max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
Jan Bodnar - zetcode/Interface/event_object.py
jgorman3691/PyQt5Tutorials
0
2169740
#! python3 import sys, PyQt5 from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QWidget, QApplication, QGridLayout, QLabel class Example(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): grid = QGridLayout() x = 0 y = 0 self.text = f'x: {x}, y: {y}' self.label = QLabel(self.text, self) grid.addWidget(self.label, 0, 0, Qt.AlignTop) self.setMouseTracking(True) self.setLayout(grid) self.setGeometry(300, 300, 450, 300) self.setWindowTitle('Event Object') self.show() def mouseMoveEvent(self, e): x = e.x() y = e.y() text = f'x: {x}, y: {y}' self.label.setText(text) def main(): app = QApplication(sys.argv) ex = Example() sys.exit(app.exec_()) if __name__ == '__main__': main()
953
pygazebo/msg/log_playback_control_pb2.py
CryptoCopter/pygazebo
0
2168907
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: log_playback_control.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() import time_pb2 as time__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='log_playback_control.proto', package='gazebo.msgs', syntax='proto2', serialized_options=None, create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x1alog_playback_control.proto\x12\x0bgazebo.msgs\x1a\ntime.proto\"\x8c\x01\n\x12LogPlaybackControl\x12\r\n\x05pause\x18\x01 \x01(\x08\x12\x12\n\nmulti_step\x18\x02 \x01(\x11\x12\x0e\n\x06rewind\x18\x03 \x01(\x08\x12\x0f\n\x07\x66orward\x18\x04 \x01(\x08\x12\x1f\n\x04seek\x18\x05 \x01(\x0b\x32\x11.gazebo.msgs.Time\x12\x11\n\trt_factor\x18\x06 \x01(\x01' , dependencies=[time__pb2.DESCRIPTOR,]) _LOGPLAYBACKCONTROL = _descriptor.Descriptor( name='LogPlaybackControl', full_name='gazebo.msgs.LogPlaybackControl', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='pause', full_name='gazebo.msgs.LogPlaybackControl.pause', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='multi_step', full_name='gazebo.msgs.LogPlaybackControl.multi_step', index=1, number=2, type=17, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='rewind', full_name='gazebo.msgs.LogPlaybackControl.rewind', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='forward', full_name='gazebo.msgs.LogPlaybackControl.forward', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='seek', full_name='gazebo.msgs.LogPlaybackControl.seek', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='rt_factor', full_name='gazebo.msgs.LogPlaybackControl.rt_factor', index=5, number=6, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=56, serialized_end=196, ) _LOGPLAYBACKCONTROL.fields_by_name['seek'].message_type = time__pb2._TIME DESCRIPTOR.message_types_by_name['LogPlaybackControl'] = _LOGPLAYBACKCONTROL _sym_db.RegisterFileDescriptor(DESCRIPTOR) LogPlaybackControl = _reflection.GeneratedProtocolMessageType('LogPlaybackControl', (_message.Message,), { 'DESCRIPTOR' : _LOGPLAYBACKCONTROL, '__module__' : 'log_playback_control_pb2' # @@protoc_insertion_point(class_scope:gazebo.msgs.LogPlaybackControl) }) _sym_db.RegisterMessage(LogPlaybackControl) # @@protoc_insertion_point(module_scope)
4,626
chromium/chrome/browser/media/router/media_router.gyp
wedataintelligence/vivaldi-source
0
2169434
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'includes': [ 'media_router.gypi', ], 'targets': [ { # GN version: //chrome/browser/media/router:router 'target_name': 'media_router', 'type': 'static_library', 'include_dirs': [ '<(DEPTH)', ], 'dependencies': [ '<(DEPTH)/base/base.gyp:base', '<(DEPTH)/chrome/common_constants.gyp:common_constants', '<(DEPTH)/components/components.gyp:keyed_service_content', '<(DEPTH)/components/components.gyp:keyed_service_core', '<(DEPTH)/skia/skia.gyp:skia', '<(DEPTH)/url/url.gyp:url_lib', ], 'sources': [ '<@(media_router_sources)', ], 'conditions': [ [ 'OS!="android" and OS!="ios"', { 'dependencies': [ # media_router_type_converters.h needs the generated file. 'media_router_mojo_gen', 'media_router_mojo', '<(DEPTH)/extensions/extensions.gyp:extensions_browser', ], 'sources': [ '<@(media_router_non_android_sources)', ] }], ] }, { # Mojo compiler for the Media Router internal API. 'target_name': 'media_router_mojo_gen', 'type': 'none', 'sources': [ 'media_router.mojom', ], 'includes': [ '../../../../third_party/mojo/mojom_bindings_generator.gypi', ], }, { 'target_name': 'media_router_mojo', 'type': 'static_library', 'dependencies': [ 'media_router_mojo_gen', ], 'sources': [ '<(SHARED_INTERMEDIATE_DIR)/chrome/browser/media/router/media_router.mojom.cc', '<(SHARED_INTERMEDIATE_DIR)/chrome/browser/media/router/media_router.mojom.h', ], }, { # GN version: //chrome/browser/media/router:test_support 'target_name': 'media_router_test_support', 'type': 'static_library', 'include_dirs': [ '<(DEPTH)', ], 'dependencies': [ 'media_router', 'media_router_mojo', 'media_router_mojo_gen', '<(DEPTH)/base/base.gyp:base', '<(DEPTH)/testing/gmock.gyp:gmock', ], 'sources': [ '<@(media_router_test_support_sources)', ], }, ], }
2,402
2.part/Colored Dartboard.py
ferrerinicolas/python_samples
0
2168709
print("this is my third commit") speed(5) radius = 100 circle_quantity = 4 #this function make circles def make_circle(): pendown() color(color_choice) begin_fill() circle (radius) end_fill() penup() #This function will move tracy to next circle def move_down(): penup() left(90) forward(25) right(90) pendown() penup() setposition(0,-100) #Here we take the colors from input for i in range(4): color_choice = input("Which color for the circle?: ") make_circle() radius = radius - 25 move_down()
575
usersettings/admin.py
christianwgd/photos
0
2168529
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from .models import UserSettings, Theme @admin.register(Theme) class ThemeAdmin(admin.ModelAdmin): list_display = ['name', 'cssfile', ] @admin.register(UserSettings) class UserSettingsAdmin(admin.ModelAdmin): list_display = ['user', 'limit', 'recent']
365
backend/expenses/admin.py
arineto/home_expenses
0
2169128
from django.contrib import admin from rangefilter.filter import DateTimeRangeFilter from .models import Category, Expense class CategoryAdmin(admin.ModelAdmin): list_display = ("name",) search_fields = ("name",) ordering = ("name",) def settle_up(_, request, queryset): queryset.update(is_settled=True) class ExpenseAdmin(admin.ModelAdmin): list_display = ("description", "value", "is_settled", "user", "category", "date") search_fields = ("description", "value") list_filter = (("date", DateTimeRangeFilter), "is_settled", "user__email", "category") ordering = ("-date",) actions = [settle_up] admin.site.register(Category, CategoryAdmin) admin.site.register(Expense, ExpenseAdmin)
729
resources/block_requests.py
gwasserfall/matcha
3
2169210
from flask import request from flask_restful import Resource, abort from flask_jwt_extended import get_jwt_identity from helpers import jwt_refresh_required from helpers.genders import genders from helpers.email import send_validation_email from models.user import User, get_full_user from models.validation import Validation from models.block_request import BlockRequest from models.matches import Match from helpers import Arguments import traceback class BlocksResource(Resource): @jwt_refresh_required def get(self, username): current_user = get_jwt_identity() blocked = BlockRequest.check_blocked(current_user["id"], username) return blocked or {"blocked_them" : False, "blocked_them" : False}, 200 class BlockRequestsListResource(Resource): @jwt_refresh_required def get(self): current_user = get_jwt_identity() user = User.get(id=current_user["id"]) if not user.is_admin: return {"message" : "You do not have admin access."}, 401 else: return BlockRequest.get_all(), 200 @jwt_refresh_required def post(self): current_user = get_jwt_identity() args = Arguments(request.json) args.integer("reported_id") args.string("reason") args.validate() block_request = BlockRequest(dict(args)) block_request.reporter_id = current_user["id"] try: block_request.save() return {"message" : "User reported."}, 200 except Exception as e: return {"message" : str(e)}, 400 class BlockRequestResource(Resource): @jwt_refresh_required def put(self, id): current_user = get_jwt_identity() user = User.get(id=current_user["id"]) if not user.is_admin: return {"message" : "You are not authorised to review block requests"}, 401 else: args = Arguments(request.json) args.boolean("blocked") args.string("admin_comments") args.validate() data = dict(args) data["id"] = id block_request = BlockRequest.get(id=data.get("id", None)) if block_request: if block_request.blocked: match = Match.check_match(block_request.reporter_id, block_request.reported_id) if match["liked"] or match["matched"]: my_like = Match.get(matcher_id=block_request.reporter_id, matchee_id=block_request.reported_id) their_like = Match.get(matcher_id=block_request.reported_id, matchee_id=block_request.reporter_id) if match["liked"] and match["matched"]: try: my_like.delete() their_like.delete() except Exception as e: return {"message" : str(e)}, 500 elif match["liked"] and not match["matched"]: try: my_like.delete() except Exception as e: return {"message" : str(e)}, 500 block_request.reviewed = True block_request.blocked = data["blocked"] block_request.admin_comments = data["admin_comments"] try: block_request.save() msg = "Request reviewed. User blocked." if block_request.blocked == 1 else "Request reviewed. User NOT blocked." return {"message" : "{}".format(msg)}, 200 except Exception as e: return {"message" : str(e)}, 400 else: return {"messgae" : "The block request you are trying to update does not exist"}, 400
3,930
AI/FaceDetect/VisualizeDetect.py
NeKoSaNnn/AICloudAlbum
2
2168321
from matplotlib import pyplot as plt def VisualizeBlocks(filename, blocks): img = plt.imread(filename) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) for block in blocks: top = block[0] right = block[1] bottom = block[2] left = block[3] start = (left, top) width = right-left height = bottom-top rect = plt.Rectangle(start, width, height, fill=False, edgecolor='red', linewidth=2) ax.add_patch(rect) plt.imshow(img) plt.show() # cv2.imwrite('new_test_3.jpg', img)
568
tests/test_cm.py
JulienPalard/cloudmesh
0
2168978
""" run with nosetests -v --nocapture test_cm.py """ from __future__ import print_function from cloudmesh_base.util import HEADING from cloudmesh_base.logger import LOGGER, LOGGING_ON, LOGGING_OFF log = LOGGER(__file__) import sys import os if os.path.isdir(os.path.expanduser("~/.cloudmesh")): print("ERROR", "you must not have a .cloudmesh dir to run this test") sys.exit() class Test: def get_user(self): import cloudmesh config = cloudmesh.load("user") self.username = config.get("cloudmesh.hpc.username") def setup(self): self.project_id = "fg82" def tearDown(self): pass def test_01_git(self): os.system("git pull") def test_02_init(self): HEADING() os.system("./install system") os.system("./install requirements") def test_03_user(self): HEADING() os.system("./install new") def test_04_cloudmesh_install(self): HEADING() os.system("./install cloudmesh") def test_05_fetch(self): HEADING() os.system("cm-iu user fetch") os.system("cm-iu user create") def test_06_mongo(self): HEADING() os.system("fab mongo.reset") def test_07_key(self): HEADING() self.get_user() os.system('cm "key add --keyname={0}-key ~/.ssh/id_rsa.pub"'.format(self.username)) def test_08_project(self): os.system("cm project default {0}".format(self.project_id)) def test_09_help(self): HEADING() import cloudmesh cloud_commands = [ "cloud", "group", "inventory", "rain", "storm", "yaml", "keys", "defaults", "image", "list", "register", "user", "debug", "project", "flavor", "init", "metric", "security_group", "vm", "loglevel", ] success = True for command in cloud_commands: execution = "help {0}".format(command) print("testing", execution, end=' ') try: result = cloudmesh.shell(execution) except Exception, e: success = False print(e) if "Usage" not in result: print(command, "ERROR", result) success = False else: success = success print("ok") assert success def test_10_cloud_on(self): HEADING() os.system("cm cloud on india")
2,757
ceptic/network.py
Kosinkadink/ceptic
2
2167908
import select from sys import version_info from ceptic.common import CepticException class SocketCepticException(CepticException): """ General SocketCeptic Exception, inherits from CepticException """ pass if version_info < (3, 0): # Python 2 import socket class SocketCeptic(object): """ Wrapper for normal or ssl socket; adds necessary CEPtic functionality to sending and receiving. Usage: wrapped_socket = SocketCeptic(existing_socket) """ def __init__(self): self.s = None @classmethod def wrap_socket(cls, s): wrapped = SocketCeptic() wrapped.s = s return wrapped def send(self, msg): """ Send message, prefixed by a 16-byte length :param msg: string or bytes to send :return: None """ # if there is nothing to send, then don't just send size if not msg: return total_size = format(len(msg), ">16") self.send_raw(total_size) self.send_raw(msg) def sendall(self, msg): """ Send message, wrapper for SocketCeptic.send :param msg: string or bytes to send :return: None """ return self.send(msg) def send_raw(self, msg): """ Send message without prefix :param msg: string or bytes to send :return: None """ # if there is nothing to send, then do nothing if not msg: return sent = 0 while sent < len(msg): try: sent += self.s.send(msg[sent:]) except socket.error as e: raise SocketCepticException("connection was closed: {}".format(str(e))) def recv(self, byte_amount, decode=True): """ Receive message, first the 16-byte length prefix, then the message of corresponding length. No more than the specified amount of bytes will be received, but based on the received length less bytes could be received :param byte_amount: integer :param decode: does nothing, included for Python3 cross-compatibility :return: received bytes, readable as a string """ try: size_to_recv = self.recv_raw(16) size_to_recv = int(size_to_recv.strip()) except ValueError: raise SocketCepticException("no data received (EOF)") amount = byte_amount if size_to_recv < amount: amount = size_to_recv return self.recv_raw(amount) def recv_raw(self, byte_amount, decode=True): recv_amount = 0 text = "" try: while recv_amount < byte_amount: part = self.s.recv(byte_amount - recv_amount) recv_amount += len(part) text += part if not part: break except (EOFError, OSError): raise SocketCepticException("no data received (EOF)") except socket.error as e: raise SocketCepticException("connection was closed: {}".format(str(e))) return text def get_socket(self): """ Return raw socket instance :return: basic socket instance (socket.socket) """ return self.s def close(self): """ Close socket :return: None """ self.s.close() else: # Python 3 class SocketCeptic(object): """ Wrapper for normal or ssl socket; adds necessary CEPtic functionality to sending and receiving. Usage: wrapped_socket = SocketCeptic(existing_socket) """ def __init__(self): self.s = None @classmethod def wrap_socket(cls, s): wrapped = SocketCeptic() wrapped.s = s return wrapped def send(self, msg): """ Send message, prefixed by a 16-byte length :param msg: string or bytes to send :return: None """ # if there is nothing to send, then don't just send size if not msg: return total_size = format(len(msg), ">16") # send length and body self.send_raw(total_size) self.send_raw(msg) def sendall(self, msg): """ Send message, wrapper for SocketCeptic.send :param msg: string or bytes to send :return: None """ return self.send(msg) def send_raw(self, msg): """ Send message without prefix :param msg: string or bytes to send :return: None """ # if there is nothing to send, then don't just send size if not msg: return # if it is already in bytes, do not encode it sent = 0 while sent < len(msg): try: sent += self.s.send(msg[sent:].encode()) except AttributeError: sent += self.s.send(msg[sent:]) except ConnectionResetError as e: raise SocketCepticException("connection was closed: {}".format(str(e))) def recv(self, byte_amount, decode=True): """ Receive message, first the 16-byte length prefix, then the message of corresponding length. No more than the specified amount of bytes will be received, but based on the received length less bytes could be received :param byte_amount: integer :param decode: boolean for whether return will be str (True) or bytes (False) :return: received bytes, readable as a string """ try: size_to_recv = self.recv_raw(16) size_to_recv = int(size_to_recv.strip()) except ValueError: raise SocketCepticException("no data received (EOF)") amount = byte_amount if size_to_recv < byte_amount: amount = size_to_recv return self.recv_raw(amount, decode) def recv_raw(self, byte_amount, decode=True): """ Receive message of corresponding length. No more than the specified amount of bytes will be received :param byte_amount: integer :param decode: boolean for whether return will be str (True) or bytes (False) :return: received bytes, readable as a string """ recv_amount = 0 text = bytes() try: while recv_amount < byte_amount: part = self.s.recv(byte_amount - recv_amount) recv_amount += len(part) text += part if not part: break except (EOFError, OSError): raise SocketCepticException("no data received (EOF)") except ConnectionResetError as e: raise SocketCepticException("connection was closed: {}".format(str(e))) if decode: return text.decode() return text def get_socket(self): """ Return raw socket instance :return: basic socket instance (socket.socket) """ return self.s def close(self): """ Close socket :return: None """ self.s.close() def select_ceptic(read_list, write_list, error_list, timeout): """ CEPtic wrapper version of the select function :param read_list: see select.select :param write_list: see select.select :param error_list: see select.select :param timeout: see select.select :return: see select.select """ read_dict = {} write_dict = {} error_dict = {} # fill out dicts with socket:SocketCeptic pairs for sCep in read_list: read_dict.setdefault(sCep.get_socket(), sCep) for sCep in write_list: write_dict.setdefault(sCep.get_socket(), sCep) for sCep in error_list: error_dict.setdefault(sCep.get_socket(), sCep) ready_to_read, ready_to_write, in_error = select.select(read_dict.keys(), write_dict.keys(), error_dict.keys(), timeout) # lists returned back ready_read = [] ready_write = [] have_error = [] # fill out lists with corresponding SocketCeptics for sock in ready_to_read: ready_read.append(read_dict[sock]) for sock in ready_to_write: ready_write.append(write_dict[sock]) for sock in in_error: have_error.append(error_dict[sock]) return ready_read, ready_write, have_error
9,159
mbs/tests/test_views.py
hhuuggoo/multiuserblazeserver
7
2169315
import tempfile import shutil from os.path import exists, join import json from nose.tools import with_setup from mbs.app import setup_app from mbs.settings import settings from . import config_file, data_file test = None data = None t = None datadir = None def setup_function(): global app global test global datadir global t datadir = tempfile.mkdtemp() config = config_file("config.py") app = setup_app(config_file=config) test = app.test_client() data = settings.data settings.data_directory = datadir def teardown_function(): global app global test global data global datadir if exists(datadir): shutil.rmtree(datadir) app = None test = None data = None datadir = None old = None def setup_auth_test(): global old setup_function() old = settings.auth_backend.can_write def reject(path, username): return False settings.auth_backend.can_write = reject def teardown_auth_test(): teardown_function() global old settings.auth_backend.can_write = old @with_setup(setup_function, teardown_function) def test_upload(): with open(data_file('test.csv')) as f: resp = test.post("/upload", data={'file' : (f, 'test.csv')} ) assert resp.status_code == 200 result = json.loads(resp.data.decode('utf-8')) assert result['path'] == "defaultuser/test.csv" assert exists(join(settings.data_directory, result['path'])) @with_setup(setup_auth_test, teardown_auth_test) def test_upload_without_permissions(): with open(data_file('test.csv')) as f: resp = test.post("/upload", data={'file' : (f, 'test.csv')} ) assert resp.status_code == 403 assert not exists(join(settings.data_directory, "defaultuser", "test.csv")) @with_setup(setup_function, teardown_function) def test_configure(): resp = test.post("/configure", data=json.dumps( {'kwargs' : {'delimiter' : '\t'}, 'uri' : "defaultuser/test.csv" }), headers={'content-type' : 'application/json'} ) assert resp.status_code == 200 result = resp.data == 'success' assert settings.storage['defaultuser/test.csv'] == {u'delimiter': u'\t'} @with_setup(setup_auth_test, teardown_auth_test) def test_configure_without_permissions(): #monkey patch auth backend to disallow upload resp = test.post("/configure", data=json.dumps( {'kwargs' : {'delimiter' : '\t'}, 'uri' : "defaultuser/test.csv" }), headers={'content-type' : 'application/json'} ) assert resp.status_code == 403
2,846
trade_remedies_api/contacts/migrations/0004_auto_20190207_2037.py
uktrade/trade-remedies-api
1
2166659
# Generated by Django 2.0.1 on 2019-02-07 20:37 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("organisations", "0003_auto_20181211_1642"), ("cases", "0023_remove_submission_deficiency_document"), ("contacts", "0003_casecontact_organisation"), ] operations = [ migrations.AlterUniqueTogether( name="casecontact", unique_together={("case", "contact", "organisation")}, ), ]
489
xfields/beam_elements/electronlens_interpolated.py
kparasch/xfields
0
2168892
import numpy as np import xobjects as xo import xtrack as xt from ..fieldmaps import TriLinearInterpolatedFieldMap from ..fieldmaps import TriCubicInterpolatedFieldMap from ..fieldmaps import TriCubicInterpolatedFieldMapData from ..fieldmaps import TriLinearInterpolatedFieldMapData from ..general import _pkg_root class ElectronLensInterpolated(xt.BeamElement): _xofields={ 'current': xo.Float64, 'length': xo.Float64, 'voltage': xo.Float64, "fieldmap": TriCubicInterpolatedFieldMapData, } def __init__(self, _context=None, _buffer=None, _offset=None, length=None, fieldmap=None, x_range=None, y_range=None, nx=None, ny=None, dx=None, dy=None, x_grid=None, y_grid=None, rho=None, current=None, voltage=None, ): if _buffer is not None: _context = _buffer.context if _context is None: _context = xo.context_default # Choose a small number of slices with a large range in zeta. # By copying the same potential on each slice, the # interpolation becomes 2D, doesn't depend on the # longitudinal variable. nz = 11 z_range=(-1,1) fieldmap = TriLinearInterpolatedFieldMap(x_range=x_range, y_range=y_range, z_range=z_range, nx=nx, ny=ny, nz=nz, dx=dx, dy=dy, x_grid=x_grid, y_grid=y_grid, solver="FFTSolver2p5D") for ii in range(nz): fieldmap.rho[:,:,ii] = rho fieldmap.update_phi_from_rho() tc_fieldmap = TriCubicInterpolatedFieldMap(x_grid=fieldmap._x_grid, y_grid=fieldmap._y_grid, z_grid=fieldmap._z_grid, ) nx = tc_fieldmap.nx ny = tc_fieldmap.ny nz = tc_fieldmap.nz dx = tc_fieldmap.dx dy = tc_fieldmap.dy dz = tc_fieldmap.dz scale = [1., dx, dy, dz, dx * dy, dx * dz, dy * dz, dx * dy * dz] phi = fieldmap.phi #print(phi.shape) ########################################################################## # dphi_dx = np.zeros_like(phi) # dphi_dy = np.zeros_like(phi) # dphi_dxdy = np.zeros_like(phi) # dphi_dx[1:-1,:] = 0.5*(phi[2:,:] - phi[:-2,:]) # dphi_dy[:,1:-1] = 0.5*(phi[:,2:] - phi[:,:-2]) # dphi_dxdy[1:-1,:] = 0.5*(dphi_dy[2:,:] - dphi_dy[:-2,:]) # print("Setting derivatives: ") # kk=0. # for ix in range(nx): # if (ix)/nx > kk: # while (ix)/nx > kk: # kk += 0.1 # print(f"{int(np.round(100*kk)):d}%..") # for iy in range(ny): # for iz in range(nz): # index = 8 * ix + 8 * nx * iy + 8 * nx * ny * iz # tc_fieldmap._phi_taylor[index+0] = phi[ix, iy, 0] # tc_fieldmap._phi_taylor[index+1] = dphi_dx[ix, iy, 0] # tc_fieldmap._phi_taylor[index+2] = dphi_dy[ix, iy, 0] # tc_fieldmap._phi_taylor[index+3] = 0. # tc_fieldmap._phi_taylor[index+4] = dphi_dxdy[ix, iy, 0] # tc_fieldmap._phi_taylor[index+5] = 0. # tc_fieldmap._phi_taylor[index+6] = 0. # tc_fieldmap._phi_taylor[index+7] = 0. ########################################################################## ## Optimized version of above block ########################################## phi_slice = np.zeros([phi.shape[0], phi.shape[1], 8]) for iz in range(nz): phi_slice[:,:,0] = phi[:,:, iz] phi_slice[1:-1,:,1] = 0.5*(phi[2:,:,iz] - phi[:-2,:,iz]) phi_slice[:,1:-1,2] = 0.5*(phi[:,2:,iz] - phi[:,:-2,iz]) phi_slice[1:-1,:,4] = 0.5*(phi_slice[2:,:,2] - phi_slice[:-2,:,2]) flat_slice = phi_slice.transpose(1,0,2).flatten() len_slice = len(flat_slice) index_offset = 8 * nx * ny * iz tc_fieldmap._phi_taylor[index_offset:index_offset+len_slice] = _context.nplike_lib.asarray(flat_slice) ############################################################################## self.xoinitialize( _context=_context, _buffer=_buffer, _offset=_offset, current=current, length=length, voltage=voltage, fieldmap=tc_fieldmap) srcs = [] srcs.append(_pkg_root.joinpath('headers/constants.h')) srcs.append(_pkg_root.joinpath('fieldmaps/interpolated_src/tricubic_coefficients.h')) srcs.append(_pkg_root.joinpath('fieldmaps/interpolated_src/cubic_interpolators.h')) srcs.append(_pkg_root.joinpath('beam_elements/electronlens_src/electronlens_interpolated.h')) ElectronLensInterpolated.XoStruct.extra_sources = srcs
