max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
tests/test/test_commands.py
vb64/oeg.infotech.xml
0
2024550
# coding: utf-8 """ make test T=test_commands """ from . import TestInfotech class TestCommands(TestInfotech): """Commands for xml export file.""" def test_join(self): """Join command.""" from oeg_infotech import Infotech info = Infotech.from_file(self.fixture('1736.xml')) dist1 = info.total_dist() welds1 = len(info.welds.items) defects1 = len(info.defects.items) lineobjects1 = len(info.lineobjects.items) assert dist1 == 17727 assert welds1 == 23 assert defects1 == 10 assert lineobjects1 == 6 info = Infotech.from_file(self.fixture('1737.xml')) dist2 = info.total_dist() welds2 = len(info.welds.items) defects2 = len(info.defects.items) lineobjects2 = len(info.lineobjects.items) assert dist2 == 5589 assert welds2 == 5 assert defects2 == 2 assert lineobjects2 == 4 text = info.join(['1100', self.fixture('1736.xml')]) assert 'IPL_INSPECT' in text assert info.total_dist() == dist1 + dist2 + 1100 assert len(info.welds.items) == welds1 + welds2 + 1 assert len(info.defects.items) == defects1 + defects2 assert len(info.lineobjects.items) == lineobjects1 + lineobjects2 text = info.join([]) assert 'IPL_INSPECT' in text text = info.join(['not_exist_file']) assert 'No such file or directory' in text def test_reverse(self): """Reverse command.""" from oeg_infotech import Infotech, lineobj, codes from oeg_infotech.base import DistItem info = Infotech.from_file(self.fixture('1736.xml')) assert info.total_dist() == 17727 root = info.xml.getroot() l_section = root.find(lineobj.Section.tag) assert int(l_section[0].get(DistItem.field_odometer)) == 0 assert int(l_section[-1].get(DistItem.field_odometer)) == 17710 assert l_section[1].get(DistItem.field_typeobj) == codes.Feature.CASE_START assert l_section[2].get(DistItem.field_typeobj) == codes.Feature.CASE_END text = info.reverse() assert 'IPL_INSPECT' in text assert l_section[1].get(DistItem.field_typeobj) != codes.Feature.CASE_START assert l_section[2].get(DistItem.field_typeobj) != codes.Feature.CASE_END assert l_section[-2].get(DistItem.field_typeobj) == codes.Feature.CASE_END assert l_section[-3].get(DistItem.field_typeobj) == codes.Feature.CASE_START assert int(l_section[0].get(DistItem.field_odometer)) == 17 assert int(l_section[-1].get(DistItem.field_odometer)) == 17727 def test_fix(self): """Repair command.""" from oeg_infotech import Infotech info = Infotech.from_file(self.fixture('umdp-1400.xml')) pig = info.xml.getroot().find('PIGPASS')[1] assert info.obj_dict['1'] == u'УМДП-1400' assert pig.attrib.get('IDTYPEOBJ', None) == '1' assert pig.attrib.get('MANUFACT_DATE', None) == '' assert pig.attrib.get('PIGTYPE', None) == '2' assert pig.attrib.get('OBSLTYPE', None) == '5' info.fix() pig = info.xml.getroot().find('PIGPASS')[1] assert pig.attrib.get('IDTYPEOBJ', None) == '1' assert pig.attrib.get('MANUFACT_DATE', None) == '2017' assert pig.attrib.get('PIGTYPE', None) == '990004033563' assert pig.attrib.get('OBSLTYPE', None) == '2' info = Infotech.from_file(self.fixture('empty.xml')) info.fix()
3,551
Biological_Questions/Sine_Wave_Alignments/Approach_Family_Fits/Optimiser_Fitting_Function.py
The-Kristina/CellComp
7
2024594
# TODO: Fit a sine wave onto a SINGLE 3-generational family lineage # Tutorial here: https://astrofrog.github.io/py4sci/_static/15.%20Fitting%20models%20to%20data.html import numpy as np from scipy import optimize def SineWaveFitting(file, print_stats=False): """ Fitting onto sine wave for 3-generational families. CURVE FIT CANNOT BE PERFORMED ON 2 DATAPOINTS! -> 2-generational family is not enough! Only includes CCTs greater than 12.00 and smaller than 24.00! TODO: Add outliers as well! Task: - calculate the parameters of a sine wave which fits perfectly onto each individual family - normalise this sine wave to have a positive amp and no shift_h - therefore oscillates from 0 upwards - calculate the phase of the points (=by how much you need to move them to the right on the x-axis) to restore maximum fit Sine wave: Equation: amp * np.sin(2 * np.pi / per * x + shift_h) + shift_v Parameters: static: period -> 24 hours shift_h -> 0 (after phasing the data on their x-axis) dynamic: amplitude -> can be changed to absolute value; abs(amp) shift_v -> will always be positive (correspond to CCT range for each family) Args: file (str, directory) -> absolute directory to file storing data in the following format: Gen_1 Gen_1 Gen_1 Gen_2 Gen_2 Gen_2 Gen_3 Gen_3 Gen_3 Cell_ID CCT Gener Cell_ID CCT Gener Cell_ID CCT Gener print_stats (bool) -> visualuse stats if you wish. Return: cell_id_list (list) -> stores cell_IDs of analysed family; [0] - grandparent, [1] - parent, [2] - child) y-data_list (list) -> stores raw cell cycle durations [hours] of the cell_IDs above params_list (list) -> stores amp, shift_h, shift_v of an ideally fitted sine wave per family phase_list (list) -> (float) = phase which is to be added to each x-data point to preserve sine wave fit """ cell_IDs_list = [] y_data_list = [] params_list = [] phase_list = [] for line in open(file, "r"): line = line.rstrip().split("\t") if line[0] != "Gen_1" and line[0] != "Cell_ID": line = [float(value) if "." in value else int(value) for value in line] # Generate the data for Y-axis which are just the cell cycle durations: if len(line) <= 6: lineage = [line[0:3], line[3:6]] y_data = np.array([lineage[0][1], lineage[1][1]]) else: lineage = [line[0:3], line[3:6], line[6:9]] y_data = np.array([lineage[0][1], lineage[1][1], lineage[2][1]]) # Check if all CCTs are between 12-28 hours - exclude outliers: if any(cct < 12.0 for cct in y_data) or any(cct > 24.0 for cct in y_data): continue # X-axis starts at 'phase' (=unknown) & adds the Y-time points: phase = 0.0 x_data = [phase] for cct in y_data: phase += cct x_data.append(phase) x_estimate = x_data.pop(-1) x_data = np.array(x_data) # Now fit the sine wave onto your points: def sine_function(x, amp, shift_h, shift_v): return amp * np.sin(2 * np.pi / 24 * x + shift_h) + shift_v params, params_covariance = optimize.curve_fit(sine_function, x_data, y_data) amp, shift_h, shift_v = params[0], params[1], params[2] # Calculate the phase based on your fitted sine wave parameters: # Phase must correspond to shifts onto: abs(amp) * np.sin(2*np.pi/24 * x + 0) + shift_v phase = abs((shift_h * 24) / (2 * np.pi)) if shift_h < 0: phase = 24 - phase if abs(shift_h) > 6.00 and abs(shift_h) < 12.00: phase = 24 - abs(phase) if abs(shift_h) > 12.00 and abs(shift_h) < 18.00: phase = phase + 48 if amp < 0: phase = phase + 12 if print_stats is True: print ("\nData on the y-axis: {}".format(y_data)) print ("Data on the x-axis: {}".format(x_data)) print ("\tParameters:\nAmplitude\t= {}\nPeriod\t\t= 2*pi*24\nShift H:\t= {}\nShift V:\t= {}" .format(round(amp, 2), round(shift_h, 2), round(shift_v, 2))) print ("Calculated phase = {}\n\tfor 'y = abs(amp) * np.sin(2*np.pi/24 * x + 0) + shift_v'".format(phase)) # Append the lists for return after loop is finished: cell_IDs_list.append([lineage[0][0], lineage[1][0], lineage[2][0]]) y_data_list.append(y_data) params_list.append(params) phase_list.append(phase) return cell_IDs_list, y_data_list, params_list, phase_list
5,057
manager/migrations/0001_initial.py
walliski/tf-info
0
2022981
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import datetime from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Page', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('order', models.PositiveIntegerField(editable=False, db_index=True)), ('url', models.CharField(max_length=90, verbose_name=b'Url of page to display (relative to root).')), ('duration', models.PositiveIntegerField(default=10, verbose_name=b'Duration (seconds)')), ('title', models.CharField(max_length=100)), ('description', models.TextField(null=True, blank=True)), ('pause_at', models.DateTimeField(null=True, blank=True)), ('hide_top_bar', models.BooleanField(default=False, verbose_name=b'Hide the top bar of the screen')), ('hide_bottom_bar', models.BooleanField(default=False, verbose_name=b'Hide the bottom bar of the screen')), ('active_time_start', models.TimeField(default=datetime.time(0, 0), verbose_name=b'Time of day to start displaying page.')), ('active_time_end', models.TimeField(default=datetime.time(0, 0), verbose_name=b'Time of day to stop displaying page. ')), ('active_date_start', models.DateField(default=datetime.date(2016, 4, 4), verbose_name=b'Date to start displayig page.')), ('active_date_end', models.DateField(null=True, verbose_name=b'Last date to display page.', blank=True)), ('monday', models.BooleanField(default=True)), ('tuesday', models.BooleanField(default=True)), ('wednesday', models.BooleanField(default=True)), ('thursday', models.BooleanField(default=True)), ('friday', models.BooleanField(default=True)), ('saturday', models.BooleanField(default=True)), ('sunday', models.BooleanField(default=True)), ('edited_by', models.ForeignKey(blank=True, to=settings.AUTH_USER_MODEL, null=True)), ], options={ 'ordering': ('order',), 'abstract': False, }, bases=(models.Model,), ), ]
2,539
src/utils.py
yewzijian/ChangeDet
4
2023421
import os def get_eval_list(eval_path): """Returns the list of images to evaluate Args: folder: Folder containing evaluation images """ scenes = list(filter(lambda s: os.path.isdir(os.path.join(eval_path, s)), os.listdir(eval_path))) eval_data = {} for scene in scenes: scene_folder = os.path.join(eval_path, scene) t0_folder = os.path.join(scene_folder, 't0') t1_folder = os.path.join(scene_folder, 't1') gt_folder = os.path.join(scene_folder, 'groundtruth') t0_paths = sorted(os.listdir(t0_folder)) t1_paths = sorted(os.listdir(t1_folder)) gt_paths = sorted(os.listdir(gt_folder)) eval_data[scene] = list(zip(t0_paths, t1_paths, gt_paths)) return eval_data
792
tests/test_admin.py
jrcastro2/invenio-oauth2server
3
2024226
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2017-2018 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. from flask import Flask, url_for from flask_admin import Admin from invenio_db import db from invenio_oauth2server import InvenioOAuth2Server from invenio_oauth2server.admin import ClientView, TokenView, \ oauth2server_clients_adminview, oauth2server_tokens_adminview def test_admin(models_fixture): """Test flask-admin interface.""" app = models_fixture InvenioOAuth2Server(app) assert isinstance(oauth2server_tokens_adminview, dict) assert isinstance(oauth2server_clients_adminview, dict) assert 'view_class' in oauth2server_tokens_adminview assert 'view_class' in oauth2server_clients_adminview admin = Admin(app, name="Test") clients_view = oauth2server_clients_adminview.pop('view_class') clients_model, clients_session = oauth2server_clients_adminview.pop('args') clients_kwargs = oauth2server_clients_adminview.pop('kwargs') tokens_view = oauth2server_tokens_adminview.pop('view_class') tokens_model, tokens_session = oauth2server_tokens_adminview.pop('args') tokens_kwargs = oauth2server_tokens_adminview.pop('kwargs') admin.add_view(clients_view(clients_model, db.session, **clients_kwargs)) admin.add_view(tokens_view(tokens_model, db.session, **tokens_kwargs)) menu_items = {str(item.name): item for item in admin.menu()} assert 'User Management' in menu_items assert menu_items['User Management'].is_category() submenu_items = { str(item.name): item for item in menu_items['User Management'].get_children()} assert 'OAuth Applications' in submenu_items assert 'OAuth Application Tokens' in submenu_items with app.test_request_context(): token_request_url = url_for('token.index_view') client_request_url = url_for('client.index_view') client_view_url = url_for('invenio_oauth2server_settings.client_view', client_id='client_test_u1c1') client_reset_url = url_for( 'invenio_oauth2server_settings.client_reset', client_id='client_test_u1c1') token_view_url = url_for( 'invenio_oauth2server_settings.token_view', token_id='1') token_revoke_url = url_for( 'invenio_oauth2server_settings.token_revoke', token_id='1') with app.app_context(): with app.test_client() as client: res = client.get( token_request_url, follow_redirects=True ) assert res.status_code == 200 res = client.get( client_request_url, follow_redirects=True ) assert res.status_code == 200 res = client.get( client_view_url, follow_redirects=True ) assert res.status_code == 200 res = client.post( client_reset_url, follow_redirects=True ) assert res.status_code == 200 res = client.get( token_view_url, follow_redirects=True ) assert res.status_code == 200 res = client.post( token_revoke_url, follow_redirects=True ) assert res.status_code == 405
3,619
rllib_model.py
simplerick/sqlopt
1
2024644
import networkx as nx from PIL import Image import io import gym from gym.spaces import Box import torch import numpy as np #from ray.rllib.agents.dqn.dqn_torch_model import DQNTorchModel from ray.rllib.models.torch.fcnet import FullyConnectedNetwork from ray.rllib.utils.torch_ops import FLOAT_MIN, FLOAT_MAX from ray.rllib.models.torch.torch_modelv2 import TorchModelV2 class CustomMaskedActModel(TorchModelV2, torch.nn.Module): def __init__(self, obs_space, action_space, num_outputs, model_config, name, **kw): TorchModelV2.__init__(self, obs_space, action_space, num_outputs, model_config, name, **kw) torch.nn.Module.__init__(self) true_obs_shape=model_config['custom_model_config']['true_obs_shape'] fc_obs_space = Box(low = 0, high = 1, shape = true_obs_shape, dtype = np.int) self.fc_net = FullyConnectedNetwork(fc_obs_space, action_space, num_outputs, model_config, name + 'fc_net') def forward(self, input_dict, state, seq_lens): action_mask = input_dict['obs']['action_mask'] obs = input_dict['obs']['real_obs'].float() obs = obs.reshape(obs.shape[0], -1) logits,_ = self.fc_net({'obs': obs}) inf_mask = torch.clamp(torch.log(action_mask), FLOAT_MIN , FLOAT_MAX) return logits+inf_mask, state def value_function(self): return self.fc_net.value_function()
1,749
plantcv/plantcv/print_results.py
Howzit123/plantcv
1
2024534
# Print Numerical Data import json import os from plantcv.plantcv import outputs def print_results(filename): """Print result table Inputs: filename = filename :param filename: str :return: """ if os.path.isfile(filename): with open(filename, 'r') as f: hierarchical_data = json.load(f) hierarchical_data["observations"] = outputs.observations else: hierarchical_data = {"metadata": {}, "observations": outputs.observations} with open(filename, mode='w') as f: json.dump(hierarchical_data, f)
584
examples/common/python/config/config.py
adityasingh177/trusted-compute-framework
0
2024399
# Copyright 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ config.py -- Functions to load configuration files with support for variable expansion. NOTE: Functions defined in this file are designed to be run before logging is enabled. """ import os import sys import warnings import logging import re import toml from string import Template from utility.file_utils import find_file_in_paths __all__ = ["ConfigurationException", "parse_configuration_files", "parse_configuration_file", "read_config_from_toml"] logger = logging.getLogger(__name__) try: TCFHOME = os.environ["TCF_HOME"] except KeyError: raise KeyError("'TCF_HOME' environment variable not set.") # ----------------------------------------------------------------- class ConfigurationException(Exception): """ A class to capture configuration exceptions. """ def __init__(self, filename, message): super().__init__(self, "Error in configuration file {0}: {1}".format(filename, message)) # ----------------------------------------------------------------- def parse_configuration_files(cfiles, search_path, variable_map=None): """ Locate and parse a collection of configuration files stored in a TOML format. :param list(str) cfiles: list of configuration files to load :param list(str) search_path: list of directories where the files may be located :param dict variable_map: a set of substitutions for variables in the files :return dict:an aggregated dictionary of configuration information """ config = {} files_found = [] try: for cfile in cfiles: files_found.append(find_file_in_paths(cfile, search_path)) except FileNotFoundError as e: raise ConfigurationException(e.filename, e.strerror) for filename in files_found: try: config.update(parse_configuration_file(filename, variable_map)) except IOError as detail: raise ConfigurationException(filename, "IO error; {0}".format(str(detail))) except ValueError as detail: raise ConfigurationException(filename, "Value error; {0}".format(str(detail))) except NameError as detail: raise ConfigurationException(filename, "Name error; {0}".format(str(detail))) except KeyError as detail: raise ConfigurationException(filename, "Key error; {0}".format(str(detail))) except: raise ConfigurationException(filename, "Unknown error") return config # ----------------------------------------------------------------- # ----------------------------------------------------------------- def parse_configuration_file(filename, variable_map): """ Parse a configuration file expanding variable references using the Python Template library (variables are $var format) :param string filename: name of the configuration file :param dict variable_map: dictionary of expansions to use :returns dict: dictionary of configuration information """ cpattern = re.compile('##.*$') with open(filename) as fp: lines = fp.readlines() text = "" for line in lines: text += re.sub(cpattern, '', line) + ' ' if variable_map: text = Template(text).substitute(variable_map) return toml.loads(text) # ----------------------------------------------------------------- def read_config_from_toml(input_file, config_name=None, confpaths=[".", TCFHOME + "/" + "config"]): """ Function to read toml file and returns the toml content as a list Parameters: - input_file is any toml file which need to be read - config_name is particular configuration to pull - confpaths is the directory structure in which the toml file exists """ conf_files = [input_file] config = parse_configuration_files(conf_files, confpaths) if config_name is None: return config else: result = config.get(config_name) if result is None: logger.error("%s is missing in toml file %s", config_name, input_file) return result
4,652
estoque.py
victorhugodostos/Telsa-System
2
2023216
from tkinter import * from tkinter import ttk import sqlite3 import menu as menupy class Estoque(): def __init__(self): self.EstoqueWindow = Tk() self.EstoqueWindow.title("TELSA SYSTEM - ESTOQUE") self.EstoqueWindow.minsize(width=1200,height=600) self.EstoqueWindow.resizable(False,False) self.EstoqueCanvas = Canvas(self.EstoqueWindow) self.EstoqueCanvas.pack(expand=1,fill=BOTH) self.Background = PhotoImage(file="image/menuback.png") self.EstoqueCanvas.create_image(0,0,image=self.Background,anchor=NW) ## TITULO self.Estoquetitle = self.EstoqueCanvas.create_text(600,125,text="ESTOQUE",font=("Times New Roman",48,"bold"),fill="white") self.EstoqueCanvas.create_line(0,150,1200,150,width=3,fill="white") self.Estoquetitle2 = self.EstoqueCanvas.create_text(600,230,text="PRODUTOS CADASTRADOS",font=("Times New Roman",18,"bold"),fill="white") ## BOTOES E LABELS self.txt_estoque = self.EstoqueCanvas.create_text(400,180,text="TODOS OS PRODUTOS:",font=("Times New Roman",12,"bold"),fill="white") self.select_estoque = ttk.Combobox(self.EstoqueCanvas,values=[],width=20,state='readonly') self.EstoqueCanvas.create_window(600,180,window=self.select_estoque) def Voltar(): self.EstoqueWindow.destroy() menupy.Menu.