): def __init__(self,*args,**kwargs): self._logger = None def logSetup(self): LOG_PATH = 'log/' fileName = LOG_PATH + 'runlog.' + str(int(time.time())) + '.out' logging.config.fileConfig('config/logging.conf',defaults={'logfilename': fileName}) #self.setLogger() def setLogger(self,_name): self._logger = logging.getLogger(_name) def getLogger(self): return self._logger def debug(self,message): #LEVEL 10 self.getLogger().debug(message) def info(self,message): #LEVEL 20 self._logger.info(message) def warn(self,message): #LEVEL 30 self._logger.warning(message) def error(self,message): #LEVEL 40 self._logger.error(message) def critical(self,message): #LEVEL 50 self._logger.critical(message) #log=logger() #log.logSetup() #log.info('test') #log.debug('testing') #USAGE #logSetup() #getLogger() #info('testing') #debug('testing') #warn('testing') #error('testing') #critical('testing')
1,234
common/azureml_appinsights_logger/tests/test_observability.py
h2floh/MLOpsManufacturing-1
20
2026765
import pytest from azureml_appinsights_logger.observability import Observability from azureml_appinsights_logger.logger_interface import Severity @pytest.fixture def mock_loggers(mocker): mock_loggers = mocker.patch( "azureml_appinsights_logger.observability.Loggers") mock_appinsights_logger = mocker.patch( "azureml_appinsights_logger.appinsights_logger.AppInsightsLogger") mock_aml_logger = mocker.patch( "azureml_appinsights_logger.console_logger.ConsoleLogger") mock_console_logger = mocker.patch( "azureml_appinsights_logger.azureml_logger.AzureMlLogger") mock_loggers.loggers = [ mock_appinsights_logger, mock_aml_logger, mock_console_logger] return mock_loggers def test_log_metric_is_called_by_all_loggers(mocker, mock_loggers): # arrange mocker.patch( 'azureml_appinsights_logger.observability.Observability._loggers', new_callable=mocker.PropertyMock, return_value=mock_loggers, create=True ) # act mock_observability = Observability() mock_observability.log_metric("FOO", "BAZ", "BAR") # assert mock_observability._loggers.loggers[0].log_metric.assert_called_with( "FOO", "BAZ", "BAR", False) mock_observability._loggers.loggers[1].log_metric.assert_called_with( "FOO", "BAZ", "BAR", False) mock_observability._loggers.loggers[2].log_metric.assert_called_with( "FOO", "BAZ", "BAR", False) def test_log_is_called_by_all_loggers(mocker, mock_loggers): # arrange mocker.patch( 'azureml_appinsights_logger.observability.Observability._loggers', new_callable=mocker.PropertyMock, return_value=mock_loggers, create=True ) # act mock_observability = Observability() mock_observability.log("FOO", Severity.CRITICAL) # assert mock_observability._loggers.loggers[0].log.assert_called_with( "FOO", Severity.CRITICAL) mock_observability._loggers.loggers[1].log.assert_called_with( "FOO", Severity.CRITICAL) mock_observability._loggers.loggers[2].log.assert_called_with( "FOO", Severity.CRITICAL)
2,178
scripts/gen_cardinalities.py
sage-org/sage-experiments
0
2025335
from hdt import HDTDocument import os import csv black_list = ["query_10020.rq", "query_10025.rq", "query_10039.rq", "query_10044.rq", "query_10061.rq", "query_10069.rq", "query_10078.rq", "query_10082.rq", "query_10083.rq", "query_10091.rq", "query_10122.rq", "query_10150.rq", "query_10168.rq", "query_10169.rq"] path = "watdiv_queries/watdiv_queries_0/" dest = "watdiv_one_triple/" card_file = "results/optionals/cardinalities.csv" document = HDTDocument('/Users/minier-t/Documents/hdt-files/watdiv.10M.hdt') cardinalities = list() final_queries = list() def get_triples(query): start = query.index('WHERE {') end = query.index('}') return query[start+7:end].strip().split(" . ") def cardinality(triple): terms = triple.split(" ") subj = terms[0].strip()[1:-1] if not terms[0].startswith('?') else "" pred = terms[1].strip()[1:-1] if not terms[1].startswith('?') else "" obj = terms[2].strip()[1:-1] if not terms[2].startswith('?') else "" iter, card = document.search_triples(subj, pred, obj) return (triple, card) for filename in os.listdir(path): if filename not in black_list: with open(path + filename) as f: query = f.read() triples = get_triples(query) cards = [cardinality(t) for t in triples] sorted(cards, key=lambda t: t[1]) (max_triple, max_card) = cards[0] # save cardinality cardinalities.append((filename, max_card)) # generate query # with open(dest + filename, 'w') as out: # out.write("SELECT * WHERE { " + max_triple + " }") # save cardinalities in CSV file field_names = ['query', 'cardinality'] with open(card_file, 'w', newline='') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=field_names) writer.writeheader() for (query, card) in cardinalities: writer.writerow({'query': query[:-3], 'cardinality': card})
1,910
camara_zona/models.py
joelsegoviacrespo/control_aforo_migrado
0
2026638
# -*- encoding: utf-8 -*- from djongo import models #from instalacion.models import Instalacion class CamaraZona(models.Model): _id = models.ObjectIdField() #id_instalacion = models.ForeignKey(Instalacion, on_delete=models.CASCADE, blank=False) id_camara_zona = models.CharField(max_length=255, blank=False, default='') descripcion = models.CharField(max_length=250, blank=False, default='') camara_zona_estado = models.BooleanField(blank=False, default=True) def __unicode__(self): #return self.id_camara_zona return "s% - s%" % str(self.id_camara_zona.id_cliente, self.id_camara_zona) def __str__(self): return str(self.id_camara_zona)
693
solutions/python3/781.py
sm2774us/amazon_interview_prep_2021
42
2026130
class Solution: def numRabbits(self, answers): dic, res = {}, 0 for ans in answers: (dic[ans], res) = (1, res + ans + 1) if ans not in dic or dic[ans] > ans else (dic[ans] + 1, res) return res
232
skate_ppo/speed_skating_run.py
snumrl/skate
0
2025672
import os from skate_ppo.hprun import main import time if __name__ == '__main__': argv = [] env_id = 'speed_skating' cur_time = time.strftime("%Y%m%d%H%M") os.environ["OPENAI_LOGDIR"] = os.getcwd() + '/' + env_id + '/log_' + cur_time os.environ["OPENAI_LOG_FORMAT"] = 'csv' argv.extend(['--env='+env_id]) argv.extend(['--alg=ppo2']) argv.extend(['--num_env=8']) argv.extend(['--num_timesteps=2e7']) argv.extend(['--save_path='+env_id+'/'+'model_'+cur_time]) argv.extend(['--num_hidden=64']) argv.extend(['--num_layers=2']) main(argv)
590
MCD_Communicator/src/communicator.py
MacAndKaj/mdc_tools
0
2026745
from PyQt5.QtWidgets import QApplication, QMainWindow, QVBoxLayout, QPlainTextEdit, QLineEdit, QWidget, QTabWidget, \ QPushButton from PyQt5 import QtCore from PyQt5.QtCore import * import sys from datetime import datetime from MCD_Communicator.src.modules import port, messages class CommunicatorLog(QPlainTextEdit): def __init__(self): super().__init__() self.setFocusPolicy(Qt.NoFocus) @pyqtSlot(str) def on_new_tx_text(self, text): prefix = "[" + self.get_time() + "] " self.insertPlainText(prefix + text + '\n') def get_time(self) -> str: now = datetime.now() return now.strftime("%d/%m/%Y-%H:%M:%S.%f") class CommunicatorInputLine(QLineEdit): text_signal = QtCore.pyqtSignal(str) def __init__(self) -> None: super().__init__() self._input_text = "" self.returnPressed.connect(self.on_return_pressed) self.textChanged.connect(self.on_text_changed) def on_return_pressed(self): self.text_signal.emit(self._input_text) self.clear() def on_text_changed(self, text): self._input_text = text class ConnectionButton(QPushButton): connection_signal = QtCore.pyqtSignal(str) def __init__(self): super().__init__("Connect") self.clicked.connect(self.on_button_clicked) def on_button_clicked(self): transitions_map = { "Connect": "Disconnect", "Disconnect": "Connect", } previous_text = self.text() self.setText(transitions_map[self.text()]) self.connection_signal.emit(previous_text) @pyqtSlot() def on_port_closed(self): print("on_port_closed") self.setText("Connect") class Window(QMainWindow): def __init__(self): super().__init__() self._communicator_log = None self._communicator_input_line = None self.setGeometry(0, 0, 600, 400) self.setWindowTitle("MCD Communicator") self._connection_button = ConnectionButton() window_layout = QVBoxLayout() window_layout.addWidget(self._connection_button) main_widget = QTabWidget() self._free_communicator_tab = self.configure_free_communicator() main_widget.addTab(self._free_communicator_tab, "Free Communicator") self._message_communicator = QWidget() main_widget.addTab(self._message_communicator, "Message Communicator") window_layout.addWidget(main_widget) layout_widget = QWidget() layout_widget.setLayout(window_layout) self.setCentralWidget(layout_widget) self.setFocus() self.show() def configure_free_communicator(self) -> QWidget: free_communicator = QWidget() layout = QVBoxLayout() self._communicator_log = CommunicatorLog() self._communicator_input_line = CommunicatorInputLine() self._communicator_input_line.text_signal.connect(self._communicator_log.on_new_tx_text) layout.addWidget(self._communicator_log) layout.addWidget(self._communicator_input_line) free_communicator.setLayout(layout) return free_communicator def connect_main_window_with_port(self, port_obj: port.Port): self._connection_button.connection_signal.connect(port_obj.execute) self._communicator_input_line.text_signal.connect(port_obj.send) port_obj.port_closed_signal.connect(self._connection_button.on_port_closed) class AppCore: def __init__(self): self._window = Window() self._port = port.Port() self._window.connect_main_window_with_port(self._port) self._port_thread = QThread() def start(self): self._port.moveToThread(self._port_thread) self._port_thread.started.connect(self._port.run) self._port_thread.start() def stop(self): self._port.stop() if __name__ == '__main__': req = messages.PlatformSetMotorSpeedReq(1, -1, 50) print(req.serialize()) app = QApplication(sys.argv) app_core = AppCore() # app_core.start() status = app.exec_() # app_core.stop() sys.exit(status)
