max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
architectures/protoshotxai.py
gditzler/ProtoShotXAI-1
0
2169839
from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Lambda, TimeDistributed from tqdm import tqdm from utils.tensor_operations import * from utils.distance_functions import * class ProtoShotXAI: def __init__(self, model, input_layer=0, feature_layer=-2, class_layer=-1): if class_layer != None: self.class_weights = model.layers[class_layer].get_weights()[0] self.class_bias = model.layers[class_layer].get_weights()[1] else: self.class_weights = None self.class_bias = None input_shape = model.input.shape # input_shape = model.layers[input_layer].input_shape[0] output_vals = model.layers[feature_layer].output model = Model(inputs=model.input, outputs=output_vals) model_5d = TimeDistributed(model) support = Input(input_shape) support_features = model_5d(support) support_features = Lambda(reduce_tensor)(support_features) query = Input(input_shape) query_features = model_5d(query) query_features = Lambda(reshape_query)(query_features) features = Lambda(cosine_dist_features)([support_features, query_features]) #negative distance self.model = Model([support, query], features) def compute_score_from_features(self,features,iclass): s_feature_t, q_feature_t, s_feature_norm, q_feature_norm = features s_feature_t = s_feature_t.numpy() q_feature_t = q_feature_t.numpy() # if self.class_weights != None: # s_feature_t = s_feature_t*np.tile(np.expand_dims(self.class_weights[:,iclass],axis=(0,1)),(s_feature_t.shape[0],s_feature_t.shape[1],1)) # q_feature_t = q_feature_t*np.tile(np.expand_dims(self.class_weights[:,iclass],axis=(0,1)),(q_feature_t.shape[0],q_feature_t.shape[1],1)) s_feature_t = s_feature_t*np.tile(np.expand_dims(self.class_weights[:,iclass],axis=(0,1)),(s_feature_t.shape[0],s_feature_t.shape[1],1)) q_feature_t = q_feature_t*np.tile(np.expand_dims(self.class_weights[:,iclass],axis=(0,1)),(q_feature_t.shape[0],q_feature_t.shape[1],1)) s_feature_norm = np.sqrt(np.sum(s_feature_t*s_feature_t,axis=-1)) q_feature_norm = np.sqrt(np.sum(q_feature_t*q_feature_t,axis=-1)) den = s_feature_norm * q_feature_norm score = np.squeeze(np.sum(s_feature_t*q_feature_t,axis=-1)/den) return score def compute_features(self,support_data_expand,query_expand,iclass): features = self.model([support_data_expand,query_expand]) s_feature_t, q_feature_t, s_feature_norm, q_feature_norm = features s_feature_t = s_feature_t.numpy() q_feature_t = q_feature_t.numpy() # if self.class_weights != None: # s_feature_t = s_feature_t*np.tile(np.expand_dims(self.class_weights[:,iclass],axis=(0,1)),(s_feature_t.shape[0],s_feature_t.shape[1],1)) # q_feature_t = q_feature_t*np.tile(np.expand_dims(self.class_weights[:,iclass],axis=(0,1)),(q_feature_t.shape[0],q_feature_t.shape[1],1)) s_feature_t = s_feature_t*np.tile(np.expand_dims(self.class_weights[:,iclass],axis=(0,1)),(s_feature_t.shape[0],s_feature_t.shape[1],1)) q_feature_t = q_feature_t*np.tile(np.expand_dims(self.class_weights[:,iclass],axis=(0,1)),(q_feature_t.shape[0],q_feature_t.shape[1],1)) s_feature_norm = np.sqrt(np.sum(s_feature_t*s_feature_t,axis=-1)) q_feature_norm = np.sqrt(np.sum(q_feature_t*q_feature_t,axis=-1)) den = s_feature_norm * q_feature_norm return s_feature_t, q_feature_t, den def compute_score(self, support_data_expand, query_expand, class_indx): # query_expand = np.expand_dims(np.copy(query),axis=0) # Batch size of 1 # support_data_expand = np.expand_dims(np.copy(support_data),axis=0) # Only 1 support set features = self.model([support_data_expand,query_expand]) scores = self.compute_score_from_features(features,class_indx) return scores def image_feature_attribution(self,support_data,query, class_indx, ref_pixel, pad=4 , progress_bar=True): rows = np.shape(query)[1] cols = np.shape(query)[2] chnls = np.shape(query)[3] query_expand = np.expand_dims(np.copy(query),axis=0) # Batch size of 1 support_data_expand = np.expand_dims(np.copy(support_data),axis=0) # Only 1 support set features = self.model([support_data_expand,query_expand]) ref_score = self.compute_score_from_features(features,class_indx) score_matrix = np.zeros((rows,cols)) peturbed_images = np.zeros((cols,rows,cols,chnls)) for ii in tqdm(range(rows),disable=(not progress_bar)): for jj in range(cols): peturbed_images[jj,:,:,:] = np.copy(query) min_ii = np.max([ii-pad,0]) max_ii = np.min([ii+pad,rows]) min_jj = np.max([jj-pad,0]) max_jj = np.min([jj+pad,cols]) for ichnl in range(chnls): peturbed_images[jj,min_ii:max_ii,min_jj:max_jj,ichnl] = ref_pixel[ichnl] peturbed_images_expand = np.expand_dims(np.copy(peturbed_images),axis=0) features = self.model([support_data_expand,peturbed_images_expand]) scores = self.compute_score_from_features(features,class_indx) score_matrix[ii,:] = ref_score - scores return score_matrix
5,548
pyregex/valid_card/__init__.py
JASTYN/pythonmaster
3
2170760
def valid_card(card): return not sum([d if i & 1 else d % 5 * 2 + d / 5 for i, d in enumerate(map(int, card.replace(" ", "")))]) % 10
138
app/models/login_dao.py
gss214/Sexto-Andar
4
2171038
class Login: def __init__(self, codigo, email, senha, permissao): self.codigo = codigo self.email = email self.senha = senha self.permissao = permissao # Login Padrao Data Access Object class LoginDAO: def __init__(self): pass def create(self, cursor, login): try: data = {'email': login.email, 'senha': login.senha, 'permissao': login.permissao} sql = "INSERT INTO login(email, senha, permissao) VALUES (%(email)s, %(senha)s, %(permissao)s)" cursor.execute(sql, data) # verificar necessidade do MAX #sql_max = f"SELECT MAX(codigo) from login" #cursor.execute(sql_max) #id_login = cursor.fetchone() #login.codigo = id_login[0] print("------", cursor.lastrowid) login.codigo = cursor.lastrowid except Exception as ex: print(ex) def update(self, cursor, login, codigo): try: data = {'codigo': codigo, 'email': login.email, 'senha': login.senha, 'permissao' : login.permissao} sql = "UPDATE login SET email = %(email)s, senha = %(senha)s, permissao = %(permissao)s WHERE codigo = %(codigo)s" cursor.execute(sql, data) except Exception as ex: print(ex) def delete(self, cursor, codigo): try: sql = f"DELETE FROM login WHERE codigo = '{codigo}'" cursor.execute(sql) except Exception as ex: print(ex) def find_by_id(self, cursor, codigo): try: sql = f"SELECT * FROM login WHERE codigo = '{codigo}'" cursor.execute(sql) result = cursor.fetchone() codigo, email, senha, permissao = result login = Login(codigo, email, senha, permissao) return login except Exception as ex: print(ex) return None def find_without_id(self, cursor, email, senha): try: sql = f"SELECT * FROM login where email = '{email}' AND senha = '{senha}'" cursor.execute(sql) result = cursor.fetchone() codigo, email, senha, permissao = result login = Login(codigo, email, senha, permissao) return login except: return None def find_all(self, cursor): sql = "SELECT * FROM login" cursor.execute(sql) result = cursor.fetchall() # depois ver como retornar return result
2,530
language.py
NR-SkaterBoy/LinuxSystemUpdate
0
2171234
#!/usr/bin/python3 # Developer/Author: NR-SkaterBoy # Github: https://github.com/NR-SkaterBoy # Website: https://richardneuvald.tk # E-mail: <EMAIL> # Linux Systems source package Updater import json import os if (not os.path.isdir("files")): os.mkdir(os.path.join("files")) if (not os.path.isfile("files/language.json")): language = {} language["Language"] = "English" json_object = json.dumps(language, indent=3) with open("files/language.json", "w") as language_file: language_file.write(json_object) json.dumps(json_object) # Set language read_lang_file = open("files/language.json", "r") getLang = json.load(read_lang_file) if getLang["Language"] == "English": eng_lang = open("./locales/englis.json", "r") lang = json.load(eng_lang) elif getLang["Language"] == "Hungary": hun_lang = open("./locales/hungary.json", "r") lang = json.load(hun_lang) # Main (pref.: m) m_app_name = lang["main"]["app_name"] m_app_title = lang["main"]["app_title"] m_upd_btn = lang["main"]["upd_btn"] m_web_btn = lang["main"]["web_btn"] m_git_btn = lang["main"]["git_btn"] m_h_category = lang["main"]["help"]["category"] m_h_sup_sys = lang["main"]["help"]["sup_sys"] m_h_about = lang["main"]["help"]["about"] m_h_settings = lang["main"]["help"]["setting"] m_h_quit = lang["main"]["help"]["quit"] m_n_category = lang["main"]["news"]["category"] m_n_questionaire = lang["main"]["news"]["questionaire"] m_i_category = lang["main"]["info"]["category"] m_i_log_file = lang["main"]["info"]["log_file"] m_i_last_log = lang["main"]["info"]["last_log"] m_i_system = lang["main"]["info"]["system"] # Settings (pref.: s) s_window_name = lang["settings"]["window_name"] s_title = lang["settings"]["title"] s_node = lang["settings"]["node"] s_pm2 = lang["settings"]["pm2"] s_lang_title = lang["settings"]["l_title"] s_lang_en = lang["settings"]["english"] s_lang_hu = lang["settings"]["hungary"] s_h_category = lang["settings"]["help"]["category"] s_h_whatisit = lang["settings"]["help"]["whatisit"] s_m_category = lang["settings"]["modules"]["category"] s_m_node = lang["settings"]["modules"]["node"] s_m_pm2 = lang["settings"]["modules"]["pm2"] # Title of messagebox (pref.: t) t_howtouse = lang["tmessagebox"]["howtouseit"] t_error = lang["tmessagebox"]["error"] t_sup_sys = lang["tmessagebox"]["sup_sys"] t_sys_inf = lang["tmessagebox"]["sys_inf"] t_about = lang["tmessagebox"]["about_project"] t_lastlog = lang["tmessagebox"]["lastlog"] t_notify = lang["tmessagebox"]["notify"] # Description of messagebox (pref.: d) d_restart = lang["dmessagebox"]["restart"] d_howtouse = lang["dmessagebox"]["howtouse"] d_about = lang["dmessagebox"]["about"] d_not_res = lang["dmessagebox"]["notify_res"]
2,724
bclib.py
eun2ce/bancor
1
2170937
class bancor: total_supply = 0 reserved_token = 0 price = 0 cw = 0 def __init__(self, token, rate, cw): bancor.total_supply = token * rate bancor.reserved_token = (bancor.total_supply * cw) bancor.price = bancor.reserved_token / (bancor.total_supply * cw) bancor.cw = cw @staticmethod def issue_by_reserve_token(amount): smart_token_amount = bancor.total_supply * (((1 + (amount / bancor.reserved_token)) ** bancor.cw) -1) bancor.reserved_token = bancor.reserved_token + amount bancor.total_supply = bancor.total_supply + smart_token_amount bancor.price = bancor.reserved_token / (bancor.total_supply * bancor.cw) return smart_token_amount @staticmethod def destroy_by_reserve_token(amount): smart_token_amount = bancor.reserved_token * (1 - ((1 - (amount / bancor.total_supply)) ** (1/bancor.cw))) bancor.reserved_token = bancor.reserved_token -smart_token_amount bancor.total_supply = bancor.total_supply - amount bancor.price = bancor.reserved_token / (bancor.total_supply * bancor.cw) return smart_token_amount
1,166
egs/avspeech/looking-to-listen/local/loader/remove_corrupt.py
ldelebec/asteroid
722
2170443
import os import pandas as pd df_train = pd.read_csv("../../data/train.csv") df_val = pd.read_csv("../../data/val.csv") print(df_train.shape) print(df_val.shape) corrupt_files = [] with open("../../data/corrupt_frames_list.txt") as f: corrupt_files = f.readlines() corrupt_files = set(corrupt_files) print(len(corrupt_files)) corrupt_files = [c[:-1] for c in corrupt_files] print(corrupt_files) df_train = df_train[~df_train["video_1"].isin(corrupt_files)] df_val = df_val[~df_val["video_1"].isin(corrupt_files)] df_train = df_train[~df_train["video_2"].isin(corrupt_files)] df_val = df_val[~df_val["video_2"].isin(corrupt_files)] print(df_train.shape) print(df_val.shape) df_train.to_csv("../../data/train.csv", index=False) df_val.to_csv("../../data/val.csv", index=False)
789
workbench/logbook/migrations/0010_auto_20190709_2140.py
yoshson/workbench
15
2169971
# Generated by Django 2.2.2 on 2019-07-09 19:40 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("expenses", "0001_initial"), ("logbook", "0009_auto_20190628_1659"), ] operations = [ migrations.RemoveField(model_name="loggedcost", name="expenses_reimbursed_at"), migrations.AddField( model_name="loggedcost", name="expense_report", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name="expenses", to="expenses.ExpenseReport", verbose_name="expense report", ), ), ]
805
verboselib/cli/main.py
oblalex/verboselib
3
2170250
import argparse import functools from verboselib.version import VERSION from .utils import print_out from .command_compile import CompileCommand from .command_extract import ExtractCommand def show_version() -> None: print_out(f"verboselib {VERSION}") def make_parser() -> argparse.Namespace: parser = argparse.ArgumentParser( description="run a verboselib command", add_help=True, ) parser.add_argument( "-V", "--version", dest="show_version", action="store_true", help="show version of verboselib and exit" ) subparsers = parser.add_subparsers( title="subcommands", dest="command_name", ) extract_cmd_parser = ExtractCommand.make_parser( factory=functools.partial( subparsers.add_parser, name=ExtractCommand.name, aliases=ExtractCommand.aliases, ), ) extract_cmd_parser.set_defaults(executor_factory=ExtractCommand.make_executor) compile_cmd_parser = CompileCommand.make_parser( factory=functools.partial( subparsers.add_parser, name=CompileCommand.name, aliases=CompileCommand.aliases, ), ) compile_cmd_parser.set_defaults(executor_factory=CompileCommand.make_executor) return parser def main(): parser = make_parser() args = parser.parse_args() if args.show_version: show_version() return if hasattr(args, "executor_factory"): executor = args.executor_factory(args) executor() else: parser.print_help()
1,464
sense_demo.py
williamhaley/pi-scripts
0
2167933
#!/usr/bin/env python3 from sense_hat import SenseHat, ACTION_PRESSED, ACTION_HELD, ACTION_RELEASED from signal import pause import time import math import atexit import subprocess import os from subprocess import Popen from sense import rainbow """ Response to joystick presses and update the Sense Hat for a Raspberry Pi """ x = 0 y = 0 sense = SenseHat() rainbow_pixels = rainbow.default_pixels() total_pixels = len(sense.get_pixels()) dim_size = int(math.sqrt(total_pixels)) max_value = dim_size - 1 processes = [] last_press_time = 0 def on_exit(): sense.clear() def index(x, y): return y * dim_size + x def clamp(value, min_value=0, max_value=max_value): return min(max_value, max(min_value, value)) def pushed_up(event): global y if event.action != ACTION_RELEASED: y = clamp(y - 1) def pushed_down(event): global y if event.action != ACTION_RELEASED: y = clamp(y + 1) def pushed_left(event): global x if event.action != ACTION_RELEASED: x = clamp(x - 1) def pushed_right(event): global x if event.action != ACTION_RELEASED: x = clamp(x + 1) def refresh(): sense.clear() [r, g, b] = rainbow_pixels[index(x, y)] sense.set_pixel(x, y, r, g, b) def play_audio(file_name): global processes print('playing:', file_name) processes.append(Popen( ['mpg123', file_name], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, )) def kill_running_processes(): global processes print('kill running processes') for process in processes: process.kill() # Must zero out or processes will be zombies and never GCed processes = [] def pressed(event): global last_pressed_time global processes print('action:', event.action) if event.action == ACTION_RELEASED: if time.time() - last_pressed_time < 0.5: i = index(x, y) + 1 file_name = '{}/{}.mp3'.format(os.getcwd(), i) play_audio(file_name) else: kill_running_processes() elif event.action == ACTION_HELD: print('held:') elif event.action == ACTION_PRESSED: last_pressed_time = time.time() else: print('unknown action') atexit.register(on_exit) sense.stick.direction_up = pushed_up sense.stick.direction_down = pushed_down sense.stick.direction_left = pushed_left sense.stick.direction_right = pushed_right sense.stick.direction_middle = pressed sense.stick.direction_any = refresh refresh() pause()
2,535
binpackp/__init__.py
ibigpapa/bin_packing_problem
5
2171468
from .bins import SimpleBin, NumberBin, VolumeError from .fit import Fit, BinReduction, BinOrdering
101
Module3_Data_for_ML/4_Gradient_descent/Gradient_descent_notebook.py
EllieBrakoniecki/AICOREDATASCIENCE
0
2169398
#%% ## STOCHASTIC GRADIENT DESCENT import matplotlib.pyplot as plt def plot_loss(losses): """Helper function for plotting loss against epoch""" plt.figure() # make a figure plt.ylabel('Cost') plt.xlabel('Epoch') plt.plot(losses) # plot costs plt.show() # %% ### THE DATA ### from sklearn import datasets, model_selection from aicore.ml import data import pandas as pd import numpy as np # Use `data.split` in order to split the data into train, validation, test (X_train, y_train), (X_validation, y_validation), (X_test, y_test) = data.split( datasets.load_boston(return_X_y=True) ) X_train, X_validation, X_test = data.standardize_multiple(X_train, X_validation, X_test) # %% ### THE MODEL ### # Here's the same model we implemented before class LinearRegression: def __init__(self, optimiser, n_features): # initalize parameters self.w = np.random.randn(n_features) ## randomly initialise weight self.b = np.random.randn() ## randomly initialise bias self.optimiser = optimiser def predict(self, X): # how do we calculate output from an input in our model? ypred = X @ self.w + self.b ## make a prediction using a linear hypothesis return ypred # return prediction def fit(self, X, y): all_costs = [] ## initialise empty list of costs to plot later for epoch in range(self.optimiser.epochs): ## for this many complete runs through the dataset # MAKE PREDICTIONS AND UPDATE MODEL predictions = self.predict(X) ## make predictions print('shape_pred',predictions.shape) new_w, new_b = self.optimiser.step(self.w, self.b, X, predictions, y) ## calculate updated params self._update_params(new_w, new_b) ## update model weight and bias # CALCULATE LOSS FOR VISUALISING cost = LinearRegression.mse_loss(predictions, y) ## compute loss all_costs.append(cost) ## add cost for this batch of examples to the list of costs (for plotting) plot_loss(all_costs) print('Final cost:', cost) print('Weight values:', self.w) print('Bias values:', self.b) def _update_params(self, new_w, new_b): self.w = new_w ## set this instance's weights to the new weight value passed to the function self.b = new_b ## do the same for the bias @staticmethod def mse_loss(y_hat, labels): # define our criterion (loss function) errors = y_hat - labels ## calculate errors squared_errors = errors ** 2 ## square errors mean_squared_error = sum(squared_errors) / len(squared_errors) ## calculate mean return mean_squared_error # return loss # %% # THE OPTIMISER _ gradient descent import numpy as np class SGDOptimiser: def __init__(self, lr, epochs): self.lr = lr self.epochs = epochs def _calc_deriv(self, features, predictions, labels): m = len(labels) ## m = number of examples diffs = predictions - labels ## calculate errors dLdw = 2 * np.sum(features.T * diffs).T / m ## calculate derivative of loss with respect to weights dLdb = 2 * np.sum(diffs) / m ## calculate derivative of loss with respect to bias return dLdw, dLdb ## return rate of change of loss wrt w and wrt b def step(self, w, b, features, predictions, labels): dLdw, dLdb = self._calc_deriv(features, predictions, labels) new_w = w - self.lr * dLdw new_b = b - self.lr * dLdb return new_w, new_b # %% # PUTTING ALL TOGETHER num_epochs = 1000 learning_rate = 0.001 optimiser = SGDOptimiser(lr=learning_rate, epochs=num_epochs) model = LinearRegression(optimiser=optimiser, n_features=X_train.shape[1]) model.fit(X_train, y_train) #%% ##### sklearn example ####### # sklearn packs everything we just did above into it's simple LinearRegression API. from sklearn.linear_model import LinearRegression linear_regression_model = LinearRegression() ## instantiate the linear regression model def mse_loss(y_hat, labels): # define our criterion (loss function) errors = y_hat - labels ## calculate errors squared_errors = errors ** 2 ## square errors mean_squared_error = sum(squared_errors) / len(squared_errors) ## calculate mean return mean_squared_error # return loss def calculate_loss(model, X, y): return mse_loss(model.predict(X),y) model = linear_regression_model.fit(X_train, y_train) ## fit the model print(f"Training loss before fit: {calculate_loss(model, X_train, y_train)}") print( f"Validation loss before fit: {calculate_loss(model, X_validation, y_validation)}" ) print(f"Test loss before fit: {calculate_loss(model, X_validation, y_validation)}") # %% epochs = 10000 model.fit(X_train, y_train) print(f"Training loss after fit: {calculate_loss(model, X_train, y_train)}") print(f"Validation loss after fit: {calculate_loss(model, X_validation, y_validation)}") print(f"Test loss after fit: {calculate_loss(model, X_validation, y_validation)}") print('final weights:', model.coef_) print('final bias:', model.intercept_) #%% # FUNCTION TO NORMALISE DATA def standardize_data(dataset, mean=None, std=None): if mean is None and std is None: mean, std = np.mean(dataset, axis=0), np.std( dataset, axis=0 ) ## get mean and standard deviation of dataset standardized_dataset = (dataset - mean) / std return standardized_dataset, (mean, std) X_train, (mean, std) = standardize_data(X_train) # %%
5,571
sabnzbd.py
anast20sm/Addarr
135
2171750
import requests from telegram import InlineKeyboardButton, InlineKeyboardMarkup from telegram.ext import ConversationHandler from commons import authentication, checkAdmin, checkId, generateApiQuery from config import config from translations import i18n import logging import logger # Set up logging logLevel = logging.DEBUG if config.get("debugLogging", False) else logging.INFO logger = logger.getLogger("addarr.radarr", logLevel, config.get("logToConsole", False)) config = config["sabnzbd"] SABNZBD_SPEED_LIMIT_25 = '25' SABNZBD_SPEED_LIMIT_50 = '50' SABNZBD_SPEED_LIMIT_100 = '100' def sabnzbd(update, context): if not config["enable"]: context.bot.send_message( chat_id=update.effective_message.chat_id, text=i18n.t("addarr.Sabnzbd.NotEnabled"), ) return ConversationHandler.END if not checkId(update): context.bot.send_message( chat_id=update.effective_message.chat_id, text=i18n.t("addarr.Authorize") ) return SABNZBD_SPEED_LIMIT_100 if not checkAdmin(update): context.bot.send_message( chat_id=update.effective_message.chat_id, text=i18n.t("addarr.NotAdmin"), ) return SABNZBD_SPEED_LIMIT_100 keyboard = [[ InlineKeyboardButton( '\U0001F40C ' + i18n.t("addarr.Sabnzbd.Limit25"), callback_data=SABNZBD_SPEED_LIMIT_25 ), InlineKeyboardButton( '\U0001F40E ' + i18n.t("addarr.Sabnzbd.Limit50"), callback_data=SABNZBD_SPEED_LIMIT_50 ), InlineKeyboardButton( '\U0001F406 ' + i18n.t("addarr.Sabnzbd.Limit100"), callback_data=SABNZBD_SPEED_LIMIT_100 ), ]] markup = InlineKeyboardMarkup(keyboard) update.message.reply_text( i18n.t("addarr.Sabnzbd.Speed"), reply_markup=markup ) return SABNZBD_SPEED_LIMIT_100 def changeSpeedSabnzbd(update, context): if not checkId(update): if ( authentication(update, context) == "added" ): # To also stop the beginning command return ConversationHandler.END choice = update.callback_query.data url = generateApiQuery("sabnzbd", "", {'output': 'json', 'mode': 'config', 'name': 'speedlimit', 'value': choice}) req = requests.get(url) message = None if req.status_code == 200: if choice == SABNZBD_SPEED_LIMIT_100: message = i18n.t("addarr.Sabnzbd.ChangedTo100") elif choice == SABNZBD_SPEED_LIMIT_50: message = i18n.t("addarr.Sabnzbd.ChangedTo50") elif choice == SABNZBD_SPEED_LIMIT_25: message = i18n.t("addarr.Sabnzbd.ChangedTo25") else: message = i18n.t("addarr.Sabnzbd.Error") context.bot.send_message( chat_id=update.effective_message.chat_id, text=message, ) return ConversationHandler.END
2,940
dns/dns-client.py
elaineo/playground21
85
2170646
