max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
pyIPCMI/ToolChain/GNU.py
mithro/pyIPCMI
5
2171617
# EMACS settings: -*- tab-width: 2; indent-tabs-mode: t; python-indent-offset: 2 -*- # vim: tabstop=2:shiftwidth=2:noexpandtab # kate: tab-width 2; replace-tabs off; indent-width 2; # # ============================================================================== # Authors: <NAME> # <NAME> # # Python Class: GNU tools specific classes # # License: # ============================================================================== # Copyright 2017-2018 <NAME> - Bötzingen, Germany # Copyright 2007-2016 Technische Universität Dresden - Germany # Chair of VLSI-Design, Diagnostics and Architecture # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # # load dependencies from pathlib import Path from re import compile as re_compile from lib.Functions import Init from lib.CallBy import CallByRefParam from pyIPCMI.Base.Exceptions import PlatformNotSupportedException from pyIPCMI.Base.Executable import Environment, DryRunException, Executable, CommandLineArgumentList from pyIPCMI.Base.Executable import ExecutableArgument, ValuedFlagArgument, ShortTupleArgument, LongTupleArgument, LongFlagArgument, StringListArgument from pyIPCMI.Base.Logging import LogEntry, Severity from pyIPCMI.DataBase.Entity import SimulationResult from pyIPCMI.ToolChain import ToolChainException, OutputFilteredExecutable __api__ = [ 'GNUException', 'Make', 'GNUMakeQuestaSimFilter', 'CocotbSimulationResultFilter' ] __all__ = __api__ class GNUException(ToolChainException): pass class Make(OutputFilteredExecutable): def __init__(self, platform, dryrun, logger=None): if (platform == "Linux"): executablePath = Path("/usr/bin/make") else: raise PlatformNotSupportedException(platform) super().__init__(platform, dryrun, executablePath, logger=logger) self.Parameters[self.Executable] = executablePath class Executable(metaclass=ExecutableArgument): pass class SwitchGui(metaclass=ValuedFlagArgument): _name = "GUI" Parameters = CommandLineArgumentList( Executable, SwitchGui ) def RunCocotb(self): parameterList = self.Parameters.ToArgumentList() self.LogVerbose("command: {0}".format(" ".join(parameterList))) if (self._dryrun): self.LogDryRun("Start process: {0}".format(" ".join(parameterList))) return try: self.StartProcess(parameterList) except Exception as ex: raise GNUException("Failed to launch Make.") from ex self._hasOutput = False self._hasWarnings = False self._hasErrors = False simulationResult = CallByRefParam(SimulationResult.Error) try: iterator = iter(CocotbSimulationResultFilter(GNUMakeQuestaSimFilter(self.GetReader()), simulationResult)) line = next(iterator) line.IndentBy(self.Logger.BaseIndent + 1) self._hasOutput = True self.LogNormal(" Make messages") self.LogNormal(" " + ("-" * (78 - self.Logger.BaseIndent*2))) self.Log(line) while True: self._hasWarnings |= (line.Severity is Severity.Warning) self._hasErrors |= (line.Severity is Severity.Error) line = next(iterator) line.IndentBy(self.Logger.BaseIndent + 1) self.Log(line) except DryRunException: simulationResult <<= SimulationResult.DryRun except StopIteration: pass finally: if self._hasOutput: self.LogNormal(" " + ("-" * (78 - self.Logger.BaseIndent*2))) return simulationResult.value class Bash(Executable): def __init__(self, platform, dryrun, logger=None): if (platform == "Linux"): executablePath = Path("/bin/bash") else: raise PlatformNotSupportedException(platform) super().__init__(platform, dryrun, executablePath, logger=logger) self.Parameters[self.Executable] = executablePath class Executable(metaclass=ExecutableArgument): pass class SwitchCommand(metaclass=ShortTupleArgument): _name = "c" Parameters = CommandLineArgumentList( Executable, SwitchCommand ) def GetEnvironment(self, settingsFile=None, variables=""): if (settingsFile is None): self.Parameters[self.SwitchCommand] = "env" else: self.Parameters[self.SwitchCommand] = "{variables}source {settingsFile!s} && env".format(settingsFile=settingsFile, variables=variables) parameterList = self.Parameters.ToArgumentList() self.LogVerbose("command: {0}".format(" ".join(parameterList))) if (self._dryrun): self.LogDryRun("Start process: {0}".format(" ".join(parameterList))) return try: self.StartProcess(parameterList) except Exception as ex: raise GNUException("Failed to launch /bin/bash.") from ex env = Environment() iterator = iter(self.GetReader()) for line in iterator: try: var,value = line.split("=", 1) env.Variables[var] = value except Exception as ex: raise GNUException("Error while reading output from /bin/bash.") from ex return env class LCov(Executable): def __init__(self, platform, dryrun, logger=None): if (platform == "Linux"): executablePath = Path("/usr/bin/lcov") else: raise PlatformNotSupportedException(platform) super().__init__(platform, dryrun, executablePath, logger=logger) self.Parameters[self.Executable] = executablePath class Executable(metaclass=ExecutableArgument): pass class FlagCapture(metaclass=LongFlagArgument): _name = "capture" class SwitchDirectory(metaclass=LongTupleArgument): _name = "directory" class SwitchOutputFile(metaclass=LongTupleArgument): _name = "output-file" Parameters = CommandLineArgumentList( Executable, FlagCapture, SwitchDirectory, SwitchOutputFile ) def Execute(self): parameterList = self.Parameters.ToArgumentList() self.LogVerbose("command: {0}".format(" ".join(parameterList))) if (self._dryrun): self.LogDryRun("Start process: {0}".format(" ".join(parameterList))) return try: self.StartProcess(parameterList) except Exception as ex: raise GNUException("Failed to launch /usr/bin/lcov.") from ex iterator = iter(self.GetReader()) for line in iterator: print(line) class GenHtml(Executable): def __init__(self, platform, dryrun, logger=None): if (platform == "Linux"): executablePath = Path("/usr/bin/genhtml") else: raise PlatformNotSupportedException(platform) super().__init__(platform, dryrun, executablePath, logger=logger) self.Parameters[self.Executable] = executablePath class Executable(metaclass=ExecutableArgument): pass class SwitchOutputDirectory(metaclass=LongTupleArgument): _name = "output-directory" class SwitchInputFiles(metaclass=StringListArgument): pass Parameters = CommandLineArgumentList( Executable, SwitchOutputDirectory, SwitchInputFiles ) def Execute(self): parameterList = self.Parameters.ToArgumentList() self.LogVerbose("command: {0}".format(" ".join(parameterList))) if (self._dryrun): self.LogDryRun("Start process: {0}".format(" ".join(parameterList))) return try: self.StartProcess(parameterList) except Exception as ex: raise GNUException("Failed to launch /usr/bin/genhtml.") from ex iterator = iter(self.GetReader()) for line in iterator: print(line) def GNUMakeQuestaSimFilter(gen): for line in gen: if line.startswith("# --"): yield LogEntry(line, Severity.Verbose) elif line.startswith("# Loading"): yield LogEntry(line, Severity.Verbose) elif line.startswith("# ** Note"): yield LogEntry(line, Severity.Info) elif line.startswith("# ** Warn"): yield LogEntry(line, Severity.Warning) elif line.startswith("# ** Erro"): yield LogEntry(line, Severity.Error) elif line.startswith("# ** Fata"): yield LogEntry(line, Severity.Error) elif line.startswith("# //"): continue else: yield LogEntry(line, Severity.Normal) # Could not be moved to CocotbSimulator. Function could not be imported. (Why?) def CocotbSimulationResultFilter(gen, simulationResult): passedRegExpStr = r".*?in tear_down\s+Passed \d+ tests" # Source filename passedRegExp = re_compile(passedRegExpStr) failedRegExpStr = r".*?in tear_down\s+Failed \d+ out of \d+ tests" # Source filename failedRegExp = re_compile(failedRegExpStr) for line in gen: color = None passedRegExpMatch = passedRegExp.match(str(line)) failedRegExpMatch = failedRegExp.match(str(line)) if passedRegExpMatch is not None: color = Init.Foreground['GREEN'] simulationResult <<= SimulationResult.Passed elif failedRegExpMatch is not None: color = Init.Foreground['RED'] simulationResult <<= SimulationResult.Failed # color is set when message should be printed if color is not None: yield LogEntry("{COLOR}{line}{NOCOLOR}".format(COLOR=color, line=line.Message, **Init.Foreground), line.Severity, line.Indent) continue yield line
9,442
Machine_Learning_Old_Files/[28] Support Vector Machine.py
Ghasak/PracticalMachineLeanring
0
2171026
# Here we will use the support vector machine import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from matplotlib import style style.use('ggplot') # Lets try to write the basic of support vector machine # we will use a class of several objects and methods class Support_Vector_Machine: # when you call a class to run, none of the methods will run except the __init__ one def __init__(self, visualization=True): # visualization is used with a boolean variable. self.visualization = visualization self.colors = {1: 'r', -1: 'b'} # Color of the classes, one red for +1 and blue of -1 if self.visualization: self.fig = plt.figure() self.ax = self.fig.add_subplot(1, 1, 1) # simply add a subplot as a grid to for the plotting # now we will define the method of fitting (notice you can add pass in the end of the method # in case you don't know what to add yet, # This method (fit) actually is the training of the data def fit(self, data): self.data = data # here we will create a dictionary with ||w||:[w,b] see the theory to understand more # first we will create an empty dictionary and later we will populate it with these information opt_dict = {} # as we learn before this is the transforms to check read the theory # each time a vector is created we check with the transform here transforms = [[1, 1], [-1, 1], [-1, -1], [1, -1]] # lets check the maximum and minimum range of the data all_data = [] # yi is the class name which is the output, # yi is -1 or +1 for yi in self.data: # to iterate through classes for featureset in self.data[yi]: # to iterate through features for e.g. [1,7] is 1 then [2,8] is 2 for feature in featureset: # to iterate through points 1,7 all_data.append(feature) # to append them to a list populated with the numbers # Now we can use the max function to know largest value in our data self.max_feature_value = max(all_data) self.min_feature_value = min(all_data) # now since you got these values they will be stored and you can now get ride of matrix all_data = None # Now recall the picture of the big U shape, first we take a large steps and the medium and later small once we # reach to the optimum value we want # we can also thread or multi-processed step_size = [self.max_feature_value * 0.1, # Big Step self.max_feature_value * 0.01, # Medium Steps self.max_feature_value * 0.001] # Small (expensive) steps # Support vectors yi(xi.w+b) = 1 # for example 1.01 and so on, some times with linear kernel it will not work, b_range_multiple = 5 # extremely expensive, we don't care about b that much # we don't need to take as small steps with b as we do with w b_multiple = 5 latest_optimum = self.max_feature_value * 10 # this the largest vector w will be equal to this number # Now we will start the stepping for step in step_size: w = np.array([latest_optimum, latest_optimum]) # we can do this because convex optimized = False # until we run out of our step_size while not optimized: for b in np.arange(-1*(self.max_feature_value*b_range_multiple), # range from -80 to 80 self.max_feature_value*b_range_multiple, step*b_multiple): for transformation in transforms: w_t = w*transformation found_option = True # Here is the weakest link in the SVM fundamentally # SMO attempts to fix this a bit # But not that much # remember the constrain function is # yi(xi.w+b) >= 1 # Try to add a break later for i in self.data: for xi in self.data[i]: yi = i if not yi*(np.dot(w_t,xi)+b) >=1: # I fixed the type here it was i not 1 found_option = False #print(xi,yi*(np.dot(w_t,xi)+b)) # I have removed the break it was here if found_option: opt_dict[np.linalg.norm(w_t)]=[w_t,b] if w[0] < 0: optimized = True print('Optimized a step.') else: # w = [5,5] # step =1 # w-[step,step] it should be but the one we offer here is correct w = w - step norms = sorted([n for n in opt_dict]) # as you remember ||w|| = [w,b] opt_choice = opt_dict[norms[0]] self.w = opt_choice[0] self.b = opt_choice[1] latest_optimum = opt_choice[0][0]+step*2 for i in self.data: for xi in self.data[i]: yi=i print(xi, ':',yi*(np.dot(self.w,xi)+self.b)) # now we will define a method to make the predication def predict(self, features): # should return the sign of the class, as sign(x.w+b) # you can make a lambda expression for upper than 1 and lower than 1 # or you can simply use the numpy sign function, classification = np.sign(np.dot(np.array(features), self.w) + self.b) if classification != 0 and self.visualization: self.ax.scatter(features[0],features[1], s=200, marker='*', c = self.colors[classification]) return classification def visualize(self): [[self.ax.scatter(x[0],x[1],s=100,color=self.colors[i]) for x in data_dict[i]] for i in data_dict] # Hyperplane = x.w+b # we want v = x.w+b # Positive support vector PSV = 1 # Negative support vector NPS = -1 # decision hyperplane = 0 # here we will see the support the decision hyperplane def hyperplane(x,w,b,v): return (-w[0]*x-b+v)/w[1] datarange = (self.min_feature_value*0.9,self.max_feature_value*1.1) # just to make the points not out of the range hyp_x_min = datarange[0] hyp_x_max = datarange[1] ################################################################################################## # (w.x+b) = 1 # Positive support vector hyperplane psv1 = hyperplane(hyp_x_min,self.w,self.b,1) # it will be a y so we will use the x to draw the line psv2 = hyperplane(hyp_x_max,self.w,self.b,1) self.ax.plot([hyp_x_min,hyp_x_max],[psv1,psv2], 'k') # now we have the the positive support vector ################################################################################################## # (w.x+b) = -1 # Negative support vector hyperplane nsv1 = hyperplane(hyp_x_min, self.w, self.b, -1) # it will be a y so we will use the x to draw the line nsv2 = hyperplane(hyp_x_max, self.w, self.b, -1) self.ax.plot([hyp_x_min, hyp_x_max], [nsv1, nsv2], 'k') # now we have the the positive support vector ################################################################################################## # (w.x+b) = 0 # Decision boundary vector hyperplane db1 = hyperplane(hyp_x_min, self.w, self.b, 0) # it will be a y so we will use the x to draw the line db2 = hyperplane(hyp_x_max, self.w, self.b, 0) self.ax.plot([hyp_x_min, hyp_x_max], [db1, db2], 'y--') # now we have the the positive support vector plt.show() # now we will start with simple data and later we will extend data_dict = {-1: np.array([[1, 7], [2, 8], [3, 8],]), 1: np.array([[5, 1], [6, -1], [7, 3],])} svm = Support_Vector_Machine() svm.fit(data=data_dict) predict_us = [[0,10], [1,3], [3,4], [3,5], [5,5], [5,6], [6,-5], [5,8],] for p in predict_us: svm.predict(p) svm.visualize()
8,659
creds.py
fbennets/HU-grade-crawler
2
2171097
user = '' # Replace with your agnes.hu-berlin.de login name password = '' # Replace with your agnes.hu-berlin.de login name account = '' # Replace with your Twilio Account SID auth = '' # Twilio Authentification Token number = '' # Replace with your own mobile number where you want to # receive the SMS in international format e.g. '+49123456789'
350
modules/cnn/delete_temp_files.py
mevol/pediip
1
2170906
import argparse import glob import logging import os from pathlib import Path def list_temp_files(directory): """List all temporary files within a directory which are marked with *temp* in their name""" try: dir_path = Path(directory) assert dir_path.exists() except Exception: raise Exception(f"Expected absolute path to valid directory, got {directory}") temps = glob.glob(str(dir_path / "*temp*")) temp_files = [file for file in temps if Path(file).is_file()] return temp_files def delete_file(filename): """Delete the file and return True""" try: file_path = Path(filename) assert file_path.exists(), f"Could not find file to delete at {file_path}" os.remove(file_path) except Exception: logging.error(f"Could not delete file at {filename}") raise return True def delete_temp_files(directory): """Delete all temporary files in the directory and return True when complete""" logging.debug(f"Deleting all files in {directory}") try: temp_files = list_temp_files(directory) except Exception: raise try: for file in temp_files: delete_file(file) except Exception: raise return True if __name__ == "__main__": # As command line utility, check user wants to do this parser = argparse.ArgumentParser() parser.add_argument( "-a", help="directory provided is absolute path, otherwise assumed relative", action="store_true", ) parser.add_argument( "directory", help="the directory you wish to remove temporary files from", type=str, ) parser.add_argument( "--force", help="delete all temp files without checking", action="store_true" ) args = parser.parse_args() if args.a == True: dir_name = args.directory else: dir_name = Path(os.getcwd()) / args.directory if args.force == True: delete_temp_files(dir_name) print("All temp files deleted") else: temp_files = list_temp_files(dir_name) print("Found following temp files:") for file in temp_files: print(Path(file).name) delete = input("Are you sure you want to delete all of these files? [y/N]") if delete == "y": delete_temp_files(dir_name) print("All temp files deleted")
2,430
random_ctfs/tghack19/n00b/echo_chamber/script.py
bernardosequeir/CTFfiles
0
2169923
from pwn import * r = remote("echo.tghack.no",5555) for x in range(50): line = r.recvline() print line r.send(line) print r.recvline() #flag TG19{behold_the_echo_chamber_of_secrets}
194
test cases/common/143 list of file sources/gen.py
kira78/meson
4,047
2170520
import shutil import sys if __name__ == '__main__': if len(sys.argv) != 3: raise Exception('Requires exactly 2 args') shutil.copy2(sys.argv[1], sys.argv[2])
174
lawstructural/lawstructural/studentwelfare.py
PhilErickson/LawStructural
1
2171074
""" Module for computing student welfare changes based on information regime change """ from __future__ import print_function, division import numpy as np from numpy.random import random_sample import pandas as pd from copy import deepcopy from os.path import join, dirname from sklearn import ensemble from scipy.stats import norm #pylint: disable=no-name-in-module import lawstructural.lawstructural.utils as lu import lawstructural.lawstructural.firststage as fs import lawstructural.lawstructural.constants as lc def gen_n_apps(treat): """ Generate average number of applications per year, conditional on information """ if treat: years = range(2010, 2015) else: years = range(2000, 2010) n_apps = [] for year in years: n_apps.append(fs.gen_n_apps(year).tolist()[0]) return np.mean(n_apps) class StudentWelfare(object): """ Primary class for the module Parameters ---------- fs_params: dict estimates from firststage.lsn_long_est, to be used for admission and matriculation probabilities sigmasq: dict sigma-squared estimate for distribution of independent school-level values with keys 'treat0' and 'treat1' for estimates before and after information regime change """ def __init__(self, fs_tuition, sigmasq, opts): self.fs_tuition = fs_tuition self.sigmasq = sigmasq self.opts = opts self.fs_rhs = lu.student_problem_vars() self.lsn_rhs = deepcopy(self.fs_rhs) self.lsn_rhs.remove('OverallRank') self.lsn_rhs.remove('Tuition') self.lsn_models = self.gen_matric_ev() self.data = None def gen_data(self, treat): """ Generate dataset of students for lc.N_PERIODS years. Variables include MedianLSAT, UndergraduatemedianGPA, year, treat """ data_dir = join(dirname(dirname(__file__)), 'data') source_data = pd.read_csv(join(data_dir, 'lawschoolnumbers.csv')) source_data = source_data.loc[source_data.treat == treat] n_apps = gen_n_apps(treat) treat_years = {0: range(2003, 2010), 1: range(2010, 2014)}[treat] data = [] for _ in xrange(2013, 2013 + lc.N_PERIODS): students = np.random.choice( source_data.loc[source_data.year.isin(treat_years), 'user'], size=n_apps ) students = pd.DataFrame({ 'user': students[np.where(pd.notnull(students))] }) data_year = pd.merge( students, source_data.loc[source_data.year.isin(treat_years)] ) data.append(data_year) data = pd.concat(data) self.data = data.reset_index() def gen_matric_ev(self): """ Estimate expected rank of school j attended by student i given student i is in the final matriculant group """ data_dir = join(dirname(dirname(__file__)), 'data') data = pd.read_csv(join(data_dir, 'lawschoolnumbers.csv')) models = {} models['admit_binary'] = ensemble.GradientBoostingClassifier( n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0 ).fit(data[self.lsn_rhs], data['admit_binary']) models['matric_binary'] = ensemble.GradientBoostingClassifier( n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0 ).fit(data.loc[data.admit_binary == 1, self.lsn_rhs], data.loc[data.admit_binary == 1, 'matric_binary']) params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 1, 'learning_rate': 0.01, 'loss': 'ls'} models['matric_ev'] = ensemble.GradientBoostingRegressor(**params) models['matric_ev'].fit( data.loc[data.matric_binary == 1, self.lsn_rhs], data.loc[data.matric_binary == 1, 'matric']) return models def predict_admit(self): """ Use first stage estimates to predict binary admission outcome """ threshold = random_sample(self.data.shape[0]) self.data['admit_hat'] = self.lsn_models['admit_binary'].predict_proba( self.data[self.lsn_rhs] )[:, 1] self.data['admit_hat'] = 1 * (self.data['admit_hat'] > threshold) def predict_matric(self): """ Use first stage estimates to predict matriculation outcomes """ self.data.loc[self.data['admit_hat'] == 1, 'matric_hat_pr'] = \ self.lsn_models['matric_binary'].predict_proba( self.data.loc[self.data['admit_hat'] == 1, self.lsn_rhs] )[:, 1] data_temp = deepcopy(self.data) # use treatment probabilities for utl data_temp['treat'] = 1 self.data.loc[self.data['admit_hat'] == 1, 'matric_hat_pr_treat'] = \ self.lsn_models['matric_binary'].predict_proba( data_temp.loc[data_temp['admit_hat'] == 1, self.lsn_rhs] )[:, 1] self.data.loc[self.data['admit_hat'] == 1, 'OverallRank'] = \ self.lsn_models['matric_ev'].predict( self.data.loc[self.data['admit_hat'] == 1, self.lsn_rhs] ) self.data.loc[self.data['admit_hat'] == 1, 'Tuition'] = \ self.fs_tuition.predict( self.data.loc[self.data['admit_hat'] == 1, ['OverallRank', 'treat', 'year']] ) def utility(self): """ Function derived from inverting probability of student i attending school j given school j is in admissions set """ utility = norm.ppf(self.data['matric_hat_pr_treat'], scale=self.sigmasq) utility = self.data['Tuition'] - utility return np.nansum(utility) def payoff_matric(self): """ Predict payoff from any given matriculation """ pass def gen_welfare(self, treat): """ Generate welfare for the simulated population of students for given information regime. """ self.gen_data(treat) self.predict_admit() self.predict_matric() payoff = self.utility() return payoff def policy_comp(self): """ Compare surplus with and without """ print("SIMULATING STUDENT SIDE") print(" * Simulating without treatment") payoff0 = self.gen_welfare(0) print(" * Simulating with treatment") payoff1 = self.gen_welfare(1) diff = payoff1 - payoff0 pdiff = diff / payoff0 print(" - Change in Consumer Surplus: {0}".format(diff)) print(" - Percent change in Consumer Surplus: {0}".format(pdiff)) return diff