4,171
shop/cascade/search.py
Iv/django-shop
1
2026810
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.core.exceptions import ValidationError from django import forms from django.template import Template from django.template.loader import select_template from django.utils.translation import ugettext_lazy as _ from cms.plugin_pool import plugin_pool from shop import settings as shop_settings from .plugin_base import ShopPluginBase class ShopSearchResultsForm(forms.ModelForm): def clean(self): cleaned_data = super(ShopSearchResultsForm, self).clean() if self.instance.page and self.instance.page.application_urls != 'ProductSearchApp': raise ValidationError("This plugin only makes sense on a CMS page with an application of type 'Search'.") return cleaned_data class ShopSearchResultsPlugin(ShopPluginBase): name = _("Search Results") require_parent = True parent_classes = ('BootstrapColumnPlugin',) form = ShopSearchResultsForm cache = False def get_render_template(self, context, instance, placeholder): if instance.page.application_urls == 'ProductSearchApp': return select_template([ '{}/search/results.html'.format(shop_settings.APP_LABEL), 'shop/search/results.html', ]) return Template('<pre class="bg-danger">This {} plugin is used on a CMS page without an application of type "Search".</pre>'.format(self.name)) def render(self, context, instance, placeholder): super(ShopSearchResultsPlugin, self).render(context, instance, placeholder) try: if context['edit_mode']: # prevent scrolling while editing context['data']['next'] = None finally: return context plugin_pool.register_plugin(ShopSearchResultsPlugin)
1,833
2019/08/03/The Basics of Django ListView/listviewexample/listviewexample/example/views.py
kenjitagawa/youtube_video_code
492
2025727
from django.shortcuts import render from django.views.generic import ListView from .models import Member class MemberList(ListView): model = Member
154
tests/test_nemo_cf.py
willirath/nemo_cf
0
2026386
#!/usr/bin/env python """Tests for the `nemo_cf.cli` package.""" import pytest from nemo_cf.nemo_cf import ( update_all_vars_attrs, safely_drop_vars, update_mesh_mask_dataset, ) from nemo_cf.aux import download_and_extract_zip_file from pathlib import Path import xarray as xr @pytest.fixture(scope="session") def test_data_dir(tmpdir_factory): test_data_dir = tmpdir_factory.mktemp("test_data") download_and_extract_zip_file( target_dir=test_data_dir, url=( "https://zenodo.org/record/3634491/files/" "NEMO_GYRE_test_data_all_files.v2020.02.03.1.zip" ), force=True, ) return Path(str(test_data_dir)) def test_update_all_vars_attrs_works(): dataset = xr.DataArray([], name="var_01").to_dataset() new_attrs = {"var_01": {"units": "meters", "coordinates": ""}} dataset = update_all_vars_attrs(dataset, attrs=new_attrs) assert dataset["var_01"].attrs["units"] == "meters" assert dataset["var_01"].attrs["coordinates"] == "" def test_safe_var_dropper(): dataset = xr.DataArray([], name="var_01").to_dataset() assert "var_01" in safely_drop_vars(dataset, ["var_02", "var_03"]) assert "var_01" not in safely_drop_vars(dataset, ["var_01", "var_02"]) def test_updated_mesh_mask_has_no_nav_lev_lat_lon(test_data_dir): mesh_mask_file = test_data_dir / "mesh_mask.nc" mesh_mask_ds = xr.open_dataset(mesh_mask_file) mesh_mask_ds_updated = update_mesh_mask_dataset(mesh_mask_ds) assert "nav_lev" not in mesh_mask_ds_updated.data_vars assert "nav_lat" not in mesh_mask_ds_updated.data_vars assert "nav_lon" not in mesh_mask_ds_updated.data_vars def test_updated_mesh_mask_has_no_singleton_dims(test_data_dir): mesh_mask_file = test_data_dir / "mesh_mask.nc" mesh_mask_ds = xr.open_dataset(mesh_mask_file) mesh_mask_ds = update_mesh_mask_dataset(mesh_mask_ds) assert all(d != 0 for d in mesh_mask_ds.dims.values())
1,977
setup.py
plaplant/zreion
0
2026897
# -*- coding: utf-8 -*- # Copyright (c) 2020 <NAME> # Licensed under the MIT License """ Setup file for zreion. Use setup.cfg to configure this project. This file was generated with PyScaffold 3.2.3. PyScaffold helps you to put up the scaffold of your new Python project. Learn more under: https://pyscaffold.org/ """ import sys from pkg_resources import VersionConflict, require from setuptools import setup, Extension import numpy from Cython.Build import cythonize zreion_ext = Extension( "zreion._zreion", sources=["src/zreion/zreion.pyx"], define_macros=[ ("NPY_NO_DEPRECATED_API", "NPY_1_7_API_VERSION"), ("CYTHON_TRACE_NOGIL", "1"), ], extra_compile_args=["-fopenmp"], extra_link_args=["-fopenmp"], include_dirs=[numpy.get_include()], ) try: require("setuptools>=38.3") except VersionConflict: print("Error: version of setuptools is too old (<38.3)!") sys.exit(1) if __name__ == "__main__": setup( use_pyscaffold=True, ext_modules=cythonize([zreion_ext], language_level=3), )
1,065
tools/nntool/generation/generators/kernels/pow2/pool_relu_kernels_generator.py
mfkiwl/gap_sdk
0
2026453
# Copyright (C) 2020 GreenWaves Technologies, SAS # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. import logging from generation.at_generators import (NO_ACTIVATION, NO_POOL, gen_active_at_params, gen_at_pool_relu, gen_pool_at_params) from generation.at_types.gen_ctrl import GenCtrl from generation.code_block import CodeBlock from generation.generator_decorators import generation_function, QREC_POW2 from graph.dim import PadDim from graph.types import ConvFusionParameters from utils.node_id import NodeId from ..autotiler_kernel import AutotilerKernel LOG = logging.getLogger("nntool." + __name__) @generation_function("kernels", (ConvFusionParameters,), qrec_types=(QREC_POW2, )) def pool_kernels_generator(gen, node, qrec, in_eparams, out_eparams, cname): del in_eparams, out_eparams, qrec if isinstance(node, ConvFusionParameters) and node.fusion_type == "pool_active": cnodes = node.contained_nodes() quants = [gen.G.quantization[NodeId(node, fnode)] for fnode in cnodes] gen.kernels.append(PoolReluKernel(node.name, cname, cnodes[0], quants[0], cnodes[1], quants[1], at_ver=gen.opts['at_ver'], gen_ctrl=node.get_gen_ctrl())) return True return False class PoolReluKernel(AutotilerKernel): def __init__(self, node_name, cname, pool_params, pool_q, act_params, act_q, code_block=None, at_ver=3, gen_ctrl=None): if gen_ctrl is None: self.gen_ctrl = GenCtrl(None, cname=cname) else: gen_ctrl.cname = cname self.gen_ctrl = gen_ctrl in_q = out_q = None in_dim = out_dim = None pad_compatibilities = [] if pool_params is not None: at_pool_params = gen_pool_at_params(pool_params, pad_compatibilities) if in_dim is None: in_dim = pool_params.in_dims[0] out_dim = pool_params.out_dims[0] if in_q is None: in_q = pool_q.in_qs[0] out_q = pool_q.out_qs[0] else: at_pool_params = NO_POOL if act_params is not None: at_act_params = gen_active_at_params(act_params) if in_dim is None: in_dim = act_params.in_dims[0] if out_dim is None: out_dim = act_params.out_dims[0] if in_q is None: in_q = act_q.in_qs[0] out_q = act_q.out_qs[0] if at_ver < 3: if act_params.activation == "relu6" and out_q.q != 0: self.gen_ctrl.ReluN = 6 << out_q.q self.gen_ctrl.ReluNNoNorm = 1 else: if act_params.activation == "relun": self.gen_ctrl.ReluN = act_params.activation_params else: at_act_params = NO_ACTIVATION if code_block is None: code_block = CodeBlock() if pad_compatibilities: reduction = PadDim.pad_compatibility_reduce(*pad_compatibilities, "convolution padding is not compatible with pool padding") if not reduction[2]: # default is balanced pad left at_pad_ctrl = next(i for i, v in enumerate(reduction) if v) self.gen_ctrl.PadType = at_pad_ctrl if in_q.bits != out_q.bits: raise NotImplementedError("only homogenious operations are supported at present") if at_pool_params == NO_POOL: raise NotImplementedError( "activation layer on its own should not be matched by this kernel") self.at_pool_params = at_pool_params self.in_dim = in_dim self.out_dim = out_dim self.in_q = in_q self.out_q = out_q self.at_act_params = at_act_params self.cname = cname self.node_name = node_name self.at_ver = at_ver def code(self, code_block=None): if code_block is None: code_block = CodeBlock() code_block.comment("generator for {}", self.node_name) if not self.gen_ctrl.is_unmodified: self.gen_ctrl.gen_ctrl_decl(code_block) gen_at_pool_relu(code_block, self.cname, self.in_q, self.out_q, self.in_dim, self.out_dim, self.at_pool_params, self.at_act_params, gen_ctrl=self.gen_ctrl, at_ver=self.at_ver) return code_block
5,208
test/test_model/length_metric/get_lca_length/test_get_lca_length.py
SupermeLC/PyNeval
12
2025530