# # Command line usage: # $ python3 dns-client.py --help # import json import os import sys import click import pprint # import from the 21 Developer Library from two1.commands.config import Config from two1.lib.wallet import Wallet from two1.lib.bitrequests import BitTransferRequests pp = pprint.PrettyPrinter(indent=2) # set up bitrequest client for BitTransfer requests wallet = Wallet() username = Config().username requests = BitTransferRequests(wallet, username) DNSCLI_VERSION = '0.1' DEFAULT_ENDPOINT = 'http://localhost:12005/' @click.group() @click.option('--endpoint', '-e', default=DEFAULT_ENDPOINT, metavar='STRING', show_default=True, help='API endpoint URI') @click.option('--debug', '-d', is_flag=True, help='Turns on debugging messages.') @click.version_option(DNSCLI_VERSION) @click.pass_context def main(ctx, endpoint, debug): """ Command-line Interface for the DDNS API service """ if ctx.obj is None: ctx.obj = {} ctx.obj['endpoint'] = endpoint @click.command(name='info') @click.pass_context def cmd_info(ctx): sel_url = ctx.obj['endpoint'] answer = requests.get(url=sel_url.format()) print(answer.text) @click.command(name='domains') @click.pass_context def cmd_domains(ctx): sel_url = ctx.obj['endpoint'] + 'dns/1/domains' answer = requests.get(url=sel_url.format()) print(answer.text) @click.command(name='register') @click.argument('name') @click.argument('domain') @click.argument('days') @click.argument('recordlist', nargs=-1) @click.pass_context def cmd_register(ctx, name, domain, days, recordlist): pubkey = wallet.get_message_signing_public_key() addr = pubkey.address() print("Registering with key %s" % (addr,)) records = [] for arg in recordlist: words = arg.split(',') host_obj = { 'ttl': int(words[0]), 'rec_type': words[1], 'address': words[2], } records.append(host_obj) req_obj = { 'name': name, 'domain': domain, 'days': int(days), 'pkh': addr, 'hosts': records, } sel_url = ctx.obj['endpoint'] + 'dns/1/host.register' body = json.dumps(req_obj) headers = {'Content-Type': 'application/json'} answer = requests.post(url=sel_url.format(), headers=headers, data=body) print(answer.text) @click.command(name='simpleregister') @click.argument('name') @click.argument('domain') @click.argument('days') @click.argument('ipaddress') @click.pass_context def cmd_simpleRegister(ctx, name, domain, days, ipaddress): sel_url = ctx.obj['endpoint'] + 'dns/1/simpleRegister?name={0}&domain={1}&days={2}&ip={3}' answer = requests.get(url=sel_url.format(name, domain, days, ipaddress)) print(answer.text) @click.command(name='update') @click.argument('name') @click.argument('domain') @click.argument('pkh') @click.argument('records', nargs=-1) @click.pass_context def cmd_update(ctx, name, domain, pkh, records): req_obj = { 'name': name, 'domain': domain, 'hosts': [], } for record in records: words = record.split(',') host_obj = { 'ttl': int(words[0]), 'rec_type': words[1], 'address': words[2], } req_obj['hosts'].append(host_obj) body = json.dumps(req_obj) sig_str = wallet.sign_bitcoin_message(body, pkh) if not wallet.verify_bitcoin_message(body, sig_str, pkh): print("Cannot self-verify message") sys.exit(1) sel_url = ctx.obj['endpoint'] + 'dns/1/records.update' headers = { 'Content-Type': 'application/json', 'X-Bitcoin-Sig': sig_str, } answer = requests.post(url=sel_url.format(), headers=headers, data=body) print(answer.text) @click.command(name='delete') @click.argument('name') @click.argument('domain') @click.argument('pkh') @click.pass_context def cmd_delete(ctx, name, domain, pkh): req_obj = { 'name': name, 'domain': domain, 'pkh': pkh } body = json.dumps(req_obj) sig_str = wallet.sign_bitcoin_message(body, pkh) if not wallet.verify_bitcoin_message(body, sig_str, pkh): print("Cannot self-verify message") sys.exit(1) sel_url = ctx.obj['endpoint'] + 'dns/1/host.delete' headers = { 'Content-Type': 'application/json', 'X-Bitcoin-Sig': sig_str, } answer = requests.post(url=sel_url.format(), headers=headers, data=body) print(answer.text) main.add_command(cmd_info) main.add_command(cmd_domains) main.add_command(cmd_register) main.add_command(cmd_simpleRegister) main.add_command(cmd_update) main.add_command(cmd_delete) if __name__ == "__main__": main()
4,802
stream_video_audio_delay.py
oyzzo/simpleStreamTests
0
2170688
#!/usr/bin/python #sudo ports install ffmpeg pkg-config #sudo pip install av import av #settings #teststream = "./mega1.ts" threshold = float(0.2) #Delay should be less than this (0.2 Recommended) if __name__ == "__main__": video_time = float() audio_time = [] #More than 1 audio possible delay = float() print "Testing stream..." print teststream container = av.open(teststream) #Compute start time based on each stream time_base print "Checking audio-video delay...." for s in container.streams: if (s.type == 'audio'): audio_time.append( float(s.start_time * s.time_base)) elif (s.type == 'video'): video_time = float(s.start_time * s.time_base) #Print the results print "%d audio streams" % len(audio_time) print "Audio-Video delay (max):" for at in audio_time: delay = max(delay,abs(video_time - at)) print "%f (s)" % delay #Doing this we let know other that something went wrong #For example we could use this script in monit if delay>= threshold: exit(1)
1,095
FirstAllNodeEdge/NodeAttributeNum.py
CocoGzh/Bioentity2vec
4
2169355
from numpy import * import numpy as np import random import math import os import time import pandas as pd import csv import math import random # 定义函数 def ReadMyCsv(SaveList, fileName): csv_reader = csv.reader(open(fileName)) for row in csv_reader: # 注意表头 SaveList.append(row) return def ReadMyCsv2(SaveList, fileName): csv_reader = csv.reader(open(fileName)) for row in csv_reader: for i in range(len(row)): # 转换数据类型 row[i] = float(row[i]) SaveList.append(row) return def StorFile(data, fileName): with open(fileName, "w", newline='') as csvfile: writer = csv.writer(csvfile) writer.writerows(data) return # 数据 # 节点 def MyNodeAttributeNum(): AllNode = [] ReadMyCsv(AllNode, "FirstAllNodeEdge\AllNode.csv") print('len(AllNode)', len(AllNode)) print('AllNode[0]', AllNode[0]) AllNodeNum = [] counter = 0 while counter < len(AllNode): pair = [] pair.append(counter) AllNodeNum.append(pair) counter = counter + 1 print('AllNodeNum[0]', AllNodeNum[0]) StorFile(AllNodeNum, 'FirstAllNodeEdge\AllNodeNum.csv') AllNodeAttribute = [] ReadMyCsv(AllNodeAttribute, "FirstAllNodeEdge\AllNodeAttribute.csv") print('len(AllNodeAttribute)', len(AllNodeAttribute)) print('AllNodeAttribute[0]', AllNodeAttribute[0]) AllNodeAttributeNum = [] counter = 0 while counter < len(AllNodeAttribute): AllNodeAttributeNum.append(AllNodeAttribute[counter][1:]) counter = counter + 1 print('AllNodeAttributeNum[0]', AllNodeAttributeNum[0]) StorFile(AllNodeAttributeNum, 'FirstAllNodeEdge\AllNodeAttributeNum.csv') return AllNodeNum, AllNodeAttributeNum
1,823
examples/weaving-circuits/run_hierarchical_design.py
PhilippBoeing/synbioweaver
0
2171303
from synbioweaver.core import * from synbioweaver.aspects.designRulesAspect import * from instantiateAbstractMoleculesAspect import * from synbioweaver.aspects.pigeonOutputAspect import * declareNewMolecule('AHL') declareNewMolecule('GFP') declareNewMolecule('mCherry') declareNewMolecule('CFP') declareNewMolecule('LacI') declareNewMolecule('IPTG') declareNewMolecule('LacI_IPTG') declareNewMolecule('zero') declareNewPart('t1',Terminator) declareNewPart('t2',Terminator) declareNewPart('t3',Terminator) declareNewPart('r1',RBS ) declareNewPart('r2',RBS ) declareNewPart('r3',RBS ) declareNewPart('P_lux', PositivePromoter, [AHL] ) declareNewPart('cGFP', CodingRegion, moleculesAfter=[GFP] ) declareNewPart('P_lac', NegativePromoter, [LacI] ) declareNewPart('cLacI', CodingRegion, moleculesAfter=[LacI] ) declareNewPart('Pc', ConstitutivePromoter ) declareNewPart('cmCherry', CodingRegion, moleculesAfter=[mCherry] ) class AHLReceiver(Circuit): def mainCircuit(self): self.createMolecule(AHL) self.addPart(P_lux) self.addPart(r1) self.addPart(cGFP) self.addPart(t1) class Inverter(Circuit): def mainCircuit(self): self.createMolecule(IPTG) #self.addPart(Pc) self.addPart(r2) self.addPart(cLacI) self.addPart(t2) self.addPart(P_lac) #self.addPart(r3) #self.addPart(cmCherry) #self.addPart(t3) #inducer must come first to display in pigeon properly self.reactionFrom(IPTG, LacI) >> self.reactionTo( LacI_IPTG ) self.reactionFrom(LacI_IPTG) >> self.reactionTo( zero ) class InverterFull(Circuit): def mainCircuit(self): self.createMolecule(IPTG) self.addPart(Pc) self.addPart(r2) self.addPart(cLacI) self.addPart(t2) self.addPart(P_lac) self.addPart(r3) self.addPart(cmCherry) self.addPart(t3) #inducer must come first to display in pigeon properly self.reactionFrom(IPTG, LacI) >> self.reactionTo( LacI_IPTG ) self.reactionFrom(LacI_IPTG) >> self.reactionTo( zero ) class Inversion(Aspect): def mainAspect(self): self.Inverter = Inverter() PosPromoter = PartSignature('AHLReceiver.PositivePromoter+') afterPosPromoter = PointCut(PosPromoter,PointCut.AFTER) self.addAdvice(afterPosPromoter,self.insertInverter) def insertInverter(self,context): #print context, context.part self.addPart(Inverter()) class SwapReporter(Aspect): def mainAspect(self): Reporter = PartSignature('*.CodingRegion+(GFP)') atReporter = PointCut(Reporter,PointCut.REPLACE) self.addAdvice(atReporter,self.replaceWithCFP) #self.addAdvice(atReporter,self.replaceWithCircuit) def replaceWithCFP(self,context): self.createMolecule(CFP) declareNewPart('cCFP', CodingRegion, moleculesAfter=[CFP]) self.addPart(cCFP) return True #def replaceWithCircuit(self,context): # self.addPart(InverterFull()) # return True print "AHL receiver" d1 = Weaver(AHLReceiver, PigeonOutput).output() print d1.printPigeonOutput() print "Inverter" d2 = Weaver(Inverter, PigeonOutput).output() print d2.printPigeonOutput() #print "InverterFull" #d = Weaver(InverterFull, PigeonOutput).output() #print d.printPigeonOutput() # Here we use the Inverter circuit as a new part to insert into the AHL receiver print "Inverted AHL receiver" d3 = Weaver(AHLReceiver, Inversion, PigeonOutput).output() print d3.printPigeonOutput() print "Inverted AHL receiver + GFP -> CFP" d4 = Weaver(AHLReceiver, Inversion, SwapReporter, PigeonOutput).output() print d4.printPigeonOutput()
3,782
curveROC_frontiers2016_causality.py
danilobenozzo/supervised_causality_detection
2
2170598
""" Compute the ROC curve and AUC for CBC and MBC (in this latter case by defining different cost matrices) """ import numpy as np import pickle import matplotlib.pyplot as plt from score_function import best_decision, compute_score_matrix from create_trainset import class_to_configuration import itertools def compute_roc_auc(y_test_pred, y_test_level2, predicted_probability, nTrial, nCh, mvgc_flag): print "Assigning label" index_x = np.append(np.triu_indices(nCh,1)[0], np.tril_indices(nCh,-1)[0]) index_y = np.append(np.triu_indices(nCh,1)[1], np.tril_indices(nCh,-1)[1]) ################################# print "In case of mvgc" if mvgc_flag: pred_prob_tmp = [] pred_prob_tmp += [predicted_probability[i][index_x[None,:],index_y] for i in range(nTrial)] pred_prob_tmp = np.vstack(pred_prob_tmp) predicted_probability = np.zeros([nTrial, len(index_x), 2]) predicted_probability[:,:,0] = pred_prob_tmp predicted_probability[:,:,1] = 1-pred_prob_tmp del pred_prob_tmp print "Stacking for using sklearn roc_curve, for MVGC and SL" y_true = [] y_true += [y_test_level2[i][index_x[None,:],index_y] for i in range(nTrial)] y_true = np.hstack(np.vstack(y_true)) predicted_probability_class1 = np.hstack(np.squeeze(predicted_probability[:,:,1])) print "Roc curve computed by sklearn" from sklearn import metrics idx_not_nan=np.logical_not(np.isnan(predicted_probability_class1)) fpr, tpr, thresholds = metrics.roc_curve(y_true[idx_not_nan], predicted_probability_class1[idx_not_nan], pos_label=1) auc = metrics.roc_auc_score(y_true[idx_not_nan], predicted_probability_class1[idx_not_nan]) return fpr,tpr,auc if __name__ == '__main__': cbc = True #CBC or MBC pwd = '<PASSWORD>/' if cbc: print "CBC cell based classifier" filename_open = '%ssimulated_Ldataset_tws10_r2_mse_granger_binary_class_rowNorm_fEng_cv.pickle' % (pwd) print "Opening %s" % filename_open data = pickle.load(open(filename_open)) y_test_pred = data['y_test_pred'] y_test_level2 = data['y_test_true'] predicted_probability = data['predicted_probability'] nTrial, nCh = y_test_level2.shape[:2] mvgc_flag=0 fpr,tpr,auc_score = compute_roc_auc(y_test_pred, y_test_level2, predicted_probability, nTrial, nCh, mvgc_flag) plot_label = 'CBC' else: print "MBC matrix based classifier" filename_open = '%ssimulated_Ldataset_tws10_r2_mse_granger_notBinary_class_rowNorm_fEng_cv.pickle' % (pwd) print "Opening %s" % filename_open data = pickle.load(open(filename_open)) y_test_pred = data['y_test_pred'] y_test_level2 = data['y_test_true'] predicted_probability = data['predicted_probability'] nTrial, nCh = y_test_level2.shape[:2] n_iter=50 fpr = np.zeros(n_iter) tpr = np.zeros(n_iter) for i_iter, iter_i in enumerate(itertools.product(np.arange(-3,0,0.3),np.arange(0,1,0.2))): print "Building score matrix" print iter_i binary_score = [1,0,iter_i[0],iter_i[1]] score_matrix = compute_score_matrix(n=64, binary_score=binary_score) print "Compute prediction according to the score matrix" y_pred = np.array([best_decision(prob_configuration, score_matrix=score_matrix)[0] for prob_configuration in predicted_probability]) y_pred_conf = [] y_pred_conf += [class_to_configuration(y_pred[i_trial], verbose=False) for i_trial in range(nTrial)] y_pred_conf = np.array(y_pred_conf) print "Confusion matrices" conf_mat = np.zeros([2,2]) n_conect = np.array(y_test_level2.sum(-1).sum(-1), dtype=np.float) n_noconect = np.repeat(nCh*(nCh-1), nTrial) - n_conect true_pos = np.zeros(nTrial) false_pos = np.zeros(nTrial) false_neg = np.zeros(nTrial) true_neg = np.zeros(nTrial) for i_trial in range(nTrial): true_pos[i_trial] = np.logical_and(y_test_level2[i_trial], y_pred_conf[i_trial]).sum() false_pos[i_trial] = np.logical_and( np.logical_xor(y_test_level2[i_trial], y_pred_conf[i_trial]), y_pred_conf[i_trial]).sum() - nCh #to remove the diagonal false_neg[i_trial] = np.logical_and( np.logical_xor(y_test_level2[i_trial], y_pred_conf[i_trial]), y_test_level2[i_trial]).sum() true_neg[i_trial] = np.logical_and(np.logical_not(y_test_level2[i_trial]), np.logical_not(y_pred_conf[i_trial])).sum() conf_mat[0,0] = np.sum(true_pos)/np.sum(n_conect)#true_pos[i_bin_th].mean() conf_mat[0,1] = np.sum(false_neg)/np.sum(n_conect)#false_neg[i_bin_th].mean() conf_mat[1,0] = np.sum(false_pos)/np.sum(n_noconect)#false_pos[i_bin_th].mean() conf_mat[1,1] = np.sum(true_neg)/np.sum(n_noconect)#true_neg[i_bin_th].mean()#1 - conf_mat[i_bin_th,1,0] fpr[i_iter] = conf_mat[1,0] tpr[i_iter] = conf_mat[0,0] print "Compute auc" from sklearn import metrics x_point = np.append(np.insert(fpr,0,0),1) y_point = np.append(np.insert(tpr,0,0),1) auc_score = metrics.auc(x_point[np.argsort(x_point)], y_point[np.argsort(x_point)]) plot_label = 'MBC' print "Roc curve" plt.plot(fpr, tpr,'.k', label=plot_label) plt.legend(loc=4, numpoints=1, scatterpoints=1,fontsize='x-large') fontsize=15 plt.plot([0,0,1], [0,1,1], '-.k') plt.plot([0,1], [0,1], '-.k') plt.xlabel('False Positive Rate', fontsize=fontsize) plt.ylabel('True Positive Rate', fontsize=fontsize) plt.show()
5,965
telgen.py
vsr2158/sapros
0
2171164
'''' Sapro Config generator tool ''' from utils import convert_ip_to_mac from utils import ip_normalizer with open('/Users/vijshekh/PycharmProjects/sapros/18.20.40.2.tel', "r") as f: lines = f.readlines() svariable = raw_input ("Enter s-variable in format X or XX or XXX : ") evariable = raw_input ("Enter e-variable in format X or XX or XXX : ") sapro_ip_range = raw_input ("Enter Sapro IP range in format x.x.x : ") sapro_ip_split = sapro_ip_range.split(".") sapro_first_octect = sapro_ip_split[0] sapro_second_octect = sapro_ip_split[1] sapro_third_octect = sapro_ip_split[2] print ("sapro_first_octect : %s" %sapro_first_octect) print ("sapro_second_octect : %s" %sapro_second_octect) print ("sapro_third_octect : %s" %sapro_third_octect) if len((sapro_first_octect)) > 4: exit(0) sapro_first_octect_normalized = ip_normalizer(sapro_first_octect) sapro_second_octect_normalized = ip_normalizer(sapro_second_octect) sapro_third_octect_normalized = ip_normalizer(sapro_third_octect) print ("sapro_first_octect_normalized : %s" %sapro_first_octect_normalized) print ("sapro_second_octect_normalized : %s" %sapro_second_octect_normalized) print ("sapro_third_octect_normalized : %s" %sapro_third_octect_normalized) for i in range(int(svariable), int(evariable)): variable = str(i) digits = [int(x) for x in str(variable)] print digits client_addr = sapro_second_octect + "." + sapro_third_octect + "." + variable client_macf = convert_ip_to_mac(client_addr) client_vlan = sapro_third_octect + variable client_vlan = client_vlan[0:4] sapro_ip = sapro_ip_range + "." + variable sapro_loppback_ip = client_addr + ".1" sapro_mac = convert_ip_to_mac(sapro_ip) out_file = "{}.tel".format(sapro_ip) print "CLIENT MAC == " + client_macf print "CLIENT ADDR == " + client_addr print "CLIENT VLAN == " + client_vlan print "SAPRO INSTANCE IP == " + sapro_ip print "SAPRO INSTANCE Lo0 IP == " + sapro_loppback_ip print "SAPRO INSTANCE MAC == " + sapro_mac print ("Generating files based on input variable : " + variable) w = open(out_file, 'w') for l in lines: lnew = l.replace('0200.4000.2', client_macf).replace('20.40.2', client_addr).replace('2002', client_vlan)\ .replace('18.20.40.2',sapro_ip).replace('0180.2004.002', sapro_mac).replace('20.40.2.1', sapro_loppback_ip) w.write(lnew) print "++++ DONE One file ++++"
2,718
stl/tree/nodes/signalnodes/signalnode.py
pieter-hendriks/STL-monitoring
0
2171586
""" Implementation for a SignalNode. """ from ..node import Node from ....signals import SignalList, Signal, BooleanSignal class SignalNode(Node): """ Class representing a Signal from an STL formula in as an AST node. """ def __init__(self): super().__init__() self.signalName = None def processToken(self, token: str) -> None: self.signalName = str(token) def booleanValidate(self, signals: SignalList, plot: bool) -> BooleanSignal: signal = signals.getByName(self.signalName) if not isinstance(type, BooleanSignal): # Should be only other option assert isinstance(signal, Signal) signal = BooleanSignal.fromSignal(signal) return signal def quantitativeValidate(self, signals: SignalList, plot: bool) -> Signal: signal = signals.getByName(self.signalName) if isinstance(signal, BooleanSignal): signal = Signal.fromBooleanSignal(signal) signal.recomputeDerivatives() return signal def text(self) -> str: return 'Signal: ' + self.signalName
988
nn_dataflow/tests/unit_test/test_scheduling_result.py
afinci/nn_dataflow
5
2171200
""" $lic$ Copyright (C) 2016-2017 by The Board of Trustees of Stanford University This program is free software: you can redistribute it and/or modify it under the terms of the Modified BSD-3 License as published by the Open Source Initiative. If you use this program in your research, we request that you reference the TETRIS paper ("TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory", in ASPLOS'17. April, 2017), and that you send us a citation of your work. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the BSD-3 License for more details. You should have received a copy of the Modified BSD-3 License along with this program. If not, see <https://opensource.org/licenses/BSD-3-Clause>. """ import unittest from collections import OrderedDict from nn_dataflow.core import DataLayout from nn_dataflow.core import FmapRange, FmapRangeMap from nn_dataflow.core import NodeRegion from nn_dataflow.core import PhyDim2 from nn_dataflow.core import SchedulingResult class TestSchedulingResult(unittest.TestCase): ''' Tests for SchedulingResult. ''' def setUp(self): self.dict_loop = OrderedDict([('cost', 1.234), ('time', 123.4), ('ops', 1234), ('access', [[2, 3, 4], [30, 40, 50], [400, 500, 600], [5000, 6000, 7000]]), ]) self.dict_part = OrderedDict([('cost', 9.876), ('total_nhops', [123, 456, 789]), ]) frmap = FmapRangeMap() frmap.add(FmapRange((0, 0, 0, 0), (2, 4, 16, 16)), (PhyDim2(0, 0),)) self.ofmap_layout = DataLayout(origin=PhyDim2(0, 0), frmap=frmap, type=NodeRegion.DATA) def test_valid_args(self): ''' Valid arguments. ''' result = SchedulingResult(dict_loop=self.dict_loop, dict_part=self.dict_part, ofmap_layout=self.ofmap_layout) self.assertIn('ops', result.dict_loop) self.assertIn('total_nhops', result.dict_part) self.assertEqual(result.ofmap_layout, self.ofmap_layout) def test_invalid_dict_loop(self): ''' Invalid dict_loop. ''' with self.assertRaisesRegexp(TypeError, 'SchedulingResult: .*dict_loop.*'): _ = SchedulingResult(dict_loop={}, dict_part=self.dict_part, ofmap_layout=self.ofmap_layout) def test_invalid_dict_part(self): ''' Invalid dict_part. ''' with self.assertRaisesRegexp(TypeError, 'SchedulingResult: .*dict_part.*'): _ = SchedulingResult(dict_loop=self.dict_loop, dict_part={}, ofmap_layout=self.ofmap_layout) def test_invalid_ofmap_layout(self): ''' Invalid ofmap_layout. ''' with self.assertRaisesRegexp(TypeError, 'SchedulingResult: .*ofmap_layout.*'): _ = SchedulingResult(dict_loop=self.dict_loop, dict_part=self.dict_part, ofmap_layout=None) def test_total_cost(self): ''' Accessor total_cost. ''' result = SchedulingResult(dict_loop=self.dict_loop, dict_part=self.dict_part, ofmap_layout=self.ofmap_layout) self.assertAlmostEqual(result.total_cost, 1.234 + 9.876) def test_total_time(self): ''' Accessor total_time. ''' result = SchedulingResult(dict_loop=self.dict_loop, dict_part=self.dict_part, ofmap_layout=self.ofmap_layout) self.assertAlmostEqual(result.total_time, 123.4) def test_total_ops(self): ''' Accessor total_ops. ''' result = SchedulingResult(dict_loop=self.dict_loop, dict_part=self.dict_part, ofmap_layout=self.ofmap_layout) self.assertEqual(result.total_ops, 1234) def test_total_accesses(self): ''' Accessor total_cost. ''' result = SchedulingResult(dict_loop=self.dict_loop, dict_part=self.dict_part, ofmap_layout=self.ofmap_layout) self.assertSequenceEqual(result.total_accesses, [9, 120, 1500, 18000]) def test_total_noc_hops(self): ''' Accessor total_noc_hops. ''' result = SchedulingResult(dict_loop=self.dict_loop, dict_part=self.dict_part, ofmap_layout=self.ofmap_layout) self.assertEqual(result.total_noc_hops, 1368)
5,266
config.py
dataplayer12/tracking
0
2170984
FPS = 24 F_0 = 0.5 AUDIO_RATE = 44100 FOURCC= [*'mp4v'] FIND_OSCILLATING=True with open('temp/template_path.txt','r') as f: last_template=f.read() BASEDIR='/home/sandhulab/Dropbox/BioCloud' #a new folder should be created here for analysis biosensing_flag='ok' #after uploading videos to a folder, #create a folder named 'ok' (case insensitive) to begin analysis gui_flag=True #set to Flse if your computer does not have a monitor connected to it timeout=900 #in seconds NUM_FRAMES_IN_HISTORY=2 #first 2 frames are used to initialize the objects being tracked MAX_KALMAN_LEARNING_TIME=30 #how much time to allow kalman filter to learn motion model cropwindow=(1920,1080) delay=5 #time interval at which folders will be checked stopfile='./service_running.txt' #this file will be created automatically. #If you want to stop the server, delete this file. This will make sure that #if some analysis job is running, it is finished successfully before stopping the server
982
hs_geo_raster_resource/patches/manual_custom_migration_raster_ori_cov_meta_update_20161121.py
hydroshare/hydroshare
178
2169173
# This script is to update original coverage metadata to add crs string and crs datum info # to all raster resources (github issue #1520) # This should be run after model migration of 0006_auto_20161129_0121.py # how to run: # docker exec -i hydroshare python manage.py shell \ # < "hs_geo_raster_resource/patches/manual_custom_migration_raster_ori_cov_meta_update_20161121.py" # Note: use "-i" instead of "-it" in above command as # the latter may cause error "cannot enable tty mode on non tty input" import os import shutil import tempfile from hs_core.hydroshare.utils import resource_modified, get_file_from_irods from hs_file_types import raster_meta_extract from hs_geo_raster_resource.models import RasterResource copy_res_fail = [] meta_update_fail = [] meta_update_success = [] # start migration for each raster resource that has raster files for res in RasterResource.objects.all(): # copy all the resource files to temp dir temp_dir = '' res_file_tmp_path = '' try: temp_dir = tempfile.mkdtemp() for res_file in res.files.all(): res_file_tmp_path = get_file_from_irods(res_file) shutil.copy(res_file_tmp_path, os.path.join(temp_dir, os.path.basename(res_file_tmp_path))) shutil.rmtree(os.path.dirname(res_file_tmp_path)) vrt_file_path = [os.path.join(temp_dir, f) for f in os.listdir(temp_dir) if '.vrt' == f[-4:]].pop() except Exception as e: if os.path.isdir(temp_dir): shutil.rmtree(temp_dir) if os.path.isfile(res_file_tmp_path): shutil.rmtree(os.path.dirname(res_file_tmp_path)) copy_res_fail.append('{}:{}'.format(res.short_id, res.metadata.title.value)) continue # update the metadata for the original coverage information of all the raster resources try: if temp_dir and vrt_file_path: meta_updated = False # extract meta. # the reason to change current working directory to temp_dir is to make sure # the raster files can be found by Gdal for metadata extraction # when "relativeToVRT" parameter is set as "0" ori_dir = os.getcwd() os.chdir(temp_dir) res_md_dict = {} res_md_dict = raster_meta_extract.get_raster_meta_dict(vrt_file_path) os.chdir(ori_dir) shutil.rmtree(temp_dir) # update original coverage information for datum and coordinate string in django if res_md_dict['spatial_coverage_info']['original_coverage_info'].\ get('datum', None): res.metadata.originalCoverage.delete() v = {'value': res_md_dict['spatial_coverage_info']['original_coverage_info']} res.metadata.create_element('OriginalCoverage', **v) meta_updated = True # update the bag if meta is updated if meta_updated: resource_modified(res, res.creator) meta_update_success.append('{}:{}'.format(res.short_id, res.metadata.title.value)) except Exception as e: if os.path.isdir(temp_dir): shutil.rmtree(temp_dir) meta_update_fail.append('{}:{}'.format(res.short_id, res.metadata.title.value)) print((str(e))) print(res_md_dict) print(('Copy Fail Number: {} List: {}'.format(len(copy_res_fail), copy_res_fail))) print(('Success Number: {} List {}'.format(len(meta_update_success), meta_update_success))) print(('Update Fail Number: {} List {}'.format(len(meta_update_fail), meta_update_fail)))
3,696