__init__(self) def Editar(): self.EditarWindow = Tk() self.EditarWindow.title("TELSA SYSTEM - EDITAR PRODUTO") self.EditarWindow.minsize(width=500, height=500) self.EditarWindow.resizable(False,False) self.EditarCanvas = Canvas(self.EditarWindow,bg="black") self.EditarCanvas.pack(expand=1,fill=BOTH) self.selecione_txt = self.EditarCanvas.create_text(250,30,text="SELECIONE O PRODUTO:",font=("Times New Roman",12,"bold"),fill="white") self.produto_combobox = ttk.Combobox(self.EditarCanvas,values=[],width=20) self.EditarCanvas.create_window(250,60,window=self.produto_combobox) self.produto_combobox['values'] = self.produtos self.busca_lista = [] def Buscar(): self.nome_entry.delete(0,END) self.descricao_entry.delete(0,END) self.valorv_entry.delete(0,END) self.connect = sqlite3.connect("database/produtos.db") self.cursor = self.connect.cursor() self.cursor.execute("SELECT * FROM produtos WHERE nome=?",(self.produto_combobox.get(),)) for names in self.cursor.fetchone(): self.busca_lista.append(names) self.connect.close() self.nome_entry.insert(0,str(self.busca_lista[1])) self.descricao_entry.insert(0,str(self.busca_lista[2])) self.valorv_entry.insert(0,str(self.busca_lista[3])) self.busca_lista.clear() self.btn_buscar = Button(self.EditarCanvas,text="BUSCAR",font=("Impact",10,"bold"),fg="black",bg="red",activebackground="#B22222",width=10,command=Buscar) self.EditarCanvas.create_window(250,90,window=self.btn_buscar) self.nome_txt = self.EditarCanvas.create_text(250,120,text="NOME:",font=("Times New Roman",12,"bold"),fill="white") self.nome_entry = Entry(self.EditarCanvas,width=20,justify="center") self.EditarCanvas.create_window(250,150,window=self.nome_entry) self.descricao_txt = self.EditarCanvas.create_text(250,180,text="DESCRIÇÃO:",font=("Times New Roman",12,"bold"),fill="white") self.descricao_entry = Entry(self.EditarCanvas,width=20,justify="center") self.EditarCanvas.create_window(250,210,window=self.descricao_entry) self.valorv_txt = self.EditarCanvas.create_text(250,240,text="VALOR DE VENDA:",font=("Times New Roman",12,"bold"),fill="white") self.valorv_entry = Entry(self.EditarCanvas,width=20,justify="center") self.EditarCanvas.create_window(250,270,window=self.valorv_entry) def Salvar(): try: self.connect = sqlite3.connect("database/produtos.db") self.cursor = self.connect.cursor() self.cursor.execute("UPDATE produtos SET nome=?,descricao=?,valor=? WHERE nome=?", (self.nome_entry.get(),self.descricao_entry.get(),self.valorv_entry.get(),self.produto_combobox.get(),)) self.connect.commit() self.connect.close() self.EditarWindow.destroy() self.EstoqueWindow.destroy() Estoque() except: self.erro = Tk() self.erro.title("ERRO - TENTE NOVAMENTE") self.erro.minsize(width=300,height=300) self.erro.resizable(False,False) self.erro_canvas = Canvas(self.erro) self.erro_canvas.pack(expand=1,fill=BOTH) self.erro_canvas.create_text(150,150,text="ERRO INESPERADO, TENTE NOVAMENTE!") def OK(): self.erro.destroy() self.btn_OK = Button(self.erro_canvas,text="OK") self.erro_canvas.create_window(150,200,window=self.btn_OK,command=OK) self.erro.mainloop() def Cancelar(): self.EditarWindow.destroy() self.btn_salvando = Button(self.EditarCanvas,text="SALVAR",font=("Impact",10,"bold"),fg="black",bg="red",activebackground="#B22222",width=10,command=Salvar) self.EditarCanvas.create_window(180,450,window=self.btn_salvando) self.btn_cancelar = Button(self.EditarCanvas,text="CANCELAR",font=("Impact",10,"bold"),fg="black",bg="red",activebackground="#B22222",width=10,command=Cancelar) self.EditarCanvas.create_window(320,450,window=self.btn_cancelar) self.EditarWindow.mainloop() self.voltar = Button(self.EstoqueCanvas,text="VOLTAR",font=("Arial Black",10,"bold"),fg="black",bg="blue",activebackground="#00008B",width=10,command=Voltar) self.EstoqueCanvas.create_window(1100,550,window=self.voltar) self.editar = Button(self.EstoqueCanvas,text="EDITAR",font=("Arial Black",10,"bold"),fg="black",bg="blue",activebackground="#00008B",width=10,command=Editar) self.EstoqueCanvas.create_window(1100,500,window=self.editar) ## BANCO DE DADOS self.connect = sqlite3.connect("database/produtos.db") self.cursor = self.connect.cursor() self.cursor.execute("SELECT id FROM produtos") self.Ids = [] for i in self.cursor.fetchall(): self.Ids.append(i) self.cursor.execute("SELECT nome FROM produtos") self.loop = 0 self.produtos = [] while self.loop<len(self.Ids): for j in self.cursor.fetchone(): self.produtos.append(j) self.loop += 1 self.select_estoque['values'] = self.produtos ##SCROLL DA AREA DE REGISTROS self.scroll = Scrollbar(self.EstoqueCanvas,bg="black") self.EstoqueCanvas.create_window(935,415,window=self.scroll,width=15,height=348) ##AREA DE REGISTROS self.registros = Text(self.EstoqueCanvas,yscrollcommand=self.scroll.set,bg="black",fg="white") self.registros.config(width=80,height=20) self.scroll.config(command=self.registros.yview) self.EstoqueCanvas.create_window(600,415,window=self.registros) self.numero_voltas = 0 self.id_inicial = 1 self.posicao_inicial = 0 self.produtos_cadastrados = [] while self.numero_voltas<len(self.Ids): self.cursor.execute("SELECT * FROM produtos WHERE id=?",(self.id_inicial,)) for produto11 in self.cursor.fetchone(): self.produtos_cadastrados.append(produto11) self.registros.insert(END, " CÓDIGO - "+str(self.produtos_cadastrados[0])+"\n") self.registros.insert(END, " PRODUTO - "+str(self.produtos_cadastrados[1])+"\n") self.registros.insert(END, " DESCRIÇÃO - "+str(self.produtos_cadastrados[2])+"\n") self.Conversao2 = str(self.produtos_cadastrados[3]) self.registros.insert(END, " VALOR - "+str(self.Conversao2.replace(".",","))+"\n") self.registros.insert(END, "______________________________________________________________________________""\n\n") self.posicao_inicial +=1 self.id_inicial+=1 self.numero_voltas+=1 self.produtos_cadastrados.clear() self.connect.close() self.EstoqueWindow.mainloop() #Estoque()
9,161
src/flake8_absolute_import/core.py
bskinn/flake8-absolute-import
10
2023033
r"""*Main implementation file for* ``flake8-absolute-import``. flake8 plugin to require absolute imports **Author** <NAME> (<EMAIL>) **File Created** 6 Sep 2019 **Copyright** \(c) <NAME> 2019-2021 **Source Repository** http://github.com/bskinn/flake8-absolute-import **License** The MIT License; see |license_txt|_ for full license terms **Members** """ import ast from flake8_absolute_import.version import __version__ ABS101 = "ABS101 Relative import found" class Visitor(ast.NodeVisitor): """NodeVisitor to report relative imports.""" def __init__(self): """Create a Visitor with empty errors list.""" self.errors = [] def visit_ImportFrom(self, node): # noqa: N802 """Implement check for relative import.""" if node.level > 0: self.errors.append((node.lineno, node.col_offset, ABS101)) self.generic_visit(node) class Plugin: """Core plugin class for flake8-absolute-import.""" name = "flake8-absolute-import" version = __version__ def __init__(self, tree): """Create plugin instance from the provided AST.""" self._tree = tree def run(self): """Traverse the AST and collect the errors.""" visitor = Visitor() visitor.visit(self._tree) for line, col, msg in visitor.errors: yield line, col, msg, type(self)
1,398
legal-api/tests/unit/services/filings/validations/annual_report/test_validation.py
rstens/lear
1
2024288
# Copyright © 2019 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test suite to ensure the Annual Report is validated correctly.""" import copy from datetime import date import datedelta import pytest from freezegun import freeze_time from registry_schemas.example_data import ANNUAL_REPORT from legal_api.models import Business from legal_api.services.filings.validations.annual_report import validate # from tests.unit.models import factory_business, factory_business_mailing_address, factory_filing @pytest.mark.parametrize( 'test_name, now, ar_date, agm_date, expected_code, expected_msg', [('SUCCESS', date(2020, 9, 17), date(2020, 8, 5), date(2020, 7, 1), None, None), ]) def test_validate(session, test_name, now, ar_date, agm_date, expected_code, expected_msg): # pylint: disable=too-many-arguments """Assert that a basic AR can be validated.""" # setup identifier = 'CP1234567' founding_date = ar_date - datedelta.YEAR business = Business(identifier=identifier, last_ledger_timestamp=founding_date) business.founding_date = founding_date ar = copy.deepcopy(ANNUAL_REPORT) ar['filing']['business']['identifier'] = identifier ar['filing']['annualReport']['annualReportDate'] = ar_date.isoformat() ar['filing']['annualReport']['annualGeneralMeetingDate'] = agm_date.isoformat() # perform test with freeze_time(now): err = validate(business, ar) # validate outcomes assert not err
2,020
pyboids/app/simulation.py
mancaf/pyboids
12
2023008
"""Simulation classes.""" import pygame from .flock import Flock from . import params from . import gui from time import time def callback(*args, **kwargs): """Make a no-argument callback from a function.""" def wrapper(f): def wrapped(): return f(*args, **kwargs) return wrapped return wrapper class Simulation: """Represent a simulation of a flock.""" def __init__(self, screen): self.running = True self.screen = screen self.clock = pygame.time.Clock() self.flock = Flock() self.to_update = pygame.sprite.Group() self.to_display = pygame.sprite.Group() self.temp_message = pygame.sprite.GroupSingle() self.fps_message = gui.FPSMessage(pos=(11, 0.5), text="FPS: ...") def add_element(self, pos): self.flock.add_element(pos) if self.temp_message: self.temp_message.sprite.kill() msg = "Number of " if "boid" in self.flock.add_kind: msg += "boids: {}".format(len(self.flock.boids)) else: msg += "obstacles: {}".format(len(self.flock.obstacles)) self.temp_message.add( gui.TempMessage(pos=(6, 1), text=msg)) def toggle_behaviour(self, behaviour): self.flock.behaviours[behaviour] = not self.flock.behaviours[behaviour] def toggle_debug(self): params.DEBUG = not params.DEBUG def update(self, motion_event, click_event): self.to_update.update(motion_event, click_event) def display(self): for sprite in self.to_display: sprite.display(self.screen) if params.DEBUG: pygame.draw.polygon( self.screen, pygame.Color("turquoise"), [ (params.BOX_MARGIN, params.BOX_MARGIN), (params.SCREEN_WIDTH - params.BOX_MARGIN, params.BOX_MARGIN), (params.SCREEN_WIDTH - params.BOX_MARGIN, params.SCREEN_HEIGHT - params.BOX_MARGIN), (params.BOX_MARGIN, params.SCREEN_HEIGHT - params.BOX_MARGIN), ], 1) def init_run(self): # add 40 boids to the flock # for x in range(1, 11): # for y in range(3, 7): # self.flock.add_element(utils.grid_to_px((x, y))) self.temp_message.add(gui.TempMessage( pos=(6, 4.5), text="Add entities and get steering !", font=params.H3_FONT) ) self.to_update = pygame.sprite.Group( self.flock, gui.ToggleButton( pos=(0.2, 8), text="Entity : ", labels=self.flock.kinds, init_label=self.flock.add_kind, action=lambda: self.flock.switch_element()), gui.ToggleButton( pos=(0.2, 8.5), text="ADD ENTITY", action=lambda: self.add_element(params.SCREEN_CENTER)), gui.ToggleButton( pos=(8.5, 8.5), text="Show forces, velocities and frame: ", labels="Yes No".split(), init_label="No Yes".split()[params.DEBUG], action=lambda: self.toggle_debug()), ) # add behaviour toggle buttons for k, behaviour in enumerate(self.flock.behaviours): # v decorate to prevent a bug @callback(self, behaviour) def do_action(self, behaviour): self.toggle_behaviour(behaviour) # ^ self.to_update.add(gui.ToggleButton( pos=(0.2, 0.2 + 0.3 * (1 + k)), text="{}: ".format(behaviour.title()), labels="off on".split(), init_label="off on".split()[self.flock.behaviours[behaviour]], action=do_action) ) self.to_display = pygame.sprite.Group( self.to_update, ) def run(self): key_to_function = { pygame.K_ESCAPE: lambda self, event: setattr(self, "running", False), } button_to_function = { 3: lambda self, event: self.add_element(event.pos), } self.init_run() dt = 0 while self.running: self.clock.tick(params.FPS) t = time() motion_event, click_event = None, None self.screen.fill(params.SIMULATION_BACKGROUND) for event in pygame.event.get(): if event.type == pygame.QUIT: self.running = False return "PYGAME_QUIT" elif event.type == pygame.KEYDOWN and \ event.key in key_to_function: key_to_function[event.key](self, event) elif event.type == pygame.MOUSEBUTTONDOWN: click_event = event if event.button in button_to_function: button_to_function[event.button](self, event) elif event.type == pygame.MOUSEMOTION: motion_event = event self.update(motion_event, click_event) self.fps_message.update(dt) self.temp_message.update(motion_event, click_event) self.display() self.fps_message.display(self.screen) if self.temp_message: self.temp_message.sprite.display(self.screen) pygame.display.flip() dt = time() - t def quit(self): self.running = False
5,617
splendor.py
akulakov/learnprogramming
0
2024018
#!/usr/bin/env python import random from random import randint from random import choice as randchoice from helpers import cjoin, objrepr, sjoin colors = "red cyan green white black".split() tokens = [] for c in colors: tokens.append(c) tokens.extend(["gold"]*5) class Card: def __init__(self, color, cost, points): self.color, self.cost, self.points = color, cost, points def __repr__(self): cost = ''.join(["%s%s" % (c[0][0], c[1]) for c in self.cost]) return objrepr(self.color, self.points, cost) levels = { # deck: cost, points 0: (4, 0), 1: (7, 2), 2: (9, 4), 3: (11, 6), } def gen_sample(target_sums): """Generate random sample where sum of the sample matches at least one value in `target_sums`.""" ssum = points = None # sample_list = [0]*6 + [1]*4 + [2]*3 + [3]*2 + [4] while ssum not in target_sums: points = random.sample(range(5), len(colors)) ssum = sum(points) return points decks = [] for n in range(4): deck = [] for m in range(15): cost = gen_sample(4+n*2) # cost = [] deck.append(Card(color, cost, levels[n][1])) decks.append(deck) class Player: def __init__(self, name): self.cards = [] self.name = name def __repr__(self): return "%s %s" % (self.name, cjoin(self.cards)) p1, p2 = Player('a'), Player('b') for deck in decks: print(deck) print()
1,484
linreg.py
csmsoftware/phnmnl-scalability
0
2024413
# make sure you setup the pythonpath # export PYTHONPATH=./ # this is how you run several workers in parallel # time luigi --module linreg LinRegAllDatasets --scheduler-host luigi-service.default --workers 100 import luigi from luigi.contrib.kubernetes import KubernetesJobTask import glob class LinRegTask(KubernetesJobTask): # dataset file as a luigi paramter datasetFile = luigi.Parameter() name = "lin-reg" # give the task a name max_retrials = 1 # how many times to retry it it fails @property def spec_schema(self): return { # container specifications "containers": [{ "name": self.name, "image": "nsadawi/lin-reg",# container on docker hub "args": [# the input file we pass as an argument self.datasetFile, ], # resources allocated to each task "resources": { "requests": { "memory": "1G", "cpu": "1" },# do not exceed these limits "limits": { "memory": "1G", "cpu": "1" } }, # specifications of volume mounts "volumeMounts": [{ "mountPath": "/work", # inside the container "name": "shared-volume", "subPath": "jupyter/LinReg" # on host .. i.e. where we run this script }] }], # volume name and specifications under PhenoMeNal "volumes": [{ "name": "shared-volume", "persistentVolumeClaim": { "claimName": "galaxy-pvc" } }] } # this tells luigi the task is finished when this file is created def output(self): filename = self.datasetFile + ".out" return luigi.LocalTarget(filename) # here we loop through all csv files and create a task for each one class LinRegAllDatasets(luigi.WrapperTask): def requires(self): inputFiles = glob.glob("randomised-datasets/*.csv") for inputFile in inputFiles: yield LinRegTask(datasetFile=inputFile)
2,287
modern_greek_inflexion/exceptions.py
PicusZeus/modern-greek-inflexion
0
2024698
class NotInGreekException(Exception): """ Exception raised when input is given in non Greek characters """ pass class NotLegalAdjectiveException(Exception): """ Exception raised when input is not recognized as a possible adjective """ pass class NotLegalVerbException(Exception): """ Exception raised when input is not recognized as a possible verb form """ pass
417
base/templatetags/event_tags.py
Sylvestre67/wagtail_alsace
0
2024868
from django import template from events.models import EventPage register = template.Library() # https://docs.djangoproject.com/en/1.9/howto/custom-template-tags/ @register.inclusion_tag('tags/events_grid.html', takes_context=True) def events_grid(context): events = EventPage.objects.future().order_by('event__date') context['events'] = events return context
374
indel_analysis/microhomology/run_all_collect_mh_frequencies_by_len.py
kaskamal/SelfTarget
20
2022991
import io, sys, os from selftarget.util import runSubdir def runAllCollectMHFrequenciesByLen(input_dir = 'mh_indel_frequencies', highdir='.', scriptloc='.'): idx = 0 dirnames = [input_dir + '/' + x for x in os.listdir(input_dir)] for dirname in dirnames: for mh_len in range(2, 16): subdirs = [dirname + '/' + x for x in os.listdir(dirname)] idx = runSubdir(idx, subdirs, '%s MH Len=%d' % (dirname,mh_len), scriptloc + '/collect_mh_frequencies_by_len.py', 'out_mh_by_len', __file__, extra_args='%d %s ' % (mh_len, highdir)) if __name__ == '__main__': runAllCollectMHFrequenciesByLen()
639
src/event_group_rule.py
hanxuzjuckc/gsyslyzer
1
2023810
""" Module for defining a rule to group together events """ class EventGroupRule: """ Defines the tags that make up an event group and any conextual events that should be parsed as well. Also defines if statistics should be collected for this specific event group Attributes tag: label for the rule trigger_event_tags: list of tags associated to LogEvents and that define the event group context_event_tags: list of tags associated to LogEvents and that supply context to event group """ def __init__(self, tag, trigger_event_tags, context_event_tags=None): self.trigger_event_tags = trigger_event_tags self.context_event_tags = context_event_tags if self.context_event_tags is None: self.context_event_tags = [] self.tag = tag
901
src/pybaum/equality.py
OpenSourceEconomics/pybaum
10
2024893
"""Functions to check equality of pytree leaves.""" from pybaum.config import IS_NUMPY_INSTALLED from pybaum.config import IS_PANDAS_INSTALLED if IS_NUMPY_INSTALLED: import numpy as np if IS_PANDAS_INSTALLED: import pandas as pd EQUALITY_CHECKERS = {} if IS_NUMPY_INSTALLED: EQUALITY_CHECKERS[np.ndarray] = lambda a, b: bool((a == b).all()) if IS_PANDAS_INSTALLED: EQUALITY_CHECKERS[pd.Series] = lambda a, b: a.equals(b) EQUALITY_CHECKERS[pd.DataFrame] = lambda a, b: a.equals(b)
510
pskgu_bot/utils/working_with_time.py
mrgick/pskgu_bot
14
2024224
""" Файл вспомогательных функций """ from pskgu_bot import Config from datetime import datetime, timedelta DAYS_NAME = { 0: "Понедельник", 1: "Вторник", 2: "Среда", 3: "Четверг", 4: "Пятница", 5: "Суббота", 6: "Воскресенье" } def date_to_str(date, full=False): """ Перевод даты в строку с удалением временной зоны. """ if full: return str(date) return str(date).split(" ")[0] def get_today(n=0, full=False): """ Возвращает сегодняшний день со смещением. """ time_now = datetime.now() time_now = time_now + timedelta(days=n) return date_to_str(time_now, full) def get_week_days(n=0): """ Возвращает список дней этой недели начиная с понедельника по субботу. n - смещение на количество недель. """ days = [] ntime = datetime.now() ntime = ntime + timedelta(days=-ntime.weekday(), weeks=n) for x in range(6): days.append(date_to_str(ntime)) ntime = ntime + timedelta(days=1) return days def get_name_of_day(str_date): """ Возвращает имя дня. """ day = datetime.fromisoformat(str_date).weekday() return DAYS_NAME.get(day) def compare_str_date(date1, date2): """ Сравнивает две даты в виде строк. date1 >= date2 """ return datetime.fromisoformat(date1) >= datetime.fromisoformat(date2) def get_monday(date): """ Возвращает понедельник недели c date. """ date = datetime.fromisoformat(date) monday = date + timedelta(days=-date.weekday(), weeks=0) return date_to_str(date=monday)
1,629
Prog/Python/Architecture_Patterns_with_Python/cap01/xmodel.py
unimauro/Courses
1
2024798
def allocate(line: OrderLine, batches: List[Batch]) -> str: batch = next( b for b in sorted(batches) if b.can_allocate(line) ) batch.allocate(line) return batch.reference class Batch: def __gt__(self, other): if self.eta is None: return False if other.eta is None: return True return self.eta > other.eta def test_raises_out_of_stock_exception_if_cannot_allocate(): batch = Batch('batch1', 'SMALL-FORK', 10, eta=today) allocate(OrderLine('order1', 'SMALL-FORK', 10), [batch]) with pytest.raises(OutOfStock, match='SMALL-FORK'): allocate(OrderLine('order2', 'SMALL-FORK', 1), [batch]) class OutOfStock(Exception): pass def allocate(line: OrderLine, batches: List[Batch]) -> str: try: batch = next( ... except StopIteration: raise OutOfStock(f'Out of stock for sku {line.sku}')
923
datasets.py
WangFeng18/dino
0
2024639
import numpy as np import torch import torch.utils.data as data from torch.utils.data import DataLoader from torchvision import transforms, datasets from imagenet_lmdb import ImageNetLMDB as lmdb from PIL import Image from PIL import ImageFile import random import os import glob import torchvision from torchvision.datasets.folder import default_loader from collections import defaultdict ImageFile.LOAD_TRUNCATED_IMAGES = True class ImageNetLMDB(lmdb): def __init__(self, root, list_file, aug): super(ImageNetLMDB, self).__init__(root, list_file, ignore_label=False) self.aug = aug def __getitem__(self, index): img, target = super(ImageNetLMDB, self).__getitem__(index) imgs = self.aug(img) return imgs, target
764
book_sites/book/migrations/0018_book_photo_url.py
Michelle-Hung/Books
0
2024404
# -*- coding: utf-8 -*- # Generated by Django 1.11.9 on 2018-03-07 06:45 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('book', '0017_auto_20180305_1359'), ] operations = [ migrations.AddField( model_name='book', name='photo_url', field=models.CharField(default='', max_length=200), ), ]
460
feature_extractor/ScatteringFeat1D.py
ussaema/CapsGeR
1
2023154
from . import FeatureExtractor from kymatio import Scattering1D import torch import numpy as np class ScatteringFeat1D(FeatureExtractor): """ Refer to (as well papers citing this paper): "<NAME> and <NAME>. Invariant scattering convolution networks.IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013." Computes scattering transform features, which have useful mathematical properties for classification """ # (1, T) -> (1, P, T/2**J) # Where P ~= 1 + J Q + J (J-1) Q / 2. # J = 5 # Account for translation up to 2^6 samples T = 200 # Number of samples per feature vector Q = 2 # Resolution per octave def __init__(self, dataset_name): self.dataset_name = dataset_name self.scattering_transform = Scattering1D(self.J, self.T, self.Q) def extract_feature_point(self, raw_samples): shape = raw_samples.shape raw_samples = np.reshape(raw_samples, (1, shape[1], shape[0])) raw_samples = torch.from_numpy(raw_samples).float() Sx = self.scattering_transform.forward(raw_samples) Sx = Sx.numpy() Sx = np.reshape(Sx, (Sx.shape[1] * Sx.shape[2] * Sx.shape[3])) return Sx def global_setup(self, all_raw_samples): pass
1,313
seq_exp/test/test_entrez.py
johnbradley/seq_explorer
0
2024432
import os import seq_exp.seq_exp as seq_exp import unittest import tempfile import ast class EntrezTestCase(unittest.TestCase): def setUp(self): realapp, db = seq_exp.setup_api_and_db('sqlite:///:memory:') self.realapp = realapp self.db = db self.db_fd, realapp.config['DATABASE'] = tempfile.mkstemp() realapp.config['TESTING'] = True self.app = realapp.test_client() seq_exp.PROJECTS = {} def tearDown(self): self.db.close() os.close(self.db_fd) os.unlink(self.realapp.config['DATABASE']) def literal_eval(self, rv): resp_str = rv.data.decode("utf-8") return ast.literal_eval(resp_str) def test_fetch_four_human_dna(self): #kind of fragile since relies upon external web server rv = self.app.get('/entrez/nucleotide', data=dict(term='human', retmax='4')) resp = self.literal_eval(rv) self.assertEqual(4, resp['count']) def test_fetch_five_mouse_protein(self): #kind of fragile since relies upon external web server rv = self.app.get('/entrez/protein', data=dict(term='mouse', retmax='5')) resp = self.literal_eval(rv) self.assertEqual(5, resp['count'])