6,761
train.py
hummat/if-net
0
2169330
import models.local_model as model import models.data.voxelized_data_shapenet as voxelized_data from models import training import argparse import torch from multiprocessing import cpu_count # python train.py -posed -dist 0.5 0.5 -std_dev 0.15 0.05 -res 32 -batch_size 40 -m parser = argparse.ArgumentParser( description='Run Model' ) parser.add_argument('-pointcloud', dest='pointcloud', action='store_true') parser.add_argument('-voxels', dest='pointcloud', action='store_false') parser.set_defaults(pointcloud=False) parser.add_argument('-pc_samples', default=3000, type=int) parser.add_argument('-dist', '--sample_distribution', default=[0.5, 0.5], nargs='+', type=float) parser.add_argument('-std_dev', '--sample_sigmas', default=[0.15, 0.015], nargs='+', type=float) parser.add_argument('-batch_size', default=32, type=int) parser.add_argument('-res', default=128, type=int) parser.add_argument('-m', '--model', default='LocNet', type=str) parser.add_argument('-o', '--optimizer', default='Adam', type=str) try: args = parser.parse_args() except: args = parser.parse_known_args()[0] if args.model == 'ShapeNet32Vox': net = model.ShapeNet32Vox() if args.model == 'ShapeNet128Vox': net = model.ShapeNet128Vox() if args.model == 'ShapeNetPoints': net = model.ShapeNetPoints() if args.model == 'SVR': net = model.SVR() train_dataset = voxelized_data.VoxelizedDataset('train', voxelized_pointcloud=args.pointcloud, pointcloud_samples=args.pc_samples, # data_path="/home/matthias/Data2/datasets/shapenet/matthias/disn/core", data_path="/home/matthias/Data2/datasets/shapenet/occupancy_networks/ShapeNet/core", # data_path="/net/rmc-gpu03/home_local/humt_ma/occupancy_networks/core", res=args.res, sample_distribution=args.sample_distribution, sample_sigmas=args.sample_sigmas, num_sample_points=2048, batch_size=args.batch_size, num_workers=cpu_count()) val_dataset = voxelized_data.VoxelizedDataset('val', voxelized_pointcloud=args.pointcloud, pointcloud_samples=args.pc_samples, # data_path="/home/matthias/Data2/datasets/shapenet/matthias/disn/core", data_path="/home/matthias/Data2/datasets/shapenet/occupancy_networks/ShapeNet/core", # data_path="/net/rmc-gpu03/home_local/humt_ma/occupancy_networks/core", res=args.res, sample_distribution=args.sample_distribution, sample_sigmas=args.sample_sigmas, num_sample_points=2048, batch_size=args.batch_size, num_workers=cpu_count()) exp_name = 'i{}_dist-{}sigmas-{}v{}_m{}'.format('PC' + str(args.pc_samples) if args.pointcloud else 'Voxels', ''.join(str(e) + '_' for e in args.sample_distribution), ''.join(str(e) + '_' for e in args.sample_sigmas), args.res, args.model) trainer = training.Trainer(net, torch.device("cuda"), train_dataset, val_dataset, exp_name, optimizer=args.optimizer) trainer.train_model(1500)
3,984
misc/abstract_class.py
decaun/easy-python-study
1
2169759
from abc import ABCMeta, abstractmethod, ABC class abstract(metaclass=ABCMeta): @abstractmethod def method_name(self): pass class abstract_2(ABC): @abstractmethod def method_name(self): pass class inherit_abstract(abstract): def method_name(self): pass class inherit_abstract_fail(abstract): def method_incorrect_name(self): pass if __name__ == "__main__": print("main") x = inherit_abstract() y = inherit_abstract_fail() print(x) # y=Test2() # print(y)
548
cacheman/cacher.py
Jenyay/py_cache_manager
0
2171344
import os import tempfile from collections import defaultdict from .cachewrap import CacheWrap, NonPersistentCache, PersistentCache from .autosync import AutoSyncCache DEFAULT_CACHEMAN = 'general_cacher' def get_cache_manager(manager_name=None, base_cache_directory=None): if manager_name is None: # Don't grab this from default args in case someone changes DEFAULT_CACHEMAN manager_name = DEFAULT_CACHEMAN if manager_name not in _managers: # Need name argument, so can't use defaultdict easily _managers[manager_name] = CacheManager(manager_name, base_cache_directory) return _managers[manager_name] _managers = {} # Labeled with leading underscore to trigger del before module cleanup class CacheManager(): def __init__(self, manager_name, base_cache_directory=None): self.name = manager_name self.cache_directory = os.path.join(base_cache_directory or tempfile.gettempdir(), self.name) self.cache_by_name = {} self.async_pid_cache = defaultdict(set) # Used for async cache tracking def __del__(self): self.save_all_cache_contents() def __enter__(self): return self def __exit__(self, type, value, traceback): self.save_all_cache_contents() def retrieve_cache(self, cache_name): ''' Loads or builds a cache using any registered post_process, custom_builder, and validator hooks. If a cache has already been generated it will return the pre-loaded cache content. ''' cache = self.cache_by_name.get(cache_name) if cache is None: return self.register_cache(cache_name) return cache def retrieve_raise(self, cache_name): cache = self.cache_by_name.get(cache_name) if cache is None: raise KeyError("No cache found with name {}".format(cache_name)) return cache def register_cache(self, cache_name, contents=None): return self.register_custom_cache(cache_name, contents, persistent=True, autosync=True, nowrapper=False) def register_custom_cache(self, cache_name, contents=None, persistent=True, autosync=True, nowrapper=False, **kwargs): if nowrapper or isinstance(contents, CacheWrap): cache = contents elif not persistent: # Replace default pickle loader/saver/deleter cache = NonPersistentCache(cache_name, cache_manager=self, contents=contents, **kwargs) elif autosync: cache = AutoSyncCache(cache_name, cache_manager=self, contents=contents, **kwargs) else: cache = PersistentCache(cache_name, cache_manager=self, contents=contents, **kwargs) self.cache_by_name[cache_name] = cache return self.retrieve_cache(cache_name) def cache_registered(self, cache_name): return cache_name in self.cache_by_name def register_loader(self, cache_name, loader): cache = self.retrieve_cache(cache_name) cache.loader = loader return cache def register_builder(self, cache_name, builder): cache = self.retrieve_cache(cache_name) cache.builder = builder return cache def register_saver(self, cache_name, saver): cache = self.retrieve_cache(cache_name) cache.saver = saver return cache def register_deleter(self, cache_name, deleter): cache = self.retrieve_cache(cache_name) cache.deleter = deleter return cache def register_post_processor(self, cache_name, post_processor): cache = self.retrieve_cache(cache_name) cache.post_processor = post_processor return cache def register_pre_processor(self, cache_name, pre_processor): cache = self.retrieve_cache(cache_name) cache.pre_processor = pre_processor return cache def register_validator(self, cache_name, validator): cache = self.retrieve_cache(cache_name) cache.validator = validator return cache def register_dependent_cache(self, cache_name, dependent_cache): cache = self.retrieve_cache(cache_name) cache.add_dependent(dependent_cache) return cache def deregister_cache(self, cache_name, apply_to_dependents=False): if not self.cache_registered(cache_name): return cache = self.retrieve_cache(cache_name) cache.save(False) if apply_to_dependents: for dependent in cache._retrieve_dependent_caches(): self.deregister_cache(dependent.name, apply_to_dependents) del self.cache_by_name[cache_name] def deregister_all_caches(self): for cache_name in list(self.cache_by_name.keys()): self.deregister_cache(cache_name, False) def save_cache_contents(self, cache_name, apply_to_dependents=False): cache = self.retrieve_cache(cache_name) cache.save(apply_to_dependents) return cache def save_all_cache_contents(self): for cache_name in self.cache_by_name: self.save_cache_contents(cache_name, False) def delete_saved_cache_content(self, cache_name, apply_to_dependents=True): ''' Does NOT delete memory cache -- use invalidate_and_rebuild_cache to delete both ''' cache = self.retrieve_cache(cache_name) cache.delete_saved_content(apply_to_dependents) return cache def delete_all_saved_cache_contents(self): for cache_name in self.cache_by_name: self.delete_saved_cache_content(cache_name, False) def invalidate_cache(self, cache_name, apply_to_dependents=True): cache = self.retrieve_cache(cache_name) cache.invalidate(apply_to_dependents) return cache def invalidate_and_rebuild_cache(self, cache_name, apply_to_dependents=True): cache = self.retrieve_cache(cache_name) cache.invalidate_and_rebuild(apply_to_dependents) return cache def invalidate_and_rebuild_all_caches(self): for cache_name in self.cache_by_name: self.invalidate_and_rebuild_cache(cache_name, False) def reload_cache(self, cache_name, apply_to_dependents=False): cache = self.retrieve_cache(cache_name) cache.load(apply_to_dependents) return cache def reload_all_caches(self): for cache_name in self.cache_by_name: self.reload_cache(cache_name, False) def reload_or_rebuild_cache(self, cache_name, apply_to_dependents=False): cache = self.retrieve_cache(cache_name) cache.load_or_build(apply_to_dependents) return cache def reload_or_rebuild_all_caches(self): for cache_name in self.cache_by_name: self.reload_or_rebuild_cache(cache_name, False)
6,790
py/variaveis.py
Viniciusalopes/BhaskaraPython3
0
2169466
# --------------------------------------------------------------------------------------- # Licença : MIT - Copyright 2019 Viniciusalopes (Vovolinux) <<EMAIL>> # Criado em : 03/10/2019 # Projeto : Bhaskara em Python - Matemática e Estatística # Finalidade: Apresentação em sala de aula # Temas : - Importância dos comentários no código # - Variáveis # - Função type() # - Função print() # - Função str.format() # --------------------------------------------------------------------------------------- # Diz a lenda que... # Vai que, né... print('Opa, mundo!') # print() com multiplicação de caracteres print('-' * 30) # --------------------------------------------------------------------------------------- # Atribuição de valores nome = 'Vinicius' idade = '43' peso = '57.4' # print() de variáveis print(nome) print(idade) print(peso) # print() de retorno de funções # a função type() retorna o tipo do valor que está armazenado na variável print(type(nome)) print(type(idade)) print(type(peso)) print('-' * 30) # --------------------------------------------------------------------------------------- # Atribuição de valores tipados nome = 'Vinicius' # str idade = 43 # int peso = 57.4 # float print(nome) print(idade) print(peso) print(type(nome)) print(type(idade)) print(type(peso)) print('-' * 30) # --------------------------------------------------------------------------------------- # Conversão de tipos de variáveis nome = 'Vinicius' # str idade = int('43') # int peso = float('57.4') # float print(nome) print(idade) print(peso) print(type(nome)) print(type(idade)) print(type(peso)) print('-' * 30) # --------------------------------------------------------------------------------------- # print() concatenado # Strings e variáveis separadas por vírgula # Já acrescenta espaço entre a string e a variável print('Nome :', nome, '\nIdade:', idade, '\nPeso :', peso) print() # o mesmo que print('\n') # print() formatado # VARIÁVEIS do Python são OBJETOS e, portanto, pentence à CLASSE 'str' que, por # sua vez possuem métodos (ou funções), atributos, etc; # Exemplo: # CLASSE: Eletrodomésticos # OBJETO DA CLASSE Eletrodomésticos: FORNO DE MICROONDAS # -> Atributos: Pequeno, grande, silencioso, econômico. # -> Funções : Aquecer, descongelar, dourar alimentos, # ou simplesmente apitar incessantemente enquanto # tentamos preparar uma aula, só porque esquecemos # aberto... # # str.format(): Substitui as chaves {} pelo conteúdo das variáveis # format() é uma função de OBJETOS da classe STRING print('Nome : {}\nIdade: {}\nPeso : {}'.format(nome, idade, peso)) print() print('Nome : {}\nIdade: {}\nPeso : {:.2f}'.format(nome, idade, peso)) # str.isnumeric(): Testa se o conteúdo da variável pode ser convertido para um # tipo que armazene números (int, float, etc.) # # 'not' equivale ao operador lógico de negação '!' (Exclamação) de outras linguagens. print('-' * 30) if not nome.isnumeric(): print('{} não pode ser convertido em um número.'.format(nome)) print('Tipo do valor da variável nome: {}'.format(type(nome))) nome = '1234' # str print('{} pode ser convertido em número.'.format(nome)) nome = int(nome) print(type(nome)) # Próximo arquivo: operadores_aritmeticos.py
3,463
hackerrank/StrangeGridAgain.py
0x8b/HackerRank
3
2168089
r, c = map(int, input().split()) a = ((r - 1) // 2 * 10) + (c * 2 - 1 if r % 2 == 0 else (c - 1) * 2) print(a)
118
helios/plato/py/tests/nrucache_test.py
debjyoti0891/map
44
2171217
# Test for NRUCache # WARNING: This test is time-sensitive so debugging may be complicated. The cache should really use some kind of # "time provider" that allows simulated advancement of time rather than the wall-clock timer. import sys from os import path import time sys.path.append(path.split(path.dirname(__file__))[0]) from plato.backend.common import NRUCache NRUCache.EXPIRATION_DEFAULT_MS = 450 # short expiration for this test c = NRUCache(4) # Capacity 4 assert(len(c) == 0) assert (1 not in c) assert (2 not in c) assert (3 not in c) assert (4 not in c) c[1] = 1 c[2] = 2 c[3] = 3 c[4] = 4 c[5] = 5 # Will not remove [1] because its not expired assert (1 in c) c.expire(1) # Allow 1 to be replaced by 5 without waiting for the appropriate amount of time c[5] = 5 # Will finally remove [1] because last write expired it # 1 should have been evicted because of capacity assert (1 not in c) assert (2 in c) assert (3 in c) assert (4 in c) assert (5 in c) # Allow anything to be replaced now c.expire_all() c[2] = 2 c[6] = 6 assert (1 not in c) assert (3 not in c) assert (2 in c) assert (4 in c) assert (5 in c) assert (6 in c) assert (not c.is_expiring(2)) assert (not c.is_expiring(6)) c[4] = 4 c[5] = 6 # Nothing should be expiring since it was all touched recently assert (not c.is_expiring(2)) assert (not c.is_expiring(4)) assert (not c.is_expiring(5)) assert (not c.is_expiring(6)) print('\nsleep...\n') time.sleep(1) # Touching [2] will mark all others as expiring since 1s has passed. # When each other is touched here, they will be marked as non-expiring once again. _ = c[2] _ = c[5] _ = c[6] # Since [4] was not touched, it is still in expiring state print('check that 4 is expiring') assert (c.is_expiring(4)) print('\nsleep...\n') time.sleep(0.2) assert (2 in c) assert (4 in c) assert (5 in c) assert (6 in c) # Touch everyone again. Note that 4 will not be removed because enough time has not elapsed after marking as expired _ = c[2] assert (4 in c) _ = c[4] _ = c[5] _ = c[6] print('\nsleep...\n') time.sleep(1) assert (4 in c) # Let 5 be marked as expiring since we don't touch it _ = c[2] _ = c[4] _ = c[6] assert (2 in c) assert (4 in c) assert (5 in c) assert (6 in c) assert (c.is_expiring(5)) print('\nsleep...\n') time.sleep(1) # Since 5 is not touched first here, it will be removed because we slept for more than the expiration interval after 5 # was marked as expiring _ = c[2] _ = c[4] _ = c[6] assert (2 in c) assert (4 in c) assert (5 not in c) assert (6 in c) assert(len(c) == 3)
2,565
stock-filters/Buildings/fountain.py
Chris-Drury/caMelGDMC
0
2171392
from Buildings.material import DIRT, BRICKS, WATER, AIR, FENCE, TORCH fountain = { "height": -1, "building": [ [ [DIRT, DIRT, DIRT, DIRT, DIRT, DIRT], [DIRT, BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], DIRT], [DIRT, BRICKS["STONE"], WATER, WATER, BRICKS["STONE"], DIRT], [DIRT, BRICKS["STONE"], WATER, WATER, BRICKS["STONE"], DIRT], [DIRT, BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], DIRT], [DIRT, DIRT, DIRT, DIRT, DIRT, DIRT] ], [ [BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"]], [BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"]], [BRICKS["STONE"], BRICKS["STONE"], WATER, WATER, BRICKS["STONE"], BRICKS["STONE"]], [BRICKS["STONE"], BRICKS["STONE"], WATER, WATER, BRICKS["STONE"], BRICKS["STONE"]], [BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"]], [BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"]] ], [ [AIR, AIR, AIR, AIR, AIR, AIR], [AIR, BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], AIR], [AIR, BRICKS["STONE"], AIR, AIR, BRICKS["STONE"], AIR], [AIR, BRICKS["STONE"], AIR, AIR, BRICKS["STONE"], AIR], [AIR, BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], AIR], [AIR, AIR, AIR, AIR, AIR, AIR] ], [ [AIR, AIR, AIR, AIR, AIR, AIR], [AIR, FENCE, AIR, AIR, FENCE, AIR], [AIR, AIR, AIR, AIR, AIR, AIR], [AIR, AIR, AIR, AIR, AIR, AIR], [AIR, FENCE, AIR, AIR, FENCE, AIR], [AIR, AIR, AIR, AIR, AIR, AIR] ], [ [AIR, AIR, AIR, AIR, AIR, AIR], [AIR, FENCE, AIR, AIR, FENCE, AIR], [AIR, AIR, AIR, AIR, AIR, AIR], [AIR, AIR, AIR, AIR, AIR, AIR], [AIR, FENCE, AIR, AIR, FENCE, AIR], [AIR, AIR, AIR, AIR, AIR, AIR] ], [ [AIR, AIR, AIR, AIR, AIR, AIR], [AIR, BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], AIR], [AIR, BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], AIR], [AIR, BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], AIR], [AIR, BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], BRICKS["STONE"], AIR], [AIR, AIR, AIR, AIR, AIR, AIR] ], [ [AIR, AIR, AIR, AIR, AIR, AIR], [AIR, TORCH["UP"], AIR, AIR, TORCH["UP"], AIR], [AIR, AIR, AIR, AIR, AIR, AIR], [AIR, AIR, AIR, AIR, AIR, AIR], [AIR, TORCH["UP"], AIR, AIR, TORCH["UP"], AIR], [AIR, AIR, AIR, AIR, AIR, AIR] ] ] } def generate_fountains(): return [fountain]
3,113
filedupes.py
Emetophobe/filedupes
0
2170672
#!/usr/bin/env python # Copyright (C) 2019-2020 Emetophobe (<EMAIL>) # https://github.com/Emetophobe/filedupes/ import os import time import hashlib import argparse import textwrap from collections import defaultdict # Default hashlib algorithm DEFAULT_ALGORITHM = 'sha256' # Default directory excludes DEFAULT_EXCLUDE = ['RCS', 'CVS', 'tags', '.git', '.venv', '.hg', '.bzr', '_darcs', '__pycache__'] def main(): # Parse arguments parser = argparse.ArgumentParser(description='Find duplicate files by comparing checksums.') parser.add_argument('directory', help='top level directory to search') parser.add_argument('-a', '--algorithm', help='hashing algorithm (default: %(default)s)', default=DEFAULT_ALGORITHM) parser.add_argument('-e', '--exclude', nargs='*', help='directories to exclude', default=DEFAULT_EXCLUDE) args = parser.parse_args() # Make sure the directory exists if not os.path.isdir(args.directory): parser.error('Invalid directory: {}'.format(args.directory)) # Make sure the algorithm is support if args.algorithm.lower() not in hashlib.algorithms_available: supported = textwrap.fill(', '.join(sorted(hashlib.algorithms_available)), 70) parser.error('Invalid algorithm. List of supported algorithms:\n\n{}'.format(supported)) # Find duplicate files print('Searching for duplicates. This may take a while...', flush=True) start_time = time.perf_counter() dupes = find_dupes(args.directory, args.algorithm, args.exclude) duration = time.perf_counter() - start_time # Print results print() for digest, files in dupes.items(): print(digest) for filename in files: print(' ', filename) print() print('Found {} duplicate hashes in {:.2f} seconds.'.format(len(dupes), duration)) def find_dupes(directory, algorithm, exclude): """Create a dictionary of duplicate hashes (keys) and filenames (values). """ hashes = defaultdict(list) for root, dirs, files in os.walk(os.path.abspath(directory), topdown=True): dirs[:] = [d for d in dirs if d not in exclude] for filename in files: filename = os.path.join(root, filename) try: digest = get_hash(filename, algorithm) except OSError as e: print('Error reading file: {} ({})'.format(filename, e.strerror)) else: hashes[digest].append(filename) # Only return hashes with multiple filenames (dupes) return {k: v for k, v in hashes.items() if len(v) > 1} def get_hash(filename, algorithm): """ Generate a file hash using the specified algorithm. """ hasher = hashlib.new(algorithm) with open(filename, 'rb') as f: for chunk in iter(lambda: f.read(65536), b''): hasher.update(chunk) return hasher.hexdigest() if __name__ == '__main__': try: main() except KeyboardInterrupt: print('Aborted.')