5,317
ace/data/__init__.py
iory/ACEngine
5
2169709
# flake8: noqa from .ace_utils import get_ace from .ace_utils import get_english_resource_grammar from .ace_utils import get_jacy_grammar
139
scripts/datalad_helper_scripts/batch_remove_deprecated_URLs.py
emmetaobrien/conp-dataset
18
2163213
import getopt import json import os import re import sys import traceback import git def parse_input(argv): """ Displays the script's help section and parses the options given to the script. :param argv: command line arguments :type argv: array :return: parsed and validated script options :rtype: dict """ script_options = {} description = ( "\nThis script can be used to remove from git-annex a series of URLs matching" " a specific pattern.\n" "\t- To run the script and print out the URLs that will be removed, use options" " -d <dataset path> -u <invalid URL regex>.\n" "\t- After examination of the result of the script, rerun the script with the same" " option and add the -c argument for actual removal of the URLs.\n" "\t- Option -v prints out progress of the script in the terminal.\n" ) usage = ( f"\nusage : python {__file__} -d <DataLad dataset directory path> -u <invalid URL regex>\n" "\noptions: \n" "\t-d: path to the DataLad dataset to work on\n" # noqa: E131 "\t-u: regular expression for invalid URLs to remove from git-annex\n" # noqa: E131 "\t-c: confirm that the removal of the URLs should be performed. By default it will just print out what needs to be removed for validation\n" # noqa: E501,E131 "\t-v: verbose\n" # noqa: E131 ) try: opts, args = getopt.getopt(argv, "hcd:u:") except getopt.GetoptError: sys.exit() script_options["run_removal"] = False script_options["verbose"] = False if not opts: print(description + usage) sys.exit() for opt, arg in opts: if opt == "-h": print(description + usage) sys.exit() elif opt == "-d": script_options["dataset_path"] = arg elif opt == "-u": script_options["invalid_url_regex"] = arg elif opt == "-c": script_options["run_removal"] = True elif opt == "-v": script_options["verbose"] = True if "dataset_path" not in script_options.keys(): print( "\n\t* ----------------------------------------------------------------------------------------------------------------------- *" # noqa: E501 "\n\t* ERROR: a path to the DataLad dataset to process needs to be given as an argument to the script by using the option `-d` *" # noqa: E501 "\n\t* ----------------------------------------------------------------------------------------------------------------------- *", # noqa: E501 ) print(description + usage) sys.exit() if not os.path.exists(script_options["dataset_path"]): print( f"\n\t* ------------------------------------------------------------------------------ *" f"\n\t* ERROR: {script_options['dataset_path']} does not appear to be a valid path " f"\n\t* ------------------------------------------------------------------------------ *", ) print(description + usage) sys.exit() if not os.path.exists(os.path.join(script_options["dataset_path"], ".datalad")): print( f"\n\t* ----------------------------------------------------------------------------------- *" f"\n\t* ERROR: {script_options['dataset_path']} does not appear to be a DataLad dataset " f"\n\t* ----------------------------------------------------------------------------------- *", ) print(description + usage) sys.exit() if "invalid_url_regex" not in script_options.keys(): print( "\n\t* --------------------------------------------------------------------------------------------------- *" # noqa: E501 "\n\t* ERROR: a regex for invalid URLs to remove should be provided to the script by using the option `-u` *" # noqa: E501 "\n\t* --------------------------------------------------------------------------------------------------- *", # noqa: E501 ) print(description + usage) sys.exit() return script_options def get_files_and_urls(dataset_path, annex): """ Runs git annex whereis in the dataset directory to retrieve a list of annexed files with their URLs' location. :param dataset_path: full path to the DataLad dataset :type dataset_path: string :param annex: the git annex object :type annex: object :return: files path and there URLs organized as follows: { <file-1_path> => [file-1_url-1, file-1_url-2 ...] <file-2_path> => [file-2_url-1, file-2_url-2 ...] ... } :rtype: dict """ current_path = os.path.dirname(os.path.realpath(__file__)) results = {} try: os.chdir(dataset_path) annex_results = annex("whereis", ".", "--json") results_list = annex_results.split("\n") for annex_result_item in results_list: r_json = json.loads(annex_result_item) file_path = r_json["file"] file_urls = [] for entry in r_json["whereis"]: file_urls.extend(entry["urls"]) results[file_path] = file_urls except Exception: traceback.print_exc() sys.exit() finally: os.chdir(current_path) return results def filter_invalid_urls(files_and_urls_dict, regex_pattern): """ Filters out the URLs that need to be removed based on a regular expression pattern. :param files_and_urls_dict: files' path and their respective URLs. :type files_and_urls_dict: dict :param regex_pattern: regular expression pattern for URL filtering :type regex_pattern: str :return: filtered URLs per file :rtype: dict """ filtered_dict = {} for file_path in files_and_urls_dict.keys(): filtered_urls_list = filter( lambda x: re.search(regex_pattern, x), files_and_urls_dict[file_path], ) filtered_dict[file_path] = filtered_urls_list return filtered_dict def remove_invalid_urls(filtered_file_urls_dict, script_options, annex): """ Removes URLs listed in the filtered dictionary from the files. :param filtered_file_urls_dict: filtered URLs to remove per file :type filtered_file_urls_dict: dict :param script_options: options give to the script :type script_options: dict :param annex: the git annex object :type annex: object """ dataset_path = script_options["dataset_path"] current_path = os.path.dirname(os.path.realpath(__file__)) try: os.chdir(dataset_path) for file_path in filtered_file_urls_dict.keys(): for url in filtered_file_urls_dict[file_path]: if script_options["run_removal"]: if script_options["verbose"]: print(f"\n => Running `git annex rmurl {file_path} {url}`\n") annex("rmurl", file_path, url) else: print( f"\nWill be running `git annex rmurl {file_path} {url}`\n", ) except Exception: traceback.print_exc() finally: os.chdir(current_path) if __name__ == "__main__": script_options = parse_input(sys.argv[1:]) repo = git.Repo(script_options["dataset_path"]) annex = repo.git.annex # fetch files and urls attached to the file if script_options["verbose"]: print( f"\n => Reading {script_options['dataset_path']} and grep annexed files with their URLs\n", ) files_and_urls_dict = get_files_and_urls(script_options["dataset_path"], annex) # grep only the invalid URLs that need to be removed from the annexed files regex_pattern = re.compile(script_options["invalid_url_regex"]) if script_options["verbose"]: print( f"\n => Grep the invalid URLs based on the regular expression {regex_pattern}", ) filtered_file_urls_dict = filter_invalid_urls(files_and_urls_dict, regex_pattern) # remove the invalid URLs found for each annexed file remove_invalid_urls(filtered_file_urls_dict, script_options, annex)
8,340
evals/chaos_eval/evaluate3D.py
linleon1995/prior_guiding_network
1
2168554
# -*- coding: utf-8 -*- """ This example shows the evaluation process used in CHAOS challenge. A sample data is shared with original DICOM images, its ground truth and an example of segmentation result. Ground truth volume is used as reference to evaluate sample segmentation. DICOM folder is used to transform voxel values into real world coordinates. Hence, ASSD and MSSD metrics are calculated with millimeter. 09/07/2019 @author: <NAME>, <EMAIL> """ import os from CHAOSmetrics import png_series_reader from CHAOSmetrics import evaluate # ======= Directories ======= # cwd = os.path.normpath(os.getcwd() + os.sep + os.pardir) cwd = os.path.normpath(os.getcwd() + os.sep) print(cwd) ground_dir = os.path.normpath(cwd + '/Data_3D/Ground') seg_dir = os.path.normpath(cwd + '/Data_3D/Segmentation') dicom_dir = os.path.normpath(cwd + '/Data_3D/DICOM_anon') # ======= Volume Reading ======= Vref = png_series_reader(ground_dir) Vseg = png_series_reader(seg_dir) print(Vseg.shape) print('Volumes imported.') # ======= Evaluation ======= print('Calculating...') [dice, ravd, assd ,mssd]=evaluate(Vref,Vseg,dicom_dir) print('DICE=%.3f RAVD=%.3f ASSD=%.3f MSSD=%.3f' %(dice, ravd, assd ,mssd)) # import nibabel as nib # print(nib.load('/home/user/DISK/data/Jing/data/Training/raw/img0001.nii.gz').affine)
1,348
exercicios-Python/aula12a.py
pedrosimoes-programmer/exercicios-python
0
2168933
profissao = input('Qual a sua profissão: ') if profissao.title() == 'Professor': print('Que bela profissão!') materia = input('Que matéria você ensina: '.title()) if materia.title() == 'Geografia': print('Que bela matéria!') else: print('Odeio a matéria de {}!'.format(materia)) elif profissao.title() == 'Empresário': print('Uma excelente profissão!') salario = int(input('Qual seu salário: R$')) if salario >= 15000: print('Você ganha bastante! Parabéns!') else: print('Você ganha relativamente bem!') opcao = input('Quer um aumento? ') if opcao.title() == 'Sim' or 'Yes' or 'Sí': aumento = salario + (salario * 15/100) print('Parabéns, você recebeu um aumento de 15%, agora seu novo salário é: {}'.format(aumento)) else: print('Você é um idiota! Agora não adianta mais chorar!') elif profissao.title() == 'Geógrafo': print('Uma profissão difícil de ser encontrada no Brasil. Parabéns!') else: print('Você tem uma profissão normal, {}!'.format(profissao.title()))
1,098
infrastructor/data/DatabaseManager.py
ahmetcagriakca/ImageProcessingApi
0
2168465
from datetime import time class DatabaseManager: def __init__(self, connector, retry_count=3): self.connector = connector self.retry_count = retry_count self.default_retry = 1 def _connect_to_db(self): self.connector.connect() def _disconnect_from_db(self): self.connector.disconnect() def fetch(self, query): self._connect_to_db() cur = self.connector.connection.cursor() cur.execute(query) datas = cur.fetchall() self._disconnect_from_db() data_list=[] for data in datas: rows=[] for row in data: rows.append(row) data_list.append(rows) return data_list; def delete(self, query) -> None: self._connect_to_db() cur = self.connector.connection.cursor() cur.execute(query) self.connector.connection.commit() self._disconnect_from_db() def insert_many(self, executable_script, inserted_rows): self._connect_to_db() cur = self.connector.connection.cursor() cur.prepare(executable_script) cur.executemany(None, inserted_rows) # for rows in insertedRows: # cur.execute(executableScript,rows) self.connector.connection.commit() self._disconnect_from_db() def insert_to_db_with_script(self, data, script): self._connect_to_db() self.connector.bulk_insert(data, script) self._disconnect_from_db() def insert_to_db(self, data): self._connect_to_db() result = self.connector.bulk_insert(data, self.sql_builder.build()) self._disconnect_from_db() return result def insert_to_db_for_page(self, data, page, limit): self._connect_to_db() result = self._insert_to_db_with_retry(data, page, limit, self.default_retry) self._disconnect_from_db() return result def insert_to_db_with_paging(self, data, page, limit): print(f"Operation started. data_length :{len(data)} page :{page} limit :{limit}") data_length = len(data) total_fragment_count = int(data_length / limit) fragment_count = total_fragment_count - page result = False self._connect_to_db() try: executed_page = page for rec in range(fragment_count): processing_page = page + rec # preparing data start = processing_page * limit end = start + limit fragmented_data = data[start:end] result = self._insert_to_db_with_retry(fragmented_data, start, end, self.default_retry) if not result: break # finish operation if result: remaining_data_count = data_length - (total_fragment_count * limit) # preparing data start = total_fragment_count * limit end = start + remaining_data_count fragmented_data = data[start:end] result = self._insert_to_db_with_retry(fragmented_data, start, end, self.default_retry) finally: self._disconnect_from_db() def _insert_to_db_with_retry(self, data, start, end, retry): try: self.connector.bulk_insert(data, self.sql_builder.build()) except Exception as ex: if (retry > self.retry_count): print(f"Db write error on start:{start},end:{end} Error:{ex}") return False print( f"Getting error on insert (Operation will be retried. Retry Count:{retry}). start:{start},end:{end}, Error:{ex}") # retrying connect to db self.connector.connect() time.sleep(1) return self._insert_to_db_with_retry(data, start, end, retry + 1) print(f'Committed start:{start} end:{end}') return True def insert(self, executable_script): self._connect_to_db() self.connector.insert(executable_script) self._disconnect_from_db()
4,152
scripts/python/metronomeStates.py
imec-int/choirbox
1
2168773
# import sys # sys.path +=['.'] # from states import State, StateMachine # # from StateMachine import StateMachine # class pdSendBPM(State): # def run(self): # print("receiving") # def next(self, input): # print("next") # return BPMsetter.taptempo # class taptempo(State): # def run(self): # print("reading tap tempo") # def next(self, input): # print("next") # class ProgramBPM(State): # def run(self): # print("updating tap tempo") # def next(self, input): # print("next") # class BPMsetter(StateMachine): # def __init__(self): # print("statemachine init") # StateMachine.__init__(self, BPMsetter.pdSendBPM) # # self.button = button # # self.led = led from statemachine import StateMachine, State class BPMStateMachine(StateMachine): pdSendsBPM = State('pdSendsBPM', initial=True) tapTempo = State('taptempo') programBPM = State('programBPM') tapped = pdSendsBPM.to(tapTempo) tapStopped = tapTempo.to(programBPM) go = programBPM.to(pdSendsBPM)
1,111
cbe/cbe/human_resources/serializers.py
cdaf/cbe
3
2162950
from rest_framework import serializers from drf_nest.serializer_fields import TypeField, GenericRelatedField from cbe.party.serializers import IndividualSerializer, OrganisationSerializer from cbe.party.models import Individual, Organisation from cbe.human_resources.models import IdentificationType, Identification, Staff, Timesheet, TimesheetEntry class IdentificationTypeSerializer(serializers.HyperlinkedModelSerializer): type = TypeField() issuer = serializers.HyperlinkedRelatedField(view_name='organisation-detail', lookup_field='enterprise_id', queryset=Organisation.objects.all()) class Meta: model = IdentificationType fields = ('type', 'url', 'name', 'issuer', 'system' ) class IdentificationSerializer(serializers.HyperlinkedModelSerializer): type = TypeField() identification_type_name = serializers.SerializerMethodField() party = GenericRelatedField( many=False, url_only=True, serializer_dict={ Individual: IndividualSerializer(), Organisation: OrganisationSerializer(), }) party_role = GenericRelatedField( many=False, url_only=True, serializer_dict={}) class Meta: model = Identification fields = ('type', 'url', 'identification_type', 'identification_type_name', 'valid_from', 'valid_to', 'number', 'party', 'party_role') def get_identification_type_name(self,obj): if obj.identification_type: return obj.identification_type.name else: return None class StaffSerializer(serializers.HyperlinkedModelSerializer): type = TypeField() party = GenericRelatedField( many=False, serializer_dict={ Individual: IndividualSerializer(), Organisation: OrganisationSerializer(), }) company = serializers.HyperlinkedRelatedField(view_name='organisation-detail', lookup_field='enterprise_id', queryset=Organisation.objects.all()) class Meta: model = Staff fields = ('type', 'url', 'company', 'party' ) class TimesheetEntrySerializer(serializers.HyperlinkedModelSerializer): type = TypeField() class Meta: model = TimesheetEntry fields = ('type', 'url', 'timesheet', 'start', 'end', 'duration', 'notes' ) class TimesheetSerializer(serializers.HyperlinkedModelSerializer): type = TypeField() class Meta: model = Timesheet fields = ('type', 'url', 'staff', 'start_date', 'end_date', 'timesheet_entries' )
2,602
model-optimizer/extensions/front/tf/ObjectDetectionAPI_test.py
calvinfeng/openvino
0
2169579
""" Copyright (C) 2018-2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from generator import generator, generate from extensions.front.tf.ObjectDetectionAPI import calculate_shape_keeping_aspect_ratio, \ calculate_placeholder_spatial_shape from mo.front.subgraph_matcher import SubgraphMatch from mo.graph.graph import Graph from mo.utils.custom_replacement_config import CustomReplacementDescriptor from mo.utils.error import Error class FakePipelineConfig: def __init__(self, model_params: dict): self._model_params = model_params def get_param(self, param: str): if param not in self._model_params: return None return self._model_params[param] @generator class TestCalculateShape(unittest.TestCase): min_size = 600 max_size = 1024 @generate(*[(100, 300, 341, 1024, False), (100, 600, 171, 1024, False), (100, 3000, 34, 1024, False), (300, 300, 600, 600, False), (300, 400, 600, 800, False), (300, 600, 512, 1024, False), (1000, 2500, 410, 1024, False), (1800, 2000, 600, 667, False), (300, 100, 1024, 341, False), (600, 100, 1024, 171, False), (3000, 100, 1024, 34, False), (400, 300, 800, 600, False), (600, 300, 1024, 512, False), (2500, 1000, 1024, 410, False), (2000, 1800, 667, 600, False), (300, 300, 1024, 1024, True), (900, 300, 1024, 1024, True), (1300, 900, 1024, 1024, True), (1025, 1025, 1024, 1024, True), ]) def test_calculate_shape(self, h, w, th, tw, pad): self.assertTupleEqual(calculate_shape_keeping_aspect_ratio(h, w, self.min_size, self.max_size, pad), (th, tw)) class TestCalculatePlaceholderSpatialShape(unittest.TestCase): def setUp(self): self.graph = Graph() self.graph.graph['user_shapes'] = None self.replacement_desc = CustomReplacementDescriptor('dummy_id', {}) self.match = SubgraphMatch(self.graph, self.replacement_desc, [], [], [], '') self.pipeline_config = FakePipelineConfig({}) def test_default_fixed_shape_resizer(self): self.pipeline_config._model_params['resizer_image_height'] = 300 self.pipeline_config._model_params['resizer_image_width'] = 600 self.assertTupleEqual((300, 600), calculate_placeholder_spatial_shape(self.graph, self.match, self.pipeline_config)) def test_fixed_shape_resizer_overrided_by_user(self): self.pipeline_config._model_params['resizer_image_height'] = 300 self.pipeline_config._model_params['resizer_image_width'] = 600 self.graph.graph['user_shapes'] = {'image_tensor': [{'shape': [1, 400, 500, 3]}]} self.assertTupleEqual((400, 500), calculate_placeholder_spatial_shape(self.graph, self.match, self.pipeline_config)) def test_default_keep_aspect_ratio_resizer(self): self.pipeline_config._model_params['resizer_min_dimension'] = 600 self.pipeline_config._model_params['resizer_max_dimension'] = 1024 self.assertTupleEqual((600, 600), calculate_placeholder_spatial_shape(self.graph, self.match, self.pipeline_config)) def test_keep_aspect_ratio_resizer_overrided_by_user(self): self.pipeline_config._model_params['resizer_min_dimension'] = 600 self.pipeline_config._model_params['resizer_max_dimension'] = 1024 self.graph.graph['user_shapes'] = {'image_tensor': [{'shape': [1, 400, 300, 3]}]} self.assertTupleEqual((800, 600), calculate_placeholder_spatial_shape(self.graph, self.match, self.pipeline_config)) def test_keep_aspect_ratio_resizer_overrided_by_user_pad(self): self.pipeline_config._model_params['resizer_min_dimension'] = 600 self.pipeline_config._model_params['resizer_max_dimension'] = 1024 self.pipeline_config._model_params['pad_to_max_dimension'] = True self.graph.graph['user_shapes'] = {'image_tensor': [{'shape': [1, 400, 300, 3]}]} self.assertTupleEqual((1024, 1024), calculate_placeholder_spatial_shape(self.graph, self.match, self.pipeline_config)) def test_missing_input_shape_information(self): self.assertRaises(Error, calculate_placeholder_spatial_shape, self.graph, self.match, self.pipeline_config)
5,105
snakegame/gamestates/playing.py
vedard/SnakeGame
0
2166991
import curses from snakegame.entities import Snake, Fruit from snakegame import Config class Playing: def __init__(self, engine): self.engine = engine self.snake = Snake(self.engine.screen_middle()) self.fruit = Fruit(self.engine.screen_size()) self.score = 0 self.collected_fruit = 0 self.next_score_gain = Config.STARTING_FRUIT_SCORE self.engine.delay = Config.STARTING_DELAY self.snake.go_left() def input(self): key = self.engine.screen.getch() if key == curses.KEY_UP: self.snake.go_up() if key == curses.KEY_DOWN: self.snake.go_down() if key == curses.KEY_LEFT: self.snake.go_left() if key == curses.KEY_RIGHT: self.snake.go_right() if key == ord('p'): self.engine.pause() if key == ord('q'): exit() def update(self): self.snake.update() if self.snake.is_colliding_with(self.fruit): self.collect_fruit() if (self.snake.is_running_over_himself() or self.snake.is_out_of_screen(self.engine.screen_size())): self.engine.end(self.score) def render(self): self.engine.screen.erase() self.engine.screen.border(0) self.snake.render(self.engine.screen) self.fruit.render(self.engine.screen) self.engine.screen.addstr(0, 2, f"Score: {self.score:n} | Fruits: {self.collected_fruit}", curses.color_pair(curses.COLOR_CYAN)) self.engine.screen.addstr(self.engine.screen_size().x - 1, 2, f"Control: ← ↑ → ↓ Quit: q Pause: p", curses.color_pair(curses.COLOR_CYAN)) def collect_fruit(self): self.collected_fruit += 1 self.score += self.next_score_gain if self.fruit.double_gain: self.next_score_gain *= Config.SPECIAL_FRUIT_MULTIPLIER self.engine.delay /= Config.DIFICULTY_MULTIPLIER self.snake.add_part() self.fruit = Fruit(self.engine.screen_size())
2,173
src/posim/utils.py
zrowland885/posim
0
2167659
# -*- coding: utf-8 -*- """ Created on Tue Mar 16 21:39:24 2021 @author: zrowl """ def convert_images(filetype, read_dir, write_dir=None): import os from PIL import Image if write_dir == None: write_dir = read_dir _, _, files = next(os.walk(read_dir)) for f in files: img = Image.open(read_dir+f).convert('L') filename = os.path.splitext(f)[0] path = write_dir+filename+filetype img.save(path) read_dir = 'output_old3/' write_dir = 'output/' filetype = '.png' convert_images(filetype, read_dir, write_dir)
585
Logistic_Regression/average_and_plot.py
htt-trangtran/smg
1
2168975