1,239
awacs/rekognition.py
cloudtools/awacs
358
2022954
# Copyright (c) 2012-2021, <NAME> <<EMAIL>> # All rights reserved. # # See LICENSE file for full license. from .aws import Action as BaseAction from .aws import BaseARN service_name = "Amazon Rekognition" prefix = "rekognition" class Action(BaseAction): def __init__(self, action: str = None) -> None: super().__init__(prefix, action) class ARN(BaseARN): def __init__(self, resource: str = "", region: str = "", account: str = "") -> None: super().__init__( service=prefix, resource=resource, region=region, account=account ) CompareFaces = Action("CompareFaces") CreateCollection = Action("CreateCollection") CreateProject = Action("CreateProject") CreateProjectVersion = Action("CreateProjectVersion") CreateStreamProcessor = Action("CreateStreamProcessor") DeleteCollection = Action("DeleteCollection") DeleteFaces = Action("DeleteFaces") DeleteProject = Action("DeleteProject") DeleteProjectVersion = Action("DeleteProjectVersion") DeleteStreamProcessor = Action("DeleteStreamProcessor") DescribeCollection = Action("DescribeCollection") DescribeProjectVersions = Action("DescribeProjectVersions") DescribeProjects = Action("DescribeProjects") DescribeStreamProcessor = Action("DescribeStreamProcessor") DetectCustomLabels = Action("DetectCustomLabels") DetectFaces = Action("DetectFaces") DetectLabels = Action("DetectLabels") DetectModerationLabels = Action("DetectModerationLabels") DetectProtectiveEquipment = Action("DetectProtectiveEquipment") DetectText = Action("DetectText") GetCelebrityInfo = Action("GetCelebrityInfo") GetCelebrityRecognition = Action("GetCelebrityRecognition") GetContentModeration = Action("GetContentModeration") GetFaceDetection = Action("GetFaceDetection") GetFaceSearch = Action("GetFaceSearch") GetLabelDetection = Action("GetLabelDetection") GetPersonTracking = Action("GetPersonTracking") GetSegmentDetection = Action("GetSegmentDetection") GetTextDetection = Action("GetTextDetection") IndexFaces = Action("IndexFaces") ListCollections = Action("ListCollections") ListFaces = Action("ListFaces") ListStreamProcessors = Action("ListStreamProcessors") ListTagsForResource = Action("ListTagsForResource") RecognizeCelebrities = Action("RecognizeCelebrities") SearchFaces = Action("SearchFaces") SearchFacesByImage = Action("SearchFacesByImage") StartCelebrityRecognition = Action("StartCelebrityRecognition") StartContentModeration = Action("StartContentModeration") StartFaceDetection = Action("StartFaceDetection") StartFaceSearch = Action("StartFaceSearch") StartLabelDetection = Action("StartLabelDetection") StartPersonTracking = Action("StartPersonTracking") StartProjectVersion = Action("StartProjectVersion") StartSegmentDetection = Action("StartSegmentDetection") StartStreamProcessor = Action("StartStreamProcessor") StartTextDetection = Action("StartTextDetection") StopProjectVersion = Action("StopProjectVersion") StopStreamProcessor = Action("StopStreamProcessor") TagResource = Action("TagResource") UntagResource = Action("UntagResource")
3,046
flask-example.py
kemalcanbora/python-examples
1
2024158
""" Author: <NAME> Date: Mon May 23 16:26:36 2016 Date Updated: What is this code: An example Flask connection Why?: For me to remember later """
148
pylspm/rebus.py
lseman/pyplspm
12
2024812
# <NAME>, “Unobserved Heterogeneity in Structural Equation Models: A # New Approach to Latent Class Detection in PLS Path Modeling,” 2007. from multiprocessing import Pool, freeze_support import numpy as np from numpy import inf import pandas as pd import scipy.stats from scipy.stats import norm import matplotlib from matplotlib import pyplot as plt from scipy.cluster.hierarchy import dendrogram, linkage, ward, distance from scipy.cluster.hierarchy import fcluster from .pylspm import PyLSpm from .boot import PyLSboot from .mga import mga from itertools import combinations def rebus(residuals, data, dataRealoc, lvmodel, mvmodel, scheme, regression): Z = linkage(residuals, method='ward') # plt.figure(figsize=(10, 8)) # plt.title('Dendograma de Agrupamento Hierárquico') plt.xlabel('Amostra') plt.ylabel('Distância') dendrogram( Z, leaf_rotation=90., leaf_font_size=8, ) plt.show() max_d = 18.5 clusters = fcluster(Z, max_d, criterion='distance') print(clusters) while True: clusters = pd.DataFrame(clusters) clusters.columns = ['Split'] old_clusters = clusters.copy() dataSplit = pd.concat([data, clusters], axis=1) nk = max(clusters['Split']) rebus = [] for i in range(nk): data_ = (dataSplit.loc[dataSplit['Split'] == i + 1]).drop('Split', axis=1) data_.index = range(len(data_)) estima = PyLSpm(data_, lvmodel, mvmodel, scheme, regression, 0, 100, HOC='true') rebus.append(estima) CM = pd.DataFrame(0, index=np.arange(len(data)), columns=np.arange(nk)) exoVar = rebus[i].endoexo()[1] endoVar = rebus[i].endoexo()[0] for j in range(nk): dataRealoc_ = dataRealoc.copy() # Novos residuais mean_ = np.mean(rebus[j].data, 0) scale_ = np.std(rebus[j].data, 0) * \ np.sqrt((len(data_) - 1) / len(data_)) dataRealoc_ = dataRealoc_ - mean_ dataRealoc_ = dataRealoc_ / scale_ outer_residuals = dataRealoc_.copy() fscores = pd.DataFrame.dot(dataRealoc_, rebus[0].outer_weights) for i in range(len(rebus[j].latent)): block = dataRealoc_[rebus[j].Variables['measurement'] [rebus[j].Variables['latent'] == rebus[j].latent[i]]] block = block.columns.values loadings = rebus[j].outer_loadings.ix[ block][rebus[j].latent[i]].values outer_ = fscores.ix[:, i].values outer_ = outer_.reshape(len(outer_), 1) loadings = loadings.reshape(len(loadings), 1) outer_ = np.dot(outer_, loadings.T) outer_residuals.ix[:, block] = (dataRealoc_.ix[ :, block] - outer_)**2 inner_residuals = fscores[endoVar] inner_ = pd.DataFrame.dot( fscores, rebus[j].path_matrix.ix[endoVar].T) inner_residuals = (fscores[endoVar] - inner_)**2 # Fim dos novos residuais resnum1 = pd.DataFrame.dot(outer_residuals, (np.diag( 1 / (pd.DataFrame.sum( rebus[j].comunalidades(), axis=1)).values.flatten()))) supresouter = pd.DataFrame.sum( resnum1, axis=1) / (pd.DataFrame.sum(pd.DataFrame.sum(resnum1, axis=1)) / (len(data) - 2)) resnum2 = pd.DataFrame.dot(inner_residuals, (np.diag( 1 / rebus[j].r2.ix[endoVar].values.flatten()))) supresinner = pd.DataFrame.sum( resnum2, axis=1) / (pd.DataFrame.sum(pd.DataFrame.sum(resnum2, axis=1)) / (len(data) - 2)) CM.ix[:, j] = (np.sqrt(supresouter * supresinner)) clusters = CM.idxmin(axis=1).values clusters = clusters + 1 diff_clusters = clusters - old_clusters.values.flatten() changes = diff_clusters.astype(bool).sum() print(changes) if((changes / len(data)) < 0.005): break old_clusters = clusters.copy() # Estima final clusters = pd.DataFrame(clusters) clusters.columns = ['Split'] dataSplit = pd.concat([data, clusters], axis=1) nk = max(clusters['Split']) rebus = [] f1 = [] for i in range(nk): data_ = (dataSplit.loc[dataSplit['Split'] == i + 1]).drop('Split', axis=1) data_.index = range(len(data_)) rebus.append(PyLSpm(data_, lvmodel, mvmodel, scheme, regression, 0, 100, HOC='true')) print(np.round(len(data_) / len(data) * 100, 2)) print(len(data_)) print(rebus[i].path_matrix) print(rebus[i].gof()) resid = rebus[i].residuals()[3] f1.append(resid) print(resid) print('Final Cost') cost = (np.sum(f1)) print(1 / cost) # Automatiza multi-group allCombs = list(combinations(range(1, nk + 1), 2)) for i in range(len(allCombs)): mga(50, 8, dataSplit, lvmodel, mvmodel, scheme, regression, 0, 100, g1=allCombs[i][0], g2=allCombs[i][1], segmento='Split')
5,490
pywatts/core/result_step.py
zyxsachin/pyWATTS
0
2024634
from typing import Optional, Dict import pandas as pd from pywatts.core.base_step import BaseStep from pywatts.core.filemanager import FileManager class ResultStep(BaseStep): """ This steps fetch the correct column if the previous step provides data with multiple columns as output """ def __init__(self, input_steps, buffer_element: str): super().__init__(input_steps=input_steps) self.buffer_element = buffer_element def get_result(self, start: pd.Timestamp, end: Optional[pd.Timestamp], *args): """ Returns the specified result of the previous step. """ return list(self.input_steps.values())[0].get_result(start, end, self.buffer_element) def get_json(self, fm: FileManager) -> Dict: """ Returns all information for restoring the resultStep. """ json_dict = super().get_json(fm) json_dict["buffer_element"] = self.buffer_element return json_dict @classmethod def load(cls, stored_step: dict, inputs, targets, module, file_manager): """ Load a stored ResultStep. :param stored_step: Informations about the stored step :param inputs: The input step of the stored step :param targets: The target step of the stored step :param module: The module wrapped by this step :return: Step """ step = cls(inputs, stored_step["buffer_element"]) step.id = stored_step["id"] step.name = stored_step["name"] step.last = stored_step["last"] return step
1,581
Round #535 (Div 3)/B.py
julianferres/Codeforces
4
2024836
def B(): n = int(input()) s = [int(x) for x in input().split()] x = max(s) for d in range(1,x+1): if(x%d ==0): s.remove(d) y = max(s) print(x,y) B()
163
setup.py
sayeghr/clashroyale
0
2023916
from setuptools import setup with open('README.rst') as f: long_description = f.read() setup( name='clashroyale', packages=['clashroyale'], version='v3.4.0', description='An (a)sync wrapper for royaleapi.com', long_description=long_description, long_description_content_type='text/x-rst', author='kyb3r', license='MIT', url='https://github.com/cgrok/clashroyale', keywords=['clashroyale', 'wrapper', 'cr', 'royaleapi'], install_requires=['aiohttp>=2.0.0,<2.3.0', 'python-box==3.1.1', 'requests==2.18.4', 'asynctest==0.12.0', 'yarl<1.2'], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Topic :: Games/Entertainment :: Real Time Strategy', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], python_requires='>=3.5' )
951
black_magic/common.py
coldfix/black-magic
2
2023854
def param_names(argspec): """ Iterate over all parameter names used in the argspec. """ for argname in argspec.args: yield argname if argspec.varargs: yield argspec.varargs if argspec.kwonlyargs: for argname in argspec.kwonlyargs: yield argname if argspec.varkw: for argname in argspec.varkw: yield argname class Scope: """ Keeps track of used names in a particular scope. """ def __init__(self, iterable): self.names = set(iterable) def reserve(self, name): """Generate a new name that is not present in the scope.""" while name in self.names: name += '_' self.names.add(name) return name
752
46/swagger_client/models/synset_entity.py
apitore/apitore-sdk-python
3
2022907
# coding: utf-8 """ WordNet APIs You can access ALL WordNet DB.<BR />[Endpoint] https://api.apitore.com/api/46 # noqa: E501 OpenAPI spec version: 0.0.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class SynsetEntity(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'name': 'str', 'pos': 'str', 'src': 'str', 'synset': 'str' } attribute_map = { 'name': 'name', 'pos': 'pos', 'src': 'src', 'synset': 'synset' } def __init__(self, name=None, pos=None, src=None, synset=None): # noqa: E501 """SynsetEntity - a model defined in Swagger""" # noqa: E501 self._name = None self._pos = None self._src = None self._synset = None self.discriminator = None self.name = name self.pos = pos self.src = src self.synset = synset @property def name(self): """Gets the name of this SynsetEntity. # noqa: E501 Name # noqa: E501 :return: The name of this SynsetEntity. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this SynsetEntity. Name # noqa: E501 :param name: The name of this SynsetEntity. # noqa: E501 :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def pos(self): """Gets the pos of this SynsetEntity. # noqa: E501 Part-of-speech # noqa: E501 :return: The pos of this SynsetEntity. # noqa: E501 :rtype: str """ return self._pos @pos.setter def pos(self, pos): """Sets the pos of this SynsetEntity. Part-of-speech # noqa: E501 :param pos: The pos of this SynsetEntity. # noqa: E501 :type: str """ if pos is None: raise ValueError("Invalid value for `pos`, must not be `None`") # noqa: E501 self._pos = pos @property def src(self): """Gets the src of this SynsetEntity. # noqa: E501 Src # noqa: E501 :return: The src of this SynsetEntity. # noqa: E501 :rtype: str """ return self._src @src.setter def src(self, src): """Sets the src of this SynsetEntity. Src # noqa: E501 :param src: The src of this SynsetEntity. # noqa: E501 :type: str """ if src is None: raise ValueError("Invalid value for `src`, must not be `None`") # noqa: E501 self._src = src @property def synset(self): """Gets the synset of this SynsetEntity. # noqa: E501 Synset # noqa: E501 :return: The synset of this SynsetEntity. # noqa: E501 :rtype: str """ return self._synset @synset.setter def synset(self, synset): """Sets the synset of this SynsetEntity. Synset # noqa: E501 :param synset: The synset of this SynsetEntity. # noqa: E501 :type: str """ if synset is None: raise ValueError("Invalid value for `synset`, must not be `None`") # noqa: E501 self._synset = synset def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SynsetEntity): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
5,176
CyberProject/CyberUser/migrations/0009_team_teama_teamb_wager.py
rzhvn1/CyberBet
0
2024685
# Generated by Django 3.1.6 on 2021-02-24 14:03 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('CyberUser', '0008_auto_20210220_1837'), ] operations = [ migrations.CreateModel( name='Team', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('win_count', models.PositiveIntegerField(default=0)), ('lose_count', models.PositiveIntegerField(default=0)), ('tie_count', models.PositiveIntegerField(default=0)), ('rank', models.PositiveIntegerField(default=25)), ('moral', models.PositiveIntegerField(default=50)), ], ), migrations.CreateModel( name='TeamA', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('team', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='CyberUser.team')), ], ), migrations.CreateModel( name='TeamB', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('team', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='CyberUser.team')), ], ), migrations.CreateModel( name='Wager', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('match_result', models.CharField(choices=[('W', 'W'), ('T', 'T'), ('L', 'L')], max_length=10)), ('teamA', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='CyberUser.teama')), ('teamB', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='CyberUser.teamb')), ], ), ]
2,116
test/unit_test/json/rw_and_reformat_json_test/rw_and_reformat_json_test.py
JE-Chen/APITestka
0
2023715
import json import os from je_api_testka import read_action_json from je_api_testka import write_action_json from je_api_testka import reformat_json test_list = \ [ ["test_api_method", {"http_method": "get", "test_url": "http://httpbin.org/get", "headers": { 'x-requested-with': 'XMLHttpRequest', 'Content-Type': 'application/x-www-form-urlencoded', 'User-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.129 Safari/537.36', } } ], ["test_api_method", {"http_method": "post", "test_url": "http://httpbin.org/post", "params": {"task": "new task"}, "result_check_dict": {"status_code": 200} } ] ] write_action_json(os.getcwd() + "/test1.json", test_list) read_json = reformat_json(read_action_json(os.getcwd() + "/test1.json")) print(read_json)
956
store/tests.py
lukasz0k/Book_store
0
2023933
from django.test import TestCase from .models import Category # Create your tests here. class TestCategoriesModel(TestCase): def setUp(self): self.data1 = Category.objects.create(name='django', slug='django') def test_category_model_entry(self): """Test Category model data insertion/types/fields attributes""" data = self.data1 self.assertTrue(isinstance(data, Category)) def test_category_model_entry_name(self): """Test catey model defoult name""" data = self.data1 self.assertEqual(str(data), 'django')
579
e2e/pages/__init__.py
04n0/jenkins-configuration
177
2023823
from __future__ import absolute_import import os JENKINS_HOST = os.getenv('JENKINS_HOST', 'localhost')
104
graph_search/streetlearn_analysis.py
episodeyang/graph_search
1
2024769
from functools import partial import networkx as nx import numpy as np import gym from params_proto import proto_partial from params_proto.neo_proto import ParamsProto from graph_search import methods, short_names from streetlearn import StreetLearnDataset class Args(ParamsProto): env_id = "streetlearn_small" neighbor_r = 2.4e-4 neighbor_r_min = None h_scale = 1.2 # plotting visualize_graph = True def load_streetlearn(data_path="~/fair/streetlearn/processed-data/manhattan-large", pad=0.1): from streetlearn import StreetLearnDataset import matplotlib.pyplot as plt from os.path import expanduser path = expanduser(data_path) d = StreetLearnDataset(path) d.select_bbox(-73.997, 40.726, 0.01, 0.008) d.show_blowout("NYC-large", show=True) a = d.bbox[0] + d.bbox[2] * pad, d.bbox[1] + d.bbox[3] * pad b = d.bbox[0] + d.bbox[2] * (1 - pad), d.bbox[1] + d.bbox[3] * (1 - pad) (start, _), (goal, _) = d.locate_closest(*a), d.locate_closest(*b) fig = plt.figure(figsize=(6, 5)) plt.scatter(*d.lng_lat[start], marker="o", s=100, linewidth=3, edgecolor="black", facecolor='none', label="start") plt.scatter(*d.lng_lat[goal], marker="x", s=100, linewidth=3, edgecolor="none", facecolor='red', label="end") plt.legend(loc="upper left", bbox_to_anchor=(0.95, 0.7), framealpha=1, frameon=False, fontsize=12) d.show_blowout("NYC-large", fig=fig, box_color='gray', box_alpha=0.1, show=True, set_lim=True) return d, start, goal # 1. get data # 2. build graph # 3. get start and goal # 4. make plans def plot_graph(graph): # fig = plt.figure(figsize=(3, 3)) nx.draw(graph, [n['pos'] for n in graph.nodes.values()], node_size=0, node_color="gray", alpha=0.7, edge_color="gray") plt.gca().set_aspect('equal') # plt.tight_layout() # plt.show() def maze_graph(dataset: StreetLearnDataset): from tqdm import tqdm all_nodes = dataset.lng_lat graph = nx.Graph() for node, xy in enumerate(tqdm(all_nodes, desc="build graph")): graph.add_node(node, pos=xy) for node, a in tqdm(graph.nodes.items(), desc="add edges"): (ll,), (ds,), (ns,) = dataset.neighbor([node], r=Args.neighbor_r) for neighbor, d in zip(ns, ds): graph.add_edge(node, neighbor, weight=d) return graph # if Args.visualize_graph: # plot_graph(graph) # plt.gca().set_aspect(dataset.lat_correction) # plt.show() # noinspection PyPep8Naming,PyShadowingNames def heuristic(a, b, G: nx.Graph, scale=1, lat_correction=1 / 0.74): a = [G.nodes[n]['pos'] for n in a] b = [G.nodes[n]['pos'] for n in b] magic = [1, lat_correction] return np.linalg.norm((np.array(a) - np.array(b)) * magic, ord=1, axis=-1) * scale def plot_trajectory_2d(path, color='black', **kwargs): for (x, y), (x_, y_) in zip(path[:-1], path[1:]): dx = (x_ - x) dy = (y_ - y) d = np.linalg.norm([dx, dy], ord=2) plt.arrow(x, y, dx * 0.8, dy * 0.8, **kwargs, head_width=d * 0.3, head_length=d * 0.3, length_includes_head=True, head_starts_at_zero=True, fc=color, ec=color) def set_fig(dataset: StreetLearnDataset): plt.gca().set_yticklabels([]) plt.gca().set_xticklabels([]) plt.gca().set_aspect(dataset.lat_correction) def ind2pos(G, inds, scale=1): return [G.nodes[n]['pos'] * scale for n in inds] def patch_graph(G): queries = defaultdict(lambda: 0) _neighbors = G.neighbors def neighbors(n): # queries[n] += 1 # no global needed bc mutable. ns = list(_neighbors(n)) for n in ns: queries[n] += 1 return ns G.neighbors = neighbors return queries if __name__ == '__main__': from collections import defaultdict from waterbear import DefaultBear import matplotlib.pyplot as plt from ml_logger import logger dataset, start, goal = load_streetlearn() G = maze_graph(dataset) queries = patch_graph(G) # goal -= 120 # 10 worked well cache = DefaultBear(dict) fig = plt.figure(figsize=(4, 4), dpi=300) for i, (key, search) in enumerate(methods.items()): queries.clear() name = search.__name__ title, *_ = search.__doc__.split('\n') short_name = short_names[key] path, ds = search(G, start, goal, partial(heuristic, G=G, scale=1.2)) cache.cost[short_name] = len(queries.keys()) cache.len[short_name] = len(ds) print(f"{key:>10} len: {len(path)}", f"cost: {len(queries.keys())}") plt.subplot(2, 2, i + 1) plt.title(title, pad=10) # plot_graph(G) plot_trajectory_2d(ind2pos(G, path, 100), label=short_name) plt.scatter(*zip(*ind2pos(G, queries.keys(), 100)), color="gray", s=3, alpha=0.1) set_fig(dataset) # plt.legend(loc="upper left", bbox_to_anchor=(0.45, 0.8), framealpha=1, frameon=False, fontsize=12) plt.tight_layout() logger.savefig("../figures/streetlearn_plans.png", dpi=300) plt.show() plt.close() # colors = ['#49b8ff', '#ff7575', '#66c56c', '#f4b247'] # for i, (k, v) in enumerate(cache.items()): # plt.bar(k, v, color=colors[i]) fig = plt.figure(figsize=(3.8, 3), dpi=300) plt.title('Planning Cost') plt.bar(cache.cost.keys(), cache.cost.values(), color="gray", width=0.8) plt.ylim(0, max(cache.cost.values()) * 1.2) plt.gca().spines['top'].set_visible(False) plt.gca().spines['right'].set_visible(False) plt.tight_layout() logger.savefig("../figures/streetlearn_cost.png", dpi=300) plt.ylabel('# of distance lookup') plt.show() fig = plt.figure(figsize=(3.8, 3), dpi=300) plt.title('Plan Length') plt.bar(cache.len.keys(), cache.len.values(), color="gray", width=0.8) plt.ylim(0, max(cache.len.values()) * 1.2) plt.gca().spines['top'].set_visible(False) plt.gca().spines['right'].set_visible(False) plt.tight_layout() logger.savefig("../figures/streetlearn_length.png", dpi=300) plt.ylabel('Path Length') plt.show() logger.print('done', color="green")
6,223
tensorboard/test.py
smit-hinsu/tensorboard
0
2022686