import unittest from pyneval.metric.utils.edge_match_utils import get_lca_length, get_edge_rtree, get_idedge_dict from pyneval.model.swc_node import SwcTree, SwcNode from pyneval.model.euclidean_point import EuclideanPoint, Line class TestGetLcaLength(unittest.TestCase): test_swc_tree = SwcTree() test_rtree = None id_edge_dict = None def init(self): self.test_swc_tree.load("../../data_example/unit_test/get_nearby_edges_tree1.swc") self.test_rtree = get_edge_rtree(self.test_swc_tree) self.id_edge_dict = get_idedge_dict(self.test_swc_tree) self.test_swc_tree.get_lca_preprocess() def test_1(self): self.init() line_tuple_a = tuple([self.test_swc_tree.node_from_id(8), self.test_swc_tree.node_from_id(7)]) line_tuple_b = tuple([self.test_swc_tree.node_from_id(7), self.test_swc_tree.node_from_id(6)]) e_node1 = EuclideanPoint(center=[1.03, -2.1, 6.31]) e_node2 = EuclideanPoint(center=[3.87, 0.98, 1.17]) test_length = get_lca_length(self.test_swc_tree, \ line_tuple_a, \ line_tuple_b, \ Line(e_node_1=e_node1, e_node_2=e_node2)) self.assertEqual(test_length, 9.589854552695694) def test_2(self): self.init() line_tuple_a = tuple([self.test_swc_tree.node_from_id(4), self.test_swc_tree.node_from_id(3)]) line_tuple_b = tuple([self.test_swc_tree.node_from_id(15), self.test_swc_tree.node_from_id(9)]) e_node1 = EuclideanPoint(center=[-1.89657, 6.51822, -1.40403]) e_node2 = EuclideanPoint(center=[-2.02446, 0.54277, 7.48183]) test_length = get_lca_length(self.test_swc_tree, \ line_tuple_a, \ line_tuple_b, \ Line(e_node_1=e_node1, e_node_2=e_node2)) self.assertEqual(test_length, 34.372721303735716) if __name__ == '__main__': unittest.main()
2,254
finish.py
BotanyHunter/QuartetAnalysis
0
2026833
#!/usr/bin/python #version 2.0.6 import os,re,optparse,tarfile from quartet_condor import * from fileWriter_condor import * from fileReader_condor import * from arguments import * from errorcodes import * splitOrder = ["{1,2|3,4}", "{1,3|2,4}", "{1,4|2,3}"] translation = { 1234 : [1,2,3], 1243 : [1,3,2], 1324 : [2,1,3], 1342 : [2,3,1], 1423 : [3,1,2], 1432 : [3,2,1], 2134 : [1,3,2], 2143 : [1,2,3], 2314 : [3,1,2], 2341 : [3,2,1], 2413 : [2,1,3], 2431 : [2,3,1], 3124 : [2,3,1], 3142 : [2,1,3], 3214 : [3,2,1], 3241 : [3,1,2], 3412 : [1,2,3], 3421 : [1,3,2], 4123 : [3,2,1], 4132 : [3,1,2], 4213 : [2,3,1], 4231 : [2,1,3], 4312 : [1,3,2], 4321 : [1,2,3] } def restore_quartet_order(d, taxa_set, orig_quartet): ''' given the four taxa in taxa_set, find them in orig_quartet and then change order in d. ''' #first find the original quartet quartet = None for quartet_loop in orig_quartet: if( taxa_set[0] in quartet_loop and taxa_set[1] in quartet_loop and taxa_set[2] in quartet_loop and taxa_set[3] in quartet_loop ): quartet = quartet_loop break if( quartet == None ): return None, None #now rearrange d translate = [] for taxa in quartet: translate.append ( 1+taxa_set.index(taxa) ) translateKey = translate[0]*1000 + translate[1]*100 + translate[2] * 10 + translate[3] d_new = {} for split in range(0,3): tK = splitOrder[translation[translateKey][split]-1] d_new[splitOrder[split]] = d[tK] return d_new, quartet ''' Isolates CFs from *.concordance files (output from run_indiv_taxa.py) and builds a comma-separated ouput table Also isolates gene tree probabilities from *.gene file ''' def main(): parser = getParser() options, remainder = parser.parse_args() output_header = "Taxon1,Taxon2,Taxon3,Taxon4,CF12|34,CF13|24,CF14|23,CI12|34Low,CI12|34High,CI13|24Low,CI13|24High,CI14|23Low,CI14|23High\n" output_file = open("QuartetAnalysis"+options.outputSuffix+".csv", 'w') supple_header = "Taxon1,Taxon2,Taxon3,Taxon4,Gene Index,P12|34,P13|24,P14|23\n" supple_file = open("QuartetAnalysis"+options.outputSuffix+".supple", 'w') metafile = open("QuartetAnalysis"+options.outputSuffix+".meta", 'r') for line in metafile: if line.startswith("- instance ID"): output_file.write(line) supple_file.write(line) output_file.write(output_header) supple_file.write(supple_header) output_file.close() supple_file.close() finish_output = open("finish.meta",'w') q = quartet() wf = fileWriter(None, None, None, None, None, None) fr = fileReader() #make a reference dictionary with number/species-name pairs myQuartets = [] if( options.maintain_order == 1 ): quartets_filename = 'quartets' + options.outputSuffix + '.txt' with open(quartets_filename, 'r') as quartets_file: for quartet_line in quartets_file: myQuartets.append([int(x) for x in quartet_line.split()]) ref_dict = {} translate_filename = 'translate' + options.outputSuffix + '.txt' translate_file = open(translate_filename, 'r') for line in translate_file: words = line.split() ref_dict[words[1]] = int(words[0]) translate_file.close() try: myTarfile = tarfile.open(name="finish.tar.gz", mode='r') files = myTarfile.getnames() except: print "Error: tarFile finish.tar.gz does not exist." return 1 taxa_set = [] concfile_count = 0 genefile_count = 0 for cfile in files: if(cfile.endswith('concordance')): concfile_count += 1 print "working on: "+cfile #find number of genes - which was written to the Q#.txt file txtFilename = cfile txtFilename = txtFilename.replace("concordance","txt") txtFile = myTarfile.extractfile(txtFilename) num_genes = -1 for line in txtFile: if "genes processed" in line: words = line.split() num_genes = int(words[3]) break print "gene found = "+str(num_genes) concord_file = myTarfile.extractfile(cfile) #find the reference numbers of the taxa taxa_names = fr.find_taxa_set(concord_file) taxa_count = 0 for name in taxa_names: taxa_set.append(ref_dict[name]) taxa_count += 1 if( taxa_count == 4 ): print "reference #s of taxa set found." print taxa_set #find the CFs and add them to the growing output.csv file d,ciLow,ciHigh = q.isolateCFs(concord_file, num_genes) concord_file.close() if( options.maintain_order == 1 ): d1, taxa_set1 = restore_quartet_order(d, taxa_set, myQuartets) ciLow1, taxa_set1 = restore_quartet_order(ciLow, taxa_set, myQuartets) ciHigh1, taxa_set1 = restore_quartet_order(ciHigh, taxa_set, myQuartets) if( d1 == None ): finish_output.write('error reordering quartet: ' + str(taxa_set) + '\n') return 1 else: d = d1 ciLow = ciLow1 ciHigh = ciHigh1 #taxa_set = taxa_set1 wf.add_to_output_file(d, ciLow, ciHigh, taxa_set1, options.outputSuffix) #changed from taxa_set on 13 Feb - SJH print "CFs added." #now grab the gene probabilities from the supplemental file. for line in txtFile: myData = [int(x) for x in line.split(',')] geneNumber = myData[0] myDict = {} myDict['{1,2|3,4}'] = myData[1] myDict['{1,3|2,4}'] = myData[2] myDict['{1,4|2,3}'] = myData[3] newData, taxa_set1 = restore_quartet_order(myDict, taxa_set, myQuartets) newDataString = str(newData["{1,2|3,4}"]) + "," + str(newData["{1,3|2,4}"]) + "," + str(newData["{1,4|2,3}"]) outputString = str(myData[0]) +"," + newDataString + "\n" wf.add_to_supple_file(outputString, taxa_set1, options.outputSuffix) txtFile.close() print "Gene probabilities added.\n" taxa_set = [] myTarfile.close() finish_output.write('\nRUNNING finish.\n- ' + str(concfile_count) + ' BUCKy outputs (=quartets) found.\n') finish_output.close() main()
6,829
test/test_paired.py
openlabs/mongo-python-driver
0
2025231
# Copyright 2009-2010 10gen, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test pairing support. These tests are skipped by nose by default (since they depend on having a paired setup. To run the tests just run this file manually). Left and right nodes will be $DB_IP:$DB_PORT and $DB_IP2:$DB_PORT2 or localhost:27017 and localhost:27018 by default. """ import unittest import logging import os import sys import warnings sys.path[0:0] = [""] from pymongo.errors import ConnectionFailure from pymongo.connection import Connection skip_tests = True class TestPaired(unittest.TestCase): def setUp(self): left_host = os.environ.get("DB_IP", "localhost") left_port = int(os.environ.get("DB_PORT", 27017)) self.left = "%s:%s" % (left_host, left_port) right_host = os.environ.get("DB_IP2", "localhost") right_port = int(os.environ.get("DB_PORT2", 27018)) self.right = "%s:%s" % (right_host, right_port) self.bad = "%s:%s" % ("somedomainthatdoesntexist.org", 12345) def tearDown(self): pass def skip(self): if skip_tests: from nose.plugins.skip import SkipTest raise SkipTest() def test_connect(self): self.skip() self.assertRaises(ConnectionFailure, Connection, [self.bad, self.bad]) connection = Connection([self.left, self.right]) self.assertTrue(connection) host = connection.host port = connection.port connection = Connection([self.right, self.left]) self.assertTrue(connection) self.assertEqual(host, connection.host) self.assertEqual(port, connection.port) slave = self.left == (host, port) and self.right or self.left self.assertRaises(ConnectionFailure, Connection, [slave, self.bad]) self.assertRaises(ConnectionFailure, Connection, [self.bad, slave]) def test_repr(self): self.skip() connection = Connection([self.left, self.right]) self.assertEqual(repr(connection), "Connection(['%s', '%s'])" % (self.left, self.right)) def test_basic(self): self.skip() connection = Connection([self.left, self.right]) db = connection.pymongo_test db.drop_collection("test") a = {"x": 1} db.test.save(a) self.assertEqual(a, db.test.find_one()) def test_end_request(self): self.skip() connection = Connection([self.left, self.right]) db = connection.pymongo_test for _ in range(100): db.test.remove({}) db.test.insert({}) self.assertTrue(db.test.find_one()) connection.end_request() if __name__ == "__main__": skip_tests = False unittest.main()
3,389
optimizely_cli/repo.py
optimizely/optimizely-cli
3
2024731