############################ # written by <NAME> and <NAME> ############################ """ Average data and plot """ import pandas as pd from csv import reader import numpy as np import matplotlib.pyplot as plt #------------------------------------------------------------------------------- # Functions: average data and get the average data def load_csv_result (filename): data = [] with open (filename, 'r') as file: csv_reader = reader (file) for row in csv_reader: data.append(float(row[0])) return data[1:] def avg_data (listrecord, liststats, result, record_path, record_avg_path, num_seed): # Get len(a) record_name = listrecord[0] + '_seed_0' a = np.array(load_csv_result (record_path + str(liststats[0]) + '_' + record_name + '.csv')) n = len(a) for record in listrecord: # Set the initial steps for stats in liststats: result[record][stats + '_avg'] = np.zeros(n) # Get the data for seed in range (num_seed): record_seed = record + '_seed_' + str(seed) for stats in liststats: a = np.array(load_csv_result (record_path + str(stats) + '_' + record_seed + '.csv')) result[record][stats + '_avg'] += a / num_seed # Save the average data for future references record_name = record + '_avg_' + str(num_seed) + '.csv' for stats in liststats: pd.DataFrame(result[record][stats + '_avg'] ).to_csv(record_avg_path + str(stats) + '_' + record_name, index = False) def get_avg_data (listrecord, liststats, result, record_avg_path, num_seed): for record in listrecord: # Get the data record_name = record + '_avg_' + str(num_seed) + '.csv' for stats in liststats: a = np.array(load_csv_result (record_avg_path + str(stats) + '_' + record_name)) result[record][stats + '_avg'] = a #------------------------------------------------------------------------------- # Function plot data def plot_data (dataname, num_epoch, listrecord, record_path, record_avg_path): liststats = ['loss', 'grad_loss', 'acc_train', 'acc_test'] num_seed = 10 #--------------------------------------------------------------------------- # All the result will be keep in a dictionary: result = {} for name in listrecord: result [name] = {} #--------------------------------------------------------------------------- avg_data (listrecord, liststats, result, record_path, record_avg_path, num_seed) get_avg_data (listrecord, liststats, result, record_avg_path, num_seed) #--------------------------------------------------------------------------- number = np.arange(num_epoch[1], num_epoch[0] + num_epoch[1], num_epoch[1]) plt.figure() mark = ['^', 'v', '>', '<', 'o', 's', 'x', '>', 'd', 'o', 's', 'x', '>', 'd', 's', 'v', '>', '<', 'o', 's', 'x', '>', 'd', 'o', 's', 'x'] plt.figure(figsize=(10,12)) # Plot loss plt.subplot(2,1,1) stats = 'loss_avg' i = 0 for record in listrecord: plt.plot (number[:], result[record][stats][:], marker = mark[i], label = listrecord[i].replace(dataname +'_','')) i += 1 plt.legend(fontsize = 18) plt.xticks(size = 18) plt.yticks(size = 18) plt.xlabel('Number of effective passes', fontsize = 25) plt.ylabel('Train loss', fontsize = 25) plt.yscale('log') plt.title(dataname , fontsize = 28) # Plot gradient plt.subplot(2,1,2) stats = 'grad_loss_avg' i = 0 for record in listrecord: plt.plot (number[:], result[record][stats][:], marker = mark[i], label = listrecord[i].replace(dataname +'_','')) i += 1 plt.legend(fontsize = 18) plt.xticks(size = 18) plt.yticks(size = 18) plt.xlabel('Number of effective passes', fontsize = 25) plt.ylabel('Grad loss', fontsize = 25) plt.yscale('log') plt.show()
4,003
tests/plugins/loading/plugins/elements/incompatibleminor/incompatibleminor.py
doraskayo/buildstream
0
2168841
from buildstream import Element class IncompatibleMinor(Element): BST_MIN_VERSION = "2.1000" def setup(): return IncompatibleMinor
144
examples/python/one.py
goldstar611/appimage-builder
155
2169388
#!/usr/bin/python3 import os import subprocess print("ONE!") for k, v in os.environ.items(): print("%s: %s" % (k, v)) path = os.path.abspath(__file__) path = os.path.dirname(path) output = subprocess.check_output([os.path.join(path, "two.py")]) print("exec two from one: " + output.decode())
300
tools/kommuner.py
atlefren/beermap
4
2169782
# -*- coding: utf-8 -*- import requests import json url = 'http://knreise.cartodb.com/api/v2/sql' url += '?api_key=<KEY>' url += '&q=SELECT navn, komm, ST_AsGeoJSON(the_geom) as geom from kommuner' r = requests.get(url) data = r.json() features = [] for row in data['rows']: geom = row.pop('geom') print row features.append({ "type": "Feature", "geometry": json.loads(geom), "properties": row }) with open('../data/kommuner.geojson', 'w') as f: f.write(json.dumps({ 'type': 'FeatureCollection', 'features': features }))
589
ur/pdf_front_page_img.py
rochester-rcl/islandora-import-scripts
1
2169115
#!/usr/bin/python import os import sys import shutil import re import pdfpagetojpg # pull list of SORTED item IDs from folder where XML files are stored # (assumes Jeff will create one XML file / item and place them in a directory) def get_file_list(file_directory): fileList = [] for root, sub, files in os.walk(file_directory): for item in files: if item.endswith(".pdf"): print("adding file " + os.path.join(root,item)) fileList.append(os.path.join(root,item)) else: print("Skipping file " + item + " name pattern did not match") return fileList # ################################## # Create the file structure for a book in Islandora # ################################## def add_derivative(file, destination): print("add derivative") pdfpagetojpg.convert_pdf_page(file, 400, destination) # ######################################## # Main Program # ######################################## def main(): # base directory of files to import base_directory = input("Please enter directory of files to create pdf front page image: ") if not os.path.isdir(base_directory): print("Directory " + base_directory + " does not exist or is not a directory") sys.exit() else: print("Directory found " + base_directory) file_list = get_file_list(base_directory) print("processing " + str(len(file_list))) for my_file in file_list: print("found file " + my_file) dir_name = os.path.dirname(my_file) dest_file_name = dir_name + "\\" + "TN.jpg" add_derivative(my_file, dest_file_name) if __name__ == '__main__': main()
1,763
polymorphorism.py
blulady/python
0
2168061
#parent class user #polymorphorism # - allows child class to overide behavior of parent class class User: name = "Mark" email = "<EMAIL>" password = "<PASSWORD>" def getLoginInfo(self): entry_name = input("Enter your name: ") entry_email = input("Enter your email: ") entry_password = input("Enter your password: ") if (entry_email == self.email and entry_password == self.password): print("Welcome Back, {}!".format(entry_name)) else: print("The password or email is incorrect.") #Child Class Employee class Employee(User): base_pay = 11.00 department = "General" pin_number = "3980" #This is the same method in the parent class "User". #The difference is that, instead of using entry_password, we're using entry_pin. def getLoginInfo(self): entry_name = input("Enter your name: ") entry_email = input("Entery your email: ") entry_pin = input("Enter your pin: ") if (entry_email == self.email and entry_pin == self.pin_number): print("Welcome back, {}!".format(entry_name)) else: print("The pin or email is incorrect") #The following code invokes the methods inside each class for User and Employee. customer = User() customer.getLoginInfo() manager = Employee() manager.getLoginInfo()
1,356
server/fb.py
OmkarVedak/Safest-Path-Navigator
0
2167093
import firebase_admin import time from firebase_admin import credentials from firebase_admin import db from pyfcm import FCMNotification import arrow import utils key = 'safest-path-firebase-adminsdk-two07-46c5f72b5d.json' cred = credentials.Certificate(key) firebase_admin.initialize_app(cred, { 'databaseURL': 'https://safest-path.firebaseio.com' }) push_service = FCMNotification(api_key="<KEY>") THRESHOLD = 0 def check_locations(): ref = db.reference('locations') user_ids = list(dict(ref.get()).keys()) for user_id in user_ids: user = db.reference(f'users/{user_id}') ttl_current_loc = user.get().get('ttl_current_loc', None) ttl_preferred_loc = user.get().get('ttl_preferred_loc', None) token = user.get()['token'] check_for_current_location(user, token, ttl_current_loc) check_for_preferred_location(user, token, ttl_preferred_loc) def check_for_current_location(user, token, ttl): # Check if TTL expired, then proceed if ttl and arrow.utcnow() < arrow.get(ttl): print(user.get()['email'], "TTL alive, skipping check") return lat = user.get()['lat'] long = user.get()['long'] print(user.get()['email'], lat, long) # Get crime score score = utils.get_crime_score(lat, long, radius=0.5) print(score) if score > THRESHOLD: print("Sending notification") # Send notification result = push_service.notify_single_device( registration_id=token, message_title="Safety alert", message_body="You are near unsafe location. Kindly be alert" ) # Set TTL so that no multiple notification is sent # Ex: 10 min user.child('ttl_current_loc').set( arrow.utcnow().shift(minutes=10).format() ) def check_for_preferred_location(user, token, ttl): # Check if TTL expired, then proceed if ttl and arrow.utcnow() < arrow.get(ttl): print(user.get()['email'], "TTL alive, skipping check") return lat = user.get().get('preferred', {}).get('lat', None) long = user.get().get('preferred', {}).get('long', None) print(user.get()['email'], lat, long) if not (lat and long): return crime = utils.get_latest_crime(lat, long, radius=0.5) if crime: # Send notification result = push_service.notify_single_device( registration_id=token, message_title="Crime alert", message_body=f"{crime['parent_incident_type']} reported near your home location" ) # Set TTL so that no multiple notification is sent # Ex: 10 min user.child('ttl_preferred_loc').set( arrow.utcnow().shift(minutes=10).format() ) if __name__ == "__main__": while True: check_locations() time.sleep(10)
2,882
Primus/src/bot.py
HerouFenix/rl_bots
0
2164445
from rlbot.agents.base_agent import BaseAgent, SimpleControllerState from rlbot.messages.flat.QuickChatSelection import QuickChatSelection from rlbot.utils.structures.game_data_struct import GameTickPacket from rlutilities.linear_algebra import vec3, norm from util.game_info import GameInfo from util.math import distance from plays import strategy # USED JUST FOR TESTING PURPOSES - COMMENT AFTER from plays.play import Play from plays.actions.drive import Drive, Stop, AdvancedDrive, Arrive from plays.kickoff.kickoff import SimpleKickoff, SpeedFlipDodgeKickoff from plays.strikes.strike import Strike, DodgeStrike, BumpStrike, CloseStrike, SetupStrike, DribbleStrike from plays.strikes.aerial import AerialStrike, DoubleAerialStrike from plays.dribbles.dribble import Dribble from plays.defense.defense import Defense, GoToNet from plays.defense.clear import BumpClear, DodgeClear, AerialClear from plays.actions.jump import Jump, AirDodge, SpeedFlip, HalfFlip, AimDodge from plays.utility.recovery import Recovery from plays.utility.refuel import Refuel from rlutilities.simulation import Input DRAW_BALL_PREDICTIONS = False # Set to True if you want to show the ball prediction lines DRAW_FLIGHT_PATH = True # Set to True if you want to show the ball flight path when aerialing class Primus(BaseAgent): def __init__(self, name, team, index): super().__init__(name, team, index) self.state = None self.tick_counter = 0 # Used for RLBotTraining self.play = None # The play the bot is trying to execute self.controls: SimpleControllerState = SimpleControllerState() self.primus = None #The agent self.objective = "None" # Just for debugging purposes so we know what the agent's current objective is def initialize_agent(self): # Set up information about the boost pads now that the game is active and the info is available #self.boost_pad_tracker.initialize_boosts(self.get_field_info()) # Set up information about the game (abstracted into the GameInfo class) self.state = GameInfo(self.team) self.state.set_mode("soccar") self.primus = self.state.cars[self.index] def get_output(self, packet: GameTickPacket): # Wait a bit to avoid actions carrying over from the last goal if self.tick_counter < 20: self.tick_counter += 1 return Input() # Start by updating the game's state self.state.read_packet(packet, self.get_field_info()) # If the bot is not attempting to do anything if self.play is None: # Get a play to execute self.play, self.objective = strategy.choose_play(self.state, self.primus) """Test individual moves""" #self.test_pick_action() # If bot has picked a play, execute it if self.play is not None: """ # If ball is going into net, screw it, just try to clear if (isinstance(self.play, Defense) or isinstance(self.play, GoToNet)) and self.state.ball_predictions is not None: danger = False for prediction in self.state.ball_predictions: if prediction.time < 2.0 and self.state.net.check_inside(prediction.position): danger = True break if danger: self.play = strategy.pick_clear(self.state, self.primus) self.objective = "Danger Clearing" """ # If we can interrupt, avoid demolition if self.play.interruptible(): collisions = self.state.detect_collisions_with_agent(self.primus, 0.2, 1 / 60) if(len(collisions) > 0): # If team collision, only the lowest id car should dodge if(collisions[0][1]): if(collisions[0][0] > self.primus.id): self.play = AirDodge(self.primus, 0.2) self.controls.throttle = -1 self.objective = "Dodging Teammate" else: self.play = AirDodge(self.primus, 0.2) self.objective = "Dodging Enemy" self.controls.throttle = -1 self.play.step(self.state.time_delta) self.controls = self.play.controls if(self.play.finished): # If the bot finished its play # Get a play to execute self.play, self.objective = strategy.choose_play(self.state, self.primus) # Pick new play """Test individual moves""" #self.test_pick_action() # Draw play name self.renderer.draw_string_3d(self.primus.position + vec3(0,0,10), 2, 2, self.play.name, self.renderer.white()) self.renderer.draw_line_3d(self.primus.position, self.state.ball.position, self.renderer.white()) self.renderer.draw_string_3d(self.primus.position + vec3(0,0,-5), 1, 1, f'Speed: {norm(self.primus.velocity):.1f}', self.renderer.white()) self.renderer.draw_rect_3d(self.state.ball.position , 8, 8, True, self.renderer.cyan(), centered=True) self.renderer.draw_string_3d(self.primus.position + vec3(0,0, 20), 1, 1, self.objective, self.renderer.white()) # Draw target if self.play.target is not None: self.renderer.draw_line_3d(self.primus.position, self.play.target, self.renderer.cyan()) # Draw Ball predictions if DRAW_BALL_PREDICTIONS and len(self.state.ball_predictions) > 0: points = [ball.position for ball in self.state.ball_predictions] if len(points) > 1: self.renderer.draw_polyline_3d([vec3(p[0], p[1], 10) if p[2] < 10 else p for p in points], self.renderer.lime()) # Draw Flight path if DRAW_FLIGHT_PATH: if isinstance(self.play,AerialStrike) and len(self.play.flight_path) > 0: self.renderer.draw_polyline_3d([vec3(p[0], p[1], 10) if p[2] < 10 else p for p in self.play.flight_path], self.renderer.orange()) elif isinstance(self.play,DoubleAerialStrike) and len(self.play.aerial_strike.flight_path) > 0: self.renderer.draw_polyline_3d([vec3(p[0], p[1], 10) if p[2] < 10 else p for p in self.play.aerial_strike.flight_path], self.renderer.orange()) return self.controls def test_pick_action(self): # For debugging purposes, manually select what action the agent should do # Jumps #self.play = Jump(self.primus, 1.0) #self.play = AirDodge(self.primus, 0.1,self.state.ball.position) #self.play = SpeedFlip(self.primus) #self.play = HalfFlip(self.primus) #self.play = AimDodge(self.primus, 0.8, self.state.ball.position) # Drive self.play = Drive(self.primus,target_speed=5000) #self.play = AdvancedDrive(self.primus, self.state.ball.position) #self.play = Arrive(self.primus, arrival_time = 20.0) #self.play = Stop(self.primus) # Kickoffs #self.play = SimpleKickoff(self.primus, self.state) #self.play = SpeedFlipDodgeKickoff(self.primus, self.state) # Strikes #self.state.predict_ball() #self.play = Strike(self.primus, self.state, self.state.enemy_net.center) #self.play = DodgeStrike(self.primus, self.state, self.state.enemy_net.center) #self.play = BumpStrike(self.primus, self.state, self.state.enemy_net.center) #self.play = CloseStrike(self.primus, self.state, self.state.enemy_net.center) #self.play = SetupStrike(self.primus, self.state, self.state.enemy_net.center) #self.play = DribbleStrike(self.primus, self.state, self.state.enemy_net.center) #self.play = AerialStrike(self.primus, self.state, self.state.enemy_net.center) #aerial = AerialStrike(self.primus, self.state, self.state.enemy_net.center) #self.play = DoubleAerialStrike(aerial) # Dribble #self.play = Dribble(self.primus, self.state.ball, self.state.enemy_net.center) # Defense #self.play = Defense(self.primus, self.state, self.state.ball.position, 10) # Clear #self.state.predict_ball() #self.play = DodgeClear(self.primus, self.state) #self.play = BumpClear(self.primus, self.state) #self.play = AerialClear(self.primus, self.state) # Utility #self.play = Refuel(self.primus, self.state) #self.play = Recovery(self.primus, self.state)
8,781
experiments/image_experiments.py
kckishan/Depth_and_Dropout
1
2168870
#!/usr/bin/env python # coding: utf-8 from tqdm import tqdm import os import torch import torchvision import torchvision.transforms as transforms from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import matplotlib as mpl import matplotlib.pyplot as plt mpl.style.use("default") import seaborn as sns sns.set_style("ticks") import sys sys.path.append("../") from src.models.CNN import AdaptiveConvNet from src.utils import get_device, plot_network_mask import argparse def argument_parser(): parser = argparse.ArgumentParser(description="Run Nonparametric Bayesian Architecture Learning") parser.add_argument('--use-cuda', action='store_false', help="Use CPU or GPU") parser.add_argument("--prior_temp", type=float, default=1., help="Temperature for Concrete Bernoulli from prior") parser.add_argument("--temp", type=float, default=.5, help="Temperature for Concrete Bernoulli from posterior") parser.add_argument("--epsilon", type=float, default=0.01, help="Epsilon to select the activated layers") parser.add_argument("--truncation_level", type=int, default=10, help="K+: Truncation for Z matrix") parser.add_argument("--a_prior", type=float, default=1.1, help="a parameter for Beta distribution") parser.add_argument("--b_prior", type=float, default=10., help="b parameter for Beta distribution") parser.add_argument("--kernel", type=int, default=5, help="Kernel size. Default is 3.") parser.add_argument("--num_samples", type=int, default=5, help="Number of samples of Z matrix") parser.add_argument("--epochs", type=int, default=50, help="Number of training epochs.") parser.add_argument("--lr", type=float, default=0.003, help="Learning rate.") parser.add_argument("--l2", type=float, default=1e-6, help="Coefficient of weight decay.") parser.add_argument("--batch_size", type=float, default=64, help="Batch size.") parser.add_argument("--max_width", type=int, default=64, help="Dimension of hidden representation.") return parser.parse_known_args()[0] args = argument_parser() transform_train = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # Normalize the test set same as training set without augmentation transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transform_train, download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform_test) # Data Loader (Input Pipeline) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=args.batch_size, num_workers=4, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=args.batch_size, num_workers=4, shuffle=False) device = get_device(args) model = AdaptiveConvNet(input_channels=1, num_classes=10, num_channels=args.max_width, kernel_size=args.kernel, args=args, device=device).to(device) model = model.to(device) print(model) loss_fn = nn.CrossEntropyLoss(reduction="none") optimizer = torch.optim.AdamW(model.parameters(), args.lr, weight_decay=args.l2) if not os.path.exists("results"): os.mkdir("results") def evaluate(test_loader): loglike = 0 error_sum = 0 with torch.no_grad(): model.eval() for i, (data, labels) in enumerate(test_loader): data = data.float().to(device) labels = labels.long().to(device) output = model(data, args.num_samples) pred = output.mean(0) logits = F.softmax(pred, dim=1) ll = -F.nll_loss(logits, labels, reduction="sum").item() loglike += ll predicted = torch.argmax(logits, 1) error = predicted.ne(labels).sum().item() error_sum += error test_loglikes = loglike / len(test_dataset) test_err = error_sum / len(test_dataset) test_metrics = {'test_err': round(test_err * 100, 3), 'test_like': round(test_loglikes, 3)} return test_metrics train_losses = [] with tqdm(range(args.epochs)) as tq: for epoch in tq: train_loss = 0.0 model.train() for i, (data, labels) in enumerate(train_loader): data = data.float().to(device) labels = labels.long().to(device) # making grad zero optimizer.zero_grad() # sample an architecture act_vec = model(data, args.num_samples) loss = model.estimate_ELBO(loss_fn, act_vec, labels, N_train=len(train_dataset), kl_weight=1) loss.backward() optimizer.step() # adding losses train_loss += loss.item() train_loss = train_loss / len(train_loader) train_losses.append(train_loss) test_results = evaluate(test_loader) print("Test error: {} Test Log likelihood: {}".format(test_results['test_err'], test_results['test_like'])) kl_beta = model.structure_sampler.get_kl() tq.set_postfix({'Tr. loss': '%.6f' % train_loss, 'KL Beta': '%.6f' % kl_beta}) torch.save(model, "results/model_MNIST.pt")
5,865
eggshell/config.py
Zeitsperre/eggshell
0
2168344
""" Configuration ------------- WPS servers often need to specify a number of paths for processes to find data, shapefiles, caches and determine where outputs are stored. To make sure all birds use the same architecture, eggshell provides a :class:`Paths` class to help with this. """ from os.path import join, pardir, abspath from pywps import configuration import logging LOGGER = logging.getLogger("PYWPS") class Paths(object): """This class facilitates the configuration of WPS birds.""" def __init__(self, module): """Instantiate class relative to the given module. :param module: Imported module relative to which paths will be defined. """ self._base = module.__path__[0] # _base is not the top level @property def top_level(self): """ return the top level directory of a WPS bird """ return abspath(join(self._base, pardir)) @property def data(self): """Return the path to the data directory.""" return join(self._base, 'data') @property def shapefiles(self): """Return the path to the geographic data directory.""" return join(self.data, 'shapefiles') @property def testdata(self): """Return the path to the test data directory.""" return join(self.top_level, 'tests/testdata') @property def cache(self): """Return the path to the server cache directory.""" out = configuration.get_config_value("cache", "cache_path") if not out: LOGGER.warn("No cache path configured. Using default value.") out = join(configuration.get_config_value("server", "outputpath"), "cache") return out @property def outputpath(self): """Return the server directory for process outputs.""" return configuration.get_config_value("server", "outputpath") @property def outputurl(self): """Return the server URL for process outputs.""" return configuration.get_config_value("server", "outputurl").rstrip('/') # @property # def masks(self): # """Return the path to the masks directory.""" # # TODO: currently this folder is not used # return join(self.data, 'masks') # @property # def Rsrc_dir(self): # """Return the path to the R source directory.""" # return os.path.join(self._base, 'Rsrc') # # @property # def static(self): # """Return the path to the static content directory.""" # return os.path.join(self._base, 'static') # Should these go into the class or they're too specialized ? def esgfsearch_distrib(): """TODO""" distrib = configuration.get_config_value("extra", "esgfsearch_distrib") if distrib is None: LOGGER.warn("No ESGF Search distrib option configured. Using default value.") distrib = True return distrib def esgfsearch_url(): """Return the server configuration value for the ESGF search node URL.""" url = configuration.get_config_value("extra", "esgfsearch_url") if not url: LOGGER.warn("No ESGF Search URL configured. Using default value.") url = 'https://esgf-data.dkrz.de/esg-search' return url