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TensorBoard test module. This module provides a TensorBoard base test class and main function with some of the niceties of tf.test, while only requiring standard unittest be installed. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import atexit import os import shutil import six import tempfile import unittest from tensorboard.util import tb_logging logger = tb_logging.get_logger() _temp_dir = None def get_temp_dir(): """Return a temporary directory for tests to use.""" global _temp_dir if not _temp_dir: if os.environ.get('TEST_TMPDIR'): temp_dir = tempfile.mkdtemp(prefix=os.environ['TEST_TMPDIR']) else: temp_dir = tempfile.mkdtemp() def delete_temp_dir(dirname=temp_dir): try: shutil.rmtree(dirname) except OSError as e: logger.error('Error removing %s: %s', dirname, e) atexit.register(delete_temp_dir) _temp_dir = temp_dir return _temp_dir class TestCase(unittest.TestCase): """TensorBoard base test class. This class can lazily create a temporary directory for tests to use. """ def __init__(self, methodName='runTest'): super(TestCase, self).__init__(methodName) self._tempdir = None def assertItemsEqual(self, actual, expected, msg=None): """Test that sequence actual contains the same elements as expected, regardless of their order. Same as assertCountEqual in Python 3 with unittest.TestCase. """ return six.assertCountEqual(super(TestCase, self), actual, expected, msg) def assertStartsWith(self, actual, expected_start, msg=None): """Test that string actual starts with string expected_start.""" if not actual.startswith(expected_start): fail_msg = '%r does not start with %r' % (actual, expected_start) fail_msg += ' : %r' % (msg) if msg else '' self.fail(fail_msg) def assertEndsWith(self, actual, expected_end, msg=None): """Test that string actual ends with string expected_end.""" if not actual.endswith(expected_end): fail_msg = '%r does not end with %r' % (actual, expected_end) fail_msg += ' : %r' % (msg) if msg else '' self.fail(fail_msg) def get_temp_dir(self): """Returns a unique temporary directory for the test to use. If you call this method multiple times during in a test, it will return the same folder. However, across different runs the directories will be different. This will ensure that across different runs tests will not be able to pollute each others environment. If you need multiple unique directories within a single test, you should use tempfile.mkdtemp as follows: tempfile.mkdtemp(dir=self.get_temp_dir()): Returns: string, the path to the unique temporary directory created for this test. """ if not self._tempdir: self._tempdir = tempfile.mkdtemp(dir=get_temp_dir()) return self._tempdir def main(*args, **kwargs): """Pass args and kwargs through to unittest main""" return unittest.main(*args, **kwargs)
3,696
setup.py
molayac/commit-msg-jira
0
2022963
#!/usr/bin/env python from distutils.core import setup setup(name='commit-msg-jira', version='1.0', description='Hook commit-msg to send worklog to JIRA', author='<NAME>', author_email='<EMAIL>', url='https://www.python.org/sigs/distutils-sig/', packages=['jiraworklog'], install_requires=['jira', 'configparser', 'tzlocal'], scripts=['commit-msg'] )
405
bigcommerce/resources/payments.py
Anmol-Gulati/bigcommerce-api-python
69
2024683
from .base import * class PaymentMethods(ListableApiResource): resource_name = 'payments/methods'
104
stereo/algorithm/spatial_hotspot.py
fuyawangye/stereopy
61
2024019
#!/usr/bin/env python3 # coding: utf-8 """ @file: get_hotspot.py @description: @author: <NAME> @email: <EMAIL> @last modified by: <NAME> change log: 2021/10/14 create file. """ import copy import pandas as pd import hotspot def spatial_hotspot(data, model='normal', n_neighbors=30, n_jobs=20, fdr_threshold=0.05, min_gene_threshold=50, outdir=None): """ identifying informative genes (and gene modules) :param data: StereoExpData :param model: Specifies the null model to use for gene expression. Valid choices are: - 'danb': Depth-Adjusted Negative Binomial - 'bernoulli': Models probability of detection - 'normal': Depth-Adjusted Normal - 'none': Assumes data has been pre-standardized :param n_neighbors: Neighborhood size. :param n_jobs: Number of parallel jobs to run. :param fdr_threshold: Correlation threshold at which to stop assigning genes to modules :param min_gene_threshold: Controls how small modules can be. Increase if there are too many modules being formed. Decrease if substructre is not being captured :param outdir: directory containing output file(hotspot.pkl). Hotspot object will be totally output here. If None, results will not be output to a file. :return:Hotspot object. """ hit_data = copy.deepcopy(data) counts = hit_data.to_df().T # gene x cell pos = pd.DataFrame(hit_data.position, index=counts.columns) # cell name as index num_umi = counts.sum(axis=0) # total counts per cell # Create the Hotspot object and the neighborhood graph hs = hotspot.Hotspot(counts, model=model, latent=pos, umi_counts=num_umi) hs.create_knn_graph( weighted_graph=False, n_neighbors=n_neighbors, ) hs_results = hs.compute_autocorrelations(jobs=n_jobs) # select the genes with significant spatial autocorrelation hs_genes = hs_results.index[hs_results.FDR < fdr_threshold] # Compute pair-wise local correlations between these genes lcz = hs.compute_local_correlations(hs_genes, jobs=n_jobs) modules = hs.create_modules( min_gene_threshold=min_gene_threshold, core_only=False, fdr_threshold=fdr_threshold, ) module_scores = hs.calculate_module_scores() if outdir is not None: from stereo.io.writer import save_pkl save_pkl(hs, output=f"{outdir}/hotspot.pkl") return hs
2,434
optimal_transport_morphometry/core/migrations/0002_initial_models.py
girder/otm-server
0
2024510
# Generated by Django 3.1.3 on 2020-11-20 18:49 from django.db import migrations, models import django.db.models.deletion import django_extensions.db.fields import s3_file_field.fields import optimal_transport_morphometry.core.models.image class Migration(migrations.Migration): initial = True dependencies = [ ('core', '0001_default_site'), ] operations = [ migrations.CreateModel( name='Atlas', fields=[ ( 'id', models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name='ID' ), ), ( 'blob', s3_file_field.fields.S3FileField( max_length=2000, upload_to=s3_file_field.fields.S3FileField.uuid_prefix_filename, ), ), ('name', models.CharField(max_length=255)), ], options={ 'verbose_name_plural': 'atlases', }, ), migrations.CreateModel( name='Dataset', fields=[ ( 'id', models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name='ID' ), ), ( 'created', django_extensions.db.fields.CreationDateTimeField( auto_now_add=True, verbose_name='created' ), ), ( 'modified', django_extensions.db.fields.ModificationDateTimeField( auto_now=True, verbose_name='modified' ), ), ('name', models.CharField(max_length=255)), ('description', models.TextField(default='', max_length=3000)), ], options={ 'get_latest_by': 'modified', 'abstract': False, }, ), migrations.CreateModel( name='Patient', fields=[ ('identifier', models.CharField(max_length=255, primary_key=True, serialize=False)), ], ), migrations.CreateModel( name='UploadBatch', fields=[ ( 'id', models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name='ID' ), ), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True)), ( 'dataset', models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name='upload_batches', to='core.dataset', ), ), ], ), migrations.CreateModel( name='PendingUpload', fields=[ ( 'id', models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name='ID' ), ), ('name', models.CharField(max_length=255)), ( 'batch', models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name='pending_uploads', to='core.uploadbatch', ), ), ( 'patient', models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name='pending_uploads', to='core.patient', ), ), ], ), migrations.CreateModel( name='Image', fields=[ ( 'id', models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name='ID' ), ), ('name', models.CharField(max_length=255)), ( 'type', models.CharField( default=optimal_transport_morphometry.core.models.image.ImageType[ 'structural_mri' ], max_length=100, ), ), ( 'blob', s3_file_field.fields.S3FileField( max_length=2000, upload_to=s3_file_field.fields.S3FileField.uuid_prefix_filename, ), ), ( 'metadata', optimal_transport_morphometry.core.models.image.MetadataField( blank=True, default=dict ), ), ( 'dataset', models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name='images', to='core.dataset', ), ), ( 'patient', models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name='images', to='core.patient', ), ), ], options={ 'ordering': ['name'], }, ), migrations.AddIndex( model_name='pendingupload', index=models.Index(fields=['batch', 'name'], name='core_pendin_batch_i_520706_idx'), ), migrations.AddIndex( model_name='image', index=models.Index(fields=['dataset'], name='core_image_dataset_9750b7_idx'), ), ]
6,310
Python Basic/Convert Number to Binary.py
perfect104/python-codes
4
2023809
''' @author : CodePerfectPlus @Topic : Change Number TO Binary ''' num = 23 print(int(bin(num)[2:]))
104
client/logger.py
MajicGit/boompow
54
2024841
import sys import logging from logging.handlers import WatchedFileHandler, TimedRotatingFileHandler class WatchedTimedRotatingFileHandler(TimedRotatingFileHandler, WatchedFileHandler): def __init__(self, filename, **kwargs): super().__init__(filename, **kwargs) self.dev, self.ino = -1, -1 self._statstream() def emit(self, record): self.reopenIfNeeded() super().emit(record) def get_logger(): log_file = "logs/bpow.log" logger = logging.getLogger("bpow") logger.setLevel(logging.DEBUG) stream = logging.StreamHandler(stream=sys.stdout) stream.setFormatter(logging.Formatter("%(asctime)s %(levelname)s: %(message)s", "%H:%M:%S")) stream.setLevel(logging.INFO) logger.addHandler(stream) file = WatchedTimedRotatingFileHandler(log_file, when="d", interval=1, backupCount=30) file.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(filename)s@%(funcName)s:%(lineno)s\n%(message)s", "%Y-%m-%d %H:%M:%S %z")) file.setLevel(logging.DEBUG) logger.addHandler(file) return logger
1,083
post_gnome/setup.py
dylanrighi/GnomeTools
0
2023728
#!/usr/bin/env python """ setup.py for the post_gnome package """ # This setup is suitable for "python setup.py develop". from setuptools import setup setup( name = "post_gnome", version = "0.1.0", description = "utilities for post processing data for GNOME", long_description=open("README.rst").read(), packages = ["post_gnome",], scripts = ["scripts/gnome_nc2kmz.py", "scripts/moss2kmz_series.py", "scripts/moss2kmz_simple.py", ], author = "<NAME>", author_email = "<EMAIL>", url="http://www.response.restoration.noaa.gov/gnome", license = "LICENSE.txt", keywords = "GNOME netcdf kmz", classifiers=[ "Development Status :: 2 - Pre-Alpha", "Topic :: Utilities", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Meteorology/Oceanography", "License :: Public Domain", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "Operating System :: OS Independent", "Programming Language :: Python :: 2 :: Only", "Programming Language :: Python :: Implementation :: CPython", ], )
1,205
utils.py
arsham/GoToChar
1
2024781
# Copyright 2016 <NAME> <<EMAIL>>. All rights reserved. # Use of this source code is governed by the Apache 2.0 license # License that can be found in the LICENSE file. from sublime import Region class Constants: NEXT_MODE = "next" BACK_MODE = "back" MODES = (NEXT_MODE, BACK_MODE) RIGHT = 1 LEFT = -1 class State: """ Defines the current state of the plug-in. An object of this class the only source of the truth. """ invoked = False in_plugin = False select = False def reset(self): self.invoked = False self.in_plugin = False state_object = None def current_state(): global state_object if state_object is None: state_object = State() return state_object def remove_last(view): """ Removes the last character entered and returns it because we don't want to display it. """ position = view.sel()[0].begin() region = Region(position, position - 1) character = view.substr(region) view.run_command("left_delete") # undoing twice to remove the character and also retain the view's dirty state. view.run_command("undo") view.run_command("undo") return character def to_next(view, character): """ moves the cursor to the next occurrence of the `character` """ return _find_and_move(view, character, Constants.RIGHT) def to_back(view, character): """ moves the cursor to the previous occurrence of the `character` """ return _find_and_move(view, character, Constants.LEFT) def _find_and_move(view, character, direction): lines = {} # a dictionary of cursor region tuple to line region for sel in view.sel(): a = min(sel.a, sel.b) # normalising the selection region b = max(sel.a, sel.b) # in case of going right, the add_cell_check points to the character's position add_cell_check = 0 if direction == Constants.LEFT: # otherwise it is the left side of it, which is the previous character's position add_cell_check = -1 if a == b and view.substr(a + add_cell_check) == character: # to hop over the character if it is the character already, and look up the next one a += direction b += direction sel = Region(a, b) lines[(a, b)] = view.line(sel) regions = [] for sel, line in lines.items(): regions.append(_get_found_regions(view, character, sel, line, direction)) if regions: # because we don't want to clear the selection if there is no region view.sel().clear() for region in regions: view.sel().add(region) current_state().reset() def _get_found_regions(view, character, sel, line, direction): """ Finds the regions of where the cursor(s) should land. It the command is in select mode, the regions are apart, otherwise it is on one character. :rtype: Region """ if direction == Constants.RIGHT: line_portion = Region(sel[0], line.b) else: line_portion = Region(line.a, sel[1]) from_sel = view.substr(line_portion) if direction == Constants.RIGHT: found_pos = from_sel.find(character) else: found_pos = from_sel.rfind(character) if found_pos > 0: # otherwise we didn't find anything if current_state().select: if direction == Constants.RIGHT: a = sel[0] b = sel[0] + found_pos else: a = line.a + found_pos b = sel[1] else: if direction == Constants.RIGHT: a = b = sel[0] + found_pos else: a = b = line.a + found_pos return Region(a, b) # for clearing only the region that can be advanced, we need to # push back the current selection return Region(sel[0], sel[1])
3,921
Task4: Dock station recognition system using ROS and LIDAR/Robot_movement/scripts/move_base_simple.py
malwake-git/smartmethods-AI-track
1
2024863
#!/usr/bin/env python import rospy from std_msgs.msg import Header import rospy from geometry_msgs.msg import PoseStamped rospy.init_node("mynode") goal_publisher = rospy.Publisher("move_base_simple/goal", PoseStamped, queue_size=5) goal = PoseStamped() goal.header.seq = 1 goal.header.stamp = rospy.Time.now() goal.header.frame_id = "map" goal.pose.position.x = 1.0 goal.pose.position.y = 2.0 goal.pose.position.z = 0.0 goal.pose.orientation.x = 0.0 goal.pose.orientation.y = 0.0 goal.pose.orientation.z = 0.0 goal.pose.orientation.w = 1.0 rospy.sleep(1) goal_publisher.publish(goal) rospy.spin()
607
scheduler/tests/unit/scheduler/actions/transform_machines/test_list_machines.py
vdloo/simulacra
2
2023638
from unittest.mock import Mock from tests.testcase import TestCase from scheduler.actions.transform_machines import list_machines class TestListMachines(TestCase): def setUp(self): self.request = self.set_up_patch( 'scheduler.actions.transform_machines.Request' ) self.urlopen = self.set_up_patch( 'scheduler.actions.transform_machines.urlopen' ) self.urlopen.return_value.__exit__ = lambda a, b, c, d: None self.req_handle = Mock() self.resp = b'[{"ID":"962c903e-f206-aa23-8c8d-0a80db121078",' \ b'"Node":"cloud1","Address":' \ b'"fc03:cced:19b5:7c78:b7e5:520d:b7e3:1357",' \ b'"Datacenter":"raptiformica",' \ b'"TaggedAddresses":{"lan":' \ b'"fc03:cced:19b5:7c78:b7e5:520d:b7e3:1357",' \ b'"wan":"fc03:cced:19b5:7c78:b7e5:520d:b7e3:1357"},' \ b'"Meta":{"consul-network-segment":""},' \ b'"CreateIndex":29511,"ModifyIndex":29528},' \ b'{"ID":"757cf773-6d5d-6500-83a0-1010918b9809",' \ b'"Node":"cloud2","Address":' \ b'"fcdf:a62d:1b46:b898:761e:d753:4e5:7fd",' \ b'"Datacenter":"raptiformica","TaggedAddresses":' \ b'{"lan":"fcdf:a62d:1b46:b898:761e:d753:4e5:7fd",' \ b'"wan":"fcdf:a62d:1b46:b898:761e:d753:4e5:7fd"},' \ b'"Meta":{"consul-network-segment":""},' \ b'"CreateIndex":6,"ModifyIndex":35},' \ b'{"ID":"765104ce-8c88-9baa-2a29-6f7ee50f1719",' \ b'"Node":"host4","Address":' \ b'"fc9f:34ec:b491:293e:edb3:a890:b239:b6d6",' \ b'"Datacenter":"raptiformica","TaggedAddresses":' \ b'{"lan":"fc9f:34ec:b491:293e:edb3:a890:b239:b6d6",' \ b'"wan":"fc9f:34ec:b491:293e:edb3:a890:b239:b6d6"},' \ b'"Meta":{"consul-network-segment":""},' \ b'"CreateIndex":200,"ModifyIndex":202},' \ b'{"ID":"f45dae53-0fcc-fb73-37d9-d55816420ab5",' \ b'"Node":"retropie","Address":' \ b'"fc00:d4e0:31b6:e19:a983:e335:4569:2b26",' \ b'"Datacenter":"raptiformica","TaggedAddresses":' \ b'{"lan":"fc00:d4e0:31b6:e19:a983:e335:4569:2b26","wan":' \ b'"fc00:d4e0:31b6:e19:a983:e335:4569:2b26"},' \ b'"Meta":{"consul-network-segment":""},' \ b'"CreateIndex":182,"ModifyIndex":185}]'.decode('utf-8') self.req_handle.read.return_value = self.resp self.urlopen.return_value.__enter__ = lambda x: self.req_handle def test_list_machines_instantiates_urllib_request(self): list_machines() self.request.assert_called_once_with( 'http://localhost:8500/v1/catalog/nodes' ) def test_list_machines_opens_request(self): list_machines() self.urlopen.assert_called_once_with( self.request.return_value ) def test_list_machines_reads_request_handle(self): list_machines() self.req_handle.read.assert_called_one_with() def test_list_machines_returns_list_of_machines(self): ret = list_machines() expected_machines = [ { 'ID': '962c903e-f206-aa23-8c8d-0a80db121078', 'Node': 'cloud1', 'Address': 'fc03:cced:19b5:7c78:b7e5:520d:b7e3:1357', 'Datacenter': 'raptiformica', 'TaggedAddresses': { 'lan': 'fc03:cced:19b5:7c78:b7e5:520d:b7e3:1357', 'wan': 'fc03:cced:19b5:7c78:b7e5:520d:b7e3:1357' }, 'Meta': {'consul-network-segment': ''}, 'CreateIndex': 29511, 'ModifyIndex': 29528}, { 'ID': '757cf773-6d5d-6500-83a0-1010918b9809', 'Node': 'cloud2', 'Address': 'fcdf:a62d:1b46:b898:761e:d753:4e5:7fd', 'Datacenter': 'raptiformica', 'TaggedAddresses': { 'lan': 'fcdf:a62d:1b46:b898:761e:d753:4e5:7fd', 'wan': 'fcdf:a62d:1b46:b898:761e:d753:4e5:7fd' }, 'Meta': {'consul-network-segment': ''}, 'CreateIndex': 6, 'ModifyIndex': 35 }, { 'ID': '765104ce-8c88-9baa-2a29-6f7ee50f1719', 'Node': 'host4', 'Address': 'fc9f:34ec:b491:293e:edb3:a890:b239:b6d6', 'Datacenter': 'raptiformica', 'TaggedAddresses': { 'lan': 'fc9f:34ec:b491:293e:edb3:a890:b239:b6d6', 'wan': 'fc9f:34ec:b491:293e:edb3:a890:b239:b6d6' }, 'Meta': {'consul-network-segment': ''}, 'CreateIndex': 200, 'ModifyIndex': 202 }, { 'ID': 'f45dae53-0fcc-fb73-37d9-d55816420ab5', 'Node': 'retropie', 'Address': 'fc00:d4e0:31b6:e19:a983:e335:4569:2b26', 'Datacenter': 'raptiformica', 'TaggedAddresses': { 'lan': 'fc00:d4e0:31b6:e19:a983:e335:4569:2b26', 'wan': 'fc00:d4e0:31b6:e19:a983:e335:4569:2b26' }, 'Meta': {'consul-network-segment': ''}, 'CreateIndex': 182, 'ModifyIndex': 185 } ] self.assertEqual(expected_machines, ret)
5,724
cfn_guard_test/report.py
tiborhercz/cfn-guard-test
0
2024855
from typing import List from cfn_guard_test.rule import CfnGuardRule from cfn_guard_test.case import CfnGuardTestCase from cfn_guard_test.suites import CfnGuardTestSuites from junit_xml import TestCase, TestSuite, to_xml_report_string class CfnGuardReport: """ Understands how to create reports """ __suites: List[TestSuite] def __init__(self, suites: CfnGuardTestSuites): self.__suites = [] for suite in suites.all_suites: self.__timestamp = suite.duration self.__suites.append( TestSuite( name=suite.ruleset, test_cases=self.__get_all_test_cases(suite) ) ) @property def elapsed_sec(self) -> float: """ Because we only have the time for the whole suite we will only return this once to the case. """ timestamp = 0.0 if self.__timestamp: timestamp = self.__timestamp self.__timestamp = 0.0 return timestamp def __get_all_test_cases(self, suite): cases = [] for case in suite.all_test_cases: for rule in case.all_rules: cases.append(self.__create_test_case(case=case, rule=rule)) return cases def __create_test_case( self, case: CfnGuardTestCase, rule: CfnGuardRule ) -> TestCase: test_case = TestCase( name=rule.name, classname=case.name, elapsed_sec=self.elapsed_sec ) if rule.skipped: test_case.add_skipped_info( f'Rule {rule.name} was skipped on case #{case.number} "{case.name}"' ) if rule.failed: test_case.add_failure_info( f'Rule {rule.name} failed on case #{case.number} "{case.name}"' ) return test_case def write(self, path: str) -> None: with open(path, "w") as f: f.write(to_xml_report_string(self.__suites, prettyprint=True))
1,991
purescripto/installer.py
purescript-python/purescripto
7
2024137