3,039
rover_motor_controller/rover_motor_controller/lx16a/lx16a_consts.py
mgonzs13/ros2_rover
11
2171290
SERVO_ID_ALL = 0xfe SERVO_FRAME_HEADER = 0x55 SERVO_FRAME_HEADER_STRING = "0x55" # CMDS SERVO_MOVE_TIME_WRITE = 1 SERVO_MOVE_TIME_READ = 2 SERVO_MOVE_TIME_WAIT_WRITE = 7 SERVO_MOVE_TIME_WAIT_READ = 8 SERVO_MOVE_START = 11 SERVO_MOVE_STOP = 12 SERVO_ID_WRITE = 13 SERVO_ID_READ = 14 SERVO_ANGLE_OFFSET_ADJUST = 17 SERVO_ANGLE_OFFSET_WRITE = 18 SERVO_ANGLE_OFFSET_READ = 19 SERVO_ANGLE_LIMIT_WRITE = 20 SERVO_ANGLE_LIMIT_READ = 21 SERVO_VIN_LIMIT_WRITE = 22 SERVO_VIN_LIMIT_READ = 23 SERVO_TEMP_MAX_LIMIT_WRITE = 24 SERVO_TEMP_MAX_LIMIT_READ = 25 SERVO_TEMP_READ = 26 SERVO_VIN_READ = 27 SERVO_POS_READ = 28 SERVO_OR_MOTOR_MODE_WRITE = 29 SERVO_OR_MOTOR_MODE_READ = 30 SERVO_LOAD_OR_UNLOAD_WRITE = 31 SERVO_LOAD_OR_UNLOAD_READ = 32 SERVO_LED_CTRL_WRITE = 33 SERVO_LED_CTRL_READ = 34 SERVO_LED_ERROR_WRITE = 35 SERVO_LED_ERROR_READ = 36 # ERRORS SERVO_ERROR_OVER_TEMPERATURE = 1 SERVO_ERROR_OVER_VOLTAGE = 2 SERVO_ERROR_LOCKED_ROTOR = 4 # SERVOS MOTOR_LEFT_FRONT = 1 MOTOR_LEFT_MIDDLE = 2 MOTOR_LEFT_BACK = 3 MOTOR_RIGHT_FRONT = 4 MOTOR_RIGHT_MIDDLE = 5 MOTOR_RIGHT_BACK = 6 SERVO_LEFT_FRONT = 7 SERVO_RIGHT_FRONT = 8 SERVO_LEFT_BACK = 9 SERVO_RIGHT_BACK = 10
1,163
backend/colleges/graphql/schema.py
cesko-digital/zacni-uc
4
2171848
import graphene from colleges.graphql.types import CollegeObjectType, FacultyObjectType, CourseObjectType from colleges.models import College, Faculty, Course class Query(graphene.ObjectType): # Colleges queries colleges = graphene.List(CollegeObjectType) college = graphene.Field(CollegeObjectType, pk=graphene.Int(required=True)) # Faculties queries faculties = graphene.List(FacultyObjectType) faculty = graphene.Field(FacultyObjectType, pk=graphene.Int(required=True)) # Courses queries courses = graphene.List(CourseObjectType) course = graphene.Field(CourseObjectType, pk=graphene.Int(required=True)) @staticmethod def resolve_colleges(root, info): return College.objects.all() @staticmethod def resolve_college(root, info, pk: int): return College.objects.get(pk=pk) @staticmethod def resolve_faculties(root, info): return Faculty.objects.all() @staticmethod def resolve_faculty(root, info, pk: int): return College.objects.get(pk=pk) @staticmethod def resolve_courses(root, info): return Course.objects.all() @staticmethod def resolve_course(root, info, pk: int): return Course.objects.get(pk=pk)
1,247
python/interpret_community/shap/kwargs_utils.py
Nanthini10/interpret-community
338
2170516
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- """Defines utilities for handling kwargs on SHAP-based explainers.""" from interpret_community.common.constants import ExplainParams def _get_explain_global_kwargs(sampling_policy, method, include_local, batch_size): """Get the kwargs for explain_global. :param sampling_policy: Optional policy for sampling the evaluation examples. See documentation on SamplingPolicy for more information. :type sampling_policy: interpret_community.common.SamplingPolicy :param method: The explanation method used, e.g., shap_kernel, mimic, etc. :type method: str :param include_local: Whether a local explanation should be generated or only global :type include_local: bool :param batch_size: If include_local is False, specifies the batch size for aggregating local explanations to global. :type batch_size: int :return: Args for explain_global. :rtype: dict """ kwargs = {ExplainParams.METHOD: method, ExplainParams.SAMPLING_POLICY: sampling_policy, ExplainParams.INCLUDE_LOCAL: include_local, ExplainParams.BATCH_SIZE: batch_size} return kwargs
1,333
test/test_vendor/test_device_serdes.py
meetps/rhea
1
2170993
from __future__ import print_function from __future__ import division import myhdl from myhdl import (Signal, ResetSignal, intbv, instance, always, always_seq) from rhea.system import Clock from rhea.system import ticks_per_ns from rhea.vendor import ClockManagement from rhea.vendor import device_clock_mgmt from rhea.vendor import SERDESInterface from rhea.vendor import device_output_serdes from rhea.vendor import device_input_serdes def top_serdes_wrap(clockext, resetext, sero_p, sero_n, seri_p, seri_n, args=None): """ """ clkmgmt = ClockManagement(clockext, reset=resetext, output_frequencies=(125e6, 1e9)) clkmgmt.vendor = args.vendor # @todo: add external_reset_sync module
800
spyder/plugins/toolbar/__init__.py
Earthman100/spyder
7,956
2170080
# -*- coding: utf-8 -*- # # Copyright © Spyder Project Contributors # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) """ spyder.plugins.toolbar ====================== Toolbar Plugin. """
225
tests/package/test_artifact_metadata.py
pomes/valiant
2
2171676
"""Tests for ArtifactMetadataImpl. Copyright (c) 2020 The Valiant Authors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import json from datetime import datetime import pytest from valiant.package import ArtifactMetadata, ArtifactMetadataImpl @pytest.fixture def basic_artifact() -> ArtifactMetadata: """Based on Flask 1.1.1.""" return ArtifactMetadataImpl( # noqa:DAR201 comment_text="No comment", digests={ "md5": "b5cc35905a936f5f64e51421d1ebe29c", "sha256": "45eb5a6fd193d6cf7e0cf5d8a5b31f83d5faae0293695626f539a823e93b13f6", }, sha256_digest="45eb5a6fd193d6cf7e0cf5d8a5b31f83d5faae0293695626f539a823e93b13f6", signed=True, signature_url="https://files.pythonhosted.org/packages/9b/93/628509b8d5dc749656a9641f4caf13540e2cdec85276964ff8f43bbb1d3b/Flask-1.1.1-py2.py3-none-any.whl.asc", # noqa:B950 package_type="bdist_wheel", python_version="py2.py3", requires_python=[ ">=2.7", "!=3.0.*", "!=3.1.*", "!=3.2.*", "!=3.3.*", "!=3.4.*", ], size=94457, upload_time_iso_8601=datetime(2019, 7, 8, 18, 0, 28, 597456), url="https://files.pythonhosted.org/packages/9b/93/628509b8d5dc749656a9641f4caf13540e2cdec85276964ff8f43bbb1d3b/Flask-1.1.1-py2.py3-none-any.whl", # noqa:B950 ) def test_basic_artifact_dict(basic_artifact: ArtifactMetadata) -> None: """Validate to_dict.""" d = basic_artifact.to_dict() assert d["comment_text"] == "No comment" def test_basic_artifact_json(basic_artifact: ArtifactMetadata) -> None: """Validate to_json.""" d = json.loads(basic_artifact.to_json()) assert d["comment_text"] == "No comment"
2,750
azure-iot-device/azure/iot/device/common/pipeline/pipeline_ops_http.py
dt-boringtao/azure-iot-sdk-python
0
2170740
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from . import PipelineOperation class HTTPRequestAndResponseOperation(PipelineOperation): """ A PipelineOperation object which contains arguments used to connect to a server using the HTTP protocol. This operation is in the group of HTTP operations because its attributes are very specific to the HTTP protocol. """ def __init__(self, method, path, headers, body, query_params, callback): """ Initializer for HTTPPublishOperation objects. :param str method: The HTTP method used in the request :param str path: The path to be used in the request url :param dict headers: The headers to be used in the HTTP request :param str body: The body to be provided with the HTTP request :param str query_params: The query parameters to be used in the request url :param Function callback: The function that gets called when this operation is complete or has failed. The callback function must accept A PipelineOperation object which indicates the specific operation which has completed or failed. """ super().__init__(callback=callback) self.method = method self.path = path self.headers = headers self.body = body self.query_params = query_params self.status_code = None self.response_body = None self.reason = None
1,728
pdetools/example/cde2d.py
jinanloubani/aTEAM
23
2171607
import numpy as np import torch import torch.nn as nn from ..stepper import LinearTimeStepper, LinearSpectStepper from ..init import initgen __all__ = ['CDE', 'SingleCell1', 'SingleCell2'] # Convection diffusion equation class _CDE(nn.Module): @property def dim(self): return 2 @property def timescheme(self): return self._timescheme @property def spatialscheme(self): return self._spatialscheme @property def coe(self): return self._coe def setcoe(self): raise NotImplementedError def __init__(self, max_dt=0.2e-3, mesh_size=(256,256), mesh_bound=((0,0),(1,1))): super(_CDE, self).__init__() self.max_dt = max_dt self.mesh_size = np.array(mesh_size).copy() self.mesh_bound = np.array(mesh_bound).copy() dx0,dx1 = (self.mesh_bound[1]-self.mesh_bound[0])/self.mesh_size assert abs(dx0-dx1)<1e-10 self.dx = dx0 xy = np.mgrid[self.mesh_bound[0][0]:self.mesh_bound[1][0]:(self.mesh_size[0]+1)*1j, self.mesh_bound[0][1]:self.mesh_bound[1][1]:(self.mesh_size[1]+1)*1j] xy = xy[:,:-1,:-1] xy = np.transpose(xy, axes=[1,2,0]) xy = torch.from_numpy(xy) self.setcoe(xy) def forward(self, inputs, T, **kw): return self.predict(inputs, T, **kw) class CDE(_CDE, LinearTimeStepper): def setcoe(self, xy): coe = np.ndarray((3,3), dtype=object) self._coe = coe coe[0,0] = coe[1,1] = 0 coe[0,2] = coe[2,0] = 1/8 coe[0,1] = 0 coe[1,0] = nn.Parameter(torch.sin(2*np.pi*xy[...,1])) self.coe10 = coe[1,0] def __init__(self, max_dt=4e-5, mesh_size=(128,128), mesh_bound=((0,0),(1,1)), timescheme='rk2', spatialscheme='uw2'): super(CDE, self).__init__(max_dt=max_dt, mesh_size=mesh_size, mesh_bound=mesh_bound) self._timescheme = timescheme self._spatialscheme = spatialscheme class Heat(_CDE, LinearTimeStepper): def setcoe(self, xy): coe = np.ndarray((3,3), dtype=object) self._coe = coe coe[0,0] = coe[1,1] = coe[0,1] = coe[1,0] = 0 coe[0,2] = coe[2,0] = 1/8 def __init__(self, max_dt=4e-5, mesh_size=(128,128), mesh_bound=((0,0),(1,1)), timescheme='rk2', spatialscheme='uw2'): super(Heat, self).__init__(max_dt=max_dt, mesh_size=mesh_size, mesh_bound=mesh_bound) self._timescheme = timescheme self._spatialscheme = spatialscheme class _SingleCell1(_CDE): def setcoe(self, xy): coe = np.ndarray((3,3), dtype=object) self._coe = coe coe[0,0] = coe[1,1] = 0 coe[0,2] = coe[2,0] = 1/8 xy = xy/self.epsilon xy = xy%1.0 coe[0,1] = 0 coe[1,0] = nn.Parameter(torch.sin(2*np.pi*xy[...,1])) coe[1,0].data /= self.epsilon self.coe10 = coe[1,0] def __init__(self, max_dt, epsilon, cell_num, mesh_size=(256,256)): mesh_bound = ((0,0),(cell_num*epsilon,cell_num*epsilon)) self.epsilon = epsilon self.cell_num = cell_num super(_SingleCell1, self).__init__(max_dt=max_dt, mesh_size=mesh_size, mesh_bound=mesh_bound) class _SingleCell2(_CDE): def setcoe(self, xy): coe = np.ndarray((3,3), dtype=object) self._coe = coe coe[0,0] = coe[1,1] = 0 coe[0,2] = coe[2,0] = 1/8 xy = xy/self.epsilon xy = xy%1.0 coe[0,1] = nn.Parameter(-(8*xy[...,1]-4)*torch.sin(2*np.pi*xy[...,1])-8*np.pi*(xy[...,1]-1)*xy[...,1]*torch.cos(2*np.pi*xy[...,1])) coe[0,1].data /= self.epsilon*2*np.pi coe[1,0] = nn.Parameter(-2*np.pi*torch.cos(2*np.pi*xy[...,0])) coe[1,0].data /= self.epsilon*2*np.pi self.coe01 = coe[0,1] self.coe10 = coe[1,0] def __init__(self, max_dt, epsilon, cell_num, mesh_size=(256,256)): mesh_bound = ((0,0),(cell_num*epsilon,cell_num*epsilon)) self.epsilon = epsilon self.cell_num = cell_num super(_SingleCell2, self).__init__(max_dt=max_dt, mesh_size=mesh_size, mesh_bound=mesh_bound) class SingleCell1(_SingleCell1, LinearTimeStepper): def __init__(self, max_dt, epsilon, cell_num, mesh_size, timescheme='rk2', spatialscheme='uw2'): super(SingleCell1, self).__init__(max_dt=max_dt, epsilon=epsilon, cell_num=cell_num, mesh_size=mesh_size) self._timescheme = timescheme self._spatialscheme = spatialscheme class SingleCell2(_SingleCell2, LinearTimeStepper): def __init__(self, max_dt, epsilon, cell_num, mesh_size, timescheme='rk2', spatialscheme='uw2'): super(SingleCell2, self).__init__(max_dt=max_dt, epsilon=epsilon, cell_num=cell_num, mesh_size=mesh_size) self._timescheme = timescheme self._spatialscheme = spatialscheme class SingleCell1Spect(_SingleCell1, LinearSpectStepper): def __init__(self, max_dt, epsilon, cell_num, mesh_size, timescheme='rk2'): super(SingleCell1Spect, self).__init__(max_dt=max_dt, epsilon=epsilon, cell_num=cell_num, mesh_size=mesh_size) self._timescheme = timescheme class SingleCell2Spect(_SingleCell2, LinearSpectStepper): def __init__(self, max_dt, epsilon, cell_num, mesh_size, timescheme='rk2'): super(SingleCell2Spect, self).__init__(max_dt=max_dt, epsilon=epsilon, cell_num=cell_num, mesh_size=mesh_size) self._timescheme = timescheme def test_SingleCell(cell_num=4, example=1, max_dt=1e-9, T=2e-7, epsilon=1/512): import aTEAM.pdetools as pdetools import aTEAM.pdetools.example.cde2d as cde2d import torch import matplotlib.pyplot as plt import time if torch.cuda.is_available(): device = 'cuda:0' else: device = None if example == 1: SingleCell = cde2d.SingleCell1 SingleCellSpect = cde2d.SingleCell1Spect else: SingleCell = cde2d.SingleCell2 SingleCellSpect = cde2d.SingleCell2Spect batch_size = 2 h = plt.figure() a0 = h.add_subplot(121) a1 = h.add_subplot(122) linpde0 = SingleCell(max_dt=max_dt, epsilon=epsilon, cell_num=cell_num, mesh_size=(32*cell_num,32*cell_num)) linpde1 = SingleCellSpect(max_dt=max_dt, epsilon=epsilon, cell_num=cell_num, mesh_size=(32*cell_num,32*cell_num)) linpde0.to(device=device) linpde1.to(device=device) x0 = pdetools.init.initgen(mesh_size=linpde0.mesh_size, freq=1, device=device, batch_size=batch_size) x1 = x0 for i in range(1,21): startt = time.time() with torch.no_grad(): x0 = linpde0.predict(x0, T=T) x1 = linpde1.predict(x1, T=T) stopt = time.time() print('elapsed-time={:.1f}, sup(|x0-x1|)={:.2f}'.format(stopt-startt, (x0-x1).abs().max().item())) a0.clear() a1.clear() xplot0 = x0 if batch_size == 1 else x0[0] xplot1 = x1 if batch_size == 1 else x1[0] b0 = a0.imshow(xplot0, cmap='jet') b1 = a1.imshow(xplot1, cmap='jet') a0.set_title('t={:.1e},max={:.2f},min={:.2f}'.format(i*T,x0.max(),x0.min())) a1.set_title('t={:.1e},max={:.2f},min={:.2f}'.format(i*T,x1.max(),x1.min())) if i > 1: c0.remove() c1.remove() c0 = h.colorbar(b0, ax=a0) c1 = h.colorbar(b1, ax=a1) plt.pause(1e-3) def test_CDE(): import aTEAM.pdetools as pdetools import aTEAM.pdetools.example.cde2d as cde2d import torch import matplotlib.pyplot as plt import time if torch.cuda.is_available(): device = 'cuda:0' else: device = None T = 1e-2 batch_size = 1 h = plt.figure() a0 = h.add_subplot(121) a1 = h.add_subplot(122) linpde0 = cde2d.CDE() linpde1 = cde2d.Heat() linpde0.to(device=device) linpde1.to(device=device) linpde0.coe[0,2] = 0 linpde0.coe[2,0] = 0 linpde1.coe[0,2] = 1/4 linpde1.coe[2,0] = 1/16 init = pdetools.init.initgen(mesh_size=linpde0.mesh_size, freq=1, device=device, batch_size=batch_size) x0 = init x1 = init for i in range(1,21): startt = time.time() with torch.no_grad(): x0 = linpde0.predict(x0, T=T) x1 = linpde1.predict(x1, T=T) stopt = time.time() print('eplapsed-time={:.1f}'.format(stopt-startt)) a0.clear() a1.clear() xplot0 = x0 if batch_size == 1 else x0[0] xplot1 = x1 if batch_size == 1 else x1[0] b0 = a0.imshow(xplot0, cmap='jet') b1 = a1.imshow(xplot1, cmap='jet') a0.set_title('t={:.1e},max={:.2f},min={:.2f}'.format(i*T,x0.max(),x0.min())) a1.set_title('t={:.1e},max={:.2f},min={:.2f}'.format(i*T,x1.max(),x1.min())) if i > 1: c0.remove() c1.remove() c0 = h.colorbar(b0, ax=a0) c1 = h.colorbar(b1, ax=a1) plt.pause(1e-3)
8,789
2018_10_p2.py
Dementophobia/-advent-of-code-2018
0
2171842
from aoc import get_ints, read_file, timer @timer def solve(): points = [get_ints(line) for line in read_file("10")] result, found, size = 0, 0, 200 while found < len(points): found = 0 for point in points: point[0] += point[2] point[1] += point[3] if point[0] >= 0 and \ point[0] < size and \ point[1] >= 0 and \ point[1] < size: found += 1 result += 1 return result result = solve() print(f"Solution: {result}")
560
send-auction-transactions.py
adamfeuer/google-measurement-protocol-utils
0
2169505
#!/usr/bin/env python import csv import uuid import time import argparse from google_measurement_protocol import enhanced_item, enhanced_purchase, report from prices import Money def main(): parser = argparse.ArgumentParser(description='Send ecommerce transactions to Google Analytics') parser.add_argument('--google-analytics-id', '-g', dest='google_analytics_id', default=None, help='Google Analytics ID') parser.add_argument('--input-file', '-i', type=argparse.FileType('r')) args = parser.parse_args() google_analytics_id = args.google_analytics_id input_file = args.input_file with input_file as csvfile: reader = csv.DictReader(csvfile) for row in reader: print(row) client_id = row['userid'] transaction_id = '' product_name = 'Auction Win' product_price = 0 product_quantity = row['Transactions'] raw_transaction_amount = row['Revenue'] transaction_amount = raw_transaction_amount.replace('$', '') cd1 = 'purchase' url = row['Landing Page'] print(f"client_id:{client_id} url: {url} transaction_id: {transaction_id} product: {product_name}: {product_price} quantity: {product_quantity} transaction amount: {transaction_amount} cd1: {cd1}") items = [ enhanced_item(product_name, Money(product_price, 'USD'), quantity=product_quantity)] data = enhanced_purchase(transaction_id, items, Money(transaction_amount, 'USD'), url, cd1=cd1) report(google_analytics_id, client_id, data) time.sleep(0.1) if __name__ == "__main__": main()
1,683
examples/sorting/insertion_sort.py
kumarreddyn/python-examples
0
2170497
def insertion_sort(numbers): print(numbers) if len(numbers) > 1: for i in range(1, len(numbers)): k = i while k > 0 and numbers[k] < numbers[k-1]: temp = numbers[k] numbers[k] = numbers[k-1] numbers[k-1] = temp k -= 1 data_list = [12, 11, 13, 5, 6] insertion_sort(data_list) print(data_list)
398
app.py
pamhinostroza/Web_Scraping_Challenge
0
2171533
#Import Dependencies from flask import Flask, render_template, redirect from flask_pymongo import PyMongo import scrape_mars import os # Create an instance of Flask app = Flask(__name__) # Use PyMongo to establish Mongo connection mongo = PyMongo(app, uri="mongodb://localhost:27017/mars_app") # Route to render index.html template using data from Mongo @app.route("/") def home(): # Find one record of data from the mongo database mars_table = mongo.db.mars_information.find_one() return render_template("index.html", mars_information=mars_table) # Route that will trigger the scrape function @app.route("/scrape") def scrape(): # Run the scrape functions mars_table = mongo.db.mars_information news_title, news_paragraph = scrape_mars.scrape_mars_news() featured_img_url = scrape_mars.scrape_mars_image() mars_facts = scrape_mars.scrape_mars_facts() mars_hemispheres = scrape_mars.mars_hemispheres() mars_information={ "news_title":news_title, "news_paragraph":news_paragraph, "featured_image_url":featured_img_url, "mars_table":mars_facts, "hemisphere_image_urls":mars_hemispheres } print(mars_information) mars_table.update({}, mars_information, upsert=True) # Redirect back to home page return redirect("/", code=302) if __name__ == "__main__": app.run(debug=True)
1,383
Exercicios/Ex059.py
RenanRibeiroDaSilva/Meu-Aprendizado-Python
2
2171504
""" Ex - 059 - Crie um programa que leia dois valores e mostre um menu como mostra o exemplo abaixo: Seu programa deverá realizar a operação solicitada em cada caso. [1] Somar. [2] Multipicar. [3] Maior [4] Novos números [5] Sair do programa""" # Como eu fiz # Cabeçalho: print(f'{"":=^50}') print(f'{"> MENU <":=^50}') print(f'{"":=^50}') # Receber informações do usuario: num_1 = float(input('Digite um valor.....: ')) num_2 = float(input('Digite mais um valor: ')) menu = 0 # Criando um menu para o usuario: while menu != 5: print(f'{"":-^50}') print(f'{"| Escolha uma das opções abaixo! |":^50}') print(f'{"| [ 1 ] SOMA |":^50}') print(f'{"| [ 2 ] MULTIPICAÇÃO |":^50}') print(f'{"| [ 3 ] MAIOR VALOR |":^50}') print(f'{"| [ 4 ] NOVOS VALORES |":^50}') print(f'{"| [ 5 ] SAIR DO PROGRAMA |":^50}') menu = int(input(' Qual opção...: ')) if menu == 1: print('A Soma entre {} e {} é igual há {}'.format(num_1, num_2, num_1 + num_2)) elif menu == 2: print('{} multiplicado por {} é igual há {}'.format(num_1, num_2, num_1 * num_2)) elif menu == 3: if num_1 > num_2: print('{} é maior do que {} !'.format(num_1, num_2)) else: print('{} é maior do que {} !'.format(num_2, num_1)) elif menu == 4: print('Informe novos valores: ') num_1 = float(input('Digite um valor.....: ')) num_2 = float(input('Digite mais um valor: ')) elif menu == 5: print('Finalizando programa...') else: print('Opção Inválida tente novamente: ') print(f'{"":-^50}') print('Fim') # Como o professor <NAME> """ from time import sleep n1 = int(input('Primeiro valor: )) n2 = int(input('Segundo valor: )) opção = 0 while opção != 5: print(''' [ 1 ] somar [ 2 ] multiplicar [ 3 ] maior [ 4 ] novos números [ 5 ] sair do programa ''') opção = int(input('>>>>> Qual é a sua opção? ')) if opção == 1: soma = n1 + n2 print('A soma entre {} + {} é {}'.format(n1, n2, soma)) elif opção == 2: produto = n1 * n2 print('O resultado de {} x {} é {}'.format(n1, n2, produto)) elif opção == 3: if n1 > n2: maior = n1 else: maior = n2 print('Entre {} e {} o maior valor é {}.format(n1, n2, maior)) elif opção == 4: print('Informe os números novamente:') n1 = int(input('Primeiro valor: ')) n2 = int(input('Segundo valor: ')) elif opção == 5: print('Finalizando...') else: print('Opção invalida. Tente novamente') print('=-=' * 10) sleep(2) print('Fim do programa! Volte sempre!) """
2,919
lintcode/1833.py
jianershi/algorithm
1
2171595
""" 1833. pen box https://www.lintcode.com/problem/pen-box/description """ class Solution: """ @param boxes: number of pens for each box @param target: the target number @return: the minimum boxes """ def minimumBoxes(self, boxes, target): # write your code here n = len(boxes) min_length = sys.maxsize min_left = self.min_length_subarray(boxes, target) min_right = self.min_length_subarray(boxes[::-1], target)[::-1] for i in range(n - 1): min_length = min(min_length, min_left[i] + min_right[i + 1]) return min_length if min_length != sys.maxsize else -1 """ return -1 if not exist """ def min_length_subarray(self, boxes, target): if not boxes: return sys.maxsize left = 0 right = 0 subarray_sum = 0 min_left = [sys.maxsize] * len(boxes) while right < len(boxes): subarray_sum += boxes[right] while subarray_sum > target: subarray_sum -= boxes[left] left += 1 # if right == 0 and subarray_sum == target: # min_left[right] = 1 if subarray_sum != target: min_left[right] = min_left[right - 1] if subarray_sum == target: min_left[right] = min(min_left[right - 1], right - left + 1) right += 1 return min_left
1,440
adversarial.py
Algue-Rythme/anomaly
0
2171811
import gin import tensorflow as tf from tensorflow.keras.optimizers import Adam, SGD, RMSprop class PartialModel: def __init__(self, model, layer_index): self.model = model self.layer_index = layer_index def __call__(self, x): for layer in self.model.layers[:self.layer_index]: x = layer(x) return x @tf.function def metric_entropy(x, fixed, scale, margin): """ See https://arxiv.org/pdf/1908.11184.pdf for the construction. """ x = tf.reshape(x, shape=[x.shape[0], 1, -1]) fixed = tf.reshape(fixed, shape=[1, fixed.shape[0], -1]) distances = x - fixed distances = tf.reduce_sum(distances ** 2., axis=2) # distances = tf.minimum(distances, margin*margin) # ONLY TO CROP PENALTY distances = distances / (scale**2.) # normalize to avoid errors distances = tf.minimum(distances, 6.) # avoid saturation (security) similarities = tf.math.exp(distances * (-1.)) typicality = tf.reduce_mean(similarities, axis=1) entropy = -tf.reduce_mean(tf.math.log(typicality)) return entropy @tf.function def ball_repulsion(x, fixed, scale, margin): """Average distance from each 'x' to 'fixed'. """ x = tf.reshape(x, shape=[x.shape[0], 1, -1]) fixed = tf.reshape(fixed, shape=[1, fixed.shape[0], -1]) distances = x - fixed distances = tf.reduce_sum(distances ** 2., axis=2) distances = tf.minimum(distances, margin*margin) # avoid saturation distances = distances / (scale**2.) # just to normalize gradient sum_dists = tf.reduce_sum(distances, axis=1) # square distance instead of hinge # because numerical instabilities otherwise :( return tf.reduce_mean(sum_dists) def renormalize_grads(grads): return [tf.math.l2_normalize(grad) for grad in grads] def uniform_noise(x_0, scale): coef = 0.3 # a bit farther away min_x0 = tf.reduce_min(x_0, axis=0, keepdims=True) max_x0 = tf.reduce_max(x_0, axis=0, keepdims=True) delta = max_x0 - min_x0 min_x0 = min_x0 - coef * delta max_x0 = max_x0 + coef * delta return tf.random.uniform(x_0.shape, min_x0, max_x0) @tf.function def frontiere_distance(y, margin): return tf.math.abs(y + margin) # to be minimized @gin.configurable def generate_adversarial(model, x_0, scale, margin, true_negative, max_iter=gin.REQUIRED, w_weight=gin.REQUIRED, border =gin.REQUIRED, h_x_0 =gin.REQUIRED, h_x =gin.REQUIRED, mult =gin.REQUIRED, logloss =gin.REQUIRED, reversedlogloss=gin.REQUIRED): learning_rate = (mult * margin) / max_iter if true_negative: learning_rate = learning_rate * model._get_coef() optimizer = SGD(learning_rate=learning_rate) # no momentum required due to smooth optimization landscape # x_init is perturbed x_0, with atmost 10% of a gradient step (which can be admittely quite high) x_init = x_0 + 0.1*learning_rate*tf.math.l2_normalize(tf.random.uniform(x_0.shape, -1., 1.)) x = tf.Variable(initial_value=x_init, trainable=True) for _ in range(max_iter): with tf.GradientTape() as tape: try: y = model(x) except tf.python.framework.errors_impl.InvalidArgumentError as e: norm = tf.reduce_sum(x ** 2.) print('adversarial', norm, x) raise e if logloss: # binary cross-entropy zeros = tf.zeros([int(y.shape[0]),1]) # seek frontiere ones = tf.ones([int(y.shape[0]),1]) if reversedlogloss: zeros, ones = ones, zeros if true_negative: # where f is already negative, add examples ce = tf.nn.sigmoid_cross_entropy_with_logits(zeros+0.5, y) else: # otherwise f is positive but really shouldn't (most of the time), we remove those parts ce = tf.nn.sigmoid_cross_entropy_with_logits(ones, y) adversarial_score = tf.reduce_mean(ce) if reversedlogloss: adversarial_score = -adversarial_score else: # wasserstein bro: sign is flipped because minimization of loss instead maximization of cost if true_negative: adversarial_score = tf.reduce_mean(y) # seek x of f(x) negative else: adversarial_score = -tf.reduce_mean(y) # seek x of f(x) positive loss = w_weight*adversarial_score if (h_x_0 + h_x + border) > 0.: fidelity = -h_x_0 * ball_repulsion(x, x_0, scale, margin) # avoid true positive, irrelevant dispersion = -h_x * metric_entropy(x, x, scale, margin) # regularization to cover space frontiere_score = border * frontiere_distance(y, margin) loss = loss + dispersion + fidelity + frontiere_score # minimize loss grad_f_x = tape.gradient(loss, [x]) grad_f_x = renormalize_grads(grad_f_x) # keep good learning rate optimizer.apply_gradients(zip(grad_f_x,[x])) return x.value() """ Two strategies with Binary Cross Entropy: 1) Maximize Error on Wrong Labels Maximize Error on Label 1 (an attack, catch f negative) Maximize Error on Label 0 (support, catch f positive) 2) Minimize Error on True Labels Minimize Error on Label 0 (a "soft" attack, catch f negative) Minimize Error on Label 1 (support, catch f positive) For now we implemented Strategy 2) since it is more natural to minimize a loss But strategy 1) may have some potential (warning NaN) """ @gin.configurable def complement_distribution(model, x_0, scale, margin, uniform =gin.REQUIRED, symmetric=gin.REQUIRED): if uniform: return uniform_noise(x_0, scale) x_false_positive = generate_adversarial(model, x_0, scale, margin, true_negative=False) if not symmetric: return x_false_positive x_true_negative = generate_adversarial(model, x_0, scale, margin, true_negative=True) return tf.concat(values=[x_false_positive, x_true_negative], axis=0)