src/models/architectures/efflab.py
AlessandroRuzzi/Computational-Intelligence-Lab-2021
0
2171656
from torch import Tensor, nn from .decoders.deeplabv3plus import DeepLabV3PlusDecoder from .encoders.efficientnet import EfficientNetEncoder class EffLab(nn.Module): def __init__( self, in_channels: int = 3, out_channels: int = 1, encoder_name: str = "efficientnet-b0", decoder_out_channels: int = 256, ) -> None: super().__init__() self.encoder = EfficientNetEncoder(name=encoder_name, dilated=True) self.decoder = DeepLabV3PlusDecoder( in_channels=self.encoder.out_channels, out_channels=decoder_out_channels, dilations=[12, 24, 36], ) self.head = nn.Sequential( nn.Conv2d(in_channels=decoder_out_channels, out_channels=1, kernel_size=1), nn.UpsamplingBilinear2d(scale_factor=4), ) def forward(self, x: Tensor) -> Tensor: xs = self.encoder(x) x = self.decoder(xs) return self.head(x)
977
paperoni/commands/command_search.py
notoraptor/paperoni
88
2171269
from coleo import Option, default, tooled from ..io import PapersFile, ResearchersFile from ..papers import Paper from .interactive import InteractiveCommands, default_commands from .searchutils import search search_commands = InteractiveCommands("Enter a command", default="s") @search_commands.register("b", "[b]ibtex") def _b(self, paper, **_): """Generate bibtex""" print(paper.bibtex()) return None @search_commands.register("p", "[p]df") def _p(self, paper, **_): """Download the PDF""" if not paper.download_pdf(): print("No PDF direct download link is available for this paper.") print( "Try to follow the paper's URLs (see the complete list" " with the l command)" ) return None @search_commands.register("s", "[s]kip") def _s(self, paper, **_): """Skip and see the next paper""" return True search_commands_with_coll = search_commands.copy() @search_commands_with_coll.register("r", "[r]emove") def _r(self, paper, collection): """Remove the paper from the collection""" collection.exclude(paper) print(f"Removed '{paper.title}' from collection") return True search_commands.update(default_commands) search_commands_with_coll.update(default_commands) @tooled def command_search(): """Query the Microsoft Academic database.""" # File containing the collection # [alias: -c] collection: Option & PapersFile = default(None) # Researchers file (JSON) # [alias: -r] researchers: Option & ResearchersFile = default(None) # Command to run on every paper command: Option = default(None) # Display long form for each paper long: Option & bool = default(False) papers = search(collection=collection, researchers=researchers) sch = search_commands if collection is None else search_commands_with_coll for paper in papers: instruction = sch.process_paper( paper, command=command, collection=collection, formatter=Paper.format_term_long if long else Paper.format_term, ) if instruction is False: break if collection is not None: collection.save()
2,216
aicup-python/model/custom_data.py
arijitgupta42/RAIC-2019
0
2170924
class CustomData: @staticmethod def read_from(stream): discriminant = stream.read_int() if discriminant == Log.TAG: return CustomData.Log.read_from(stream) if discriminant == Rect.TAG: return CustomData.Rect.read_from(stream) if discriminant == Line.TAG: return CustomData.Line.read_from(stream) if discriminant == Polygon.TAG: return CustomData.Polygon.read_from(stream) if discriminant == PlacedText.TAG: return CustomData.PlacedText.read_from(stream) raise Exception("Unexpected discriminant value") class Log(CustomData): TAG = 0 def __init__(self, text): self.text = text @staticmethod def read_from(stream): text = stream.read_string() return Log(text) def write_to(self, stream): stream.write_int(self.TAG) stream.write_string(self.text) def __repr__(self): return "Log(" + \ repr(self.text) + \ ")" CustomData.Log = Log from .vec2_float import Vec2Float from .vec2_float import Vec2Float from .color_float import ColorFloat class Rect(CustomData): TAG = 1 def __init__(self, pos, size, color): self.pos = pos self.size = size self.color = color @staticmethod def read_from(stream): pos = Vec2Float.read_from(stream) size = Vec2Float.read_from(stream) color = ColorFloat.read_from(stream) return Rect(pos, size, color) def write_to(self, stream): stream.write_int(self.TAG) self.pos.write_to(stream) self.size.write_to(stream) self.color.write_to(stream) def __repr__(self): return "Rect(" + \ repr(self.pos) + "," + \ repr(self.size) + "," + \ repr(self.color) + \ ")" CustomData.Rect = Rect from .vec2_float import Vec2Float from .vec2_float import Vec2Float from .color_float import ColorFloat class Line(CustomData): TAG = 2 def __init__(self, p1, p2, width, color): self.p1 = p1 self.p2 = p2 self.width = width self.color = color @staticmethod def read_from(stream): p1 = Vec2Float.read_from(stream) p2 = Vec2Float.read_from(stream) width = stream.read_float() color = ColorFloat.read_from(stream) return Line(p1, p2, width, color) def write_to(self, stream): stream.write_int(self.TAG) self.p1.write_to(stream) self.p2.write_to(stream) stream.write_float(self.width) self.color.write_to(stream) def __repr__(self): return "Line(" + \ repr(self.p1) + "," + \ repr(self.p2) + "," + \ repr(self.width) + "," + \ repr(self.color) + \ ")" CustomData.Line = Line from .colored_vertex import ColoredVertex class Polygon(CustomData): TAG = 3 def __init__(self, vertices): self.vertices = vertices @staticmethod def read_from(stream): vertices = [] for _ in range(stream.read_int()): vertices_element = ColoredVertex.read_from(stream) vertices.append(vertices_element) return Polygon(vertices) def write_to(self, stream): stream.write_int(self.TAG) stream.write_int(len(self.vertices)) for element in self.vertices: element.write_to(stream) def __repr__(self): return "Polygon(" + \ repr(self.vertices) + \ ")" CustomData.Polygon = Polygon from .vec2_float import Vec2Float from .text_alignment import TextAlignment from .color_float import ColorFloat class PlacedText(CustomData): TAG = 4 def __init__(self, text, pos, alignment, size, color): self.text = text self.pos = pos self.alignment = alignment self.size = size self.color = color @staticmethod def read_from(stream): text = stream.read_string() pos = Vec2Float.read_from(stream) alignment = TextAlignment(stream.read_int()) size = stream.read_float() color = ColorFloat.read_from(stream) return PlacedText(text, pos, alignment, size, color) def write_to(self, stream): stream.write_int(self.TAG) stream.write_string(self.text) self.pos.write_to(stream) stream.write_int(self.alignment) stream.write_float(self.size) self.color.write_to(stream) def __repr__(self): return "PlacedText(" + \ repr(self.text) + "," + \ repr(self.pos) + "," + \ repr(self.alignment) + "," + \ repr(self.size) + "," + \ repr(self.color) + \ ")" CustomData.PlacedText = PlacedText
4,802
RaspberryPi/test/tsl2561.py
ajaichemmanam/greenServer
3
2169944
import smbus import time # Get I2C bus bus = smbus.SMBus(1) # TSL2561 address, 0x39(57) # Select control register, 0x00(00) with command register, 0x80(128) # 0x03(03) Power ON mode bus.write_byte_data(0x39, 0x00 | 0x80, 0x03) # TSL2561 address, 0x39(57) # Select timing register, 0x01(01) with command register, 0x80(128) # 0x02(02) Nominal integration time = 402ms bus.write_byte_data(0x39, 0x01 | 0x80, 0x02) time.sleep(0.5) # Read data back from 0x0C(12) with command register, 0x80(128), 2 bytes # ch0 LSB, ch0 MSB data = bus.read_i2c_block_data(0x39, 0x0C | 0x80, 2) # Read data back from 0x0E(14) with command register, 0x80(128), 2 bytes # ch1 LSB, ch1 MSB data1 = bus.read_i2c_block_data(0x39, 0x0E | 0x80, 2) # Convert the data ch0 = data[1] * 256 + data[0] ch1 = data1[1] * 256 + data1[0] # Output data to screen print("Full Spectrum(IR + Visible) :%d lux" %ch0) print("Infrared Value :%d lux" %ch1) print("Visible Value :%d lux" %(ch0 - ch1))
964
my_games/snake/lib/model/block.py
hsadler/learn-pygame
0
2170978
from lib.model.game_model import GameModel # block game object class Block(GameModel): def __init__( self, game, surface, parent, x_pos, y_pos, grid_index, collidable=False, color=None, stroke_color=None, stroke_width=None ): super().__init__( game=game, surface=surface, parent=parent, x_pos=x_pos, y_pos=y_pos, collidable=collidable ) self.grid_index = grid_index self.color = color self.stroke_color = stroke_color self.stroke_width = stroke_width def draw(self): # block stroke fill stroke_rect = self.surface.get_rect() self.surface.fill(color=self.stroke_color, rect=stroke_rect) # block color fill block_color_rect = self.surface.get_rect().inflate( self.stroke_width * -1, self.stroke_width * -1 ) self.surface.fill(color=self.color, rect=block_color_rect) def get_grid_index(self): return self.grid_index def set_appearance(self, color, stroke_color, stroke_width): self.set_color(color) self.set_stroke_color(stroke_color) self.set_stroke_width(stroke_width) def set_color(self, color): self.color = color def get_color(self): return self.color def set_stroke_color(self, stroke_color): self.stroke_color = stroke_color def get_stroke_color(self): return self.stroke_color def set_stroke_width(self, stroke_width): self.stroke_width = stroke_width def get_stroke_width(self): return self.stroke_width def get_string_formatted_grid_index(self): x, y = self.get_grid_index() return "x={0}__y={1}".format(x, y) def inspect(self): print({ 'rect': self.get_pos_rect(), 'pos': [self.x, self.y], 'collidable': self.collidable })
1,670
backend/app/app/models/__init__.py
AndreyKlychnikov/startup-together
0
2171317
from .item import Item from .project import Project from .user import User, UserProfile from .project_membership import ProjectMembership
138
smtenv/envs/avoidgame.py
0xSMT/smt-env
0
2171525
# <NAME> (2020) import os os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide" import pygame, math, sys, random import pygame.constants from smtenv.basegame import BaseGame # from gym.spaces import Box, Dict def unitvec(x, y): mag = math.sqrt(x * x + y * y) if mag == 0: return 0, 0 else: return (x / mag), (y / mag) def rescale(x, y, scale): return scale * x, scale * y def clamp(x, mini, maxi): return max(min(x, maxi), mini) class Entity(pygame.sprite.Sprite): def __init__(self, max_speed, radius, fric, SCREEN_BOUNDS, x, y): self.max_speed = max_speed self.radius = radius self.fric = fric self.vx = 0 self.vy = 0 self.ax = 0 self.ay = 0 self.SCREEN_BOUNDS = SCREEN_BOUNDS pygame.sprite.Sprite.__init__(self) image = pygame.surface.Surface((2 * radius, 2 * radius)) image.fill((0, 0, 0, 0)) image.set_colorkey((0, 0, 0)) self.x = x self.y = y self.image = image def speed(self): return math.sqrt(self.vx ** 2 + self.vy ** 2) def update(self, dt): uvx, uvy = unitvec(self.vx, self.vy) if uvx != 0 or uvy != 0: self.dirx = uvx self.diry = uvy uvx, uvy = rescale(uvx, uvy, -self.fric * (self.speed() / self.max_speed)) self.vx = self.vx + (self.ax + uvx) * dt self.vy = self.vy + (self.ay + uvy) * dt spd = self.speed() if spd > self.max_speed: self.vx = (self.vx / spd) * self.max_speed self.vy = (self.vy / spd) * self.max_speed elif spd < 0.5: self.vx = 0 self.vy = 0 self.x = self.x + self.vx * dt self.y = self.y + self.vy * dt self.x = clamp(self.x, 0 + self.radius, self.SCREEN_BOUNDS[0] - self.radius) self.y = clamp(self.y, 0 + self.radius, self.SCREEN_BOUNDS[1] - self.radius) def draw(self, screen): screen.blit(self.image, (self.x - self.radius, self.y - self.radius)) class Player(Entity): def __init__(self, max_speed, radius, fric, SCREEN_BOUNDS): super(Player, self).__init__(max_speed, radius, fric, SCREEN_BOUNDS, SCREEN_BOUNDS[0] // 2, SCREEN_BOUNDS[1] // 2) pygame.draw.circle( self.image, (0, 255, 0), (radius, radius), radius, 0 ) class Enemy(Entity): def __init__(self, max_speed, radius, fric, SCREEN_BOUNDS, x, y, acc): super(Enemy, self).__init__(max_speed, radius, fric, SCREEN_BOUNDS, x, y) self.acc = acc pygame.draw.circle( self.image, (255, 0, 0), (radius, radius), radius, 0 ) def update(self, dt, px, py): ux, uy = unitvec(-self.x + px, -self.y + py) ux, uy = rescale(ux, uy, self.acc) self.ax = ux self.ay = uy super(Enemy, self).update(dt) class AvoidGame(BaseGame): # REQUIRED method def __init__(self, width=200, height=200): # Actions the player agent in the simulation can take actions = { "left": pygame.constants.K_LEFT, "right": pygame.constants.K_RIGHT, "up": pygame.constants.K_UP, "down": pygame.constants.K_DOWN } # Simulation specific initialization (include here stuff for intializing class itself) config = { 'enemy': { 'radius': 10, 'max_speed': 30, 'acc': 800 }, 'player': { 'radius': 20, 'max_speed': 50, 'acc': 900 }, 'fric': 400, 'width': width, 'height': height } # Run the initialization on the base class BaseGame.__init__(self, width, height, actions=actions, config=config) def _handle_player_events(self): for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() elif event.type == pygame.KEYDOWN: key = event.key if key == self.actions["left"]: self.player.ax = -self.config['player']['acc'] elif key == self.actions["right"]: self.player.ax = self.config['player']['acc'] elif key == self.actions["up"]: self.player.ay = -self.config['player']['acc'] elif key == self.actions["down"]: self.player.ay = self.config['player']['acc'] elif event.type == pygame.KEYUP: key = event.key if key == self.actions["left"] and self.player.vx < 0: self.player.ax = 0 elif key == self.actions["right"] and self.player.vx > 0: self.player.ax = 0 elif key == self.actions["up"] and self.player.vy < 0: self.player.ay = 0 elif key == self.actions["down"] and self.player.vy > 0: self.player.ay = 0 # REQUIRED method def init(self): self.score = 0 # Simulation specific initialization (include here stuff for intializing a new game # in this class, since a class instance can run its game multiple times) self.player = Player( self.config['player']['max_speed'], self.config['player']['radius'], self.config['fric'], (self.config['width'], self.config['height']) ) x = round((self.config['width'] / 4) * random.random()) y = round((self.config['height'] / 4) * random.random()) self.enemy = Enemy( self.config['enemy']['max_speed'], self.config['enemy']['radius'], self.config['fric'], (self.config['width'], self.config['height']), x, # TODO: Make it generate some distance from player y, # (random dist, random theta => convert to x, y) self.config['enemy']['acc'] ) self.lives = 1 # REQUIRED method def get_score(self): return self.score # REQUIRED method def is_game_over(self): # Simulation specific game over condition return self.lives == 0 # REQUIRED method -- body of game itself def step(self, dt): # Adjust score # Update game state for checking game_over # (NOTE: Game can be locked to a certain FPS (keeping dt constant) by # setting self.allowed_fps to desried value) dt /= 1000 self.screen.fill((0, 0, 0)) self._handle_player_events() self.player.update(dt) # self.player.draw(self.screen) self.enemy.update(dt, self.player.x, self.player.y) dist = math.hypot(self.player.x - self.enemy.x, self.player.y - self.enemy.y) - (self.player.radius + self.enemy.radius) if dist < 0: self.lives = 0 # elif self.player.x # self.enemy.draw(self.screen) self.score += dt * dist def draw(self): self.player.draw(self.screen) self.enemy.draw(self.screen) # REQUIRED method (if you want the state space to be not the screen itself, highly # advised for simulation purposes) def get_game_state(self): # query for particular state information here state = { "player_x": self.player.x, "player_y": self.player.y, "player_vx": self.player.vx, "player_vy": self.player.vy, "enemy_x": self.enemy.x, "enemy_y": self.enemy.y, "enemy_vx": self.enemy.vx, "enemy_vy": self.enemy.vy } return state if __name__ == "__main__": import numpy as np game = AvoidGame(width=256, height=256) game.setup(display=True) game.init() while True: dt = game.clock.tick_busy_loop(30) if game.is_game_over(): game.reset() game.step(dt) game.draw() pygame.display.update()
8,312
setup.py
zmitchell/trcdproc
0
2169973
import io import os from setuptools import setup, find_packages here = os.path.abspath(os.path.dirname(__file__)) # Import the README and use it as the long-description. # Note: this will only work if 'README.md' is present in your MANIFEST.in file! with io.open(os.path.join(here, 'README.md'), encoding='utf-8') as f: readme = '\n' + f.read() # with open('README.md') as readme_file: # readme = readme_file.read() requirements = [ 'h5py>=2.7.0', 'numpy>=1.13.1', 'scipy>=0.19.1', ] test_requirements = [ 'pytest', ] setup( name='trcdproc', version='0.0.0', description="This is a library for handling and processing TRCD data stored in HDF5 files.", long_description=readme + '\n\n', author="<NAME>", author_email='<EMAIL>', url='https://github.com/zmitchell/trcdproc', packages=find_packages(exclude='tests',), package_dir={'trcdproc': 'trcdproc'}, include_package_data=True, install_requires=requirements, license="MIT license", zip_safe=False, keywords='trcdproc', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6' ], test_suite='tests', tests_require=test_requirements, entry_points={ 'console_scripts': [ 'trcdproc = trcdproc.__main__:main' ] } )
1,549
src/merge_sorted_linked_lists.py
redfast00/daily-algorithm-challenge
0
2170793
import heapq def merge_sorted_linked_lists(*nodes): '''Merges sorted linked lists into one linked list. >>> from utils.linked_list import Node >>> first = Node.from_list([1,2,3,5,8]) >>> second = Node.from_list([2,3,5,6,7,10]) >>> merge_sorted_linked_lists(first, second).to_list() [1, 2, 2, 3, 3, 5, 5, 6, 7, 8, 10] ''' # Added idx to have an additional sorting parameter to prevent # nodes from linked lists getting compared priority_queue = [(node.value, idx, node) for idx, node in enumerate(nodes)] heapq.heapify(priority_queue) first = get_first_and_update(priority_queue) current = first while priority_queue: node = get_first_and_update(priority_queue) current.next = node current = node return first def get_first_and_update(priority_queue): (value, idx, node) = heapq.heappop(priority_queue) new_node = node.next if new_node is not None: heapq.heappush(priority_queue, (new_node.value, idx, new_node)) return node
1,039
src/generate/export/xtemp/configures.py
jwpttcg66/ExcelToTransfer
1
2170364
# -*- coding: utf-8 -*- configures = { "example": {"arguments": {"describe": "这是一张范例表", "multiKey": False, "version": 100, }, "types": {"ID": (0, "ID", "编号", "int", ), "describe": (2, "describe", "描述", "String", ), "drops": (4, "drops", "掉落关卡", "String", ), "name": (1, "name", "名称", "String", ), "quality": (3, "quality", "品质", "int", ), }, }, }
350
BOJ2740.py
INYEONGKIM/BOJ
2
2167660
n,m=map(int,input().split());a=[];r=[];res="" for i in range(n): a.append([int(j) for j in input().split()]) m,k=map(int,input().split());b=[] for i in range(m): b.append([int(j) for j in input().split()]) for i in range(n): r.append([0]*k) for i in range(n): for j in range(k): for x in range(m): r[i][j]+=a[i][x]*b[x][j] res+=str(r[i][j]) if j<k-1: res+=" " else: res+="\n" print(res,end="")
478
tests/decorate_client_test.py
drolando/swagger_zipkin
11
2171631
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import unicode_literals import mock import pytest from swagger_zipkin.decorate_client import decorate_client def test_decorate_client_non_attr(): client = object() with pytest.raises(AttributeError): decorate_client(client, mock.Mock(), 'attr') def test_decorate_client_non_callable(): client = mock.Mock() client.attr = 1 decorated = decorate_client(client, mock.Mock(), 'attr') assert client.attr == decorated def test_decorate_client_callable_being_invoked(): def foo(a, b, c): pass client = mock.Mock() client.attr = foo decorated_foo = mock.Mock() decorated_callable = decorate_client(client, decorated_foo, 'attr') assert decorated_callable.operation == foo # Ensure that it's `decorated_foo` being called, not `foo` decorated_callable() decorated_foo.assert_called_once_with('attr') def test_decorate_client_callable_attribute_retrieved(): class Foo(object): def __init__(self): self.bar = 'bar' def __call__(self, a, b, c): return a + b + c client = mock.Mock() client.attr = Foo() decorated_foo = mock.Mock(return_value=100) decorated_callable = decorate_client(client, decorated_foo, 'attr') # `decorated_foo` is called, not `Foo().__call__` assert decorated_callable(2, 3, 7) == 100 # Foo().bar is accessible after it is decorated assert decorated_callable.bar == 'bar'
1,530
enEngineUT.py
keshava/kampa
1
2171134
# -*- coding: utf-8 -*- """ Copyright 2016 <NAME> Licensed under the Apache License, Version 2.0 (the License); you may not use this file except in compliance with the License. You may obtain a copy of the License at httpwww.apache.orglicensesLICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """ Created on Wed Nov 16 20:45:40 2016 @author: kdeyev """ import enEngine def runTest(filename): engine = enEngine.Engine(True) engine.loadFromFile (filename) engine.calc() if __name__ == "__main__": runTest ("jobs/UT.job")
851
Check.py
Bob-Z/RandoMame
2
2171754
import Config import XmlGetter from pathlib import Path def start(): print("Parsing MAME input") machine_list, soft_list = XmlGetter.get() print("Parsing MAME input DONE") print("File type:", "merged") needed_rom_file_list = get_needed_rom_file("merged", machine_list) existing_rom_file = get_existing_rom_file() print("") print("Missing ROMS file:") print("==================") print("") for needed in needed_rom_file_list: if needed not in existing_rom_file: print(needed) print("") print("Useless ROMS file:") print("==================") print("") for existing in existing_rom_file: if existing not in needed_rom_file_list: print(existing) # needed_directory_list = get_dir("merged") # for soft_list_dir in needed_directory_list: # needed_soft_file_list = get_soft_file("merged", soft_list_dir) def get_needed_rom_file(rom_type, machine_xml): needed_rom_file_list = [] total_machine_qty = 0 total_parent_qty = 0 total_clone_qty = 0 for machine in machine_xml: total_machine_qty = total_machine_qty + 1 if 'cloneof' in machine.attrib: total_clone_qty = total_clone_qty + 1 else: total_parent_qty = total_parent_qty+1 machine_qty = 0 parent_qty = 0 clone_qty = 0 for machine in machine_xml: machine_qty = machine_qty + 1 if "cloneof" not in machine.attrib: # Not a clone parent_qty = parent_qty + 1 has_rom = is_machine_need_roms(machine, machine_xml) need_file = True if "romof" in machine.attrib: # use BIOS need_file = False # Get romof machine XML romof_machine = None romof_name = machine.attrib['romof'] # for romof_m in machine_xml: # if romof_m.attrib['name'] == romof_name: # romof_machine = romof_m # break command = ".//machine[@name=\"" + romof_name + "\"]" romof_machine = machine_xml.find(command) # Check if one ROM of current machine is not in romof machine for rom_current in machine.findall('rom'): # for each current machine's ROMs if 'status' not in rom_current.attrib or rom_current.attrib['status'] != 'nodump': # if it's dumped rom_found = False for romof_rom in romof_machine.findall('rom'): if 'sha1' in romof_rom: if romof_rom.attrib['sha1'] == rom_current.attrib['sha1']: # if ROM exists in romof machine rom_found = True break elif 'crc' in romof_rom: if romof_rom.attrib['crc'] == rom_current.attrib['crc']: # if ROM exists in romof machine rom_found = True break else: if romof_rom.attrib['name'] == rom_current.attrib['name']: # if ROM exists in romof machine rom_found = True break if rom_found is False: need_file = True break if has_rom is True and need_file is True: if rom_type == "merged": if "cloneof" not in machine.attrib: # Not a clone needed_rom_file_list.append(machine.attrib['name']) else: needed_rom_file_list.append(machine.attrib['name']) else: clone_qty = clone_qty + 1 if machine_qty % 10 == 0: print(int(machine_qty / total_machine_qty * 100), "% : parent = ", parent_qty, "/", total_parent_qty, ", clone " "= ", clone_qty, "/", total_clone_qty, end='\r') return needed_rom_file_list def is_machine_need_roms(parent_machine, machine_xml): parent_name = parent_machine.attrib['name'] parent_and_clone = [parent_machine] for clone_machine in machine_xml: if 'cloneof' in clone_machine.attrib and clone_machine.attrib['cloneof'] == parent_name: parent_and_clone.append(clone_machine) has_rom = False for m in parent_and_clone: if has_rom is False: for r in m.findall("rom"): if r.attrib['status'] != 'nodump': has_rom = True break return has_rom def get_existing_rom_file(): existing_rom_file = [] path = Path(Config.check) for file in path.iterdir(): if file.is_file(): existing_rom_file.append(file.stem) return existing_rom_file
5,074
src/HavokMud/data_loader.py