import re import io import os import requests import zipfile import stat from pathlib import Path from distutils.util import get_platform tag = re.compile('refs/tags/v(\S+)') def make_executable(cmd_path): # always modify mode to READ + EXEC os.chmod(cmd_path, stat.S_IREAD | stat.S_IEXEC) def show_tags(url=r"https://github.com/purescript-python/purescript-python"): """ Use ls-remote in gitPython https://stackoverflow.com/questions/35585236/git-ls-remote-in-gitpython """ import git g = git.cmd.Git() for ref in g.ls_remote(url).split('\n'): found = tag.findall(ref.split('\t')[-1].strip()) if not found: continue yield found[0] def mk_tmplt(template): if isinstance(template, dict): def check(data, *, tmplt=tuple((k, mk_tmplt(v)) for k, v in template.items())): if not isinstance(data, dict): return False for k, v in tmplt: if k not in data: return False if not v(data[k]): return False return True elif isinstance(template, list): def check(data, *, tmplt=tuple(map(mk_tmplt, template))): if not isinstance(data, list): return False if len(data) != len(tmplt): return False for t, v in zip(tmplt, data): if not t(v): return False return True elif isinstance(template, type): def check(data, *, t=template): return isinstance(data, t) elif template is any: check = lambda _: True elif hasattr(template, 'match'): check = template.match else: def check(data, *, o=template): return data == o return check def traverse(f, data): if isinstance(data, dict): for each in data.values(): yield from traverse(f, each) elif isinstance(data, list): for each in data: yield from traverse(f, each) if f(data): yield data def gq(tmp, data): return traverse(mk_tmplt(tmp), data) def get_binary(out_path): """out_path is the directory of executable, instead of the path """ if isinstance(out_path, str): out_path = Path(out_path) elif not isinstance(out_path, Path): raise TypeError(type(out_path)) from purescripto.version import __blueprint_version__ max_fit_tag = max(filter(lambda x: x.startswith(__blueprint_version__), show_tags())) print('Downloading binaries from purescript-python/purescript-python...') data = requests.get( r"https://api.github.com/repos/purescript-python/purescript-python/releases/tags/v{}" .format(max_fit_tag)).json() print('Binaries downloaded.') plat_name = get_platform() matcher = re.compile('\S+' + re.escape(plat_name)) tmplt = {'browser_download_url': matcher} try: each = next(gq(tmplt, data)) except StopIteration: import sys print( "It seems that binaries for your platform is not available.\n" "Following way must work, but can be quite time-consuming:\n" "Firstly, Install Haskell Stack Build Tool: https://docs.haskellstack.org/en/stable/README/\n" "Second, Clone https://github.com/purescript-python/purescript-python, then do `stack install .`" ) sys.exit(1) url = each['browser_download_url'] zf = zipfile.ZipFile(io.BytesIO(requests.get(url).content)) exe = "pspy-blueprint" if 'win' in url: exe += '.exe' out_path.mkdir(exist_ok=True, parents=True, mode=0o777) zf.extract(exe, path=str(out_path)) make_executable(str(out_path / exe))
3,820
code-green/workshop/code/lambda-code.py
purcellconsult/amazon-asdi
55
2024572
import time import boto3 import json import collections import operator import datetime import os # athena database name athenaDatabase = 'ghcn' # S3 constant S3_QUERY='query-result' S3_BUCKET ='YOUR_BUCKET_HERE' # set defaults DEFAULT_CITIES = "best" # choices are 'list' (returns all cities) or 'best' (returns city with closest temp to target temp) DEFAULT_TARGET = 230 # Any int that is represented in tenths of celcius DEFAULT_DATE_HISTORY = 14 # defaults to 14 days from current day in SQL query DEFAULT_MIN_LOOKBACK = 5 # number of retries RETRY_COUNT = 15 ## override defaults with Environment variables if available if 'GLUE_DATABASE' in os.environ: athenaDatabase = os.environ['GLUE_DATABASE'] if 'S3_QUERY_OUTPUT_LOCATION' in os.environ: S3_OUTPUT = os.environ['S3_QUERY_OUTPUT_LOCATION'] else: S3_OUTPUT = 's3://' + S3_BUCKET + '/' + S3_QUERY if 'GHCN_TABLE_NAME' in os.environ: GHCN_TABLE_NAME = os.environ['GHCN_TABLE_NAME'] else: GHCN_TABLE_NAME = 'ghcntable' if 'STADIUM_TABLE_NAME' in os.environ: STADIUM_TABLE_NAME = os.environ['STADIUM_TABLE_NAME'] else: STADIUM_TABLE_NAME = 'stadium' def lambda_handler(event, context): try: city = event['queryStringParameters']['cities'] if ((city != "list") and (city != "best")): city = DEFAULT_CITIES except: city = DEFAULT_CITIES try: target = int(event['queryStringParameters']['target']) except: target = DEFAULT_TARGET try: lookbackDays = int(event['queryStringParameters']['days']) except: lookbackDays = DEFAULT_DATE_HISTORY if (lookbackDays < DEFAULT_MIN_LOOKBACK): lookbackDays = DEFAULT_MIN_LOOKBACK dateObj = datetime.date.today() - datetime.timedelta(days=lookbackDays) queryDate = int(dateObj.strftime('%Y%m%d')) # query has hardcoded elements for simplicity of this workshop query = f"""SELECT city, avg(CAST(data_value as INTEGER)) as temp FROM "{STADIUM_TABLE_NAME}" as stadium INNER JOIN "{GHCN_TABLE_NAME}" as ghcn ON stadium.station_id = ghcn.id WHERE ghcn.year_date >= '{queryDate}' AND ghcn.element = 'TAVG' GROUP BY city""" # athena client client = boto3.client('athena') # Execution response = client.start_query_execution( QueryString=query, QueryExecutionContext={ 'Database': athenaDatabase }, ResultConfiguration={ 'OutputLocation': S3_OUTPUT, } ) # get query execution id query_execution_id = response['QueryExecutionId'] print(query_execution_id) # get execution status for i in range(1, 1 + RETRY_COUNT): # get query execution query_status = client.get_query_execution(QueryExecutionId=query_execution_id) query_execution_status = query_status['QueryExecution']['Status']['State'] if query_execution_status == 'SUCCEEDED': print("STATUS:" + query_execution_status) break if query_execution_status == 'FAILED': raise Exception("STATUS:" + query_execution_status) else: print("STATUS:" + query_execution_status) time.sleep(i) else: client.stop_query_execution(QueryExecutionId=query_execution_id) raise Exception('TIME OVER') # get query results result = client.get_query_results(QueryExecutionId=query_execution_id) # Convert the result set into something a bit easier to manage i=1 stations= {} num_cities = len(result['ResultSet']['Rows']) while i < num_cities: # Pull out the station city and station avg temp from the json returned from query station_city = result['ResultSet']['Rows'][i]['Data'][0]['VarCharValue'] station_temp = int(float(result['ResultSet']['Rows'][i]['Data'][1]['VarCharValue'])) # the delta from target shows how far (in tenths of a degree) we are from the target temp delta_from_target = abs(station_temp - target) # save it in a new dict. Station[<City Name>] = [ degree delta from target, avg temp of city] stations[station_city] = [ delta_from_target, station_temp ] i = i+1 sorted_stations = sorted(stations.items(), key=operator.itemgetter(1)) stations_dict = collections.OrderedDict(sorted_stations) best_city = list(stations_dict)[0] if (city == "list"): return { 'statusCode': 200, 'headers': { 'Content-Type': 'application/json', 'Access-Control-Allow-Origin': '*' }, 'body': json.dumps(stations_dict) } elif (city == "best"): return_val = { } return_val[best_city] = stations[best_city] return { 'statusCode': 200, 'headers': { 'Content-Type': 'application/json', 'Access-Control-Allow-Origin': '*' }, 'body': json.dumps(return_val) } else: return { 'statusCode': 200, 'headers': { 'Content-Type': 'application/json', 'Access-Control-Allow-Origin': '*' }, 'body': json.dumps(stations_dict) }
5,407
yc302/1578.py
c-yan/yukicoder
0
2024147
m = 1000000007 A, B, C = map(int, input().split()) K = int(input()) print(pow(A * B * C, pow(2, K, m - 1), m))
113
python_experiments/playground/play/tex_to_normal.py
mexuaz/AccTrussDecomposition
9
2024135
if __name__ == '__main__': with open('tmp.txt') as ifs: lines = [ l.lstrip().replace('\item', '(1)').replace('\\begin{inparaenum}[(1)]', ''). replace('\end{inparaenum}', '') # .replace('$', '') for l in ifs.readlines()] lines = filter(lambda l: not l.startswith('%'), lines) line = '\n'.join(lines) new_line = line.replace('\n', ' ') max_space_num = 5 for i in range(max_space_num): new_line = new_line.replace(' ', ' ') with open('tmp_out.txt', 'w') as ofs: ofs.write(new_line)
616
tools/base.py
YuzeLiao/Column-Oriented-ML-System
3
2024686
#!/usr/bin/python # -*- coding: UTF-8 -*- class Transpose(object): """ This class is used for data transpose. """ def __init__(self): self.data = [] self.max_row_length = 0 def line_process(self, line): """ This method does some simple processing on each line of input data. """ line = line.strip().split() if self.max_row_length < len(line): self.max_row_length = len(line) return line def line_extend(self, line): """ This method extends a line's length to max_row_length. """ extend_len = self.max_row_length - len(line) if extend_len > 0: line.extend(["0"] * extend_len) return line def read_data(self, input_filename): """ This method reads data. """ input_file = open(input_filename, "r") self.data = input_file.readlines() self.data = map(self.line_process, self.data) def data_transpose(self, data): """ This method accomplishes the major work of data-transposition. """ if data is not None: self.data = data self.data = map(self.line_extend, self.data) self.data = map(list, zip(*self.data)) return self.data def data_print(self, output_filename): """ This method prints data to a file. """ output_file = open(output_filename, "w") for line in self.data: output_file.write(" ".join(line) + "\n") class ColumnBasedTranspose(object): """ This class is used to transfer data from row-based format to column-based format. """ def __init__(self, batch_size, input_filename, output_filename): self.data = [] self.max_length = 0 self.instance_count = 0 self.batch_size = batch_size self.global_max_length = 0 self.transposer = Transpose() self.input_file = open(input_filename, "r") self.output_file = open(output_filename, "w") def read_data(self): """ This method reads data. """ self.data = [] self.instance_count = 0 while self.instance_count < self.batch_size: line = self.input_file.readline() if not line: break self.data.append(line) self.instance_count += 1 def expand_line(self, line): """ This method expands a line to a dense vector. """ line = line.strip().split() last_idx = 0 result = [line[0]] for item in line[1:]: [idx, val] = item.split(":") idx = int(idx) distance = idx - int(last_idx) if distance > 1: result.extend(["0"] * (distance - 1) + [val]) last_idx = idx elif distance == 1: result.extend([val]) last_idx = idx else: result[idx] = val if self.max_length < len(result): self.max_length = len(result) return result def expand_data(self): """ This method expands data matrix. """ while 1: self.read_data() if self.instance_count == 0: break self.max_length = 0 self.data = map(self.expand_line, self.data) if self.global_max_length < self.max_length: self.global_max_length = self.max_length self.transposer.max_row_length = self.max_length self.data = self.transposer.data_transpose(self.data) self.data_print() self.output_file.write(str(self.global_max_length) + '\n') def data_print(self): """ This method prints data to a file. """ i = 0 sub = 0 while i < len(self.data): all_zero = 1 for item in self.data[i]: if item != '0': all_zero = 0 break if all_zero == 1: del self.data[i] sub += 1 else: if i != 0: self.data[i].insert(0, str(i + sub)) i += 1 if self.data: self.output_file.write(str(len(self.data)) + '\n') self.output_file.write(" ".join(self.data[0]) + '\n') for line in self.data[1:]: idx = 0 self.output_file.write(line[0] + " ") for item in line[1:]: if item != "0": self.output_file.write(str(idx) + ":" + item + " ") idx += 1 self.output_file.write('\n')
4,749
opencv/q25.py
wuwuwuyuanhang/python
1
2024900
# @Auther : wuwuwu # @Time : 2020/4/16 # @File : q25.py # @Description : 最近邻插值 import cv2 as cv import numpy as np def nearestNeighborInterpolation(img, ax=1.0, ay=1.0): """ :param img: :param ax: :param ay: :return: """"" H, W, C = img.shape aH = int(ay * H) aW = int(ax * W) # index y = np.arange(aH).repeat(aW).reshape(aW, -1) x = np.tile(np.arange(aW), (aH, 1)) y = np.round(y / ay).astype(np.int) x = np.round(x / ax).astype(np.int) dst = img[y, x] return dst.astype(np.uint8) if __name__ == '__main__': img = cv.imread('lenna.jpg') dst = nearestNeighborInterpolation(img, ax=1.5, ay=1.5) cv.imshow('input', img) cv.imshow('output', dst) cv.waitKey(0) cv.destroyAllWindows()
786
mundo_3/ex102.py
tseiiti/curso_em_video
0
2024911
from os import system, name system('cls' if name == 'nt' else 'clear') dsc = ('''DESAFIO 1002: Crie um programa que tenha uma função "fatorial" que receba dois parâmetros: o primeiro que indique o número a calcular e o outro chamado show, que será um valor lógico (opcional) indicando se será mostrado ou não na tela o processo de cálculo do fatorial. ''') def fatorial(num, show = False): """Calcula o fatorial de um número. Args: num (int): O número a ser calculado. show (bool, optional): Mostra ou não a conta. Defaults to False. Returns: string | int: O valor do Fatorial de um número n. """ res = 1 msg = '' i = 1 while i < num: msg += f'{i} x ' res *= i i += 1 res *= i msg += f'{i} = {res}' if show: return msg else: return res print(fatorial(1)) print(fatorial(2)) print(fatorial(3)) print(fatorial(5)) print(fatorial(1, True)) print(fatorial(2, True)) print(fatorial(3, True)) print(fatorial(5, True)) help(fatorial)
997
fython/instruction/xipruc.py
nicolasessisbreton/fython
41
2022645
from ..config import * from .printruc import printruc def xipruc(linecod): s = linecod if s.debug: printruc(s)
117
assistant/addressbook/queries.py
personal-assisntant-2/personal-assistant
0
2024177
from typing import List, Dict from .models import Abonent, Phone, Email, Note, Tag from django.db.models import Q from datetime import date, timedelta # , date_min: date = None, date_max: date = None def read_abonents(user, pattern: str = '', tags: list = [], date_start: date = None, date_stop: date = None) -> list: """Ищет и возвращает список экземпляров записей типа Abonent, соотвествующих параметрам поиска. Параметры поиска задаются паттерном 'pattern', списком tags и временным интервалом date_min ... date_max. Если pattern == '' (пустая строка - состояние по умолчанию), поиск осуществляется только с учетом остальных параметров. Поиск по паттерну проходит по всем текстовым и строковым полям БД: name, address, phone, email, note. Поиск по временным отметкам осуществляется по полям Abonent.birthday и Note.date (дата создания заметки) Поиск по временным отметкам реализуется по правилам: - date_min == None and date_max == None - состояние по умолчанию. Поиск по времени не осуществляется. - date_min == None and date_max == date - в результаты поиска включаются записи, временные отметки которых соотвествуют условию < date_max - date_min == date and date_max == None - в результаты поиска включаются записи, временные отметки которых соотвествуют условию > date_min - date_min == date_1 and date_max == date_2 - в результаты поиска включаются записи, временные отметки которых соотвествуют условию BETWEEN date_1 AND date_2 (попадающие в интервал, включая границы) - date_min == date_max (тип данных - date) - в выборку попадут записи в которых временные метки равны date_min """ if pattern == '': results_patt = Abonent.objects.filter(owner=user) else: #results_patt = Abonent.objects.filter(emails__email__icontains=pattern) results = Abonent.objects.filter(owner=user) results_patt = results.filter(name__icontains=pattern) r1 = results.filter(address__icontains=pattern) r2 = results.filter(notes__note__icontains=pattern) r3 = results.filter(phones__phone__icontains=pattern) r4 = results.filter(emails__email__icontains=pattern) results_patt.union(r1, r2, r3, r4) if tags == []: results_patt_tags = results_patt else: #results_patt_tags = results_patt & Abonent.objects.filter(notes__tags__tag=tags[0]) results_patt_tags = results_patt.filter(notes__tags__tag=tags[0]) for t in tags[1:len(tags)]: results_patt_tags = results_patt_tags.filter(notes__tags__tag=t) # & Abonent.objects.filter(notes__tags__tag=t) if date_start == None and date_stop == None: results_patt_tags_date = results_patt_tags elif date_start != None and date_stop == None: results_patt_tags_date_birthday = results_patt_tags.filter( birthday__gte=date_start) results_patt_tags_date_notes = results_patt_tags.filter( notes__date__gte=date_start) results_patt_tags_date = results_patt_tags_date_birthday.union( results_patt_tags_date_notes) elif date_start == None and date_stop != None: results_patt_tags_date_birthday = results_patt_tags.filter( birthday__lte=date_stop) results_patt_tags_date_notes = results_patt_tags.filter( notes__date__lte=date_stop) results_patt_tags_date = results_patt_tags_date_birthday.union( results_patt_tags_date_notes) else: results_patt_tags_date_birthday = results_patt_tags.filter( birthday__lte=date_stop) & results_patt_tags.filter( birthday__gte=date_start) results_patt_tags_date_notes = results_patt_tags.filter( notes__date__lte=date_stop) & results_patt_tags.filter( notes__date__gte=date_start) results_patt_tags_date = results_patt_tags_date_birthday.union( results_patt_tags_date_notes) return results_patt_tags_date def get_date_month_day(period : int, owner)->List[Dict]: ''' query abonenets by date in the range from today to plus 'period' days dates will compared as tuples(month , day) ''' # даты будут сравниваться как кортежи (месяц, день) date_begin = date.today() date_end = date_begin + timedelta(days=period) date_begin = (date_begin.month, date_begin.day) date_end = (date_end.month, date_end.day) abonents = Abonent.objects.filter(owner=owner, birthday__isnull=False) abonents_list = [] # из полученного полного запроса переписываются в список только подходящие for abonent in abonents: if date_begin < (abonent.birthday.month, abonent.birthday.day) < date_end: abonents_list.append({'pk': abonent.id, 'name': abonent.name, 'birthday': abonent.birthday, 'short_bd': (abonent.birthday.month, abonent.birthday.day), 'str_bd': abonent.birthday.strftime('%A %d %B %Y')}) # сортировка по (месяц, день) abonents_list.sort(key=lambda el: el['short_bd']) return abonents_list
5,327
main/models.py
hannxiao/autotrade2
0
2024931
from django.db import models from django.urls import reverse #Used to generate URLs by reversing the URL patterns import uuid class Theory(models.Model): """ Model representing a trading theory. """ name = models.CharField(max_length=200, help_text="Enter the name of theory") summary = models.TextField(max_length=1000, help_text="Enter a brief description of the theory") def __str__(self): return self.name def get_absolute_url(self): return reverse('theory-detail', args=[str(self.id)]) class Indicator(models.Model): """ Model representing a indicator. """ name = models.CharField(max_length=200, help_text="Enter the name of indicator") summary = models.TextField(max_length=1000, help_text="Enter a brief description of the indicator") related = models.ManyToManyField('self', blank=True) def display_related(self): return ', '.join([ind.name for ind in self.related.all()]) display_related.short_description = 'Related indicators' def __str__(self): return self.name def get_absolute_url(self): return reverse('indicator-detail', args=[str(self.id)]) class IndicatorInstance(models.Model): """ A specific indicator. """ id = models.UUIDField(primary_key=True, default=uuid.uuid4, help_text="Unique ID for this particular indicator") indicator = models.ForeignKey(Indicator, on_delete=models.SET_NULL, null=True) kwarg = models.CharField(max_length=200, help_text="Enter the dictionary containing indicator-related parameter", null=True, blank=True) def __str__(self): if self.indicator: return 'Instance of ' + self.indicator.name return 'null' class Strategy(models.Model): """ Model representing a Strategy (may be related to indicator or theory). """ name = models.CharField(max_length=200, help_text="Enter the name of strategy") summary = models.TextField(max_length=1000, help_text="Enter a brief description of the strategy") indicator = models.ManyToManyField(Indicator, blank=True) def display_indicator(self): return ', '.join([ind.name for ind in self.indicator.all()]) display_indicator.short_description = 'Related indicators' def __str__(self): return self.name def get_absolute_url(self): return reverse('strategy-detail', args=[str(self.id)]) class StrategyInstance(models.Model): """ Model representing a Strategy (may be related to indicator or theory). """ id = models.UUIDField(primary_key=True, default=uuid.uuid4, help_text="Unique ID for this particular strategy") strategy = models.ForeignKey(Strategy, on_delete=models.SET_NULL, null=True) kwarg = models.CharField(max_length=200, help_text="Enter the dictionary containing indicator-related parameter", null=True, blank=True) def __str__(self): if self.strategy: return 'Instance of ' + self.indicator.name return 'null' class Portfolio(models.Model): """ A combination of many single stocks. """ id = models.UUIDField(primary_key=True, default=uuid.uuid4, help_text="Unique ID for this particular portfolio") weights = models.CharField(max_length=200, help_text="Enter an array that has sum = 1") # later change it to an array container symbols = models.CharField(max_length=200, help_text="Enter a list of symbols") def __str__(self): return self.symbols
3,797
cm4/vbox/__init__.py
swsachith/cm
0
2024412
from cloudmesh.common.Shell import Shell def version(verbose=False): result = Shell.execute("vagrant", ["version"]) if verbose: return result else: lines = result.split("\n") for line in lines: if "Installed Version:" in line: return line.replace("Installed Version:", "").strip() return None
366
pedido/migrations/0009_remove_pedido_endereco.py
borbinhaa/django-pizza-website
0
2024501
# Generated by Django 3.2.7 on 2021-09-30 18:21 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('pedido', '0008_pedido_endereco'), ] operations = [ migrations.RemoveField( model_name='pedido', name='endereco', ), ]
326
rebound/python_examples/megno/problem.py
rodluger/ttv-devil
0
2024331