6,366
tests/integration/test_code_deploy.py
mmcdermo/RedLeader
0
2171723
import unittest import random import json import time import pkg_resources import botocore.exceptions import redleader from redleader.cluster import Cluster, OfflineContext, AWSContext from redleader.resources import S3BucketResource, SQSQueueResource, CodeDeployEC2InstanceResource, CodeDeployDeploymentGroupResource, ReadWritePermission from redleader.managers import CodeDeployManager from util import cleanup_buckets class TestCodeDeploy(unittest.TestCase): def setUp(self): self._context = AWSContext(aws_profile="testing") cleanup_buckets(self._context.get_client('s3'), 'testbucketname') def tearDown(self): cleanup_buckets(self._context.get_client('s3'), 'testbucketname') pass def test_code_deploy_cluster(self): context = self._context # Configure our cluster cluster = Cluster("testClusterClass", context) bucket_name = "testbucketname%s" % 5 s3Bucket = S3BucketResource(context, bucket_name) sqsQueue = SQSQueueResource(context, "redleaderTestQueue") deploymentGroup = CodeDeployDeploymentGroupResource(context, "my_application_name", "my_deployment_group") ec2Instance = CodeDeployEC2InstanceResource( context, deploymentGroup, permissions=[ReadWritePermission(s3Bucket), ReadWritePermission(sqsQueue)], storage=10, instance_type="t2.nano", ) cluster.add_resource(sqsQueue) cluster.add_resource(s3Bucket) cluster.add_resource(ec2Instance) cluster.add_resource(deploymentGroup) template = cluster.cloud_formation_template() for sub in template['Resources']: print("ID: %s" % sub) print(json.dumps(template['Resources'][sub], indent=4)) return # Delete as a preemptive cleanup step cluster.blocking_delete(verbose=True) # Deploy cluster x = cluster.blocking_deploy(verbose=True) print("Deployed. Sleeping for 15.") time.sleep(15) # Perform a code deploy deployment client = context.get_client('codedeploy') manager = CodeDeployManager(context) resource_package = redleader resource_path = '/'.join(('test_resources', 'code_deploy_app')) code_deploy_path = pkg_resources.resource_filename("redleader", resource_path) deployment_id = manager.create_deployment("my_application_name", "my_deployment_group", #deploymentGroup.get_id(), path=code_deploy_path, bucket_name=bucket_name) print("Code deploy succeeded with deployment id %s. Sleeping for 30s" % \ deployment_id) time.sleep(30) sqsClient = context.get_client("sqs") queues = sqsClient.list_queues(QueueNamePrefix="redleaderTestQueue") self.assertEqual(len(queues['QueueUrls']), 1) queue_url = queues['QueueUrls'][0] messages = sqsClient.receive_message(QueueUrl=queue_url) if 'Messages' not in messages: print(messages) self.assertEqual(0, "No messages key in response") for message in messages['Messages']: print(message) print(sqsClient.delete_message( QueueUrl=queue_url, ReceiptHandle=message['ReceiptHandle'] )) self.assertEqual(len(messages['Messages']), 1) self.assertEqual(messages['Messages'][0]['Body'], 'message_from_ec2_server') # Delete cluster cluster.blocking_delete(verbose=True)
3,904
{{cookiecutter.project_name_kebab}}/tests/test_{{cookiecutter.project_name_snake}}.py
gekorob/cookiecutter-basic-pylib
0
2169964
from {{ cookiecutter.project_name_snake }} import {{ cookiecutter.project_name_snake }} def test_sample(): assert False
125
pgcli/packages/pgspecial/tests/test_specials.py
johshoff/pgcli
82
2171529
from dbutils import dbtest @dbtest def test_slash_d(executor): results = executor('\d') title = None rows = [('public', 'tbl1', 'table', 'postgres'), ('public', 'tbl2', 'table', 'postgres'), ('public', 'vw1', 'view', 'postgres')] headers = ['Schema', 'Name', 'Type', 'Owner'] status = 'SELECT 3' expected = [title, rows, headers, status] assert results == expected @dbtest def test_slash_dn(executor): """List all schemas.""" results = executor('\dn') title = None rows = [('public', 'postgres'), ('schema1', 'postgres'), ('schema2', 'postgres')] headers = ['Name', 'Owner'] status = 'SELECT 3' expected = [title, rows, headers, status] assert results == expected @dbtest def test_slash_dt(executor): """List all tables in public schema.""" results = executor('\dt') title = None rows = [('public', 'tbl1', 'table', 'postgres'), ('public', 'tbl2', 'table', 'postgres')] headers = ['Schema', 'Name', 'Type', 'Owner'] status = 'SELECT 2' expected = [title, rows, headers, status] assert results == expected @dbtest def test_slash_dT(executor): """List all datatypes.""" results = executor('\dT') title = None rows = [('public', 'foo', None)] headers = ['Schema', 'Name', 'Description'] status = 'SELECT 1' expected = [title, rows, headers, status] assert results == expected @dbtest def test_slash_df(executor): results = executor('\df') title = None rows = [('public', 'func1', 'integer', '', 'normal')] headers = ['Schema', 'Name', 'Result data type', 'Argument data types', 'Type'] status = 'SELECT 1' expected = [title, rows, headers, status] assert results == expected
1,801
4_merge_road_usages_hours.py
IntroDS2017/SteamingPlayers
0
2171891
import pandas as pd import numpy as np def flatten_list(to_flat): """ Flattens 2D-list to 1d :param to_flat: List to flatten :return: 1D list """ return [row for rows in to_flat for row in rows] def sum_over_car_counts_of_rows_sharing_aika(grouped_roads): """ Sums car-amounts of given rows. :param grouped_roads: Roads that are supposed to share (piste/nimi, year, and suunta). :return: First road of the roads, with summed 'autot' """ roads = grouped_roads[1] result = roads.iloc[0].copy() # copies the first row as the result field for col in ['ha', 'pa', 'ka', 'ra', 'la', 'mp', 'rv', 'autot']: result[col] = roads[col].sum() return result def handle_roads_by_id_and_vuosi(grouped_roads): roads = grouped_roads[1] return map(sum_over_car_counts_of_rows_sharing_aika, roads.groupby('aika')) def handle_roads_by_id(grouped_roads): # grouped_rows[0] = list of "groupping value" (in this case 'piste' as previously grouped with that value) # grouped_rows[1] = "grouped rows (= road_usages_rows)" roads = grouped_roads[1] result = map(handle_roads_by_id_and_vuosi, roads.groupby('vuosi')) return flatten_list(result) def main(road_usages_data_path): """ Merges hours in 2_road_usages.csv :param road_usages_data_path: String, where file is loaded from. :return: New dataframe. If time-unit was between some hour, they were summed. Sums also over both 'suunta's! """ roads = pd.read_csv(road_usages_data_path) roads['aika'] = roads['aika'].apply(lambda x: int(x / 100) + 1) # set for example each 700, 715, 730, and 745 to 8, for summing over them result = map(handle_roads_by_id, roads.groupby('piste')) # piste = unique ID that stands for given road. Could use also 'nimi' here. flat_result = flatten_list(result) return pd.DataFrame(flat_result) if __name__ == '__main__': pd.options.mode.chained_assignment = None # default='warn' load_path = "data/3_road_usages.csv" save_path = "data/4_road_usages.csv" df = main(load_path) df = df.drop('suunta', 1) df.insert(loc = 0, column = 'ru-index', value = np.arange(len(df))) df.to_csv(save_path, index = False) # do not write index column in the file print(df)
2,298
msghandle/stk/main.py
RaenonX/Jelly-Bot-API
5
2170490
from typing import List from msghandle.models import LineStickerMessageEventObject, HandledMessageEvent, HandledMessageEventText from strres.msghandle import HandledResult from .info import process_display_info from .autoreply import process_auto_reply def handle_line_sticker_event(e: LineStickerMessageEventObject) -> List[HandledMessageEvent]: if e.is_test_event: return [HandledMessageEventText(content=HandledResult.TestSuccessLineSticker)] handle_fn = [process_display_info] if e.channel_model.config.enable_auto_reply: handle_fn.append(process_auto_reply) for fn in handle_fn: responses = fn(e) if responses: return responses return []
714
Network/python/MisProject/socketTCP/client.py
omidrk/MultiSensInteractive
0
2170048
import socket, queue, select, sys from time import time, sleep from random import randint import json """ 999:MESSAGE """ to_server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) to_server.connect(('192.168.1.81', 50001)) inputs = [to_server] outputs = [to_server] command_queue = queue.Queue() HEADER_LEN = 5 SENSOR_LEN = 506 COMMAND_LEN = 250 i = 0 def random_message(): value = randint(2, 5) state = randint(0,1) return json.dumps({"fan" : [value, state]}) while True: readable, writable, exceptional = select.select(inputs, outputs, inputs) for s in readable: if s == to_server: data = s. recv(SENSOR_LEN + HEADER_LEN + 1) if not data: break #print(data) for s in writable: if s == to_server: i += 1 if i % 10 == 0: MESSAGE = random_message() msg = f"{len(MESSAGE):>{HEADER_LEN}}:" + f"{MESSAGE:<{COMMAND_LEN}}" s.send(bytes(msg, 'utf8')) for s in exceptional: inputs.remove(s) if s in outputs: outputs.remove(s) print(f"REMOVED: {s}") s.close()
1,176
view_breadcrumbs/constants.py
codacy-badger/django-view-breadcrumbs
29
2171672
from django.utils.translation import gettext_lazy as _ LIST_VIEW_SUFFIX = _("list") CREATE_VIEW_SUFFIX = _("create") UPDATE_VIEW_SUFFIX = _("update") DELETE_VIEW_SUFFIX = _("delete") DETAIL_VIEW_SUFFIX = _("detail")
217
test/test_api_tracer.py
formazione/Cyberbrain
2
2171064
from cyberbrain import Binding, Symbol def test_api_tracer(tracer, test_server): tracer.start() a = 1 tracer.stop() assert tracer.events == [ Binding(lineno=6, target=Symbol("a"), value="1", sources=set()) ] test_server.assert_frame_sent("test_api_tracer")
293
wsi/WSISettings.py
mstekel/bertwsi
26
2171735
from collections import namedtuple WSISettings = namedtuple('WSISettings', ['n_represents', 'n_samples_per_rep', 'cuda_device', 'debug_dir', 'disable_tfidf', 'disable_lemmatization', 'run_name', 'patterns', 'min_sense_instances', 'bert_model', 'max_batch_size', 'prediction_cutoff', 'max_number_senses', ]) DEFAULT_PARAMS = WSISettings( n_represents=15, n_samples_per_rep=20, cuda_device=1, debug_dir='debug', disable_lemmatization=False, disable_tfidf=False, patterns=[('{pre} {target} (or even {mask_predict}) {post}', 0.4), ('{pre} {target_predict} {post}', 0.4)], # (pattern,weight): each of these patterns will produce a prediction state. # the weighted sum of them will be matmul'ed for a distribution over substitutes # patterns=[('{pre} {target_predict} {post}', 0.5)], # - just predict on first token, no patterns run_name='test-run', max_number_senses=7, min_sense_instances=2, # sense clusters that dominate less than this number of samples # would be remapped to their closest big sense max_batch_size=10, prediction_cutoff=200, bert_model='bert-large-uncased' )
1,331
cirtorch/geometry/depth.py
Tarekbouamer/Image-Retrieval-for-Image-Based-Localization
3
2170815
import torch import torch.nn.functional as F from .camera.perspective import project_points, unproject_points from .conversions import normalize_pixel_coordinates from .linalg import transform_points from cirtorch.utils.grid import create_meshgrid from cirtorch.filters.filter import spatial_gradient def depth_to_3d(depth, camera_matrix, normalize_points=False): """ Compute a 3d point per pixel given its depth value and the camera intrinsics. """ if not len(depth.shape) == 4 and depth.shape[-3] == 1: raise ValueError(f"Input depth musth have a shape (B, 1, H, W). Got: {depth.shape}") if not len(camera_matrix.shape) == 3 and camera_matrix.shape[-2:] == (3, 3): raise ValueError(f"Input camera_matrix must have a shape (B, 3, 3). " f"Got: {camera_matrix.shape}.") # create base coordinates grid batch_size, _, height, width = depth.shape points_2d = create_meshgrid(height, width, normalized_coordinates=False) # 1xHxWx2 points_2d = points_2d.to(depth.device).to(depth.dtype) # depth should come in Bx1xHxW points_depth = depth.permute(0, 2, 3, 1) # 1xHxWx1 # project pixels to camera frame camera_matrix_tmp = camera_matrix[:, None, None] # Bx1x1x3x3 points_3d = unproject_points(points_2d, points_depth, camera_matrix_tmp, normalize=normalize_points) # BxHxWx3 return points_3d.permute(0, 3, 1, 2) # Bx3xHxW def depth_to_normals(depth, camera_matrix, normalize_points=False): """ Compute the normal surface per pixel. """ if not len(depth.shape) == 4 and depth.shape[-3] == 1: raise ValueError(f"Input depth musth have a shape (B, 1, H, W). Got: {depth.shape}") if not len(camera_matrix.shape) == 3 and camera_matrix.shape[-2:] == (3, 3): raise ValueError(f"Input camera_matrix must have a shape (B, 3, 3). " f"Got: {camera_matrix.shape}.") # compute the 3d points from depth xyz = depth_to_3d(depth, camera_matrix, normalize_points) # Bx3xHxW # compute the pointcloud spatial gradients gradients = spatial_gradient(xyz) # Bx3x2xHxW # compute normals a, b = gradients[:, :, 0], gradients[:, :, 1] # Bx3xHxW normals = torch.cross(a, b, dim=1) # Bx3xHxW return F.normalize(normals, dim=1, p=2) def warp_frame_depth(image_src, depth_dst, src_trans_dst, camera_matrix, normalize_points=False): """ Warp a tensor from a source to destination frame by the depth in the destination. Compute 3d points from the depth, transform them using given transformation, then project the point cloud to an image plane. """ if not len(image_src.shape) == 4: raise ValueError(f"Input image_src musth have a shape (B, D, H, W). Got: {image_src.shape}") if not len(depth_dst.shape) == 4 and depth_dst.shape[-3] == 1: raise ValueError(f"Input depth_dst musth have a shape (B, 1, H, W). Got: {depth_dst.shape}") if not len(src_trans_dst.shape) == 3 and src_trans_dst.shape[-2:] == (3, 3): raise ValueError(f"Input src_trans_dst must have a shape (B, 3, 3). " f"Got: {src_trans_dst.shape}.") if not len(camera_matrix.shape) == 3 and camera_matrix.shape[-2:] == (3, 3): raise ValueError(f"Input camera_matrix must have a shape (B, 3, 3). " f"Got: {camera_matrix.shape}.") # unproject source points to camera frame points_3d_dst = depth_to_3d(depth_dst, camera_matrix, normalize_points) # Bx3xHxW # transform points from source to destination points_3d_dst = points_3d_dst.permute(0, 2, 3, 1) # BxHxWx3 # apply transformation to the 3d points points_3d_src = transform_points(src_trans_dst[:, None], points_3d_dst) # BxHxWx3 # project back to pixels camera_matrix_tmp = camera_matrix[:, None, None] # Bx1x1xHxW points_2d_src = project_points(points_3d_src, camera_matrix_tmp) # BxHxWx2 # normalize points between [-1 / 1] height, width = depth_dst.shape[-2:] points_2d_src_norm = normalize_pixel_coordinates(points_2d_src, height, width) # BxHxWx2 return F.grid_sample(image_src, points_2d_src_norm, align_corners=True)
4,234
Locators/signinLocator.py
MikeSell/eyko_demo_tests
0
2171698
from selenium.webdriver.common.by import By class SigninLocator: # Signin page elements signin_link = (By.LINK_TEXT, 'Sign in') email_textbox = (By.XPATH, "//input[@type='email']") password_textbox = (By.XPATH, "//input[@type='password']") signin_button = (By.XPATH, "//button[@type='submit']")
316
codeforces.com/1529A/solution.py
zubtsov/competitive-programming
0
2171036
for t in range(int(input())): array_len = int(input()) array = list(map(int, input().split())) min_elem = array[0] num_of_min_elems = 1 for i in range(1, array_len): if array[i] < min_elem: min_elem = array[i] num_of_min_elems = 1 elif array[i] == min_elem: num_of_min_elems += 1 print(array_len - num_of_min_elems)
395
myspiderdic.py
turodj/python3-src
0
2171635
# -*- coding: UTF-8 -* # 对bt蚂蚁(btmayi.me)网址进行爬取,usage: mayispider.py <查询关键字> <起始页数> <结束页数> from urllib.request import urlopen from urllib.request import urlretrieve from bs4 import BeautifulSoup from collections import OrderedDict import socket,sys,os import re import urllib.request import urllib import sys,time socket.setdefaulttimeout(120) #访问超时设为120秒 #定义获取电影名称和链接的函数 def get_magres(input_url): #伪装成为正常访问 req=urllib.request.Request(input_url,headers= {'User-Agent':'Mozilla/5.0 (Windows NT 6.1;WOW64;rv:23.0) Gecko/20100101 Firefox/23.0'}) #打开页面 r1 = urllib.request.urlopen(req) soup1= BeautifulSoup(r1.read(),"html.parser") print (soup1.title) #print(soup1.prettify()) #输出整个页面 [script.extract() for script in soup1.find_all('script')] #移除sript脚本 #输出一个完整文档 #fp=open("/Users/dongjian/spiderdoc/testhtml.html","w") #fp.write(soup1.prettify()) #fp.close() avnamelist=[] avlinklist=[] avinfoall=[] #find av的所有信息 avinfoall =soup1.find_all("div",{"class":"search-item"}) for avinfo in avinfoall: avtitle=avinfo.find("div",class_="item-list") avtitlestr=avtitle.get_text(strip=True) #获得去空格的文字内容 avnamelist.append(avtitlestr) #print("name = %s"%avtitlestr) #取av 磁力链接 avmag=avinfo.find("a",href=re.compile(r'^(\s)*magnet')) avlink=avmag.get("href") avlinklist.append(avlink) #print("link = %s"%avlink) return avnamelist,avlinklist #函数结束,返回av名称,av链接 if __name__=='__main__': #程序正文开始 #对中文查询条件进行转译 snametemp=sys.argv[1] #通过参数传递查询条件 sname=urllib.parse.quote(snametemp) #中文参数标准化编码 beginpage=int(sys.argv[2]) # 开始页数 endpage=int(sys.argv[3]) #结束页数 #准备好写入的文件 basepath="/Users/dongjian/spiderdoc/" finename=basepath+sys.argv[1]+".txt" #第一个参数形成文件名 targetfile=open(finename,"a") page=beginpage #从开始页开始搜索 getavlist=[] getavmaglist=[] avlist=[] searchedpage=0 avdict=OrderedDict() #循环搜索每页 while page <= endpage : url="http://www.btany.com/search/%s-size-desc-%d"%(sname,page) #搜索第page页 print("begin search %s\n"%url) getavlist.clear() getavmaglist.clear() avlist.clear() avdict.clear() getavlist,getavmaglist=get_magres(url) #调用获取资源函数,返回av名称,av链接 print("avres=%d,avmag=%d"%(len(getavlist),len(getavmaglist))) targetfile.write("\nsearch: url:%s\n\n"%url) #print(getavlist) #print(getavmaglist) #写入每个影片对应的链接 avdict=OrderedDict(zip(getavlist,getavmaglist)) #形成有序字典,并同时剃重 #写入av及对应的下载链接 namesum=0 for key in avdict.keys(): targetfile.write("%s\n%s\n\n"%(key,avdict[key])) namesum+=1 if namesum%5==0: targetfile.write("\n") targetfile.write("--------maglink list-------\n") #逐行写入链接,每5行空一行 #print("write %d magnet"%len(getavmaglist)) avsum=0 for key in avdict.keys(): targetfile.write("%s\n"%avdict[key]) avsum += 1 if avsum%5 == 0 : targetfile.write("\n") targetfile.flush() #将缓存内容刷新到文件中 page += 1 searchedpage += 1 print(".......sleep 1 sec......") time.sleep(1) #休眠1秒,防止网站封ip else: print("共查询了 %d 页"%searchedpage) targetfile.close print("get link over")
3,058
src/aiohttp_micro/web/middlewares/tracing.py
clayman083/aiohttp-micro
1
2170540
from typing import List, Optional from aiohttp import web from aiozipkin.helpers import make_context from aiohttp_micro.web.middlewares import Handler def tracing_middleware_factory(exclude_routes: Optional[List[str]] = None): exclude: List[str] = [] if exclude_routes: exclude = exclude_routes @web.middleware async def tracing_middleware(request: web.Request, handler: Handler) -> web.Response: context = make_context(request.headers) route_name = request.match_info.route.name if context and route_name not in exclude: tracer = request.app["tracer"] span = tracer.join_span(context) host = request.headers.get("Host", None) with tracer.new_child(span.context) as child_span: child_span.name(f"{request.method.upper()} {request.path}") child_span.kind("SERVER") child_span.tag("http.path", request.path) child_span.tag("http.method", request.method.upper()) if host: child_span.tag("http.host", host) try: response = await handler(request) child_span.tag("http.status_code", str(response.status)) except web.HTTPException as e: child_span.tag("http.status_code", str(e.status)) raise child_span.tag("http.response.size", response.content_length) else: response = await handler(request) return response return tracing_middleware
1,600
skyportal/tests/frontend/test_frontpage.py
jialin-wu-02/skyportal
0
2169904
import uuid import pytest from selenium import webdriver from selenium.webdriver.common.by import By import time import skyportal from skyportal.tests import api def test_source_list(driver, user, public_source, private_source): driver.get(f"/become_user/{user.id}") # TODO decorator/context manager? assert 'localhost' in driver.current_url driver.get('/') simbad_class = public_source.altdata['simbad']['class'] driver.wait_for_xpath("//div[contains(@title,'connected')]") driver.wait_for_xpath('//h2[contains(text(), "Sources")]') driver.wait_for_xpath(f'//a[text()="{public_source.id}"]') driver.wait_for_xpath(f'//td[text()="{simbad_class}"]') driver.wait_for_xpath_to_disappear(f'//a[text()="{private_source.id}"]') el = driver.wait_for_xpath('//button[contains(.,"Next Page")]') assert not el.is_enabled() el = driver.wait_for_xpath('//button[contains(.,"Previous Page")]') assert not el.is_enabled() def test_source_filtering_and_pagination(driver, user, public_group, upload_data_token): obj_id = str(uuid.uuid4()) for i in range(205): status, data = api('POST', 'sources', data={'id': f'{obj_id}_{i}', 'ra': 234.22, 'dec': -22.33, 'redshift': 3, 'altdata': {'simbad': {'class': 'RRLyr'}}, 'transient': False, 'ra_dis': 2.3, 'group_ids': [public_group.id]}, token=upload_data_token) assert status == 200 assert data['data']['id'] == f'{obj_id}_{i}' driver.get(f"/become_user/{user.id}") # TODO decorator/context manager? assert 'localhost' in driver.current_url driver.get('/') driver.wait_for_xpath("//div[contains(@title,'connected')]") driver.wait_for_xpath('//h2[contains(text(), "Sources")]') driver.wait_for_xpath('//td[text()="RRLyr"]') # Pagination next_button = driver.wait_for_xpath('//button[contains(.,"Next Page")]') prev_button = driver.wait_for_xpath('//button[contains(.,"Previous Page")]') assert next_button.is_enabled() assert not prev_button.is_enabled() driver.scroll_to_element_and_click(next_button) time.sleep(0.5) assert prev_button.is_enabled() next_button.click() time.sleep(0.5) assert not next_button.is_enabled() prev_button.click() time.sleep(0.5) assert next_button.is_enabled() prev_button.click() time.sleep(0.5) assert not prev_button.is_enabled() # Jump to page jump_to_page_input = driver.wait_for_xpath("//input[@name='jumpToPageInputField']") jump_to_page_input.clear() jump_to_page_input.send_keys('3') jump_to_page_button = driver.wait_for_xpath('//button[contains(.,"Jump to page:")]') jump_to_page_button.click() time.sleep(0.5) #driver.wait_for_xpath('//div[contains(text(), "Displaying 1-100")]') assert prev_button.is_enabled() assert not next_button.is_enabled() jump_to_page_input.clear() jump_to_page_input.send_keys('1') jump_to_page_button.click() time.sleep(0.5) assert next_button.is_enabled() assert not prev_button.is_enabled() # Source filtering assert next_button.is_enabled() obj_id = driver.wait_for_xpath("//input[@name='sourceID']") obj_id.clear() obj_id.send_keys('aaaa') submit = driver.wait_for_xpath("//button[contains(.,'Submit')]") driver.scroll_to_element_and_click(submit) time.sleep(1) assert not next_button.is_enabled() def test_jump_to_page_invalid_values(driver): driver.get('/') jump_to_page_input = driver.wait_for_xpath("//input[@name='jumpToPageInputField']") jump_to_page_input.clear() jump_to_page_input.send_keys('abc') jump_to_page_button = driver.wait_for_xpath('//button[contains(.,"Jump to page:")]') driver.scroll_to_element_and_click(jump_to_page_button) driver.wait_for_xpath('//div[contains(.,"Invalid page number value")]') def test_skyportal_version_displayed(driver): driver.get('/') driver.wait_for_xpath(f"//div[contains(.,'SkyPortal v{skyportal.__version__}')]")