3,218
storage/team08/ArbolB+.py
strickergt128/tytus
0
2168467
class Nodo: #constructor def __init__(self, orden): self.orden = orden self.cuenta = 0 self.siguiente = None self.claves = [] self.hijos = [] self.padre = None def nodoLLeno(self): return self.cuenta >= self.orden def nodoSemiVacio(self): return self.cuenta <= self.orden/2 def addClave(self, clave): self.claves.append(clave) self.cuenta += 1 self.claves.sort() def buscar(self, clave): if len(self.hijos)==0: return self return self.__buscar(0 ,clave) def __buscar(self, valor, clave): if valor == len(self.claves): return self.hijos[valor].buscar(clave) if clave >= self.claves[valor]: return self.__buscar(valor+1,clave) return self.hijos[valor].buscar(clave) class Arbol: def __init__(self, orden): self.orden = orden self.raiz = None self.gr = None def buscar(self, clave): return self.raiz.buscar(clave)
1,073
dashboard/models.py
austinpray/uniqpanel
2
2169624
from datetime import timedelta import humanize from django.contrib.auth.models import AbstractUser, BaseUserManager from django.db import models from django.utils import timezone from django.utils.translation import gettext_lazy as _ class UserManager(BaseUserManager): def create_user(self, email, password, **extra_fields): if not email: raise ValueError(_('The Email must be set')) email = self.normalize_email(email) user = self.model(email=email, **extra_fields) user.set_password(password) user.save() return user def create_superuser(self, email, password, **extra_fields): extra_fields.setdefault('is_staff', True) extra_fields.setdefault('is_superuser', True) extra_fields.setdefault('is_active', True) if extra_fields.get('is_staff') is not True: raise ValueError(_('Superuser must have is_staff=True.')) if extra_fields.get('is_superuser') is not True: raise ValueError(_('Superuser must have is_superuser=True.')) return self.create_user(email, password, **extra_fields) class User(AbstractUser): username = None email = models.EmailField(_('email address'), unique=True) USERNAME_FIELD = 'email' REQUIRED_FIELDS = [] objects = UserManager() def __str__(self): return f'<User {self.email}>' class FileAnalysisJob(models.Model): completed_at_default = timezone.make_aware( timezone.datetime.min, timezone.get_default_timezone()) created_at = models.DateTimeField(auto_now_add=True) display_name = models.CharField(max_length=255) file_name = models.CharField(max_length=255) file_size_bytes = models.PositiveBigIntegerField(editable=False, default=0) unique_lines = models.PositiveBigIntegerField(editable=False, default=0) total_lines = models.PositiveBigIntegerField(editable=False, default=0) redis_key = models.TextField(editable=False, default="") elapsed_time_ns = models.PositiveBigIntegerField(editable=False, default=0) owner = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return f"File({self.id}, {self.display_name})" @classmethod def create(cls, **kwargs): f = cls(**kwargs) if not f.display_name: f.display_name = f.file_name return f @classmethod def complete_jobs(cls): return cls.objects.filter(elapsed_time_ns__gt=0) def json_dict(self) -> dict: # not dry but better explicit than implicit for security etc return { "id": self.id, "createdAt": self.created_at, "displayName": self.display_name, "fileName": self.file_name, "fileSizeBytes": self.file_size_bytes, "fileSizeDisplay": humanize.naturalsize(self.file_size_bytes, binary=True), "uniqueLines": self.unique_lines, "totalLines": self.total_lines, "elapsedTimeNs": self.elapsed_time_ns, "elapsedTimeDisplay": humanize.precisedelta( timedelta(microseconds=round(self.elapsed_time_ns/1000)), minimum_unit='milliseconds' ) }
3,237
src/pyobo/sources/umls/__main__.py
cthoyt/pyobo
0
2169831
# -*- coding: utf-8 -*- """CLI for UMLS exporter.""" from .umls import UMLSGetter if __name__ == "__main__": UMLSGetter.cli()
133
getPMIDs_only.py
NCBI-Hackathons/PubChem_WikiData_Interoperability
2
2167241
# getPMIDs_only.py # Author: <NAME> (<EMAIL>) # Input: file containing list of pubchem Ids (cid) # Output: For each pubChem document of the cids, list of referenced pubMedIds # # Process: # pubchem TXT output url hardcoded # Want to go easy on the pubchem server so batch requests into groups of 100 cids # print the list pubMedIds returned # # run the output of this program through " sort -un " to get the unique list of pubMedIds import httplib import time import json # Request PubMedId in text format for a list of comma separated cids def getcidPubId (x): conn = httplib.HTTPSConnection("pubchem.ncbi.nlm.nih.gov") request_txt = "/rest/pug/compound/cid/" + x + "/xrefs/PubMedId/TXT" # print "rq=", request_txt conn.request("GET", request_txt) r1 = conn.getresponse() #print r1.status, r1.reason data1 = r1.read() # print "data=", data1 return data1 # Get the list cids f = open('pccompound_result.txt') # Loop through the file ctr=1 cidList="" pubData="" for line in f: # stripe of the linefeed line = line.rstrip() if ctr == 100: # Have a batch of 100 cidList += line pubData=getcidPubId(cidList) print pubData cidList="" #time.sleep(4) ctr=1 else: # Build a batch cidList += line + "," ctr += 1 # Do the remaining part of the list pubData=getcidPubId(cidList.rstrip(",")) pubData=getcidPubId(cidList) print pubData # Done
1,466
tools/spectrumvalidation/tests/validation/test_predict_voxels2.py
sodium24/CIL
0
2167970
# MIT License # # Copyright (c) 2019 DARPA # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # This file is a part of the CIRN Interaction Language. import pytest import geopandas as gpd import numpy as np import pandas as pd from shapely.geometry import box from validation.predict import predict_voxels2 class TestPredictVoxels2(object): def test_ramp_prediction_no_lag_1_s(self): """ Confirm baseline alg operation with a trivially estimable sequence :return: """ time_step_s = 0.2 # ramp from 0.0 to 0.49 over 50 steps source_duty_cycles = [0.0, ]*50 source_duty_cycles[0:3] = [.001, ]*3 # build up a sequence that a VAR with 3 lags should be REALLY good at estimating for i in range(3, 50): source_duty_cycles[i] = sum(source_duty_cycles[i-3:i])/2.0 # build up the source dataframe, set timestamps as the index, and drop the index name source_timestamps_ms = np.array(range(50), dtype=np.float)*time_step_s*1000 source_timestamps_ms = source_timestamps_ms.astype(np.int64) source_df = pd.DataFrame({"10": source_duty_cycles, "timestamp": source_timestamps_ms}) source_df = source_df.set_index("timestamp", drop=True,) del source_df.index.name start_time = 0.0 stop_time = 5.0 samples_to_predict = 5 lags = 3 result_df = predict_voxels2(tx_pivot_df=source_df, start_time=start_time, stop_time=stop_time, samples_to_predict=samples_to_predict, lags=lags) # pandas convention includes the endpoint. Subtract off a millisecond to avoid this expected_df = source_df.loc[stop_time*1000:(stop_time+1.0)*1000-1] # pytest doesn't do well with dataframes. Use pandas native check pd.testing.assert_frame_equal(expected_df, result_df) def test_ramp_prediction_no_lag_5_s(self): """ Confirm baseline alg operation doesn't blow up with a longer estimate :return: """ time_step_s = 0.2 # ramp from 0.0 to 0.49 over 50 steps source_duty_cycles = [0.0, ] * 50 source_duty_cycles[0:3] = [.001, ] * 3 # build up a sequence that a VAR with 3 lags should be REALLY good at estimating for i in range(3, 50): source_duty_cycles[i] = sum(source_duty_cycles[i - 3:i]) / 2.0 # build up the source dataframe, set timestamps as the index, and drop the index name source_timestamps_ms = np.array(range(50), dtype=np.float) * time_step_s * 1000 source_timestamps_ms = source_timestamps_ms.astype(np.int64) source_df = pd.DataFrame({ "10": source_duty_cycles, "timestamp": source_timestamps_ms}) source_df = source_df.set_index("timestamp", drop=True, ) del source_df.index.name start_time = 0.0 stop_time = 5.0 samples_to_predict = 25 lags = 3 result_df = predict_voxels2(tx_pivot_df=source_df, start_time=start_time, stop_time=stop_time, samples_to_predict=samples_to_predict, lags=lags) # pandas convention includes the endpoint. Subtract off a millisecond to avoid this expected_df = source_df.loc[stop_time * 1000:(stop_time + 5.0) * 1000 - 1] # pytest doesn't do well with dataframes. Use pandas native check pd.testing.assert_frame_equal(expected_df, result_df)
4,803
test/simple_box_pair_pooling.py
Seth-Park/pocket
13
2168073
""" Test box pair pooling <NAME> <<EMAIL>> The Australian National University Australian Centre for Robotic Vision """ import time import torch from collections import OrderedDict from torchvision.ops import MultiScaleRoIAlign from pocket.ops import SimpleBoxPairPool def test(): # Image size im_s = 1024 f = list([ torch.rand(1, 3, 128, 128), torch.rand(1, 3, 64, 64), torch.rand(1, 3, 32, 32), ]) pts = torch.rand(256, 4) * im_s boxes_h = torch.zeros(128, 4) boxes_h[:, 0] = torch.min(pts[:128, 0], pts[:128, 2]) boxes_h[:, 1] = torch.min(pts[:128, 1], pts[:128, 3]) boxes_h[:, 2] = torch.max(pts[:128, 0], pts[:128, 2]) boxes_h[:, 3] = torch.max(pts[:128, 1], pts[:128, 3]) boxes_o = torch.zeros(128, 4) boxes_o[:, 0] = torch.min(pts[128:, 0], pts[128:, 2]) boxes_o[:, 1] = torch.min(pts[128:, 1], pts[128:, 3]) boxes_o[:, 2] = torch.max(pts[128:, 0], pts[128:, 2]) boxes_o[:, 3] = torch.max(pts[128:, 1], pts[128:, 3]) m1 = SimpleBoxPairPool( output_size=7, spatial_scale=[1/8, 1/16, 1/32], sampling_ratio=2 ) # Compute pooled box pair features out1 = m1(f, [boxes_h], [boxes_o]) boxes_union = boxes_h.clone() boxes_union[:, 0] = torch.min(boxes_h[:, 0], boxes_o[:, 0]) boxes_union[:, 1] = torch.min(boxes_h[:, 1], boxes_o[:, 1]) boxes_union[:, 2] = torch.max(boxes_h[:, 2], boxes_o[:, 2]) boxes_union[:, 3] = torch.max(boxes_h[:, 3], boxes_o[:, 3]) f = OrderedDict([ (0, f[0]), (1, f[1]), (2, f[2]) ]) m2 = MultiScaleRoIAlign( [0, 1, 2], output_size=7, sampling_ratio=2 ) # Compute pooled box union features out2 = m2(f, [boxes_union], [(im_s, im_s)]) # Compare the pooled features # The two feature maps will be exactly the same when rois are mapped # to the same level # To do this, change line170 in pocket.ops.SimpleBoxPairPool # - levels = self.map_levels(boxes_1, boxes_2) # + levels = self.map_levels(box_pair_union) assert out1.shape == out2.shape, \ "Inconsistent feature map size" print("Pixels matched: {}/{}.".format( torch.eq(out1, out2).sum(), torch.as_tensor(out1.shape).prod())) if __name__ == '__main__': test()
2,323
molecule/default/tests/test_default.py
osism/ansible-hosts
1
2169853
def test_hosts_file(host): f = host.file("/etc/hosts") assert f.exists assert f.is_file
100
youtube/services.py
BudzynskiMaciej/Django-Project
0
2169773
import requests from .models import Video from DjangoTut.settings import YOUTUBE_API_ACCESS_KEY class YoutubeService: API_KEY = None BASE_API_URL = "https://www.googleapis.com/youtube/v3/" METHOD_GET = 'get' METHOD_POST = 'post' METHOD_DELETE = 'delete' def __init__(self): self.api_key = YOUTUBE_API_ACCESS_KEY if not self.api_key: print("Error Reading API_KEY, Service will not work") def _make_request(self, resource, params, method=METHOD_GET): url = self.BASE_API_URL + resource request = getattr(requests, method)(url, params) return request.json() def get_my_videos(self, username, max_results=15): my_videos = [] params = { 'part': 'contentDetails', 'forUsername': username, 'key': self.api_key, } request = self._make_request('channels', params) if not request['items']: return my_videos my_uploaded_playlist = request['items'][0]['contentDetails']['relatedPlaylists']['uploads'] params = { 'part': 'snippet', 'maxResults': str(max_results), 'playlistId': my_uploaded_playlist, 'key': self.api_key, } request = self._make_request('playlistItems', params) for item in request['items']: youtube_id = item['snippet']['resourceId']['videoId'] published_at = item['snippet']['publishedAt'] channel_id = item['snippet']['channelId'] title = item['snippet']['title'] description = item['snippet']['description'] thumbnail = item['snippet']['thumbnails']['medium']['url'] channel_title = item['snippet']['channelTitle'] video = Video(youtube_id=youtube_id, published_at=published_at, channel_id=channel_id, title=title, description=description, thumbnail=thumbnail, channel_title=channel_title) my_videos.append(video) return my_videos def get_most_popular_videos(self, max_results, region_code): most_popular_videos = [] params = { 'part': 'snippet,statistics', 'chart': 'mostPopular', 'maxResults': str(max_results), 'regionCode': region_code, 'key': self.api_key } request = self._make_request('videos', params) for item in request['items']: youtube_id = item['id'] published_at = item['snippet']['publishedAt'] channel_id = item['snippet']['channelId'] title = item['snippet']['title'] description = item['snippet']['description'] thumbnail = item['snippet']['thumbnails']['medium']['url'] channel_title = item['snippet']['channelTitle'] view_count = item['statistics']['viewCount'] like_count = item['statistics']['likeCount'] dislike_count = item['statistics']['dislikeCount'] if 'commentCount' not in item['statistics']: comment_count = 0 else: comment_count = item['statistics']['commentCount'] video = Video(youtube_id=youtube_id, published_at=published_at, channel_id=channel_id, title=title, description=description, thumbnail=thumbnail, channel_title=channel_title, view_count=view_count, like_count=like_count, dislike_count=dislike_count, comment_count=comment_count, is_most_viewed=True) most_popular_videos.append(video) return most_popular_videos
3,663
modules/tests/asset/asset001.py
apocsantos/eden
1
2169347
# Set up Assets __all__ = ["asset001"] # Selenium WebDriver from selenium import webdriver from selenium.common.exceptions import NoSuchElementException #from selenium.webdriver.common.keys import Keys from gluon import current from s3 import s3_debug from tests import * import unittest, re, time def asset001(): config = current.test_config browser = config.browser driver = browser driver.find_element_by_xpath("//div[@id='menu_div_sit']/a[3]/div").click() driver.find_element_by_link_text("New").click() driver.find_element_by_id("asset_asset_number").click() driver.find_element_by_id("asset_asset_number").clear() driver.find_element_by_id("asset_asset_number").send_keys("WS-100-17") w_autocomplete("Wat","asset_asset_item","Water Purification Unit",False) driver.find_element_by_id("asset_asset_sn").clear() driver.find_element_by_id("asset_asset_sn").send_keys("WPU-4536-9381") driver.find_element_by_id("asset_asset_comments").clear() driver.find_element_by_id("asset_asset_comments").send_keys("test") driver.find_element_by_css_selector("input[type=\"submit\"]").click() driver.find_element_by_link_text("Home").click()
1,337
tests/client_test.py
mherrmann/dnsimple-python
12
2169569
import unittest from dnsimple.client import Client from dnsimple.version import version class ClientTest(unittest.TestCase): def test_defaults_base_url_to_production_api(self): client = Client() self.assertEqual('https://api.dnsimple.com', client.base_url) def test_api_version(self): client = Client() self.assertEqual('v2', client.api_version) def test_accepts_base_url_option(self): client = Client(base_url='http://api.example.com') self.assertEqual('http://api.example.com', client.base_url) def test_sets_sandbox_environment(self): client = Client(sandbox=True) self.assertEqual('https://api.sandbox.dnsimple.com', client.base_url) def test_access_token(self): client = Client(access_token='token') self.assertEqual('token', client.auth.token) def test_uses_basic_authentication(self): client = Client(email='<EMAIL>', password='<PASSWORD>') self.assertEqual('<EMAIL>', client.auth.username) self.assertEqual('secret', client.auth.password) def test_uses_oauth2_authorization(self): client = Client(access_token='token') self.assertEqual('token', client.auth.token) def test_uses_versioned_url(self): client = Client() self.assertEqual('https://api.dnsimple.com/v2/whoami', client.versioned('/whoami')) def test_can_set_the_user_agent(self): client = Client(user_agent="MySuperAPP") self.assertEqual('MySuperAPP dnsimple-python/{version}'.format(version=version), client.user_agent) if __name__ == '__main__': unittest.main()
1,638
MAIN APP/carops/migrations/0011_remove_client_first_name.py
tiberius-ls/tiberius-ls.github.io
0
2169572
# Generated by Django 3.1.5 on 2021-02-01 16:15 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('carops', '0010_auto_20210201_1702'), ] operations = [ migrations.RemoveField( model_name='client', name='first_name', ), ]
331
script.py
PercyOfficial/Image-Editor-1
0
2169817
class script(object): START_MSG = """ <b>Hi {} I'm [Cortana](https://telegra.ph/file/c13f2a5c27fed530955d5.jpg), an Image Editor Bot which Supports various modes For more click help....</b>""" HELP_MSG = """Hai, Follow these Steps.. <code>🌀 Send me any Image to Edit..</code> <code>🌀 Select the Corresponding mode that you need</code> <code>🌀 Your Edited Image will be Uploaded </code> © @Cortana_BOTS 2020-2021""" ABOUT_MSG = """⭕️<b>My Name : Cortana </b> ⭕️<b>Language :</b> <code>Python3</code> ⭕️<b>Library :</b> <a href='https://docs.pyrogram.org/'>Pyrogram 1.0.7</a> ⭕️<b>Creater :</b> 👉 <a href='t.me/percy_jackson_4'>Master Chief</a>"""
669
torch_glow/tests/nodes/index_select_test.py
aksingh-fb/glow
1
2166179
import unittest import torch from parameterized import parameterized from tests import utils class IndexSelectModule(torch.nn.Module): def __init__(self, dimension): super(IndexSelectModule, self).__init__() self.dimension = dimension def forward(self, tensor, index): return torch.index_select(tensor, self.dimension, index) class TestIndexSelect(unittest.TestCase): @parameterized.expand( [ ("0-dim", torch.randn(3, 4), 0, torch.tensor([0, 2])), ("1-dim", torch.randn(3, 4), 1, torch.tensor([0, 2])), ("repeat index", torch.randn(3, 4), 1, torch.tensor([2, 2])), ] ) def test_index_select(self, _, tensor, dimension, index): utils.compare_tracing_methods( IndexSelectModule(dimension), tensor, index, skip_to_glow=True, fusible_ops={"aten::index_select"}, )
938
pyroute2/test-get-device-ip-ns-1.py
li-ma/homework
0
2169365
from pyroute2 import IPDB from pyroute2 import NetNS from pyroute2.common import uifname ip = IPDB(nl=NetNS('ns1')) def test1(): try: device = ip.interfaces['veth0']['ipaddr'] finally: pass for i in range(1000): test1() ip.release()
265
test/dom/html/test_p.py
jkloth/pyxml
2
2165806
from util import testAttribute, error def test(): print 'testing source code syntax' from xml.dom.html import HTMLParagraphElement from xml.dom import implementation doc = implementation.createHTMLDocument('Title') p = doc.createElement('P') print 'testing get/set' p._set_align('left') rt = p._get_align() if rt != 'Left': error('get/set align failed') print 'get/set works' if __name__ == '__main__': test()
466
fuzzi-gen/fuzzi/processing/iris.py
hengchu/fuzzi-impl
4
2168186
import csv import json import re import random import pkg_resources def main(): with open(pkg_resources.resource_filename('fuzzi', 'data/Iris/iris.data'), 'rt') as f: reader = csv.reader(f) l = list(reader) # Converting to floats for Fuzzi purposes and assigning cluster labels for i in range(len(l)): y = len(l[0])-1 for j in range(len(l[0])-1): l[i][j] = float(l[i][j]) if (l[i][y] == 'Iris-versicolor'): l[i][y] = 2.0 elif (l[i][y] == 'Iris-virginica'): l[i][y] = 1.0 elif (l[i][y] == 'Iris-setosa'): l[i][y] = 0.0 data = {} print(len(l[0])) random.shuffle(l) data['db'] = l[0:100] data['db_test'] = l[100:-1] #Initial cluster centers (can be played with) x0 = random.randint(0, len(l)-1) x1 = random.randint(0, len(l)-1) x2 = random.randint(0, len(l)-1) data['cs1'] = l[x0] data['cs2'] = l[x1] data['cs3'] = l[x2] #data['cs'] = [l[x0], l[x1], l[x2]] data_json_str = json.dumps(data, indent=4) with open(pkg_resources.resource_filename('fuzzi', 'data/Iris/iris.json'), 'w') as outfile: outfile.write(data_json_str)
1,329
lastfm_cg/__main__.py
dbeley/lastfm_cg
9
2169642
""" Create lastfm album collage for an user """ import logging import time import argparse import configparser import pylast import requests_cache import os from lastfm_cg import image_utils from lastfm_cg import lastfm_utils logger = logging.getLogger() logging.getLogger("requests").setLevel(logging.WARNING) temps_debut = time.time() FORMAT = "%(levelname)s :: %(message)s" TIMEFRAME_VALUES = ["7day", "1month", "3month", "6month", "12month", "overall"] def lastfmconnect(api_key=None, api_secret=None): if api_key and api_secret: network = pylast.LastFMNetwork(api_key=api_key, api_secret=api_secret) return network else: # Lastfm config file parsing user_config_dir = os.path.expanduser("~/.config/lastfm_cg/") try: config = configparser.ConfigParser() config.read(user_config_dir + "config.ini") api_key = config["lastfm"]["api_key"] api_secret = config["lastfm"]["api_secret"] except Exception as e: logger.error( ( "Error with the config file. Be sure to have a valid " "~/.config/lastfm_cg/config.ini file. Error : %s" ), e, ) if not os.path.exists(user_config_dir): logger.info( ( "Configuration folder not found. " "Creating ~/.config/lastfm_cg/." ) ) os.makedirs(user_config_dir) if not os.path.isfile(user_config_dir + "config.ini"): sample_config = ( "[lastfm]\n" "api_key=api_key_here\n" "api_secret=api_secret_here\n" ) with open(user_config_dir + "config.ini", "w") as f: f.write(sample_config) logger.info( ( "A sample configuration file has been created at " "~/.config/lastfm_cg/config.ini. Go to " "https://www.last.fm/api to create your own API keys " "and put them in the configuration file." ) ) exit() network = pylast.LastFMNetwork(api_key=api_key, api_secret=api_secret) return network def main(): # argument parsing args = parse_args() if args.API_KEY and args.API_SECRET: network = lastfmconnect(api_key=args.API_KEY, api_secret=args.API_SECRET) else: network = lastfmconnect() if not args.columns: args.columns = args.rows # cache for python-requests if not args.disable_cache: cache_folder = os.path.expanduser("~/.local/share/lastfm_cg/") if not os.path.exists(cache_folder): logger.info("Cache folder not found. Creating %s", cache_folder) os.makedirs(cache_folder) if not os.path.isfile(cache_folder + "lastfm_cg_cache.sqlite"): original_folder = os.getcwd() os.chdir(cache_folder) requests_cache.install_cache("lastfm_cg_cache") os.chdir(original_folder) requests_cache.configure(os.path.expanduser(cache_folder + "lastfm_cg_cache")) if args.username: users = [x.strip() for x in args.username.split(",")] else: logger.error("Use the -u/--username flag to set an username.") exit() if args.timeframe not in TIMEFRAME_VALUES: logger.error( "Incorrect value %s for timeframe. Accepted values : %s", args.columns, TIMEFRAME_VALUES, ) exit() for username in users: user = network.get_user(username) nb_covers = args.rows * args.columns if not args.top100 else 100 list_covers = lastfm_utils.get_list_covers( user=user, nb_covers=nb_covers, timeframe=args.timeframe ) img = ( image_utils.create_image(list_covers=list_covers, nb_columns=args.columns) if not args.top100 else image_utils.create_top100_image(list_covers=list_covers) ) # export image if args.output_filename: export_filename = args.output_filename elif args.top100: export_filename = ( f"{args.timeframe}_{username}_top100_{int(time.time())}.png" ) else: export_filename = f"{args.timeframe}_{username}_{args.columns*args.rows:004}_{int(time.time())}.png" img.save(export_filename) logger.info("Runtime : %.2f seconds." % (time.time() - temps_debut)) def parse_args(): parser = argparse.ArgumentParser( description="Create lastfm album collage\ for one or several lastfm users." ) parser.add_argument( "--debug", help="Display debugging information", action="store_const", dest="loglevel", const=logging.DEBUG, default=logging.INFO, ) parser.add_argument( "--timeframe", "-t", help="Timeframe (Accepted values : 7day, 1month,\ 3month, 6month, 12month, overall.\ Default : 7day).", type=str, default="7day", ) parser.add_argument( "--rows", "-r", help="Number of rows (Default : 5).", type=int, default=5, ) parser.add_argument( "--columns", "-c", help="Number of columns (Default : number of rows).", type=int, ) parser.add_argument( "--username", "-u", help="Usernames to extract, separated by comma.", type=str, ) parser.add_argument( "-d", "--disable_cache", help="Disable the cache", dest="disable_cache", action="store_true", ) parser.add_argument( "--top100", help="Create a top 100 image. Will override columns/rows.", dest="top100", action="store_true", ) parser.add_argument("--API_KEY", help="Lastfm API key (optional)") parser.add_argument("--API_SECRET", help="Lastfm API secret (optional)") parser.add_argument( "--output_filename", help="Output filename (optional, example: output.png)" ) parser.set_defaults(disable_cache=False) args = parser.parse_args() logging.basicConfig(level=args.loglevel, format=FORMAT) return args if __name__ == "__main__": main()