# Copyright 2018 Optimizely # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import click import findup import json import os import re import sys from api import client as api_client from . import auth CREDENTIALS_FILE = '.optimizely-credentials.json' CONFIG_FILE = '.optimizely.json' class Repo(object): def __init__(self, root_dir=None, credentials_path=None): if credentials_path is None: credentials_path = findup.glob(CREDENTIALS_FILE) self.credentials = auth.load_credentials(credentials_path) # if the creds are expired, refresh the token if self.credentials.is_expired() and self.credentials.refresh_token: self.credentials = self.oauth.refresh_access_token( self.credentials.refresh_token ) self.credentials.write(credentials_path) if root_dir: self.vcs = 'git' self.root = root_dir else: self.vcs, self.root = self.detect_vcs_and_project_root() config = self.load_config() self.config = config self.platform = config.get('platform') self.project_id = config.get('project_id') if self.credentials.is_valid(): self.client = api_client.ApiClient(self.credentials.access_token) else: self.client = None def require_credentials(self): if self.credentials.is_valid(): return click.echo('Could not find credentials. ' "Make sure you have run 'optimizely init' or specified a " 'valid path to a credentials file') sys.exit(1) def load_config(self, config_path=None): root_dir = self.root or '.' if config_path is None: config_path = os.path.join(root_dir, CONFIG_FILE) if config_path and os.path.exists(config_path): with open(config_path) as f: return json.load(f) return {} def save_config(self, config, config_path=None, echo=False): root_dir = self.root or '.' if config_path is None: config_path = os.path.join(root_dir, CONFIG_FILE) with open(config_path, 'w') as f: json.dump(config, f, indent=4, separators=(',', ': ')) if echo: relative_path = os.path.relpath(config_path) click.echo('Config file written to {}'.format(relative_path)) def detect_vcs_and_project_root(self): # it probably would be smart to detect hg/svn/bazaar/whatever here too # if those are things that people are still using path = findup.glob('.git') if path: return 'git', os.path.dirname(path) return (None, '.') def detect_repo_name(self): root_dir = self.root or '.' return os.path.basename(os.path.abspath(root_dir)) def detect_project_language(self): extension_languages = { 'cs': 'csharp', 'java': 'java', 'js': 'javascript', 'php': 'php', 'py': 'python', 'rb': 'ruby', } extensions = {} extension_regex = re.compile(r'\.(\w+)$', re.IGNORECASE) if self.vcs == 'git': files = os.popen('git ls-files').readlines() for f in files: extension_match = re.search(extension_regex, f) if not extension_match: continue extension = extension_match.group(1) if extension not in extension_languages: continue if not extensions.get(extension): extensions[extension] = 0 extensions[extension] += 1 common_extensions = sorted(extensions, key=extensions.get, reverse=True) if common_extensions: return extension_languages[common_extensions][0] else: return None @property def oauth(self): return auth.LocalOAuth2( host='app.optimizely.com', client_id=10600571440, client_secret='<KEY>', port=5050, authorize_endpoint='/oauth2/authorize', token_endpoint='/oauth2/token', )
4,822
service/dao.py
JiscPER/jper
2
2025313
""" This module contains all the Data Access Objects for models which are persisted to Elasticsearch at some point in their lifecycle. Each DAO is an extension of the octopus ESDAO utility class which provides all of the ES-level heavy lifting, so these DAOs mostly just provide information on where to persist the data, and some additional storage-layer query methods as required """ from octopus.modules.es import dao class ContentLogDAO(dao.ESDAO): __type__ = 'contentlog' class UnroutedNotificationDAO(dao.ESDAO): """ DAO for UnroutedNotifications """ __type__ = 'unrouted' """ The index type to use to store these objects """ @classmethod def example(cls): """ request a document which acts as an example for this type """ from service.tests import fixtures return cls(fixtures.NotificationFactory.unrouted_notification()) class RoutedNotificationDAO(dao.TimeBoxedTypeESDAO): """ DAO for RoutedNotification This is an extension of the TimeBoxedTypeESDAO object, which means that a new type is created very period (e.g. monthly) for new content. This enables rapid dropping of old index types without affecting Elasticsearch performance, and works here because RoutedNotifications only persiste for a limited time """ __type__ = 'routed' """ The base index type to use to store these objects - this will be appended by the time-boxing features of the DAO with the creation timestamp """ @classmethod def example(cls): """ request a document which acts as an example for this type """ from service.tests import fixtures return cls(fixtures.NotificationFactory.routed_notification()) class FailedNotificationDAO(dao.ESDAO): """ DAO for FailedNotifications """ __type__ = "failed" """ The index type to use to store these objects """ class RepositoryConfigDAO(dao.ESDAO): """ DAO for RepositoryConfig """ __type__ = 'repo_config' """ The index type to use to store these objects """ class MatchProvenanceDAO(dao.ESDAO): """ DAO for MatchProvenance """ __type__ = "match_prov" """ The index type to use to store these objects """ @classmethod def pull_by_notification(cls, notification_id, size=10): """ List all of the match provenance information for the requested notification :param notification_id: the id of the notification for which to retrieve match provenance :param size: the maximum number to return (defaults to 10) """ q = MatchProvNotificationQuery(notification_id, size=size) return cls.object_query(q=q.query()) class MatchProvNotificationQuery(object): """ Query wrapper which generates an ES query for retrieving match provenance objects based on the notification to which they are attached """ def __init__(self, notification_id, size=10): """ Set the parameters of the query :param notification_id: the id of the notification for which to retrieve match provenance :param size: the maximum number to return (defaults to 10) """ self.notification_id = notification_id self.size = size def query(self): """ generate the query as a python dictionary object :return: a python dictionary containing the ES query, ready for JSON serialisation """ return { "query" : { "term" : {"notification.exact" : self.notification_id} }, "size" : self.size } class RetrievalRecordDAO(dao.ESDAO): """ DAO for RetrievalRecord """ __type__ = "retrieval" """ The index type to use to store these objects """ class AccountDAO(dao.ESDAO): """ DAO for Account """ __type__ = "account" """ The index type to use to store these objects """
3,957
gluonar/utils/viz.py
haoxintong/gluon-audio
9
2026403
# MIT License # Copyright (c) 2019 haoxintong """Visualization tools for gluonar""" import seaborn as sns import librosa as rosa import librosa.display import matplotlib.pyplot as plt __all__ = ["plot_accuracy", "plot_roc", "view_spec"] def plot_roc(tpr, fpr, x_name="FPR", y_name="TPR"): sns.set(style="darkgrid") plt.figure(figsize=(8, 8)) plt.xlabel(x_name) plt.ylabel(y_name) plt.title("ROC") sns.lineplot(x=x_name, y=y_name, data={x_name: fpr, y_name: tpr}) plt.show() def plot_accuracy(accs, threholds): sns.set(style="darkgrid") plt.figure(figsize=(8, 8)) plt.xlabel("threshold") plt.ylabel("accuracy") plt.title("Accuracy") sns.lineplot(x="threshold", y="accuracy", data={"accuracy": accs, "threshold": threholds}) plt.show() def view_spec(spec_img, sample_rate=16000): spec_img = rosa.power_to_db(spec_img) plt.figure() rosa.display.specshow(spec_img, sr=sample_rate, x_axis='time', y_axis='mel') plt.title('Spectrogram') plt.show()
1,027
ticclat/ingest/opentaal.py
TICCLAT/explore
2
2026252
"""OpenTaal lexicon ingestion.""" import os.path import pandas as pd from ..dbutils import add_lexicon, session_scope def ingest(session_maker, base_dir='', opentaal_file='OpenTaal/OpenTaal-210G-BasisEnFlexies.txt', **kwargs): """Ingest OpenTaal lexicon into TICCLAT database.""" wfs = pd.read_csv(os.path.join(base_dir, opentaal_file), header=None) wfs.columns = ['wordform'] with session_scope(session_maker) as session: # name = 'OpenTaal-210G-BasisEnFlexies' name = 'Open Taal modern Dutch word list' vocabulary = True add_lexicon(session, name, vocabulary, wfs, **kwargs)
640
mechanism.py
laurensvalk/ev3devlight-examples
4
2026850
#!/usr/bin/env micropython """Development/debug test program.""" from ev3devlight.motors import Motor, Mechanism from ev3devlight.sensors import Touch from time import sleep # Set up devices gripper_motor = Motor('outA', gear_ratio=12) gripper_switch = Touch('in1') # Define and reset mechanism targets = {'open': 0, 'closed': 110, 'up': 400, 'reset': 430} default_speed = 50 gripper = Mechanism(gripper_motor, targets, default_speed, gripper_switch) # Go to predefined absolute target gripper.go_to_target('closed') sleep(1) gripper.go_to_target('open')
559
octopod/ensemble/dataset.py
nathancooperjones/octopod
0
2026382