#!/usr/bin/python # This example integrates Jupiter and Saturn in the Solar system for a variety of initial conditions. # Alongside the normal equations of motions, IAS15 is used to integrate the variational equations. # These can be used to measure the Mean Exponential Growth of Nearby Orbits (MEGNO), a chaos indicator. # This example script runs 12^2 simulations and plots the MEGNO value. Values close to <Y>=2 correspond # to regular quasi-periodic orbits. Higher values of <Y> correspond to chaotic orbits. # Import matplotlib import matplotlib; matplotlib.use("pdf") import matplotlib.pyplot as plt from matplotlib.colors import LogNorm # Import the rebound module import rebound # Import other modules import numpy as np import multiprocessing import warnings # Runs one simulation. def simulation(par): saturn_a, saturn_e = par sim = rebound.Simulation() sim.integrator = "whfast" sim.min_dt = 5. sim.dt = 1. # These parameters are only approximately those of Jupiter and Saturn. sun = rebound.Particle(m=1.) sim.add(sun) jupiter = sim.add(primary=sun,m=0.000954, a=5.204, M=0.600, omega=0.257, e=0.048) saturn = sim.add(primary=sun,m=0.000285, a=saturn_a, M=0.871, omega=1.616, e=saturn_e) sim.move_to_com() sim.init_megno() # Hide warning messages (WHFast timestep too large) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") sim.integrate(1e3*2.*np.pi) return [sim.calculate_megno(),1./(sim.calculate_lyapunov()*2.*np.pi)] # returns MEGNO and Lypunov timescale in years ### Setup grid and run many simulations in parallel N = 100 # Grid size, increase this number to see more detail a = np.linspace(7.,10.,N) # range of saturn semi-major axis in AU e = np.linspace(0.,0.5,N) # range of saturn eccentricity parameters = [] for _e in e: for _a in a: parameters.append([_a,_e]) simulation((8,0.)) # Run simulations in parallel pool = rebound.InterruptiblePool() # Number of threads default to the number of CPUs on the system print("Running %d simulations on %d threads..." % (len(parameters), pool._processes)) res = np.nan_to_num(np.array(pool.map(simulation,parameters))) megno = np.clip(res[:,0].reshape((N,N)),1.8,4.) # clip arrays to plot saturated lyaptimescale = np.clip(np.absolute(res[:,1].reshape((N,N))),1e1,1e5) ### Create plot and save as pdf # Setup plots f, axarr = plt.subplots(2,figsize=(10,10)) extent = [a.min(), a.max(), e.min(), e.max()] for ax in axarr: ax.set_xlim(extent[0],extent[1]) ax.set_ylim(extent[2],extent[3]) ax.set_xlabel("$a_{\mathrm{Saturn}}$ [AU]") ax.set_ylabel("$e_{\mathrm{Saturn}}$") # Plot MEGNO im1 = axarr[0].imshow(megno, vmin=1.8, vmax=4., aspect='auto', origin="lower", interpolation='nearest', cmap="RdYlGn_r", extent=extent) cb1 = plt.colorbar(im1, ax=axarr[0]) cb1.solids.set_rasterized(True) cb1.set_label("MEGNO $\\langle Y \\rangle$") # Plot Lyapunov timescale im2 = axarr[1].imshow(lyaptimescale, vmin=1e1, vmax=1e5, norm=LogNorm(), aspect='auto', origin="lower", interpolation='nearest', cmap="RdYlGn", extent=extent) cb2 = plt.colorbar(im2, ax=axarr[1]) cb2.solids.set_rasterized(True) cb2.set_label("Lyapunov timescale [years]") plt.savefig("megno.pdf") ### Automatically open plot (OSX only) from sys import platform as _platform if _platform == "darwin": import os os.system("open megno.pdf")
3,478
robot_localisation/robot.py
AxelTLarsson/robot-localisation
1
2024579
""" """ import numpy as np from robot_localisation.grid import Heading from numpy.random import random_sample from robot_localisation.grid import * from enum import IntEnum class Robot: """ Representation of the actual robot. """ def __init__(self, grid, transition_matrix): """ The robot starts at a random position drawn from a uniform distribution over the fields on the grid. The transition matrix is needed to compute the next step for the robot to make. """ # pose = (row, col, heading) self.pose = (np.random.randint(0, grid.shape[0]), np.random.randint(0, grid.shape[1]), Heading(np.random.randint(0, 4))) self.grid = grid self.transition_matrix = transition_matrix def get_position(self): """ Return the true position of the robot. I.e. the (x, y) from the pose (x, y, h). """ x, y, h = self.pose return (x, y) def get_pose(self): """ Return the current pose of the robot. """ return self.pose def __str__(self): return "The robot is at: {}".format(str(self.pose)) def step(self): """ Move one step on the grid. P( keep heading | not encountering a wall) = 0.7 P( change heading | not encountering a wall) = 0.3 P( keep heading | encountering a wall) = 0.0 P( change heading | encountering a wall) = 1.0 This is all coded in the transition matrix which we reuse here for this purpose. """ # Reuse the transition matrix probabilities = self.transition_matrix[ self.grid.pose_to_index(self.pose)] values = np.array( list(range(0, self.grid.shape[0] * self.grid.shape[1] * 4))) bins = np.add.accumulate(probabilities) new_index = values[np.digitize(random_sample(1), bins)][0] self.pose = self.grid.index_to_pose(new_index) class Pos(IntEnum): """ The different possible types of positions the sensor can report. """ true = 1 surrounding = 2 next_surrounding = 3 nothing = 4 class Sensor: """ The sensor approximates the location of the robot according to: - the true location L with probability 0.1 - any of the 8 surrounding fields L_s with probability 0.05 each - any of the next 16 surrounding fields L_s2 with probability 0.025 each - nothing with probability 0.1 """ def __init__(self): self.surr = [ (-1, -1), (-1, 0), (-1, +1), (0, -1), (0, +1), (+1, -1), (+1, 0), (+1, +1) ] self.next_surr = [ (-2, -2), (-2, -1), (-2, 0), (-2, 1), (-2, 2), (-1, -2), (-1, +2), ( 0, -2), (+0, 2), (+1, -2), (+1, +2), (+2, -2), (+2, -1), (+2, 0), (+2, 1), (+2, +2) ] def get_position(self, robot): # todo: maybe rewrite as a generator, on each iteration # asking robot to move one step or should that be the # responsibility of the caller? """ Return approximate location of the robot. """ real_pos = robot.get_position() values = np.array( [Pos.true, Pos.surrounding, Pos.next_surrounding, Pos.nothing]) probabilities = np.array([0.1, 0.4, 0.4, 0.1]) bins = np.add.accumulate(probabilities) pos_type = values[np.digitize(random_sample(1), bins)][0] return { Pos.true: real_pos, Pos.surrounding: Sensor.surrounding(real_pos), Pos.next_surrounding: Sensor.next_surrounding(real_pos), Pos.nothing: None, }[pos_type] def surrounding(pos): """ Return a random adjacent position to 'pos'. """ x, y = pos choices = [(x-1, y-1), (x-1, y), (x-1, y+1), (x, y-1), (x, y+1), (x+1, y-1), (x+1, y), (x+1, y+1)] return choices[np.random.randint(len(choices))] def next_surrounding(pos): """ Return a random next-adjacent position to 'pos'. """ x, y = pos choices = [(x-2, y-2), (x-2, y-1), (x-2, y), (x-2, y+1), (x-2, y+2), (x-1, y-2), (x-1, y+2), (x, y-2), (x, y+2), (x+1, y-2), (x+1, y+2), (x+2, y-2), (x+2, y-1), (x+2, y), (x+2, y+1), (x+2, y+2)] return choices[np.random.randint(len(choices))] def get_obs_matrix(self, position, grid_shape): if position is None: return None n = grid_shape[0] * grid_shape[1] * 4 mat = np.zeros((n,)) x, y = position # index for facing north in the current position if 0 <= x < grid_shape[0] and 0 <= y < grid_shape[1]: position_index = position_to_north_state(position, grid_shape) mat[position_index:position_index+4] = 0.1 for o in self.next_surr: x_, y_ = x + o[0], y + o[1] if 0 <= x_ < grid_shape[0] and 0 <= y_ < grid_shape[1]: o_index = position_to_north_state((x_, y_), grid_shape) mat[o_index:o_index+4] = 0.025 for o in self.surr: x_, y_ = x + o[0], y + o[1] if 0 <= x_ < grid_shape[0] and 0 <= y_ < grid_shape[1]: o_index = position_to_north_state((x_, y_), grid_shape) mat[o_index:o_index+4] = 0.05 return np.diag(mat) def position_to_north_state(position, grid_shape): return (position[0] * grid_shape[1] + position[1]) * 4 if __name__ == '__main__': np.set_printoptions(linewidth=1000) sens = Sensor() obs = sens.get_obs_matrix((3, 3), (2, 2)) print(obs)
5,769
setup.py
kennyjoseph/twitter_geo_preproc
0
2024614
#!/usr/bin/env python from distutils.core import setup setup(name='tweet_geocode', version='1.0', description='Package for geocoding tweets. All code from <NAME>, forked from his repo. ' + 'Take a look at install_script.sh to install the required c/c++ libs (geos and spatialindex)', author='<NAME>', author_email='<EMAIL>', url='https://github.com/kennyjoseph/twitter_geo_preproc', requires=['shapely', 'simplejson','rtree','yajl'], packages=['tweet_geocode'], package_data={'tweet_geocode': ['data/*']}, )
580
section03/lecture011.py
JorijnInEemland/MyPythonProjects
0
2022835
print(7 / 4) # / is division print(7 % 4) # % is modulus print(50 % 5) # 50 is divisible by 5 print(20 % 2) # n mod 2 is a good way of checking whether a number is even print(2 ** 3) # ** is power print((2 + 10) * 3) # brackets work
241
experimental/datasets/utils/converters.py
CLARIN-PL/embeddings
33
2024383
from typing import Any, Dict, List import spacy from spacy.training import offsets_to_biluo_tags def convert_spacy_jsonl_to_connl_bilou( data: List[Dict[Any, Any]], nlp: spacy.Language, out_path: str ) -> None: """Convert spacy jsonl data to connl format.""" for text in data: raw_text = nlp(text["text"]) spans = text["spans"] entities = [(span["start"], span["end"], span["label"]) for span in spans] labels = offsets_to_biluo_tags(doc=raw_text, entities=entities) tokens = [tok.text for tok in raw_text] with open(out_path, "a") as f: for t, l in zip(tokens, labels): f.write(f"{t} \t {l} \n") f.write("\n")
715
src/muses/search_index/urls.py
Aincient/cleo
0
2024578
from django.conf.urls import url, include from rest_framework_extensions.routers import ExtendedDefaultRouter from .viewsets import ( CollectionItemDocumentViewSet, CollectionItemFacetsOnlyDocumentViewSet, ) __all__ = ('urlpatterns',) router = ExtendedDefaultRouter() collection_items = router.register( r'collectionitem', CollectionItemDocumentViewSet, base_name='collectionitem' ) collection_items_facets_only = router.register( r'collectionitemfacetsonly', CollectionItemFacetsOnlyDocumentViewSet, base_name='collectionitemfacetsonly' ) urlpatterns = [ url(r'^', include(router.urls)), ]
632
tests/test_parscit_extractor.py
robodasha/crossref_resolver
0
2023386
import logging import unittest import research_papers.logutils as logutils __author__ = 'robodasha' __email__ = '<EMAIL>' class TestParscitExtractor(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestParscitExtractor, self).__init__(*args, **kwargs) logutils.setup_logging() self._logger = logging.getLogger(__name__) def setUp(self): self._logger.info('Setup {0}'.format(self.__class__.__name__)) def tearDown(self): self._logger.info('Tear down {0}'.format(self.__class__.__name__)) def test_extract_file(self): self.fail() def test_extract_directory(self): self.fail() if __name__ == '__main__': unittest.main()
724
chess_engine/piece.py
rbaltrusch/chess_engine
0
2024786
# -*- coding: utf-8 -*- """ Created on Mon Feb 8 13:33:57 2021 @author: Korean_Crimson """ from chess_engine import move from chess_engine.util import convert from chess_engine.consts import PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING from chess_engine.move import InitialPawnMove class Piece: def __init__(self, moves, position, representation): self.moves = moves self.position = position self.representation = representation self.team = representation[-1] self.captured = False self.position_history = [] def __repr__(self): return f'{self.__class__.__name__}{self.position}' def compute_valid_moves(self, board): valid_squares = [] for move_ in self.moves: valid_squares_ = move_.compute_valid_moves(self.position, board, self.team) valid_squares.extend(valid_squares_) return list(set(valid_squares)) def move_to(self, position): print(f'{self.team}: {self.representation} from {convert(self.position)} to {convert(position)}') self.position = position self.position_history.append(position) class Pawn(Piece): def __init__(self, direction, position, representation): moves = [move.InitialPawnMove(direction), move.PawnMove(direction), move.PawnCapture(direction)] super().__init__(moves, position, representation) def move_to(self, position): super().move_to(position) if len(self.position_history) == 1: self.moves = [move_ for move_ in self.moves if not isinstance(move_, InitialPawnMove)] class Knight(Piece): def __init__(self, direction, position, representation): moves = [] super().__init__(moves, position, representation) class Bishop(Piece): def __init__(self, direction, position, representation): moves = [move.BishopMove(8)] super().__init__(moves, position, representation) class Rook(Piece): def __init__(self, direction, position, representation): moves = [move.RookMove()] super().__init__(moves, position, representation) class Queen(Piece): def __init__(self, direction, position, representation): moves = [move.RookMove(), move.BishopMove(8)] super().__init__(moves, position, representation) class King(Queen): def __init__(self, direction, position, representation): super().__init__(direction, position, representation) for move_ in self.moves: move_.range = 1 PIECES = {PAWN: Pawn, KNIGHT: Knight, BISHOP: Bishop, ROOK: Rook, QUEEN: Queen, KING: King}
2,651
RPF_count_CDS_nonStranded.py
zhengtaoxiao/RPF-count-CDS
2
2023770
import HTSeq import sys from collections import Counter """ usage: python RPF_counts_CDS.py bamFile gtfFile change the following parameters for specific instance: exclude_start_distance = 45 # 15 codons exclude_stop_distance = 15 # 5 codons minLen = 26 maxLen = 34 only used for non-strand specific mapping. """ # if there are multiple TIS, use the most 5' end start codon and the most 3' end stop codon # read the gtf file def readGTF(gtfFile): gtf = HTSeq.GFF_Reader(gtfFile) start_codon_sites = {} stop_codon_sites = {} CDS_features = HTSeq.GenomicArrayOfSets("auto", stranded="no") i = 0 for f in gtf: i += 1 if i % 10000 == 0: sys.stderr.write("%d GFF lines processed.\r" % i) gname = f.attr['gene_id'] if f.type == "CDS": CDS_features[f.iv] += gname if f.type == "start_codon": if gname not in start_codon_sites: start_codon_sites[gname] = f.iv.start_d else: if f.iv.strand == "+": start_codon_sites[gname] = min(f.iv.start, start_codon_sites[gname]) else: start_codon_sites[gname] = max(f.iv.start_d, start_codon_sites[gname]) if f.type == "stop_codon": if gname not in stop_codon_sites: stop_codon_sites[gname] = f.iv.end_d else: if f.iv.strand == "+": stop_codon_sites[gname] = max(f.iv.end, stop_codon_sites[gname]) else: stop_codon_sites[gname] = min(f.iv.end_d, stop_codon_sites[gname]) return start_codon_sites, stop_codon_sites, CDS_features #main function ##define the paramaters: bamFile = sys.argv[1] gtfFile = sys.argv[2] exclude_start_distance = 45 # 15 codons exclude_stop_distance = 15 # 5 codons minLen = 26 maxLen = 34 #read the gtfFile start_codon_sites, stop_codon_sites, CDS_features = readGTF(gtfFile) #read the bamFile #only unique mapped reads are used #intersection_straict mode. counts = Counter() empty = 0 ambiguous = 0 lowqual = 0 notaligned = 0 nonunique = 0 bam = HTSeq.BAM_Reader(bamFile) for r in bam: if not r.aligned: notaligned += 1 continue if r.optional_field("NH") > 1: nonunique += 1 continue if r.iv.chrom in ["MT","chrM","chrMT"]: #skip the mitochondria chrosome, change this for your instance. continue if minLen<= len(r.read.seq) <=maxLen: pass else: continue iv_seq = (co.ref_iv for co in r.cigar if co.type == "M" and co.size > 0) fs = None for iv in iv_seq: for iv2, fs2 in CDS_features[iv].steps(): if fs is None: fs = fs2.copy() else: fs = fs.intersection(fs2) if fs is None or len(fs) == 0: empty += 1 elif len(fs) >1: ambiguous += 1 else: gname = list(fs)[0] try: if min(abs(start_codon_sites[gname] - r.iv.start_d),abs(start_codon_sites[gname] - r.iv.end_d)) < exclude_start_distance: continue elif min(abs(r.iv.end_d - stop_codon_sites[gname]),abs(r.iv.start_d - stop_codon_sites[gname])) < exclude_stop_distance: continue else: counts[gname] += 1 except: counts[gname] += 1 for g in sorted(counts): print "%s\t%d" % (g, counts[g]) print "__no_feature\t%d" % empty print "__ambiguous\t%d" % ambiguous print "__too_low_aQual\t%d" % lowqual print "__not_aligned\t%d" % notaligned print "__alignment_not_unique\t%d" % nonunique
3,166
SirIsaac/transcriptionNetwork.py
sidambhire/SirIsaac
39
2022946
# TranscriptionNetwork.py # # <NAME> # 06.09.2009 # 07.05.2009 added input variables # # A SloppyCell implementation of small transcription regulation networks. # from SloppyCell.ReactionNetworks import * def TranscriptionNetworkZiv(netid='TranscriptionNetwork'): """ Creates SloppyCell transcription network with 4 species as in ZivNemWig07. Each of three transcription factors (X, Y, and Z) is regulated (either activated or inhibited) by exactly one other transcription factor. GFP is always down-regulated by transcription factor 3. For now, just implements the first circuit from ZivNemWig07 (number 1 in Figure 1) until I figure out a better way of enumerating the possibilities. """ net = Network(netid, name='Transcription Network') net.addCompartment('Comp',name='Compartment') net.addParameter( 'n', 2, isOptimizable=False ) # Hill coefficient nameList = ['TFX','TFY','TFZ','GFP'] initialConditions = [0.,0.,0.,1.] suffixList = ['X','Y','Z','G'] connectionList = ['TFX','TFX','TFY','TFZ'] # which TF regulates each signList = [-1,-1,-1,-1] # +1 activation, -1 inhibition # transcription factor species for name,IC in zip(nameList,initialConditions): net.addSpecies( name, 'Comp', IC ) # decay rates (rG set to definite number in paper) defaultr = 1. for suffix in suffixList[:-1]: net.addParameter( 'r'+suffix, defaultr, isOptimizable=True ) net.addParameter( 'rG', defaultr, isOptimizable=False) # <---- need to set this # Michaelis constants defaultK = 1. for suffix in suffixList: net.addParameter( 'K'+suffix, defaultK, isOptimizable=True ) # range parameters defaulta = 1. for suffix in suffixList: net.addParameter( 'a'+suffix, defaulta, isOptimizable=True ) # leak parameter defaulta0 = 1. net.addParameter( 'a0', defaulta0, isOptimizable=True ) # input parameters defaults = 1. for suffix in suffixList: net.addParameter( 's'+suffix, defaults, isOptimizable=False ) # reaction rate rules for name,suffix,connection,sign in \ zip(nameList,suffixList,connectionList,signList): if sign == +1 : # activated net.addRateRule( name, \ '-r'+suffix+'*'+name+' + a0 + a'+suffix+ \ '*('+connection+'/s'+suffix+')**n /'+'(K'+suffix+'**n + (' \ +connection+'/s'+suffix+')**n)' ) #net.addRateRule( name, \ # '-r'+suffix+'*'+name+' + a0 + a'+suffix+'*'+connection+'**n /' \ # +'(K'+suffix+'**n + '+connection+'**n)' ) else: # inhibited net.addRateRule( name, \ '-r'+suffix+'*'+name+' + a0 + a'+suffix+'*K'+suffix+'**n /' \ +'(K'+suffix+'**n + ('+connection+'/s'+suffix+')**n)' ) #net.addRateRule( name, \ # '-r'+suffix+'*'+name+' + a0 + a'+suffix+'*K'+suffix+'**n /' \ # +'(K'+suffix+'**n + '+connection+'**n)' ) return net
3,341
mmt/training/__init__.py
jianzhnie/MultimodalTransformer
1
2023163
''' Author: jianzhnie Date: 2021-11-18 18:19:57 LastEditTime: 2021-11-18 18:19:57 LastEditors: jianzhnie Description: '''
123
expected_results/page_content/contact_page_content.py
ikostan/ParaBankSeleniumAutomation
4
2024832
# Created by <NAME>. # GitHub: https://github.com/ikostan # LinkedIn: https://www.linkedin.com/in/egor-kostan/ from expected_results.page_content.base_page_content import BasePageContent class ContactPageContent(BasePageContent): """ Holds expected results/values for Contact web page """ URL = BasePageContent.URL + 'contact.htm' TITLE = BasePageContent.TITLE + 'Customer Care' DESCRIPTION = 'Email support is available by filling out the following form.' THANK_YOU = 'Thank you ' SUCCESS_MESSAGE = 'A Customer Care Representative will be contacting you.' CONTACT_FORM = { 'name': {'title': 'Name:', 'id': 'name', "name": 'name', 'class': 'input', 'type': 'text', 'error': 'Name is required.'}, 'email': {'title': 'Email:', 'id': 'email', "name": 'email', 'class': 'input', 'type': 'text', 'error': 'Email is required.'}, "phone": {'title': 'Phone:', 'id': 'phone', "name": 'phone', 'class': 'input', 'type': 'text', 'error': 'Phone is required.'}, 'message': {'title': 'Message:', 'id': 'message', "name": 'message', 'class': 'input', 'type': 'text', 'error': 'Message is required.'}, 'button': {'value': 'Send to Customer Care', 'class': 'button', 'type': 'submit'} }
1,474
examples/layout_rectangles.py
kendallreid/popsicle
60
2024711
import sys sys.path.insert(0, "../") import math from popsicle import juce_gui_basics from popsicle import juce, START_JUCE_COMPONENT class MainContentComponent(juce.Component): header = juce.TextButton() sidebar = juce.TextButton() limeContent = juce.TextButton() grapefruitContent = juce.TextButton() lemonContent = juce.TextButton() orangeContent = juce.TextButton() footer = juce.TextButton() def __init__(self): super().__init__() self.header.setColour(juce.TextButton.buttonColourId, juce.Colours.cornflowerblue) self.header.setButtonText("Header") self.addAndMakeVisible(self.header) self.footer.setColour(juce.TextButton.buttonColourId, juce.Colours.cornflowerblue) self.footer.setButtonText("Footer") self.addAndMakeVisible(self.footer) self.sidebar.setColour(juce.TextButton.buttonColourId, juce.Colours.grey) self.sidebar.setButtonText("Sidebar") self.addAndMakeVisible(self.sidebar) self.limeContent.setColour(juce.TextButton.buttonColourId, juce.Colours.lime) self.addAndMakeVisible(self.limeContent) self.grapefruitContent.setColour (juce.TextButton.buttonColourId, juce.Colours.yellowgreen) self.addAndMakeVisible(self.grapefruitContent) self.lemonContent.setColour (juce.TextButton.buttonColourId, juce.Colours.yellow) self.addAndMakeVisible(self.lemonContent) self.orangeContent.setColour(juce.TextButton.buttonColourId, juce.Colours.orange) self.addAndMakeVisible(self.orangeContent) self.setSize(400, 400) def paint(self, g): g.fillAll(juce.Colours.darkgrey) def resized(self): area = self.getLocalBounds() headerFooterHeight = 36 self.header.setBounds(area.removeFromTop (headerFooterHeight)) self.footer.setBounds(area.removeFromBottom (headerFooterHeight)) sidebarWidth = 80 self.sidebar.setBounds(area.removeFromLeft (sidebarWidth)) contentItemHeight = 24 self.limeContent.setBounds (area.removeFromTop (contentItemHeight)) self.grapefruitContent.setBounds (area.removeFromTop (contentItemHeight)) self.lemonContent.setBounds (area.removeFromTop (contentItemHeight)) self.orangeContent.setBounds (area.removeFromTop (contentItemHeight)) if __name__ == "__main__": START_JUCE_COMPONENT(MainContentComponent, name="Advanced GUI layout techniques", width=400, height=400)