Beirdo/HavokMud-redux
0
2171034
import json import logging import os import sys logger = logging.getLogger(__name__) dataDir = os.path.join(os.getcwd(), "data") def load_data_file(filename): filename = os.path.join(dataDir, filename) try: with open(filename, "r") as f: data = json.load(f) except Exception as e: logger.error("Exception while loading data: %s" % e) data = {} return data
413
tests/functional/test_removed_from_room.py
ciandt/google_hangouts_chat_bot
8
2169222
from google_hangouts_chat_bot.commands import Commands from google_hangouts_chat_bot.event_handler import EventHandler from tests.functional.helpers import load_payload def test_removed_from_room(): payload = load_payload("removed_from_room") EventHandler(payload, Commands()).process()
297
tests/utils/observer_test.py
dnephin/Tron
0
2170885
from testify import run, setup, assert_equal, TestCase, turtle from tests.assertions import assert_length from tron.utils.observer import Observable, Observer class ObservableTestCase(TestCase): @setup def setup_observer(self): self.obs = Observable() def test_attach(self): func = lambda: 1 self.obs.attach('a', func) assert_equal(len(self.obs._observers), 1) assert_equal(self.obs._observers['a'], [func]) def test_listen_seq(self): func = lambda: 1 self.obs.attach(['a', 'b'], func) assert_equal(len(self.obs._observers), 2) assert_equal(self.obs._observers['a'], [func]) assert_equal(self.obs._observers['b'], [func]) def test_notify(self): handler = turtle.Turtle() self.obs.attach(['a', 'b'], handler) self.obs.notify('a') assert_equal(len(handler.handler.calls), 1) self.obs.notify('b') assert_equal(len(handler.handler.calls), 2) class ObserverClearTestCase(TestCase): @setup def setup_observer(self): self.obs = Observable() func = lambda: 1 self.obs.attach('a', func) self.obs.attach('b', func) self.obs.attach(True, func) self.obs.attach(['a', 'b'], func) def test_clear_listeners_all(self): self.obs.clear_observers() assert_equal(len(self.obs._observers), 0) def test_clear_listeners_some(self): self.obs.clear_observers('a') assert_equal(len(self.obs._observers), 2) assert_equal(set(self.obs._observers.keys()), set([True, 'b'])) def test_remove_observer_none(self): observer = lambda: 2 self.obs.remove_observer(observer) assert_equal(set(self.obs._observers.keys()), set([True, 'a', 'b'])) assert_length(self.obs._observers['a'], 2) assert_length(self.obs._observers['b'], 2) assert_length(self.obs._observers[True], 1) def test_remove_observer(self): observer = lambda: 2 self.obs.attach('a', observer) self.obs.attach('c', observer) self.obs.remove_observer(observer) assert_length(self.obs._observers['a'], 2) assert_length(self.obs._observers['b'], 2) assert_length(self.obs._observers[True], 1) assert_length(self.obs._observers['c'], 0) class MockObserver(Observer): def __init__(self, obs, event): self.obs = obs self.event = event self.watch(obs, event) self.has_watched = 0 def handler(self, obs, event): assert_equal(obs, self.obs) assert_equal(event, self.event) self.has_watched += 1 class ObserverTestCase(TestCase): @setup def setup_observer(self): self.obs = Observable() def test_watch(self): event = "FIVE" handler = MockObserver(self.obs, event) self.obs.notify(event) assert_equal(handler.has_watched, 1) self.obs.notify("other event") assert_equal(handler.has_watched, 1) self.obs.notify(event) assert_equal(handler.has_watched, 2) if __name__ == "__main__": run()
3,152
Mundo 3/Aulas/Aula 20 - Funcoes Parte 1.py
marioarl/python
1
2169470
def lin30(): print('-=' * 30) a = 4 b = 5 s = a + b print(s) a = 8 b = 9 s = a + b print(s) a = 2 b = 1 s = a + b print(s) lin30() def soma(a, b): s = a + b print(s) #programa principal soma(4, 5) soma(8, 9) soma(2, 1) lin30() soma(a=4, b=5) lin30() soma(b=4, a=5) #pode tambem trocar os parametros lin30() def somb(a, b): print(f'A = {a} e B = {b}') s = a+ b print(f'A soma A + B = {s}') somb(b=4, a=5) lin30() def contador(*num): print(num) contador(2, 1, 7) contador(8, 0) contador(4, 4, 7, 6, 2) lin30() def contador1(*num): tam = len(num) print(f'Recebi os valores {num} e são ao todo {tam} numeros') contador1(2, 1, 7) contador1(8, 0) contador1(4, 4, 7, 6, 2)
721
examples/AIJ Case D/correlation_comparison.py
SimScaleGmbH/external-building-aerodynamics
0
2171732
import pathlib import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd name = "TemoporalIndipendence.csv" path = pathlib.Path.cwd() / name df = pd.read_csv(path, index_col=0) X = np.arange(3) mpl.rcParams['figure.dpi'] = 2400 fig1, ax = plt.subplots(figsize=(1, 1), dpi=1200) # ax = fig1.add_axes([0,0,1,1]) test = df.iloc[1].to_numpy() velocity = ax.bar(X + 0.00, df.iloc[0].to_numpy(), color='b', width=0.25) tke = ax.bar(X + 0.25, df.iloc[1].to_numpy(), color='r', width=0.25) ax.set_ylabel("R Value (-)", fontsize=5) ax.set_xlabel("Temporal Resolution", fontsize=5) ax.legend(labels=['Velocity', 'TKE'], loc='lower center', fontsize=3, bbox_to_anchor=(0.5, -0.6), frameon=False) ax.set_ylim(0.5, 1) ax.bar_label(velocity, padding=3, fontsize=3, rotation=90) ax.bar_label(tke, padding=3, fontsize=3, rotation=90) plt.title("Correlations of Different" + "\n" + "Temporal Resolutions", fontsize=7) plt.xticks([0, 1, 2], ('Moderate', 'High', 'Very High'), fontsize=3) plt.yticks(fontsize=3) plt.savefig("temporal_resolutions.png", bbox_inches='tight')
1,111
scripts/GwasCatalogDigger.py
lorenzo-bioinfo/ms_data_analysis
0
2171563
import requests import pandas as pd import urllib.error import os ''' This module provides a class to work with the downloaded db of Gwas Catalog. I had to write this because I couldn't access (for whatever reason) the Gwas Catalog Rest API documentation. The class is initialitiated by downloading the GWAS Catalog and then extracting the various fields to create a Gwas Catalog object. Getter methods will be defined to obtain required information ''' url = 'https://www.ebi.ac.uk/gwas/api/search/downloads/alternative' #catalog class class GwasCatalog: def __init__(self, catalog): self.catalog = catalog #prints the catalog def showCatalog(self): print(self.catalog) #shows catalog columns indexes def showAttributes(self): for column in list(self.catalog.columns): print(column) #extracts single column from catalog as pandas Series object def getColumn(self, index): series = self.catalog[index] return series #search a column and returns all matching values rows def batchSearch(self, column_name, ids): results = self.catalog[self.catalog[column_name].isin(ids)] return results #same as batchSearch() but returns only selected columns (features) def batchRetrieve(self, column_name, ids, features): df = self.catalog[self.catalog[column_name].isin(ids)] series = [df[column_name]] for feature in features: series.append(df[feature]) print(len(series)) dataf = pd.DataFrame(series).T return dataf #get catalog from local file def getCatalog(path): df = pd.read_csv(path, sep = '\t', header = 0, low_memory = False) catalog = GwasCatalog(df) return catalog #download latest catalog from EBI GwasCatalog def updatedCatalog(filename, url = url, remove = True): try: print('Downloading GWAS catalog') print('Depending on your connection speed this may take up to some minutes...') f = requests.get(url).text print('Download Completed\n') with open(filename, 'w') as file: file.write(f) df = pd.read_csv(filename, sep = '\t', low_memory = False) if remove: os.remove(filename) except urllib.error.HTTPError: print('The URL is no longer valid or the server is unreachable.\n') url = input('Please insert a new URL: ') try: print('Downloading GWAS catalog') print('Depending on your connection speed this may take up to some minutes...') f = requests.get(url).text print('Download Completed\n') with open(filename, 'w') as file: file.write(f) df = pd.read_csv(filename, sep = '\t', low_memory = False) os.remove('catalog.tsv') except urllib.error.HTTPError: print('Operation couldn\'t be performed. Exiting...') exit() catalog = GwasCatalog(df) return catalog
2,682
bot.py
FatherUsarox/generadorqr
0
2163095
import os import time import logging from telegram import ChatAction from telegram import ReplyKeyboardMarkup, ReplyKeyboardRemove, Update from telegram.ext import ( Updater, CommandHandler, MessageHandler, Filters, ConversationHandler, ) import qrcode # Enable logging logging.basicConfig( format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO ) logger = logging.getLogger(__name__) INPU = range(4) def start(update, context): update.message.reply_text("Qué deseas hacer?\n\n Usa \Qr para generar un qr") def qr_command_handler(update, context): update.message.reply_text("Envía el texto para generar el qr:\n") return INPU def generate_qr(text): filename = text + ".jpg" image = qrcode.make(text) image.save(filename) return filename def send_qr(img, chat): chat.send_action( action=ChatAction.UPLOAD_PHOTO, timeout = None ) chat.send_photo( photo = open(img, 'rb') ) os.unLink(img) def inputtext(update,context): #bot.send_message(chat_id=update.message.chat_id, text=update.message.text) text = update.message.text #here because we want to retrieve the text from the original message and send the same thing back chat = update.message.chat filename = generate_qr(text) send_qr(filename, chat) return ConversationHandler.END def main() -> None: updater = Updater("5202799890:AAESmZj4AR7SsTo6UlJUQYnR5Mbnq-bBWEM") dp = updater.dispatcher dp.add_handler(CommandHandler("start",start)) conv_handler = ConversationHandler( entry_points=[CommandHandler('qr', qr_command_handler)], states={ INPU: [MessageHandler(Filters.text & ~Filters.command, inputtext)], }, fallbacks=[], ) dp.add_handler(conv_handler) # Start the Bot updater.start_polling() updater.idle() if __name__ == '__main__': main()
1,963
methods/CAE/run_exp.py
IvanNik17/Seasonal-Changes-in-Thermal-Surveillance-Imaging
2
2171515
from argparse import ArgumentParser import os, sys import cv2 import numpy as np import pandas as pd import torch import pytorch_lightning as pl from pytorch_lightning import Trainer, loggers from torchsummary import summary import torch.nn.functional as F sys.path.append('../../loaders/pytorch_lightning/') from datamodule import DataModule from models.autoencoder import Autoencoder from argparse import Namespace def train(model, hparams, logger): train = pd.read_csv("../../splits/{}_{}_5000.csv".format(hparams.season, hparams.dataset)) train["DateTime"] = pd.to_datetime(train['DateTime']) hparams.train_selection = train test = pd.read_csv("../../splits/apr_month.csv") test["DateTime"] = pd.to_datetime(test['DateTime']) hparams.test_selection = test dm = DataModule(hparams) dm.setup() print("Training set contains {} samples".format(len(dm.data_train))) print("with shape {}".format(dm.data_train[0].shape)) # print detailed summary with estimated network size summary(model, (1, 384, 288), device="cpu") trainer = Trainer(gpus=hparams.gpus, max_epochs=hparams.max_epochs, logger=logger) trainer.fit(model, dm) output_dir = 'trained_models/' if not os.path.exists(output_dir): os.mkdir(output_dir) exp_dir = os.path.join(output_dir,"{}_{}".format(hparams.season, hparams.dataset)) if not os.path.exists(exp_dir): os.mkdir(exp_dir) torch.save(model.encoder, os.path.join(exp_dir,"encoder.pt")) torch.save(model.decoder, os.path.join(exp_dir,"decoder.pt")) trainer.test(model) def test(model, hparams, test_sets, show=False): # runs on CPU with torch.no_grad(): model.encoder = torch.load("trained_models/{}_{}/encoder.pt".format(hparams.season, hparams.dataset)) model.decoder = torch.load("trained_models/{}_{}/decoder.pt".format(hparams.season, hparams.dataset)) model.encoder.eval() model.decoder.eval() hparams.get_metadata = True for test_set in test_sets: test = pd.read_csv("../../splits/{}.csv".format(test_set)) test["DateTime"] = pd.to_datetime(test['DateTime']) hparams.test_selection = test dm = DataModule(hparams) dm.setup(stage='test') results_list = [] for batch_id, batch in enumerate(dm.test_dataloader()): imgs, paths, metas = batch encs = model.encoder(imgs) recs = model.decoder(encs) for img, path, meta, enc, rec in zip(imgs, paths, metas, encs, recs): #folder_name, clip_name, image_number, DateTime = meta.split(',')[:4] results = meta.split(',') loss = F.mse_loss(rec, img).numpy() results_list.append(results+[str(np.round(loss, 4))]) if show: diff = img - rec diff = torch.abs(diff) diff = diff[0].mul(255).byte().numpy() img = img[0].mul(255).byte().numpy() rec = rec[0].mul(255).byte().numpy() cv2.imshow("in_vs_rec_vs_diff",cv2.vconcat([img, rec, diff])) key = cv2.waitKey() if key == 27: break if show: if key == 27: break # save all the new info results_df = pd.DataFrame.from_records(results_list, columns=['Folder name', 'Clip Name', 'Image Number', 'DateTime', 'Temperature', 'Humidity', 'Precipitation', 'Dew Point', 'Wind Direction', 'Wind Speed', 'Sun Radiation Intensity', 'Min of sunshine latest 10 min', 'MSE']) results_df.to_csv("trained_models/{}_{}/results_{}.csv".format(hparams.season, hparams.dataset, test_set), index=False) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--exp", type=str, default="month", help="specify which experiment to run: day, week, month") parser.add_argument("--path", type=str, default="/home/aau/github/data/thermal/sensor_paper", help="specify where images are located") parser.add_argument("--model", type=str, default="CAE", help="specify which experiment model to use") parser.add_argument("--train", default=False, action="store_true", help="Set if necessary to train a new model") parser.add_argument("--show", default=False, action="store_true", help="Set to show input and reconstructions") args = parser.parse_args() # defualt configuration hparams = Namespace(**{'model': 'CAE', 'dataset': 'day', 'season': 'feb', 'img_dir': '/home/aau/github/data/thermal/sensor_paper', 'train_selection': None, 'test_selection': None, 'get_metadata': False, # model 'nc': 1, 'nz': 8, 'nfe': 32, 'nfd': 32, # training 'log_dir': 'lightning_logs', 'gpus': 1, 'max_epochs': 100, 'learning_rate': 1e-4, 'batch_size': 128, 'num_workers':12}) hparams.model = args.model hparams.dataset = args.exp logger = loggers.TensorBoardLogger(hparams.log_dir, name=f"{hparams.season}_{hparams.dataset}", default_hp_metric=False) model = Autoencoder(hparams) if args.train: train(model, hparams, logger) test_sets = ['jan', 'apr', 'aug'] test(model, hparams, test_sets, show=args.show)
6,784
tests/unit/test_intercom.py
sbarysiuk/python-intercom
0
2171630
# # Copyright 2012 keyes.ie # # License: http://jkeyes.mit-license.org/ # import os from . import create_response from mock import patch from nose.tools import raises from unittest import TestCase from intercom import ServerError from intercom import AuthenticationError from intercom import ResourceNotFound from intercom import Intercom from intercom.user import CustomData from intercom.user import SocialProfile from intercom.user import User class IntercomUsersTest(TestCase): @raises(AuthenticationError) @patch('requests.request', create_response(401)) def test_create_user_identifiers(self): Intercom.create_user() @patch('requests.request', create_response(200, 'create_user_valid.json')) def test_create_valid(self): resp = Intercom.create_user(email='<EMAIL>') self.assertEqual(None, resp['user_id']) self.assertEqual('<EMAIL>', resp['email']) @raises(AuthenticationError) @patch('requests.request', create_response(401)) def test_get_user_identifiers(self): Intercom.get_user() @patch('requests.request', create_response(200, 'get_user_valid.json')) def test_get_user_valid(self): resp = Intercom.get_user(email='<EMAIL>') self.assertEqual(None, resp['user_id']) self.assertEqual('<EMAIL>', resp['email']) @raises(AuthenticationError) @patch('requests.request', create_response(401)) def test_create_user_identifiers(self): Intercom.update_user() @patch('requests.request', create_response(200, 'update_user_valid.json')) def test_update_user_valid(self): resp = Intercom.update_user( email='<EMAIL>', custom_data={'age': '42'} ) self.assertEqual(None, resp['user_id']) self.assertEqual('<EMAIL>', resp['email']) self.assertEqual('42', resp['custom_data']['age']) @raises(AuthenticationError) @patch('requests.request', create_response(401)) def test_get_users_identifiers(self): Intercom.create_user() @patch('requests.request', create_response(200, 'get_users_valid.json')) def test_get_users_valid(self): resp = Intercom.get_users() self.assertEqual(3, len(resp['users'])) self.assertEqual(3, resp['total_count']) self.assertEqual(1, resp['total_pages']) @raises(ResourceNotFound) @patch('requests.request', create_response(404, '404.json')) def test_not_found(self): resp = Intercom.get_users() @raises(ServerError) @patch('requests.request', create_response(500, '500.json')) def test_api_error(self): resp = Intercom.get_users()
2,641
python_actr/version.py
osaaso1/python_actr
0
2171329
name = "python_actr" version_info = (1, 9, 2) dev = True version = '.'.join([str(x) for x in version_info]) if dev: version = version + 'dev'
146
smuthi/__init__.py
KMCzajkowski/smuthi
3
2171722
import pkg_resources import sys try: from mpi4py import MPI mpi_comm = MPI.COMM_WORLD mpi_rank = mpi_comm.Get_rank() except: mpi_rank = 0 def print_smuthi_header(): version = pkg_resources.get_distribution("smuthi").version welcome_msg = ("\n" + "*" * 32 + "\n SMUTHI version " + version + "\n" + "*" * 32 + "\n") sys.stdout.write(welcome_msg) sys.stdout.flush() if mpi_rank == 0: print_smuthi_header()
446
process_results.py
mujm/CCS21_GNNattack
0
2171499
import argparse def get_args(): parser = argparse.ArgumentParser(description='Pytorch graph isomorphism network for graph classification') #these are parameters for attack model parser.add_argument('--effective', type=int, default=1) parser.add_argument('--id', type=int, default=1) parser.add_argument('--search', type=int, default=1) #these are parameters for GIN model parser.add_argument('--dataset', type=str, default="IMDB-BINARY") args = parser.parse_args() return args if __name__ == '__main__': args = get_args() dataset_name = args.dataset effective = int(args.effective) init_path = './out1/init_{}_{}_{}_{}_'.format(dataset_name,args.id, args.effective, args.search) with open(init_path+'search_type.txt', 'r') as f: search_type = eval(f.read()) with open(init_path+'P.txt', 'r') as f: init_perturbation = eval(f.read()) with open(init_path+'PR.txt', 'r') as f: init_perturbation_ratio = eval(f.read()) with open(init_path+'D.txt', 'r') as f: init_distortion = eval(f.read()) with open(init_path+'Q.txt', 'r') as f: init_query = eval(f.read()) with open(init_path+'T.txt', 'r') as f: init_time = eval(f.read()) our_path = './out1/our_{}_{}_{}_{}_'.format(dataset_name, args.id, args.effective, args.search) with open(our_path+'Q.txt', 'r') as f: our_query = eval(f.read()) with open(our_path+'P.txt', 'r') as f: our_perturbation = eval(f.read()) with open(our_path+'PR.txt', 'r') as f: our_perturbation_ratio = eval(f.read()) with open(our_path+'D.txt', 'r') as f: our_distortion = eval(f.read()) with open(our_path+'T.txt', 'r') as f: our_time = eval(f.read()) random_path = './out1/ran_{}_{}_{}_{}_'.format(dataset_name, args.id, args.effective, args.search) with open(random_path+'P.txt', 'r') as f: ran_perturbation = eval(f.read()) with open(random_path+'PR.txt', 'r') as f: ran_perturbation_ratio = eval(f.read()) with open(random_path+'T.txt', 'r') as f: ran_time = eval(f.read()) #所有的.txt中,攻击失败:值为-1, 无需攻击:值为0 #delete no need instances #根据query挑选,query中只有0或>0,因为即便失败也会记录query次数 L = len(our_query) index = [] for i in range(L): if our_query[i] > 0: index.append(i) print(index) L = len(index) #number of target graphs print('the number of candadite test instances: {}'.format(L)) search_type = [search_type[x] for x in index] init_distortion = [init_distortion[x] for x in index] init_perturbation = [init_perturbation[x] for x in index] init_perturbation_ratio = [init_perturbation_ratio[x] for x in index] init_query = [init_query[x] for x in index] init_time = [init_time[x] for x in index] our_distortion = [our_distortion[x] for x in index] our_perturbation = [our_perturbation[x] for x in index] our_perturbation_ratio = [our_perturbation_ratio[x] for x in index] our_query = [our_query[x] for x in index] our_time = [our_time[x] for x in index] ran_perturbation = [ran_perturbation[x] for x in index] ran_perturbation_ratio = [ran_perturbation_ratio[x] for x in index] ran_time = [ran_time[x] for x in index] #process query and time init_avg_query = sum(init_query) / L our_avg_query = sum(our_query) / L ran_avg_query = our_avg_query init_avg_time = sum(init_time) / L our_avg_time = sum(our_time) / L ran_avg_time = sum(ran_time) / L print('Init: avg query: {:.2f}'.format(init_avg_query)) print('Init: avg attack time: {:.2f}'.format(init_avg_time)) print('Our: avg query: {:.2f}'.format(our_avg_query)) print('Our: avg attack time: {:.2f}'.format(our_avg_time)) print('Ran: avg query: {:.2f}'.format(ran_avg_query)) print('Ran: avg attack time: {:.2f}'.format(ran_avg_time)) #process search type count_type = [0,0,0] for t in search_type: if t>=0: count_type[t] += 1 print('the percentage of type1: {:.2f}'.format(count_type[0]/sum(count_type)*100)) print('the percentage of type2: {:.2f}'.format(count_type[1]/sum(count_type)*100)) print('the percentage of type3: {:.2f}'.format(count_type[2]/sum(count_type)*100)) ''' #process pertub of init init_distortion = [x for x in init_distortion if x>0] init_perturbation = [x for x in init_perturbation if x>0] init_perturbation_ratio = [x for x in init_perturbation_ratio if x>0] init_avg_distortion = sum(init_distortion) / L init_avg_perturbation = sum(init_perturbation) / L init_avg_pertub_ratio = sum(init_perturbation_ratio) / L * 100 print('Init: avg distortion: {:.4f}'.format(init_avg_distortion)) print('Init: avg perturbation: {:.4f}'.format(init_avg_perturbation)) print('Init: avg perturb ratio: {:.4f}'.format(init_avg_pertub_ratio)) ''' #compute perturbation and distortion ubder different budget #先挑出来攻击成功的信息 our_distortion = [x for x in our_distortion if x>0] our_perturbation = [x for x in our_perturbation if x>0] our_perturbation_ratio = [x for x in our_perturbation_ratio if x>0] ran_perturbation = [x for x in ran_perturbation if x>0] ran_perturbation_ratio = [x for x in ran_perturbation_ratio if x>0] init_distortion = [x for x in init_distortion if x>0] init_perturbation = [x for x in init_perturbation if x>0] init_perturbation_ratio = [x for x in init_perturbation_ratio if x>0] our_avg_perturbation = [] our_avg_perturb_ratio = [] our_avg_distortion = [] init_avg_distortion = [] init_avg_perturbation = [] init_avg_perturb_ratio = [] ran_avg_perturbation = [] ran_avg_pertub_ratio = [] our_success_ratio = [] ran_success_ratio = [] init_success_ratio = [] for b in range(1, 21): budget = b / 100 our_success_index = [x for x in list(range(len(our_distortion))) if our_perturbation_ratio[x] <= budget] our_success_distortion = [our_distortion[i] for i in our_success_index] our_success_perturbation = [our_perturbation[i] for i in our_success_index] our_success_perturb_ratio = [our_perturbation_ratio[i] for i in our_success_index] init_success_index = [x for x in list(range(len(init_distortion))) if init_perturbation_ratio[x]<= budget] init_success_distortion = [init_distortion[i] for i in init_success_index] init_success_perturbation = [init_perturbation[i] for i in init_success_index] init_success_perturb_ratio = [init_perturbation_ratio[i] for i in init_success_index] ran_success_index = [x for x in list(range(len(ran_perturbation))) if ran_perturbation_ratio[x] <= budget] ran_success_perturbation = [ran_perturbation[i] for i in ran_success_index] ran_success_perturb_ratio = [ran_perturbation_ratio[i] for i in ran_success_index] our_success_count = len(our_success_index) our_success_ratio.append(our_success_count / L) if our_success_count > 0: our_avg_perturbation.append(sum(our_success_perturbation) / our_success_count) our_avg_perturb_ratio.append(sum(our_success_perturb_ratio) / our_success_count) our_avg_distortion.append(sum(our_success_distortion) / our_success_count) else: our_avg_perturbation.append(0) our_avg_perturb_ratio.append(0) our_avg_distortion.append(0) init_success_count = len(init_success_index) init_success_ratio.append(init_success_count / L) if init_success_count > 0: init_avg_perturbation.append(sum(init_success_perturbation) / init_success_count) init_avg_perturb_ratio.append(sum(init_success_perturb_ratio) / init_success_count) init_avg_distortion.append(sum(init_success_distortion) / init_success_count) else: init_avg_perturbation.append(0) init_avg_perturb_ratio.append(0) init_avg_distortion.append(0) ran_success_count = len(ran_success_index) ran_success_ratio.append(ran_success_count / L) if ran_success_count > 0: ran_avg_perturbation.append(sum(ran_success_perturbation) / ran_success_count) ran_avg_pertub_ratio.append(sum(ran_success_perturb_ratio) / ran_success_count) else: ran_avg_perturbation.append(0) ran_avg_pertub_ratio.append(0) print('init success ratio'+'-'*20) for i in init_success_ratio: print('{:.4f}'.format(i)) print('init avg perturbation'+'-'*20) for i in init_avg_perturbation: print('{:.4f}'.format(i)) print('init avg perturb ratio'+'-'*20) for i in init_avg_perturb_ratio: print('{:.4f}'.format(i)) print('init avg distortion' + '-'*20) for i in init_avg_distortion: print('{:.4f}'.format(i)) print('our success ratio'+'-'*20) for i in our_success_ratio: print('{:.4f}'.format(i)) print('our avg perturbation'+'-'*20) for i in our_avg_perturbation: print('{:.4f}'.format(i)) print('our avg perturb ratio'+'-'*20) for i in our_avg_perturb_ratio: print('{:.4f}'.format(i)) print('our avg distortion'+'-'*20) for i in our_avg_distortion: print('{:.4f}'.format(i)) print('random success ratio'+'-'*20) for i in ran_success_ratio: print('{:.4f}'.format(i)) print('random perturbation'+'-'*20) for i in ran_avg_perturbation: print('{:.4f}'.format(i)) print('random perturb ratio'+'-'*20) for i in ran_avg_pertub_ratio: print('{:.4f}'.format(i))