import numpy as np from PIL import Image import torch from torch.utils.data import Dataset from octopod.vision.config import cropped_transforms, full_img_transforms from octopod.vision.helpers import center_crop_pil_image class OctopodEnsembleDataset(Dataset): """ Load image and text data specifically for an ensemble model Parameters ---------- text_inputs: pandas Series the text to be used img_inputs: pandas Series the paths to images to be used y: list A list of lists of dummy-encoded categories tokenizer: pretrained BERT Tokenizer BERT tokenizer likely from `transformers` max_seq_length: int (defaults to 128) Maximum number of tokens to allow transform: str or list of PyTorch transforms specifies how to preprocess the full image for a Octopod image model To use the built-in Octopod image transforms, use the strings: `train` or `val` To use custom transformations supply a list of PyTorch transforms. crop_transform: str or list of PyTorch transforms specifies how to preprocess the center cropped image for a Octopod image model To use the built-in Octopod image transforms, use strings `train` or `val` To use custom transformations supply a list of PyTorch transforms. """ def __init__(self, text_inputs, img_inputs, y, tokenizer, max_seq_length=128, transform='train', crop_transform='train'): self.text_inputs = text_inputs self.img_inputs = img_inputs self.y = y self.tokenizer = tokenizer self.max_seq_length = max_seq_length if transform == 'train' or 'val': self.transform = full_img_transforms[transform] else: self.transform = transform if crop_transform == 'train' or 'val': self.crop_transform = cropped_transforms[crop_transform] else: self.crop_transform = crop_transform def __getitem__(self, index): """Return dict of PyTorch tensors for preprocessed images and text and tensor of labels""" # Text processing x_text = self.text_inputs[index].replace('\n', ' ').replace('\r', ' ') tokenized_x = ( ['[CLS]'] + self.tokenizer.tokenize(x_text)[:self.max_seq_length - 2] + ['[SEP]'] ) input_ids = self.tokenizer.convert_tokens_to_ids(tokenized_x) padding = [0] * (self.max_seq_length - len(input_ids)) input_ids += padding assert len(input_ids) == self.max_seq_length bert_text = torch.from_numpy(np.array(input_ids)) # Image processing full_img = Image.open(self.img_inputs[index]).convert('RGB') cropped_img = center_crop_pil_image(full_img) full_img = self.transform(full_img) cropped_img = self.crop_transform(cropped_img) y_output = torch.from_numpy(np.array(self.y[index])).long() return {'bert_text': bert_text, 'full_img': full_img, 'crop_img': cropped_img}, y_output def __len__(self): return len(self.text_inputs) class OctopodEnsembleDatasetMultiLabel(OctopodEnsembleDataset): """ Multi label subclass of OctopodEnsembleDataset Parameters ---------- text_inputs: pandas Series the text to be used img_inputs: pandas Series the paths to images to be used y: list a list of binary encoded categories with length equal to number of classes in the multi-label task. For a 4 class multi-label task a sample list would be [1,0,0,1] tokenizer: pretrained BERT Tokenizer BERT tokenizer likely from `transformers` max_seq_length: int (defaults to 128) Maximum number of tokens to allow transform: str or list of PyTorch transforms specifies how to preprocess the full image for a Octopod image model To use the built-in Octopod image transforms, use the strings: `train` or `val` To use custom transformations supply a list of PyTorch transforms. crop_transform: str or list of PyTorch transforms specifies how to preprocess the center cropped image for a Octopod image model To use the built-in Octopod image transforms, use strings `train` or `val` To use custom transformations supply a list of PyTorch transforms. """ def __getitem__(self, index): """Return dict of PyTorch tensors for preprocessed images and text and tensor of labels""" # Text processing x_text = self.text_inputs[index].replace('\n', ' ').replace('\r', ' ') tokenized_x = ( ['[CLS]'] + self.tokenizer.tokenize(x_text)[:self.max_seq_length - 2] + ['[SEP]'] ) input_ids = self.tokenizer.convert_tokens_to_ids(tokenized_x) padding = [0] * (self.max_seq_length - len(input_ids)) input_ids += padding assert len(input_ids) == self.max_seq_length bert_text = torch.from_numpy(np.array(input_ids)) # Image processing full_img = Image.open(self.img_inputs[index]).convert('RGB') cropped_img = center_crop_pil_image(full_img) full_img = self.transform(full_img) cropped_img = self.crop_transform(cropped_img) y_output = torch.FloatTensor(self.y[index]) return {'bert_text': bert_text, 'full_img': full_img, 'crop_img': cropped_img}, y_output
5,623
api/src/application/users/container.py
iliaskaras/housing-units
0
2026859
from dependency_injector import containers, providers from dependency_injector.providers import Singleton from application.authentication.container import AuthenticationContainer from application.infrastructure.database.database import DatabaseEngineWrapper from application.users.repositories import UserRepository from application.users.services import LoginUserService, GetActiveUsersService class UserContainer(containers.DeclarativeContainer): """ User inversion of control Container. """ wiring_config = containers.WiringConfiguration( modules=[ "..rest_api.users.controllers", "..rest_api.authentication.controllers", ] ) user_repository: Singleton = providers.Singleton( UserRepository, db_engine=DatabaseEngineWrapper ) get_active_users_service: Singleton = providers.Singleton( GetActiveUsersService, user_repository=user_repository, ) login_user_service: Singleton = providers.Singleton( LoginUserService, user_repository=user_repository, get_jwt_service=AuthenticationContainer.get_jwt_service.provided )
1,164
mysite/psa/migrations/0007_customcode_next_page.py
cjlee112/socraticqs2
8
2026226
# Generated by Django 1.10.8 on 2018-11-19 16:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('psa', '0006_auto_20180512_1527'), ] operations = [ migrations.AddField( model_name='customcode', name='next_page', field=models.CharField(max_length=255, null=True), ), ]
402
imagefactory_plugins/MockCloud/MockCloud.py
henrysher/imgfac
1
2024171
# encoding: utf-8 # Copyright 2012 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import uuid import zope import inspect from imgfac.CloudDelegate import CloudDelegate class MockCloud(object): zope.interface.implements(CloudDelegate) def __init__(self): self.log = logging.getLogger('%s.%s' % (__name__, self.__class__.__name__)) def push_image_to_provider(self, builder, provider, credentials, target, target_image, parameters): self.log.info('%s called in MockCloud plugin' % (inspect.stack()[1][3])) builder.provider_image.identifier_on_provider = str(uuid.uuid4()) builder.provider_image.provider_account_identifier = 'mock_user' def snapshot_image_on_provider(self, builder, provider, credentials, target, template, parameters): self.log.info('%s called in MockCloud plugin' % (inspect.stack()[1][3])) builder.provider_image.identifier_on_provider = str(uuid.uuid4()) builder.provider_image.provider_account_identifier = 'mock_user' def builder_should_create_target_image(self, builder, target, image_id, template, parameters): self.log.info('%s called in MockCloud plugin' % (inspect.stack()[1][3])) return True def builder_will_create_target_image(self, builder, target, image_id, template, parameters): self.log.info('%s called in MockCloud plugin' % (inspect.stack()[1][3])) def builder_did_create_target_image(self, builder, target, image_id, template, parameters): self.log.info('%s called in MockCloud plugin' % (inspect.stack()[1][3])) def delete_from_provider(self, builder, provider, credentials, target, parameters): self.log.info('%s called in MockCloud plugin' % (inspect.stack()[1][3]))
2,293
src/utils/binaries_plt.py
dthierry/princetonDacLti
0
2026513
import pandas as pd import matplotlib.pyplot as plt def main(): directory = "./" df = pd.read_csv(directory + "df_binary.csv") fig, ax = plt.subplots(figsize=(16, 2), dpi=300) ax.hlines(0.0, min(df.index)-1, max(df.index)+1, color="k") ax.step(df.index, df["y00"], label="Off_a", color="lightcoral", linestyle="dotted", marker=".", fillstyle="none") ax.step(df.index, df["y10"], label="Off_b", color="lightcoral", linestyle="dashed") ax.hlines(1.2, min(df.index)-1, max(df.index)+1, color="k") ax.step(df.index, df["y01"] + 1.2, label="Warmup_a", color="coral", linestyle="dotted", marker=".", fillstyle="none") ax.step(df.index, df["y11"] + 1.2, label="Warmup_b", color="coral", linestyle="dashed") ax.hlines(2.4, min(df.index)-1, max(df.index)+1, color="k") ax.step(df.index, df["y02"] + 2.4, label="On_a", color="skyblue", linestyle="dotted", marker=".", fillstyle="none") ax.step(df.index, df["y12"] + 2.4, label="On_b", color="skyblue", linestyle="dashed") ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) ax.legend() ax.set_yticks([]) ax.set_title("Switches") ax.set_xlabel("Hour") plt.savefig("binary.png", format="png", transparent=True) plt.clf() if __name__ == "__main__": main()
1,391
uLaw.py
Mirage00/Audio-Encoding-Decoding
0
2026822
__author__ = 'BorisMirage' # --- coding:utf-8 --- ''' Create by BorisMirage File Name: uLaw Create Time: 11/20/18 21:58 ''' import numpy as np import math import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S' ) def u_law_compress(arr): """ u-Law compress function :param arr: given array :return: compressed array """ max_in_arr = np.amax(arr) u = 255 out = np.array(arr, dtype=float) de = math.log(1 + u) for i in range(0, len(arr)): up = 1 + u * abs(arr[i]) o = (math.log(up) * max_in_arr) / de if arr[i] < 0: o = -o out[i] = o return out def u_law_expend(arr): """ Expend compressed array. :param arr: given array :return: expended array """ u = 255 max_in_arr = np.amax(arr) out = np.array(arr, dtype=float) for i in range(0, len(arr)): p = math.log(256) * abs(arr[i]) / max_in_arr o = max_in_arr * (math.exp(p) - 1) / u if arr[i] < 0: o = -o out[i] = o return out if __name__ == '__main__': # print(math.log(1 + 255)) # array = [0.01, 0.02] # print(array) # print(u_law_compress(array)) pass
1,374