4,278
worf/settings.py
gundotio/worf
0
2171438
from django.conf import settings WORF_API_NAME = getattr(settings, "WORF_API_NAME", "Worf API") WORF_API_ROOT = getattr(settings, "WORF_API_ROOT", "/api/") WORF_BROWSABLE_API = getattr(settings, "WORF_BROWSABLE_API", True) WORF_DEBUG = getattr(settings, "WORF_DEBUG", settings.DEBUG)
288
github/migrations/0020_auto_20201004_1321.py
h3nnn4n/git-o-matic-9k
0
2171736
# Generated by Django 3.1.2 on 2020-10-04 13:21 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('github', '0019_auto_20201004_1254'), ] operations = [ migrations.AddField( model_name='developer', name='following', field=models.ManyToManyField(related_name='reverse_following', to='github.Developer'), ), migrations.AlterField( model_name='developer', name='followers', field=models.ManyToManyField(related_name='reverse_followers', to='github.Developer'), ), ]
644
src/confseq/predmix.py
WannabeSmith/confseq
1
2171612
import math from typing import Callable, Sequence, Tuple, Union import numpy as np from confseq.betting_strategies import lambda_predmix_eb from confseq.misc import get_running_intersection, get_ci_seq def predmix_upper_cs( x: Sequence[float], v: Sequence[float], lambdas_fn: Callable[[Sequence[float]], Sequence[float]], psi_fn: Callable[[Sequence[float]], Sequence[float]], alpha: float = 0.05, running_intersection: bool = False, N: Union[int, None] = None, ) -> Sequence[float]: """ Predictable mixture upper confidence sequence Parameters ---------- x : Sequence[float] Observations in [0, 1] v : Sequence[float] Variance increment (1 for Hoeffding, (x - muhat_{t-1})^2 for empbern) lambdas_fn : Callable[[Sequence[float]], Sequence[float]] Function to produce lambda values psi_fn : Callable[[Sequence[float]], Sequence[float]] psi function alpha : float, optional Significance level, by default 0.05 running_intersection : bool, optional Should the running intersection be taken?, by default False N : Union[int, None], optional Population size if sampling WoR, by default None Returns ------- Sequence[float] Upper confidence sequence """ x = np.array(x) t = np.arange(1, len(x) + 1) S_t = np.cumsum(x) S_tminus1 = np.append(0, S_t[0 : (len(x) - 1)]) if N is not None: Zstar = S_tminus1 / (N - t + 1) Wstar = (t - 1) / (N - t + 1) else: Zstar = 0 Wstar = 0 lambdas = lambdas_fn(x) psi = psi_fn(lambdas) margin = (np.log(1 / alpha) + np.cumsum(v * psi)) / np.cumsum(lambdas * (1 + Wstar)) weighted_mu_hat_t = np.cumsum(lambdas * (x + Zstar)) / np.cumsum( lambdas * (1 + Wstar) ) u = weighted_mu_hat_t + margin u = np.minimum(u, 1) return np.minimum.accumulate(u) if running_intersection else u def predmix_empbern_upper_cs( x: Sequence[float], alpha: float = 0.05, truncation: float = 1 / 2, running_intersection: bool = False, N: Union[int, None] = None, fixed_n: Union[int, None] = None, ) -> Sequence[float]: """ Predictable mixture empirical Bernstein upper confidence sequence Parameters ---------- x : Sequence[float] Observations in [0, 1] alpha : float, optional Significance level, by default 0.05 truncation : float, optional Level at which to truncate lambda, by default 1/2 running_intersection : bool, optional Should the running intersection be taken?, by default False N : Union[int, None], optional Population size if sampling WoR, by default None fixed_n : Union[int, None], optional Fixed time to optimize bound for (if CI desired), by default None Returns ------- Sequence[float] Upper confidence sequence """ t = np.arange(1, len(x) + 1) mu_hat_t = np.cumsum(x) / t mu_hat_tminus1 = np.append(0, mu_hat_t[0 : (len(x) - 1)]) v = np.power(x - mu_hat_tminus1, 2) return predmix_upper_cs( x, v=v, lambdas_fn=lambda y: lambda_predmix_eb( y, truncation=truncation, alpha=alpha, fixed_n=fixed_n ), psi_fn=lambda lambdas: -np.log(1 - lambdas) - lambdas, alpha=alpha, running_intersection=running_intersection, N=N, ) def predmix_hoeffding_upper_cs( x: Sequence[float], alpha: float = 0.05, truncation: float = 1, running_intersection: bool = False, N: Union[int, None] = None, fixed_n: Union[int, None] = None, ) -> Sequence[float]: """ Predictable mixture Hoeffding upper confidence sequence Parameters ---------- x : Sequence[float] Observations in [0, 1] alpha : float, optional Significance level, by default 0.05 truncation : float, optional Level at which to truncate lambda, by default 1 running_intersection : bool, optional Should the running intersection be taken?, by default False N : Union[int, None], optional Population size if sampling WoR, by default None fixed_n : Union[int, None], optional Fixed time to optimize bound for (if CI desired), by default None Returns ------- Sequence[float] Upper confidence sequence """ t = np.arange(1, len(x) + 1) if fixed_n is not None: lambdas_fn = lambda y: np.repeat( np.sqrt(8 * np.log(1 / alpha) / fixed_n), len(x) ) else: lambdas_fn = lambda y: np.minimum( np.sqrt(8 * np.log(1 / alpha) / (t * np.log(1 + t))), truncation ) return predmix_upper_cs( x, v=1, lambdas_fn=lambdas_fn, psi_fn=lambda lambdas: np.power(lambdas, 2) / 8, alpha=alpha, running_intersection=running_intersection, N=N, ) def predmix_hoeffding_cs( x: Sequence[float], alpha: float = 0.05, truncation: float = 1, running_intersection: bool = False, N: Union[int, None] = None, fixed_n: Union[int, None] = None, ) -> Tuple[Sequence[float], Sequence[float]]: """ Predictable mixture Hoeffding confidence sequence Parameters ---------- x : Sequence[float] Observations in [0, 1] alpha : float, optional Significance level, by default 0.05 truncation : float, optional Level at which to truncate lambda, by default 1 running_intersection : bool, optional Should the running intersection be taken?, by default False N : Union[int, None], optional Population size if sampling WoR, by default None fixed_n : Union[int, None], optional Fixed time to optimize bound for (if CI desired), by default None Returns ------- Tuple[Sequence[float], Sequence[float]] Confidence sequence """ upper_cs = predmix_hoeffding_upper_cs( x, alpha=alpha / 2, truncation=truncation, running_intersection=running_intersection, N=N, fixed_n=fixed_n, ) lower_cs = 1 - predmix_hoeffding_upper_cs( 1 - x, alpha=alpha / 2, truncation=truncation, running_intersection=running_intersection, N=N, fixed_n=fixed_n, ) return lower_cs, upper_cs def predmix_empbern_cs( x: Sequence[float], alpha: float = 0.05, truncation: float = 1 / 2, running_intersection: bool = False, N: Union[int, None] = None, fixed_n: Union[int, None] = None, ) -> Tuple[Sequence[float], Sequence[float]]: """ Predictable mixture empirical Bernstein confidence sequence Parameters ---------- x : Sequence[float] Observations in [0, 1] alpha : float, optional Significance level, by default 0.05 truncation : float, optional Level at which to truncate lambda, by default 1 running_intersection : bool, optional Should the running intersection be taken?, by default False N : Union[int, None], optional Population size if sampling WoR, by default None fixed_n : Union[int, None], optional Fixed time to optimize bound for (if CI desired), by default None Returns ------- Tuple[Sequence[float], Sequence[float]] Confidence sequence """ u = predmix_empbern_upper_cs( x=x, alpha=alpha / 2, truncation=truncation, running_intersection=running_intersection, N=N, fixed_n=fixed_n, ) l = 1 - predmix_empbern_upper_cs( x=1 - x, alpha=alpha / 2, truncation=truncation, running_intersection=running_intersection, N=N, fixed_n=fixed_n, ) return l, u def predmix_hoeffding_ci( x: Sequence[float], alpha: float = 0.05, N: Union[int, None] = None, running_intersection: bool = True, ): l_cs, u_cs = predmix_hoeffding_cs( x, alpha=alpha, truncation=math.inf, running_intersection=running_intersection, N=N, fixed_n=len(x), ) return l_cs[-1], u_cs[-1] def predmix_hoeffding_ci_seq( x: Sequence[float], times: Sequence[int], alpha: float = 0.05, N: Union[int, None] = None, running_intersection: bool = True, parallel=False, ): def ci_fn(x): return predmix_hoeffding_ci( x, alpha=alpha, N=N, running_intersection=running_intersection, ) return get_ci_seq(x, ci_fn, times=times, parallel=parallel) def predmix_empbern_ci( x: Sequence[float], alpha: float = 0.05, truncation: float = 1 / 2, N: Union[int, None] = None, running_intersection: bool = True, ): l_cs, u_cs = predmix_empbern_cs( x, alpha=alpha, truncation=truncation, N=N, fixed_n=len(x), ) return l_cs[-1], u_cs[-1] def predmix_empbern_ci_seq( x: Sequence[float], times: Sequence[int], alpha: float = 0.05, truncation: float = 1 / 2, N: Union[int, None] = None, running_intersection: bool = True, parallel=False, ): def ci_fn(x): return predmix_empbern_ci( x, alpha=alpha, N=N, running_intersection=running_intersection, truncation=truncation, ) return get_ci_seq(x, ci_fn, times=times, parallel=parallel)
9,484
sisa/settings.py
ramosfm/sisa
0
2171318
import os # credenciales brindadas por SISA # cargar en local_settings USER_SISA = os.environ.get('USER_SISA', '') PASS_SISA = os.environ.get('PASS_SISA', '')
160
example/myapp/admin.py
Britefury/django-fine-uploader
36
2171748
import os import shutil from django import forms from django.db import models from django.db.models import FileField from django.contrib import admin from django.core.cache import cache from django.core.files.uploadedfile import SimpleUploadedFile # Class only used for denotation. from django.http.request import HttpRequest from .models import FineFile from django_fine_uploader import widgets @admin.register(FineFile) class FineFileAdmin(admin.ModelAdmin): formfield_overrides = { models.FileField: { 'widget': widgets.FineUploaderWidget(attrs={'admin': True, 'itemLimit': 1}) }, } class Media: js = ( '//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js', ) def fineuploader_setting(self, request: HttpRequest): post_info = request.POST.dict() if type(self.formfield_overrides.get(FileField).get('widget')) is widgets.FineUploaderWidget: model_fields = self.model._meta.fields file_fields = {} file_fields_name = [] for field in model_fields: if field.get_internal_type() is 'FileField': file_fields_name.append(field.name) if request.method == 'POST': print(file_fields_name) for name in file_fields_name: file_uploader = cache.get(request.POST.get(name)) if file_uploader is None: return # raise forms.ValidationError("There is no file in the field.") file_path = file_uploader.storage.path(file_uploader.real_path) post_info[name] = SimpleUploadedFile( file_uploader.filename, open(file_path, 'rb').read() ) request.POST = post_info folder_path = file_uploader.storage.path(file_uploader.file_path) try: shutil.rmtree(folder_path) except (OSError, PermissionError): pass # return post_info def add_view(self, request, form_url='', extra_context=None): self.fineuploader_setting(request) return super(type(self), self).add_view(request, form_url, extra_context) def change_view(self, request, object_id, form_url='', extra_context=None): self.fineuploader_setting(request) return super(type(self), self).change_view(request, object_id, form_url, extra_context)
2,574
inflateorg/inflateorg.py
xiki-tempula/inflateorg
0
2170095
""" inflateorg.py Inflate or shrink the membrane to resolve clash between membrane and protein. Handles the primary functions """ import os import shutil from subprocess import call from pkg_resources import resource_filename import MDAnalysis as mda import numpy as np os.environ["GMX_MAXBACKUP"] = "-1" gromacs = '/usr/local/gromacs/2018.8/bin/gmx' mdp = resource_filename(__name__, 'data/minim.mdp') grompp = '{gromacs} grompp -f minim.mdp -c {gro} -p {topol} -o em.tpr -maxwarn {maxwarn} -r {gro}' mdrun = '{gromacs} mdrun -deffnm em' trjconv_pbc = 'echo 0 | {gromacs} trjconv -f em.gro -s em.tpr -o em.gro -pbc mol' trjconv_check = 'echo 0 | {gromacs} trjconv -f pre_inflation.gro -s em.tpr -o em.gro -pbc mol' class InflateORG(): def __init__(self, start_file='start.gro', topol='topol.top', center='protein', mobile='not protein', sep=None, scaling_factor = 0.95, dim = [1,1,0], cutoff=1, maxwarn=0): ''' :param start_file: The coordinate file for the InflateAny program. :param topol: The topology file compatible with the gromacs program :param center: The center of the inflation which is not modified :param mobile: The peripheral which will be expanded and shirked :param sep: Define how to separate the peripheral. :param scaling_factor: The factor of inflation at each :param dim: The dimension of the scaling on x, y and z axis. default is 1,1,1. :param cutoff: Cutoff distance where two particles are considered as separate. ''' self.start_file = start_file self.topol = topol self.center = center self.mobile = mobile self.sep = sep self.scaling_factor = scaling_factor self.dim = np.array(dim) self.cutoff =cutoff self.maxwarn = maxwarn self.sanity_check() self.inflate_system() self.shrink_system() def sanity_check(self): ''' Check if the input is correct. ''' u = mda.Universe(self.start_file) u.select_atoms('({}) or ({})'.format(self.center, self.mobile)).write('pre_inflation.gro') try: call(grompp.format(gromacs=gromacs, gro='pre_inflation.gro', topol=self.topol, maxwarn=self.maxwarn), shell=True) call(trjconv_check.format(gromacs=gromacs), shell=True) shutil.move('em.gro', 'pre_inflation.gro') except: print('Make sure the mdp file (minim.mdp), the topology file ({}) and the input coordinate file ({}) is correct.'.format( self.topol, self.start_file )) os.mkdir('InflateAny') os.remove('em.tpr') shutil.move('pre_inflation.gro', 'InflateAny/pre_inflation.gro') shutil.copy('minim.mdp', 'InflateAny/minim.mdp') os.chdir('InflateAny') self.topol = '../' + self.topol def separate_molecule(self, selection=None, sep=None): ''' Separate the selection into defferent entities. :param u: input universe :return: A list of the atom groups which will be scaled. ''' if self.sep is None: # By default the separtion is based on residue id mobile_parts = u.select_atoms(self.mobile).residues return [residue.atoms for residue in mobile_parts] else: return [u.select_atoms(part) for part in self.sep] def inflate(self, u, scaling_factor): ''' :param u: the input MDAnalysis Universe to which scaling will be applied ''' # dimensions = u.dimensions # center_of_geometry = u.select_atoms(self.center).center_of_geometry() # u.atoms.translate(-center_of_geometry) # # for part in self.separate_mobile(u): # vector = part.center_of_geometry() # part.translate((vector * (scaling_factor - 1))*self.dim) # u.atoms.translate(center_of_geometry * scaling_factor) # dimensions[:3] = dimensions[:3] * scaling_factor # u.dimensions = dimensions # return u def inflate_system(self): ''' Inflate the system. :return: ''' u = mda.Universe('pre_inflation.gro') repeat = True count = 0 print('Start inflating the {}'.format(self.mobile)) while repeat: count += 1 u = self.inflate(u, 1 / self.scaling_factor) check = u.select_atoms('{} and around {} ({})'.format(self.mobile, self.cutoff, self.center)) print('Interation {}:'.format(count)) print('Atoms with {}A of {}:'.format(self.cutoff, self.center)) print(check) if len(check) == 0: 'No atom in contact with {}.'.format(self.center) repeat = False print('Begin the shrinking process.') u.atoms.write('inflated.gro') call(grompp.format(gromacs=gromacs, gro='inflated.gro', topol=self.topol, maxwarn=self.maxwarn), shell=True) self.mdrun(gromacs=gromacs) call(trjconv_pbc.format(gromacs=gromacs), shell=True) shutil.copy('em.gro', 'inflated_em.gro') self.count = count def shrink_system(self): for i in range(self.count): print('Interation {}:'.format(i)) u = mda.Universe('em.gro') u = self.inflate(u, self.scaling_factor) u.atoms.write('shrinked_{}.gro'.format(i)) call(grompp.format(gromacs=gromacs, gro='shrinked_{}.gro'.format(i), topol=self.topol, maxwarn=self.maxwarn), shell=True) self.mdrun(gromacs=gromacs) call(trjconv_pbc.format(gromacs=gromacs), shell=True) shutil.copy2('em.gro', 'equilibrated.gro') shutil.copy2('em.gro', '../equilibrated.gro') os.chdir('../') def mdrun(self, gromacs=gromacs, additional=''): # Try to get around the situation where opencl won't start repeat = True while repeat: returncode = call(mdrun.format(gromacs=gromacs) + ' ' + additional, shell=True) if returncode == 0: repeat = False
6,151
crear_producto.py
creditec/creditec.github.io
0
2170590
from tkinter import * from tkinter import ttk from tkinter import filedialog from tkinter import messagebox import os import shutil def get_categories(): lista=[] md=os.listdir('category') for file in md: temp=file.replace('.md','') lista.append(temp) return lista; def UploadImage(event=None): global filename filename = filedialog.askopenfilename() global imagen imagen.set(os.path.split(filename)[1]) def addProduct(): global imagen global filename if nombre.get() != "" and combo.get() != "" and imagen.get() != 'Ninguna imagen seleccionada' and descripcion.get('1.0', END) != "" and precio.get() != "": plantilla=("---\n" "name: "+nombre.get()+"\n" "categories: "+combo.get()+"\n" "description_markdown: >-\n" " "+descripcion.get('1.0', END)+"\n" "price: \'"+precio.get()+"\'\n" "styles:\n" " - name: Color\n" " color: \'#dfd3c2\'\n" " image: /images/products/"+imagen.get()+"\n" "---") n_archivo=nombre.get() n_archivo=n_archivo.replace(" ","_") n_archivo=n_archivo.lower()+".md" f_end= open("_products/"+n_archivo,"w+") f_end.write(plantilla) f_end.close() shutil.copy2(filename,"images/products/"+imagen.get()) print(plantilla) print(n_archivo) messagebox.showinfo(message="Producto realizado con éxito", title="Producto") # reset de campos nombre.set("") combo.set("") descripcion.delete('1.0', END) precio.set("") imagen.set("") filename='' imagen.set('Ninguna imagen seleccionada') else: messagebox.showinfo(message="ERROR: Debe llenar todos los campos", title="Producto") filename='' app=Tk() app.title('Crear Producto') app.rowconfigure(0,weight=5) app.columnconfigure(0, weight=1) #Nombre del equipo Label(app, text='Equipo: ').grid(row=0, column=0, sticky=E) nombre=StringVar() Entry(app, textvariable=nombre).grid(row=0, column=1, sticky=W,pady=5, padx=5) # Categorias Label(app, text='Categoría: ').grid(row=1, column=0, sticky=E) combo=ttk.Combobox(app, state="readonly") combo.grid(row=1, column=1, sticky=W,pady=5, padx=5) combo["values"] = get_categories() imagen=StringVar() imagen.set('Ninguna imagen seleccionada') Button(app, text='Añadir imagen', command=UploadImage).grid(row=2, column=0, sticky=E) Label(app, textvariable=imagen).grid(row=2, column=1, sticky=W,pady=5, padx=5) Label(app, text='Descripción: ').grid(row=3, column=0, sticky=E) descripcion=Text(app, height=10, width=40) descripcion.grid(row=3,column=1, sticky=W, pady=5, padx=5) Label(app, text='Precio: ').grid(row=4, column=0, sticky=E) precio=StringVar() Entry(app, textvariable=precio).grid(row=4, column=1, sticky=W,pady=5, padx=5) Button(app, text='Añadir', command=addProduct).grid(row=5, column=0,pady=5) Button(app, text='Salir', command=quit).grid(row=5, column=1,pady=5) app.mainloop()
3,067
config/constants.py
YugantM/PowerGrid
0
2171870
col_len = 6 column_names = ['A'+str(each+1) for each in range(int(col_len/2))] + ['V'+str(each+1) for each in range(int(col_len/2))] all_labels = ['NML','AB', 'AC', 'BC', 'ABC', 'AG', 'BG', 'ABG', 'CG', 'ACG', 'BCG', 'ABCG']
224
common/test_gce.py
sears-s/fuzzbench
800
2171766
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for gce.py.""" from unittest import mock from common import gce PROJECT = 'my-cloud-project' ZONE = 'my-compute-zone' INSTANCE_GROUP = 'my-instance-group' INSTANCE_TEMPLATE_URL = 'resource/my-instance-group' EXPERIMENT = 'my-experiment' @mock.patch('common.gce.get_instance_group_managers') def test_delete_instance_group(mocked_get_instance_group_managers): """Tests that delete_instance_group uses the GCE API correctly.""" mock_managers = mock.Mock() mocked_get_instance_group_managers.return_value = mock_managers gce.delete_instance_group(INSTANCE_GROUP, PROJECT, ZONE) assert mock_managers.delete.call_args_list == [ mock.call(instanceGroupManager=INSTANCE_GROUP, project=PROJECT, zone=ZONE) ] @mock.patch('common.gce.get_instance_group_managers') def test_resize_instance_group(mocked_get_instance_group_managers): """Tests that resize_instance_group uses the GCE API correctly.""" size = 10 mock_managers = mock.Mock() mocked_get_instance_group_managers.return_value = mock_managers gce.resize_instance_group(size, INSTANCE_GROUP, PROJECT, ZONE) assert mock_managers.resize.call_args_list == [ mock.call(instanceGroupManager=INSTANCE_GROUP, size=size, project=PROJECT, zone=ZONE) ] @mock.patch('common.gce.get_instance_group_managers') def test_create_instance_group(mocked_get_instance_group_managers): """Tests that create_instance_group uses the GCE API correctly.""" mock_managers = mock.Mock() mocked_get_instance_group_managers.return_value = mock_managers base_instance_name = 'm-' + EXPERIMENT gce.create_instance_group(INSTANCE_GROUP, INSTANCE_TEMPLATE_URL, base_instance_name, PROJECT, ZONE) body = { 'baseInstanceName': 'm-' + EXPERIMENT, 'targetSize': 1, 'name': INSTANCE_GROUP, 'instanceTemplate': INSTANCE_TEMPLATE_URL, } assert mock_managers.insert.call_args_list == [ mock.call(body=body, project=PROJECT, zone=ZONE) ] @mock.patch('common.gce.get_instance_group_managers') def test_get_instance_group_size(mocked_get_instance_group_managers): """Tests that get_instance_group_size uses the GCE API correctly and returns the right value.""" mock_managers = mock.Mock() mocked_get_instance_group_managers.return_value = mock_managers mock_req = mock.Mock() mock_managers.get.return_value = mock_req size = 1 mock_req.execute.return_value = {'targetSize': size} result = gce.get_instance_group_size(INSTANCE_GROUP, PROJECT, ZONE) assert mock_managers.get.call_args_list == [ mock.call(instanceGroupManager=INSTANCE_GROUP, project=PROJECT, zone=ZONE) ] assert result == size
3,445
Example Code/plotGraph.py
KitronikLtd/micropython-microbit-kitronik-display128x64
0
2171838
from microbit import accelerometer, sleep from display128x64Plot import * plot = Kitronik128x64DisplayPlot() graphYMax = 32 graphYMin = 12 graphYRange = graphYMax - graphYMin variableMax = 2000 variableMin = -2000 variableRange = variableMax - variableMin screenRatio = graphYRange/variableRange x = 0 y = 0 length = 0 while True: yPlot = accelerometer.get_y() plot.display_as_text(" ", 0, 0) plot.display_as_text(yPlot, 0, 0) yPlotMapped = graphYMax - ((yPlot-variableMin) * screenRatio) yPlotMapped = round(yPlotMapped) if x == 0: previousYPlot = yPlotMapped if yPlotMapped < previousYPlot: y = yPlotMapped length = (previousYPlot-yPlotMapped) elif yPlotMapped > previousYPlot: y = previousYPlot length = (yPlotMapped-previousYPlot) else: y = yPlotMapped length = 1 if x == 63: plot.clear_display() x=0 else: plot.draw_vert_line(x, y, length) previousYPlot = yPlotMapped x += 1 sleep(500)
1,116
tests/test_static/conftest.py
gitter-badger/pygsuite
0
2171017
from ast import literal_eval import pytest from pygsuite.docs.document import Document import os script_dir = os.path.dirname(__file__) @pytest.fixture def static_test_document(): with open(os.path.join(script_dir, "test_document.json_capture")) as file: return Document(_document=literal_eval(file.read()), local=True)
337
lithic/types/api_status.py
lithic-com/lithic-python
0
2171490
# File generated from our OpenAPI spec by Stainless. from typing import Optional, Union, List, Any from typing_extensions import Literal from .._models import StringModel, NoneModel, BaseModel __all__ = ["APIStatus"] class APIStatus(BaseModel): message: Optional[str]
277
Python3.x/27-Remove Element.py
ranchlin/Leetcode
0
2171417
# Runtime: 16 ms, faster than 95.57% of Python online submissions for Remove Element. # Memory Usage: 11.9 MB, less than 13.53% of Python online submissions for Remove Element. class Solution(object): def removeElement(self, nums, val): """ :type nums: List[int] :type val: int :rtype: int """ i = 0 for j, _ in enumerate(nums): if nums[j] != val: nums[i] = nums[j] i += 1 return i
494
src/Printer.py
hridesh/pyarithlang
0
2169941
''' This class implements a printer for AST nodes in this programming language that makes use of the formatter. The formatter extends the AST visitor and provides implementation for each case of visit. @author: <NAME> Copyright (c) 2018. All rights reserved. See LICENSE file in the root directory for licensing information. ''' from AST import Visitor from AST import AST class Printer: def prnt(self,obj): if type(obj) is AST.Program: print(Printer.Formatter().visit(obj)) else: print(obj) class Formatter(Visitor): def visitProgram(self, program): return program.e().accept(self) def visitNumExp(self, numexp): return str(numexp.val) def visitAddExp(self, addexp): result = "(+ " for operand in addexp.all(): result += operand.accept(self) + " " return result.rstrip() + ")" def visitSubExp(self, subexp): result = "(- " for operand in subexp.all(): result += operand.accept(self) + " " return result.rstrip() + ")" def visitMultExp(self, multexp): result = "(* " for operand in multexp.all(): result += operand.accept(self) + " " return result.rstrip() + ")" def visitDivExp(self, divexp): result = "(/ " for operand in divexp.all(): result += operand.accept(self) + " " return result.rstrip() + ")"
1,546
buildroot/support/testing/tests/core/test_root_password.py
bramkragten/operating-system
349
2170927