9,740
tests/test_config.py
iflb/ifconf
0
2170916
#!/usr/bin/env python # the inclusion of the tests module is not meant to offer best practices for # testing in general, but rather to support the `find_packages` example in # setup.py that excludes installing the "tests" package import unittest from pathlib import Path from collections import namedtuple #from recordclass import recordclass import sys sys.path.append('..') from ifconf import configure_main, configure_module from ifconf.main import clear_main_cofig import model class TestConfigureModule(unittest.TestCase): def setUp(self): clear_main_cofig() def test_default_value_load(self): configure_main() server = model.Server() self.assertEqual(server.addr, '0.0.0.0') self.assertEqual(server.port, 8080) self.assertEqual(server.udp, False) self.assertEqual(server.val_f, 0.8) self.assertEqual(server.val_d, {'a':1,'b':2,'c':3}) self.assertEqual(server.val_l, [1,2,3]) self.assertEqual(server.home, Path('..')) with self.assertRaises(AttributeError): self.conf.addr = '172.16.17.32' # not editable def test_file_path_value_load(self): configure_main(config_path=['test.ini'], config_arg=None) server = model.Server() self.assertEqual(server.addr, '127.0.0.1') self.assertEqual(server.port, 80) self.assertEqual(server.udp, True) self.assertEqual(server.val_f, 0.5) self.assertEqual(server.val_d, {'a':10,'b':20,'c':30}) self.assertEqual(server.val_l, [1,2,3,4,5,6]) self.assertEqual(server.home, Path('../../..')) with self.assertRaises(AttributeError): self.conf.addr = '172.16.17.32' # not editable def test_file_path_value_load_with_two_files(self): configure_main(config_path=['test.ini', 'test2.ini'], config_arg=None) server = model.Server() self.assertEqual(server.addr, '127.0.0.1') self.assertEqual(server.port, 80) self.assertEqual(server.udp, True) self.assertEqual(server.val_f, 0.5) self.assertEqual(server.val_d, {'a':10,'b':20,'c':30}) self.assertEqual(server.val_l, [1,2,3,4,5,6]) self.assertEqual(server.home, Path('../../..')) with self.assertRaises(AttributeError): self.conf.addr = '172.16.17.32' # not editable server = model.Database(immutable=True) self.assertEqual(server.addr, '192.168.0.1') self.assertEqual(server.port, 3333) def test_file_path_value_load_test2(self): configure_main(config_path='test2.ini', config_arg=None) server = model.Database(immutable=True) self.assertEqual(server.addr, '192.168.0.1') self.assertEqual(server.port, 3333) def test_file_path_value_load_test3_override(self): configure_main(config_path=['test3.ini', 'test2.ini'], config_arg=None) server = model.Database(immutable=True) self.assertEqual(server.addr, '192.168.0.100') self.assertEqual(server.port, 4444) def test_file_arg_value_load(self): configure_main(config_arg='test.ini') server = model.Server() self.assertEqual(server.addr, '127.0.0.1') self.assertEqual(server.port, 80) self.assertEqual(server.udp, True) self.assertEqual(server.val_f, 0.5) self.assertEqual(server.val_d, {'a':10,'b':20,'c':30}) self.assertEqual(server.val_l, [1,2,3,4,5,6]) self.assertEqual(server.home, Path('../../..')) with self.assertRaises(AttributeError): self.conf.addr = '172.16.17.32' # not editable def test_default_value_load_mutable(self): configure_main(with_config_logging = False) server = model.Database(immutable=False) self.assertEqual(server.addr, '127.0.0.1') self.assertEqual(server.port, 3306) server.addr = '192.168.0.1' server.port = 8888 self.assertEqual(server.addr, '192.168.0.1') self.assertEqual(server.port, 8888) def test_no_main_config(self): with self.assertRaises(RuntimeError): configure_module(model.server) def test_override_fail(self): configure_main() with self.assertRaises(ValueError): server = model.Server(override={'server_addr', '192.168.0.1'}) def test_override_value(self): configure_main() server = model.Server(override={'server_addr': '192.168.0.1'}) self.assertEqual(server.addr, '192.168.0.1') def test_ifconf_config_path(self): configure_main(config_path='test_all.ini', config_arg=None) server = model.Server() self.assertEqual(server.addr, '127.0.0.1') self.assertEqual(server.port, 80) self.assertEqual(server.udp, True) self.assertEqual(server.val_f, 0.5) self.assertEqual(server.val_d, {'a':10,'b':20,'c':30}) self.assertEqual(server.val_l, [9,9,9]) self.assertEqual(server.home, Path('../../..')) with self.assertRaises(AttributeError): self.conf.addr = '172.16.17.32' # not editable server = model.Database(immutable=True) self.assertEqual(server.addr, '192.168.0.1') self.assertEqual(server.port, 3333) if __name__ == '__main__': unittest.main()
5,352
adam_api_repo_curve_anomaly_detection/setup.py
mChataign/smileCompletion
4
2171628
from setuptools import setup, find_packages setup(name='Delta One Anomaly Detection', version='0.0.1', description='project', license='HSBC', packages=['package'], author='<NAME>', '<NAME>', author_email='<EMAIL>', '<EMAIL>', keywords=['example'], install_requires=['numpy','pandas'], url='')
329
attacks/examples/testInference.py
m3eeza/code
0
2171210
import sys import pprint sys.path.append('../../common') from gdaScore import gdaAttack, gdaScores from myUtilities import checkMatch # Anon: None # Attack: List DB contents # Criteria: Inference # Database: Banking.Accounts pp = pprint.PrettyPrinter(indent=4) verbose = 0 v = verbose # -------------------------- subroutines --------------------------- # -------------------------- body --------------------------- # Note in following that since there is no anonymization, the anonymized # DB is the same as the raw DB params = dict(name=__file__, rawDb='localBankingRaw', anonDb='localBankingRaw', criteria='inference', table='accounts', flushCache=False, verbose=False) # TEST ALL CORRECT x = gdaAttack(params) # ------------------- Exploration Phase ------------------------ # This attack doesn't require any exploratory queries # ------------------- Prior Knowledge Phase -------------------- # This attack doesn't require any prior knowledge # ------------------- Attack Phase ----------------------------- # In the List attack for Inference, we look for columns where there # is only a single distinct instance of another column. In this case, # acct_date has relatively many distinct values, and frequency has # relatively few, so it isn't hard to find instances where users with # different acct_date all have the same frequency. Note that rather # than acct_date, we could have used several columns each with fewer # distinct values. query = {} sql = """select acct_date, max(frequency) from accounts group by 1 having count(distinct frequency) = 1 limit 10""" query['sql'] = sql x.askAttack(query) replyCorrect = x.getAttack() # ------------------- Claims Phase ---------------------------- # the first askClaim will pass on committing to the claim claim = 0 for row in replyCorrect['answer']: query = {} sql = "select client_id, frequency " sql += "from accounts where " sql += str(f"acct_date = {row[0]} ") query['sql'] = sql spec = {'uid':'client_id', 'known':[{'col':'acct_date','val':row[0]}], 'guess':[{'col':'frequency','val':row[1]}] } x.askClaim(spec,claim=claim) claim = 1 while True: reply = x.getClaim() if v: print(f"Query: {reply['query']['sql']}") if v: print(f"Result: {reply['claimResult']}") if reply['stillToCome'] == 0: break # ------------------- Scores Phase ---------------------------- print("Test all correct:") attackResult = x.getResults() sc = gdaScores(attackResult) score = sc.getScores() pp.pprint(score['col']['frequency']) expect = {'attackCells': 20, 'attackGets': 1, 'claimCorrect': 9, 'claimError': 0, 'claimMade': 9, 'claimPassCorrect': 1, 'claimTrials': 10, 'knowledgeCells': 0, 'knowledgeGets': 0 } checkMatch(score,expect,'frequency') x.cleanUp(doExit=False) # TEST ALL WRONG x = gdaAttack(params) # ------------------- Exploration Phase ------------------------ # This attack doesn't require any exploratory queries # ------------------- Prior Knowledge Phase -------------------- # This attack doesn't require any prior knowledge # ------------------- Attack Phase ----------------------------- query = {} sql = """select acct_date, max(frequency) from accounts group by 1 having count(distinct frequency) > 1 limit 10""" query['sql'] = sql x.askAttack(query) replyWrong = x.getAttack() # ------------------- Claims Phase ---------------------------- claim = 0 for row in replyWrong['answer']: query = {} sql = "select client_id, frequency " sql += "from accounts where " sql += str(f"acct_date = {row[0]} ") query['sql'] = sql spec = {'uid':'client_id', 'known':[{'col':'acct_date','val':row[0]}], 'guess':[{'col':'frequency','val':row[1]}] } x.askClaim(spec,claim=claim) claim = 1 while True: reply = x.getClaim() if v: print(f"Query: {reply['query']['sql']}") if v: print(f"Result: {reply['claimResult']}") if reply['stillToCome'] == 0: break # ------------------- Scores Phase ---------------------------- print("Test all wrong:") attackResult = x.getResults() sc = gdaScores(attackResult) score = sc.getScores() pp.pprint(score['col']['frequency']) expect = {'attackCells': 20, 'attackGets': 1, 'claimCorrect': 0, 'claimError': 0, 'claimMade': 9, 'claimPassCorrect': 0, 'claimTrials': 10, 'knowledgeCells': 0, 'knowledgeGets': 0 } checkMatch(score,expect,'frequency') x.cleanUp(doExit=False) # TEST MIX CORRECT and WRONG x = gdaAttack(params) # ------------------- Exploration Phase ------------------------ # This attack doesn't require any exploratory queries # ------------------- Prior Knowledge Phase -------------------- # This attack doesn't require any prior knowledge # ------------------- Attack Phase ----------------------------- # Use prior attack phases # ------------------- Claims Phase ---------------------------- claim = 0 for row in replyWrong['answer']: query = {} sql = "select client_id, frequency " sql += "from accounts where " sql += str(f"acct_date = {row[0]} ") query['sql'] = sql spec = {'uid':'client_id', 'known':[{'col':'acct_date','val':row[0]}], 'guess':[{'col':'frequency','val':row[1]}] } x.askClaim(spec,claim=claim) claim = 1 claim = 0 for row in replyCorrect['answer']: query = {} sql = "select client_id, frequency " sql += "from accounts where " sql += str(f"acct_date = {row[0]} ") query['sql'] = sql spec = {'uid':'client_id', 'known':[{'col':'acct_date','val':row[0]}], 'guess':[{'col':'frequency','val':row[1]}] } x.askClaim(spec,claim=claim) claim = 1 while True: reply = x.getClaim() if v: print(f"Query: {reply['query']['sql']}") if v: print(f"Result: {reply['claimResult']}") if reply['stillToCome'] == 0: break # ------------------- Scores Phase ---------------------------- print("Test mix of correct and wrong:") attackResult = x.getResults() sc = gdaScores(attackResult) score = sc.getScores() pp.pprint(score['col']['frequency']) expect = {'attackCells': 0, 'attackGets': 0, 'claimCorrect': 9, 'claimError': 0, 'claimMade': 18, 'claimPassCorrect': 1, 'claimTrials': 20, 'knowledgeCells': 0, 'knowledgeGets': 0 } checkMatch(score,expect,'frequency') print("\nOperational Parameters:") op = x.getOpParameters() pp.pprint(op) x.cleanUp()
6,881
django_tgbot/types/stickerset.py
purwowd/django-tgbot
52
2171076
from . import BasicType from . import sticker, photosize class StickerSet(BasicType): fields = { 'name': str, 'title': str, 'is_animated': BasicType.bool_interpreter, 'contains_masks': BasicType.bool_interpreter, 'stickers': { 'class': sticker.Sticker, 'array': True }, 'thumb': photosize.PhotoSize } def __init__(self, obj=None): super(StickerSet, self).__init__(obj)
472
aliyun-python-sdk-edas/aliyunsdkedas/request/v20170801/CreateApplicationTemplateRequest.py
yndu13/aliyun-openapi-python-sdk
1,001
2170043
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RoaRequest from aliyunsdkedas.endpoint import endpoint_data class CreateApplicationTemplateRequest(RoaRequest): def __init__(self): RoaRequest.__init__(self, 'Edas', '2017-08-01', 'CreateApplicationTemplate','Edas') self.set_uri_pattern('/pop/v5/cnedas/app_template') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_NasId(self): return self.get_body_params().get('NasId') def set_NasId(self,NasId): self.add_body_params('NasId', NasId) def get_EnableAhas(self): return self.get_body_params().get('EnableAhas') def set_EnableAhas(self,EnableAhas): self.add_body_params('EnableAhas', EnableAhas) def get_SlsConfigs(self): return self.get_body_params().get('SlsConfigs') def set_SlsConfigs(self,SlsConfigs): self.add_body_params('SlsConfigs', SlsConfigs) def get_CommandArgs(self): return self.get_body_params().get('CommandArgs') def set_CommandArgs(self,CommandArgs): self.add_body_params('CommandArgs', CommandArgs) def get_Readiness(self): return self.get_body_params().get('Readiness') def set_Readiness(self,Readiness): self.add_body_params('Readiness', Readiness) def get_Liveness(self): return self.get_body_params().get('Liveness') def set_Liveness(self,Liveness): self.add_body_params('Liveness', Liveness) def get_Description(self): return self.get_body_params().get('Description') def set_Description(self,Description): self.add_body_params('Description', Description) def get_Envs(self): return self.get_body_params().get('Envs') def set_Envs(self,Envs): self.add_body_params('Envs', Envs) def get_EnvFroms(self): return self.get_body_params().get('EnvFroms') def set_EnvFroms(self,EnvFroms): self.add_body_params('EnvFroms', EnvFroms) def get_RequestCpu(self): return self.get_body_params().get('RequestCpu') def set_RequestCpu(self,RequestCpu): self.add_body_params('RequestCpu', RequestCpu) def get_RequestMem(self): return self.get_body_params().get('RequestMem') def set_RequestMem(self,RequestMem): self.add_body_params('RequestMem', RequestMem) def get_ShowName(self): return self.get_body_params().get('ShowName') def set_ShowName(self,ShowName): self.add_body_params('ShowName', ShowName) def get_LimitMem(self): return self.get_body_params().get('LimitMem') def set_LimitMem(self,LimitMem): self.add_body_params('LimitMem', LimitMem) def get_ConfigMountDescs(self): return self.get_body_params().get('ConfigMountDescs') def set_ConfigMountDescs(self,ConfigMountDescs): self.add_body_params('ConfigMountDescs', ConfigMountDescs) def get_DeployAcrossZones(self): return self.get_body_params().get('DeployAcrossZones') def set_DeployAcrossZones(self,DeployAcrossZones): self.add_body_params('DeployAcrossZones', DeployAcrossZones) def get_DeployAcrossNodes(self): return self.get_body_params().get('DeployAcrossNodes') def set_DeployAcrossNodes(self,DeployAcrossNodes): self.add_body_params('DeployAcrossNodes', DeployAcrossNodes) def get_PreStop(self): return self.get_body_params().get('PreStop') def set_PreStop(self,PreStop): self.add_body_params('PreStop', PreStop) def get_Replicas(self): return self.get_body_params().get('Replicas') def set_Replicas(self,Replicas): self.add_body_params('Replicas', Replicas) def get_LimitCpu(self): return self.get_body_params().get('LimitCpu') def set_LimitCpu(self,LimitCpu): self.add_body_params('LimitCpu', LimitCpu) def get_WebContainerConfig(self): return self.get_body_params().get('WebContainerConfig') def set_WebContainerConfig(self,WebContainerConfig): self.add_body_params('WebContainerConfig', WebContainerConfig) def get_PackageConfig(self): return self.get_body_params().get('PackageConfig') def set_PackageConfig(self,PackageConfig): self.add_body_params('PackageConfig', PackageConfig) def get_IsMultilingualApp(self): return self.get_body_params().get('IsMultilingualApp') def set_IsMultilingualApp(self,IsMultilingualApp): self.add_body_params('IsMultilingualApp', IsMultilingualApp) def get_NasMountDescs(self): return self.get_body_params().get('NasMountDescs') def set_NasMountDescs(self,NasMountDescs): self.add_body_params('NasMountDescs', NasMountDescs) def get_LocalVolumes(self): return self.get_body_params().get('LocalVolumes') def set_LocalVolumes(self,LocalVolumes): self.add_body_params('LocalVolumes', LocalVolumes) def get_Command(self): return self.get_body_params().get('Command') def set_Command(self,Command): self.add_body_params('Command', Command) def get_NasStorageType(self): return self.get_body_params().get('NasStorageType') def set_NasStorageType(self,NasStorageType): self.add_body_params('NasStorageType', NasStorageType) def get_ImageConfig(self): return self.get_body_params().get('ImageConfig') def set_ImageConfig(self,ImageConfig): self.add_body_params('ImageConfig', ImageConfig) def get_SourceConfig(self): return self.get_body_params().get('SourceConfig') def set_SourceConfig(self,SourceConfig): self.add_body_params('SourceConfig', SourceConfig) def get_EmptyDirs(self): return self.get_body_params().get('EmptyDirs') def set_EmptyDirs(self,EmptyDirs): self.add_body_params('EmptyDirs', EmptyDirs) def get_PvcMountDescs(self): return self.get_body_params().get('PvcMountDescs') def set_PvcMountDescs(self,PvcMountDescs): self.add_body_params('PvcMountDescs', PvcMountDescs) def get_Name(self): return self.get_body_params().get('Name') def set_Name(self,Name): self.add_body_params('Name', Name) def get_Attributes(self): return self.get_body_params().get('Attributes') def set_Attributes(self,Attributes): self.add_body_params('Attributes', Attributes) def get_RuntimeClassName(self): return self.get_body_params().get('RuntimeClassName') def set_RuntimeClassName(self,RuntimeClassName): self.add_body_params('RuntimeClassName', RuntimeClassName) def get_JavaStartUpConfig(self): return self.get_body_params().get('JavaStartUpConfig') def set_JavaStartUpConfig(self,JavaStartUpConfig): self.add_body_params('JavaStartUpConfig', JavaStartUpConfig) def get_PostStart(self): return self.get_body_params().get('PostStart') def set_PostStart(self,PostStart): self.add_body_params('PostStart', PostStart)
7,546
datam/dect.py
fffasttime/cs_misc
5
2168927
# a slow and poor decision tree import numpy as np import math def infoEnpt(x): return -sum(map(lambda a:a*math.log2(a) if a else 0,x)) def infoEnpt2(x): if x==1 or x==0: return 0 return -x*math.log2(x)-(1-x)*math.log2(1-x) def gini(x): return 1-sum(map(lambda a:a*a,x)) def gini2(x): return 1-x**2-(1-x)**2 def minpb2(x): return min(x,1-x) def pureness(x, f): n=sum(x) return f(map(lambda a:a/n,x)) # average pureness of children def sum_pureness(x, f=infoEnpt): n=0 s=0.0 for x1 in x: n+=sum(x1) s+=sum(x1)*pureness(x1, f) return s/n # average pureness of two children # s1: positve, c1: first part, pos: positive in first part def sum_pureness2(n, s1, c1, pos1, f=infoEnpt2): return (f(pos1/c1)*c1+f((s1-pos1)/(n-c1))*(n-c1))/n # try spilt point for continous # try_value([3.0,1.0,2.0],[1,0,1]) def try_value(val, label, f=infoEnpt2): v1=sorted(zip(val, label)) val,label=zip(*v1) n=len(val) s1=sum(label) pos=0 for i in range(n-1): pos+=label[i] if i and val[i]==val[i-1]: continue s=sum_pureness2(n,s1,i+1,pos) print(("<=%f : %f")%(val[i], s)) class MetaData: # attr: None for continious value def __init__(self, xname, attr): self.xname=xname self.attr=attr self.nx=len(xname) class Node: def __init__(self): self.ch=[] def print(self, deep=0): for i in range(deep): print(' ',end='') print("%s : %d/%d"%(self.name,self.pos,self.n)) for c in self.ch: c.print(deep+1) def fit(self, tree,datax,datay,freq,nodename,deep=0): self.name=nodename self.n=sum(freq) self.pos=sum(freq[datay==1]) if deep==2: return if self.pos==0 or self.pos==self.n: return minsp=None ; mini=None curpure=sum_pureness([[self.pos,self.n-self.pos]], tree.mode) for i,x in enumerate(datax): if not tree.idlex[i]: continue if type(tree.metadata.attr[i]) is int: cnt=np.zeros((tree.metadata.attr[i],2)) # print(datax[i]) for j in range(len(freq)): cnt[datax[i][j],datay[j]]+=freq[j] print(cnt) s=sum_pureness(cnt, tree.mode) print(nodename,':',tree.metadata.xname[i],s,curpure-s) if minsp==None or minsp>s: minsp=s mini=i else: pass # Todo : continious value if deep==0: mini=0 if mini is not None: tree.idlex[mini]=False self.pid=mini for j in range(tree.metadata.attr[mini]): self.ch.append(Node()) sel=datax[mini]==j newx=[x[sel] for x in datax] self.ch[-1].fit(tree, newx, datay[sel], freq[sel], "%s_%d"%(tree.metadata.xname[mini],j), deep+1) self.ch[-1].id=j tree.idlex[mini]=True class Tree: def __init__(self, metadata, mode=infoEnpt): self.metadata=metadata self.mode=mode def fit(self, datax, datay, freq=None): self.root=Node() self.nitem=len(datax) self.idlex=np.ones(self.metadata.nx).astype(bool) if freq is None: freq=np.ones(self.nitem) self.root.fit(self,datax,datay, freq,'root') def print(self): self.root.print() def predict(self, datax): node=self.root while len(node.ch): node=node.ch[datax[node.pid]] return node.pos>node.n-node.pos if __name__=="__main__": datax=np.array([ [0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1], [0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1], [0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1], ]) datay=np.array([1,0]*8) freq=np.array([5,40,0,15,10,5,45,0,10,5,25,0,5,20,0,15]) freq=np.array([5,0,0,20,20,0,0,5,0,0,25,0,0,0,0,25]) tree=Tree(MetaData("X Y Z".split(),[2,2,2]),min) tree.fit(datax, datay, freq) tree.print() acc=0 for i in range(len(datay)): ret=tree.predict([x[i] for x in datax]) if ret==datay[i]: acc+=freq[i] print(acc/sum(freq))
4,305
python/primes_in_numbers.py
lukasjoc/random
1
2171248
def primeFactors(n): facts, by_two = {}, 0 start = n while n % 2 == 0: n //= 2 by_two += 1 for t in range(by_two): facts[2] = by_two for i in range(3, int(n**0.5)+1, 2): while n % i == 0: n = n / i if i in facts: facts[i] += 1 else: facts[i] = 1 return facts def prime_fac(num): for i in range(2,num + 1): if(num % i == 0): prime = True for j in range(2,(i//2 + 1)): if(i % j == 0): prime = False break if prime: return True for i in range(2, 100): print(i, prime_fac(i))
725
setup.py
p0o0uya/binapi
0
2170292
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name='binapi', version='0.4', author='<NAME>', author_email='<EMAIL>', description='A wrapper for binance futures API', long_description=long_description, long_description_content_type="text/markdown", url='https://github.com/p0o0uya/binapi', project_urls = { "Bug Tracker": "https://github.com/p0o0uya/binapi/issues" }, license='MIT', packages=['binapi'], install_requires=['requests', 'pandas'], )
605
src/LatentDirichletAllocation.py
cjuracek/STA_663_Final
0
2170726