6,581
multimetric/cls/importer/base.py
Shardey/analyzer-thesis
14
2167649
class Importer(): class ImporterItem(): def __init__(self, _file, _cnt, _sev): self._values = { "filename": _file, "content": _cnt, "severity": _sev } def match(self, _filter): return all([self._values[k] == v for k, v in _filter.items()]) def get(self): return self._values @staticmethod def from_csv(line): _sev = None if len(line) > 2: _sev = line[2] return Importer.ImporterItem(_file=line[0], _cnt=line[1], _sev=_sev) def __init__(self, args, filearg): self._input = filearg self._items = [] def getItems(self, _filter={}): return [x.get() for x in self._items if x.match(_filter)] def getSumItems(self, _filter={}): _items = self.getItems(_filter=_filter) if len(_items) == 1: if str.isdigit(_items[0]["content"]): return int(_items[0]["content"]) return len(_items)
1,061
tools/management/commands/output_all_fusion_protein.py
penglian518/protwis
0
2169734
from django.core.management.base import BaseCommand, CommandError from django.core.management import call_command from django.conf import settings from django.db import connection from django.db.models import Q from django.template.loader import render_to_string from structure.models import Structure from protein.models import Protein from residue.models import ResidueGenericNumber, ResidueGenericNumberEquivalent from construct.functions import * from common import definitions from common.selection import SelectionItem from common.alignment_gpcr import Alignment import xlsxwriter, xlrd import logging, json, os class Command(BaseCommand): help = "Output all uniprot mappings" logger = logging.getLogger(__name__) def handle(self, *args, **options): structures = Structure.objects.filter(refined=False) self.fusions = {} self.fusions_mutations = {} self.fusions_starts = {} self.fusions_ends = {} f = open('fusions.json', 'w') i = 0 for s in structures: pdbname = str(s) print(pdbname) failed = [] # try: protein = Protein.objects.filter(entry_name=pdbname.lower()).get() protein_name = protein.parent.entry_name d = fetch_pdb_info(pdbname,protein) # except: # print(pdbname,'failed') # failed.append(pdbname) # print(d) # print(d['construct_sequences']) self.find_fusion(d['construct_sequences'],protein_name,pdbname) #print(self.fusions) i += 1 # if i>10: # break self.save_excel() def find_fusion(self,construct_sequences,protein_name,pdbname): list_of_none_fusion = ['Not_Observed','Engineered mutation','','Conflict','Insertion','S-arrestin'] # 'Expression tag','Linker', list_of_comfirmed_fusion = ['C8TP59','Q0SXH8','Q9V2J8','Soluble cytochrome b562','Endolysin','Rubredoxin','Lysozyme','Flavodoxin'] #ODD Rubredoxin #Q9V2J8 GlgA glycogen synthase auto_4ZJ8 #C8TP59 Cytochrome b562 # Q0SXH8 Cytochrome b(562) result = [] position = None for name, segment in construct_sequences.items(): # print(segment) position = segment['where'] seq = segment['seq'] mutations = None if 'mutations' in segment: mutations = segment['mutations'] wt_ranges = segment['ranges'] if name in list_of_none_fusion: continue if name == protein_name: continue if "Guanine" in name: continue if "N/A" in name: continue if name not in self.fusions: self.fusions[name] = {} self.fusions_mutations[name] = [] self.fusions_starts[name] = [] self.fusions_ends[name] = [] mutation_list = [] if mutations: for mut,v in mutations.items(): mutation_list.append([v[0],str(mut),v[1]]) if mut not in self.fusions_mutations[name]: self.fusions_mutations[name].append(mut) wt_range_str = "" for wt_range in wt_ranges: wt_range_str += str(wt_range[0])+"-"+str(wt_range[1]) if wt_range[0] not in self.fusions_starts[name]: self.fusions_starts[name].append(wt_range[0]) if wt_range[1] not in self.fusions_ends[name]: self.fusions_ends[name].append(wt_range[1]) self.fusions[name][protein_name+"_"+pdbname] = {'mutations':mutation_list, 'wt_ranges':wt_ranges, 'position':position, 'sequence' : seq} def save_excel(self): """Convert fusions info to excel file""" workbook = xlsxwriter.Workbook('fusions.xlsx') for name in self.fusions: worksheet_name = name[0:30] worksheet_name = worksheet_name.replace("/", " ") worksheet = workbook.add_worksheet(worksheet_name) headers = ['name','position','seq'] headers_lookup = {} headers_start_end = {} header_i = 3 for i,start in enumerate(sorted(self.fusions_starts[name])): headers_start_end[start] = "start_"+str(start) print(headers_start_end) for i,end in enumerate(sorted(self.fusions_ends[name])): if end in headers_start_end: headers_start_end[end] = "both" else: headers_start_end[end] = "end_"+str(end) print(headers_start_end) for end in sorted(headers_start_end): if headers_start_end[end]=="both": headers.append("end_"+str(end)) headers.append("start_"+str(end)) headers_lookup["end_"+str(end)] = header_i header_i +=1 headers_lookup["start_"+str(end)] = header_i else: headers.append(headers_start_end[end]) headers_lookup[headers_start_end[end]] = header_i header_i +=1 print(headers_lookup) for i,mut in enumerate(sorted(self.fusions_mutations[name])): headers.append("Mut in "+str(mut)) headers_lookup["mut_"+str(mut)] = header_i header_i +=1 row = 1 index = {} col = 0 for h in headers: worksheet.write(0, col, h) index[h] = col col += 1 for xtal_name,v in self.fusions[name].items(): worksheet.write(row, 0, xtal_name) worksheet.write(row, 1, v['position']) worksheet.write(row, 2, v['sequence']) for mut in v['mutations']: worksheet.write(row, headers_lookup['mut_'+mut[1]], mut[0]+mut[1]+mut[2]) for r in v['wt_ranges']: worksheet.write(row, headers_lookup['start_'+str(r[0])], "X") worksheet.write(row, headers_lookup['end_'+str(r[1])], "X") row += 1 workbook.close()
6,402
contek_timbersaw/timed_rolling_file_handler.py
contek-io/contek-timbersaw
0
2169035
import os import time from logging.handlers import TimedRotatingFileHandler from typing import Optional from contek_timbersaw.async_compressor import AsyncCompressor from contek_timbersaw.async_deleter import AsyncDeleter class TimedRollingFileHandler(TimedRotatingFileHandler): def __init__( self, log_dir: str, file_suffix: str = '.log', compression_format: Optional[str] = None, retention: int = 0, **kwargs, ) -> None: super().__init__(log_dir, delay=True, **kwargs) self._log_dir = log_dir self._file_suffix = file_suffix self._compress = AsyncCompressor(compression_format) self._delete = AsyncDeleter(log_dir, retention) self._update_current_file() def doRollover(self): self.close() self._update_current_file() self._calculate_new_rollover_at() def _calculate_new_rollover_at(self) -> None: current_time = int(time.time()) new_rollover_at = self.computeRollover(current_time) while new_rollover_at <= current_time: new_rollover_at = new_rollover_at + self.interval if self._should_adjust_for_dst_change(): dst_now = time.localtime(current_time)[-1] dst_at_rollover = time.localtime(new_rollover_at)[-1] if dst_now != dst_at_rollover: if not dst_now: # DST kicks in before next rollover, so we need to deduct an hour addend = -3600 else: # DST bows out before next rollover, so we need to add an hour addend = 3600 new_rollover_at += addend self.rolloverAt = new_rollover_at def _should_adjust_for_dst_change(self) -> bool: if self.utc: return False return self.when == 'MIDNIGHT' or self.when.startswith('W') def _update_current_file(self) -> None: if self.utc: time_tuple = time.gmtime() else: time_tuple = time.localtime() time_str = time.strftime(self.suffix, time_tuple) file_name = time_str + self._file_suffix new_file = os.path.join(self._log_dir, file_name) if self.baseFilename is not None: if new_file == self.baseFilename: return self._compress(self.baseFilename) self.baseFilename = new_file
2,413
scripts/nuscenes_devkit/python-sdk/nuscenes_utils/geometry_utils.py
n2pham/3d-bat
335
2168392
# nuScenes dev-kit. Version 0.1 # Code written by <NAME>, 2018. # Licensed under the Creative Commons [see licence.txt] # from __future__ import annotations import numpy as np import math from enum import IntEnum class BoxVisibility(IntEnum): """ Enumerates the various level of box visibility in an image """ ALL = 0 # Requires all corners are inside the image. ANY = 1 # Requires at least one corner visible in the image. NONE = 2 # Requires no corners to be inside, i.e. box can be fully outside the image. IN_FRONT = 3 # Requires all corners to be 1 meter front of the camera AND at least one corner be visible in image. def quaternion_slerp(q0, q1, fraction): """ Does interpolation between two quaternions. This code is modified from https://www.lfd.uci.edu/~gohlke/code/transformations.py.html :param q0: <np.array: 4>. First quaternion. :param q1: <np.array: 4>. Second quaternion. :param fraction: <float>. Interpolation fraction between 0 and 1. :return: <np.array: 4>. Interpolated quaternion. """ _EPS = np.finfo(float).eps * 4.0 if fraction == 0.0: return q0 elif fraction == 1.0: return q1 d = np.dot(q0, q1) if abs(abs(d) - 1.0) < _EPS: return q0 if d < 0.0: # invert rotation d = -d np.negative(q1, q1) angle = math.acos(d) if abs(angle) < _EPS: return q0 is_in = 1.0 / math.sin(angle) q0 *= math.sin((1.0 - fraction) * angle) * is_in q1 *= math.sin(fraction * angle) * is_in q0 += q1 return q0 def view_points(points, view, normalize): """ This is a helper class that maps 3d points to a 2d plane. It can be used to implement both perspective and orthographic projections. It first applies the dot product between the points and the view. By convention, the view should be such that the data is projected onto the first 2 axis. It then optionally applies a normalization along the third dimension. For a p :param points: <np.float32: 3, n> Matrix of points, where each point (x, y, z) is along each column. :param view: <np.float32: n, n>. Defines an arbitrary projection (n <= 4). The projection should be such that the corners are projected onto the first 2 axis. :param normalize: <bool>. Whether to normalize the remaining coordinate (along the third axis). :return: <np.float32: 3, n>. Mapped point. If normalize=False, the third coordinate is the height. """ assert view.shape[0] <= 4 assert view.shape[1] <= 4 assert points.shape[0] == 3 viewpad = np.eye(4) viewpad[:view.shape[0], :view.shape[1]] = view nbr_points = points.shape[1] # Do operation in homogenous coordinates points = np.concatenate((points, np.ones((1, nbr_points)))) points = np.dot(viewpad, points) points = points[:3, :] if normalize: points = points / points[2:3, :].repeat(3, 0).reshape(3, nbr_points) return points def box_in_image(box, intrinsic, imsize, vis_level=BoxVisibility.IN_FRONT): """ Check if a box is visible inside an image without accounting for occlusions. :param box: <Box>. :param intrinsic: <float: 3, 3>. Intrinsic camera matrix. :param imsize: (width <int>, height <int>). :param vis_level: <int>. One of the enumerations of <BoxVisibility>. :return <Bool>. True if visibility condition is satisfied. """ corners_3d = box.corners() corners_img = view_points(corners_3d, intrinsic, normalize=True)[:2, :] visible = np.logical_and(corners_img[0, :] > 0, corners_img[0, :] < imsize[0]) visible = np.logical_and(visible, corners_img[1, :] < imsize[1]) visible = np.logical_and(visible, corners_img[1, :] > 0) visible = np.logical_and(visible, corners_3d[2, :] > 1) in_front = corners_3d[2, :] > 1 # True if a corner is at least 1 meter in front of camera. if vis_level == BoxVisibility.ALL: return all(visible) elif vis_level == BoxVisibility.ANY: return any(visible) elif vis_level == BoxVisibility.NONE: return True elif vis_level == BoxVisibility.IN_FRONT: return any(visible) and all(in_front) else: raise ValueError("vis_level: {} not valid".format(vis_level))
4,295
pcf/test/particle/aws/ecs/test_ecs_cluster.py
pmbrent/Particle-Cloud-Framework
46
2169342
# Copyright 2018 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import moto from unittest import TestCase from pcf.particle.aws.ecs.ecs_cluster import ECSCluster from pcf.core import State, pcf_exceptions class TestECSCluster(TestCase): particle_definition = { "pcf_name": "pcf_ecs_cluster", "flavor": "ecs_cluster", "aws_resource": { "clusterName": "core" } } incorrect_particle_definition = { 'pcf_name': 'gg', "flavor": "ecs_cluster", } @moto.mock_ecs def test_get_status(self): particle = ECSCluster(self.particle_definition) status = particle.get_status() assert status == {"status": "missing"} @moto.mock_ecs def test_apply_states(self): particle = ECSCluster(self.particle_definition) # Test start particle.set_desired_state(State.running) particle.apply() assert particle.get_state() == State.running # Test Update # ECS Cluster has no update function # Test Terminate particle.set_desired_state(State.terminated) particle.apply() assert particle.get_state() == State.terminated @moto.mock_ecs def test_incorrect_definitions(self): # Test missing definitions self.assertRaises(pcf_exceptions.InvalidUniqueKeysException, ECSCluster, self.incorrect_particle_definition) # Test Wrong Type in definition self.incorrect_particle_definition["aws_resource"]={} self.incorrect_particle_definition["aws_resource"]["clusterName"] = 100 particle = ECSCluster(self.incorrect_particle_definition) particle.set_desired_state(State.running) try: particle.apply(sync=False) except Exception as e: is_right_exception = "Parameter validation" in e.args[0] assert is_right_exception
2,432
mapgenerator.py
btminzon/RaspPiZeroGPS
0
2169976
import sys import dblib import simplekml from string import Template in_file = open("/home/pi/gpsProject/RaspPiZeroGPS/maps_template.html", "rt") # Read html template template = in_file.read() in_file.close() def createKml(date): kml = simplekml.Kml() coordinates = dblib.getCoordinates(date) kml.newlinestring(name='Route', description=date, coords=coordinates) filename = 'Route_' + date + '.kml' kml.save(filename) print("File " + filename + " created successfully!") def generateHtml(date): global template lnglat = dblib.getCoordinates(date) output = Template(template).substitute(lnglat=lnglat) out_file = open("/var/www/html/gps/index.html", "wt") out_file.write(output) out_file.close() print("Map created successfully!") if __name__ == '__main__': date = sys.argv[1] if sys.argv[2] == 'kml': createKml(date) elif sys.argv[2] == 'map': generateHtml(date) else: print("Option " + sys.argv[2] + " invalid")
1,014
exercise/venv/lib/python3.7/site-packages/sqreen/instrumentation/strategies/dbapi2.py
assuzzanne/my-sqreen
0
2169667
# -*- coding: utf-8 -*- # Copyright (c) 2016, 2017, 2018, 2019 Sqreen. All rights reserved. # Please refer to our terms for more information: # # https://www.sqreen.io/terms.html # """ DBApi2 strategy and custom connection and cursor classes """ import inspect import logging from ...utils import update_wrapper from ..helpers import Proxy, partial from ..hook_point import hook_point from .base import BaseStrategy LOGGER = logging.getLogger(__name__) METHODS_CACHE = {} def get_methods_and_builtin(object): """ Iterate on an object and returns its attribute that are either methods or builtins """ object_class = object.__class__ result = {} # Check cache first cache_result = METHODS_CACHE.get(object_class, None) # If not cached do the whole check if cache_result is None: for key in dir(object.__class__): # Ignore private or semi-private methods if key.startswith("_"): continue try: value = getattr(object, key) except AttributeError: continue if inspect.ismethod(value) or inspect.isbuiltin(value): result[key] = value # Cache the computation METHODS_CACHE[object_class] = result.keys() # If cached, retrieve only the methods, don't check against that it's a # method or a builtin else: for key in cache_result: try: value = getattr(object, key) except AttributeError: continue result[key] = value return result class CustomCursor(Proxy): """ CustomCursor proxy, it proxy a real Cursor of a DBApi2 module, instrument all methods with prefix ::Cursor. """ def __init__(self, real_cursor, hook_point, module_path): super(CustomCursor, self).__init__(real_cursor) hook_module = "{}::Cursor".format(module_path) members = get_methods_and_builtin(self._obj) for key, method in members.items(): new_hook_point = hook_point(hook_module, key, method) object.__setattr__(self, key, new_hook_point) class CustomConnection(Proxy): """ CustomConnection proxy, it proxy a real Connection of a DBApi2 module, instrument all methods with prefix ::Connection and returns CustomCursor when callin the cursor method. """ def __init__(self, real_connection, hook_point, module_path): self._sqreen_hook_point = hook_point self._sqreen_module_path = module_path super(CustomConnection, self).__init__(real_connection) hook_module = "{}::Connection".format(module_path) members = get_methods_and_builtin(self._obj) for key, method in members.items(): if key == "cursor": # Don't hook on cursor continue new_hook_point = hook_point(hook_module, key, method) object.__setattr__(self, key, new_hook_point) def cursor(self, *args, **kwargs): """ Instantiate a real cursor, proxy it via CustomCursor. """ return CustomCursor( self._obj.cursor(*args, **kwargs), self._sqreen_hook_point, self._sqreen_module_path, ) def custom_connect(hook_point, module_path, original_connect, *args, **kwargs): """ Replacement to the connect function of a DBApi2 module. It will instantiate a connection via the original connect function and proxy it via CustomConnection defined earlier. """ def wrapper(*args, **kwargs): return CustomConnection( original_connect(*args, **kwargs), hook_point, module_path ) wrapper = update_wrapper(wrapper, original_connect) return wrapper class DBApi2Strategy(BaseStrategy): """ Strategy for DBApi2 drivers. It's different from the SetAttrStrategy and requires special care in hook_module and hook_name. DBApi2 tries to hook on 'connect' method of DBApi2 compatible driver. In order to do so, it needs the module name where 'connect' is available. It must be the first part of hook_module, for example in sqlite3, it will be 'sqlite3'. The hook_module could then contains either '::Cursor' for hooking on cursor methods or '::Connection' for hooking on connection methods. The hook_name will then specify which method it will hook on. For example with sqlite3, the tuple ('sqlite3::Connection', 'execute') will reference the execute method on a sqlite3 connection. In the same way, the tuple ('sqlite3::Cursor', 'execute') will reference the execute method on a sqlite3 cursor. It will works the same way for all DBApi2 drivers, even with psycopg2 where cursor class is actually defined as 'psycopg2.extensions.cursor', 'psycopg2::Cursor' will correctly reference all psycopg2 cursor methods. """ def __init__( self, module_path, observation_queue, queue, import_hook, before_hook_point=None, ): super(DBApi2Strategy, self).__init__( observation_queue, queue, import_hook, before_hook_point ) self.module_path = module_path self.hooked = False def hook(self): """ Accept a callback and store it. If it's the first callback for this strategy, actually hook to the endpoint. Once hooked, it will instrument all method on connection and cursor. But if no callback is defined on a specific method, the overhead will be minimal. """ # Check if we already hooked at if not self.hooked: self.import_hook.register_patcher( self.module_path, None, "connect", self.import_hook_callback ) self.hooked = True def import_hook_callback(self, original): """ Monkey-patch the object located at hook_class.hook_name on an already loaded module """ _hook_point = partial(hook_point, self) return custom_connect(_hook_point, self.module_path, original) @staticmethod def get_strategy_id(callback): """ Returns the module part of hook_module (without everything after ::) as identifier for this strategy. Multiple hooks on sqlite3* should be done in this strategy. """ # Check if the klass is part module and part klass name if "::" in callback.hook_module: return callback.hook_module.split("::", 1)[0] else: return callback.hook_module def _restore(self): """ The hooked module will always stay hooked """ pass
6,703
scripts/evaluate_oracle.py
Js-Mim/wagner_vad
1
2169720
# -*- coding: utf-8 -*- __author__ = '<NAME>' __copyright__ = 'Fraunhofer IDMT' """ Oracle evaluation. Using the labels from the stamps of the libretti and compared against the manually annotated ones. Providing upper bound error. """ # imports import numpy as np from sklearn.metrics import precision_recall_fscore_support as prf from tools import helpers def perform_testing(): print('--- Performing Oracle Evaluation ---') testing_data_dict = helpers.csv_to_dict(training=False) keys = list(testing_data_dict.keys()) testing_key = keys[0] # Validate on the second composer print('Testing on: ' + ' '.join(testing_key)) # Get data _, y_annotated, _ = helpers.fetch_data(testing_data_dict, testing_key) # Get data dictionary training_data_dict = helpers.csv_to_dict(training=True) training_keys = sorted(list(training_data_dict.keys()))[2] print('Using predictions from: ' + " ".join(training_keys)) # Get data _, y_noisy, _ = helpers.fetch_data(training_data_dict, training_keys) res = prf(y_annotated, y_noisy, average='binary') cls_error = np.sum(np.abs(y_annotated - y_noisy))/np.shape(y_annotated)[0] * 100. print('Precision: %2f' % res[0]) print('Recall: %2f' % res[1]) print('Fscore: %2f' % res[2]) print('Error: %2f' % cls_error) return None if __name__ == "__main__": np.random.seed(218) # Testing perform_testing() # EOF
1,451
advent_of_code/day16.py
rfrazier716/advent_of_code_2019
0
2169608