import os import infra.basetest from crypt import crypt class TestRootPassword(infra.basetest.BRTest): password = "<PASSWORD>" config = infra.basetest.BASIC_TOOLCHAIN_CONFIG + \ """ BR2_TARGET_ROOTFS_CPIO=y BR2_TARGET_ENABLE_ROOT_LOGIN=y BR2_TARGET_GENERIC_ROOT_PASSWD="{}" """.format(password) def test_run(self): # 1. Test by looking hash in the /etc/shadow shadow = os.path.join(self.builddir, "target", "etc", "shadow") with open(shadow, "r") as f: users = f.readlines() for user in users: s = user.split(":") n, h = s[0], s[1] if n == "root": # Fail if the account is disabled or no password is required self.assertTrue(h not in ["", "*"]) # Fail if the hash isn't right self.assertEqual(crypt(self.password, h), h) # 2. Test by attempting to login cpio_file = os.path.join(self.builddir, "images", "rootfs.cpio") try: self.emulator.boot(arch="armv7", kernel="builtin", options=["-initrd", cpio_file]) self.emulator.login(self.password) except SystemError: self.fail("Unable to login with the password")
1,340
scripts/spw_network4a_1.py
andrisecker/KOKI_sharp_waves
0
2169600
#!/usr/bin/python # -*- coding: utf8 -*- """ crates PC (adExp IF) and BC (IF) population in Brian, loads in recurrent connection matrix for PC population runs simulation and checks the dynamics see more: https://drive.google.com/file/d/0B089tpx89mdXZk55dm0xZm5adUE/view authors: <NAME>, <NAME>, <NAME> last update: 05.2017 """ import os from brian import * import numpy as np import matplotlib.pyplot as plt from detect_oscillations import * from plots import * fIn = "wmxR_asym_old.txt" SWBasePath = os.path.sep.join(os.path.abspath(__file__).split(os.path.sep)[:-2]) np.random.seed(12345) NE = 4000 NI = 1000 # sparseness eps_pyr = 0.16 eps_bas = 0.4 # parameters for pyr cells z = 1*nS gL_Pyr = 4.333e-3 * uS tauMem_Pyr = 60.0 * ms Cm_Pyr = tauMem_Pyr * gL_Pyr Vrest_Pyr = -70.0 * mV reset_Pyr = -53.0*mV theta_Pyr = -50.0*mV tref_Pyr = 5*ms # Adaptation parameters for pyr cells a_Pyr = -0.8*nS # nS Subthreshold adaptation conductance b_Pyr = 0.04*nA # nA Spike-triggered adaptation delta_T_Pyr = 2.0*mV # Slope factor tau_w_Pyr = 300*ms # Adaptation time constant v_spike_Pyr = theta_Pyr + 10 * delta_T_Pyr # parameters for bas cells gL_Bas = 5.0e-3*uS tauMem_Bas = 14.0*ms Cm_Bas = tauMem_Bas * gL_Bas Vrest_Bas = -70.0*mV reset_Bas = -64.0*mV theta_Bas = -50.0*mV tref_Bas = 0.1*ms # synaptic weights J_PyrInh = 0.15 # 0.125 J_BasExc = 4.5 # 5.2083 J_BasInh = 0.25 # 0.15 print 'J_PyrInh:', J_PyrInh print 'J_BasExc:', J_BasExc print 'J_BasInh:', J_BasInh # Synaptic reversal potentials E_Exc = 0.0*mV E_Inh = -70.0*mV # Synaptic time constants tauSyn_PyrExc = 10.0*ms tauSyn_PyrInh = 3.0*ms tauSyn_BasExc = 3.0*ms tauSyn_BasInh = 1.5*ms # Synaptic delays delay_PyrExc = 3.0*ms delay_PyrInh = 1.5*ms delay_BasExc = 3.0*ms delay_BasInh = 1.5*ms # input parameters p_rate_mf = 5.0*Hz J_PyrMF = 5.0 # Creating populations eqs_adexp = ''' dvm/dt = (-gL_Pyr*(vm-Vrest_Pyr) + gL_Pyr*delta_T_Pyr*exp((vm- theta_Pyr)/delta_T_Pyr)-w - (g_ampa*z*(vm-E_Exc) + g_gaba*z*(vm-E_Inh)))/Cm_Pyr : volt dw/dt = (a_Pyr*(vm - Vrest_Pyr )-w)/tau_w_Pyr : amp dg_ampa/dt = -g_ampa/tauSyn_PyrExc : 1 dg_gaba/dt = -g_gaba/tauSyn_PyrInh : 1 ''' def myresetfunc(P, spikes): P.vm[spikes] = reset_Pyr # reset voltage P.w[spikes] += b_Pyr # low pass filter of spikes (adaptation mechanism) SCR = SimpleCustomRefractoriness(myresetfunc, tref_Pyr, state='vm') eqs_bas = ''' dvm/dt = (-gL_Bas*(vm-Vrest_Bas) - (g_ampa*z*(vm-E_Exc) + g_gaba*z*(vm-E_Inh)))/Cm_Bas : volt dg_ampa/dt = -g_ampa/tauSyn_BasExc : 1 dg_gaba/dt = -g_gaba/tauSyn_BasInh : 1 ''' # ====================================== end of parameters ====================================== fName = os.path.join(SWBasePath, 'files', fIn) Wee = load_Wee(fName) PE = NeuronGroup(NE, model=eqs_adexp, threshold=v_spike_Pyr, reset=SCR) PI = NeuronGroup(NI, model=eqs_bas, threshold=theta_Bas, reset=reset_Bas, refractory=tref_Bas) PE.vm = Vrest_Pyr PE.g_ampa = 0 PE.g_gaba = 0 PI.vm = Vrest_Bas PI.g_ampa = 0 PI.g_gaba = 0 MF = PoissonGroup(NE, p_rate_mf) print 'Connecting the network' Cext = IdentityConnection(MF, PE, 'g_ampa', weight=J_PyrMF) Cee = Connection(PE, PE, 'g_ampa', delay=delay_PyrExc) Cee.connect(PE, PE, Wee) Cei = Connection(PE, PI, 'g_ampa', weight=J_BasExc, sparseness=eps_pyr, delay=delay_BasExc) Cie = Connection(PI, PE, 'g_gaba', weight=J_PyrInh, sparseness=eps_bas, delay=delay_PyrInh) Cii = Connection(PI, PI, 'g_gaba', weight=J_BasInh, sparseness=eps_bas, delay=delay_BasInh) print 'Connections done' del Wee # clear memory # Monitors sme = SpikeMonitor(PE) smi = SpikeMonitor(PI) popre = PopulationRateMonitor(PE) popri = PopulationRateMonitor(PI) # other monitors factored out to speed up simulation and make the process compatible with Brian2 selection = np.arange(0, 4000, 100) # subset of neurons for recoring variables msMe = MultiStateMonitor(PE, vars=['vm', 'w', 'g_ampa', 'g_gaba'], record=selection.tolist()) # comment this out later (takes a lot of memory!) run(10000*ms, report='text') if sme.nspikes > 0 and smi.nspikes > 0: # check if there is any activity # analyse spikes spikeTimesE, spikingNeuronsE, poprE, ISIhist, bin_edges = preprocess_monitors(sme, popre) spikeTimesI, spikingNeuronsI, poprI = preprocess_monitors(smi, popri, calc_ISI=False) # detect replay avgReplayInterval = replay(ISIhist[3:16]) # bins from 150 to 850 (range of interest) # analyse rates meanEr, rEAC, maxEAC, tMaxEAC, fE, PxxE = analyse_rate(poprE) meanIr, rIAC, maxIAC, tMaxIAC, fI, PxxI = analyse_rate(poprI) maxEACR, tMaxEACR, avgRippleFE, ripplePE = ripple(rEAC, fE, PxxE) maxIACR, tMaxIACR, avgRippleFI, ripplePI = ripple(rIAC, fI, PxxI) avgGammaFE, gammaPE = gamma(fE, PxxE) avgGammaFI, gammaPI = gamma(fI, PxxI) # Print out some info print 'Mean excitatory rate: ', meanEr print 'Maximum exc. autocorrelation:', maxEAC, 'at', tMaxEAC, '[ms]' print 'Maximum exc. AC in ripple range:', maxEACR, 'at', tMaxEACR, '[ms]' print 'Mean inhibitory rate: ', meanIr print 'Maximum inh. autocorrelation:', maxIAC, 'at', tMaxIAC, '[ms]' print 'Maximum inh. AC in ripple range:', maxIACR, 'at', tMaxIACR, '[ms]' print '' print 'Average exc. ripple freq:', avgRippleFE print 'Exc. ripple power:', ripplePE print 'Average exc. gamma freq:', avgGammaFE print 'Exc. gamma power:', gammaPE print 'Average inh. ripple freq:', avgRippleFI print 'Inh. ripple power:', ripplePI print 'Average inh. gamma freq:', avgGammaFI print 'Inh. gamma power:', gammaPI print "--------------------------------------------------" # Plots plot_raster_ISI(spikeTimesE, spikingNeuronsE, poprE, [ISIhist, bin_edges], "blue", multiplier_=1) plot_PSD(poprE, rEAC, fE, PxxE, "Pyr_population", "blue", multiplier_=1) plot_PSD(poprI, rIAC, fI, PxxI, "Bas_population", "green", multiplier_=1) subset = plot_zoomed(spikeTimesE, spikingNeuronsE, poprE, "Pyr_population", "blue", multiplier_=1, sm=msMe, selection=selection) plot_zoomed(spikeTimesI, spikingNeuronsI, poprI, "Bas_population", "green", multiplier_=1, Pyr_pop=False) plot_detailed(msMe, subset, multiplier_=1) #plot_adaptation(msMe, selection, multiplier_=1) else: # if there is no activity the auto-correlation function will throw an error! print "No activity !" print "--------------------------------------------------" plt.show()
6,472
tests/test_nodeEndpoints/connect_users.py
alekLukanen/pyDist
5
2169188
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Dec 23 19:30:06 2017 @author: lukanen """ import sys sys.path.append('.') from pyDist import Interfaces, intercom import concurrent import logging import urllib.request import json import os import time import asyncio from pyDist.TaskManager import TaskManager import tests.testerHelpers as testHelpers #logging utility logging.getLogger("Nodes").setLevel(logging.WARNING) logging.getLogger("endpoints").setLevel(logging.WARNING) logging.basicConfig(format='%(name)-12s:%(lineno)-3s | %(levelname)-8s | %(message)s' , stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger(__name__) def connect_n_users(n): cluster_exs = [] for i in range(0, n): cluster_ex = Interfaces.ClusterExecutor('0.0.0.0', 9000) cluster_ex.connect(f'connect_one_user({i})', group_id='connect_users') cluster_exs.append(cluster_ex) #cluster_ex.disconnect() time.sleep(0.5) interface_stats = json.loads(urllib.request.urlopen("http://0.0.0.0:9000/interfaceStats").read()) logger.debug(f'interface_stats: {interface_stats}') assert interface_stats['data']['num_users'] == n assert interface_stats['data']['num_nodes'] == 0 assert interface_stats['data']['num_clients'] == 0 for cluster_ex in cluster_exs: cluster_ex.disconnect() def start_one_node_and_connect_n_users(n): task_manager = TaskManager() task_manager.num_cores = 2 task_manager.executor = concurrent.futures.ProcessPoolExecutor(task_manager.num_cores) task_manager.tasks.append( task_manager.executor.submit(testHelpers.create_master_node, '0.0.0.0', 9000) ) logger.debug('----- creating executor and connecting users -----') connect_n_users(n) io_loop = asyncio.get_event_loop() counts = io_loop.run_until_complete(intercom.get_user_counts('0.0.0.0', 9000, params={'user_id': 'connect_one_user(0)'})) logger.debug(f'counts: {counts}') # shutdown the executor then kill all child processes logger.debug('Shutting down the test processes') task_manager.executor.shutdown(wait=False) testHelpers.kill_child_processes(os.getpid()) def test_start_one_node_and_connect_one_user(): start_one_node_and_connect_n_users(1) def test_start_one_node_and_connect_two_users(): start_one_node_and_connect_n_users(2) def test_start_one_node_and_connect_three_users(): start_one_node_and_connect_n_users(3) def test_start_one_node_and_connect_a_bunch_of_users(): start_one_node_and_connect_n_users(64) if __name__ == '__main__': logger.debug('basic task sending test') test_start_one_node_and_connect_one_user() #test_start_one_node_and_connect_a_bunch_of_users()
2,839
algospot/lec8_DP/ASYMTILING.py
cutz-j/AlgorithmStudy
3
2171943
# -*- coding: utf-8 -*- """ Created on Mon Dec 23 10:13:22 2019 @author: samle """ from functools import lru_cache MOD = 1000000007 @lru_cache() def tiling(width): if width <= 1: return 1 else: return((tiling(width-2)+tiling(width-1))% MOD) def asym(width): if (width % 2 == 1): return((tiling(width) - tiling(width/2) + MOD) % 2) else: ret = tiling(width) ret = ((ret - tiling(width/2) + MOD) % MOD) ret = ((ret - tiling(width/2 - 1) + MOD) % MOD) return ret if __name__ =='__main__': width = int(input()) print() print(asym(width))
631
cyberspace/__init__.py
idin/cyberspace
0
2170900
from .find_common import find_common from .MaskSet import MaskSet, Mask from .wikipedia import Wikipedia from .Scraper import Scraper from .get_id_token import get_id_token from .imdb import IMDB
196
stock_wrapper/shares.py
JadenSWang/StockTracker-Wrapper
4
2171498
import stock_wrapper import robin_stocks class Shares(stock_wrapper.Stock): def __init__(self, ticker): super().__init__(ticker) def sell(self, quantity): robin_stocks.orders.order_sell_market(self.ticker, quantity) def limt_sell(self, quantity, price): robin_stocks.orders.order_sell_limit(self.ticker, quantity, price) def buy(self, quantity): robin_stocks.orders.order_buy_market(self.ticker, quantity) def limit_buy(self, quantity, price): robin_stocks.orders.order_buy_limit(self.ticker, quantity, price) @property def equity(self): stocks_data = robin_stocks.account.get_current_positions() stock_data = self.__get_stock_from_positions_list(self.ticker, stocks_data) return float(stock_data['quantity']) * self.price @staticmethod def __get_stock_from_positions_list(ticker, list): for stock in list: if robin_stocks.get_symbol_by_url(stock['instrument']) == ticker: return stock
1,032
src/qt/src/3rdparty/webkit/Source/ThirdParty/glu/glu.gyp
ant0ine/phantomjs
46
2171763
{ 'targets': [{ 'target_name': 'libtess', 'type': '<(library)', 'include_dirs': [ '../..', ], 'sources': [ 'gluos.h', 'internal_glu.h', 'libtess/dict-list.h', 'libtess/dict.c', 'libtess/dict.h', 'libtess/geom.c', 'libtess/geom.h', 'libtess/memalloc.c', 'libtess/memalloc.h', 'libtess/mesh.c', 'libtess/mesh.h', 'libtess/normal.c', 'libtess/normal.h', 'libtess/priorityq-heap.h', 'libtess/priorityq-sort.h', 'libtess/priorityq.c', 'libtess/priorityq.h', 'libtess/render.c', 'libtess/render.h', 'libtess/sweep.c', 'libtess/sweep.h', 'libtess/tess.c', 'libtess/tess.h', 'libtess/tessmono.c', 'libtess/tessmono.h', ], }], }
804
arguments.py
Jungyhuk/plotcoder
10
2171560
import argparse import time import os import sys def get_arg_parser(title): parser = argparse.ArgumentParser(description=title) parser.add_argument('--cpu', action='store_true', default=False) parser.add_argument('--eval', action='store_true') parser.add_argument('--model_dir', type=str, default='../checkpoints/model_0') parser.add_argument('--load_model', type=str, default=None) parser.add_argument('--num_LSTM_layers', type=int, default=2) parser.add_argument('--num_MLP_layers', type=int, default=1) parser.add_argument('--LSTM_hidden_size', type=int, default=512) parser.add_argument('--MLP_hidden_size', type=int, default=512) parser.add_argument('--embedding_size', type=int, default=512) parser.add_argument('--keep_last_n', type=int, default=None) parser.add_argument('--eval_every_n', type=int, default=1500) parser.add_argument('--log_interval', type=int, default=1500) parser.add_argument('--log_dir', type=str, default='../logs') parser.add_argument('--log_name', type=str, default='model_0.csv') parser.add_argument('--max_eval_size', type=int, default=1000) data_group = parser.add_argument_group('data') data_group.add_argument('--train_dataset', type=str, default='../data/train_plot.json') data_group.add_argument('--dev_dataset', type=str, default='../data/dev_plot_hard.json') data_group.add_argument('--test_dataset', type=str, default='../data/test_plot_hard.json') data_group.add_argument('--code_vocab', type=str, default='../data/code_vocab.json') data_group.add_argument('--word_vocab', type=str, default='../data/nl_vocab.json') data_group.add_argument('--word_vocab_size', type=int, default=None) data_group.add_argument('--code_vocab_size', type=int, default=None) data_group.add_argument('--num_plot_types', type=int, default=6) data_group.add_argument('--joint_plot_types', action='store_true', default=False) data_group.add_argument('--data_order_invariant', action='store_true', default=False) data_group.add_argument('--nl', action='store_true', default=False) data_group.add_argument('--use_comments', action='store_true', default=False) data_group.add_argument('--code_context', action='store_true', default=False) data_group.add_argument('--local_df_only', action='store_true', default=False) data_group.add_argument('--target_code_transform', action='store_true', default=False) data_group.add_argument('--max_num_code_cells', type=int, default=2) data_group.add_argument('--max_word_len', type=int, default=512) data_group.add_argument('--max_code_context_len', type=int, default=512) data_group.add_argument('--max_decode_len', type=int, default=200) model_group = parser.add_argument_group('model') model_group.add_argument('--hierarchy', action='store_true', default=False) model_group.add_argument('--copy_mechanism', action='store_true', default=False) model_group.add_argument('--nl_code_linking', action='store_true', default=False) train_group = parser.add_argument_group('train') train_group.add_argument('--optimizer', type=str, default='adam', choices=['adam', 'sgd', 'rmsprop']) train_group.add_argument('--lr', type=float, default=1e-3) train_group.add_argument('--lr_decay_steps', type=int, default=6000) train_group.add_argument('--lr_decay_rate', type=float, default=0.9) train_group.add_argument('--dropout_rate', type=float, default=0.2) train_group.add_argument('--gradient_clip', type=float, default=5.0) train_group.add_argument('--num_epochs', type=int, default=50) train_group.add_argument('--batch_size', type=int, default=32) train_group.add_argument('--param_init', type=float, default=0.1) train_group.add_argument('--seed', type=int, default=None) return parser
3,689
pyredditlive.py
nbr23/pyredditlive
0
2171917
#!/usr/bin/env python3 import asyncio import websockets import requests import json import sys import os import yaml import urllib import time def load_config(config_path): config = {} if os.path.exists(config_path): with open(config_path) as configfile: config = yaml.load(configfile, Loader=yaml.SafeLoader) if 'PYRL_TELEGRAM_BOT' in os.environ: config['telegram_bot'] = os.environ['PYRL_TELEGRAM_BOT'] if 'PYRL_TELEGRAM_CHAT_ID' in os.environ: config['telegram_chat_id'] = os.environ['PYRL_TELEGRAM_CHAT_ID'] if 'telegram_bot' not in config or 'telegram_chat_id' not in config: raise Exception("No configuration file found or environment variable set") return config def get_ws_url(url): res = ( requests.get(f"{url}about.json", headers={"User-agent": "Mozilla/5.0"}) .json() .get("data", {}) ) if res.get("state") == "live": return res.get("websocket_url") raise Exception(f"Livethread state is {res.get('state')}") def post_update(update, config): if update.get("type") == "update": body = update.get("payload", {}).get("data", {}).get("body") if body is not None: print(f"POSTING {body}") requests.get( f'https://api.telegram.org/{config["telegram_bot"]}/sendMessage?chat_id={config.get("telegram_chat_id")}&text={urllib.parse.quote_plus(body)}' ) async def livethread(url, config): while True: ws_url = get_ws_url(url) try: async with websockets.connect(ws_url) as websocket: requests.get( f'https://api.telegram.org/{config["telegram_bot"]}/sendMessage?chat_id={config.get("telegram_chat_id")}&text={urllib.parse.quote_plus("Connected to "+ws_url)}' ) print(f"Connected to {ws_url}") while True: update = await websocket.recv() print(f"RAW JSON:\n{update}") post_update(json.loads(update), config) except websockets.ConnectionClosed: continue def main(): config = load_config("./config.yml") while True: try: asyncio.run(livethread(sys.argv[1], config)) except asyncio.exceptions.TimeoutError: time.sleep(5) if __name__ == "__main__": sys.exit(main())
2,412
supermarket_pricing/python/supermarket_abxsantos/src/product/product_inserter.py
TijsDeBelie/codekatas-TDD
0
2171954
from src.product.products import Product from src.supermarket import Supermarket class ProductInserter(object): def __init__(self, supermarket: Supermarket, products: [Product]): """ Used to insert products into the supermarket_abxsantos. Concerned with adding a new product to the supermarket_abxsantos. >>> bean_product = Product(name='beans', cost=0.50, price=1.00, sku='001', unit='un', stock_quantity=100) >>> myrket_supermarket = Supermarket('mYrket') >>> ProductInserter(supermarket_abxsantos=myrket_supermarket, products=[bean_product]).add_products() >>> myrket_supermarket.products[0].name = 'beans' """ self.products = products self.supermarket = supermarket def add_products(self): for product in self.products: self.supermarket.products.append(product)
880
unn/models/networks/network_factory.py
zongdaoming/TinyTransformer
2
2171119
from unn.models.networks.base_network import BaseNetwork from unn.models.networks.darts.backbone_darts_network import BackboneDartsNetwork class NetworkFactory: @classmethod def create(cls, name, cfg): if name == 'base': network = BaseNetwork(cfg) elif name == 'backbone_darts': network = BackboneDartsNetwork(cfg) else: raise ValueError('Unrecognized Network: ' + name) return network
465
Poggle Application Project/Server Connections/PoggleClient.py
Chuffman-CSD/Poggle-Application
0
2171852
#!/usr/bin/python3 #<NAME> #9/20/19 import socket import sys host = '127.0.0.1' port = 5555 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.connect((host,port)) except socket.error as e: print (str(e)) def threaded_client(conn): conn.send(str.encode('welcome, type a message')) print("Successfully connected! Host:",host,"Port:",port) print("\nWelcome to the chat!\n") x = 0 while x == 0: msg = input("Enter a message: ") msgb = str.encode(msg) #msg = b"" print(msg) while True: data = conn.recv(2048) reply = 'Server Output: ' + data.decode('t-f8') threaded_client(s)
675
beproud/django/ssl/tests/__init__.py
beproud/bpssl
0
2171059
# NOTE: Tests are imported in this file to support Django < 1.6. # The test runner in Django 1.6 and above does not recognize # tests in this file because it (__init__.py) does not match # the pattern test*.py. from beproud.django.ssl.tests.test_wsgi import * # NOQA from beproud.django.ssl.tests.test_proxy import * # NOQA from beproud.django.ssl.tests.test_context_processors import * # NOQA
416
webapp/receipt/models.py
sanchos2/nautilus
0
2170142
"""Receipt models.""" from sqlalchemy.orm import relationship from webapp.db import db class Purchase(db.Model): """Purchase model.""" # fn_number - fn, fd_number - i, fpd_number - fp id = db.Column(db.Integer, primary_key=True) # noqa: WPS125 user_id = db.Column( db.Integer, db.ForeignKey('user.id', ondelete='CASCADE'), index=True, ) fn_number = db.Column(db.String) fd_number = db.Column(db.String) fpd_number = db.Column(db.String) receipt_type = db.Column(db.String) date = db.Column(db.DateTime) sum = db.Column(db.Float) # noqa: WPS125 loaded = db.Column(db.String) organization = db.Column(db.String) user = relationship('User', backref='purchases') category = relationship('Category', secondary='purchase_category', backref='purchases') def __str__(self): return self.organization def __repr__(self): return '<Покупка-{0}, за дату-{1}, на сумму-{2}, валид-{3}'.format( self.id, self.date, self.sum, self.loaded, ) class PurchaseCategory(db.Model): """Purchase - Category.""" purchase_id = db.Column( db.Integer, db.ForeignKey('purchase.id', ondelete='CASCADE'), primary_key=True, ) category_id = db.Column( db.Integer, db.ForeignKey('category.id', ondelete='CASCADE'), primary_key=True, ) class Category(db.Model): """Category model.""" id = db.Column(db.Integer, primary_key=True) # noqa: WPS125 category = db.Column(db.String) def __str__(self): return self.category def __repr__(self): return f'<Category({self.category})' class Receipt(db.Model): """Receipt model.""" id = db.Column(db.Integer, primary_key=True) # noqa: WPS125 purchase_id = db.Column( db.Integer, db.ForeignKey('purchase.id', ondelete='CASCADE'), index=True, ) product = db.Column(db.String) price = db.Column(db.Integer) quantity = db.Column(db.Float) sum = db.Column(db.Integer) # noqa: WPS125 purchase = relationship('Purchase', backref='receipts') subcategory = relationship('Subcategory', secondary='receipt_subcategory', backref='receipts') def __str__(self): return self.product def __repr__(self): return f'<Позиция по чеку - {self.product}, сумма позиции - {self.sum}' class ReceiptSubcategory(db.Model): """Purchase - Subcategory.""" receipt_id = db.Column( db.Integer, db.ForeignKey('receipt.id', ondelete='CASCADE'), primary_key=True, ) subcategory_id = db.Column( db.Integer, db.ForeignKey('subcategory.id', ondelete='CASCADE'), primary_key=True, ) class Subcategory(db.Model): """Subcategory model.""" id = db.Column(db.Integer, primary_key=True) # noqa: WPS125 subcategory = db.Column(db.String) category = relationship('Category', secondary='category_subcategory', backref='subcategories') def __str__(self): return self.subcategory def __repr__(self): return f'<Category ({self.subcategory})' class CategorySubcategory(db.Model): """Category - Subcategory.""" category_id = db.Column( db.Integer, db.ForeignKey('category.id', ondelete='CASCADE'), primary_key=True, ) subcategory_id = db.Column( db.Integer, db.ForeignKey('subcategory.id', ondelete='CASCADE'), primary_key=True, )
3,514
Scripts/update_missing_cwes_in_database.py
joaohenggeler/software-vulnerability-collection-scripts
0
2171874
#!/usr/bin/env python3 """ This script updates any missing CWE value associated with a vulnerability from the five C/C++ projects. This is done by using the CSV files generated after running "collect_missing_cwes.py". """ import numpy as np # type: ignore import pandas as pd # type: ignore from modules.common import log from modules.database import Database from modules.project import Project #################################################################################################### with Database() as db: project_list = Project.get_project_list_from_config() for project in project_list: for input_csv_path in project.find_output_csv_files('missing-cwe'): log.info(f'Updating the missing CWEs for the project "{project}" using the information in "{input_csv_path}".') missing_cwes = pd.read_csv(input_csv_path, dtype=str) missing_cwes = missing_cwes.replace({np.nan: None}) for row in missing_cwes.itertuples(): success, error_code = db.execute_query( ''' UPDATE VULNERABILITIES SET V_CWE = %(V_CWE)s WHERE CVE = %(CVE)s; ''', params={'V_CWE': row.CWE, 'CVE': row.CVE}) if not success: log.error(f'Failed to update the CWE {row.CWE} for the vulnerability {row.CVE} with the error code {error_code}.') ################################################## log.info(f'Updating any remaining CWEs to NULL.') success, error_code = db.execute_query( ''' UPDATE VULNERABILITIES SET V_CWE = NULL WHERE V_CWE = 'TBD'; ''') if not success: log.error(f'Failed to update any remaining CWEs to NULL with the error code {error_code}.') ################################################## log.info('Committing changes.') db.commit() log.info('Finished running.') print('Finished running.')