from collections import Counter from random import choices from src.utility import get_unique_words import numpy as np from tqdm import trange from scipy.stats import mode class LatentDirichletAllocation: def __init__(self, iden_to_tokens, K, alpha, beta=0.01): self.iden_to_tokens = iden_to_tokens self.K = K self.alpha = alpha self.beta = beta self.vocabulary = get_unique_words(iden_to_tokens.values()) self.W = len(self.vocabulary) self.theta_matrix = np.zeros((K, len(iden_to_tokens))) self.phi_matrix = np.zeros((K, self.W)) def fit(self, niter): """ Perform collapsed Gibbs sampling to discover latent topics in corpus :param niter: Number of iterations to run the Gibbs sampler for """ document_word_topics_MC, document_topic_counts, word_topic_counts, total_topic_counts = self._initialize_topics() for j in trange(niter): # One iteration of Gibbs sampler print(f'Running iteration {j + 1} out of {niter}') for doc, words in self.iden_to_tokens.items(): for i, word in enumerate(words): densities = np.zeros(self.K) curr_topic = document_word_topics_MC[doc][i][-1] # Get most recent topic of MC chain # Calculate probability that a given latent topic z_ij belongs to topic k for each k for k in range(self.K): # Relevant counts needed for computation - see paragraph before Eq. 1 N_kj = document_topic_counts[doc][k] N_wk = word_topic_counts[word][k] N_k = total_topic_counts[k] # New draw is conditioned on everything BUT this observation if curr_topic == k: N_kj -= 1 N_wk -= 1 N_k -= 1 # Eq. 1 a_kj = N_kj + self.alpha b_wk = (N_wk + self.beta) / (N_k + self.W * self.beta) densities[k] = a_kj * b_wk # Draw a new topic and append to MC - normalization not needed new_topic = choices(range(self.K), weights=densities)[0] document_word_topics_MC[doc][i].append(new_topic) # No need to update counts if topic is the same if new_topic == curr_topic: continue # Update counts document_topic_counts[doc][curr_topic] -= 1 document_topic_counts[doc][new_topic] += 1 word_topic_counts[word][curr_topic] -= 1 word_topic_counts[word][new_topic] += 1 total_topic_counts[curr_topic] -= 1 total_topic_counts[new_topic] += 1 # Determine topic for word from the chain self._compute_MC_topic_approx(document_word_topics_MC) # Estimate other model parameters we are interested in self._compute_phi_estimates(word_topic_counts, total_topic_counts) self._compute_theta_estimates(document_topic_counts) def _compute_phi_estimates(self, word_topic_counts, total_topic_counts): """ Compute estimate of the phi matrix, containing word distributions per topic :param word_topic_counts: Dictionary that maps words to their respective counts per topic :param total_topic_counts: Dictionary that maps each topic to the number of times it appears in corpus """ for w, word in enumerate(self.vocabulary): for k in range(self.K): N_wk = word_topic_counts[word][k] N_k = total_topic_counts[k] self.phi_matrix[k, w] = (N_wk + self.beta) / (N_k + self.W * self.beta) def _compute_theta_estimates(self, document_topic_counts): """ Compute a matrix containing the mixture components of each document :param document_topic_counts: A dictionary mapping titles to topic counts in that document """ for j, (doc, topics) in enumerate(document_topic_counts.items()): for topic in topics: N_kj = document_topic_counts[doc][topic] N_j = sum(document_topic_counts[doc].values()) self.theta_matrix[topic, j] = (N_kj + self.alpha) / (N_j + self.K * self.alpha) def _initialize_topics(self): """ Randomly initialize topic / word count information needed for sampling :return: 4 dictionaries of counts (see comments below) """ # Contains the ordered list of topics for each document (Dict of lists) document_word_topics_MC = {} # Counts of each topic per document (Dict of dicts) document_topic_counts = {title: Counter() for title in self.iden_to_tokens.keys()} # Counts number of times a given word is assigned to each topic (dict of dicts) word_topic_counts = {word: Counter() for word in self.vocabulary} # Counts of each topic across all documents total_topic_counts = Counter() for doc, words in self.iden_to_tokens.items(): # Start with randomly assigned topics - update appropriate counts topics = np.random.randint(low=0, high=self.K, size=len(words)) document_word_topics_MC[doc] = [[topic] for topic in topics] document_topic_counts[doc].update(topics) total_topic_counts.update(topics) # Update the topic counts per word for unique_word in set(words): unique_word_topics = [topic for idx, topic in enumerate(topics) if words[idx] == unique_word] word_topic_counts[unique_word].update(unique_word_topics) return document_word_topics_MC, document_topic_counts, word_topic_counts, total_topic_counts def _compute_MC_topic_approx(self, document_word_topics_MC): """ Given a Markov chain of word topics, compute a Monte Carlo approximation by picking mode of topics :param document_word_topics_MC: Dictionary that maps identifiers (titles) to a Markov chain of their topics :return: Dictionary that maps identifiers (titles) to the Monte Carlo approx of their topics (mode) """ document_word_topics = {title: [] for title in document_word_topics_MC.keys()} for doc, words in document_word_topics_MC.items(): for i, word in enumerate(words): most_frequent_topic = mode(document_word_topics_MC[doc][i], axis=None)[0][0] document_word_topics[doc].append(most_frequent_topic) self.document_word_topics = document_word_topics def get_top_n_words(self, n, return_probs=False): """ Calculate the top n words with highest posterior probability for every topic :param n: Top number of words to find :param return_probs: Should we return probabilities with these words? :return: A dictionary mapping topics to the respective top words """ topic_top_words = {} for k in range(self.phi_matrix.shape[0]): # Find the top probability indices, then take the first n of them top_n_idx = np.argsort(self.phi_matrix[k, :])[::-1][:n] top_n_words = [self.vocabulary[i] for i in top_n_idx] if return_probs: top_n_probs = self.phi_matrix[k, top_n_idx] top_n_probs = np.around(top_n_probs, 4) topic_top_words[k] = [(word, prob) for word, prob in zip(top_n_words, top_n_probs)] else: topic_top_words[k] = top_n_words return topic_top_words
7,850
get_gesture_exp.py
swatsw/isg_official
2
2171668
import os import sys from sklearn.preprocessing import StandardScaler import numpy as np import joblib as jl from pymo.writers import BVHWriter from pymo.parsers import BVHParser from pymo.preprocessing import * from sklearn.pipeline import Pipeline import math from numpy.lib.stride_tricks import sliding_window_view import pdb from scipy.stats import norm from scipy.signal import savgol_filter BVH_DIR = "data/bvh" FLISTS = { 'train': 'data/filelists/genea_train.txt', 'dev': 'data/filelists/genea_dev.txt', 'test': 'data/filelists/genea_dev.txt' } GESTURE_JOINTS = ['Spine', 'Spine1', 'Spine2', 'Spine3', 'Neck', 'Neck1', 'Head', 'RightShoulder', 'RightArm', 'RightForeArm', 'RightHand', 'LeftShoulder', 'LeftArm', 'LeftForeArm', 'LeftHand'] def extract_joint_angles(bvh_dir, files, destpath, fps=60, set_name=""): p = BVHParser() data_all = list() print("Importing data...") for f in files: ff = os.path.join(bvh_dir, f + '.bvh') print(ff) data_all.append(p.parse(ff)) data_pipe = Pipeline([ ('dwnsampl', DownSampler(tgt_fps=fps, keep_all=False)), ('root', RootTransformer('hip_centric')), ('jtsel', JointSelector( GESTURE_JOINTS, include_root=True)), ('exp', MocapParameterizer('expmap')), ('cnst', ConstantsRemover()), ('np', Numpyfier()) ]) print("Processing...") out_data = data_pipe.fit_transform(data_all) jl.dump(data_pipe, os.path.join(destpath, f'data_pipe-{set_name}.sav')) # optional saving # fi = 0 # for f in files: # ff = os.path.join(destpath, f) # print(ff) # np.savez(ff + ".npz", clips=out_data[fi]) # fi = fi + 1 return out_data def fit_and_standardize(data): # shape = data.shape flat = np.concatenate(data, axis=0) # flat = data.copy().reshape((shape[0] * shape[1], shape[2])) scaler = StandardScaler().fit(flat) scaled = [scaler.transform(x) for x in data] return scaled, scaler def standardize(data, scaler): scaled = [scaler.transform(x) for x in data] return scaled def load_scaler(fpath='std_exp_scaler.sav'): assert os.path.isfile(fpath), "specified scaler file does not exist" return jl.load(fpath) def load_data_pipeline(fpath): assert os.path.isfile(fpath), "specified data_pipe file does not exist" # fpath = f'{dir}/{fname}' return jl.load(fpath) # def reverse_standardize(data, scaler): # unscaled = [scaler.inverse_transform(x) for x in data] # return unscaled def mel_resample(bvh_arr, hop_length=256, sampling_rate=22050, bvh_fps=60): audio_frame_hop_time = hop_length / sampling_rate bvh_frame_time = 1.0 / bvh_fps total_bvh_time = bvh_arr.shape[0] * audio_frame_hop_time num_out_frame = math.floor(total_bvh_time / bvh_frame_time) align_indices = np.arange(num_out_frame, dtype=np.float32) align_indices *= bvh_frame_time align_indices /= audio_frame_hop_time align_indices = np.rint(align_indices).astype(np.int) out_bvh = bvh_arr[align_indices, :] return out_bvh SMOOTHING_METHODS = ["box", "normal", "savgol"] NORMAL_STEP_SIZE = 1 def smoothing_arr(arr, half_window_size: int, method): assert method in SMOOTHING_METHODS arr = np.pad(arr, ((half_window_size,), (0,)), 'edge') window_size = half_window_size*2+1 if method == "box": arr = sliding_window_view(arr, window_shape=window_size, axis=0) box_filter = np.ones((window_size, 1)) arr = np.matmul(arr, box_filter) / window_size arr = arr.squeeze(-1) if method == "normal": arr = sliding_window_view(arr, window_shape=window_size, axis=0) normal_filter_steps = np.arange(window_size) - half_window_size normal_filter_steps = normal_filter_steps * NORMAL_STEP_SIZE normal_filter = norm.pdf(normal_filter_steps) normal_filter = np.expand_dims(normal_filter, -1) arr = np.matmul(arr, normal_filter) / normal_filter.sum() arr = arr.squeeze(-1) if method == "savgol": arr = savgol_filter(arr, window_length=window_size, polyorder=2) return arr def std_exp_to_bvh(exp_arr, out_bvh_fpath, out_fps=60, smoothing='normal', smoothing_half_ws=3, scaler_fpath=f'{BVH_DIR}/std_exp_scaler.sav', data_pipe_fpath=f'{BVH_DIR}/data_pipe-train.sav'): # flist = os.listdir(dir) # flist = [x for x in flist if model_name in x and x.endswith(npf_suffix)]#x.endswith("gesture.npy")] assert scaler_fpath, "must specify fpath for saved scaler" scaler = load_scaler(scaler_fpath) assert data_pipe_fpath, "must specify fpath for saved data pipe" data_pipeline = load_data_pipeline(data_pipe_fpath) if len(exp_arr.shape) == 3: exp_arr = exp_arr[0].T exp_arr = mel_resample(exp_arr, bvh_fps=out_fps) if smoothing is not None: exp_arr = smoothing_arr(exp_arr, half_window_size=smoothing_half_ws, method=smoothing) exp_arr = scaler.inverse_transform(exp_arr) gesture_bvh = data_pipeline.inverse_transform([exp_arr])[0] # pdb.set_trace() bvh_writer = BVHWriter() gesture_bvh.framerate = 1 / out_fps bvh_writer.write(gesture_bvh, open(out_bvh_fpath, "w")) def get_gesture_exp(bvh_list, set_name="", fps=60): if len(bvh_list) == 0: return [] return extract_joint_angles(BVH_DIR, bvh_list, BVH_DIR, fps=fps, set_name=set_name) def load_filepaths_and_text(filename, split="|"): with open(filename, encoding='utf-8') as f: filepaths_and_text = [line.strip().split(split) for line in f] return filepaths_and_text # a segment is only valid if has both audio-transcript(in filelist.txt) and bvh def get_valid_segments(): bvh_dir_flist = os.listdir(BVH_DIR) bvh_dir_flist = [x[:x.index(".bvh")] for x in bvh_dir_flist if x.endswith(".bvh")] segments_dict = {} for flist_set in FLISTS: flist = load_filepaths_and_text(FLISTS[flist_set]) segment_list = [x[0] for x in flist] segment_list = [os.path.basename(x) for x in segment_list] segment_list = [os.path.splitext(x)[0] for x in segment_list] valid_segment_list = [x for x in segment_list if x in bvh_dir_flist] invalid_segment_list = [x for x in segment_list if x not in bvh_dir_flist] print("Invalid segments in {}: ".format(flist_set), invalid_segment_list) segments_dict[flist_set] = valid_segment_list return segments_dict if __name__ == "__main__": segments_dict = get_valid_segments() gesture_exp_dict = {x: get_gesture_exp(segments_dict[x], set_name=x) for x in segments_dict} out, scaler = fit_and_standardize(gesture_exp_dict["train"]) gesture_exp_dict["train"] = out gesture_exp_dict["dev"] = standardize(gesture_exp_dict["dev"], scaler) gesture_exp_dict["test"] = standardize(gesture_exp_dict["test"], scaler) for k in gesture_exp_dict: for name, x in zip(segments_dict[k], gesture_exp_dict[k]): np.save(f"{BVH_DIR}/{name}_std_exp.npy", x) jl.dump(scaler, f'{BVH_DIR}/std_exp_scaler.sav')
7,177
examples/ex02_taudem_simple_usage.py
crazyzlj/PyGeoC
6
2170073
# -*- coding: utf-8 -*- # Exercise 2: Run TauDEM functions with PyGeoC from pygeoc.TauDEM import TauDEM def pitremove_simple_usage(): """Simple usage of pitremove. Workspace will be set as the base directory of input file. """ dem = '../tests/data/Jamaica_dem.tif' fel = '../tests/data/tmp_results/dem_pitremoved.tif' num_proc = 2 TauDEM.pitremove(num_proc, dem, fel) if __name__ == "__main__": pitremove_simple_usage()
477
institutional/migrations/0005_auto_20150928_1217.py
roberzguerra/rover
2
2171464
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('institutional', '0004_auto_20150928_1156'), ] operations = [ migrations.RemoveField( model_name='slide', name='caption', ), migrations.RemoveField( model_name='slide', name='site', ), migrations.AddField( model_name='slide', name='url', field=models.CharField(help_text='Cole aqui a URL de destino do link.', max_length=500, verbose_name='URL', blank=True), preserve_default=True, ), ]
722
etl_e2e/census_etl/dfxml/python/demos/demo_mac_timeline_objects.py
thinkmoore/das
35
2171358
#!/usr/bin/env python # This software was developed at the National Institute of Standards # and Technology in whole or in part by employees of the Federal # Government in the course of their official duties. Pursuant to # title 17 Section 105 of the United States Code portions of this # software authored by NIST employees are not subject to copyright # protection and are in the public domain. For portions not authored # by NIST employees, NIST has been granted unlimited rights. NIST # assumes no responsibility whatsoever for its use by other parties, # and makes no guarantees, expressed or implied, about its quality, # reliability, or any other characteristic. # # We would appreciate acknowledgement if the software is used. # produce a MAC-times timeline using the DFXML Objects interface. # works under either Python2 or Python3 import os import sys sys.path.append( os.path.join(os.path.dirname(__file__), "..")) import dfxml import dfxml.objects as Objects def main(): if len(sys.argv) < 2: print("Usage: {} <filename.xml>".format(sys.argv[0])) exit(1) timeline = [] for (event, obj) in Objects.iterparse( sys.argv[1] ): #Only work on FileObjects if not isinstance(obj, Objects.FileObject): continue if not obj.mtime is None: timeline.append([obj.mtime, obj.filename," modified"]) if not obj.crtime is None: timeline.append([obj.crtime,obj.filename," created"]) if not obj.ctime is None: timeline.append([obj.ctime, obj.filename," changed"]) if not obj.atime is None: timeline.append([obj.atime, obj.filename," accessed"]) timeline.sort() for record in timeline: print("\t".join( map(str, record)) ) if __name__ == "__main__": main()
1,770
sudachipy/dartsclone/__init__.py
lintaoren/SudachiPy
0
2170077
from . import doublearray from . import keyset from . import doublearraybuilder from . import doublearraybuilderunit from . import dawgbuilder from . import bitvector
167
saas/backend/biz/model_event.py
Canway-shiisa/bk-iam-saas
0
2171541
# -*- coding: utf-8 -*- """ TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-权限中心(BlueKing-IAM) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from typing import List from django.db import transaction from pydantic import parse_obj_as from backend.api.authorization.models import AuthAPIAllowListConfig from backend.apps.approval.models import ActionProcessRelation from backend.apps.policy.models import Policy as PolicyModel from backend.apps.role.models import RoleScope from backend.apps.template.models import PermTemplate, PermTemplatePolicyAuthorized from backend.service.action import ActionService from backend.service.constants import ModelChangeEventStatusEnum, ModelChangeEventTypeEnum from backend.service.model_event import ModelEventService from backend.service.models import ModelEvent from backend.service.policy.operation import PolicyOperationService class ModelEventBean(ModelEvent): """继承ModelEvent的数据属性""" pass class BaseEventExecutor: def __init__(self, event: ModelEventBean): self.event = event def run(self): self.execute() self.finish() def execute(self): """每个子类事件需要实现各自的执行逻辑""" raise NotImplementedError("subclasses of BaseEventExecutor must provide an execute() method") def finish(self): """事件执行结束后执行-更新状态""" ModelEventService().update_status(self.event.id, ModelChangeEventStatusEnum.Finished.value) class DeleteActionPolicyEventExecutor(BaseEventExecutor): """删除操作的策略""" def execute(self): """删除某个操作的所有策略""" system_id, action_id = self.event.system_id, self.event.model_id # 策略删除,包括自定义和模板权限 with transaction.atomic(): # 1. 用户或用户组自定义权限删除 PolicyModel.delete_by_action(system_id=system_id, action_id=action_id) # 2. 权限模板:变更权限模板里的action_ids及其授权的数据 template_ids = PermTemplate.delete_action(system_id, action_id) PermTemplatePolicyAuthorized.delete_action(system_id, action_id, template_ids) # 3. 调用后台根据action_id删除Policy的API, 实际测试在150万策略里删除10万+策略,大概需要3秒多 PolicyOperationService().delete_backend_policy_by_action(system_id, action_id) # 4. 分级管理员授权范围 RoleScope.delete_action_from_scope(system_id, action_id) # 5. Action的审批流程配置 ActionProcessRelation.delete_by_action(system_id=system_id, action_id=action_id) # 6. API白名单授权撤销 AuthAPIAllowListConfig.delete_by_action(system_id, action_id) class DeleteActionEventExecutor(BaseEventExecutor): """删除操作""" def execute(self): """删除Action权限模型""" ActionService().delete(self.event.system_id, self.event.model_id) class ModelEventBiz: svc = ModelEventService() def list(self, status: str, limit: int = 1000) -> List[ModelEventBean]: """有限制条数的查询""" events = self.svc.list(status, limit) return parse_obj_as(List[ModelEventBean], events) def get_executor(self, event: ModelEventBean) -> BaseEventExecutor: """ 获取事件执行者,用于执行事件 """ # Note: 目前只能处理某个操作的策略删除和操作本身的删除 if event.type == ModelChangeEventTypeEnum.ActionPolicyDeleted.value: return DeleteActionPolicyEventExecutor(event=event) if event.type == ModelChangeEventTypeEnum.ActionDeleted.value: return DeleteActionEventExecutor(event=event) raise NotImplementedError(f"{event.type} executor not implement") def delete_finished_event(self, before_updated_at: int, limit: int = 1000): """有限制条数和时间的删除事件""" self.svc.delete_finished_event(before_updated_at, limit)
4,187
test/python/test_or_and_max_abs.py
tomjaguarpaw/knossos-ksc
31
2169137
from ksc.utils import translate_and_import def test_abs(): ks_str = """ (edef abs Integer (Integer)) (def test Integer ((x : Integer)) (abs x) ) """ py_out = translate_and_import(__file__, ks_str, "common") assert py_out.test(0) == 0 assert py_out.test(1) == 1 assert py_out.test(-1) == 1 def test_max(): ks_str = """ (edef max Integer (Tuple Integer Integer)) (def test Integer ((x : Integer) (y : Integer) (z : Integer)) (max (max x y) z) ) """ py_out = translate_and_import(__file__, ks_str, "common") x, y, z = 1, 2, -1 assert py_out.test(x, y, z) == 2 def test_or(): ks_str = """ (edef or Bool (Tuple Bool Bool)) (edef lt Bool (Tuple Integer Integer)) (edef gt Bool (Tuple Integer Integer)) (def test Bool ((x : Integer)) (or (lt x 0) (gt x 0)) ) """ py_out = translate_and_import(__file__, ks_str, "common") assert py_out.test(1) == True assert py_out.test(0) == False assert py_out.test(-1) == True def test_and(): ks_str = """ (edef and Bool (Tuple Bool Bool)) (edef lt Bool (Tuple Integer Integer)) (edef gt Bool (Tuple Integer Integer)) (def test Bool ((x : Integer)) (and (gt x 0) (lt x 2)) ) """ py_out = translate_and_import(__file__, ks_str, "common") assert py_out.test(0) == False assert py_out.test(1) == True assert py_out.test(2) == False
1,358
microcosm_postgres/tests/encryption/fixtures/sub_encryptable.py
globality-corp/microcosm-postgres
2
2171726
from typing import Sequence, Tuple from microcosm.api import binding from sqlalchemy import ( CheckConstraint, Column, ForeignKey, String, ) from sqlalchemy.orm import relationship from sqlalchemy_utils import UUIDType from microcosm_postgres.encryption.models import EncryptableMixin, EncryptedMixin from microcosm_postgres.encryption.store import EncryptableStore from microcosm_postgres.models import EntityMixin, Model from microcosm_postgres.store import Store class Parent(EntityMixin, Model): __tablename__ = "parent" name = Column(String) __mapper_args__ = { "polymorphic_identity": "parent", "polymorphic_on": name, } class SubEncrypted(EntityMixin, EncryptedMixin, Model): __tablename__ = "sub_encrypted" class SubEncryptable(Parent, EncryptableMixin): """ A model for conditionally-encrypted plaintext. """ __tablename__ = "sub_encryptable" id = Column(UUIDType, ForeignKey("parent.id"), primary_key=True) # key used for encryption context key = Column(String, nullable=False) # value is not encrypted value = Column(String, nullable=True) # foreign key to encrypted data sub_encrypted_id = Column(UUIDType, ForeignKey("sub_encrypted.id"), nullable=True) # load and update encrypted relationship automatically sub_encrypted = relationship( SubEncrypted, lazy="joined", ) __mapper_args__ = { "polymorphic_identity": "sub", } __table_args__ = ( CheckConstraint( name="value_or_encrypted_is_not_null", sqltext="value IS NOT NULL OR sub_encrypted_id IS NOT NULL", ), CheckConstraint( name="value_or_encrypted_is_null", sqltext="value IS NULL OR sub_encrypted_id IS NULL", ), ) __encrypted_identifier__ = "sub_encrypted_id" @property def ciphertext(self) -> Tuple[bytes, Sequence[str]]: return (self.sub_encrypted.ciphertext, self.sub_encrypted.key_ids) @ciphertext.setter def ciphertext(self, value: Tuple[bytes, Sequence[str]]) -> None: ciphertext, key_ids = value self.sub_encrypted = SubEncrypted( ciphertext=ciphertext, key_ids=key_ids, ) @binding("sub_encrypted_store") class SubEncryptedStore(Store): def __init__(self, graph): super().__init__(graph, SubEncrypted) @binding("sub_encryptable_store") class SubEncryptableModelStore(EncryptableStore): def __init__(self, graph): super().__init__(graph, SubEncryptable, graph.sub_encrypted_store) @binding("parent_store") class ParentStore(Store): def __init__(self, graph): super().__init__(graph, Parent)
2,732
pizzapy/__init__.py
dzeban/python-imports
5
2171447
# Uncomment to drag all the package symbols to the top-level # # from pizzapy.pizza import * # from pizzapy.menu import * # # or use this short form # # from .pizza import * # from .menu import *
196
image_segmentation/image_Segmentation.py
Sujay-Tandel/Optical-Character-Recognition
6
2170128
# coding: utf-8 # In[2]: # importing the dependencies import os import os.path import cv2 import glob import imutils # In[53]: # a function to take a path to an image and then segments the image into constituent letters and then return the letter def image_segmentation(image_name): counter = 0 # reading the image image = cv2.imread(image_name) # converting the image to grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # threshold to convert the image to pure black and white thresh = cv2.threshold(gray, 0,255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] # find the contours (continous blob of pixels ) in the image contours = cv2.findContours(thresh,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Hack for compatibility with different OpenCV versions contours = contours[0] if imutils.is_cv2() else contours[1] letter_image_regions = [] # now loop through each of the letter in the image for contour in contours: # get the rectangle that contains the contour x,y,w,h = cv2.boundingRect(contour) # compare the width and height of the contour to detect if it # has one letter or not if w/h >1.25: # this is too wide for a single letter continue elif w<3 or h<3: # this is a very small image probably a noise continue else: # this is a normal letter by itself letter_image_regions.append((x,y,w,h)) # Extract the letter from the original image with a 2-pixel margin around the edge letter_image = gray[y - 2:y + h + 2, x - 2:x + w + 2] #constructing the name of the images name = str(counter) + '.png' # incrementing the counter to store the next image counter = counter +1 return letter_image # In[58]: letter_images = image_segmentation("pic.jpg")
1,920
00_In Class Activities/09_LoopsAndListsBasicPractice/09_LoopsAndListsBasicPractice.py
Kraussie/CS550--Project-Repo
0
2171229
#Loops and Lists Basic Practice import random import math # 1. Create a list that holds the numbers 1-99 in reverse order. ''' COMPLETE ###a = list(range(99,0,-1)) ###print(a) ''' # 2. Create a loop that loops through a list of random numbers (ranging from 0-100) and throws away or removes any number greater than 10. This should work for lists of any length. ''' COMPLETE purgeList = [random.randint(0,100) for i in range(30)] print(purgeList) purgedList = [i for i in purgeList if i < 10] print(purgedList) ''' # 3. Write a function that will return a list of the first n numbers in the fibonacci sequence. No recursion allowed! phi = ( 1 + math.sqrt(5) ) / 2 numberFib_UR = int(input("\n\n\nHow many values of the fibonacci sequence would you like to see?\n>>")) fibPrint = [] for i in range(numberFib_UR): fibPrint.append(round((((phi)**i)-((1-phi)**i)) / (math.sqrt(5)))) print(fibPrint) # 4. Write some code that, given a list, will tell you if a given value is in the list. ''' COMPLETE valList = [1,4,5,6,9,10] if int(input("Enter Number\n>>")) in valList: print("\nYes it is in the list!") ''' # 5. Write some code that, given a list of 30 random numbers between 1 and 30, will print to the screen "Yahtzee!" if the first six multiples under 30 of any number 1-6 are all in the list. For example, 1, 2, 3, 4, 5, and 6 = yahtzee, 3, 6, 9, 12, 15 = yahtzee, etc. ''' INCOMPLETE ranList = [random.randint(1,30) for i in range(30)] if X: print("Yahtzee!") ''' # 6. Write a function that accepts an array of numbers, and returns the sum of the numbers in the array, except sections of numbers starting with a 6 and extending to the next 7 will be ignored in the sum (every 6 will be followed by at least one 7). Return 0 for no numbers. For example: 1, 2, 3, 6, 4, 5, 7, 7 would return 13.