import numpy as np from pathlib import Path from math import ceil def get_base_pattern(phase_step): return np.roll(np.repeat(np.array([0, 1, 0, -1]), phase_step + 1), -1) def flawed_ft(ft_input=np.array([])): # generator to return the fft phase output = np.full(ft_input.shape, 0) # output array that will be filled ft_matrix=np.array([ np.tile(get_base_pattern(step), ceil(ft_input.shape[0] / get_base_pattern(step).shape[0]))[:ft_input.shape[0]] for step in range(ft_input.shape[0]) ]) while True: # every time the generator is called return a new signal output by output=np.mod(abs(np.matmul(ft_matrix,ft_input.T)),10) # multiply the input by the ft_matrix operator and keep only the ones digit #output = np.array([ # np.mod(abs(np.sum(np.multiply(ft_input, pattern_array[step]))), 10) # for step in range(ft_input.shape[0])]) # perform the FFT phase calculation by multiplying and summing yield output ft_input = output def fast_fft(fft_input=np.array([])): # generator for the fft which is valid only when you care about the latter half of the data while True: # the fft is the accumulation of the input reversed output = np.flip(np.mod(np.cumsum(np.flip(fft_input)), 10)) yield output fft_input = output def get_input(): puzzle_input_path = Path("puzzle_inputs") / "day16_input.txt" with open(puzzle_input_path) as file: puzzle_input = file.readline() # there's only one line of data # puzzle_input = "02935109699940807407585447034323" # test input puzzle_input = np.array([int(x) for x in puzzle_input.strip()]) # parse the input and convert to an numpy array return puzzle_input def puzzle_part_a(puzzle_input): ft = flawed_ft(puzzle_input) for _ in range(99): next(ft) signal_output = next(ft)[0:8] print("output signal is {}".format(''.join([str(j) for j in signal_output]))) def puzzle_part_b(puzzle_input): n_repetitions = 10000 input_length = puzzle_input.shape[0] * n_repetitions input_offset = int(''.join([str(j) for j in puzzle_input[:7]])) condensed_input_length = input_length - input_offset # the part of input we actually care to look at print('input is {} digits long but answer offset is {} only need to look at last {} digits'.format(input_length, input_offset, input_length - input_offset)) quot, rem = divmod(condensed_input_length, puzzle_input.shape[0]) # print("{},{}".format(quot,rem)) condensed_input = np.concatenate((puzzle_input[-rem:], np.tile(puzzle_input, quot))) # print(condensed_input.shape) fft = fast_fft(condensed_input) for _ in range(99): next(fft) # iterate 99 steps, only care about 100th puzzle_answer = ''.join([str(j) for j in next(fft)[:8]]) print("Answer is {}".format(puzzle_answer)) def puzzle_tests(): test_input_string="12345678" puzzle_input=np.array([int(x) for x in test_input_string]) ft = flawed_ft(puzzle_input) for _ in range(4): print(next(ft)) signal_output = next(ft)[0:8] print("output signal is {}".format(''.join([str(j) for j in signal_output]))) def main(): puzzle_input = get_input() print("\n**Running Test Cases**") puzzle_tests() print("\n**Running Puzzle Part A**") puzzle_part_a(puzzle_input) print("\n**Running Puzzle Part B**") puzzle_part_b(puzzle_input) if __name__ == "__main__": main()
3,711
backend/app/settings/messages.py
dnguyenngoc/film
1
2169152
BAD_REQUEST="Bad Request" UNAUTHORIZED="Unauthorized" FORBIDDEN="Forbidden" NOT_FOUND="Not Found" METHOD_NOT_ALLOWED="Method Not Allowed" NOT_ACCEPTABLE="Not Acceptable" UNPROCESSABLE_ENTITY="Unprocessable Entity" INTERNAL_SERVER_ERROR="Internal Server Error" # response COMPLETE="Complete"
291
plotting_tools/SensorMap.py
cemac/UNRESP_AQSensorTools
0
2167703
# -*- coding: utf-8 -*- """Sensor Plotter This module was developed by CEMAC as part of the UNRESP Project. This script takes data from the AQ Sensors (obtained by getAQMeshData.py) and plots the data. Example: To use:: Attributes: .. CEMAC_AQMesh: https://github.com/cemac/UNRESP_AQSensorTools """ import pandas as pd import glob import matplotlib.pyplot as plt from matplotlib.dates import DateFormatter from pytz import timezone from datetime import datetime import matplotlib.pyplot as plt import cartopy.crs as ccrs from cartopy.io import shapereader from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER from matplotlib.font_manager import FontProperties import cartopy.io.img_tiles as cimgt # Station lat lonts fname = '../aqtools/information.csv' data = pd.read_csv(fname) Stations = data.StationName towns = (' El Panama', ' Rigoberto', ' Pacaya', ' El Crucero', ' La Concepcion', ' Masaya', ' San Marcos', ' Jinotepe') townCoords = ((-86.2058, 11.972), (-86.2021, 11.9617), (-86.3013, 11.9553), (-86.3113, 11.9923), (-86.189772, 11.936161), (-86.096053, 11.973523), (-86.20317, 11.906584), (-86.19993, 11.85017)) volcCoords = (-86.1608, 11.9854) font = FontProperties() font.set_weight('bold') font.set_family('monospace') extent = [-86.7, -86.0, 11.7, 12.2] request = cimgt.OSM() fig = plt.figure(figsize=(9, 13)) ax = plt.axes(projection=request.crs) gl = ax.gridlines(draw_labels=True, alpha=0.2) gl.xlabels_top = gl.ylabels_right = False gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER # ax.set_extent(extent) ax.set_extent(extent) ax.add_image(request, 10, interpolation='spline36') for i, town in enumerate(towns): ax.plot(townCoords[i][0], townCoords[i] [1], 'og', markersize=4, transform=ccrs.Geodetic()) ax.plot(volcCoords[0], volcCoords[1], '^r', markersize=6, transform=ccrs.Geodetic()) plt.show()
1,972
convertmask/utils/auglib/optional/crop.py
wwdok/mask2json
27
2169027
''' lanhuage: python Descripttion: version: beta Author: xiaoshuyui Date: 2020-10-23 15:40:56 LastEditors: xiaoshuyui LastEditTime: 2020-11-10 12:16:57 ''' import cv2 import numpy as np import skimage.util.noise as snoise from convertmask.utils.auglib.optional.generatePolygon import ( generatePolygon, generateRectangle) from skimage import io def rectangleCrop(img: np.ndarray, startPoint: tuple = None, noise=False): imgShape = img.shape mask = generateRectangle(imgShape, startPoint) mask[mask != 255] = 1 mask[mask == 255] = 0 if noise: noisedMask = np.ones(imgShape) * 255 noisedMask = snoise.random_noise(noisedMask, 's&p') * 255 noisedMask = np.array(noisedMask * (1 - mask), dtype=np.uint8) return img * mask + noisedMask return img * mask def polygonCrop(img: np.ndarray, startPoint: tuple = None, convexHull=False, noise=False): imgShape = img.shape mask = generatePolygon(imgShape, startPoint, convexHull) mask[mask != 255] = 1 mask[mask == 255] = 0 if noise: noisedMask = np.ones(imgShape) * 255 if len(imgShape) == 3: mask = cv2.merge([mask, mask, mask]) noisedMask = snoise.random_noise(noisedMask, 's&p') * 255 noisedMask = np.array(noisedMask * (1 - mask), dtype=np.uint8) return img * mask + noisedMask return img * mask def multiRectanleCrop(img: np.ndarray, number: int = 1, noise=False): if isinstance(img,str): img = io.imread(img) imgShape = img.shape mask = np.zeros(imgShape, dtype=np.uint8) for _ in range(number): mask += generateRectangle(imgShape) mask[mask != 255] = 1 mask[mask == 255] = 0 if noise: noisedMask = np.ones(imgShape) * 255 noisedMask = snoise.random_noise(noisedMask, 's&p') * 255 noisedMask = np.array(noisedMask * (1 - mask), dtype=np.uint8) return img * mask + noisedMask return img * mask def multiPolygonCrop(img: np.ndarray, number: int = 1, noise=False, convexHull=False): imgShape = img.shape mask = np.zeros((imgShape[0], imgShape[1]), dtype=np.uint8) for _ in range(number): mask += generatePolygon(imgShape, convexHull=convexHull) mask[mask != 255] = 1 mask[mask == 255] = 0 if noise: noisedMask = np.ones(imgShape) * 255 if len(imgShape) == 3: mask = cv2.merge([mask, mask, mask]) noisedMask = snoise.random_noise(noisedMask, 's&p') * 255 noisedMask = np.array(noisedMask * (1 - mask), dtype=np.uint8) return img * mask + noisedMask return img * mask
2,741
10-DataManipulationWithPandas/04-SubsettingColumns.py
Pegasus-01/Data-manipulation-and-merging-with-pandas
1
2169439
#part1 # Select the individuals column individuals = homelessness['individuals'] individuals.head # Print the head of the result print(individuals.head()) #part2 # Select the state and family_members columns state_fam = homelessness[['state' , 'family_members']] # Print the head of the result print(state_fam.head()) #part3 # Select only the individuals and state columns, in that order ind_state = homelessness[['individuals' , 'state']] # Print the head of the result print(ind_state.head())
521
Discrete2D/torch-ac-composable/torch_ac_composable/algos/compositional_er_ppo_bcq.py
Lifelong-ML/Mendez2022ModularLifelongRL
0
2168654
import torch import torch.nn.functional as F from algos.agent_wrappers import CompositionalLearner import random import copy class CompositionalErPpoBcq(CompositionalLearner): def update_modules(self, task_id, use_pcgrad=False): target_update = 1000 self.bcq_batch_size = 256 bcq_learning_rate = 1e-3 ppo_learning_rate = self.agent.lr self.agent.lr = bcq_learning_rate self.acmodel.set_use_bcq(task_id, True) # from the moment it goes through update modules, use BCQ # since update modules is when the behavior cloning part is trained self.target_acmodel = copy.deepcopy(self.acmodel) self.agent.restart_optimizer() # Normal offline phase accommodation_tasks = self.filter_accommodation_tasks(task_id) self.freeze_unused_modules(task_id) self.txt_logger.info('accommodation tasks: {}'.format(accommodation_tasks)) for k, v in self.replay_buffer.items(): print(k, len(v)) loaders = {task: torch.utils.data.DataLoader( dataset, batch_size=self.bcq_batch_size, shuffle=True, num_workers=0, pin_memory=True) for task, dataset in self.replay_buffer.items() if task in accommodation_tasks } self._naive_epoch(loaders, task_id, target_update) self.txt_logger.info('Accommodation task {}. Trained:'.format(task_id)) for name, param in self.acmodel.named_parameters(): if param.requires_grad and param.grad is not None: self.txt_logger.info('\t' + name) self.agent.lr = ppo_learning_rate self.freeze_unused_modules(task_id, freeze=False) def update_target(self): self.target_acmodel.load_state_dict(self.acmodel.state_dict()) def _naive_epoch(self, loaders, task_id, target_update): iter_num = 0 for i in range(10): # a single epoch loaders_iter = {task: iter(l) for task, l in loaders.items()} done = False while not done: # assume same memory sizes loss = 0. n = 0 for task, l in loaders_iter.items(): try: batch = next(l) loss += self.compute_loss(batch, task, use_bcq=True) n += self.bcq_batch_size except StopIteration: done = True break if not done: loss /= n self.agent.optimizer.zero_grad() loss.backward() self.agent.optimizer.step() if (iter_num + 1) % target_update == 0: self.update_target() iter_num += 1 def compute_loss(self, batch, task_id, use_bcq=False): if not use_bcq: return super().compute_loss(batch, task_id) state, action, reward, next_state, done = batch state = state.to(self.acmodel.device, non_blocking=True) action = action.to(self.acmodel.device, non_blocking=True) reward = reward.to(self.acmodel.device, non_blocking=True) next_state = next_state.to(self.acmodel.device, non_blocking=True) done = done.to(self.acmodel.device, non_blocking=True) # hacky, ugly, to avoid changing code too much... state.image = state next_state.image = next_state with torch.no_grad(): next_q_values, bc_prob, _ = self.acmodel(next_state, task_id, return_bc=True) bc_prob = bc_prob.exp() bc_prob = (bc_prob / bc_prob.max(1, keepdim=True)[0] > self.acmodel.threshold).float() next_action = (bc_prob * next_q_values + (1 - bc_prob) * -1e8).argmax(1, keepdim=True) next_q_state_values, _, _ = self.target_acmodel(next_state, task_id, return_bc=True) next_q_value = next_q_state_values.gather(1, torch.max(next_q_values, 1)[1].unsqueeze(1)).squeeze(1) expected_q_value = reward + self.agent.discount * next_q_value * (1 - done) q_values, bc_prob, bc_original = self.acmodel(state, task_id, return_bc=True) q_value = q_values.gather(1, action.unsqueeze(1)).squeeze(1) loss = 1e-3 * (q_value - expected_q_value).pow(2).sum() loss += F.nll_loss(bc_prob, action, reduction='sum') loss += 1e-2 * bc_original.pow(2).sum() return loss def filter_accommodation_tasks(self, task_id): accommodation_tasks = [] for task in self.observed_tasks: for depth in range(self.depth): if depth == 0 and self.acmodel.static_object_dict[task_id] == self.acmodel.static_object_dict[task]: accommodation_tasks.append(task) break elif depth == 1 and self.acmodel.target_object_dict[task_id] == self.acmodel.target_object_dict[task]: accommodation_tasks.append(task) break elif depth == 2 and self.acmodel.agent_dyn_dict[task_id] == self.acmodel.agent_dyn_dict[task]: accommodation_tasks.append(task) break return accommodation_tasks def freeze_unused_modules(self, task_id, freeze=True): for i in range(self.acmodel.max_modules[0]): if i != self.acmodel.static_object_dict[task_id]: for p in self.acmodel.static[i].parameters(): p.requires_grad = not freeze p.grad = None for i in range(self.acmodel.max_modules[2]): if i != self.acmodel.target_object_dict[task_id]: for p in self.acmodel.target_pre[i].parameters(): p.requires_grad = not freeze p.grad = None for p in self.acmodel.target_post[i].parameters(): p.requires_grad = not freeze p.grad = None for i in range(self.acmodel.max_modules[3]): if i != self.acmodel.agent_dyn_dict[task_id]: for p in self.acmodel.agent_pre[i].parameters(): p.requires_grad = not freeze p.grad = None for p in self.acmodel.actor_layers[i].parameters(): p.requires_grad = not freeze p.grad = None for p in self.acmodel.critic_layers[i].parameters(): p.requires_grad = not freeze p.grad = None
6,900
v1/projects/factories/project.py
buckyroberts/Website-API
64
2169191
import factory from django.utils import timezone from factory.django import DjangoModelFactory from ..models.milestone import Milestone from ..models.project import Project from ...teams.factories.team import ProjectMemberFactory class ProjectFactory(DjangoModelFactory): title = factory.Faker('pystr', max_chars=250) project_lead = factory.SubFactory(ProjectMemberFactory) description = factory.Faker('text') logo = factory.Faker('pystr', max_chars=200) github_url = factory.Faker('pystr', max_chars=200) overview = factory.Faker('text') problem = factory.Faker('text') target_market = factory.Faker('text') benefits = factory.Faker('text') centered_around_tnb = factory.Faker('text') estimated_completion_date = factory.Faker('date_time', tzinfo=timezone.get_current_timezone()) is_featured = factory.Faker('pybool') class Meta: model = Project class MilestoneFactory(DjangoModelFactory): project = factory.SubFactory(ProjectFactory) number = factory.Faker('pyint') description = factory.Faker('text') class Meta: model = Milestone
1,125
solutions/day13/day13.py
FonziePants/adventofcode
0
2169558
#--- Day 13: Shuttle Search --- def read_data(file_path,debug=True): file = open(file_path, "r") line0 = "" line1 = "" idx = 0 for line in file: if not line.rstrip(): continue if idx == 0: line0 = line.rstrip() else: line1 = line.rstrip() idx += 1 file.close() data = (line0,line1) if debug: print(data) return data def calculate_part1(data,debug=False): earliest_departure_time = int(data[0]) raw_bus_list = data[1] # extract the bus list bus_list_str = raw_bus_list.split(",") bus_list = [] for bus_str in bus_list_str: if bus_str == "x": continue bus_list.append(int(bus_str)) time = earliest_departure_time - 1 next_bus = -1 while next_bus < 0: time += 1 for bus in bus_list: if debug: print("Time: {0}\nBus: {1}\nMod: {2}\n".format(time,bus,time % bus)) if time % bus == 0: next_bus = bus break if debug: print("Time: {0}\nBus: {1}\nWait: {2}\n".format(time,next_bus,(time - earliest_departure_time))) answer = bus * (time - earliest_departure_time) print("Part 1: {0}\n\n".format(answer)) return answer def calculate_part2(data,debug=False): # extract the bus list orig_bus_list = data[1].split(",") buses = {} for i in range(len(orig_bus_list)): if orig_bus_list[i] == "x": continue buses[i] = int(orig_bus_list[i]) increment = buses[0] del buses[0] time = 0 while len(buses) > 0: time += increment if debug: print("TIME: {0}".format(time)) buses_copy = buses.copy() for i in buses_copy: if (time + i) % buses_copy[i] == 0: if debug: print("BUS {0} at index {1}".format(buses_copy[i],i)) del buses[i] increment *= buses_copy[i] print("Part 2: {0}\n\n".format(time)) return time def run_program(test=False, debug=False): file_path = "solutions\day13\day13.txt" if test: file_path = "solutions\day13\day13_test.txt" data = read_data(file_path, debug) calculate_part1(data, debug) calculate_part2(data, debug) # run_program(True, False) run_program()
2,414
nsl_image_recog/experiments_cifar10/dynamic_uns/architecture.py
wy1iu/NSL
33
2169785
import tensorflow as tf import numpy as np import itertools class VGG(): def get_conv_filter(self, shape, reg, stddev, reg_mag=1.0): init = tf.random_normal_initializer(stddev=stddev) if reg: regu = tf.contrib.layers.l2_regularizer(self.wd*reg_mag) filt = tf.get_variable('filter', shape, initializer=init, regularizer=regu) else: filt = tf.get_variable('filter', shape, initializer=init) return filt def get_named_conv_filter(self, shape, reg, stddev, name): init = tf.random_normal_initializer(stddev=stddev) if reg: regu = tf.contrib.layers.l2_regularizer(self.wd) filt = tf.get_variable(name, shape, initializer=init, regularizer=regu) else: filt = tf.get_variable(name, shape, initializer=init) return filt def get_bias(self, dim, init_bias, name): with tf.variable_scope(name): init = tf.constant_initializer(init_bias) regu = tf.contrib.layers.l2_regularizer(self.wd) bias = tf.get_variable('bias', dim, initializer=init, regularizer=regu) return bias def batch_norm(self, x, n_out, phase_train): """ Batch normalization on convolutional maps. Ref.: http://stackoverflow.com/questions/33949786/how-could-i-use-batch-normalization-in-tensorflow Args: x: Tensor, 4D BHWD input maps n_out: integer, depth of input maps phase_train: boolean tf.Varialbe, true indicates training phase scope: string, variable scope Return: normed: batch-normalized maps """ with tf.variable_scope('bn'): gamma = self.get_bias(n_out, 1.0, 'gamma') beta = self.get_bias(n_out, 0.0, 'beta') batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name='moments') ema = tf.train.ExponentialMovingAverage(decay=0.999) def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean, batch_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean), tf.identity(batch_var) mean, var = tf.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var))) return tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3) def _max_pool(self, bottom, ksize, name): return tf.nn.max_pool(bottom, ksize=[1, ksize, ksize, 1], strides=[1, 2, 2, 1], padding='SAME', name=name) def _get_input_norm(self, bottom, ksize, stride, pad): eps = 1e-4 shape = [ksize, ksize, bottom.get_shape()[3], 1] filt = tf.ones(shape) input_norm = tf.sqrt(tf.nn.conv2d(bottom*bottom, filt, [1,stride,stride,1], padding=pad)+eps) return input_norm def _conv_layer(self, bottom, ksize, n_filt, is_training, name, stride=1, bn=True, pad='SAME', reg=True, relu=False, verbose=True, init_scale=1.0, reg_mag=1.0, norm=False): with tf.variable_scope(name) as scope: n_input = bottom.get_shape().as_list()[3] shape = [ksize, ksize, n_input, n_filt] if verbose: print("shape of filter %s: %s" % (name, str(shape))) filt = self.get_conv_filter(shape, reg, reg_mag=1.0, stddev=tf.sqrt(2.0/tf.to_float(ksize*ksize*n_input))*init_scale) conv = tf.nn.conv2d(bottom, filt, [1, stride, stride, 1], padding=pad) if norm: xnorm = self._get_input_norm(bottom, ksize, stride, pad) conv /= xnorm if bn: conv = self.batch_norm(conv, (1,1,1,n_filt), is_training) if relu: return tf.nn.relu(conv) else: return conv def _2dcond_conv_layer(self, bottom, mask, ksize, n_filt, is_training, name, stride=1, bn=True, pad='SAME', reg=True, relu=False, verbose=True): assert pad == 'SAME' assert ksize == 3 with tf.variable_scope(name) as scope: n_input = bottom.get_shape().as_list()[3] shape = [1, 1, n_input, n_filt*9] _, h, w, _ = bottom.get_shape().as_list() if verbose: print("shape of filter %s: %s" % (name, str(shape))) mask_shape = mask.get_shape().as_list() filt = self.get_conv_filter(shape, reg, stddev=tf.sqrt(2.0/tf.to_float(3*3*n_input))) conv = tf.nn.conv2d(bottom, filt, [1, stride, stride, 1], padding=pad) conv = tf.reshape(conv, (-1, h, w, 9, n_filt)) conv = tf.pad(conv, [(0,0), (1,1), (1,1), (0,0), (0,0)]) conv_res = tf.constant(0.0) for i, j in itertools.product(range(3), range(3)): conv_res += tf.reduce_sum(mask[:,:,:,:, 3*i + j:3*i + j+1] * conv[:,i:i+h, j:j+w, :], axis=-2) if bn: conv_res = self.batch_norm(conv_res, (1,1,1,n_filt), is_training) if relu: return tf.nn.relu(conv_res) else: return conv_res def _combined_conv(self, bottom, ksize, n_filt, is_training, name, stride=1, bn=True, pad='SAME', reg=True, relu=False, verbose=True): with tf.variable_scope(name) as scope: mask = self._conv_layer(bottom, 3, 128, is_training, 'm1', stride, bn=False, relu=True, reg=reg, reg_mag=10.0, init_scale=0.1, norm=True) mask = self._conv_layer(mask, 3, 81, is_training, 'm2', stride, bn=False, relu=False, reg=reg, reg_mag=10.0, init_scale=0.001) _, h, w, _ = mask.get_shape().as_list() mask = tf.reshape(mask, (-1, h, w, 9, 9)) mask += tf.reshape(tf.eye(9), (1,1,1,9,9)) conv = self._2dcond_conv_layer(bottom, mask, 3, n_filt, is_training, name='conv', stride=1, bn=True, relu=True, reg=reg) return conv def _resnet_unit_v1(self, bottom, ksize, n_filt, is_training, name, stride, reg): with tf.variable_scope(name): n_input = bottom.get_shape().as_list()[3] residual = self._combined_conv(bottom, ksize, n_filt, is_training, 'first', stride, bn=True, relu=True, reg=reg) residual = self._combined_conv(residual, ksize, n_filt, is_training, name='second', stride=1, bn=True, relu=False, reg=reg) if n_input == n_filt: shortcut = bottom else: shortcut = self._conv_layer(bottom, ksize, n_filt, is_training, 'shortcut', stride, bn=True, relu=False, reg=True) return tf.nn.relu(residual + shortcut) # Input should be an rgb image [batch, height, width, 3] def build(self, rgb, n_class, is_training): self.wd = 5e-4 ksize = 3 n_layer = 3 feat = rgb n_out = 32 feat = self._conv_layer(feat, ksize, n_out, is_training, name='root', reg=True, bn=True, relu=True) #32X32 n_out = 32 for i in range(n_layer): feat = self._combined_conv(feat, ksize, n_out, is_training, name='conv1_' + str(i), reg=True, bn=True, relu=True) feat = self._max_pool(feat, 2, 'pool1') # Pool 1, 16x16 n_out = 64 for i in range(n_layer): feat = self._combined_conv(feat, ksize, n_out, is_training, name='conv2_'+str(i), reg=True, bn=True, relu=True) feat = self._max_pool(feat, 2, 'pool2') # Pool 2, 8x8 n_out = 128 for i in range(n_layer): feat = self._combined_conv(feat, ksize, n_out, is_training, name='conv3_'+str(i), reg=True, bn=True, relu=True) feat = self._max_pool(feat, 2, 'pool3') self.score = self._conv_layer(feat, 4, n_class, is_training, "score", bn=False, pad='VALID', reg=True, relu=False) self.pred = tf.squeeze(tf.argmax(self.score, axis=3))
8,286
factorial3.py
PRASAD-DANGARE/PYTHON
1
2169860
# Python Program That Generates Prime Number With The Help Of A Function To Test Prime Or Not ''' Function Name : Function To Test Whether Number Is Prime Or Not. Function Date : 4 Sep 2020 Function Author : <NAME> Input : Integer Output : String ''' def prime(n): """ to check if n is prime or not """ x = 1 # This Will Be 0 If Not Prime for i in range(2, n): if n % i == 0: x = 0 break else: x = 1 return x # Generate Prime Number Series num = int(input('How Many Primes Do You Want ? ')) i = 2 # Start With i Value 2 c = 1 # This Counts The Number Of Primes while True: # If I Is Prime, Display It if prime(i): # If I Is Prime, Display It print(i) c += 1 # Increase Counter i += 1 # Generate Next Number To Test if c > num: # If Count Exceeds num break # Come Out Of While-Loop
967
ui/styles.py
smartdatalake/danae
0
2168754
style_div = {'display':'flex', 'justify-content': 'center'} style_div_none = {'display':'flex', 'justify-content': 'center', 'display': 'none'} style_logo = {'color': '#7100FF', 'font-size': '3em', 'font-family': 'Impact, fantasy;', 'font-weight': 'bold'} style_drop_list = {'display':'flex', 'justify-content': 'center', 'margin-top': '10px', 'margin-bottom': '10px'} style_sdl = {'background-color': '#7100FF', 'color': '#ffffff'} style_sdl_light = {'background-color': '#a569f4', 'color': '#ffffff'} active_color = '#7100FF'
534
kissim/tests/test_utils.py
AJK-dev/kissim
0
2169382
""" Unit and regression test for the kissim.utils. """ import pytest from kissim.utils import set_n_cores @pytest.mark.parametrize( "n_cores", [1000000000000], ) def test_get_n_cores_valueerror(n_cores): """ Test if number of cores are set correctly. """ with pytest.raises(ValueError): set_n_cores(n_cores)
345
sliderule/ipxapi.py
slhowardESR/sliderule-python