roast/providers/hwflow.py
Xilinx/roast-xilinx
1
2026381
# # Copyright (c) 2020 Xilinx, Inc. All rights reserved. # SPDX-License-Identifier: MIT # import os import inspect import pkgutil from mimesis import BaseDataProvider import roast from box import Box from roast.providers.randomizer import Randomizer from roast.utils import read_json class HWFlowProvider(BaseDataProvider): def __init__(self, seed, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.seed = seed self.r = Randomizer(seed=self.seed) class Meta: name = "hwflow_provider" @property def parameter_file(self): return self._parameter_file @parameter_file.setter def parameter_file(self, file): providers_dir = os.path.dirname(inspect.getsourcefile(roast.providers.hwflow)) self._parameter_file = os.path.join(providers_dir, file) _parameters = read_json(self._parameter_file) self.parameters = Box(_parameters, box_dots=True) def pick_parameter_value(self, parameter): parameter_choices = self.parameters[parameter] return self.r.choice(parameter_choices)
1,103
examples/my_extract_full_defs.py
Ewenwan/pycparser
0
2024941
#coding=utf-8 #----------------------------------------------------------------- # 提取函数和函数参数 #----------------------------------------------------------------- import explain_fun_param as efp # 提取函数参数子库 import sys # This is not required if you've installed pycparser into # your site-packages/ with setup.py sys.path.extend(['.', '..']) from pycparser import c_parser, c_ast, parse_file # 查看函数调用的类 class FuncCall_Visitor(c_ast.NodeVisitor): def visit_FuncCall(self, node): #print(type(node)) print(" " + node.name.name) # 查看函数定义的类 class FuncDefVisitor(c_ast.NodeVisitor): # 查看 函数定义 def visit_FuncDef(self, node): print(type(node)) # 显示函数定义的信息 def show_func_def(ast): try: for nd in ast.ext: if type(nd) == c_ast.FuncDef: # 显示函数名、参数数量、位置等 print("func: %s , loc: %s " % (nd.decl.name, nd.decl.coord)) # 描述函数参数 print(" param:") try: for i in range(len(nd.decl.type.args.params)): desc = efp.explain_c_declaration(nd.decl.type.args.params[i],ast,expand_struct=True,expand_typedef=True) print(" %d: %s " % (i+1, desc)) desc_list = desc.split(' ') if desc_list[3] not in ['pointer','array','struct','function']: print " " + " ".join(desc_list[3:]) # 类型 else: print " " + desc_list[3] except: print(" no param") # 描述函数返回值类型 print(" func return type:") print(" %s " %(efp._explain_type(nd.decl.type.type))) # 描述函数内部的函数调用 print(" func call:") #v = FuncCall_Visitor() #v.visit(nd) # 函数体 function_body = nd.body try: func_call_num = 0 for decl in function_body.block_items: # 函数体内的每一个子节点 if type(decl) == c_ast.FuncCall: #decl.show() func_call_num += 1 print(" %d: %s " % (func_call_num, decl.name.name)) if func_call_num == 0: print(" no func call") except: print(" no func call") except: print("ast has 0 node") def show_func_call_tree(str_main_func, ast): call_tree_dict = {} call_tree_dict[str_main_func] = {} try: for nd in ast.ext: # 从指定的函数节点开始寻找 if type(nd) == c_ast.FuncDef and str_main_func == nd.decl.name: function_body = nd.body try: func_call_num = 0 for decl in function_body.block_items: # 函数体内的每一个子节点 if type(decl) == c_ast.FuncCall: #decl.show() func_call_num += 1 #print(" %d: %s " % (func_call_num, decl.name.name)) call_tree_dict[str_main_func][decl.name.name]={} if func_call_num == 0: print(" no func call") except: print(" no func call") except: print("ast has 0 node") return call_tree_dict def print_func_call_tree(call_tree_dict,cnt=1): for key in call_tree_dict: print(" " + key) print_func_call_tree(call_tree_dict[key],) # 显示函数信息 和 调用树 def show_func(filename): use_cpp=True # 执行预处理 execute the C pre-processor 可以去除注释 和 宏定义等 #use_cpp = False if use_cpp: from pycparser import preprocess_file cpp_path = 'cpp' # 预处理 器 路径 cpp_args=r'-Iutils/fake_libc_include' # command line arguments 预处理选项 text = preprocess_file(filename, cpp_path, cpp_args) else: import io with io.open(filename) as f: text = f.read() if not use_cpp: # 去除注释 import decomment as dc rc = dc.rmcmnt("c") text, rm = rc.removecomment(text) parser = c_parser.CParser() global ast ast = parser.parse(text, filename) # 显示函数定义的信息 show_func_def(ast) # 显示函数调用树 print("func_call_tree:") call_tree_d = show_func_call_tree("main",ast) print_func_call_tree(call_tree_d) if __name__ == "__main__": if len(sys.argv) > 1: filename = sys.argv[1] else: filename = '../examples/c_files/hash.c' show_func(filename)
4,838
setup.py
ruifeng96150/easy_sklearn
1
2023923
#!/usr/bin/env python # -*- coding:utf-8 -*- ############################################# # File Name: setup.py # Author: Ruifeng96150 # Mail: <EMAIL> # Created Time: 2018-10-21 19:17:34 ############################################# from setuptools import setup, find_packages setup( name="easy_sklearn", version="0.1.4", keywords=("sklearn", "python", "machine learning"), description="This is a python library base on sklearn", long_description="This is a python library, which can be easier to build sklearn classification and regressor models.", license="MIT Licence", url="https://github.com/ruifeng96150/easy_sklearn.git", author="ruifeng96150", author_email="<EMAIL>", classifiers=[ 'Development Status :: 4 - Beta', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python', "License :: OSI Approved :: MIT License", 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', ], package_dir={'': '.'}, packages=find_packages('.'), include_package_data=True, platforms="any", install_requires=['numpy', 'pandas', 'scikit-learn'] )
1,432
src/tools/record_kinect_to_img.py
NaviRice/HeadTracking
1
2026727
from navirice_get_image import KinectClient from navirice_helpers import navirice_img_set_write_file from navirice_helpers import navirice_image_to_np from navirice_helpers import navirice_ir_to_np import navirice_image_pb2 from tkinter import * import cv2 import numpy as np from threading import Thread HOST = '127.0.0.1' # The remote host PORT = 29000 # The same port as used by the server class Window(Frame): def __init__(self, master=None): Frame.__init__(self, master) self.master = master self.init_window() def init_window(self): self.should_pull = True self.should_record = False self.should_run = True self.session_name = "default" self.last_count = 0 self.master.title("NAVIRICE_RECORDER") recordButton = Button(self, text="RECORD", command=self.record) recordButton.place(x=5, y=0) self.session_text = Text(self, height=1, width=20) self.session_text.place(x=5, y=30) self.session_text.insert(END, self.session_name) self.canvas = Canvas(self, height=30, width=30) self.print_states() self.pack(fill=BOTH, expand=1) thread = Thread(target = self.thread_stream) thread.deamon = True thread.start() def print_states(self): self.canvas.delete() fill = '#f00' if(self.should_record): fill = '#0f0' self.canvas.create_oval(4, 0, 25, 25, outline="#000", fill=fill) self.canvas.pack(fill=BOTH, expand=1) self.canvas.place(x = 100, y = 0) def record(self): self.should_record = not self.should_record self.print_states() name = self.session_text.get("1.0",END) if(len(name)): self.session_name = name def kill(self): self.should_run = False def thread_stream(self): kc = KinectClient(HOST, PORT) kc.navirice_capture_settings(False, True, True) while(self.should_run): img_set = None if(self.should_pull): img_set, self.last_count = kc.navirice_get_image() if(img_set != None and img_set.IR.width > 0 and img_set.Depth.width > 0): if self.should_record: #processThread =Thread(target=navirice_img_set_write_file, args=[self.session_name, img_set, self.last_count]) #processThread.start() navirice_img_set_write_file(self.session_name, img_set, self.last_count) cv2.imshow("IR", navirice_ir_to_np(img_set.IR)) cv2.imshow("DEPTH", navirice_image_to_np(img_set.Depth)) if cv2.waitKey(1) & 0xFF == ord('q'): print("q pressed in cv window") del img_set def main(): root = Tk() root.geometry("170x65") root.attributes('-type', 'dialog') app = Window(root) def on_quit(): app.kill() exit() root.protocol("WM_DELETE_WINDOW", on_quit) root.mainloop() if __name__ == "__main__": main()
3,130
artikel/urls.py
marlonn/technikzeug
0
2026394
from django.conf.urls import url from . import views from rest_framework.urlpatterns import format_suffix_patterns app_name = 'artikel' urlpatterns = [ url(r'^$', views.SearchView.as_view(), name="search"), url(r'^(?P<pk>[0-9]+)/$', views.DetailView.as_view(), name='detail'), url(r'^api/$', views.ArtikelList.as_view()), url(r'^api/(?P<pk>[0-9]+)/$', views.ArtikelDetail.as_view()), url(r'^api/users/$', views.UserList.as_view()), url(r'^api/users/(?P<pk>[0-9]+)/$', views.UserDetail.as_view()), ] urlpatterns = format_suffix_patterns(urlpatterns)
577
tests/permission_test.py
luke0922/mdpress
1
2025794