1,816
tests/test_micropolygon.py
bracket/handsome
0
2170187
from handsome.Micropolygon import Micropolygon from handsome.util import point import numpy as np def test_micropolygon(): m = Micropolygon( point(0, 0), point(1, 0), point(1, 1), point(2, 1), ) tests = [ [ (.5 , .5) , np.array([ 1, .5 , 1, 1 ]), ], [ (.25, .75), np.array([ 1, .75, 1, 1 ]), ], [ (0. , 0.) , np.array([ 0, 0 , 1, 1 ]), ], [ (1. , 0.) , np.array([ 1, 0 , 1, 1 ]), ], [ (0. , 1.) , np.array([ 1, 1 , 1, 1 ]), ], [ (1. , 1.) , np.array([ 2, 1 , 1, 1 ]), ], ] for input, expected in tests: actual = m(*input) np.testing.assert_array_equal(actual, expected)
693
sokoban/map_entities/__init__.py
JacobChen258/AI-Markov-Probability
0
2171140
from .map_entity import MapEntity from .entity_types import EntityType from .player import Player from .box import Box from .armory_point import ArmoryPoint from .monster import Monster from .random_monster import RandomMonster from .chase_monster import ChaseMonster from .entity_grid import EntityGrid from .mouse import Mouse
329
way/python/exercises/codewars/codewars005.py
only-romano/junkyard
0
2171806
#! Replace With Alphabet Position def find_short(s): return min([len(w) for w in s.split()]) assert(find_short("bitcoin take over the world maybe who knows perhaps"), 3) assert(find_short("turns out random test cases are easier than writing out basic ones"), 3) assert(find_short("lets talk about javascript the best language"), 3) assert(find_short("i want to travel the world writing code one day"), 1) assert(find_short("Lets all go on holiday somewhere very cold"), 2)
493
rx_registration/views.py
shezi/django-rx-registration
0
2169450
# -*- encoding: utf-8 -*- from django.contrib import messages from django.contrib.auth import login, logout, authenticate from django.contrib.auth import get_user_model from django.core.mail import send_mail from django.db import transaction from django.shortcuts import render, redirect from django.template import Context from django.template.loader import get_template from .forms import RegistrationForm, LoginForm from .utils import rxsettings @transaction.atomic def register(request): """Register a new user.""" data = {} initial = {} data['form'] = RegistrationForm(initial=initial) if request.method == 'POST': data['form'] = form = RegistrationForm(request.POST) if form.is_valid(): user = get_user_model()( username=form.cleaned_data['username'], email=form.cleaned_data['email'], ) user.set_password(form.cleaned_data['<PASSWORD>']) user.save() user = authenticate(username=form.cleaned_data['username'], password=form.cleaned_data['<PASSWORD>']) login(request, user) if rxsettings.confirm_registration: subject_template = get_template('rx-registration/register_subject.djtxt') text_template = get_template('rx-registration/register_text.djtxt') ctx = Context({ 'user': user, }) subject = subject_template.render(ctx) text = text_template.render(ctx) email_from = rxsettings.confirm_registration_from try: send_mail( subject, text, email_from, [user.email], fail_silently=False) except IOError: # TODO: signal this to the user, probably? pass return redirect(rxsettings.redirect_after_register) return render(request, 'rx-registration/register.djhtml', data) def v_login(request): data = {} data['registration_form'] = RegistrationForm() data['form'] = LoginForm() if request.method == 'POST': data['form'] = form = LoginForm(request.POST) if form.is_valid(): login(request, form.user) return redirect(rxsettings.redirect_after_login) return render(request, 'rx-registration/login.djhtml', data) def v_logout(request): messages.info(request, _('You have been logged out.')) logout(request) return redirect(rxsettings.redirect_after_logout)
2,625
yurt/lxc/util.py
ckmetto/yurt
2
2169797
import logging import os from typing import List, Dict import pylxd from yurt import config from yurt import vm from yurt.exceptions import LXCException, VMException NETWORK_NAME = "yurt-int" PROFILE_NAME = "yurt" REMOTES = { "images": { "Name": "images", "URL": "https://images.linuxcontainers.org", }, "ubuntu": { "Name": "ubuntu", "URL": "https://cloud-images.ubuntu.com/releases", }, } def _setup_yurt_socat(): name = "yurt-lxd-socat" vm.run_cmd("mkdir -p /tmp/yurt") tmp_unit_file = f"/tmp/yurt/{name}.service" installed_unit_file = f"/etc/systemd/system/{name}.service" vm.run_cmd("sudo apt install socat -y") vm.put_file(os.path.join(config.provision_dir, f"{name}.service"), tmp_unit_file) vm.run_cmd(f"sudo cp {tmp_unit_file} {installed_unit_file}") vm.run_cmd("sudo systemctl daemon-reload") vm.run_cmd(f"sudo systemctl enable {name}") vm.run_cmd(f"sudo systemctl start {name}") def get_pylxd_client(): lxd_port = config.get_config(config.Key.lxd_port) try: return pylxd.Client(endpoint=f"http://127.0.0.1:{lxd_port}") except pylxd.exceptions.ClientConnectionFailed as e: logging.debug(e) raise LXCException( "Error connecting to LXD. Try restarting the VM: 'yurt vm restart'") def get_instance(name: str): client = get_pylxd_client() try: return client.instances.get(name) # pylint: disable=no-member except pylxd.exceptions.NotFound: raise LXCException(f"Instance {name} not found.") except pylxd.exceptions.LXDAPIException: raise LXCException( f"Could not fetch instance {name}. API Error.") def is_initialized(): return config.get_config(config.Key.is_lxd_initialized) def get_ip_config(): from ipaddress import ip_interface host_ip_address = config.get_config( config.Key.interface_ip_address) network_mask = config.get_config( config.Key.interface_netmask) if not (host_ip_address and network_mask): raise LXCException("Bad IP Configuration. ip: {0}, mask: {1}".format( host_ip_address, network_mask)) full_host_address = ip_interface( "{0}/{1}".format(host_ip_address, network_mask)) bridge_address = ip_interface( "{0}/{1}".format((full_host_address + 1).ip, network_mask)).exploded return { "bridgeAddress": bridge_address, "dhcpRangeLow": (full_host_address + 10).ip.exploded, "dhcpRangeHigh": (full_host_address + 249).ip.exploded } def initialize_lxd(): if is_initialized(): return try: with open(os.path.join(config.provision_dir, "lxd-init.yaml"), "r") as f: init = f.read() except OSError as e: raise LXCException(f"Error reading lxd-init.yaml {e}") try: logging.info("Updating package information...") vm.run_cmd("sudo apt update", show_spinner=True) vm.run_cmd("sudo usermod yurt -a -G lxd") logging.info("Initializing LXD...") vm.run_cmd( "sudo lxd init --preseed", stdin=init, show_spinner=True ) _setup_yurt_socat() logging.info("Done.") config.set_config(config.Key.is_lxd_initialized, True) except VMException as e: logging.error(e) logging.error("Restart the VM to try again: 'yurt vm restart'") raise LXCException("Failed to initialize LXD.") def check_network_config(): client = get_pylxd_client() if client.networks.exists(NETWORK_NAME): # pylint: disable=no-member return logging.info("Configuring network...") ip_config = get_ip_config() bridge_address = ip_config["bridgeAddress"] dhcp_range_low = ip_config["dhcpRangeLow"] dhcp_range_high = ip_config["dhcpRangeHigh"] client.networks.create( # pylint: disable=no-member NETWORK_NAME, description="Yurt Network", type="bridge", config={ "bridge.external_interfaces": "enp0s8", "ipv6.address": "none", "ipv4.nat": "true", "ipv4.dhcp": "true", "ipv4.dhcp.expiry": "24h", "ipv4.address": bridge_address, "ipv4.dhcp.ranges": f"{dhcp_range_low}-{dhcp_range_high}", "dns.domain": config.app_name }) def check_profile_config(): client = get_pylxd_client() if client.profiles.exists(PROFILE_NAME): # pylint: disable=no-member return logging.info("Configuring profile...") client.profiles.create( # pylint: disable=no-member PROFILE_NAME, devices={ "eth0": { "name": "eth0", "nictype": "bridged", "parent": NETWORK_NAME, "type": "nic" }, "root": { "type": "disk", "pool": "yurtpool", "path": "/" } } ) def shortest_alias(aliases: List[Dict[str, str]], remote: str): import re aliases = list(map(lambda a: str(a["name"]), aliases)) if remote == "ubuntu": aliases = list(filter(lambda a: re.match( r"^\d\d\.\d\d", a), aliases)) try: alias = aliases[0] for a in aliases: if len(a) < len(alias): alias = a return alias except (IndexError, KeyError) as e: logging.debug(e) logging.error(f"Unexpected alias schema: {aliases}") def filter_remote_images(images: List[Dict]): aliased = filter(lambda i: i["aliases"], images) container = filter( lambda i: i["type"] == "container", aliased) x64 = filter( lambda i: i["architecture"] == "x86_64", container) return x64 def get_remote_image_info(remote: str, image: Dict): try: return { "Alias": shortest_alias(image["aliases"], remote), "Description": image["properties"]["description"] } except KeyError as e: logging.debug(e) logging.debug(f"Unexpected image schema: {image}") def exec_interactive(instance_name: str, cmd: List[str], environment=None): from . import term instance = get_instance(instance_name) response = instance.raw_interactive_execute(cmd, environment=environment) lxd_port = config.get_config(config.Key.lxd_port) try: ws_url = f"ws://127.0.0.1:{lxd_port}{response['ws']}" term.run(ws_url) except KeyError as e: raise LXCException(f"Missing ws URL {e}") def unpack_download_operation_metadata(metadata): if metadata: if "download_progress" in metadata: return f"Download progress: {metadata['download_progress']}" if "create_instance_from_image_unpack_progress" in metadata: return f"Unpack progress: {metadata['create_instance_from_image_unpack_progress']}" else: return "" def follow_operation(operation_uri: str, unpack_metadata=None): """ Params: operation_uri: URI of the operation to follow. unpack_metadata: Function to unpack the operation's metadata. Return a line of text to summarize the current progress of the operation. If not given, progress will not be shown. """ import time from yurt.util import retry operations = get_pylxd_client().operations # Allow time for operation to be created. try: retry( lambda: operations.get(operation_uri), # pylint: disable=no-member retries=10, wait_time=0.5 ) operation = operations.get(operation_uri) # pylint: disable=no-member except pylxd.exceptions.NotFound: raise LXCException( f"Timed out while waiting for operation to be created.") logging.info(operation.description) while True: try: operation = operations.get( # pylint: disable=no-member operation_uri ) if unpack_metadata: print(f"\r{unpack_metadata(operation.metadata)}", end="") time.sleep(0.5) except pylxd.exceptions.NotFound: print("\nDone") break except KeyboardInterrupt: break
8,341
examples/mycroft_master.py
flo-mic/HiveMind-core
43
2171786
from jarbas_hive_mind import get_listener from jarbas_hive_mind.configuration import CONFIGURATION def start_mind(config=None, bus=None): config = config or CONFIGURATION # listen listener = get_listener(bus=bus) # use http # config["ssl"]["use_ssl"] = False # read port and ssl settings listener.load_config(config) listener.listen() if __name__ == '__main__': # TODO argparse start_mind() # that's it, now external applications can connect to the HiveMind # use configuration to set things like # - blacklisted/whitelisted ips # - blacklisted/whitelisted message_types # - blacklisted/whitelisted intents - Coming soon # - blacklisted/whitelisted skills - Coming soon # you can send messages to the mycroft bus to send/broadcast to clients # 'Message(hive.client.broadcast', # {"payload": # {"msg_type": "speak", # "data": {"utterance": "Connected to the HiveMind"} # }) # or you can listen to hive mind events # "hive.client.connection.error" # "hive.client.connect" # "hive.client.disconnect" # "hive.client.send.error"
1,198
Tutorials/10 Days of Statistics/Day 7/spearman_rank_correlation.py
xuedong/hacker-rank
1
2171511
#!/bin/python3 def get_rank(arr): n = len(arr) rank = [0 for i in range(n)] for i in range(n): rank_i = 0 for j in range(n): if arr[j] > arr[i]: rank_i += 1 rank[i] = rank_i + 1 return rank def spearman(rank1, rank2, n): total = 0 for i in range(n): total += (rank1[i] - rank2[i]) ** 2 return 1 - 6*total/(n*(n**2-1)) n = int(input()) arr1 = [float(arr_i) for arr_i in input().strip().split(' ')] arr2 = [float(arr_i) for arr_i in input().strip().split(' ')] print(round(spearman(get_rank(arr1), get_rank(arr2), n), 3))
620
code/groups.py
ron-rivest/audit-lab
3
2171615
# groups.py # <NAME> # July 25, 2017 (rev Sept. 21, 2017) # python3 """ This module implements "contest groups" for the post-election audit program "OpenAuditTool.py". """ import warnings def expand_contest_group_defs(e): """ Expand contest group definitions so that we have a definition for each contest group purely in terms of its contests. The input definitions are in e.cgids_g, which gives definition of each contests group as an ordered list of cids and gids, for each gid. The output goes into e.cids_g, which gives just an ordered list e.cids_g[gid] for the cids in each group. This is a simple reachability computation in a directed graph, using repeated depth-first search starting from each gid node. A warning is printed if the gid graph has any cycles. When the graph is acyclic, this is just like doing a derviation of a string in a context-free grammar, where the cids are the "terminals" and the gids are the "nonterminals". Each gid generates exactly one string. The reason for using ordered lists here (as opposed to sets) is that this may reflect the order in which the contests appear on a ballot. """ e.cids_g = {} for gid in e.gids: gids = set() cids = [] stack = [] reachable_from(e, gid, gids, cids, stack) e.cids_g[gid] = cids def reachable_from(e, gid, gids, cids, stack): """ Find all gids and cids reachable from initial gid in 0 or more steps. Main output of interest is the input list "cids", which has all reachable contests appended to it. This works even if the graph contains cycles. Algorithm is depth-first search (DFS). """ if gid in gids: if gid in stack: warnings.warn("Group id {} is in a cycle!".format(gid)) return gids.add(gid) for cgid in e.cgids_g[gid]: # Note: 'cgid' means 'contest or group id' if cgid in e.cids: cids.append(cgid) else: stack.append(gid) reachable_from(e, cgid, gids, cids, stack) stack.pop() def expand_gids_in_list(e, L): """ Return list L with all gids replaced by their cid-list equivalent. Here L is a list of mixed cid and gid identifiers. Duplicates removed in output, of course. The operation preserves the order of the portions (like a contest-free grammar, if there are no cycles). """ ans = [] for cgid in L: if cgid in e.cids: ans.append(cgid) else: for cid in e.cids_g[cgid]: ans.append(cid) return ans
2,679
src/dal/audio/audiodatacache.py
pgecsenyi/piepy
1
2171725
import threading from dal.cache import Cache class AudioDataCache(Cache): #################################################################################################################### # Constructor. #################################################################################################################### def __init__(self): ### Private attributes. # A cache that contains albums as album (string) => id (int) pairs. self._album_cache = {} # This lock is used for album cache synchronization. self._album_cache_lock = threading.Lock() # A cache that contains artist IDs as artist (string) => id (int) pairs. self._artist_cache = {} # This lock is used for artist cache synchronization. self._artist_cache_lock = threading.Lock() #################################################################################################################### # Public methods. #################################################################################################################### def clear(self): with self._artist_cache_lock: self._artist_cache = {} with self._album_cache_lock: self._album_cache = {} def get_album_id(self, album): return self._get_value_from_simple_cache(self._album_cache, self._album_cache_lock, album) def get_artist_id(self, artist): return self._get_value_from_simple_cache(self._artist_cache, self._artist_cache_lock, artist) def set_album_id(self, album, album_id): self._store_item_in_simple_cache(self._album_cache, self._album_cache_lock, album, album_id) def set_artist_id(self, artist, artist_id): self._store_item_in_simple_cache(self._artist_cache, self._artist_cache_lock, artist, artist_id)
1,854
payit/gateways/dummy.py
meyt/pyment
0
2170780
import time from payit import Gateway, Transaction, Redirection, TransactionError class DummyGateway(Gateway): """ Dummy Gateway """ __gateway_name__ = "dummy" __gateway_unit__ = "IRR" __config_params__ = ["pin", "callback_url", "maximum_amount"] __base_url__ = "https://dummy-gateway.localhost" def _generate_id(self): return int(time.time()) @property def maximum_amount(self) -> int: return int(self.config["maximum_amount"] or 1000000) def get_redirection(self, transaction) -> Redirection: result = Redirection( url="/".join((self.__class__.__base_url__, str(transaction.id))), method="get", ) print("New redirection created: \n%s" % result.__repr__()) return result def request_transaction(self, transaction: Transaction) -> Transaction: if int(transaction.amount) > self.maximum_amount: raise TransactionError( "Amount is larger than %s" % self.maximum_amount ) transaction.id = self._generate_id() print("New transaction requested: \n%s" % transaction.__repr__()) return transaction def validate_transaction(self, data: dict) -> Transaction: transaction = Transaction() transaction.id = data["id"] transaction.meta = data transaction.validate_status = data.get("validateStatus", True) print("Transaction validated: \n%s" % transaction.__repr__()) return transaction def verify_transaction(self, transaction: Transaction, data): if data["id"] == "false": raise TransactionError("Invalid transaction ID") transaction.pan = data.get("cardNumber") print("Transaction verified: \n%s" % transaction.__repr__()) return transaction
1,837
day19/19.py
stefsmeets/advent_of_code
0
2171536
from scipy.spatial.distance import cdist, pdist from itertools import product import numpy as np filename = 'data.txt' with open(filename) as f: lines = f.readlines() scanners = [] for line in lines: line = line.strip() if line.startswith('---'): scanner = [] elif not line: scanner = np.array(scanner) scanners.append(scanner) scanner = None else: scanner.append([int(val) for val in line.split(',')]) # add last if len(scanner): scanners.append(scanner) vectors = [ np.array((1, 0, 0)), np.array((-1, 0, 0)), np.array((0, 1, 0)), np.array((0, -1, 0)), np.array((0, 0, 1)), np.array((0, 0, -1)), ] rotmats = [] for vi, vj in product(vectors, vectors): if vi @ vj == 0: vk = np.cross(vi, vj) rotmat = np.array([vi, vj, vk]) rotmats.append(rotmat) assert len(rotmats) == 24 OFFSETS = [np.array((0,0,0))] def solve(beacons, scanners): try_again = [] for i, other in enumerate(scanners): best_rotmat = None best_n_matches = 0 for rotmat in rotmats: rotated = other @ rotmat dist = cdist(beacons, rotated) uniq, counts = np.unique(dist, return_counts=True) i_max = counts.argmax() n_matches = counts[i_max] common_dist = uniq[i_max] if n_matches > best_n_matches: best_n_matches = n_matches best_rotmat = dist, common_dist, rotated if best_n_matches < 6: try_again.append(other) continue dist, common_dist, rotated = best_rotmat common_beacons = np.argwhere(dist == common_dist) from_beacons, from_other = common_beacons.T vector = (beacons[from_beacons] - rotated[from_other])[0] beacons = np.vstack((beacons, rotated + vector)) beacons = np.unique(beacons, axis=0) OFFSETS.append(vector) if len(try_again) > 0: beacons = solve(beacons, try_again) return beacons beacons = solve(scanners[0], scanners[1:]) print(f'part 1: {len(beacons)=}') print(f"part 2: {pdist(OFFSETS, metric='cityblock').max()=}")
2,193
ssplanner/coresetup/models/owe_model.py
devrajvlpt/splitgenie
0
2171422
# -*- coding: utf-8 -*- # python manage.py make migrations your_app_label # python manage.py migrate --fake-initial your_app_label from __future__ import unicode_literals from django.db import models from django.utils import timezone from datetime import date, datetime from django.conf import settings class OweModel(models.Model): """List of splitted amount to each user under same topic Attributes: created_at (TYPE): Description created_by (TYPE): Description splitted_amount (TYPE): Description splitted_user (TYPE): Description updated_at (TYPE): Description updated_by (TYPE): Description """ owed_amount = models.IntegerField() owed_on = models.CharField(max_length=80, blank=True) created_by = models.ForeignKey( settings.AUTH_USER_MODEL, related_name= 'sa_ledger_created', on_delete=models.CASCADE ) updated_by = models.ForeignKey( settings.AUTH_USER_MODEL, related_name= 'sa_ledger_updated', on_delete=models.CASCADE ) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True)
1,356
src/test/test_sexp_writer.py
spielhuus/nukleus
0
2170562
from io import StringIO from sys import path from typing import ByteString import unittest from unittest.mock import patch import sys from nukleus.PCB import PCB from nukleus.SexpWriter import SexpWriter sys.path.append('src') sys.path.append('../../src') from nukleus.Schema import Schema from nukleus.ModelBase import * from nukleus.ModelSchema import * from nukleus.ParserVisitor import ParserVisitor from nukleus.SexpParser import * class TestSexpWriter(unittest.TestCase): def test_parse_summe(self): with open('samples/files/summe_v6/main.kicad_sch', 'r') as infile: schema_tree = load_tree(infile.read()) schema = Schema() visitor = ParserVisitor(schema) visitor.visit(schema_tree) writer = SexpWriter() schema.produce(writer) self.maxDiff = None with open('samples/files/summe_v6/main.kicad_sch', 'r') as file: orig = file.read() text = "".join([s for s in orig.splitlines(True) if s.strip("\r\n")]) result = "".join([s for s in str(writer).splitlines(True) if s.strip("\r\n")]) result += "\n" self.assertEqual(text, result) def test_parse_produkt_schema(self): with open('samples/files/produkt/main.kicad_sch', 'r') as infile: schema_tree = load_tree(infile.read()) schema = Schema() visitor = ParserVisitor(schema) visitor.visit(schema_tree) writer = SexpWriter() schema.produce(writer) with open('samples/files/produkt/main.kicad_sch', 'r') as file: orig = file.read() text = "".join([s for s in orig.splitlines(True) if s.strip("\r\n")]) result = "".join([s for s in str(writer).splitlines(True) if s.strip("\r\n")]) result += "\n" self.assertEqual(text, result) def test_parse_all_elements(self): with open('samples/files/all_elements/all_elements.kicad_sch', 'r') as infile: schema_tree = load_tree(infile.read()) writer = SexpWriter() visitor = ParserVisitor(writer) visitor.visit(schema_tree) with open('samples/files/all_elements/all_elements.kicad_sch', 'r') as file: orig = file.read() text = "".join([s for s in orig.splitlines(True) if s.strip("\r\n")]) result = "".join([s for s in str(writer).splitlines(True) if s.strip("\r\n")]) result += "\n" self.maxDiff = None self.assertEqual(text, result) def test_parse_all_elements_schema(self): with open('samples/files/all_elements/all_elements.kicad_sch', 'r') as infile: schema_tree = load_tree(infile.read()) schema = Schema() visitor = ParserVisitor(schema) visitor.visit(schema_tree) writer = SexpWriter() schema.produce(writer) with open('samples/files/all_elements/all_elements.kicad_sch', 'r') as file: orig = file.read() text = "".join([s for s in orig.splitlines(True) if s.strip("\r\n")]) result = "".join([s for s in str(writer).splitlines(True) if s.strip("\r\n")]) result += "\n" self.maxDiff = None self.assertEqual(text, result) def test_parse_produkt_pcb(self): with open('samples/files/produkt/main.kicad_pcb', 'r') as infile: schema_tree = load_tree(infile.read()) schema = PCB() visitor = ParserVisitor(schema) visitor.visit(schema_tree) writer = SexpWriter() schema.produce(writer) self.maxDiff = None with open('samples/files/produkt/main.kicad_pcb', 'r') as file: orig = file.read() text = "".join([s for s in orig.splitlines(True) if s.strip("\r\n")]) result = "".join([s for s in str(writer).splitlines(True) if s.strip("\r\n")]) result += "\n" self.assertEqual(text, result)
4,194
core/config.py
bontchev/CitrixHoneypot
1
2171663
import configparser from os import environ def to_environ_key(key): return key.upper() class EnvironmentConfigParser(configparser.ConfigParser): def has_option(self, section, option): if to_environ_key('_'.join((section, option))) in environ: return True return super(EnvironmentConfigParser, self).has_option(section, option) def get(self, section, option, **kwargs): key = to_environ_key('_'.join((section, option))) if key in environ: return environ[key] return super(EnvironmentConfigParser, self).get(section, option, **kwargs) def readConfigFile(cfgfile): """ Read config files and return ConfigParser object @param cfgfile: filename or array of filenames @return: ConfigParser object """ parser = EnvironmentConfigParser(interpolation=configparser.ExtendedInterpolation()) parser.read(cfgfile) return parser CONFIG = readConfigFile(('etc/honeypot.cfg.base', 'etc/honeypot.cfg', 'honeypot.cfg'))
1,023
Tests/Challenges/test_omega_2013.py
dev-11/codility-solutions
0
2170843
import unittest from Solutions import Challenges class Omega2013Tests(unittest.TestCase): def test_omega_2013_example_test_01(self): a = [5, 6, 4, 3, 6, 2, 3] b = [2, 3, 5, 2, 4] res = Challenges.omega_2013(a, b) self.assertEqual(4, res)
276
pun/echo.py
Unviray/pun
2
2170477
""" pun.echo ======== Print something in console. """ from click import style def fail(msg, task_name=None, indent=25): title = style('[ fail ]', fg='red') if task_name is not None: name = style(task_name, fg='bright_red', bold=True) else: name = '' n = name.ljust(indent) print(f'{title} {n} {msg}') def success(task_name): title = style('[ success ]', fg='green') name = style(task_name, fg='bright_green', bold=True) print(f'{title} {name}') def echo(task_name, msg, indent=25): name = style(task_name, bold=True) n = name.ljust(indent) print(f'> {n} {msg}')
637
mail_script/client.py
sasakalaba/grbic-mail-script
0
2170902
import os import io from apiclient.discovery import build from apiclient.http import MediaIoBaseDownload from httplib2 import Http from oauth2client import file, client, tools from django.conf import settings class Client(object): """ Main wrapper for handling requests and responses to the Google Drive API. """ SCOPES = 'https://www.googleapis.com/auth/drive.file' def __init__(self, *args, **kwargs): """ Initialize the API. """ store = file.Storage('credentials.json') creds = store.get() if not creds or creds.invalid: flow = client.flow_from_clientsecrets('client_secret.json', self.SCOPES) creds = tools.run_flow(flow, store) self.service = build('drive', 'v3', http=creds.authorize(Http())) self.temp_path = os.path.join(settings.MEDIA_ROOT, 'temp') def get_data(self): """ Fetches data from Google Drive and registers it in the database. """ query = ( "parents='%s' and mimeType='application/vnd.google-apps.folder'" % settings.GD_ROOT_DIR_ID ) results = self.service.files().list(q=query).execute() return results.get('files', []) def download_csv(self, file_id, dir_path, filename): """ Download file by id. """ request = self.service.files().get_media(fileId=file_id) fh = io.BytesIO() downloader = MediaIoBaseDownload(fh, request) done = False while done is False: status, done = downloader.next_chunk() filepath = os.path.join(dir_path, filename) with open(filepath, 'wb') as output: output.write(fh.getvalue()) return filepath def get_csv(self, directory): """ Downloads files by id from Google Drive. """ paths = {} # Create the download directory. download_dir = os.path.join(self.temp_path, directory.title) if not os.path.exists(download_dir): os.makedirs(download_dir) # Download files. paths['urls_path'] = self.download_csv( directory.urls_id, download_dir, 'urls.csv') paths['emails_path'] = self.download_csv( directory.emails_id, download_dir, 'emails.csv') return paths
2,349
numcodecs/tests/test_registry.py
Czaki/numcodecs
60
2169641
import pytest from numcodecs.registry import get_codec def test_registry_errors(): with pytest.raises(ValueError): get_codec({'id': 'foo'}) def test_get_codec_argument(): # Check that get_codec doesn't modify its argument. arg = {"id": "json2"} before = dict(arg) get_codec(arg) assert before == arg
338
bin/run.py
OliWenman/geant4tomosim
4
2170079
""" Short script for running G4TomoSim with or without visualization on and saving the data automatically with the simulatetomograpy function """ # -*- coding: utf-8 -*- import os this_directory = os.path.dirname(os.path.realpath(__file__)) import sys sys.path.insert(0, this_directory + '/../settings') import tomosim_input as tsi #Can optionally add a file path and name for the data to be saved when running script if __name__ == '__main__': defaultpath = this_directory + "/../output/tomosimData.nxs" #Get the filepath from the first arguement try: filepath = sys.argv[1] #If no filepath given, save the data in the default filepath except IndexError: filepath = defaultpath print ("\nSaving data in the default place", filepath) #=================================================================== import random #RUN THE SIMULATION from g4tomosim import G4TomoSim tomosim = G4TomoSim(tsi.verbose, tsi.interactive) tomosim.execute_macrolist(tsi.macrofiles) tomosim.set_seed(random.randint(1, 1.e9)) """ #For visualization, make there aren't many pixels otherwise will crash #HepRApp viewer tomosim.execute_command("/detector/absorption/xpixels 5") tomosim.execute_command("/detector/absorption/ypixels 3") #Creates a directory to save all the vis data. Each projection simulated creates a #new vis file. tomosim.setup_visualization(path = this_directory + "/../output/", filename = "simdata_vis") tomosim.simulatetomography(filepath = filepath, n_particles = 100, rotation_angles = tsi.rotation_angles, n_darkflatfields = tsi.ndarkflatfields, zpositions = tsi.zpos) """ tomosim.simulatetomography(filepath = filepath, n_particles = tsi.particles, rotation_angles = tsi.rotation_angles, n_darkflatfields = tsi.ndarkflatfields, zpositions = tsi.zpos) print ("Finished")