1,813
tests/config/test_get_base_directory.py
adamghill/coltrane
28
2171611
from pathlib import Path from unittest.mock import patch from coltrane.config.paths import get_base_directory def test_get_base_directory_no_base_dir_setting(settings): delattr(settings, "BASE_DIR") with patch("coltrane.config.paths.getcwd", return_value="1234"): expected = Path("1234") actual = get_base_directory() assert actual == expected def test_get_base_directory_str_base_dir_setting(settings): settings.BASE_DIR = "5678" expected = Path("5678") actual = get_base_directory() assert actual == expected
568
GT3/RadialTransport/Functions/CorePatch.py
gt-frc/gt3
2
2170958
#!/usr/bin/env python2 # -*- coding: utf-8 -*- from collections import namedtuple from GT3 import Core from GT3.Core.Functions.CalcFSA import calc_fsa import numpy as np def corePatch(core: Core, neutFlag=True): """ Updates deuterium ion density and zeff. D density is invalid if no D density file is given because it will be set to 0. This screws up subsequent calculations in non-obvious ways. As an example, z_eff calculation will include D density as 0s but still have a carbon density from the fracz input file, giving an invalid result This is addressed by recreating the n_fsa namedtuple and z_eff_fsa in full, as namedtuples cannot be changed piecemeal :param neutFlag: :param core: :return: """ if neutFlag: core.n = namedtuple('n', 'i e n C')(core.n.e/(1.+.025*6.0), core.n.e, core.n.n, 0.025 * core.n.e/(1.+.025*6.0)) # TODO: Update 0.025 and 6.0 to actual fracz and zbar2 else: core.n.update_neutrals() core.n = namedtuple('n', 'i e n C')(core.n.e / (1. + .025 * 6.0), core.n.e, namedtuple('n', 's t tot')( np.zeros(core.n.i.shape), # slow np.zeros(core.n.i.shape), # thermal np.zeros(core.n.i.shape)), # total 0.025 * core.n.e / (1. + .025 * 6.0)) core.z_eff_fsa = calc_fsa((core.n.i * (1.**2) + core.n.C * (6.0**2))/(core.n.i * 1.0 + core.n.C * 6.0), core.R, core.Z) #TODO Similar updates (1.0 = atnum, 6.0 = zbar2)
1,601
tests/garage/torch/policies/test_discrete_cnn_policy.py
Rnhondova/garage
0
2171416
"""Test categoricalCNNPolicy in PyTorch.""" import cloudpickle import pytest import torch.nn as nn from garage.envs import GymEnv from garage.torch import TransposeImage from garage.torch.policies import DiscreteCNNPolicy from tests.fixtures.envs.dummy import DummyDiscreteEnv class TestCategoricalCNNPolicy: def _initialize_obs_env(self, env): """Initialize observation env depends on observation space type. If observation space (i.e. akro.Image, gym.spaces.Box) is an image, wrap the input of shape (W, H, 3) for PyTorch (N, 3, W, H). Return: Transformed environment (garage.envs). """ obs_shape = env.observation_space.shape if len(obs_shape) == 3 and obs_shape[2] in [1, 3]: env = TransposeImage(env) return env @pytest.mark.parametrize( 'action_dim, kernel_sizes, hidden_channels, strides, paddings', [ (3, (1, ), (32, ), (1, ), (0, )), (3, (3, ), (32, ), (1, ), (0, )), (3, (3, ), (32, ), (2, ), (0, )), (3, (5, ), (12, ), (1, ), (2, )), (3, (1, 1), (32, 64), (1, 1), (0, 0)), (3, (3, 3), (32, 64), (1, 1), (0, 0)), (3, (3, 3), (32, 64), (2, 2), (0, 0)), ]) def test_get_action(self, action_dim, kernel_sizes, hidden_channels, strides, paddings): """Test get_action function.""" batch_size = 64 input_width = 32 input_height = 32 in_channel = 3 input_shape = (batch_size, in_channel, input_height, input_width) env = GymEnv( DummyDiscreteEnv(obs_dim=input_shape, action_dim=action_dim)) env = self._initialize_obs_env(env) policy = DiscreteCNNPolicy(env_spec=env.spec, hidden_channels=hidden_channels, hidden_sizes=hidden_channels, kernel_sizes=kernel_sizes, strides=strides, paddings=paddings, padding_mode='zeros', hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_) env.reset() obs = env.step(1).observation action, _ = policy.get_action(obs.flatten()) assert env.action_space.contains(int(action[0])) assert env.action_space.n == action_dim @pytest.mark.parametrize( 'action_dim, kernel_sizes, hidden_channels, strides, paddings', [ (3, (1, ), (32, ), (1, ), (0, )), (3, (3, ), (32, ), (1, ), (0, )), (3, (3, ), (32, ), (2, ), (0, )), (3, (5, ), (12, ), (1, ), (2, )), (3, (1, 1), (32, 64), (1, 1), (0, 0)), (3, (3, 3), (32, 64), (1, 1), (0, 0)), (3, (3, 3), (32, 64), (2, 2), (0, 0)), ]) def test_get_actions(self, action_dim, kernel_sizes, hidden_channels, strides, paddings): """Test get_actions function.""" batch_size = 64 input_width = 32 input_height = 32 in_channel = 3 input_shape = (batch_size, in_channel, input_height, input_width) env = GymEnv( DummyDiscreteEnv(obs_dim=input_shape, action_dim=action_dim)) env = self._initialize_obs_env(env) policy = DiscreteCNNPolicy(env_spec=env.spec, hidden_channels=hidden_channels, hidden_sizes=hidden_channels, kernel_sizes=kernel_sizes, strides=strides, paddings=paddings, padding_mode='zeros', hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_) env.reset() obs = env.step(1).observation actions, _ = policy.get_actions([obs, obs, obs]) for action in actions: assert env.action_space.contains(int(action[0])) assert env.action_space.n == action_dim @pytest.mark.parametrize( 'action_dim, kernel_sizes, hidden_channels, strides, paddings', [ (3, (1, ), (32, ), (1, ), (0, )), (3, (3, ), (32, ), (1, ), (0, )), (3, (3, ), (32, ), (2, ), (0, )), (3, (5, ), (12, ), (1, ), (2, )), (3, (1, 1), (32, 64), (1, 1), (0, 0)), (3, (3, 3), (32, 64), (1, 1), (0, 0)), (3, (3, 3), (32, 64), (2, 2), (0, 0)), ]) def test_is_pickleable(self, action_dim, kernel_sizes, hidden_channels, strides, paddings): """Test if policy is pickable.""" batch_size = 64 input_width = 32 input_height = 32 in_channel = 3 input_shape = (batch_size, in_channel, input_height, input_width) env = GymEnv( DummyDiscreteEnv(obs_dim=input_shape, action_dim=action_dim)) env = self._initialize_obs_env(env) policy = DiscreteCNNPolicy(env_spec=env.spec, hidden_channels=hidden_channels, hidden_sizes=hidden_channels, kernel_sizes=kernel_sizes, strides=strides, paddings=paddings, padding_mode='zeros', hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_) env.reset() obs = env.step(1).observation output_action_1, _ = policy.get_action(obs.flatten()) p = cloudpickle.dumps(policy) policy_pickled = cloudpickle.loads(p) output_action_2, _ = policy_pickled.get_action(obs) assert env.action_space.contains(int(output_action_1[0])) assert env.action_space.contains(int(output_action_2[0])) assert output_action_1.shape == output_action_2.shape @pytest.mark.parametrize( 'action_dim, kernel_sizes, hidden_channels, strides, paddings', [ (3, (1, ), (32, ), (1, ), (0, )), (3, (3, ), (32, ), (1, ), (0, )), (3, (3, ), (32, ), (2, ), (0, )), (3, (5, ), (12, ), (1, ), (2, )), (3, (1, 1), (32, 64), (1, 1), (0, 0)), (3, (3, 3), (32, 64), (1, 1), (0, 0)), (3, (3, 3), (32, 64), (2, 2), (0, 0)), ]) def test_obs_unflattened(self, action_dim, kernel_sizes, hidden_channels, strides, paddings): """Test if a flattened image obs is passed to get_action then it is unflattened. """ batch_size = 64 input_width = 32 input_height = 32 in_channel = 3 input_shape = (batch_size, in_channel, input_height, input_width) env = GymEnv( DummyDiscreteEnv(obs_dim=input_shape, action_dim=action_dim)) env = self._initialize_obs_env(env) env.reset() policy = DiscreteCNNPolicy(env_spec=env.spec, hidden_channels=hidden_channels, hidden_sizes=hidden_channels, kernel_sizes=kernel_sizes, strides=strides, paddings=paddings, padding_mode='zeros', hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_) obs = env.observation_space.sample() action, _ = policy.get_action(env.observation_space.flatten(obs)) env.step(action)
7,865
src/tensor/op/logical/comparison/_operator.py
jedhsu/tensor
0
2170533
""" *Comparison* """ from abc import ABCMeta from .._operator import ArrayOperator __all__ = ["Comparison"] class Comparison( ArrayOperator, ): __metaclass__ = ABCMeta
187
picotext/scripts/split_data.py
phiweger/picotext
0
2171900
''' TODO: - add subsample arg to create reduced test set Aim: Read in 2 fasta files, one holding positive examples of some sequence, and another holding negative examples. Create a single fasta w/ a sensical header, e.g. >id::label sequence Then split them into train/ dev/ test sets. Tokenize. Reshape so it can enter the NN. ''' from collections import Counter from pathlib import Path import numpy as np import screed import torch from tqdm import tqdm from picotext.utils import encode_dayhoff ''' mkdir -p tmp/data mkdir tmp/processed cp ToxClassifier/datasets/trainingsets/* tmp/data ''' # TODO: Allow standard (IUPAC) amino acid code as well as Dayhoff translate = True splits = [0.8, 0.1, 0.1] reformat = lambda x: x.split()[0] outdir = 'tmp/processed' labels = { 'toxin': 'tmp/data/dataset_pos.fa', 'negative': 'tmp/data/dataset_easy.fa'} with open(Path(outdir) / 'train.csv', 'w+') as train_out, \ open(Path(outdir) / 'dev.csv', 'w+') as dev_out, \ open(Path(outdir) / 'test.csv', 'w+') as test_out: for label, path in labels.items(): cnt = [] with screed.open(path) as file: for read in file: if reformat: name = reformat(read.name) # sp|Q15WI5|QUEA_PSEA6 S-adeno ... else: name = read.name throw = np.random.multinomial(1, splits) # [0, 0, 1] -- now in which position is 1? group = ['train', 'dev', 'test'][list(throw).index(1)] # groups[name] = group cnt.append(group) if translate: sequence = encode_dayhoff(read.sequence) if not sequence: continue else: sequence = read.sequence str_ = f'{name},{label},{sequence}\n' if group == 'train': train_out.write(str_) elif group == 'dev': dev_out.write(str_) elif group == 'test': test_out.write(str_) else: raise ValueError('A very specific bad thing happened.') print(label, Counter(cnt)) # from collections import Counter # print(Counter(cnt))
2,352
python/fibonacci_sample.py
renegadevi/scripts-and-snippets
0
2170695
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys def Fibonacci(num): """ Create a list from 0 to num """ fib, values = lambda x: 1 if x <= 1 else fib(x-1) + fib(x-2), [] for i in range(0, num): values.append(fib(i)) return values try: if len(sys.argv) > 1: print(Fibonacci(int(float(sys.argv[1])))) except ValueError: exit("Use a valid number")
397
apuntes-y-recursos-didacticos/a03_flexion/code/shear_moment_diagram.py
JorgeDeLosSantos/curso_mecanica_de_materiales
0
2171881
# -*- coding: utf-8 -*- from __future__ import division import numpy as np import matplotlib.pyplot as plt P = 50e3 L = 5 x1 = np.linspace(0,L/2) x2 = np.linspace(L/2,L) V1 = P/2*np.ones_like(x1) V2 = -P/2*np.ones_like(x2) M1 = P*x1/2 M2 = -P*x2/2 + P*L/2 fig = plt.figure() ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(212) #~ plt.fill_between(x,V) ax1.fill_between(x1,V1, color="#1E90FF") ax1.fill_between(x2,V2, color="#1E90FF") ax2.fill_between(x1,M1, color="#1E90FF") ax2.fill_between(x2,M2, color="#1E90FF") #~ plt.fill_between(x,M) for ax in (ax1,ax2): ax.axhline(0, color="k") ax.axvline(0, color="k") ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) ax.spines['right'].set_visible(False) ax.xaxis.set_visible(False) ax.grid(ls=":") #~ ax.yaxis.set_visible(False) plt.savefig("shear_moment_02.pdf", transparent=True) plt.show()
946
TicTacToe minimax.py
S-t-a-l-k-e-r-py/TicTacToe-Game
0
2171890
board = [["1", "2", "3"], ["4", "5", "6"], ["7", "8", "9"]] best_moves = [["1", "2", "3"], ["4", "5", "6"], ["7", "8", "9"], ["1", "4", "7"], ["2", "5", "8"], ["3", "6", "9"], ["1", "5", "9"], ["3", "5", "7"]] scores = {"O": 1, "X": -1, "tie": 0 } ai = "O" human = "X" def check_best_move(): best_score = -1 move = None for i in range(3): for j in range(3): if board[i][j] != "X" and board[i][j] != "O": temp = board[i][j] board[i][j] = ai score = minimax(board, 0, False) board[i][j] = temp if score > best_score: best_score = score move = (i, j) add_to_bm(board[move[0]][move[1]], ai) print("\nComputer's turn is:", board[move[0]][move[1]]) board[move[0]][move[1]] = ai def equals(a, b, c): return a == b and b == c and (a == "X" or a == "O") def check_winner(): winner = None # Horizontal for i in range(3): if equals(board[i][0], board[i][1], board[i][2]): winner = board[i][0] # Vertical for i in range(3): if equals(board[0][i], board[1][i], board[2][i]): winner = board[0][i] # Diagonal if equals(board[0][0], board[1][1], board[2][2]): winner = board[0][0] if equals(board[2][0], board[1][1], board[0][2]): winner = board[2][0] open_spots = 0 for i in range(3): for j in range(3): if board[i][j] != "X" and board[i][j] != "O": open_spots += 1 if winner is None and open_spots == 0: return "tie" else: return winner def minimax(board, depth, is_max): result = check_winner() if result is not None: return scores[result] if is_max: best_score = -1 for i in range(3): for j in range(3): if board[i][j] != "X" and board[i][j] != "O": temp = board[i][j] board[i][j] = ai score = minimax(board, depth + 1, False) board[i][j] = temp best_score = max(score, best_score) return best_score else: best_score = 1 for i in range(3): for j in range(3): if board[i][j] != "X" and board[i][j] != "O": temp = board[i][j] board[i][j] = human score = minimax(board, depth + 1, True) board[i][j] = temp best_score = min(score, best_score) return best_score def print_board(): print("|---|---|---|") print("|", board[0][0], "|", board[0][1], "|", board[0][2], "|") print("|-----------|") print("|", board[1][0], "|", board[1][1], "|", board[1][2], "|") print("|-----------|") print("|", board[2][0], "|", board[2][1], "|", board[2][2], "|") print("|---|---|---|") def add_to_bm(pos, sym): for i in range(8): for j in range(3): if best_moves[i][j] == str(pos): best_moves[i][j] = str(sym) def check_win(): arr1, arr2 = ["X", "X", "X"], ["O", "O", "O"] for winner in best_moves: if winner == arr1: print("\nYou are win! Thanks for playing.") print_board() return False if winner == arr2: print("\nComputer win! Thanks for playing.") print_board() return False c = 0 for move in board[0:3]: for i in move: if i == "X" or i == "O": c += 1 if c == 9: print("It's Tie") print_board() return False return True def main(): print("Welcome to Tic Tac Toe.\n--------------------------------") print_board() print("X's will play first") while True: try: num_input = int(input("\nEnter a slot number to place X in: ")) if num_input < 1 or num_input > 9: print("\nInvalid input; re-enter slot number: ") continue except: print("\nInvalid input; re-enter slot number: ") continue i = (num_input - 1) // 3 j = num_input - i * 3 - 1 if board[i][j] != "X" and board[i][j] != "O": board[i][j] = human add_to_bm(num_input, human) if check_win(): check_best_move() if check_win(): print_board() else: break else: print("\nSlot already taken; re-enter slot number: ") main()
4,671
import_users.py
getupcloud/referral
4
2171965
from referralapi import app from database import configure_database configure_database(app) from models import User, ReferralProgram file = open('../users.txt','r') rp = ReferralProgram.select().first() for line in file.readlines(): dados = [x.strip() for x in line.split("|") if x.strip()] print("Saving {0} {1}".format(*dados)) u = User() u.hash = dados[0] u.referral_program = rp u.user_indicator = None u.save()
447
src/dp_translation/model_mixin.py
dataPuzzler/dp_translation
0
2171889
from .key_logic import TranslationKeyBuilder from typing import List from abc import abstractmethod class TranslatableModelMixin: def get_logical_key_for_attr_value(self, attr_name: str): return TranslationKeyBuilder.construct_translation_key( context=self.get_translation_context(), concept=type(self).__name__, instance_id=self.choose_instance_id(), attr=attr_name) def choose_instance_id(self) -> str: if hasattr(self, "name"): return self.name else: return str(self.id ) @classmethod def get_logical_key_for_attr(cls, attr_name): assert attr_name in cls.get_translateable_attrs() return TranslationKeyBuilder.construct_translation_key( context=cls.get_translation_context(), concept=cls.__name__, instance_id=TranslationKeyBuilder.NULL_VALUE, attr=attr_name) @classmethod def get_logical_key_for_concept(cls): return TranslationKeyBuilder.construct_translation_key( context=cls.get_translation_context(), concept=cls.__name__, instance_id=TranslationKeyBuilder.NULL_VALUE, attr=TranslationKeyBuilder.NULL_VALUE) @classmethod @abstractmethod def get_translation_context(cls) -> str: pass @classmethod @abstractmethod def get_translateable_attrs(cls) -> List[str]: pass
1,474
Data Science With Python/21-deep-learning-in-python/01-basics-of-deep-learning-and-neural-networks/01-coding-the-forward-propagation-algorithm.py
aimanahmedmoin1997/DataCamp
3
2171492
''' Coding the forward propagation algorithm In this exercise, you'll write code to do forward propagation (prediction) for your first neural network: Ch1Ex4 Each data point is a customer. The first input is how many accounts they have, and the second input is how many children they have. The model will predict how many transactions the user makes in the next year. You will use this data throughout the first 2 chapters of this course. The input data has been pre-loaded as input_data, and the weights are available in a dictionary called weights. The array of weights for the first node in the hidden layer are in weights['node_0'], and the array of weights for the second node in the hidden layer are in weights['node_1']. The weights feeding into the output node are available in weights['output']. NumPy will be pre-imported for you as np in all exercises. INSTRUCTIONS 100XP Calculate the value in node 0 by multiplying input_data by its weights weights['node_0'] and computing their sum. This is the 1st node in the hidden layer. Calculate the value in node 1 using input_data and weights['node_1']. This is the 2nd node in the hidden layer. Put the hidden layer values into an array. This has been done for you. Generate the prediction by multiplying hidden_layer_outputs by weights['output'] and computing their sum. Hit 'Submit Answer' to print the output! ''' # Calculate node 0 value: node_0_value node_0_value = (input_data * weights['node_0']).sum() # Calculate node 1 value: node_1_value node_1_value = (input_data * weights['node_1']).sum() # Put node values into array: hidden_layer_outputs hidden_layer_outputs = np.array([node_0_value, node_1_value]) # Calculate output: output output = (hidden_layer_outputs * weights['output']).sum() # Print output print(output)
1,797
2021/15.py
bernikr/advent-of-code
1
2170729
import math from collections import defaultdict from itertools import product from aoc_utils import Vec, dirs4, PriorityQueue from aocd import get_data def find_shortest_path(mapp): start = Vec(0, 0) goal = max(mapp, key=sum) open_set = PriorityQueue() open_set.put(start, 0) g_score = defaultdict(lambda: math.inf, {start: 0}) while open_set: current = open_set.get() if current == goal: return g_score[current] for neighbor in (current + d for d in dirs4 if (current + d) in mapp): tentative_g_score = g_score[current] + mapp[neighbor] if tentative_g_score < g_score[neighbor]: g_score[neighbor] = tentative_g_score f_score = tentative_g_score + (neighbor - goal).manhatten() open_set.put(neighbor, f_score) def part1(inp): return find_shortest_path(inp) def part2(inp): mapp = {} lx, ly = max(x for x, _ in inp) + 1, max(y for _, y in inp) + 1 for (x, y), v in inp.items(): for a, b in product(range(5), repeat=2): nv = (v + a + b) % 9 mapp[Vec(x + a * lx, y + b * ly)] = 9 if nv == 0 else nv return find_shortest_path(mapp) if __name__ == '__main__': data = get_data(day=15, year=2021) inp = {Vec(x, y): int(v) for y, l in enumerate(data.splitlines()) for x, v in enumerate(l)} print(part1(inp)) print(part2(inp))
1,429
app.py
Auto-bot-Channel/text-to-video
6
2169375
import os import time os.system('python3 audio.py') time.sleep(1) print('audio file made') os.system('python3 req.py') time.sleep(1) print('alligned files') os.system('python3 make.py') time.sleep(1) os.system('rm -r downl outd') time.sleep(1) os.system('rm output.mp4 list.txt')
282
tests/utils/test_metrics.py
fariasfc/solo-learn
3
2170272
import torch from solo.utils.metrics import accuracy_at_k def test_accuracy_at_k(): b, c = 32, 100 output = torch.randn(b, c) target = torch.randint(low=0, high=c, size=(b,)) acc1, acc5 = accuracy_at_k(output, target) assert isinstance(acc1, torch.Tensor) assert isinstance(acc5, torch.Tensor)
321
models/train_classifier.py
a1pat/Disaster-Pipeline
0
2170996
import sys import numpy as np import pandas as pd import pickle import re import nltk from nltk.corpus import stopwords from nltk.stem.wordnet import WordNetLemmatizer from nltk.tokenize import word_tokenize nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') from sqlalchemy import create_engine from sklearn.pipeline import Pipeline from sklearn.metrics import precision_recall_fscore_support from sklearn.ensemble import AdaBoostClassifier from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.linear_model import RidgeClassifier from sklearn.multioutput import MultiOutputClassifier from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer def load_data(database_filepath): ''' Reads from a specified database and splits the data into messages and categories Input: database_filepath: (string) database file path Returns: X: (pandas dataframe) messages (to be convverted into features) y: (pandas dataframe) categories (labels) y.columns: (list of string) category (label) names ''' # read in the file table_name = 'messages' engine = create_engine('sqlite:///' + database_filepath) df = pd.read_sql_table(table_name, engine) # define features and label arrays X = df['message'] y = df.drop(['id','message','original','genre'], axis=1).copy() return X, y, y.columns def tokenize(text): ''' Tokenizes text Input: text: (string) text to be tokenized Return: tokens: (list of strings) tokens ''' stop_words = stopwords.words('english') lemmatizer = WordNetLemmatizer() # normalize case and remove punctuation #print(text) text = re.sub(r'[^a-zA-Z0-9]', ' ', text.lower()) #print(text) # tokenize text tokens = word_tokenize(text) # lemmatize and remove stop words tokens = [lemmatizer.lemmatize(word).strip() for word in tokens if word not in stop_words] #print(tokens) return tokens def build_model(): ''' Creates a text processing and model pipeline with grid search Inputs: none Return: (object) grid search ''' # define parameters for grid search parameters = {'clf__estimator__alpha': [0.5,1,1.5,2]} # create a text processing and model pipeline pipeline = Pipeline([ ('vect', CountVectorizer(tokenizer=tokenize)), ('tfidf', TfidfTransformer()), ('clf', MultiOutputClassifier(RidgeClassifier())) ]) model = GridSearchCV(pipeline, param_grid=parameters) return model def make_classification_report(y_true, y_pred): ''' Create a pandas dataframe containing the precision, recall, fscore and support metrics for each category Inputs: y_true: label values in the data set (ground truth) y_pred: label values predicted by the model Return: df: (pandas dataframe) metrics ''' df = pd.DataFrame(np.array(precision_recall_fscore_support(y_true, y_pred)).T) df.columns = ['precision','recall','fscore','support'] df['category'] = y_true.columns df = df.reindex(columns=['category' , 'precision', 'recall', 'fscore', 'support']) print(df) return df def evaluate_model(model, X_test, Y_test, category_names): ''' Evaluates model predictions versus test data Inputs: model: (object) model X_test: (dataframe) feature Y_test: category_names: Return: None ''' Y_test_pred = model.predict(X_test) make_classification_report(Y_test, Y_test_pred) return def save_df(df, database_filepath, table_name): ''' Save pandas dataframe to the specified database and table name. If the table exists, it is deleted. Inputs: df: (pandas dataframe) dataframe to be saved database_filepath: (string) database location table_name: (string) table name for saving the statistics Returns: None ''' engine = create_engine('sqlite:///' + database_filepath) df.to_sql(table_name, engine, index=False, if_exists='replace') return def save_model(model, model_filepath): ''' Export model to a pickle file Inputs: model: (onbect) trained model model_filepath: (string) pickle file path Returns: None ''' # export model as a pickle file with open(model_filepath, 'wb') as f: pickle.dump(model, f) return def main(): if len(sys.argv) == 3: database_filepath, model_filepath = sys.argv[1:] print('Loading data...\n DATABASE: {}'.format(database_filepath)) X, Y, category_names = load_data(database_filepath) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) print('Building model...') model = build_model() print('Training model...') model.fit(X_train, Y_train) print('Evaluating model...') evaluate_model(model, X_test, Y_test, category_names) print('Saving model...\n MODEL: {}'.format(model_filepath)) save_model(model, model_filepath) ##### # additionally, save three tables to the database for plotting on the web page: # 1. training statistics # 2. test statistics # 3. the percentage of non-zero values for each category in the dataset print('Saving training stats...\n DATABASE: {}'.format(database_filepath)) save_df(make_classification_report(Y_train, model.predict(X_train)), database_filepath, 'train_stats') print('Saving test stats...\n DATABASE: {}'.format(database_filepath)) save_df(make_classification_report(Y_test, model.predict(X_test)), database_filepath, 'test_stats') df_non_zero = pd.DataFrame(list(Y.mean()), columns=['pct_not_zero']) df_non_zero['category'] = Y.columns print('Saving non-zero stats...\n DATABASE: {}'.format(database_filepath)) save_df(df_non_zero, database_filepath, 'pct_non_zero') ##### print('Trained model saved!') else: print('Please provide the filepath of the disaster messages database '\ 'as the first argument and the filepath of the pickle file to '\ 'save the model to as the second argument. \n\nExample: python '\ 'train_classifier.py ../data/DisasterResponse.db classifier.pkl') if __name__ == '__main__': main()