0
2169260
# Copyright (c) 2021, University of Washington # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the University of Washington nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF WASHINGTON AND CONTRIBUTORS # “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF WASHINGTON OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from sliderule import icesat2 import logging ############################################################################### # GLOBALS ############################################################################### # create logger logger = logging.getLogger(__name__) ############################################################################### # APIs ############################################################################### # # ICEPYX ATL06 # def atl06p(ipx_region, parm, asset=icesat2.DEFAULT_ASSET): """ Performs ATL06-SR processing in parallel on ATL03 data and returns gridded elevations. The list of granules to be processed is identified by the ipx_region object. See the `atl06p <../api_reference/icesat2.html#atl06p>`_ function for more details. Parameters ---------- ipx_region: Query icepyx region object defining the query of granules to be processed parm: dict parameters used to configure ATL06-SR algorithm processing (see `Parameters <../user_guide/ICESat-2.html#parameters>`_) asset: str data source asset (see `Assets <../user_guide/ICESat-2.html#assets>`_) Returns ------- GeoDataFrame gridded elevations (see `Elevations <../user_guide/ICESat-2.html#elevations>`_) """ try: version = ipx_region.product_version resources = ipx_region.avail_granules(ids=True)[0] except: logger.critical("must supply an icepyx query as region") return icesat2.__emptyframe() # try to get the subsetting region if ipx_region.extent_type in ('bbox','polygon'): parm.update({'poly': to_region(ipx_region)}) return icesat2.atl06p(parm, asset, version=version, resources=resources) # # ICEPYX ATL03 # def atl03sp(ipx_region, parm, asset=icesat2.DEFAULT_ASSET): """ Performs ATL03 subsetting in parallel on ATL03 data and returns photon segment data. See the `atl03sp <../api_reference/icesat2.html#atl03sp>`_ function for more details. Parameters ---------- ipx_region: Query icepyx region object defining the query of granules to be processed parms: dict parameters used to configure ATL03 subsetting (see `Parameters <../user_guide/ICESat-2.html#parameters>`_) asset: str data source asset (see `Assets <../user_guide/ICESat-2.html#assets>`_) Returns ------- list ATL03 segments (see `Photon Segments <../user_guide/ICESat-2.html#photon-segments>`_) """ try: version = ipx_region.product_version resources = ipx_region.avail_granules(ids=True)[0] except: logger.critical("must supply an icepyx query as region") return icesat2.__emptyframe() # try to get the subsetting region if ipx_region.extent_type in ('bbox','polygon'): parm.update({'poly': to_region(ipx_region)}) return icesat2.atl03sp(parm, asset, version=version, resources=resources) def to_region(ipx_region): """ Extract subsetting extents from an icepyx region Parameters ---------- ipx_region: Query icepyx region object defining the query of granules to be processed Returns ------- list polygon definining region of interest (can be passed into `icesat2` api functions) """ if (ipx_region.extent_type == 'bbox'): bbox = ipx_region.spatial_extent[1] poly = [dict(lon=bbox[0], lat=bbox[1]), dict(lon=bbox[2], lat=bbox[1]), dict(lon=bbox[2], lat=bbox[3]), dict(lon=bbox[0], lat=bbox[3]), dict(lon=bbox[0], lat=bbox[1])] elif (ipx_region.extent_type == 'polygon'): poly = [dict(lon=ln,lat=lt) for ln,lt in zip(*ipx_region.spatial_extent[1])] return poly
5,496
src/inventory/entities/article.py
eshatro/warehouse
0
2169684
class Article: def __init__( self, id: int, name: str = None, available_stock: int = 0, quantity: int = 0 ): self.id = id self.name = name self.available_stock = available_stock self.quantity = quantity def __str__(self): return f"{str(self.id) + '_' + self.name + ' ' + str(self.available_stock)}"
360
data_registry/migrations/0033_collection_source_url.py
open-contracting/data-registry
0
2169121
# Generated by Django 3.2.4 on 2021-08-30 17:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('data_registry', '0032_auto_20210827_2224'), ] operations = [ migrations.AddField( model_name='collection', name='source_url', field=models.TextField(blank=True, help_text='The URL of the publication.', verbose_name='source URL'), ), ]
463
guillotina_volto/content/file.py
enfold/guillotina-volto
1
2169866
# -*- encoding: utf-8 -*- from guillotina import configure from guillotina.content import Item from guillotina_volto.interfaces import IFile @configure.contenttype( type_name="File", schema=IFile, behaviors=[ "guillotina.behaviors.dublincore.IDublinCore", "guillotina.contrib.workflows.interfaces.IWorkflowBehavior", "guillotina_volto.interfaces.base.ICMSBehavior", ], allowed_types=[], # dynamically calculated ) class File(Item): pass
488
esupa/migrations/0006_partial_payment.py
Abando/esupa
0
2168290
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('esupa', '0005_auto_20150721_0132'), ] operations = [ migrations.AddField( model_name='event', name='partial_payment_open', field=models.BooleanField(default=False), ), migrations.AddField( model_name='event', name='partial_payment_toggle', field=models.DateTimeField(null=True, blank=True), ), migrations.AlterField( model_name='subscription', name='state', field=models.SmallIntegerField(choices=[(0, 'New'), (11, 'Filled'), (33, 'Queued for pay'), (55, 'Expecting payment'), (66, 'Verifying payment'), (77, 'Partially paid'), (88, 'Unpaid staff'), (99, 'Confirmed'), (-1, 'Checking data'), (-9, 'Rejected')], default=0), ), ]
976
main.py
Hanuu/silver_retriever
0
2169876
from websim_login import log_in_vrc from write_expression import write_fast_expression if __name__ == "__main__": LOGIN_INFO = { 'EmailAddress': '<EMAIL>', 'Password': '', } log_in_vrc(LOGIN_INFO) write_fast_expression("I am the destructor")
275
__init__.py
aneeshnaik/mw_poisson
0
2169852
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ mw_poisson is a Poisson solver for axisymmetric galactic potentials. The main object is the MilkyWay class, which sets up a galactic density profile, solves for the potential, then provides various functions that can interpolate the density, potential, and acceleration at any given point. See README for further details about mw_poisson and usage examples. Created: July 2020 Author: <NAME> """ from .milkyway import MilkyWay __all__ = ['MilkyWay']
505
figures/cluster.py
ChrisBeaumont/brut
6
2167039
import json import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.patches import Rectangle, Ellipse matplotlib.rcParams['axes.grid'] = False matplotlib.rcParams['axes.facecolor'] = '#ffffff' from bubbly.cluster import merge from bubbly.field import get_field from bubbly.util import scale def plot_stamps(stamps, **kwargs): kwargs.setdefault('facecolor', 'none') kwargs.setdefault('edgecolor', 'b') label = kwargs.pop('label', None) kw2 = kwargs.copy() kw2['edgecolor'] = 'k' kw2['linewidth'] = 2.0 ax = plt.gca() for s in stamps: s[2] += np.random.normal(0, .003) s[1] += np.random.normal(0, .003) r = Ellipse((s[1], s[2]), width = 2 * s[-1], height = 2 * s[-1], **kwargs) r2 = Ellipse((s[1], s[2]), width = 2 * s[-1], height = 2 * s[-1], **kw2) ax.add_patch(r2) ax.add_patch(r) if label is not None: plt.plot([np.nan], [np.nan], '-', color = kwargs['edgecolor'], label=label) def main(): np.random.seed(42) data = json.load(open('../models/l035_scores.json')) stamps = np.array(data['stamps']) scores = np.array(data['scores']) l = stamps[:, 1] b = stamps[:, 2] good = (scores > .1) & (l < 34.8) & (l > 34.6) & (b > -.4) & (b < -0.2) assert good.sum() > 0 stamps = stamps[good] scores = scores[good] merged, ms = merge(stamps, scores) f = get_field(35) g = scale(f.i4, limits=[70, 99]) r = scale(f.mips, limits=[70, 99]) b = r * 0 im = np.dstack((r, g, b)) plt.figure(dpi=200, tight_layout=True) plt.imshow(im, extent=[36, 34, -1, 1], interpolation="bicubic") plot_stamps(stamps, linewidth=1, edgecolor='white', label='Raw', alpha=1) plot_stamps(merged, edgecolor='red', alpha=1, linewidth=2, label='Merged') plt.xlim(34.795, 34.695) plt.ylim(-.365, -.265) plt.xlabel("$\ell$ ($^\circ$)") plt.ylabel("b ($^\circ$)") leg = plt.legend(loc='upper left', frameon=False) for text in leg.get_texts(): text.set_color('white') plt.savefig('cluster.eps') if __name__ == "__main__": main()
2,244
lenet.py
loveisatouch/Backbone
1
2169808
import torch from torchvision import models from torch import nn class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(in_features=16*5*5, out_features=120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = nn.ReLU(x) x = self.pool1(x) x = self.conv2(x) x = nn.ReLU(x) x = self.pool2(x) x = x.view(x.shape[0], -1) x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x model = LeNet() print(model)
904
TaylorNet.py
dalessioluca/TaylorNet
0
2167969
import torch import torch.nn as nn import math class TaylorNet(nn.Module): r"""Applies a non-linear multiplicative transformation to the incoming data, in order to generate output features that can be quadratic and linear in the input features: :math:`y = (x W_2^T) * (x W_1^T) + x W_1^T + b` Note that if output size = input size, then W_2 is not used, and the transformation becomes: :math:`y = x * (x W^T) + x W^T + b` Args: in_features: size of each input sample out_features: size of each output sample bias: If set to False, the layer will not learn an additive bias. Default: ``True`` Shape: - Input: :math:`(N, *, in\_features)` where :math:`*` means any number of additional dimensions - Output: :math:`(N, *, out\_features)` where :math:`*` means any number of additional dimensions Attributes: weight_1: the learnable weights of the module of shape `(out_features x in_features)` weight_2: the learnable weights of the module of shape `(out_features x in_features)` If out_features = in_features, there is no weight_2 matrix bias: the learnable bias of the module of shape `(in_features)` Examples:: >>> m = nn.TaylorNet(5) >>> input = torch.randn(128, 5) >>> output = m(input) >>> print(output.size()) """ def __init__(self, in_features, out_features=None, bias=True): super(TaylorNet, self).__init__() if out_features is None: out_features = in_features self.in_features = in_features self.out_features = out_features self.weight1 = nn.Parameter(torch.Tensor(out_features, in_features)) if (in_features != out_features): self.weight2 = nn.Parameter(torch.Tensor(out_features, in_features)) else: self.weight2 = None if bias: self.bias = nn.Parameter(torch.Tensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.weight1.size(1)) nn.init.xavier_normal_(self.weight1) if self.weight2 is not None: nn.init.xavier_normal_(self.weight2) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input): Wx = input.matmul(self.weight1.t()) x = input if self.weight2 is not None: x = input.matmul(self.weight2.t()) output = x.mul(Wx) + Wx if self.bias is not None: output += self.bias return output def extra_repr(self): return 'in_features={}, out_features={}, bias={}'.format( self.in_features, self.out_features, self.bias is not None )
2,900
app/rpg_queries.py
ssbyrne89/DS-Unit-3-Sprint-2-SQL-and-Databases
0
2168329
import os import sqlite3 # construct a path to wherever your database exists # DB_FILEPATH = "chinook.db" DB_FILEPATH = os.path.join(os.path.dirname(__file__), "..", "module1-introduction-to-sql", "rpg_db.sqlite3") connection = sqlite3.connect(DB_FILEPATH) connection.row_factory = sqlite3.Row # above code allow us to reference rows as dictionaries cursor = connection.cursor() cursor.execute('''SELECT count(distinct name) as NumberOfCharacters FROM charactercreator_character''') print(dict(cursor.fetchall()[0])) cursor.execute(""" SELECT( SELECT COUNT(charactercreator_cleric.character_ptr_id) FROM charactercreator_cleric) as ClericCount, (SELECT COUNT(charactercreator_mage.character_ptr_id) FROM charactercreator_mage) as MageCount, (SELECT COUNT(charactercreator_fighter.character_ptr_id) FROM charactercreator_fighter) as FighterCount, (SELECT COUNT(charactercreator_thief.character_ptr_id) FROM charactercreator_thief) as ThiefCount; """) print(dict(cursor.fetchall()[0])) cursor.execute(""" SELECT COUNT(item_id) AS ItemCount FROM armory_item; """) print(dict(cursor.fetchall()[0])) cursor.execute(""" SELECT COUNT(item_ptr_id) AS NumberOfWeapons FROM armory_weapon; """) print(dict(cursor.fetchall()[0])) cursor.execute(""" SELECT COUNT(item_id) - COUNT(item_ptr_id) AS nonweapons FROM armory_item LEFT JOIN armory_weapon ON armory_weapon.item_ptr_id = armory_item.item_id; """) print(dict(cursor.fetchall()[0])) cursor.execute(""" SELECT charactercreator_character_inventory.character_id, COUNT(charactercreator_character_inventory.item_id) AS item_count FROM charactercreator_character_inventory JOIN armory_item ON charactercreator_character_inventory.item_id = armory_item.item_id GROUP BY character_id LIMIT 20; """) print(dict(cursor.fetchall()[0:20])) cursor.execute(""" SELECT charactercreator_character_inventory.character_id, COUNT(charactercreator_character_inventory.item_id) AS item_count FROM charactercreator_character_inventory JOIN armory_weapon ON charactercreator_character_inventory.item_id = armory_weapon.item_ptr_id GROUP BY character_id LIMIT 20; """) print(dict(cursor.fetchall()[0:20])) cursor.execute(""" SELECT AVG(count) AS inventory_avg_items FROM (SELECT COUNT(charactercreator_character_inventory.item_id) AS count FROM charactercreator_character_inventory GROUP BY charactercreator_character_inventory.character_id) """) print(dict(cursor.fetchall()[0])) connection.close()
3,292
split.py
rimaulana/gsirs-routeviews-with-whois
0
2168453
import csv import os import sys rootFolder = os.path.abspath(os.path.dirname(__file__)) MaxRecordPerFile = 4 with open(sys.argv[1]) as source: reader = csv.DictReader(source) writeCounter= 0 fileCounter = 0 for line in reader: if writeCounter == 0: fileName = '{root}/{folder}/{name}.{frmt}'.format(root=rootFolder,folder="pool",name=str(fileCounter),frmt="csv") writer = open(fileName,"w") # Writing header writer.write("\"ORIGIN\",\"DATE\",\"ROUTE\",\"LENGTH\"\n") writer.write('{0},{1},{2},{3}\n'.format(line['ORIGIN'],line['DATE'],line['ROUTE'],line['LENGTH'])) elif writeCounter == (MaxRecordPerFile-1): writer.write('{0},{1},{2},{3}\n'.format(line['ORIGIN'],line['DATE'],line['ROUTE'],line['LENGTH'])) writer.close() fileCounter += 1 writeCounter = -1 else: writer.write('{0},{1},{2},{3}\n'.format(line['ORIGIN'],line['DATE'],line['ROUTE'],line['LENGTH'])) writeCounter += 1
1,050
examples/ships/ships.py
BruchesLena/segmentation_training_pipeline
0
2169182
import pandas as pd from segmentation_pipeline.impl.datasets import PredictionItem,ConstrainedDirectory import os from segmentation_pipeline.impl import rle import imageio from segmentation_pipeline import segmentation import keras.applications as app from keras.optimizers import Adam class SegmentationRLE: def __init__(self,path,imgPath): self.data=pd.read_csv(path); self.values=self.data.values; self.imgPath=imgPath; self.ddd=self.data.groupby('ImageId'); self.masks=self.ddd['ImageId']; self.ids=list(self.ddd.groups.keys()) pass def __getitem__(self, item): pixels=self.ddd.get_group(self.ids[item])["EncodedPixels"] return PredictionItem(self.ids[item] + str(), imageio.imread(os.path.join(self.imgPath,self.ids[item])), rle.masks_as_image(pixels) > 0.5) def get_masks(self,id): pixels = self.ddd.get_group(id)["EncodedPixels"] return rle.masks_as_images(pixels) def isPositive(self, item): pixels=self.ddd.get_group(self.ids[item])["EncodedPixels"] for mask in pixels: if isinstance(mask, str): return True; return False def __len__(self): return len(self.masks) from skimage.morphology import binary_opening, disk import skimage import numpy as np import keras import matplotlib.pyplot as plt def main(): ds = SegmentationRLE("F:/all/train_ship_segmentations.csv", "D:/train_ships/train") #segmentation.execute(ds, "ship_config.yaml") # cfg=segmentation.parse("fpn/ship_config.yaml") # cfg.fit(ds) # cfg = segmentation.parse("linknet/ship_config.yaml") # cfg.fit(ds) # cfg = segmentation.parse("psp/ship_config.yaml") # cfg.fit(ds) ds0=ds cfg = segmentation.parse("fpn_full/ship_config.yaml") #cfg.predict_to_directory(ConstrainedDirectory("F:/all/test_v2",["00dc34840.jpg"]),"F:/all/test_v2_seg",fold=2,stage=2) # exit(0) # fig = plt.figure() # ax = fig.add_subplot(121) # ax.imshow(ds0[2].x) # ax1 = fig.add_subplot(255) # ax1.imshow(ds[18].x) # # ax2 = fig.add_subplot(256) # ax2.imshow(ds[19].x) # # ax3 = fig.add_subplot(254) # ax3.imshow(ds[20].x) # # ax4 = fig.add_subplot(255) # ax4.imshow(ds[21].x) # # ax5 = fig.add_subplot(256) # ax5.imshow(ds[22].x) # # ax5 = fig.add_subplot(257) # ax5.imshow(ds[23].x) # # plt.show() #cfg.fit(ds,foldsToExecute=[2],start_from_stage=2) cfg0 = segmentation.parse("./fpn-resnext2/ship_config.yaml") mdl=cfg0.createAndCompileClassifier() mdl.load_weights("./fpn-resnext2/classify_weights/best-2.0.weights") exists={} goodC=0; for v in cfg0.predict_on_directory_with_model(mdl,"F:/all/test_v2",ttflips=True): for i in range(0,len(v.data)): if (v.predictions[i]>0.5): goodC=goodC+1; exists[v.data[i]]=v.predictions[i] print(goodC) #cfg0.fit_classifier(ds,2,mdl,12,stage=22) #print("A") num=0; #cfg.predict_to_directory("F:/all/test_v2","F:/all/test_v2_seg",batchSize=16) def onPredict(id, img, d): exists=d["exists"] out_pred_rows = d["pred"] if exists[id]<0.5: out_pred_rows += [{'ImageId': id, 'EncodedPixels': None}] return good = d["good"] num = d["num"] cur_seg = binary_opening(img.arr > 0.5, np.expand_dims(disk(2), -1)) cur_rles = rle.multi_rle_encode(cur_seg) if len(cur_rles) > 0: good = good + 1; for c_rle in cur_rles: out_pred_rows += [{'ImageId': id, 'EncodedPixels': c_rle}] else: out_pred_rows += [{'ImageId': id, 'EncodedPixels': None}] num = num + 1; d["good"] = good d["num"] = num pass out_pred_rows=[] toPredict=[] for id in exists: if exists[id]<0.5: out_pred_rows += [{'ImageId': id, 'EncodedPixels': None}] else: toPredict.append(id) d = {"pred": out_pred_rows, "good": 0, "num": 0,"exists":exists} cfg.predict_in_directory(ConstrainedDirectory("F:/all/test_v2",toPredict),2,1,onPredict,d,ttflips=True) submission_df = pd.DataFrame(out_pred_rows)[['ImageId', 'EncodedPixels']] submission_df.to_csv('mySubmission.csv', index=False) print("Good:"+str(d["good"])) print("Num:" + str(d["num"])) if __name__ == '__main__': main()
4,521
tests/test_openvpn.py
N7SALab/HEV
0
2169980
import json from modules.openvpn import Openvpn from core.helpers.config import Config CONF = Config() def test_openpvn(): assert Openvpn.build_client_configs_test( CONF.MINIO_HOST, CONF.MINIO_ACCESS_KEY, CONF.MINIO_SECRET_KEY, CONF.OPENVPN) is True
290
api/serializers/suggestion_log_serializer.py
invinst/CPDB
16
2169461
from django_extensions.db.fields.json import JSONField from rest_framework import serializers from search.models import SuggestionLog class SuggestionLogSerializer(serializers.HyperlinkedModelSerializer): serializer_field_mapping = serializers.HyperlinkedModelSerializer.serializer_field_mapping serializer_field_mapping[JSONField] = serializers.DictField class Meta: model = SuggestionLog fields = ( 'search_query', 'num_suggestions', 'created_at', )
528
source/create_levels.py
pvcraven/two_worlds
3
2170021
import arcade import random import math from constants import * from level import Level from level_1 import get_level_1_array from level_1 import add_level_1_creatures from level_2 import get_level_2_array from level_2 import add_level_2_creatures from level_3 import get_level_3_array from level_3 import add_level_3_creatures from stairs import Stairs def create_stairs(level_list): for level in level_list: level.stair_list = arcade.SpriteList() # Place first stairs from 0 to 1 placed = False while not placed: row = random.randrange(GRID_HEIGHT) column = random.randrange(GRID_WIDTH) value_0 = level_list[0].grid[row][column] value_1 = level_list[1].grid[row][column] if value_0 == 0 and value_1 == 0: placed = True stairs = Stairs("images/stairs_down.png", WALL_SPRITE_SCALING) stairs.center_x = column * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.center_y = row * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.tag = "Down" level_list[0].stair_list.append(stairs) stairs = Stairs("images/stairs_up.png", WALL_SPRITE_SCALING) stairs.center_x = column * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.center_y = row * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.tag = "Up" level_list[1].stair_list.append(stairs) # Place the second stairs from 0 to 1, making sure they aren't too close last_x = column last_y = row placed = False while not placed: row = random.randrange(GRID_HEIGHT) column = random.randrange(GRID_WIDTH) value_0 = level_list[0].grid[row][column] value_1 = level_list[1].grid[row][column] distance = math.sqrt((last_x - column) ** 2 + (last_y - row) ** 2) print(distance) if value_0 == 0 and value_1 == 0 and distance > 15: placed = True stairs = Stairs("images/stairs_down.png", WALL_SPRITE_SCALING) stairs.center_x = column * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.center_y = row * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.tag = "Down" level_list[0].stair_list.append(stairs) stairs = Stairs("images/stairs_up.png", WALL_SPRITE_SCALING) stairs.center_x = column * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.center_y = row * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.tag = "Up" level_list[1].stair_list.append(stairs) # Place the stairs from 1 to 2 placed = False while not placed: row = random.randrange(GRID_HEIGHT) column = random.randrange(GRID_WIDTH) value_0 = level_list[1].grid[row][column] value_1 = level_list[2].grid[row][column] if value_0 == 0 and value_1 == 0: placed = True stairs = Stairs("images/stairs_down.png", WALL_SPRITE_SCALING) stairs.center_x = column * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.center_y = row * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.tag = "Down" level_list[1].stair_list.append(stairs) stairs = Stairs("images/stairs_up.png", WALL_SPRITE_SCALING) stairs.center_x = column * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.center_y = row * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.tag = "Up" level_list[2].stair_list.append(stairs) # Place the second stairs from 1 to 2, making sure they aren't too close last_x = column last_y = row placed = False while not placed: row = random.randrange(GRID_HEIGHT) column = random.randrange(GRID_WIDTH) value_0 = level_list[1].grid[row][column] value_1 = level_list[2].grid[row][column] distance = math.sqrt((last_x - column) ** 2 + (last_y - row) ** 2) if value_0 == 0 and value_1 == 0 and distance > 15: placed = True stairs = Stairs("images/stairs_down.png", WALL_SPRITE_SCALING) stairs.center_x = column * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.center_y = row * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.tag = "Down" level_list[1].stair_list.append(stairs) stairs = Stairs("images/stairs_up.png", WALL_SPRITE_SCALING) stairs.center_x = column * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.center_y = row * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 stairs.tag = "Up" level_list[2].stair_list.append(stairs) def create_walls(level_list): for index, level in enumerate(level_list): i = index+1 wall_filename = f"images/wall-{i:02}.png" level.wall_list = arcade.SpriteList() for row in range(GRID_HEIGHT): column = 0 while column < GRID_WIDTH: while column < GRID_WIDTH and level.grid[row][column] == 0: column += 1 start_column = column while column < GRID_WIDTH and level.grid[row][column] == 1: column += 1 end_column = column - 1 column_count = end_column - start_column + 1 column_mid = (start_column + end_column) / 2 wall = arcade.Sprite(wall_filename, WALL_SPRITE_SCALING, repeat_count_x=column_count) wall.center_x = column_mid * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 wall.center_y = row * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 wall.width = WALL_SPRITE_SIZE * column_count level.wall_list.append(wall) def create_levels(player_sprite): level_list = [] level = Level() level.grid = get_level_1_array() level_list.append(level) level.background_color = arcade.color.BISTRE level = Level() level.grid = get_level_2_array() level_list.append(level) level.background_color = arcade.color.BLACK_OLIVE level = Level() level.grid = get_level_3_array() level_list.append(level) level.background_color = arcade.color.EERIE_BLACK create_walls(level_list) add_level_1_creatures(level_list[0]) add_level_2_creatures(level_list[1]) add_level_3_creatures(level_list[2], player_sprite) create_stairs(level_list) return level_list