2,175
cart/admin.py
spaceofmiah/ecommerce
2
2171131
from django.contrib import admin from cart.models import Cart, CartItem # Register your models here. class CartItemAdmin(admin.ModelAdmin): list_display = ['__str__', 'date_added'] class CartAdmin(admin.ModelAdmin): list_display = ['__str__', 'get_total_amount'] admin.site.register(CartItem, CartItemAdmin) admin.site.register (Cart, CartAdmin)
359
optimization_tvm/test.py
ryujaehun/chameleon
1
2171641
#!/usr/bin/env python import subprocess,time,datetime,os from tqdm import tqdm networks=['vgg-16','resnet-34'] target='llvm ' batchs=['4'] opts=['0','1','2','3','4'] tuners=['xgb','ga','random','gridsearch'] n_trials=['400','2000'] basetext='''#!/bin/bash #SBATCH -J _name #SBATCH -o _time/%j._name.out #SBATCH -t 1-20:00:00 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --tasks-per-node=1 #SBATCH --cpus-per-task=4 #SBATCH -p cpu-xg6230 #SBATCH --nodelist=n14 set echo on cd $SLURM_SUBMIT_DIR echo "SLURM_SUBMIT_DIR=$SLURM_SUBMIT_DIR" srun -l /bin/hostname srun -l /bin/pwd srun -l /bin/date module purge module load postech date source env/bin/activate python3 tune_relay_x86.py --opt_level=_opt --n_trial=_n_trial --network=_network --batch=_batch --tuner=_tuner --time=_time /home/jaehunryu/linux/tools/perf/perf stat -d -d -d python3 /home/jaehunryu/workspace/tvm/optimization_tvm/flops.py --path=_time --batch=_batch squeue --job $SLURM_JOBID ''' sript='sbatch slurm.sh' _list=[] for network in networks: for batch in batchs: for opt in opts: for tuner in tuners: for trial in n_trials: _list.append([network,batch,opt,tuner,trial]) for idx,pack in enumerate(_list): network,batch,opt,tuner,trial=pack _name='nework_'+network+'_batch_'+batch+'_optlevel_'+opt+'_tuner_'+tuner+'_trials_'+trial _time="_".join(str(datetime.datetime.now()).split()) _time=os.path.join('/home/jaehunryu/workspace/tvm/optimization_tvm/results/llvm',_time) os.makedirs(_time,exist_ok=True) text=basetext text=text.replace('_opt',opt) text=text.replace('_n_trial',trial) text=text.replace('_network',network) text=text.replace('_batch',batch) text=text.replace('_tuner',tuner) text=text.replace('_time',_time) text=text.replace('_name',_name) num=subprocess.Popen("squeue|grep jaehun|wc -l", shell=True, stdout=subprocess.PIPE).stdout.read() num=int(num.decode("utf-8")[:-1]) while num>20: num=subprocess.Popen("squeue|grep jaehun|wc -l", shell=True, stdout=subprocess.PIPE).stdout.read() num=int(num.decode("utf-8")[:-1]) time.sleep(10) with open('/home/jaehunryu/workspace/tvm/optimization_tvm/slurm.sh', 'w') as f: f.write(text) time.sleep(31) proc = subprocess.Popen( sript , shell=True, executable='/bin/bash') proc.communicate()
2,474
plotAggregatedMem.py
hsabiu/thesis-scripts
0
2171448
# Author: <NAME> # Date: March 31, 2017 # Purpose: Script to plot aggregated memory load logs generated by Ganglia # Copyright: Any person can adopt this script to their specific need from matplotlib.font_manager import FontProperties from datetime import datetime, timedelta import csv import matplotlib.pyplot as plt import matplotlib.dates as mdates with open('aggMemory.csv', 'rb') as f: reader = csv.reader(f) data_list = list(reader) time_stamp_list = [] total_free_memory_list = [] total_memory_list = [] total_used_memory_list = [] for index, line in enumerate(data_list): if index > 0: time_stamp = line[0] total_free_memory = float(line[1]) + float(line[3]) + float(line[5]) + float(line[7]) + float(line[9]) + float(line[11]) + float(line[13]) + float(line[15]) + float(line[17]) + float(line[19]) + float(line[21]) total_memory = float(line[2]) + float(line[4]) + float(line[6]) + float(line[8]) + float(line[10]) + float(line[12]) + float(line[14]) + float(line[16]) + float(line[18]) + float(line[20]) + float(line[22]) total_used_memory = total_memory - total_free_memory time_stamp_list.append(datetime.strptime(time_stamp[0:19], "%Y-%m-%dT%H:%M:%S")) total_free_memory_list.append(int(total_free_memory / 1000000)) total_memory_list.append(int(total_memory / 1000000)) total_used_memory_list.append(int(total_used_memory / 1000000)) fig, ax = plt.subplots() plt.title("Image format conversion - YARN", fontsize=20) plt.ylabel("Memory (GB)", fontsize=15) plt.xlabel("Timestamp", fontsize=15) #plt.xlim([datetime(2017, 02, 01, 14, 22, 00), datetime(2017, 02, 01, 14, 35, 00)]) plt.ylim([-5, 250]) #ax.xaxis.set_major_locator(mdates.SecondLocator(interval=60)) ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:S')) ax.plot_date(time_stamp_list, total_memory_list, fmt="r-", label="total memory", ) #ax.plot_date(time_stamp_list, total_free_memory_list, fmt="g-.", label="free memory", ) ax.plot_date(time_stamp_list, total_used_memory_list, fmt="b-*", label="used memory") # font of the legend fontP = FontProperties() fontP.set_size('medium') ax.legend(loc='upper right', shadow=False, ncol=3, prop=fontP) ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S')) ax.grid(True) fig.autofmt_xdate() plt.show()
2,324
loldb/champion.py
Met48/League-of-Legends-DB
2
2171572
import collections import warnings from inibin import Inibin from .ability import Ability from .skin import get_skins_for_champion from .util import alias class Lore(object): body = '' quote = '' quote_author = '' def __init__(self, body='', quote='', quote_author=''): self.body = body.replace("''", '"') self.quote = quote self.quote_author = quote_author @staticmethod def _correct_description(desc): """ Correct errors in description text. Descriptions often contain two single quotes ('') instead of one double quote ("). """ return desc.replace("''", '"') def update_from_sql_row(self, row): self.body = self._correct_description(row.description) self.quote = row.quote self.quote_author = row.quoteAuthor class Ratings(object): attack = 0 defense = 0 magic = 0 difficulty = 0 def update_from_sql_row(self, row): self.attack = row.ratingAttack self.defense = row.ratingDefense self.magic = row.ratingMagic self.difficulty = row.ratingDifficulty ChampionStat = collections.namedtuple('ChampionStat', 'base per_level') class ChampionStats(object): hp = ChampionStat(0, 0) hp5 = ChampionStat(0, 0) mana = ChampionStat(0, 0) mp5 = ChampionStat(0, 0) damage = ChampionStat(0, 0) attack_speed = ChampionStat(0, 0) armor = ChampionStat(0, 0) magic_resist = ChampionStat(0, 0) range = 0 speed = 0 # TODO: These methods are specific to champion inibins, should they be here? @staticmethod def _create_stat(inibin_map, key): """Read base and per_level values from inibin map.""" stat = inibin_map['stats'][key] return ChampionStat(stat['base'], stat['per_level']) def update_from_inibin(self, inibin_map): # TODO: Better error checking self.hp = self._create_stat(inibin_map, 'hp') self.hp5 = self._create_stat(inibin_map, 'hp5') self.mana = self._create_stat(inibin_map, 'mana') self.mp5 = self._create_stat(inibin_map, 'mp5') self.range = inibin_map['stats']['range'] self.damage = self._create_stat(inibin_map, 'dmg') self.attack_speed = self._create_stat(inibin_map, 'aspd') self.armor = self._create_stat(inibin_map, 'armor') self.magic_resist = self._create_stat(inibin_map, 'mr') self.speed = inibin_map['stats']['speed'] _STATS = ( 'hp', 'hp5', 'mana', 'mp5', 'damage', 'attack_speed', 'armor', 'magic_resist', 'range', 'speed', ) def __repr__(self): return '<ChampionStats %s>' % ' '.join( '%s=%s' % (key, getattr(self, key)) for key in self._STATS ) class Champion(object): """ Represents a champion. Instance variables: id: unique integer id for the champion internal_name: unique string id for the champion name: string name of the champion alias: string name usable as a variable name title: string title of the champion icon_path: string name of the champion icon file select_sound_path stats: ChampionStats instance lore: Lore instance ratings: Ratings instance tips_as: List of string tips for players of champion tips_against: List of string tips for players against champion tags: Set of string tags categorizing champion abilities: List of Ability instances skins: List of Skin instances """ id = -1 internal_name = '' name = '' alias = '' title = '' icon_path = '' select_sound_path = '' _inibin = None def __init__(self, internal_name): self.internal_name = internal_name self.stats = ChampionStats() self.lore = Lore() self.ratings = Ratings() self.tips_as = [] self.tips_against = [] self.tags = set() self.abilities = [] self.skins = [] def __lt__(self, other): return self.id < other.id def __repr__(self): return '<Champion {} \'{}\'>'.format(self.id, self.name) def _find_inibin(provider, pattern): raf_master = provider.get_raf_master() raf_results = list(raf_master.find_re(pattern)) if not raf_results: warnings.warn('No inibin for %s' % pattern) if len(raf_results) > 1: # TODO: Is this ever triggered? warnings.warn('Ambiguous inibin for %s' % pattern) try: inibin = Inibin(data=raf_results[0].read()) except Exception: warnings.warn('Malformed inibin for %s' % pattern) inibin = None return inibin def _get_tips_from_string(tips_str): """Get list of tips from tips string.""" return [tip.strip() for tip in tips_str.split('*') if tip] def _get_raw_champion_from_sql_row(row): """ Create a Champion using a row from the champions table in the database. Champion will be incomplete as stats and abilities are only available using inibins; """ # TODO: videos? selection sound name? # row.name is the internal name champion = Champion(row.name) # row.displayName is the public name champion.name = row.displayName # Misc champion.alias = alias(row.displayName) champion.title = row.title champion.id = row.id champion.icon_path = row.iconPath champion.tags = set(row.tags.split(',')) champion.lore.update_from_sql_row(row) champion.ratings.update_from_sql_row(row) # Tips champion.tips_as = _get_tips_from_string(row.tips) champion.tips_against = _get_tips_from_string(row.opponentTips) return champion def _update_raw_champion_with_provider(champion, provider): """Update champion stats and abilities.""" # Find champion inibin champ_name = champion.internal_name champ_pattern = '^data/characters/{0}/{0}.inibin$'.format(champ_name) champ_inibin = _find_inibin(provider, champ_pattern) if champ_inibin is None: warnings.warn('Missing inibin for champion %s' % champ_name) return # Format as champion inibin font_config = provider.get_font_config() champ_inibin = champ_inibin.as_champion(font_config) champion._inibin = champ_inibin # Read stats champion.stats.update_from_inibin(champ_inibin) # Find abilities _update_champion_passive(champion, champ_inibin) _update_champion_abilities(provider, champion, champ_inibin['abilities']) # Find skins _update_champion_skins(provider, champion) def _update_champion_passive(champion, inibin): # Passive passive = Ability() passive.name = passive.internal_name = inibin['passive'] passive.description = passive.tooltip = inibin['passive_desc'] passive.icon_path = inibin['passive_icon'] champion.abilities.append(passive) _ABILITY_KEYS = list('skill%d' % i for i in range(1, 5)) def _update_champion_abilities(provider, champion, abilities): # Skills abilities = [abilities[key] for key in _ABILITY_KEYS] for i, ability_name in enumerate(abilities): # Find inibin for ability ability_inibin = _find_ability_inibin(provider, champion, ability_name) if ability_inibin is None: continue # Format as ability inibin font_config = provider.get_font_config() ability_inibin = ability_inibin.as_ability(font_config) ability = Ability.from_inibin(ability_inibin, i) if ability is not None: champion.abilities.append(ability) _ABILITY_REGEXP_TEMPLATE = r"^data/(?:characters/{0}/)?spells/{1}.inibin$" def _find_ability_inibin(provider, champion, ability_name): # Find ability inibin champ_name = champion.internal_name ability_pattern = _ABILITY_REGEXP_TEMPLATE.format(champ_name, ability_name) ability_inibin = _find_inibin(provider, ability_pattern) if ability_inibin is None: warnings.warn('Missing inibin for ability %s' % ability_name) return ability_inibin def _update_champion_skins(provider, champion): skins = get_skins_for_champion(provider, champion.id) skins = sorted(list(skins)) champion.skins = skins def get_champions(provider): for row in provider.get_db_rows('champions'): champion = _get_raw_champion_from_sql_row(row) _update_raw_champion_with_provider(champion, provider) yield champion
8,474
tutorial/cytoscape/__init__.py
blozano824/dash-docs
1
2171592
from . import applications_chapter from . import callbacks_chapter from . import elements_chapter from . import events_chapter from . import layout_chapter from . import reference_chapter from . import styling_chapter
218
nb_test.py
jtsen/promotion_lab
0
2170108
import nb_build from nb_preprocessing import * from nb_evaluation import * '''Importing dataset and remove headers''' data = open_csv_file(r'C:\Users\stalk\PycharmProjects\NBClassifier\store_data.csv') data = prob_round(str_to_float(delete_col(data, 1))) '''Calculating probabilities''' label_counts = nb_build.label_count(data) total_count_labels = sum(label_counts.values()) prob_yes = label_counts.get('yes') / total_count_labels prob_no = label_counts.get('no') / total_count_labels prob_list = [prob_yes, prob_no] '''Creating train/test sets''' data_rows = len(data) train_split = int((data_rows / 10) * 9) test_split = len(data) - train_split train_set = bootstrap_sampling(data, rows=train_split) test_set = bootstrap_sampling(data, rows=test_split) test_set_labels = get_col(test_set,47) '''Creating lists of cols for storing conditional probabilities, mu, and variance (numerical attribute)''' categorical_cols = [1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 29, 33, 34, 35, 37, 39, 40, 41, 42, 45] numerical_cols = [] for i in range(len(train_set[0])+1): if i == 0: continue if i not in categorical_cols: numerical_cols.append(i) numerical_cols.pop() '''Creating nested dict: keys = column number (starting from 1) values = dictionary''' cols_vars = dict() for col in range(len(train_set[0])-1): cols_vars[col+1] = {} '''Calculate conditional probabilities, mu, and variance''' cols_vars = nb_build.calc_categorical_conditional_prob(train_set, categorical_cols, cols_vars, label_counts) cols_vars = nb_build.calc_mu_variance(train_set, numerical_cols, cols_vars) '''Classify and Calculate Accuracy''' predictions = nb_build.classify_records(test_set, cols_vars, categorical_cols, numerical_cols, prob_list) accuracy = calc_accuracy(predictions, test_set_labels) print(accuracy)
1,936
function/python/brightics/function/statistics/test/anova_test.py
sharon1321/studio
0
2170538
""" Copyright 2019 Samsung SDS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pandas as pd import unittest from brightics.function.statistics.anova import twoway_anova class TwowayAnovaTest(unittest.TestCase): def setUp(self): self.example_df = pd.DataFrame({'Genotype': ['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C', 'D', 'D', 'D', 'E', 'E', 'E', 'F', 'F', 'F', 'A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C', 'D', 'D', 'D', 'E', 'E', 'E', 'F', 'F', 'F', 'A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C', 'D', 'D', 'D', 'E', 'E', 'E', 'F', 'F', 'F'], 'years': ['year_1', 'year_1', 'year_1', 'year_1', 'year_1', 'year_1', 'year_1', 'year_1', 'year_1', 'year_1', 'year_1', 'year_1', 'year_1', 'year_1', 'year_1', 'year_1', 'year_1', 'year_1', 'year_2', 'year_2', 'year_2', 'year_2', 'year_2', 'year_2', 'year_2', 'year_2', 'year_2', 'year_2', 'year_2', 'year_2', 'year_2', 'year_2', 'year_2', 'year_2', 'year_2', 'year_2', 'year_3', 'year_3', 'year_3', 'year_3', 'year_3', 'year_3', 'year_3', 'year_3', 'year_3', 'year_3', 'year_3', 'year_3', 'year_3', 'year_3', 'year_3', 'year_3', 'year_3', 'year_3'], 'value': [1.53, 1.83, 1.38, 3.6, 2.94, 4.02, 3.99, 3.3, 4.41, 3.75, 3.63, 3.57, 1.71, 2.01, 2.04, 3.96, 4.77, 4.65, 4.08, 3.84, 3.96, 5.7, 5.07, 7.2, 6.09, 5.88, 6.51, 5.19, 5.37, 5.55, 3.6, 5.1, 6.99, 5.25, 5.28, 5.07, 6.69, 5.97, 6.33, 8.55, 7.95, 8.94, 10.02, 9.63, 10.38, 11.4, 9.66, 10.53, 6.87, 6.93, 6.84, 9.84, 9.87, 10.08]}) def test1(self): t1 = pd.DataFrame(self.example_df) print(t1) response_cols = ['value'] factor_cols = ['Genotype', 'years'] out1 = twoway_anova(table=t1, response_cols=response_cols, factor_cols=factor_cols, group_by=None) print(out1['result'])
3,114
501-600/521-530/526-beautifulArrangement/beautifulArrangement-dp.py
xuychen/Leetcode
0
2168828
# dp solution from discussion. from collections import defaultdict cache = {} class Solution(object): def countArrangement(self, N): def helper(i, X): if i == 1: return 1 key = (i, X) if key in cache: return cache[key] total = 0 for j in xrange(len(X)): if X[j] % i == 0 or i % X[j] == 0: total += helper(i - 1, X[:j] + X[j + 1:]) cache[key] = total return total return helper(N, tuple(range(1, N + 1))) class Solution2(object): def countArrangement(self, n): """ :type n: int :rtype: int """ candidates = defaultdict(list) for i in range(1, n+1): for j in range(i, n+1): if i % j == 0 or j % i == 0: candidates[i].append(j) if i != j: candidates[j].append(i) masked = (1 << n) - 1 return self.dfs(candidates, 1, n, masked) def dfs(self, candidates, value, n, mask): if value > n: return mask == 0 count = 0 for candidate in candidates[value]: if mask & (1 << (candidate-1)): count += self.dfs(candidates, value+1, n, mask ^ 1 << (candidate-1)) return count
1,373
ch07_autoencoder/main.py
duchce/TensorFlow
4,893
2170923
from autoencoder import Autoencoder from sklearn import datasets hidden_dim = 1 data = datasets.load_iris().data input_dim = len(data[0]) ae = Autoencoder(input_dim, hidden_dim) ae.train(data) ae.test([[8, 4, 6, 2]])
218
my_TFDetector.py
Moldazien/BA
0
2171328
import argparse import glob import os import statistics import sys import time import warnings import humanfriendly import numpy as np from tqdm import tqdm from CameraTraps.ct_utils import truncate_float #is in CameraTraps folder #import visualization.visualization_utils as viz_utils #removed cause not needed # ignoring all "PIL cannot read EXIF metainfo for the images" warnings warnings.filterwarnings('ignore', '(Possibly )?corrupt EXIF data', UserWarning) # Metadata Warning, tag 256 had too many entries: 42, expected 1 warnings.filterwarnings('ignore', 'Metadata warning', UserWarning) # Numpy FutureWarnings from tensorflow import warnings.filterwarnings('ignore', category=FutureWarning) # Useful hack to force CPU inference # os.environ['CUDA_VISIBLE_DEVICES'] = '-1' import tensorflow as tf print('TensorFlow version:', tf.__version__) print('Is GPU available? tf.test.is_gpu_available:', tf.test.is_gpu_available()) #%% Classes class ImagePathUtils: """A collection of utility functions supporting this stand-alone script""" # Stick this into filenames before the extension for the rendered result DETECTION_FILENAME_INSERT = '_detections' image_extensions = ['.jpg', '.jpeg', '.gif', '.png'] @staticmethod def is_image_file(s): """ Check a file's extension against a hard-coded set of image file extensions """ ext = os.path.splitext(s)[1] return ext.lower() in ImagePathUtils.image_extensions @staticmethod def find_image_files(strings): """ Given a list of strings that are potentially image file names, look for strings that actually look like image file names (based on extension). """ return [s for s in strings if ImagePathUtils.is_image_file(s)] @staticmethod def find_images(dir_name, recursive=False): """ Find all files in a directory that look like image file names """ if recursive: strings = glob.glob(os.path.join(dir_name, '**', '*.*'), recursive=True) else: strings = glob.glob(os.path.join(dir_name, '*.*')) image_strings = ImagePathUtils.find_image_files(strings) return image_strings class TFDetector: """ A detector model loaded at the time of initialization. It is intended to be used with the MegaDetector (TF). The inference batch size is set to 1; code needs to be modified to support larger batch sizes, including resizing appropriately. """ # Number of decimal places to round to for confidence and bbox coordinates CONF_DIGITS = 3 COORD_DIGITS = 4 # MegaDetector was trained with batch size of 1, and the resizing function is a part # of the inference graph BATCH_SIZE = 1 # An enumeration of failure reasons FAILURE_TF_INFER = 'Failure TF inference' FAILURE_IMAGE_OPEN = 'Failure image access' DEFAULT_RENDERING_CONFIDENCE_THRESHOLD = 0.85 # to render bounding boxes DEFAULT_OUTPUT_CONFIDENCE_THRESHOLD = 0.1 # to include in the output json file DEFAULT_DETECTOR_LABEL_MAP = { '1': 'animal', '2': 'person', '3': 'vehicle' # available in megadetector v4+ } NUM_DETECTOR_CATEGORIES = 4 # animal, person, group, vehicle - for color assignment def __init__(self, model_path): """Loads model from model_path and starts a tf.Session with this graph. Obtains input and output tensor handles.""" detection_graph = TFDetector.__load_model(model_path) self.tf_session = tf.Session(graph=detection_graph) self.image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') self.box_tensor = detection_graph.get_tensor_by_name('detection_boxes:0') self.score_tensor = detection_graph.get_tensor_by_name('detection_scores:0') self.class_tensor = detection_graph.get_tensor_by_name('detection_classes:0') @staticmethod def round_and_make_float(d, precision=4): return truncate_float(float(d), precision=precision) @staticmethod def __convert_coords(tf_coords): """Converts coordinates from the model's output format [y1, x1, y2, x2] to the format used by our API and MegaDB: [x1, y1, width, height]. All coordinates (including model outputs) are normalized in the range [0, 1]. Args: tf_coords: np.array of predicted bounding box coordinates from the TF detector, has format [y1, x1, y2, x2] Returns: list of Python float, predicted bounding box coordinates [x1, y1, width, height] """ # change from [y1, x1, y2, x2] to [x1, y1, width, height] width = tf_coords[3] - tf_coords[1] height = tf_coords[2] - tf_coords[0] new = [tf_coords[1], tf_coords[0], width, height] # must be a list instead of np.array # convert numpy floats to Python floats for i, d in enumerate(new): new[i] = TFDetector.round_and_make_float(d, precision=TFDetector.COORD_DIGITS) return new @staticmethod def convert_to_tf_coords(array): """From [x1, y1, width, height] to [y1, x1, y2, x2], where x1 is x_min, x2 is x_max This is an extraneous step as the model outputs [y1, x1, y2, x2] but were converted to the API output format - only to keep the interface of the sync API. """ x1 = array[0] y1 = array[1] width = array[2] height = array[3] x2 = x1 + width y2 = y1 + height return [y1, x1, y2, x2] @staticmethod def __load_model(model_path): """Loads a detection model (i.e., create a graph) from a .pb file. Args: model_path: .pb file of the model. Returns: the loaded graph. """ print('TFDetector: Loading graph...') detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(model_path, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') print('TFDetector: Detection graph loaded.') return detection_graph def _generate_detections_one_image(self, image): np_im = np.asarray(image, np.uint8) im_w_batch_dim = np.expand_dims(np_im, axis=0) # need to change the above line to the following if supporting a batch size > 1 and resizing to the same size # np_images = [np.asarray(image, np.uint8) for image in images] # images_stacked = np.stack(np_images, axis=0) if len(images) > 1 else np.expand_dims(np_images[0], axis=0) # performs inference (box_tensor_out, score_tensor_out, class_tensor_out) = self.tf_session.run( [self.box_tensor, self.score_tensor, self.class_tensor], feed_dict={self.image_tensor: im_w_batch_dim}) return box_tensor_out, score_tensor_out, class_tensor_out def generate_detections_one_image(self, image, image_id, detection_threshold=DEFAULT_OUTPUT_CONFIDENCE_THRESHOLD): """Apply the detector to an image. Args: image: the PIL Image object image_id: a path to identify the image; will be in the "file" field of the output object detection_threshold: confidence above which to include the detection proposal Returns: A dict with the following fields, see the 'images' key in https://github.com/microsoft/CameraTraps/tree/master/api/batch_processing#batch-processing-api-output-format - 'file' (always present) - 'max_detection_conf' - 'detections', which is a list of detection objects containing keys 'category', 'conf' and 'bbox' - 'failure' """ result = { 'file': image_id } try: b_box, b_score, b_class = self._generate_detections_one_image(image) # our batch size is 1; need to loop the batch dim if supporting batch size > 1 boxes, scores, classes = b_box[0], b_score[0], b_class[0] detections_cur_image = [] # will be empty for an image with no confident detections max_detection_conf = 0.0 for b, s, c in zip(boxes, scores, classes): if s > detection_threshold: detection_entry = { 'category': str(int(c)), # use string type for the numerical class label, not int 'conf': truncate_float(float(s), # cast to float for json serialization precision=TFDetector.CONF_DIGITS), 'bbox': TFDetector.__convert_coords(b) } detections_cur_image.append(detection_entry) if s > max_detection_conf: max_detection_conf = s result['max_detection_conf'] = truncate_float(float(max_detection_conf), precision=TFDetector.CONF_DIGITS) result['detections'] = detections_cur_image except Exception as e: result['failure'] = TFDetector.FAILURE_TF_INFER print('TFDetector: image {} failed during inference: {}'.format(image_id, str(e))) return result
9,482
PyParagraph/pyParagraph.py
rglukins/python-challenge
0
2171594
import os import re import string #create a file path to access the text file file_path = os.path.join(".", "paragraph_2.txt") # create useful functions for loading files & doing calculations def file_loader(filepath): """Extract the text data from the paragraph file""" with open(filepath, "r") as paragraph_file_handler: return paragraph_file_handler.read().lower().split() def word_count(file_text): return int(len(file_text)) #get the text from the file paragraph_text = file_loader(file_path) #For Approximate Letter Count cleaned_text = [] #clear the punctuation for the the ends of the strings in the text list for word in paragraph_text: word = str(word) word = word.strip(string.punctuation) cleaned_text.append(word) char_count = 0 # create a variable for counting characters (for average word length) for i in cleaned_text: #count the number of characters in the cleaned word list chars_in_word = len(str(i)) char_count = char_count + chars_in_word av_letter_count = char_count / len(paragraph_text) #For Average Letter Count: create variable for average letter coun #Identify Individual sentences with open(file_path, "r") as text_file: paragraph = text_file.read() sentences = re.split(r' *[\.\?!][\'"\)\]]* *', paragraph) #create variable for sentence count sentence_count = len(sentences) #create variable for words per sentence av_words_per_sentence = word_count(paragraph_text) / sentence_count #print outputs print("Approximate word count: " + str(word_count(paragraph_text))) print (f'Approximate Sentence Count {sentence_count}') print(f'Average letter Count: {av_letter_count}') print(f'Average Words Per Sentence: {av_words_per_sentence}')
1,732
MyImg.py
Exisi/PicFilter
2
2170064
import imghdr from PIL import Image def is_img(f): ''' 判断文件是否为图片 :param f: 图片路径 :param imgType_list: 图片格式 :return: bool ''' imgType_list = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'gif', 'webp'} # 其他特殊格式课自行添加 if imghdr.what(f) in imgType_list: return True else: return False def wh_type(f): # 判断图片类型 im = Image.open(f) if im.width > im.height: # 横图 return 1 elif im.width < im.height: # 竖图 return 2 else: # 方图 return 0 def hist(f): ''' 图片像素直方图 :param f: 图片路径 :return: List ''' im = Image.open(f) return im.histogram() def wh_limitByPor(f, type: str, proprotion: float): ''' 根据长宽比例限制 :param f: 图片路径 :param type: 图片类型 :param proprotion: 宽高比例 :return: bool ''' im = Image.open(f) w = im.width h = im.height print('w:', w, 'h:', h, w / h, 'type', type) if type == '1' and (h / w) >= proprotion: return True elif type == '2' and (w / h) >= proprotion: return True else: return False def wh_limitByWH(f, limit: dict, type: str): ''' 根据纯数字宽高限制 :param f: 图片路径 :param limit: 最大最小宽高限制 :param type: 图片类型 :return: bool ''' im = Image.open(f) w = im.width h = im.height if type == '1': if h <= limit['maxH']: return True elif type == '2': if w <= limit['maxW']: return True else: if w <= limit['maxW'] and w >= limit['minW'] and h <= limit['maxH'] and h >= limit['minH']: return True return False
1,585
lib/bes/macos/pkgutil/pkgutil.py
reconstruir/bes
0
2171712
#-*- coding:utf-8; mode:python; indent-tabs-mode: nil; c-basic-offset: 2; tab-width: 2 -*- from bes.common.check import check from bes.system.os_env import os_env from bes.system.which import which from bes.system.command_line import command_line from bes.system.execute import execute from .pkgutil_error import pkgutil_error class pkgutil(object): 'Class to deal with the pkgutil executable.' @classmethod def call_pkgutil(clazz, args, cwd = None, msg = None, use_sudo = False): exe = which.which('pkgutil') if not exe: raise pkgutil_error('pkgutil not found') cmd = [] if use_sudo: cmd.append('sudo') cmd.append(exe) cmd.extend(command_line.parse_args(args)) env = os_env.clone_current_env(d = {}) rv = execute.execute(cmd, env = env, cwd = cwd, stderr_to_stdout = True, raise_error = False) if rv.exit_code != 0: if not msg: cmd_flag = ' '.join(cmd) msg = 'pkgutil command failed: {}\n{}'.format(cmd_flag, rv.stdout) raise pkgutil_error(msg) return rv
1,148