2,524
packages/micropython-official/v1.12/esp32/stubs/select.py
TheVinhLuong102/micropy-stubs
18
2024942
""" Module: 'select' on esp32 1.12.0 """ # MCU: (sysname='esp32', nodename='esp32', release='1.12.0', version='v1.12 on 2019-12-26', machine='ESP32 module with ESP32') # Stubber: 1.3.2 POLLERR = 8 POLLHUP = 16 POLLIN = 1 POLLOUT = 4 def poll(): pass def select(): pass
279
data_process/change_data_format_excel2tsv.py
yuejiaxiang/semEvel2020_task8
0
2023128
# -*- coding: UTF-8 -*- # @Time : 2021/1/25 # @Author : <EMAIL> # Apache License # Copyright©2020-2021 <EMAIL> All Rights Reserved import json import os import math import pandas as pd import numpy as np from data_process.change_data_format_unit import excel2tsv_unit, save_data, clean_pre_tsv_format def isnan(thing): if type(thing) != float: return False return math.isnan(thing) def get_b(text, item, slice_idx, token): token = token.replace('10.0', '10') token = token.replace('11.0', '11') token = token.replace('12.0', '12') token = token.replace('13.0', '13') token = token.replace('14.0', '14') token = token.replace('15.0', '15') token = token.replace('16.0', '16') token = token.replace('17.0', '17') token = token.replace('18.0', '18') token = token.replace('19.0', '19') token = token.replace('1.0', '1') token = token.replace('2.0', '2') token = token.replace('3.0', '3') token = token.replace('4.0', '4') token = token.replace('5.0', '5') token = token.replace('6.0', '6') token = token.replace('7.0', '7') token = token.replace('8.0', '8') token = token.replace('9.0', '9') token = token.replace('0.0', '0') t1 = 0 t2 = 1 try: if len(token) > 0: if '-' in token: x = str(token).split('-') else: x = str(token).split('$') t1 = int(x[0]) if len(x) > 1: t2 = int(x[1]) except Exception as e: return -1 if t1 >= len(slice_idx): return -1 end = slice_idx[t1] for i in range(t2): b = text.find(item, end) end = b + len(item) return b def excel2tsv(data, out_path): ann_id = 0 token_id = 0 para_id_old = '-1' anno_set = {} rel = {} um = {} for excel_line, d in enumerate(data): if not isnan(d[0]): para_id = d[0] if not isnan(d[0]) else '' sent_idx = json.loads(d[1]) if not isnan(d[1]) else '' sent_text = str(d[2]) if not isnan(d[2]) else '' slice_idx = json.loads(d[3]) if not isnan(d[3]) else '' quantity = str(d[5]) if not isnan(d[5]) else '' quantity_line = str(d[6]).strip() if not isnan(d[6]) else '' unit = str(d[7]).strip() if not isnan(d[7]) else '' mod = str(d[8]).strip().split(' ') if not isnan(d[8]) else [''] property = str(d[9]) if not isnan(d[9]) else '' property_line = str(d[10]).strip() if not isnan(d[10]) else '' entity = str(d[11]) if not isnan(d[11]) else '' entity_line = str(d[12]).strip() if not isnan(d[12]) else '' quantity_Tid = '' property_Tid = '' for mo in mod: if mo not in ['', 'IsApproximate', 'IsCount', 'IsRange', 'IsList', 'IsMean', 'IsMedian', 'IsMeanHasSD', 'HasTolerance', 'IsRangeHasTolerance']: print('illegal mod {} - {}'.format(excel_line + 2, mo)) if para_id: if para_id != para_id_old: if len(anno_set) > 0: tsv = excel2tsv_unit(anno_set, rel, um, para_id_old) out_put_file = os.path.join(out_path, para_id_old + '.tsv') save_data(tsv, out_put_file) ann_id = 0 token_id = 0 anno_set = {} rel = {} um = {} para_id_old = para_id anno_set[ann_id] = [] if quantity: b = get_b(sent_text, quantity, slice_idx, quantity_line) e = b + len(quantity) if sent_text[b:e] != quantity: print('not match {} - {}'.format(excel_line+2, 'quantity')) token_name = 'T' + str(ann_id) + '-' + str(token_id) quantity_Tid = token_name token_id += 1 um[token_name] = {'Unit': unit, 'modifier': mod} anno_set[ann_id].append([b+sent_idx[0], e+sent_idx[0], ann_id, token_name, 'Quantity', quantity]) if property: b = get_b(sent_text, property, slice_idx, property_line) e = b + len(property) if sent_text[b:e] != property: print('not match {} - {}'.format(excel_line+2, 'property')) token_name = 'T' + str(ann_id) + '-' + str(token_id) property_Tid = token_name token_id += 1 anno_set[ann_id].append([b+sent_idx[0], e+sent_idx[0], ann_id, token_name, 'MeasuredProperty', property]) rel[token_name] = ['HasQuantity', quantity_Tid] if entity: b = get_b(sent_text, entity, slice_idx, entity_line) e = b + len(entity) if sent_text[b:e] != entity: print('not match {} - {}'.format(excel_line+2, 'entity')) token_name = 'T' + str(ann_id) + '-' + str(token_id) token_id += 1 anno_set[ann_id].append([b+sent_idx[0], e+sent_idx[0], ann_id, token_name, 'MeasuredEntity', entity]) if property_Tid: rel[token_name] = ['HasProperty', property_Tid] else: rel[token_name] = ['HasQuantity', quantity_Tid] ann_id += 1 if len(anno_set) > 0: tsv = excel2tsv_unit(anno_set, rel, um, para_id) out_put_file = os.path.join(out_path, para_id_old + '.tsv') save_data(tsv, out_put_file) return def generate_tsv(file, out_path): clean_pre_tsv_format(path=out_path) sheet = pd.read_excel(file, header=None, skiprows=1) data = np.array(sheet).tolist() excel2tsv(data, out_path) if __name__ == '__main__': # generate_tsv('human/test_anno1_20210126.xlsx', '../MeasEval/data/human_eval_anno1') # generate_tsv('human/test_anno2.xlsx', '../MeasEval/data/human_eval_anno2') # generate_tsv('human/test_anno3.xlsx', '../MeasEval/data/human_eval_anno3') generate_tsv('data_enhancement/NER_union_roberta_quantity_with_roberta_joint_ERE_isoQ_MOD1.xlsx', '../ner_process/pre_tsv_format')
6,043
Alphabetic Patterns/alphabeticpattern58.py
vaidehisinha1/Python-PatternHouse
0
2024742
alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" print("Enter the no of rows: ") n = int(input()) for i in range(0, n): for j in range(0, i+1): print(alpha[i], end=" ") for k in range(0,n-i-1): print("*",end=" ") print() # Enter the no of rows: # 5 # A * * * * # B B * * * # C C C * * # D D D D * # E E E E E
345
vision/module/__init__.py
pieperm/IARC-2020
12
2024511
""" module __init__. Identifies "module" as a package in order to import submodules. """ import sys import os sys.path.append(os.path.dirname(__file__)) try: from location import ModuleLocation from region_of_interest import get_region_of_interest from module_bounding import get_module_bounds from module_orientation import get_module_orientation, get_module_roll from module_depth import get_module_depth except ImportError as e: print(f"module/__init__.py failed: {e}")
502
Chapter15/DigitsClassification/DigitsClassification-ConvNet_Keras.py
sim42/SCML
0
2024044
""" Handwritten Digit Classification using Convolutional Neural Network and Keras MNIST """ import numpy as np from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.datasets import mnist import time (X_train, y_train), (X_test, y_test) = mnist.load_data("mnist.npz") # Scale images to the [0, 1] range X_train = X_train.astype("float32") / 255 X_test = X_test.astype("float32") / 255 # Make sure images have shape (28, 28, 1) X_train = np.expand_dims(X_train, -1) X_test = np.expand_dims(X_test, -1) num_classes = 10 # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) input_shape = (28, 28, 1) model = keras.Sequential( [ keras.Input(shape=input_shape), layers.Conv2D(8, kernel_size=(5, 5), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Conv2D(8, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dropout(0.6), #layers.Dense(100, activation="sigmoid"), layers.Dense(num_classes, activation="softmax"), ] ) # Adaptive Moment Estimation model.compile(loss="categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.9), metrics=["accuracy"]) batch_size = 20 epochs = 10 time_start = time.time() model.fit(X_train[:10000], y_train[:10000], batch_size=batch_size, epochs=epochs, validation_split=0.1) time_end = time.time() print("Times Used %.2f S"%(time_end - time_start)) score = model.evaluate(X_test[:10000], y_test[:10000], verbose=0) print("Test loss:", score[0]) print("Test accuracy:", score[1])
1,729
src/opcua_webhmi_bridge/frontend_messaging.py
renovate-tests/opcua-webhmi-bridge
0
2024564
"""Management of messaging changes to frontend application.""" import asyncio import logging from json.decoder import JSONDecodeError from typing import Dict, Union from aiohttp import ClientError, ClientSession, ClientTimeout, web from .config import CentrifugoSettings from .library import AsyncTask, MessageConsumer from .messages import ( HeartBeatMessage, LinkStatus, MessageType, OPCDataChangeMessage, OPCStatusMessage, ) OPCMessage = Union[OPCDataChangeMessage, OPCStatusMessage] HEARTBEAT_TIMEOUT = 5 _logger = logging.getLogger(__name__) class FrontendMessagingWriter(MessageConsumer[OPCMessage]): """Handles signalization to frontend.""" logger = _logger purpose = "Frontend messaging publisher" def __init__(self, config: CentrifugoSettings): """Initializes frontend signalization. Args: config: Centrifugo related configuration options. """ super().__init__() self._config = config async def task(self) -> None: """Implements frontend signalization asynchronous task.""" api_key = self._config.api_key.get_secret_value() headers = {"Authorization": f"apikey {api_key}"} async with ClientSession( headers=headers, timeout=ClientTimeout(total=10) ) as session: while True: message: Union[OPCMessage, HeartBeatMessage] try: message = await asyncio.wait_for( self._queue.get(), timeout=HEARTBEAT_TIMEOUT ) except asyncio.TimeoutError: message = HeartBeatMessage() command = { "method": "publish", "params": { "channel": message.message_type.value, "data": message.frontend_data, }, } try: async with session.post(self._config.api_url, json=command) as resp: resp.raise_for_status() resp_data = await resp.json() if (error := resp_data.get("error")) is not None: _logger.error( "%s - Centrifugo API error: %s %s", self.purpose, error["code"], error["message"], ) except ClientError as err: _logger.error("%s error: %s", self.purpose, err) class CentrifugoProxyServer(AsyncTask): """Centrifugo HTTP proxy server.""" logger = _logger purpose = "Centrifugo proxy server" def __init__( self, config: CentrifugoSettings, messaging_writer: FrontendMessagingWriter ) -> None: """Initialize Centrifugo proxy server instance. Args: config: Centrifugo related configuration options. messaging_writer: Instance of frontend signalization task. """ self._config = config self._messaging_writer = messaging_writer self._last_opc_data: Dict[str, OPCDataChangeMessage] = {} self.last_opc_status = OPCStatusMessage(LinkStatus.Down) def clear_last_opc_data(self) -> None: """Clears the record of last OPC-UA data received.""" self._last_opc_data = {} def record_last_opc_data(self, message: OPCDataChangeMessage) -> None: """Records the last OPC-UA data received for each node ID. Args: message: The message to add to the record. """ self._last_opc_data[message.node_id] = message async def centrifugo_subscribe(self, request: web.Request) -> web.Response: """Handle Centrifugo subscription requests.""" def _error(code: int, message: str) -> web.Response: return web.json_response({"error": {"code": code, "message": message}}) try: context = await request.json() channel = context.get("channel") except JSONDecodeError: raise web.HTTPInternalServerError(reason="JSON decode error") except AttributeError: raise web.HTTPBadRequest(reason="Bad request format") if channel is None: return _error(1000, "Missing channel field") elif channel == MessageType.OPC_DATA_CHANGE: for message in self._last_opc_data.values(): self._messaging_writer.put(message) elif channel == MessageType.OPC_STATUS: self._messaging_writer.put(self.last_opc_status) try: MessageType(channel) except ValueError: return _error(1001, "Unknown channel") return web.json_response({"result": {}}) async def task(self) -> None: """Implements Centrifugo proxy asynchronous task.""" app = web.Application() app.router.add_post("/centrifugo/subscribe", self.centrifugo_subscribe) runner = web.AppRunner(app) await runner.setup() try: site = web.TCPSite(runner, None, self._config.proxy_port) await site.start() _logger.info("Centrifugo proxy server started") while True: await asyncio.sleep(3600) finally: await runner.cleanup()
5,404
src/client/client.py
uncle-lv/mini-redis-python
0
2023671
import socket from loguru import logger class Client: def __init__(self, host: str = '127.0.0.1', port: int = 6379) -> None: self.host = host self.port = port self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.connect((host, port)) logger.info('The client has connected at {}:{}'.format(host, port)) def send(self, msg: bytes) -> int: logger.info('Send message: {}'.format(msg)) return self.sock.send(msg) def recv(self, buf_size: int = 1024) -> bytes: return self.sock.recv(buf_size) def close(self) -> None: self.sock.close() logger.info('Client has closed.') client = Client() client.send(b'*3\r\n$3\r\nSET\r\n$5\r\nHello\r\n$5\r\nWorld\r\n') logger.info('Receive: {}'.format(client.recv())) client.close()
874
LeetCodeBook/array/252-canAttendMeetings.py
samprasgit/PythonAlgorithmBasis
0
2024411
class Solution(object): def canAttendMeetings(self, nums): n = len(nums) nums.sort(key=lambda x: x.start) for i in range(1, n): if nums[i - 1].end > nums[i].start: return False return True if __package__ == "__main__": nums = [[0, 30], [5, 10], [15, 20]] nums1 = [[7, 10], [2, 4]] s = Solution() res = s.canAttendMeetings(nums1)
418
configs/pspnet_wsss/pspnet_scalenet101_40kx32_coco_urn.py
XMed-Lab/URN
28
2023441
_base_ = './pspnet_r50-d8_40kx32_coco.py' model = dict( pretrained='data/models/scalenet/weights/scalenet101.pth', backbone=dict( type='ScaleNet', layers=[3, 4, 23, 3], structure='data/models/scalenet/structures/scalenet101.json', out_indices=(0, 1, 2, 3), strides=(1, 2, 1, 1), dilations=(1, 1, 2, 4), norm_eval=False), decode_head=dict( in_channels=2048, loss_decode=dict(weight_thresh=0.05)), auxiliary_head=dict( in_channels=1024, loss_decode=dict(weight_thresh=0.05)) ) # 512 out of memory, so reduce to 448 train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(2048, 448), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=(448, 448), cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size=(448, 448), pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] data = dict( train=dict(pipeline=train_pipeline, ann_dir='voc_format/urn_s101_coco') )
1,308
tests/resource_test.py
bkbarry/swagger-py
0
2023747
#!/usr/bin/env python # # Copyright (c) 2014, Yelp, Inc. # """Swagger client tests to validate 'resource' declarations A sample 'resource' is listed below. { "apiVersion": "1.0.0", "swaggerVersion": "1.2", "basePath": "http://petstore.swagger.wordnik.com/api", "produces": [ "application/json" ], "apis": [...] } """ import json import unittest import httpretty from swaggerpy.client import SwaggerClient, Resource, Operation from swaggerpy.processors import SwaggerError class ResourceTest(unittest.TestCase): def setUp(self): parameter = { "paramType": "query", "name": "test_param", "type": "string" } operation = { "method": "GET", "nickname": "testHTTP", "type": "void", "parameters": [parameter] } api = { "path": "/test_http", "operations": [operation] } self.response = { "swaggerVersion": "1.2", "basePath": "/", "apis": [api] } def register_urls(self): httpretty.register_uri( httpretty.GET, "http://localhost/api-docs", body=json.dumps( {"swaggerVersion": "1.2", "apis": [{"path": "/api_test"}]})) httpretty.register_uri( httpretty.GET, "http://localhost/api-docs/api_test", body=json.dumps(self.response)) @httpretty.activate def test_error_on_wrong_swagger_version(self): self.response["swaggerVersion"] = "XYZ" self.register_urls() self.assertRaises(SwaggerError, SwaggerClient, u'http://localhost/api-docs') @httpretty.activate def test_error_on_missing_attr(self): def iterate_test(field): self.response.pop(field) self.register_urls() self.assertRaises(SwaggerError, SwaggerClient, u'http://localhost/api-docs') [iterate_test(field) for field in ( 'swaggerVersion', 'basePath', 'apis')] # Use baesPath as api domain if it is '/' in the API declaration @httpretty.activate def test_correct_route_with_basePath_as_slash(self): httpretty.register_uri( httpretty.GET, "http://localhost/test_http?query=foo", body='[]') self.register_urls() resource = SwaggerClient(u'http://localhost/api-docs').api_test resp = resource.testHTTP(test_param="foo").result() self.assertEqual([], resp) @httpretty.activate def test_append_base_path_if_base_path_isnt_absolute(self): self.response["basePath"] = "/append" httpretty.register_uri( httpretty.GET, "http://localhost/append/test_http?", body='[]') self.register_urls() resource = SwaggerClient(u'http://localhost/api-docs').api_test resource.testHTTP(test_param="foo").result() self.assertEqual(["foo"], httpretty.last_request().querystring['test_param']) @httpretty.activate def test_setattrs_on_client_and_resource(self): self.register_urls() client = SwaggerClient(u'http://localhost/api-docs') self.assertTrue(isinstance(client.api_test, Resource)) self.assertTrue(isinstance(client.api_test.testHTTP, Operation)) @httpretty.activate def test_api_base_path_if_passed_is_always_used_as_base_path(self): httpretty.register_uri( httpretty.GET, "http://foo/test_http?", body='') self.response["basePath"] = "http://localhost" self.register_urls() resource = SwaggerClient(u'http://localhost/api-docs', api_base_path='http://foo').api_test resource.testHTTP(test_param="foo").result() self.assertEqual(["foo"], httpretty.last_request().querystring['test_param']) # Use basePath mentioned in the API declaration only if # it does not start with '/' & no api_base_path is provided in the params @httpretty.activate def test_correct_route_with_basePath_no_slash(self): httpretty.register_uri( httpretty.GET, "http://localhost/lame/test/test_http?query=foo", body=u'""') self.response["basePath"] = "http://localhost/lame/test" self.register_urls() resource = SwaggerClient(u'http://localhost/api-docs').api_test resp = resource.testHTTP(test_param="foo").result() self.assertEqual('', resp) if __name__ == '__main__': unittest.main()
4,630
jupyterfs/extension.py
ceball/jupyter-fs
0
2024498
# ***************************************************************************** # # Copyright (c) 2019, the jupyter-fs authors. # # This file is part of the jupyter-fs library, distributed under the terms of # the Apache License 2.0. The full license can be found in the LICENSE file. # from __future__ import print_function import json from notebook.utils import url_path_join from notebook.base.handlers import IPythonHandler from .meta_contents_manager import MetaContentsManager class GetHandler(IPythonHandler): def initialize(self, keys=None): # dont append colon for default self.keys = keys or [] def get(self): '''Returns all the available contents manager prefixes e.g. if the contents manager configuration is something like: { "file": LargeFileContentsManager, "s3": S3ContentsManager, "samba": SambaContentsManager } the result here will be: ["file", "s3", "samba"] which will allow the frontent to instantiate 3 new filetrees, one for each of the available contents managers. ''' self.finish(json.dumps(self.keys)) def load_jupyter_server_extension(nb_server_app): """ Called when the extension is loaded. Args: nb_server_app (NotebookWebApplication): handle to the Notebook webserver instance. """ web_app = nb_server_app.web_app base_url = web_app.settings['base_url'] host_pattern = '.*$' managers = nb_server_app.config.get('JupyterFS', {}).get('contents_managers', {}) if isinstance(nb_server_app.contents_manager, MetaContentsManager): nb_server_app.contents_manager.init(managers) print('Jupyter-fs active with {} managers'.format(len(nb_server_app.contents_manager._contents_managers))) print('Installing jupyter-fs handler on path %s' % url_path_join(base_url, 'multicontents')) web_app.add_handlers(host_pattern, [(url_path_join(base_url, 'multicontents/get'), GetHandler, {'keys': list(nb_server_app.contents_manager._contents_managers.keys())})]) else: print('Not using jupyter-fs')
2,151
tdameritrade/urls.py
t-triobox/tdameritrade
528
2023954