6,503
aoc2018/day14.py
zoeimogen/AoC2018
1
2170004
#!/usr/bin/python3 '''Advent of Code 2018 Day 14 solution''' from typing import Tuple def runpart1(improve: int) -> str: '''Solve part one''' recipelist = [3, 7] elfA = 0 elfB = 1 while len(recipelist) < (improve + 10): newrecipes = str(recipelist[elfA] + recipelist[elfB]) recipelist += [int(r) for r in newrecipes] elfA = (elfA + 1 + recipelist[elfA]) % len(recipelist) elfB = (elfB + 1 + recipelist[elfB]) % len(recipelist) return ''.join([str(r) for r in recipelist[improve:improve+10]]) def runpart2(finds: str) -> int: '''Solve part two''' recipelist = '37' elfA = 0 elfB = 1 while True: recipelist += str(int(recipelist[elfA]) + int(recipelist[elfB])) elfA = (elfA + 1 + int(recipelist[elfA])) % len(recipelist) elfB = (elfB + 1 + int(recipelist[elfB])) % len(recipelist) if recipelist[-10:].find(finds) > -1: return recipelist.find(finds) def run() -> Tuple[str, int]: '''Main''' return(runpart1(635041), runpart2('635041')) if __name__ == '__main__': print(run())
1,109
apex/tests/L0/run_fused_layer_norm/test_fused_layer_norm.py
peterlazzarino/jukebox
16
2169986
import unittest import os import random import torch import apex class TestFusedLayerNorm(unittest.TestCase): def setUp(self): self.module = apex.normalization.FusedLayerNorm(normalized_shape=[32, 64], elementwise_affine=False) self.input_ = torch.randn(16, 32, 64) torch.cuda.manual_seed(42) def forward_cpu(self, input_): self.module.cpu() return self.module(input_.cpu()) def forward_cuda(self, input_): self.module.cuda() return self.module(input_.cuda()) def test_forward_cuda(self): out_ = self.forward_cuda(self.input_) assert out_.is_cuda == True def test_forward_cpu(self): out_ = self.forward_cpu(self.input_) assert out_.is_cuda == False def test_same_output(self): out_cpu = self.forward_cpu(self.input_) out_cuda = self.forward_cuda(self.input_) torch.testing.assert_allclose(out_cpu, out_cuda.cpu()) class TestFusedLayerNormElemWise(TestFusedLayerNorm): def setUp(self): self.module = apex.normalization.FusedLayerNorm(normalized_shape=[32, 64], elementwise_affine=True) self.input_ = torch.randn(16, 32, 64) torch.cuda.manual_seed(42)
1,279
Mi_primer_Script.py
EsdeathParca/Gold
0
2168094
print(' Hola Mundo, este es un texto escrito con lenguaje python.') print('\n') print(' Existió una vez un hombre que sin saber como se llamaba y sin saber a donde') print(' pertenecía siempre se preguntó por que él se encontraba donde se encontraba,') print(' nada tenía sentido para él, sin embargo decidió caminar hasta que los piés se,') print(' volviesen de fuego y las manos se le erocionaran a causa del viento.') #A partir de aquí inicio con una práctica para conbinar distintos tipos de valores que puede incluir la función print. #Agrego valores a funciones definidas para realizar una operación de suma o resta, obtengo un resultado y convino.. #ese resultado en otra ecuación a partir del valor anterior. print('\n -----------------------------Sueldo mensual-------------------------------') print('Depositado: $68.0000 ars\nC.Al: $10.000 ars') a = 68000 b = 10000 total = a - b print('Saldo:total','ars') print('Compra: "Colchon" - Valor de: 12.000 ars') c = total d = 12000 substraction = c - d print( 'Saldo:',substraction,'ars') ################################### # /\ /\ # # ||'''''''''|| # # | o o || // # # | ♥ || // # # \ ww || // # # \ ____// ********** # # ****************** # # ** ** ** ** # # * * ** ** # # # ###################################
1,481
tests/aiohttp/test_query_params.py
TimPansino/strawberry
0
2169218
async def test_no_query(aiohttp_app_client): params = {"variables": '{"name": "James"}'} response = await aiohttp_app_client.get("/graphql", params=params) assert response.status == 400 async def test_get_with_query_params(aiohttp_app_client): query = { "query": """ query { hello } """ } response = await aiohttp_app_client.get("/graphql", params=query) data = await response.json() assert response.status == 200 assert data["data"]["hello"] == "Hello world" async def test_can_pass_variables_with_query_params(aiohttp_app_client): query = { "query": "query Hello($name: String!) { hello(name: $name) }", "variables": '{"name": "James"}', } response = await aiohttp_app_client.get("/graphql", params=query) data = await response.json() assert response.status == 200 assert data["data"]["hello"] == "Hello James" async def test_post_fails_with_query_params(aiohttp_app_client): query = { "query": """ query { hello } """ } response = await aiohttp_app_client.post("/graphql", params=query) assert response.status == 400 async def test_does_not_allow_mutation(aiohttp_app_client): query = { "query": """ mutation { hello } """ } response = await aiohttp_app_client.get("/graphql", params=query) assert response.status == 400 data = await response.text() assert data == "400: mutations are not allowed when using GET" async def test_fails_if_allow_queries_via_get_false(aiohttp_app_client_no_get): query = { "query": """ query { hello } """ } response = await aiohttp_app_client_no_get.get("/graphql", params=query) assert response.status == 400 data = await response.text() assert data == "400: queries are not allowed when using GET"
2,016
measure_cache_effect.py
ianozsvald/explore_cpu_cache_effect
1
2170014
import cPickle import argparse import numpy as np try: import matplotlib.pyplot as plt except ImportError: pass # Intention: # Measure cache speed on a CPU using a single numpy array with some in-place # operations. We measure the cache speed by increasing the size of the array, # starting small enough to fit entirely in the cache and growing until the # majority of the array must stay in RAM # Usage: # python measure_cache_effect.py --help # show help # python measure_cache_effect.py --time <filename> # make recordings, write to # filename # python measure_cache_effect.py --graph <filename1> [<filnameN>...] # read # the record timings and plot on a graph # --graphline # switch from boxplot (default) to labelled line output (for # comparing multiple runs) def get_cpu_info(): """Attempt to make sensible titles from processor info""" cpu_model = "Unknown CPU model" #cpu_cache_size = "Unknown cache size" cpu_cache_bytes = 1 # unknown indicated by 1 byte cpu_cache_alignment = "Unknown cache alignment" try: f = open("/proc/cpuinfo") lines = f.readlines() # convert lines like the following from /proc/cpuinfo into strings # 'model name\t: Intel(R) Core(TM) i7-2720QM CPU @ 2.20GHz\n', # 'cache size\t: 6144 KB\n', # 'cache_alignment\t: 64\n', cpu_model = [line for line in lines if 'model name' in line][0].strip().split(':')[1].strip() cpu_cache_size = [line for line in lines if 'cache size' in line][0].strip().split(':')[1].strip() if ' KB' in cpu_cache_size: # assuming it looks like '6144 KB' cpu_cache_bytes = int(cpu_cache_size.split()[0]) * 1000 cpu_cache_alignment = [line for line in lines if 'cache_alignment' in line][0].strip().split(':')[1].strip() except IOError: pass return cpu_model, cpu_cache_bytes, cpu_cache_size, cpu_cache_alignment # L2 cache but it looks odd? # Core i7-2720QM #max_length = 64000 #increment_by = 4000 #nbr_repeated_operations = 20000 #box_width = 25000 # good for L3 cache # http://en.wikipedia.org/wiki/List_of_Intel_Core_i7_microprocessors#.22Sandy_Bridge_.28quad-core.29.22_.2832_nm.29 # Core i7-2720QM, 4*256KB L2, 6MB L3 max_length = 1.8e6 max_length = 268000 # very short plot increment_by = 50000 nbr_repeated_operations = 100 box_width = 200000 # Core 2 Duo P7350 3MB cache # Macbook Core 2 Duo with L2 3MB cache #max_length = 600000 #increment_by = 20000 #box_width = 100000 # labels for this laptop cpu_model, cpu_cache_bytes, cpu_cache_size, cpu_cache_alignment = get_cpu_info() print cpu_model, cpu_cache_bytes, cpu_cache_alignment #laptop_label = "Core i7-2720QM, 4*256KB L2, 6MB L3" # graph title #cache_label = "6MB L3 cache" # text of red line marker for the graph laptop_label = cpu_model cache_location = cpu_cache_bytes # 6e6 # position of cache_label on the graph cache_label = cpu_cache_size trials = 30 starting_length = increment_by array_length = starting_length dtype = np.int_ OUT_FILE_NAME = 'pi_numpy_benefitsvectorization.pickle' parser = argparse.ArgumentParser(description='Project description') parser.add_argument('--time', type=str, help="Time cache behaviour, write output to <filename>") parser.add_argument('--graph', nargs="*", type=str, help="Graph cache behaviour, read output from <filename>") parser.add_argument('--graphline', action="store_true", default=False, help='By default plot uses boxplot, with graphline it plots a single line') args = parser.parse_args() print "Args:", args if args.time: nbytes = [] all_deltas = [] while array_length < max_length: deltas = [] a = np.ones(array_length, dtype=dtype) print "array_length {}, nbytes {}, ".format(array_length, a.nbytes) nbytes.append(a.nbytes) for t in xrange(trials): a = np.ones(array_length, dtype=dtype) t1 = time.time() # loop on some basic operations, in-place # a number of times so we have something to measure for inner_loop in xrange(nbr_repeated_operations): a *= a a += 1 delta = time.time() - t1 delta /= float(a.nbytes) # normalise to time per byte deltas.append(delta) all_deltas.append(deltas) array_length += increment_by all_deltas = np.array(all_deltas) nbytes = np.array(nbytes) timings = all_deltas print "Writing to:", args.time with open(args.time, 'wb') as f: dumped_data = {'timings': timings, 'nbytes': nbytes} cPickle.dump(dumped_data, f) if args.graph: # make sure matplotlib has been imported if 'plt' in dir(): plt.figure(1) plt.clf() graph_filenames = args.graph for graph_filename in graph_filenames: print "Loading data from", graph_filename with open(graph_filename, 'rb') as f: dumped_data = cPickle.load(f) timings = dumped_data['timings'] nbytes = dumped_data['nbytes'] timings_averaged = np.average(timings, axis=1) if args.graphline: plt.plot(nbytes, timings_averaged, label=graph_filename) else: plt.boxplot(timings.T, positions=nbytes, widths=box_width) plt.ylabel("Time per byte (seconds)") plt.xticks(plt.xticks()[0], ["{:,}".format(int(xb / 1000.0)) for xb in nbytes], rotation=45) plt.xlabel("Total array size (kB)") # annotate the cache location plt.vlines(cache_location, plt.ylim()[0], plt.ylim()[1], colors='r') plt.annotate(cache_label, (cache_location, np.max(timings))) plt.title(laptop_label) plt.grid() if args.graphline: plt.legend() plt.show() else: print "matplotlib must be installed to generate a graph"
5,958
spyder_vcs/tests/backend/template_hypothesis.py
spyder-ide/spyder-vcs
0
2169582
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright (c) 2009- Spyder Project Contributors # # Distributed under the terms of the MIT License # (see spyder/__init__.py for details) # ----------------------------------------------------------------------------- """ A set of Hypothesis powered templates for testing backends. All the templates here acts as mixins, rather than """ # Standard library imports from collections.abc import Iterable from pathlib import Path from tempfile import TemporaryDirectory import typing # Third party imports from hypothesis import given, settings, HealthCheck import hypothesis.strategies as st # Local imports from .generation import FilesTreeGenerator from .template import TemplateBasic, TemplateCreate, tempdir_tostr __all__ = ("BASE_SETTINGS", "HyTemplateBasic", "HyTemplateCreate") TEMPDIR = typing.Union[TemporaryDirectory, str] BASE_SETTINGS = settings( suppress_health_check=(HealthCheck.too_slow, HealthCheck.data_too_large), deadline=1000, ) class HyTemplateBasic(TemplateBasic): """ The base of all Hypothesis powered backend test templates. In addition to TemplateBasic requirements, any subclass of this must provide the following strategies: local_repository, remote_repository, local_with_remote_repository. """ local_repository: st.SearchStrategy[TEMPDIR] remote_repository: st.SearchStrategy[TEMPDIR] local_with_remote_repository: st.SearchStrategy[typing.Tuple[TEMPDIR, TEMPDIR]] def _draw_repodir( self, data: st.DataObject, attrs: typing.Iterable[str] = ("local_repository", ) ) -> typing.Tuple[TEMPDIR, typing.Union[TEMPDIR, typing.Sequence[TEMPDIR]]]: drawed_repo = data.draw(st.one_of(*(getattr(self, attr) for attr in attrs))) if isinstance(drawed_repo, Iterable): return drawed_repo, tuple(tempdir_tostr(x) for x in drawed_repo) return drawed_repo, tempdir_tostr(drawed_repo) @given(st.data()) # @settings(max_examples=2) def test_init_good(self, data: st.DataObject): _, repodir = self._draw_repodir( data, ("local_repository", "local_with_remote_repository")) if not isinstance(repodir, str): repodir = repodir[0] super().test_init_good(repodir) @given(st.builds(TemporaryDirectory)) # @settings(max_examples=1) def test_init_norepo(self, norepodir: TemporaryDirectory): super().test_init_norepo(norepodir.name) class HyTemplateCreate(HyTemplateBasic, TemplateCreate): """Hypothesis powered implementations of TemplateCreate.""" @BASE_SETTINGS # @settings(max_examples=1) @given(st.builds(TemporaryDirectory)) def test_create_empty(self, repodir): super().test_create_empty(repodir.name) @BASE_SETTINGS # @settings(max_examples=1) @given(st.builds(TemporaryDirectory), st.data()) def test_create_noauth(self, repodir: TemporaryDirectory, data: st.DataObject): _, from_ = self._draw_repodir(data, ("remote_repository", )) super().test_create_noauth(repodir.name, Path(from_).as_uri())
3,297
Projects/project07/grow-test.py
tonysulfaro/CSE-331
2
2168610
from HashTable import HashTable def assertNode(node, key, value): if key is None: assert node is None else: assert node.key == key and node.value == value ht = HashTable() for i in range(6): ht.insert(i * 'a', i) assert ht.size == 5 assert ht.capacity == 8 assertNode(ht.table[0], None, None) assertNode(ht.table[1], 'a', 1) assertNode(ht.table[2], None, None) assertNode(ht.table[3], None, None) assertNode(ht.table[4], "aaaa", 4) assertNode(ht.table[5], "aaaaa", 5) assertNode(ht.table[6], "aa", 2) assertNode(ht.table[7], "aaa", 3)
570
bce/dom/mathml/text.py
bce-toolkit/BCE
12
2168378
#!/usr/bin/env python # # Copyright 2014 - 2018 The BCE Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the license.txt file. # import bce.dom.mathml.base as _base import bce.dom.mathml.types as _types class TextComponent(_base.Base): """Text component.""" def __init__(self, text): """Initialize the component. :param text: The text. """ _base.Base.__init__(self, _types.COMPONENT_TYPE_TEXT) self.__text = text def get_text(self): """Get the text. :return: The text. """ return self.__text def set_text(self, text): """Set the text. :param text: The text. """ self.__text = text def to_string(self, indent=0): """Serialize the component to string. :type indent: int :param indent: The indent space count. :rtype : str :return: The serialized string. """ return " " * indent + "<mtext>" + self.__text + "</mtext>"
1,078
discordbot/bot.py
justin-p/IaC-DigitalOcean-Minecraft
1
2169703
''' Basic webhook wrapper for sending messages to discord chat. ''' from discord_webhook import DiscordWebhook import argparse if __name__ == '__main__': ## initiate the parser with a description parser = argparse.ArgumentParser(description = 'Basic webhook bot for discord') optional = parser._action_groups.pop() optional.add_argument("--skipmessage",default=False) optional.add_argument("-u", "--uri", help="Webook Uri") optional.add_argument("-c", "--content", help="Content to send") cmdargs = parser.parse_args() if cmdargs.skipmessage == "false": webhook = DiscordWebhook(url=cmdargs.uri, content=cmdargs.content) response = webhook.execute()
699
library_seats/timer.py
XC-Li/old_python_programs
0
2169823
# Countdown Timer # Designed By Xc.Li @ Mar.2016 # coding = utf-8 import time import os def func(mode): if mode == 5: check_point = [00, 05, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55] if mode == 10: check_point = [00, 10, 20, 30, 40, 50] if mode == 15: check_point = [00, 15, 30, 45] if mode == "test": check_point = [00, 10, 20, 23] while True: current_minute = time.ctime()[14:-8] for item in check_point: if str(item) == current_minute or current_minute == '00': print "Check Point!" time.sleep(5) return True print "Waiting at mode %d" % mode time.sleep(5) os.system("cls") # # def func1(mode): # flag = False # previous_minute = time.ctime()[14:-8] # while True: # time.sleep(5) # print "Running at mode %d" % mode # current_minute = time.ctime()[14:-8] # if flag is True and int(current_minute) - int(previous_minute) == 2 or int(previous_minute) == 59: # return True # if current_minute == func(mode): # flag = True # continue # return False
1,234
qUtilities.py
matthewse19/quantum-simulation
0
2170055
import math import random import numpy import qConstants as qc import qBitStrings as qb def equal(a, b, epsilon): '''Assumes that n >= 0. Assumes that a and b are both n-qbit states or n-qbit gates. Assumes that epsilon is a positive (but usually small) real number. Returns whether a == b to within a tolerance of epsilon. Useful for doing equality comparisons in the floating-point context. Warning: Does not consider global phase changes; for example, two states that are global phase changes of each other may be judged unequal. Warning: Use this function sparingly, for inspecting output and running tests. Probably you should not use it to make a crucial decision in the middle of a big computation. In past versions of CS 358, this function has not existed. I have added it this time just to streamline the tests.''' diff = a - b if len(diff.shape) == 0: # n == 0. Whether they're gates or states, a and b are scalars. return abs(diff) < epsilon elif len(diff.shape) == 1: # a and b are states. return sum(abs(diff)) < epsilon else: # a and b are gates. return sum(sum(abs(diff))) < epsilon def uniform(n): '''Assumes n >= 0. Returns a uniformly random n-qbit state.''' if n == 0: return qc.one else: psiNormSq = 0 while psiNormSq == 0: reals = numpy.array( [random.normalvariate(0, 1) for i in range(2**n)]) imags = numpy.array( [random.normalvariate(0, 1) for i in range(2**n)]) psi = numpy.array([reals[i] + imags[i] * 1j for i in range(2**n)]) psiNormSq = numpy.dot(numpy.conj(psi), psi).real psiNorm = math.sqrt(psiNormSq) return psi / psiNorm def bitValue(state): '''Given a one-qbit state assumed to be exactly classical --- usually because a classical state was just explicitly assigned to it --- returns the corresponding bit value 0 or 1.''' if (state == qc.ket0).all(): return 0 else: return 1 def powerMod(k, l, m): '''Given non-negative integer k, non-negative integer l, and positive integer m. Computes k^l mod m. Returns an integer in {0, ..., m - 1}.''' kToTheL = 1 curr = k while l >= 1: if l % 2 == 1: kToTheL = (kToTheL * curr) % m l = l // 2 curr = (curr * curr) % m return kToTheL def quantumFromClassic(bitstring): n = len(bitstring) arr = numpy.array((0,) * (2 ** n)) one_position = qb.integer(bitstring) arr[one_position] = 1 return arr def quantumListToClassicTuple(quantum_list): arr = [] for qbit in quantum_list: arr.append(bitValue(qbit)) return tuple(arr) def removeZeroRow(arr): width = len(arr[0]) zero_row = (0,) * width copy = list(arr) if copy[-1] == zero_row: copy.pop() return copy def missingLeadingRow(arr): width = len(arr[0]) one_row = [1,] * width copy = list(arr) for row in arr: first_one_index = row.index(1) one_row[first_one_index] = 0 return one_row def continuedFraction(n, m, x0): '''x0 is a float in [0, 1). Tries probing depths j = 0, 1, 2, ... until the resulting rational approximation x0 ~ c / d satisfies either d >= m or |x0 - c / d| <= 1 / 2^(n + 1). Returns a pair (c, d) with gcd(c, d) = 1.''' j = 0 while True: c, d = fraction(x0, j) if d >= m or abs(x0 - (c / d)) <= (1 / 2 ** (n + 1)): return (c, d) j += 1 def fraction(x0, j): '''recursive helper to continuedFraction calculates the c and d out j times to approxiate x0 as c / d''' if x0 == 0: return (0, 1) elif j == 0: a0 = math.floor(1 / x0) c = 1 d = a0 return (c, d) else: a0 = math.floor(1 / x0) x1 = (1 / x0) - a0 next_c, next_d = fraction(x1, j - 1) c = next_d d = (a0 * next_d) + next_c return (c, d) def fractions_test(): #test fraction print(fraction(1 / math.pi, 2)) print(fraction(1 / 7, 4)) print(fraction(0, 3)) print(continuedFraction( 8, 4, (1 / math.pi))) if __name__ == "__main__": fractions_test()
4,273
python/dsShareDirectory/test.py
bryanlabs/cloudformation-custom-resources
0
2169772
import boto3 import os import logging from botocore.exceptions import ClientError logger = logging.getLogger(__name__) # Shares a Directory with target account. def create(event): try: logger.info("Got Create") # Shares a Directory with target account. ds = boto3.client('ds') accounts = event['ResourceProperties']['ShareTargetIds'] for account in accounts: ds.share_directory( DirectoryId=event['ResourceProperties']['DirectoryId'], ShareNotes=event['ResourceProperties']['ShareNotes'], ShareTarget={ 'Id': account, 'Type': 'ACCOUNT' }, ShareMethod='HANDSHAKE' ) return except Exception as e: print(e) def delete(event): # Unshares a Directory with target account. try: logger.info("Got Delete") # Unshares a Directory with target account. client = boto3.client('ds') accounts = event['ResourceProperties']['ShareTargetIds'] for account in accounts: client.unshare_directory( DirectoryId=event['ResourceProperties']['DirectoryId'], UnshareTarget={ 'Id': account, 'Type': 'ACCOUNT' } ) except Exception as e: print(e) event = { "ResourceProperties" : { "ShareTargetIds" : ["546837296206","430151054399"], "DirectoryId" : "d-90671c4dd3", "ShareNotes" : "my Shared Directory" } } # create(event) # delete(event)
1,634
museum_site/migrations/0052_profile.py
DrDos0016/z2
3
2168702
# Generated by Django 3.1.7 on 2021-05-09 17:17 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ('museum_site', '0051_article_last_revised'), ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, primary_key=True, serialize=False, to='auth.user')), ('patron', models.BooleanField(default=False)), ('patron_level', models.IntegerField(default=0)), ('char', models.IntegerField(default=2)), ('fg', models.CharField(default='white', max_length=11)), ('bg', models.CharField(default='darkblue', max_length=11)), ('site_credits_name', models.CharField(blank=True, default='', max_length=100)), ('stream_credits_name', models.CharField(blank=True, default='', max_length=100)), ('max_upload_size', models.IntegerField(default=1048576)), ('files_uploaded', models.IntegerField(default=0)), ('pronouns', models.CharField(max_length=50)), ], ), ]
1,323
Courses/Codeval/Easy/Python/03-SumPrimes.py
leparrav/Playground
1
2168199
''' https://www.codeeval.com/open_challenges/4/ ''' import sys import math def isPrime(n): limit = int(math.sqrt(n))+1 for i in range(2,limit): if n % i == 0: return False return True def main(): #end = int(sys.argv[1]) end = 1000 acc = 0 pcount, i = 0, 2 while(pcount < end): if isPrime(i): acc += i pcount += 1 i += 1 print acc if __name__ == '__main__': main()
395