6,649
kbr/mq_utils.py
brugger/kbr-tools
1
2171760
#!/usr/bin/env python3 """ <NAME> (03 Apr 2019), contact: <EMAIL> """ import sys import pprint pp = pprint.PrettyPrinter(indent=4) import pika import kbr.log_utils as logger class Mq(object): def __init__(self): self.connection = None self.channel = None self.exchange = None self.channels = [] self.uri = None def connect(self, uri:str, exchange:str='default', exchange_type:str='direct', prefetch_count=0): logger.debug(f'connecting to {uri} exchange: {exchange} with prefetch: {prefetch_count}') self.connection = pika.BlockingConnection( pika.connection.URLParameters(uri) ) self.channel = self.connection.channel() self.exchange = exchange self.uri = uri self.channel.exchange_declare(exchange=self.exchange, exchange_type=exchange_type, durable=True) self.channel.basic_qos(prefetch_count=prefetch_count) def disconnect(self): self.channel.close() def _check_channel(self, name:str): if name not in self.channels: result = self.channel.queue_declare(queue=name, durable=True) self.channel.queue_bind(exchange=self.exchange, queue=name, routing_key=name) self.channels.append( name ) def publish(self, body:str, route:str='default'): try: self._check_channel( route) self.channel.basic_publish( exchange=self.exchange, routing_key=route, body=body, properties=pika.BasicProperties( delivery_mode=2)) except: logger.info( '==========================') logger.info( 'Reconnecting to RMQ ......') logger.info( '==========================') self.connect(self.uri, self.exchange) self._check_channel( route) self.channel.basic_publish( exchange=self.exchange, routing_key=route, body=body, properties=pika.BasicProperties( delivery_mode=2)) def consume(self, route:str, callback): try: self._check_channel( route) self.channel.basic_consume(queue=route, on_message_callback=callback) self.channel.start_consuming() except Exception as e: print( e ) def queue_length(self, queue:str=None): result = self.channel.queue_declare(queue=queue, durable=True, passive=True) return result.method.message_count def flush(self, queue:str='default'): self.channel.queue_purge(queue)
2,626
trivio/http.py
CuzImSyntax/TrivIO
2
2170285
import aiohttp from .enums import Type, Category, Difficulty from .exceptions import NoResultFound, InvalidParameter class Url: """Represents a Url needed for making a request to the api Parameters: is_command: :class:`bool` Whether the Url should be for a command call. _type: :class:`Type` Determines whether returned questions should be multiple choice or yes/no questions. amount: :class:`int` The number of questions that should be returned the number of returned questions must be between 1 and 50. category: Optional[:class:`Category`] The category of the returned questions. When leaving empty there will be questions from a random category. difficulty: Optional[:class:`Difficulty`] The difficulty of the returned questions. When leaving empty there will be questions from all difficulties. """ Base_url = "https://opentdb.com/api.php?encode=base64" TOKEN_URL = "https://opentdb.com/api_token.php" def __init__(self, is_command: bool, _type: Type, amount: int = None, category: Category = None, difficulty: Difficulty = None): self.is_command = is_command self._type = _type self.amount = amount self.category = category self.difficulty = difficulty @property def url(self): """:class:`str`: Returns the url as an string.""" if self.is_command: url = self.TOKEN_URL url += f"?command={self._type.value}" return url url = self.Base_url url += f"&type={self._type.value}&amount={self.amount}" if self.category: url += f"&category={self.category.value}" if self.difficulty: url += f"&difficulty={self.difficulty.value}" return url class HttpClient: """Represents an HTTP client to send requests to the Open Trivia DB Parameters: utils: :class:`.Utils` A instance of the Utils class use_token: Optional[:class:`bool`] Determines whether the client should use a session token or not. """ def __init__(self, utils, use_token: bool): self.utils = utils self.use_token = use_token self.token = None self._session = aiohttp.ClientSession() async def get_token(self): """Gets a token from the opentdb api.""" #Create a url object url = Url(True, Type.REQUEST) #get the token result = await self.request(url) return result["token"] async def request(self, url: Url): """|coro| Makes a http request to the opentdb api. Parameters: url: :class:`Url` The url object to make the request with. Returns: :class:`list` The requested questions in a list. """ _url = url.url #Check if we should use a token if not url.is_command: if self.use_token: self.token = await self.get_token() if self.token: _url += f"&token={self.token}" #make the request async with self._session.request("get", _url) as r: data = await r.json() #Cheking the response codes from the api if data["response_code"] == 1: raise NoResultFound elif data["response_code"] == 2: raise InvalidParameter elif data["response_code"] in (3, 4): self.token = await self.get_token() return await self.request(_url) # Decode the data if necessary if "response_message" in data: return data return self.utils.build_list(data) async def close(self): """|coro| Close the ClientSession if existing""" if self._session: await self._session.close()
4,007
TopicModeler.py
dkalamar/TopicModeler
0
2171967
import numpy as np import pandas as pd from nltk import sent_tokenize, word_tokenize from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer, ENGLISH_STOP_WORDS from sklearn.metrics.pairwise import pairwise_distances as pair_dist from sklearn.cluster import DBSCAN,KMeans from sklearn import metrics from sklearn.decomposition import TruncatedSVD from glob import glob from bs4 import BeautifulSoup as bsoup from time import time import matplotlib.pyplot as plt import re, itertools, pickle, itertools, scipy, json class Clusterer: def __init__(self,k=8,is_tfidf=True): self.is_tfidf=is_tfidf self.vect=CountVectorizer(stop_words=ENGLISH_STOP_WORDS.union(self._load_stops())) self.tfidf=TfidfTransformer() self.cluster=KMeans(n_clusters=k) self.stats=dict() def _load_stops(self): with open('data/stops.json','rb') as f: self.stops=json.load(f) return self.stops def fit(self): start=time() self.sparse = self.vect.fit_transform(self.corpus) if self.is_tfidf: self.sparse = self.tfidf.fit_transform(self.sparse) self.cluster.fit(self.sparse) self.stats['time']=time()-start def transform_sentences(self): sentences = list(itertools.chain.from_iterable([sent_tokenize(passage) for passage in self.corpus])) self.sentences = np.array([s for s in sentences if len(s.split(' '))>5]) self.sent_sparse = self.vect.transform(self.sentences) if self.is_tfidf: self.sent_sparse = self.tfidf.transform(self.sent_sparse) def calc_stats(self): self.stats['n_labels']=len(set(self.cluster.labels_)) - (1 if -1 in self.cluster.labels_ else 0) self.stats['silhouette'] = metrics.silhouette_score(self.sparse, self.cluster.labels_, metric='euclidean', sample_size=len(self.corpus)) self.stats['mean_centroid_dist'] = pd.DataFrame(pair_dist(self.cluster.cluster_centers_,self.cluster.cluster_centers_)).mean(0).to_dict() return self.stats def save_corpus(self,path): with open(path,'wb') as fp: pickle.dump((self.corpus, self.books),fp) def load_corpus(self,path): with open(path,'rb') as fp: self.corpus, self.books=pickle.load(fp) def _read_text(self,path): try: page = bsoup(open(path,'rb').read(),'html.parser') text = [div.text for div in page.find('div',class_='main').find_all('div')[1:-2]] return re.sub(' [0-9]+\\xa0','',''.join(text)) except: pass def write_text(self): paths=np.array(glob('eng-web_html/*.htm')) texts = np.array(list(map(self._read_text,paths))) self.corpus = texts[texts != np.array(None)] self.books = np.array([re.sub('(.*/|[0-9]+.htm)','',x) for x in paths[texts != np.array(None)]]) def analyze(self): self.calc_stats() self._group_passages() self.key = self._key_sentences() self.links = self._linking_sentences().to_dict() self.topics = self.get_topics() def write_results(self): for i in range(len(self.sections)): result={ 'key_sentences':self.key[i].tolist(), 'linking_sentences': {k:v.tolist() for k,v in self.links.items() if str(i) in k}, 'topics': self.topics[i]} with open(f'results/cluster_{i}.json','w') as fp: json.dump(result,fp ,sort_keys=True,indent=4) with open(f'results/stats.json','w') as fp: json.dump(self.stats,fp ,sort_keys=True,indent=4) def _group_passages(self): self.sections=list() self.transform_sentences() df = pd.DataFrame(self.cluster.transform(self.sent_sparse)) for i in set(self.cluster.labels_): self.sections.append(self.sentences[df.idxmin(1)==i]) def _key_sentences(self,k=5): key_phrases=list() for sect in self.sections: ratings = self.pair_sim(sect).sum(0) indices = list(ratings.sort_values().index[:k]) key_phrases.append(sect[indices]) return key_phrases def _linking_sentences(self,k=5): df = pd.DataFrame(self.cluster.transform(self.sent_sparse)) df = df.apply(lambda x: x.sort_values().head(2),1).fillna(0) results = pd.DataFrame() results['sums'] = df.sum(1) results['connections'] = df.apply(lambda x: ''.join(str(np.array(df.columns[x.values>0]))), 1) results['sentences'] = self.sentences return results.groupby('connections').apply(lambda y: y.sentences[:3].values) def get_edges(self): df = pd.DataFrame(self.cluster.transform(self.sent_sparse)) df = df.apply(lambda x: x.sort_values().head(2),1).fillna(0) return df.apply(lambda x: tuple(df.columns[x.values>0]), 1) def pair_sim(self,texts): vectors = self.vect.transform(texts) if self.is_tfidf: vectors = self.tfidf.transform(vectors) return pd.DataFrame(pair_dist(vectors,vectors,'euclidean')) def get_topics(self,n=5): feature_names = self.vect.get_feature_names() topics=list() for topic_idx, topic in enumerate(self.cluster.cluster_centers_): topics.append([feature_names[i] for i in topic.argsort()[:-n - 1:-1]]) return topics def plot(self): data = pd.DataFrame(TruncatedSVD(5).fit_transform(self.sparse)) colors = ["red", "orange", "yellow", "green", "blue", "purple", "pink", "blue"] a=0 b=1 df = pd.DataFrame(self.cluster.transform(self.sent_sparse)) for i in set(self.cluster.labels_): x=data[df.idxmin(1)==i] plt.scatter(x[a],x[b],c=colors[i]) plt.show() if __name__ == "__main__": print('\rInstiating...',end='') c=Clusterer(6) print('\rLoading Corpus...',end='') c.load_corpus('data/bible') print('\rFitting Models...',end='') c.fit() print('\rAnalyzing...',end='') c.analyze() print('\rPrinting Results...') c.write_results()
6,226
mundo-2/ex-056.py
guilhermesm28/python-curso-em-video
0
2171706
# Desenvolva um programa que leia o nome, idade e sexo de 4 pessoas. No final do programa, mostre: a média de idade do grupo, qual é o nome do homem mais velho e quantas mulheres têm menos de 20 anos. print('-' * 100) print('{: ^100}'.format('EXERCÍCIO 056 - ANALISADOR COMPLETO')) print('-' * 100) soma = 0 idade_velho = 0 nome_velho = '' qtd_f_menor = 0 feminino = 0 for i in range(1,5): print(f'\n{i}ª pessoa') nome = str(input('Nome: ')).strip().title() idade = int(input('Idade: ')) sexo = str(input('Sexo: ')).strip().upper() soma += idade if i == 1 and sexo[:1] == 'M': idade_velho = idade nome_velho = nome if idade > idade_velho and sexo[:1] == 'M': idade_velho = idade nome_velho = nome if sexo[:1] == 'F' and idade < 20: qtd_f_menor += 1 feminino = 1 media = soma / 4 print(f'\nA média de idade do grupo é {media:.2f}!') if nome_velho != '': print(f'O homem mais velho é o {nome_velho}, com {idade_velho} anos!') if feminino == 1: if qtd_f_menor == 1: print(f'{qtd_f_menor} mulher tem menos de 20 anos!') else: print(f'{qtd_f_menor} mulheres têm menos de 20 anos!') print('-' * 100) input('Pressione ENTER para sair...')
1,249
data/missing_features.py
labs14-investment-risk-analysis/Data-Science
0
2170854
from decouple import config from fin_data_fundamentals import find_fundamentals from fin_data import DailyTimeSeries from alpha_vantage.foreignexchange import ForeignExchange from alpha_vantage.techindicators import TechIndicators from alpha_vantage.timeseries import TimeSeries import pandas as pd import numpy as np import quandl import datetime import warnings def financials_available(symbol): alpha_vantage_key = config('ALPHA_VANTAGE') ts = TimeSeries(key=self.alpha_vantage_key, output_format='pandas') data, meta_data = ts.get_daily_adjusted(symbol=symbol, outputsize='compact') data = data.drop(columns='8. split coefficient') return(data.columns) def technicals_available(symbol): indicators = np.load('technicals_list.npy') have_techs = [] ti = TechIndicators(key=alpha_vantage_key, output_format='pandas') for ind in indicators: try: got_techs = getattr(ti, ind)(symbol=symbol) except: continu if got_techs[0].isnull().sum().values[0] == 0: have_techs.append(got_techs[1]['2: Indicator']) return(have_techs) def macros_available(symbol): macros = ['housing_index', 'confidence_index', 'trade_index', 'longterm_rates', 'shortterm_rates'] dts = DailyTimeSeries(symbol) df = dts.initiate() df = dts.add_macro(df, macros) macro_na = [] for ma in df.columns:
1,425
proxies/stubs/python/GeneratedTest.py
ChaosGroup/json-ws
29
2170750
# # Test API 1.0 # # Part of the JSON-WS library - Python Proxy # Copyright (c) 2014 ChaosGroup. All rights reserved. # # This code uses the following libraries: # - autobahn.asyncio.websocket (https://pypi.python.org/pypi/autobahn/0.9.3) # # For asyncio and enum support in Python <= 3.3 install trollius and enum34: # - https://pypi.python.org/pypi/trollius/1.0.2 # - https://pypi.python.org/pypi/enum34/1.0.3 from datetime import datetime from rpctunnel import RpcTunnel, Optional, Type, Enum class GeneratedTest: ''' Proxy for json-ws web services. Instances can be used as context managers. ''' RenderMode = Enum('RenderMode', { 'Production' : -1, 'RtCpu' : 0, 'RtGpuCuda' : 5, }) RenderOptions = Type('RenderOptions', { 'width' : int, 'height' : int, 'renderMode' : 'RenderMode', }, lambda: GeneratedTest) DefaultArray = Type('DefaultArray', { 'property' : [str], }, lambda: GeneratedTest) class ns1: class sub1: class sub2: def __init__(self, root): self.root = root def method1(self): return self.root._rpc('ns1.sub1.sub2.method1', [], return_type=None) def __init__(self, root): self.root = root self.sub2 = self.sub2(root) def __init__(self, root): self.root = root self.sub1 = self.sub1(root) def method1(self): return self.root._rpc('ns1.method1', [], return_type=str) class ns2: class sub1: class sub2: def __init__(self, root): self.root = root def method1(self): return self.root._rpc('ns2.sub1.sub2.method1', [], return_type=None) def __init__(self, root): self.root = root self.sub2 = self.sub2(root) def __init__(self, root): self.root = root self.sub1 = self.sub1(root) def __init__(self, url): ''' Args: url (string): The url of the web service ''' # RpcTunnel self._rpc = RpcTunnel(url) # The default transport is HTTP self.useHTTP() self.ns1 = self.ns1(self) self.ns2 = self.ns2(self) def sum(self, a, b): ''' Some test method example, does int sum Args: a (int) b (int) Returns: int ''' return self._rpc('sum', [a, b], return_type=int) def sumReturn(self): return self._rpc('sumReturn', [], return_type=None) def echo(self, a): ''' Args: a (self.RenderOptions) Returns: self.RenderOptions ''' return self._rpc('echo', [a], return_type=self.RenderOptions) def echoObject(self, a): ''' Args: a (object) Returns: dict ''' return self._rpc('echoObject', [a], return_type=dict) def throwError(self): return self._rpc('throwError', [], return_type=int) def testMe(self): return self._rpc('testMe', [], return_type=None) def testMe1(self): return self._rpc('testMe1', [], return_type=None) def testMe2(self, a): ''' A sample method. Args: a (str): A simple string parameter. Returns: str ''' return self._rpc('testMe2', [a], return_type=str) def testMe3(self): return self._rpc('testMe3', [], return_type=None) def testMe4(self): return self._rpc('testMe4', [], return_type=None) def TestDefaultArray(self, p): ''' Args: p (self.DefaultArray) ''' return self._rpc('TestDefaultArray', [p], return_type=None) def TestUrl(self, u): ''' Args: u (str) Returns: str ''' return self._rpc('TestUrl', [u], return_type=str) def getRenderOptions(self): return self._rpc('getRenderOptions', [], return_type=[self.RenderOptions]) def echoStringAsBuffer(self, theString): ''' Args: theString (str) Returns: bytearray ''' return self._rpc('echoStringAsBuffer', [theString], return_type=bytearray) def getBufferSize(self, buffer): ''' Args: buffer (bytearray) Returns: int ''' return self._rpc('getBufferSize', [buffer], return_type=int) def returnFrom0ToN(self, n): ''' Args: n (int) Returns: [int] ''' return self._rpc('returnFrom0ToN', [n], return_type=[int]) def optionalArgs(self, required, p1=Optional(int), p2=Optional(int)): ''' Args: required (bool) p1 (Optional(int)) p2 (Optional(int)) ''' return self._rpc('optionalArgs', [required, p1, p2], return_type=None) def sumArray(self, ints): ''' Args: ints ([int]) Returns: int ''' return self._rpc('sumArray', [ints], return_type=int) def testAny(self, a): ''' Args: a (object) Returns: object ''' return self._rpc('testAny', [a], return_type=object) def getSeconds(self, timeParam): ''' Args: timeParam (datetime) Returns: int ''' return self._rpc('getSeconds', [timeParam], return_type=int) def getNow(self): return self._rpc('getNow', [], return_type=datetime) def __enter__(self): return self def __exit__(self, type, value, traceback): pass def useHTTP(self): self._rpc.useHTTP() def useWS(self): self._rpc.useWS() def onTestEvent(self, callback=None): self._rpc.event('testEvent', callback, return_type=int) def onTestEvent2(self, callback=None): self._rpc.event('testEvent2', callback, return_type=[GeneratedTest.RenderOptions]) def onTestEvent3(self, callback=None): self._rpc.event('testEvent3', callback, return_type=dict) def onTestEvent4(self, callback=None): self._rpc.event('testEvent4', callback, return_type=bool) def onTestBinaryEvent(self, callback=None): self._rpc.event('testBinaryEvent', callback, return_type=bytearray) def onNs1_testEvent1(self, callback=None): self._rpc.event('ns1.testEvent1', callback, return_type=None)
6,731
Back-End/Python/Standard Libraries/SYS/sys.getsizeof.py
ASHISHKUMAR2411/Programming-CookBook
25
2169096
import sys prev = 0 for i in range(11): c = tuple(range(i+1)) size_c = sys.getsizeof(c) delta, prev = size_c - prev, size_c print(f'{i+1} TUPLE={c} items: {size_c}, delta={delta}') print('==='*15) prev = 0 for i in range(11): c = list(range(i+1)) size_c = sys.getsizeof(c) delta, prev = size_c - prev, size_c print(f'{i+1} LIST={c} items:{size_c}, delta={delta}') print('==='*15) # Size of List when appened c = [] prev = sys.getsizeof(c) print(f'0 items: {sys.getsizeof(c)}') for i in range(255): c.append(i) size_c = sys.getsizeof(c) delta, prev = size_c - prev, size_c print(f'{i+1} items: {size_c}, delta={delta}')
672
lib/models/sync_bn/inplace_abn/__init__.py
Zealoe/HRNet-Semantic-Segmentation
0
2171000
from .bn import ABN, InPlaceABN, InPlaceABNSync from .functions import ACT_RELU, ACT_LEAKY_RELU, ACT_ELU, ACT_NONE
117
todoism/models.py
zhaofangfang1991/airsupport-
0
2170511
# -*- coding: utf-8 -*- from flask_login import UserMixin from werkzeug.security import generate_password_hash, check_password_hash from todoism.extensions import db class User(db.Model, UserMixin): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(20), unique=True, index=True) password_hash = db.Column(db.String(128)) locale = db.Column(db.String(20)) # items = db.relationship('Item', back_populates='author', cascade='all') def set_password(self, password): self.password_hash = generate_password_hash(password) def validate_password(self, password): return check_password_hash(self.password_hash, password) class Item(db.Model): id = db.Column(db.Integer, primary_key=True) body = db.Column(db.Text) done = db.Column(db.Boolean, default=False) # author_id = db.Column(db.Integer, db.ForeignKey('user.id')) # author = db.relationship('User', back_populates='items') # 监测点数据监测 class Point(db.Model): id = db.Column(db.Integer, primary_key=True) segment = db.Column(db.String(64), default='', nullable=False, comment='大段名,X1段') point = db.Column(db.String(64), default='', nullable=False, comment='监测点名,5号监测点') temperature = db.Column(db.Integer, default=0, comment='温度') humidity = db.Column(db.Integer, default=0, comment='湿度') windpressure = db.Column(db.Integer, default=0, comment='风压') status = db.Column(db.Integer, default=3, nullable=False, comment='状态,1停止,2警告,3正常,其他值都不属于正常值')
1,519
django/contrib/gis/db/models/constants.py
fizista/django
2
2171941
from django.db.models.sql.constants import QUERY_TERMS GIS_LOOKUPS = { 'bbcontains', 'bboverlaps', 'contained', 'contains', 'contains_properly', 'coveredby', 'covers', 'crosses', 'disjoint', 'distance_gt', 'distance_gte', 'distance_lt', 'distance_lte', 'dwithin', 'equals', 'exact', 'intersects', 'overlaps', 'relate', 'same_as', 'touches', 'within', 'left', 'right', 'overlaps_left', 'overlaps_right', 'overlaps_above', 'overlaps_below', 'strictly_above', 'strictly_below' } ALL_TERMS = GIS_LOOKUPS | QUERY_TERMS __all__ = ['ALL_TERMS', 'GIS_LOOKUPS']
587
api/tests/conftest.py
galbwe/meep-backend
0
2170487
import pytest from app import create_app from models import User, Role, Project, db, ProjectType from db_operations import reset @pytest.fixture(scope='function') def new_user(): user = User('<EMAIL>', '1289rhth') return user @pytest.fixture(scope='function') def new_role(): role = Role(id=8, role_name="admin") return role @pytest.fixture(scope='function') def new_project(): project = Project( id=1, name="testName", description="testDescription", photo_url="www.google.com", website_url="www.aol.com", year=1999, gge_reduced=1.234, ghg_reduced=2.234 ) return project @pytest.fixture(scope='function') def new_projectType(): projectType = ProjectType( id=9, type_name="typeName" ) return projectType @pytest.fixture(scope='function') def new_location(): location = Location( id=5, address="7510 Floyd St", city="Overland Park", state="KS", zip_code=66204, location='POINT(-94.668954 38.992762)', project_id=1 ) return location @pytest.fixture(scope='session') def app(): app = create_app('test') with app.app_context(): db.create_all() yield app db.session.remove() db.drop_all()
1,323