#!/usr/bin/env python # encoding: utf-8 import json from unittest import TestCase import application.models as Models from application import create_app class PermissionTest(TestCase): def setUp(self): self.app = create_app("TESTING") self.ctx = self.app.app_context() self.ctx.push() self.client = self.app.test_client() Models.Role.objects.create(id=1, name="READER", permission=Models.Permission.READ) Models.Role.objects.create(id=2, name="CREATER", permission=Models.Permission.CREATE) Models.Role.objects.create(id=3, name="UPDATER", permission=Models.Permission.UPDATE | Models.Permission.CREATE) Models.Role.objects.create(id=4, name="DELETER", permission=Models.Permission.DELETE | Models.Permission.CREATE) Models.Role.objects.create(id=5, name="READER", permission=Models.Permission.DEFAULT) def tearDown(self): for p in Models.Role.objects.all(): p.delete() for p in Models.User.objects.all(): p.delete() def user_add_post(self): post = { 'title': 'title', 'slug': 'excerpt', 'markdown': 'content', 'categories': [], 'tags': [], 'status': 'PUBLISHED' } resp = self.client.post( '/posts/post', data=json.dumps(post), headers={'Authorization': 'Bearer {}'.format(self.token), 'Content-Type': 'application/json'}) resp_json = json.loads(resp.data) return resp_json def _get_all_post(self): return json.loads(self.client.get('/posts/all').data)['data']['posts'] def user_update_post(self): post = self._get_all_post()[0] print "all post {}".format(post) post['title'] = 'new_title' resp = self.client.put( '/posts/post', data=json.dumps(post), headers={'Authorization': 'Bearer {}'.format(self.token), 'Content-Type': 'application/json'}) resp_json = json.loads(resp.data) return resp_json def user_delete_post(self): self.user_add_post() old_posts = self._get_all_post() post = old_posts[0] data = {'ids': [int(post.get('id'))]} print data resp = self.client.delete( '/posts/post', data=json.dumps(data), headers={'Authorization': 'Bearer {}'.format(self.token), 'Content-Type': 'application/json'}) resp_json = json.loads(resp.data) return resp_json def create_permission_user_and_login(self, permission): role = Models.Role.objects.filter(permission=permission).first() Models.User.objects.create( name="zhangsan", password="password", email="<EMAIL>", role=[role]) print "create_permission_user_and_login with all user: {}".format(Models.User.objects.all()) user = { 'username': '<EMAIL>', 'password': 'password', } resp = self.client.post('/authentication/token', data=json.dumps(user), headers={'Content-Type': 'application/json'}) login_resp = json.loads(resp.data) print login_resp self.token = login_resp.get('access_token') def test_add_post_permission(self): self.create_permission_user_and_login(Models.Permission.CREATE) resp_json = self.user_add_post() resp_code = resp_json.get('code') resp_data = resp_json.get('data') resp_msg = resp_json.get('msg') self.assertEquals(resp_code, 2000) self.assertEqual(resp_data.get('post').get('title'), 'title') self.assertIn('success', resp_msg) resp_json = self.user_update_post() resp_code = resp_json.get('code') resp_data = resp_json.get('data') resp_msg = resp_json.get('msg') self.assertEquals(resp_code, 2009) self.assertEquals(resp_data, {}) self.assertIn('no permission', resp_msg) resp_json = self.user_delete_post() resp_code = resp_json.get('code') resp_data = resp_json.get('data') resp_msg = resp_json.get('msg') self.assertEquals(resp_code, 2009) self.assertEquals(resp_data, {}) self.assertIn('no permission', resp_msg) def test_update_post_permission(self): self.create_permission_user_and_login(Models.Permission.UPDATE | Models.Permission.CREATE) resp_json = self.user_add_post() resp_code = resp_json.get('code') resp_data = resp_json.get('data') resp_msg = resp_json.get('msg') self.assertEquals(resp_code, 2000) self.assertEqual(resp_data.get('post').get('title'), 'title') self.assertIn('success', resp_msg) resp_json = self.user_update_post() resp_code = resp_json.get('code') resp_data = resp_json.get('data') resp_msg = resp_json.get('msg') self.assertEquals(resp_code, 2000) self.assertEqual(resp_data.get('post').get('title'), 'new_title') self.assertIn('success', resp_msg) resp_json = self.user_delete_post() resp_code = resp_json.get('code') resp_data = resp_json.get('data') resp_msg = resp_json.get('msg') self.assertEquals(resp_code, 2009) self.assertEquals(resp_data, {}) self.assertIn('no permission', resp_msg) def test_delete_post_permission(self): self.create_permission_user_and_login( Models.Permission.DELETE | Models.Permission.CREATE) resp_json = self.user_add_post() resp_code = resp_json.get('code') resp_data = resp_json.get('data') resp_msg = resp_json.get('msg') self.assertEquals(resp_code, 2000) self.assertEqual(resp_data.get('post').get('title'), 'title') self.assertIn('success', resp_msg) resp_json = self.user_update_post() resp_code = resp_json.get('code') resp_data = resp_json.get('data') resp_msg = resp_json.get('msg') self.assertEquals(resp_code, 2009) self.assertEqual(resp_data, {}) self.assertIn('no permission', resp_msg) resp_json = self.user_delete_post() print "resp_json: {}".format(resp_json) resp_code = resp_json.get('code') resp_data = resp_json.get('data') resp_msg = resp_json.get('msg') self.assertEquals(resp_code, 2000) self.assertEqual(resp_data.get('posts')[0].get('title'), 'title') self.assertIn('success', resp_msg)
6,592
Scikit_learn/standardization.py
yishantao/DailyPractice
0
2026492
# -*- coding:utf-8 -*- """This module is used for standardization""" import pandas as pd # data = pd.DataFrame({'A': [2, 4, 3, 7, 9], 'B': [5, 8, 2, 3, 7]}) # # Min-Max标准化 # from sklearn.preprocessing import MinMaxScaler # # # 初始化一个scaler对象 # scaler = MinMaxScaler() # # 调用scaler的fit_transform方法,把要处理的列作为参数传进去 # print(data) # # data['A'] = scaler.fit_transform(data[['A']]) # data = scaler.fit_transform(data[['A', 'B']]) # print(data) # # Z-Score标准化 # from sklearn.preprocessing import scale # # data['A'] = scale(data['A']) # data['B'] = scale(data['B']) # # data = scale(data[['A', 'B']]) # print(data) # # Normalizer归一化 # from sklearn.preprocessing import Normalizer # # scaler = Normalizer() # data = scaler.fit_transform(data[['A', 'B']]) # print(data) # data = pd.DataFrame({'A': [2, 4, 3, 7, 9], 'B': ['大学', '大专', '大专', '硕士', '博士'], 'C': ['男', '男', '女', '女', '男']}) # print(data) # print(data['B'].drop_duplicates()) # 构建学历字典 # education_level_dict = {'博士': 4, '硕士': 3, '大学': 2, '大专': 1} # # 调用Map方法进行虚拟变量的转换 # data['B'] = data['B'].map(education_level_dict) # print(data) # dummies = pd.get_dummies( # data, # columns=['C'], # prefix=['性别'], # prefix_sep='_', # dummy_na=False, # drop_first=False) # print(dummies) # import numpy as np # from sklearn.preprocessing import Imputer # # data = pd.DataFrame({'A': [2, 4, 3, 7, 9], 'B': [11, np.nan, np.nan, 23, 88], 'C': [23, 34, 12, np.nan, 34]}) # print(data) # print('*' * 35) # imputer = Imputer(strategy='mean') # data[['B', 'C']] = imputer.fit_transform(data[['B', 'C']]) # print(data) # data = pd.DataFrame( # {'产品': ['A产品', 'A产品', 'A产品', 'A产品', 'A产品'], '销售额': [4.5, 3.4, 2.5, 2.1, 2.0], '忠诚度': [6.6, 7.0, 4.2, 7.7, 9.1]}) # print(data) # # 使用VarianceThreshold类进行方差过滤 # from sklearn.feature_selection import VarianceThreshold # # # 要生成这个类的对象,就需要一个参数,就是最小方差的阈值,我们先设置为1, # # 然后调用它的transform方法进行特征值的过滤 # variancethreshold = VarianceThreshold(threshold=0.8) # variancethreshold.fit_transform( # data[['销售额', '忠诚度']] # ) # # 使用get_support方法,可以得到选择特征列的序号, # # 然后根据这个序号在原始数据中把对应的列名选择出来即可 # print(variancethreshold.get_support(indices=True)) # # # 检验为什么“销售额”和“忠诚度”都被选中 # print(data[['销售额', '忠诚度']].std(ddof=0)) # print(variancethreshold.variances_) data = pd.DataFrame( {'产品': ['A产品', 'A产品', 'A产品', 'A产品', 'A产品'], '销售额': [4.5, 3.4, 2.5, 2.1, 2.0], '忠诚度': [6.6, 7.0, 4.2, 7.7, 9.1], '投资人数': [22, 12, 4, 8, 13], '年收入': [50, 35, 23, 20, 17]}) # # SelectKBest类,通过回归的方法,以及要选择多少个特征值, # # 新建一个 SelectKBest对象 # from sklearn.feature_selection import SelectKBest # from sklearn.feature_selection import f_regression # # selectKBest = SelectKBest( # f_regression, k=2 # ) # # # 接着,把自变量选择出来,然后调用fit_transform方法, # # 把自变量和因变量传入,即可选出相关度最高的两个变量。 # feature = data[['销售额', '忠诚度', '投资人数']] # bestFeature = selectKBest.fit_transform( # feature, # data['年收入'] # ) # # # 我们想要知道这两个自变量的名字,使用get_support方法即可得到相应的列名 # print(feature.columns[selectKBest.get_support()]) # # 使用RFE类,在estimator中, # # 把我们的基模型设置为线性回归模型LinearRegression, # # 然后在把我们要选择的特征数设置为2, # # 接着就可以使用这个rfe对象,把自变量和因变量传入fit_transform方法, # # 即可得到我们需要的特征值 # from sklearn.feature_selection import RFE # from sklearn.linear_model import LinearRegression # # feature = data[['销售额', '忠诚度', '投资人数']] # # rfe = RFE( # estimator=LinearRegression(), # n_features_to_select=2 # ) # sFeature = rfe.fit_transform( # feature, # data['年收入'] # ) # # # 同理,我们要想知道这两个自变量的名字, # # 使用get_support方法,即可得到对应的列名 # print(rfe.get_support()) # from sklearn.feature_selection import SelectFromModel # from sklearn.linear_model import LinearRegression # # feature = data[['销售额', '忠诚度', '投资人数']] # lrModel = LinearRegression() # selectFromModel = SelectFromModel(lrModel) # selectFromModel.fit_transform( # feature, # data['年收入'] # ) # print(selectFromModel.get_support()) # # 导入iris特征数据到data变量中 # import pandas # from sklearn import datasets # import matplotlib.pyplot as plt # from sklearn.decomposition import PCA # from mpl_toolkits.mplot3d import Axes3D # # iris = datasets.load_iris() # # data = iris.data # # # 分类变量到target变量中 # target = iris.target # # # 使用主成分分析,将四维数据压缩为三维 # pca_3 = PCA(n_components=3) # data_pca_3 = pca_3.fit_transform(data) # # # 绘图 # colors = {0: 'r', 1: 'b', 2: 'k'} # markers = {0: 'x', 1: 'D', 2: 'o'} # # # 弹出图形 # # %matplotlib qt # # # 三维数据 # fig = plt.figure(1, figsize=(8, 6)) # ax = Axes3D(fig, elev=-150, azim=110) # # data_pca_gb = pandas.DataFrame( # data_pca_3 # ).groupby(target) # # for g in data_pca_gb.groups: # ax.scatter( # data_pca_gb.get_group(g)[0], # data_pca_gb.get_group(g)[1], # data_pca_gb.get_group(g)[2], # c=colors[g], # marker=markers[g], # cmap=plt.cm.Paired # ) # plt.show()
4,756
meraki_ssid/functions.py
gve-sw/Meraki_ssid_availability_scheduler
0
2025208
#!/bin/env python """ Copyright (c) 2020 Cisco and/or its affiliates. This software is licensed to you under the terms of the Cisco Sample Code License, Version 1.1 (the "License"). You may obtain a copy of the License at https://developer.cisco.com/docs/licenses All use of the material herein must be in accordance with the terms of the License. All rights not expressly granted by the License are reserved. Unless required by applicable law or agreed to separately in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """ import json import datetime import os import pymongo import requests from pymongo import MongoClient #Can replace 'db' with '172.17.0.2' when run locally client = MongoClient( 'db', 27017) db = client.tododb # method to enter a new schedule for an SSID into the mongo db def upload(ssid_record,request,switch): print("---------------------seitch") new_collection = db[ssid_record['identity']] #monday document monday = ssid_record.copy() monday['switch'] = switch monday['day'] = 0 monday['start_times'] = request.form.getlist("start_monday") monday['end_times'] = request.form.getlist("end_monday") new_collection.insert_one(monday) print("monday record sent") #tuesday document tuesday = ssid_record.copy() tuesday['day'] = 1 tuesday['start_times'] = request.form.getlist("start_tuesday") tuesday['end_times'] = request.form.getlist("end_tuesday") new_collection.insert_one(tuesday) print("tuesday record sent") #wednesday document wednesday = ssid_record.copy() wednesday['day'] = 2 wednesday['start_times'] = request.form.getlist("start_wednesday") wednesday['end_times'] = request.form.getlist("end_wednesday") new_collection.insert_one(wednesday) print("wednesday record sent") #thursday document thursday = ssid_record.copy() thursday['day'] = 3 thursday['start_times'] = request.form.getlist("start_thursday") thursday['end_times'] = request.form.getlist("end_thursday") new_collection.insert_one(thursday) print("thursday record sent") #friday document friday = ssid_record.copy() friday['day'] = 4 friday['start_times'] = request.form.getlist("start_friday") friday['end_times'] = request.form.getlist("end_friday") new_collection.insert_one(friday) print("friday record sent") #saturday document saturday = ssid_record.copy() saturday['day'] = 5 saturday['start_times'] = request.form.getlist("start_saturday") saturday['end_times'] = request.form.getlist("end_saturday") new_collection.insert_one(saturday) print("saturday record sent") #sunday document sunday = ssid_record.copy() sunday['day'] = 6 sunday['start_times'] = request.form.getlist("start_sunday") sunday['end_times'] = request.form.getlist("end_sunday") new_collection.insert_one(sunday) print("sunday record sent") #storing attributes of an SSSID def send_collection(request,meraki_key,network_id,switch): collection_list = db.collection_names() ssid_record = {} ssid_record['name'] = str(request.form.get("ssid_id")).split('+')[1] ssid_record['start_times'] = [] ssid_record['end_times'] = [] ssid_record['day'] = '' ssid_record['network_id'] = network_id ssid_record['ssid_number'] = str(request.form.get("ssid_id")).split('+')[0] ssid_record['identity'] = ssid_record['name'] + "_" + ssid_record['network_id'] + "_" + ssid_record['ssid_number'] ssid_record['key'] = meraki_key ssid_record['switch'] = switch if ssid_record['identity'] in collection_list: db.drop_collection(ssid_record['identity']) upload(ssid_record,request,switch) else: upload(ssid_record,request,switch) #grab current day/time and split it by day,hour, and min def current_time_day(): time_and_day = {} current_time = datetime.datetime.now() time_and_day["current_time"] = current_time time_and_day["current_hour"] = str(current_time.hour).zfill(2) time_and_day["current_min"] = str(current_time.minute).zfill(2) time_and_day["current_day"] = current_time.weekday() return time_and_day #method to query if a collection for an SSID already exists def query_documents(time_day): day = time_day["current_day"] documents = [] collection_list = db.list_collection_names() for ssid_identifier in collection_list: print(ssid_identifier) collection = db[ssid_identifier] cursor = collection.find({"day": day}) for document in cursor: documents.append(document) return documents #retreieve status for particular SSID def get_ssid_status(document): network_id = document["network_id"] ssid_num = document["ssid_number"] key = document["key"] url = "https://dashboard.meraki.com/api/v0/networks/(network_id)/ssids/(ssid_num)" url = url.replace("(network_id)", network_id) url = url.replace("(ssid_num)", ssid_num) headers = { 'X-Cisco-Meraki-API-Key': key } response = requests.request("GET", url, headers=headers) json_data = json.loads(response.text) return json_data["enabled"] #change status for particular SSID def change_ssid_status(document,status): print("change ssid method started") url = "https://n143.meraki.com/api/v0/networks/(network)/ssids/(num)" payload = "{\n \"name\": \"(name)\",\n \"enabled\": (status),\n \"splashPage\": \"None\",\n \"perClientBandwidthLimitUp\": 0,\n \"perClientBandwidthLimitDown\": 0,\n \"ssidAdminAccessible\": false,\n \"ipAssignmentMode\": \"NAT mode\",\n \"authMode\": \"open\"\n}" headers = { 'X-Cisco-Meraki-API-Key': document["key"], 'Content-Type': "application/json", } payload = payload.replace("(name)",document["name"]) url = url.replace("(network)",document["network_id"]) url = url.replace("(num)",document["ssid_number"]) if status is 0: payload = payload.replace("(status)","false") response = requests.request("PUT", url, data=payload, headers=headers) print("Response from API request",response.text) if status is 1: payload = payload.replace("(status)","true") response = requests.request("PUT", url, data=payload, headers=headers) print("Response from API request",response.text) #method to verify if an SSID needs to be turned off def turn_on(document_list,time): print("turn on method starting") for index in range(len(document_list)): #print("start times " ,document_list[index]["start_times"], " for ",document_list[index]["identity"]) for value in range(len(document_list[index]["start_times"])): if (time["current_hour"] == document_list[index]["start_times"][value].split(":")[0] and time["current_min"] == document_list[index]["start_times"][value].split(":")[1]): if document_list[index]["switch"] is None: status = 0 else: status = 1 print("WORKED") change_ssid_status(document_list[index],status) #method to verify if an SSID needs to be turned off def turn_off(document_list,time): print("turn off method starting") for index in range(len(document_list)): #print("end times " ,document_list[index]["end_times"] , " for " , document_list[index]["identity"]) for value in range(len(document_list[index]["end_times"])): if (time["current_hour"] == document_list[index]["end_times"][value].split(":")[0] and time["current_min"] == document_list[index]["end_times"][value].split(":")[1]): print("end time: " + document_list[index]["end_times"][value]) if document_list[index]["switch"] is None: status = 1 else: status = 0 change_ssid_status(document_list[index],status) print("STARTED") time = current_time_day() print(time) hello = query_documents(time) print(hello) turn_on(hello,time) turn_off(hello,time)
8,256
annoyingbus/scraper.py
cgwelcome/annoyingbus
0
2026232
from bs4 import BeautifulSoup from datetime import timedelta from .information import Information class Scraper(object): def __init__(self): self.website = None self.container = Information() def build(self, offset_days, base_date): self.website.container = self.container company = self.website.get_company() for day in range(offset_days): print("{1} - Extracting day {0}".format(day+1, company)) date = base_date + timedelta(days=day) self.website.update_date(date) html_content = self.website.load().content soup = BeautifulSoup(html_content, "html.parser") self.website.set_locations() for row in self.website.get_rows(soup): self.website.set_price(row) self.website.set_departure(row) self.website.set_arrival(row) self.website.set_duration(row) self.container.update_row() def get_info(self): return self.container
1,054
quick_srcipts/beginners/strings/print_n_times.py
HaydnCCI/code_efficiency
0
2026570
n = 3 my_string = "abcd" my_list = [1,2,3] print(my_string * n) # abcdabcdabcd print(my_list * n) # [1, 2, 3, 1, 2, 3, 1, 2, 3]
133
2.3/testdemo/test/demo_test.py
diblaze/TDP002
0
2026025
#!/usr/bin/env python """ Test module for demo.py. Runs various tests on the demo module. Simply run this module to test the demo.py module. """ import test import demo def test_echo(): print("In echo test") echo = demo.echo("hej") test.assert_equal("hej", echo) test.assert_not_equal(None, echo) def test_add(): print("In add test") added = demo.add("hej ", "hopp") test.assert_equal("hej hopp", added) test.assert_not_equal("hej", added) def run_module_tests(): test.run_tests([test_echo, test_add]) if __name__ == "__main__": run_module_tests()
614