BASE = "https://api.tdameritrade.com/v1/" ######################## # Accounts and Trading # ######################## # https://developer.tdameritrade.com/account-access/apis # ORDERS CANCEL_ORDER = BASE + "accounts/{accountId}/orders/{orderId}" # DELETE GET_ORDER = BASE + "accounts/{accountId}/orders/{orderId}" # GET GET_ORDERS_BY_PATH = BASE + "accounts/{accountId}/orders" # GET GET_ORDER_BY_QUERY = BASE + "orders" # GET PLACE_ORDER = BASE + "accounts/{accountId}/orders" # POST REPLACE_ORDER = BASE + "accounts/{accountId}/orders/{orderId}" # PUT GET_ORDER_BY_PATH_ARGS = ("maxResults", "fromEnteredTime", "toEnteredTime", "status") GET_ORDER_BY_QUERY_ARGS = ( "accountId", "maxResults", "fromEnteredTime", "toEnteredTime", "status", ) STATUS_VALUES = ( "AWAITING_PARENT_ORDER", "AWAITING_CONDITION", "AWAITING_MANUAL_REVIEW", "ACCEPTED", "AWAITING_UR_OUT", "PENDING_ACTIVATION", "QUEUED", "WORKING", "REJECTED", "PENDING_CANCEL", "CANCELED", "PENDING_REPLACE", "REPLACED", "FILLED", "EXPIRED", ) # maxResults: int # fromEnteredTime: yyyy-MM-dd # toEnteredTime: yyyy-MM-dd # status: STATUS_VALUES # SAVED ORDERS CREATE_SAVED_ORDER = BASE + "accounts/{accountId}/savedorders" # POST DELETE_SAVED_ORDER = BASE + "accounts/{accountId}/savedorders/{savedOrderId}" # DELETE GET_SAVED_ORDER = BASE + "accounts/{accountId}/savedorders/{savedOrderId}" # GET GET_SAVED_ORDER_BY_PATH = BASE + "accounts/{accountId}/savedorders" # GET REPLACE_SAVED_ORDER = BASE + "accounts/{accountId}/savedorders/{savedOrderId}" # PUT # ACCOUNTS GET_ACCOUNT = BASE + "accounts/{accountId}" # GET GET_ACCOUNTS = BASE + "accounts" # GET ################## # AUTHENTICATION # ################## # https://developer.tdameritrade.com/authentication/apis ACCESS_TOKEN = BASE + "oauth2/token" # POST ACCESS_TOKEN_ARGS = ( "grant_type", "refresh_token", "access_type", "code", "client_id", "redirect_uri", ) ############### # INSTRUMENTS # ############### # https://developer.tdameritrade.com/instruments/apis SEARCH_INSTRUMENTS = BASE + "instruments" # GET SEARCH_INSTRUMENTS_ARGS = ("symbol", "projection") SEARCH_INSTRUMENT_PROJECTION = ( "symbol-search", "symbol-regex", "desc-search", "desc-regex", "fundamental", ) GET_INSTRUMENT = BASE + "instruments/{cusip}" # GET ################ # MARKET HOURS # ################ # https://developer.tdameritrade.com/market-hours/apis GET_HOURS_FOR_MULTIPLE_MARKETS = BASE + "marketdata/hours" # GET GET_HOURS_FOR_MULTIPLE_MARKETS_ARGS = ("markets", "date") MARKETS_VALUES = ("EQUITY", "OPTION", "FUTURE", "BOND", "FOREX") GET_HOURS_FOR_SINGLE_MARKET = BASE + "marketdata/{market}/hours" # GET GET_HOURS_FOR_SINGLE_MARKET_ARGS = "date" # date: yyyy-MM-dd or yyyy-MM-dd'T'HH:mm::ssz ########## # MOVERS # ########## # https://developer.tdameritrade.com/movers/apis MOVERS = BASE + "marketdata/{index}/movers" # GET MOVERS_ARGS = ("direction", "change") DIRECTION_VALUES = ("up", "down") CHANGE_VALUES = ("value", "percent") ################# # OPTION CHAINS # ################# # https://developer.tdameritrade.com/option-chains/apis GET_OPTION_CHAIN = BASE + "marketdata/chains" # GET OPTION_CHAIN_ARGS = ( "symbol", "contractType", "strikeCount", "includeQuotes", "strategy", "interval", "strike", "range", "fromDate", "toDate", "volatility", "underlyingPrice", "interestRate", "daysToExpiration", "expMonth", "optionType", ) CONTRACT_TYPE_VALUES = ("CALL", "PUT", "ALL") STRATEGY_VALUES = ( "SINGLE", "ANALYTICAL", "COVERED", "VERTICAL", "CALENDAR", "STRANGLE", "STRADDLE", "BUTTERFLY", "CONDOR", "DIAGONAL", "COLLAR", "ROLL", ) RANGE_VALUES = ("ITM", "NTM", "OTM", "SAK", "SBK", "SNK", "ALL") OPTION_TYPE_VALUES = ("S", "NS", "ALL") OPTION_EXPMONTH_VALUES = ( "JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC", "ALL", ) ################# # PRICE HISTORY # ################# # https://developer.tdameritrade.com/price-history/apis GET_PRICE_HISTORY = BASE + "marketdata/{symbol}/pricehistory" # GET GET_PRICE_HISTORY_ARGS = ( "periodType", "period", "frequencyType", "frequency", "endDate", "startDate", "needExtendedHoursData", ) PERIOD_TYPE_VALUES = ("day", "month", "year", "ytd") FREQUENCY_TYPE_VALUES = ("minute", "daily", "weekly", "monthly") ########## # QUOTES # ########## # https://developer.tdameritrade.com/quotes/apis GET_QUOTE = BASE + "marketdata/{symbol}/quotes" # GET GET_QUOTES = BASE + "marketdata/quotes" # GET GET_QUOTES_ARGS = ("symbol",) ####################### # TRANSACTION HISTORY # ####################### # https://developer.tdameritrade.com/transaction-history/apis GET_TRANSACTION = BASE + "accounts/{accountId}/transactions/{transactionId}" # GET GET_TRANSACTIONS = BASE + "accounts/{accountId}/transactions" # GET GET_TRANSACTIONS_ARGS = ("type", "symbol", "startDate", "endDate") GET_TRANSCATION_TYPE_VALUES = ( "ALL", "TRADE", "BUY_ONLY", "SELL_ONLY", "CASH_IN_OR_CASH_OUT", "CHECKING", "DIVIDEND", "INTEREST", "OTHER", "ADVISOR_FEES", ) ################### # User Info/Prefs # ################### # https://developer.tdameritrade.com/user-principal/apis GET_PREFERENCES = BASE + "accounts/{accountId}/preferences" # GET GET_STREAMER_SUBSCRIPTION_KEYS = BASE + "userprincipals/streamersubscriptionkeys" # GET GET_STREAMER_SUBSCRIPTION_KEYS_ARGS = ("accountIds",) GET_USER_PRINCIPALS = BASE + "userprincipals" # GET GET_USER_PRINCIPALS_ARGS = ("fields",) USER_PRINCIPALS_FIELDS_VALUES = ( "streamerSubscriptionKeys", "streamerConnectionInfo", "preferences", "surrogateIds", ) UPDATE_PREFERENCES = BASE + "accounts/{accountId}/preferences" # PUT ############# # WATCHLIST # ############# # https://developer.tdameritrade.com/watchlist/apis CREATE_WATCHLIST = BASE + "accounts/{accountId}/watchlists" # POST DELETE_WATCHLIST = BASE + "accounts/{accountId}/watchlists/{watchlistId}" # DELETE GET_WATCHLIST = BASE + "accounts/{accountId}/watchlists/{watchlistId}" # GET GET_WATCHLISTS_MULTIPLE_ACCOUNTS = BASE + "accounts/watchlists" # GET GET_WATCHLISTS = BASE + "accounts/{accountId}/watchlists" # GET REPLACE_WATCHLIST = BASE + "accounts/{accountId}/watchlists/{watchlistId}" # PUT UPDATE_WATCHLIST = BASE + "accounts/{accountId}/watchlists/{watchlistId}" # PATCH
6,569
pyapdl/sections.py
JorgeDeLosSantos/pyapdl
16
2024436
# -*- coding: utf-8 -*- class Section(object): def __init__(self): pass class RectangleSection(Section): """ Rectangle section Parameters ---------- b : int, float Rectangle base h : int, float Rectangle height """ def __init__(self,b,h): Section.__init__(self) self.b = b self.h = h self.type = "RECT" def get_data(self): self.data = (self.b,self.h,2,2) return (len(self.data)*"%s,")%self.data class ISection(Section): """ Creates a ISection Parameters ---------- w1 : int,float Width 1 w2 : int,float Width 2 w3 : int,float Width 3 t1 : int,float Thickness 1 t2 : int,float Thickness 2 t3 : int,float Thickness 3 """ def __init__(self,w1,w2,w3,t1,t2,t3): Section.__init__(self) self.w1 = w1 self.w2 = w2 self.w3 = w3 self.t1 = t1 self.t2 = t2 self.t3 = t3 self.type = "I" def get_data(self): self.data = (self.w1, self.w2, self.w3, self.t1, self.t2, self.t3) return (len(self.data)*"%s,")%self.data def create_beam_section(sid,sname,stype): _bs = "SECTYPE,%s,BEAM,%s,%s,0"%(sid,stype.type,sname) # Beam section _bd = "SECDATA,%s"%(stype.get_data()) return "\n".join([_bs,_bd]) if __name__ == '__main__': print create_beam_section(1,"_b1",RectangleSection(0.2,0.2))
1,528
handlers.py
BourneXu/ChrisBot
0
2022768
import os import json import requests import telegram import configparser import fake_useragent from loguru import logger from bs4 import BeautifulSoup from telegram.ext import Updater, CommandHandler, MessageHandler, Filters class Handlers: @staticmethod def help(update, context): logger.debug(update.message.chat_id) context.bot.send_message( chat_id=update.message.chat_id, text=""" 我是蛋蛋小分队专属订制 Bot, please talk to me!\n#######################\n回复我: \n1. /help 查看帮助,支持的命令\n2. /cs 查看计算机类热门信息, 来自 Hacker News等\n3. /shop 查看购物类热门信息, 来自 北美烧钱快报 等 ...\n#######################\n已接入图灵机器人, 直接回复, 可与我聊天哦~ """, parse_mode=telegram.ParseMode.MARKDOWN, ) @staticmethod def echo(update, context): logger.debug(update.message.chat_id) context.bot.send_message(chat_id=update.message.chat_id, text=update.message.text) @staticmethod def tuling(update, context): # Try to read config to get apiKey and userId try: config = configparser.ConfigParser() config.read("./config.ini") apiKey = config["tuling"]["apiKey"] userId = config["tuling"]["userId"] except: raise ValueError("Config file `config.ini` is missing.") url = "http://openapi.tuling123.com/openapi/api/v2" payload = { "reqType": 0, "perception": { "inputText": {"text": update.message.text}, "inputImage": {"url": "imageUrl"}, "selfInfo": {"location": {"city": "上海", "province": "上海", "street": "南京东路"}}, }, "userInfo": {"apiKey": apiKey, "userId": userId}, } headers = {"Content-Type": "text/json"} response = requests.post(url, data=json.dumps(payload), headers=headers) res = response.json() try: restext = res["results"][0]["values"]["text"] except: restext = "我貌似挂了..." logger.debug(update.message.chat_id) context.bot.send_message(chat_id=update.message.chat_id, text=restext) @staticmethod def get_hackernews(update, context): url = "https://news.ycombinator.com/" res = requests.get(url) html = res.text soup = BeautifulSoup(html, "html.parser") newslist = soup.select('td[class="title"]') newsletter = "" # hackernews = [] for i in range(1, min(6, len(newslist) // 2 + 1)): link = (newslist[i * 2 - 1]).a.get("href") title = (newslist[i * 2 - 1]).text # hackernews.append((link, title)) newsletter += "{}. [{}]({})\n".format(i, title, link) logger.debug(update.message.chat_id) context.bot.send_message( chat_id=update.message.chat_id, text=newsletter, parse_mode=telegram.ParseMode.MARKDOWN ) @staticmethod def get_dealmoon(update, context): url = "https://www.dealmoon.cn/" headers = {"user-agent": Handlers.get_fake_useragent(), "authority": "www.dealmoon.cn"} res = requests.get(url, headers=headers) html = res.text soup = BeautifulSoup(html, "html.parser") dealhot = soup.select('div[class="box_item box_item_new"]') dealletter = "" for i in range(1, min(9, len(dealhot) + 1)): link = dealhot[i - 1].a.get("href") title = dealhot[i - 1].text.strip() dealletter += "{}. [{}]({})\n".format(i, title, link) logger.debug(update.message.chat_id) context.bot.send_message( chat_id=update.message.chat_id, text=dealletter, parse_mode=telegram.ParseMode.MARKDOWN ) @staticmethod def get_fake_useragent(): path = os.getcwd() + "/fake_useragent.json" ua = fake_useragent.UserAgent(path=path) return ua.random
3,928
solutions/ctci/solutions/2_Linked_Lists/2-1_Remove_Dups/solution.py
zwliew/ctci
4
2024343
# # Uses a set to store the data that has been found # # O(N) time, O(N) space # # N == len(head) # # 19.475s # def solve(head): # s = set() # cur = head # prv = None # while cur: # if cur.val in s: # prv.nxt = cur.nxt # else: # s.add(cur.val) # prv = cur # cur = cur.nxt # return head # Similar to solution 1, but tracks the current node differently # O(N) time, O(N) space # N == len(head) # 19.992s def solve(head): s = set([head.val]) cur = head while cur.nxt: if cur.nxt.val in s: cur.nxt = cur.nxt.nxt else: s.add(cur.nxt.val) cur = cur.nxt return head # # Iterate through the linked list with 2 pointers and check if # # each node is different from every subsequent node # # O(N^2) time, O(1) space # # N == len(head) # # 19.363s # def solve(head): # cur = head # while cur: # run = cur # while run.nxt: # if cur.val == run.nxt.val: # run.nxt = run.nxt.nxt # else: # run = run.nxt # cur = cur.nxt # return head
1,160
autoajax/sites.py
furious-luke/django-autoajax
1
2024163
from django.conf.urls import url from .forms import DependentSelect class AutoAjaxSite(object): def __init__(self): self._registry = [] self._urls = None def make_urls(self): urls = [] for app, form_cls, field_name, field in self._registry: form_name = form_cls.__name__.lower() path = 'autoajax/' + '/'.join([app.name, form_name, field_name]) urls.append(url('^%s$'%path, field.as_view())) if isinstance(field.widget, DependentSelect): field.widget.attrs['data-url'] = '/' + path self._urls = urls @property def urls(self): if self._urls is None: self.make_urls() return self._urls, 'autoajax', 'autoajax' site = AutoAjaxSite()
782
Check/Mark glyphs with no contours.py
huertatipografica/huertatipografica-scripts
19
2024807
#MenuTitle: Mark glyphs with no contours # -*- coding: utf-8 -*- __doc__=""" Mark glyphs with no contours in the current Layer """ import GlyphsApp Doc = Glyphs.currentDocument Font = Glyphs.font selectedLayers = Font.selectedLayers outputString = '' for thisLayer in selectedLayers: count = 0 if thisLayer.parent.subCategory != 'Space': for thisPath in thisLayer.paths: count += len(thisPath.nodes) if count < 2: thisLayer.parent.color=6 outputString +='/'+thisLayer.parent.name print "Glyphs with no contours in master: " + outputString
558
01/data_types.py
tousekjan/fit-ctu-edw
0
2023107
import pandas as pd import numpy as np import math def isNaN(num): return num != num def getDataTypes(filename, columnNames = None): df = pd.read_csv(filename) if columnNames is not None: df.columns = columnNames dataTypeDict = dict(df.dtypes) print('\n' + filename + '\n') for column in dataTypeDict: values = df[column] maxLength = 0 nullable = False for value in values: if not value or isNaN(value): nullable = True continue length = len(str(value)) if dataTypeDict[column] == object and length > maxLength: maxLength = length res = '' if dataTypeDict[column] == object: res += 'varchar(' + str(maxLength) + ')' else: res += str(dataTypeDict[column]) if nullable == True: res += ' NULL' print(column + ': ' + res) getDataTypes('data\\airports\\countries_20190227.csv') columnNamesAirline = ['id', 'name', 'alternative_name', 'IATA', 'ICAO', 'callsign', 'country', 'active'] getDataTypes('data\\airports\\airlines_20190227.dat', columnNamesAirline) columnNamesAirport = ['Id', 'name', 'city', 'country', 'IATA', 'ICAO', 'latitude', 'longtitude', 'altitude', 'timezone', 'DST', 'Tz database time zone', 'type', 'source'] getDataTypes('data\\airports\\airports_20190227.dat', columnNamesAirport) columnNamesPlane = ['name', 'IATA', 'ICAO'] getDataTypes('data\\airports\\planes_20180123.dat', columnNamesPlane) getDataTypes('data\\airports\\regions_20190227.csv') columnNamesRoute = ['airline_code', 'airline_id', 'source_airport_code', 'source_airport_id', 'destination_airport_code', 'destination_airport_id', 'codeshare', 'number_of_stops', 'equipment'] getDataTypes('data\\airports\\routes_20190227.dat', columnNamesRoute) getDataTypes('data\\airports\\airport-frequencies_20190227.csv') getDataTypes('data\\airports\\runways_20190227.csv') getDataTypes('data\\airports\\navaids_20190227.csv')
2,047
main.py
abhint/Telegram_URL_Image_UploadBot
2
2024924
#!/usr/bin/env python3 # This is bot coded by <NAME> and used for educational purposes only # https://github.com/AbhijithNT # (c) <NAME> # Thank you https://github.com/pyrogram/pyrogram from pyrogram import Client from config import config plugins = dict( root="plugins" ) bot = Client( "Image upload bot", bot_token = config.BOT_TOKEN, api_id = config.API_ID, api_hash = config.API_HASH, plugins = plugins ) bot.run()
453
eval/accuracy.py
ricsi98/pytorch-cifar
0
2024506
import torch import argparse from . import Evaluator, EvaluationFunction LOGS = False IS_2N = False DEVICE = "cpu" BS = 64 class Accuracy(EvaluationFunction): def __init__(self): super().__init__() self.name = "Accuracy" self.correct = 0 self.all = 0 self.needs_plain_output = False self.needs_plain_adv_output = False def process(self, mdl_output, adv_output, plain_output, plain_adv_output, target, epsilon): with torch.no_grad(): y = self._probs_to_labels(mdl_output) n_correct = torch.sum((y == target).double()).item() self.correct += int(n_correct) self.all += target.shape[0] def result(self): return self.correct / self.all def peek_result(self): return self.result() def simple_2n_classifier(y): print(y[0], torch.softmax(y[0], dim=0)) return torch.sum(torch.softmax(y[:, 10:], dim=1), dim=1) class BinaryAccuracy(Accuracy): def __init__(self, classification_function): super().__init__() self.name = "Binary Accuracy" self.needs_plain_adv_output = False self.needs_attack_adv_output = False self.needs_plain_output = True self.clf = classification_function def process(self, mdl_output, adv_output, plain_output, plain_adv_output, target, epsilon): with torch.no_grad(): post_y = self.clf(mdl_output) pre_y = self.clf(plain_output) probs = torch.cat((post_y, pre_y), dim=0) y_ = torch.round(probs) ones = torch.ones_like(post_y) zeros = torch.zeros_like(pre_y) labels = torch.cat((ones, zeros), dim=0) self.all += labels.shape[0] print(probs) self.correct += (y_ == labels).int().sum().item() print(self.all, self.correct) def accuracy(model_path, n_classes, adv_model_path, epsilon): evaluator = Evaluator(adv_model_path, verbose=LOGS, device=DEVICE, batch_size=BS) evaluator.load_model(model_path, n_classes) return evaluator.evaluate(Accuracy(), epsilon) def main(): parser = argparse.ArgumentParser(description="Calculate accuracy score") parser.add_argument("--model", type=str, help="model path") parser.add_argument("--nClasses", type=int, help="model number of classes, either 10, 11 or 20") parser.add_argument("--advModel", type=str, help="adversary model path") parser.add_argument("--epsilon", type=float, help="fgsm epsilon") parser.add_argument("--verbose", "-v", action='store_true') parser.add_argument("--gpu", action="store_true") parser.add_argument("--batchSize", type=int, default=64) args = parser.parse_args() global LOGS LOGS = args.verbose global IS_2N IS_2N = args.nClasses == 20 global DEVICE DEVICE = "cuda" if (torch.cuda.is_available() and args.gpu) else "cpu" print("DEVICE", DEVICE) global BS BS = args.batchSize print("BATCH SIZE", BS) print("ACCURACY", accuracy(args.model, args.nClasses, args.advModel, args.epsilon)) if __name__ == '__main__': main()
3,160
features/steps/scene_parser_steps.py
cloose/ray-tracer-challenge
0
2024724
from behave import when, then # pylint: disable=no-name-in-module from asserts import assert_float, assert_tuple, assert_matrix from core import color from core import multiply_matrix from core import translation, scaling from scene import scene_from_yaml @when(u'w <- scene_from_yaml(data)') def step_parse_scene_from_yaml_into_world_w(context): _, context.w = scene_from_yaml(context.data) @when(u'c <- scene_from_yaml(data)') def step_parse_scne_from_yaml_into_camera_c(context): context.c, _ = scene_from_yaml(context.data) @then(u'w.objects.count = {expected:d}') def step_assert_world_objects_count(context, expected): actual = len(context.w.objects) assert actual == expected, \ f"count: {actual} is not equal to {expected}" @then( u'w.objects[{index:d}].material.color = color({red:g}, {green:g},{blue:g})' ) def step_assert_material_color_of_object_at_index(context, index, red, green, blue): assert_tuple(context.w.objects[index].material.color, color(red, green, blue)) @then(u'w.objects[{index:d}].material.ambient = {expected:g}') def step_impl(context, index, expected): assert_float(context.w.objects[index].material.ambient, expected) @then( u'w.objects[{index:d}].transform = scaling({sx:g}, {sy:g}, {sz:g}) * translation({tx:g}, {ty:g}, {tz:g})' ) def step_assert_transformation_matrix_of_object_at_index( context, index, tx, ty, tz, sx, sy, sz): assert_matrix( context.w.objects[index].transform(), multiply_matrix(scaling(sx, sy, sz), translation(tx, ty, tz)))
1,629
saferpay/migrations/0006_saferpaytransaction_notify_token.py
89grad/django-saferpay
0
2024945
# -*- coding: utf-8 -*- # Generated by Django 1.11.13 on 2018-09-11 22:02 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('saferpay', '0005_saferpaytransaction_has_notify'), ] operations = [ migrations.AddField( model_name='saferpaytransaction', name='notify_token', field=models.CharField(blank=True, max_length=32), ), ]
494
src/main.py
elimarmacena/genetic_algorithm_minimize
0
2022889
from entities.lab import Lab from utils import constants as const from utils import common def main(): # number of iterations in a population generation_life_list = [10,20] for lifetime in generation_life_list: generation_best_hist = dict() generation_hist = dict() print(f'THE LIFETIME {lifetime} GENERATION STARTED') # Note for my self: create a const at utils.constants EXECUTIONS # Every different lifetime generation must be executed @EXECUTIONS times for i in range(const.EXECUTIONS): print(f'* EXECUTION {i+1} STARTED') # starting a population # during our population creation the fitness is calculated population = Lab() fitness_population_text = ''.join(str(h.get_fitness())+'; ' for h in population.get_init_population()) generation_best_hist[(i,-1)]=population.get_best_fitness() generation_hist[(i,-1)]=population.get_init_population() current_lifetime = 0 while current_lifetime < lifetime: # Performing the selection population.championship() # Performing the crossover population.crossover() # Performing the mutation population.mutation() # Creating a new generation new_gen = population.create_new_gen() generation_best_hist[(i,current_lifetime)]=population.get_best_fitness() generation_hist[(i,current_lifetime)]=population.get_current_population() current_lifetime += 1 # End While current_lifetime print('=\t=\t=\t=\t=\t=\t=\t=\t=') # End for I common.write_mean_bests(generation_best_hist,lifetime) common.write_best(generation_best_hist,lifetime) common.write_history(generation_hist,lifetime) # End for lifetime print('=\t\t\t\tFINISHED\t\t\t=') print('Please Check The Output Folder') main()
1,827
Chapter 6/lenet_filter_visualization.py
Thimira/Build-Deeper
1
2024730
'''Visualization of the filters of VGG16, via gradient ascent in input space. This script can run on CPU in a few minutes (with the TensorFlow backend). Results example: http://i.imgur.com/4nj4KjN.jpg ''' from __future__ import print_function from scipy.misc import imsave import numpy as np import time from keras.applications import vgg16 from keras import backend as K from keras.models import Sequential from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D from keras.layers.core import Activation from keras.layers.core import Flatten from keras.layers.core import Dense from keras.optimizers import SGD # dimensions of the generated pictures for each filter. img_width = 28 img_height = 28 # the name of the layer we want to visualize # (check the model.summary()) layer_name = 'conv2d_2' def build_lenet(width, height, depth, classes, weightsPath=None): # Initialize the model model = Sequential() # The first set of CONV => RELU => POOL layers model.add(Conv2D(20, (5, 5), padding="same", input_shape=(height, width, depth))) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # The second set of CONV => RELU => POOL layers model.add(Conv2D(50, (5, 5), padding="same")) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # The set of FC => RELU layers model.add(Flatten()) model.add(Dense(500)) model.add(Activation("relu")) # The softmax classifier model.add(Dense(classes)) model.add(Activation("softmax")) # If a weights path is supplied, then load the weights if weightsPath is not None: model.load_weights(weightsPath) # Return the constructed network architecture return model # util function to convert a tensor into a valid image def deprocess_image(x): # normalize tensor: center on 0., ensure std is 0.1 x -= x.mean() x /= (x.std() + 1e-5) x *= 0.1 # clip to [0, 1] x += 0.5 x = np.clip(x, 0, 1) # convert to RGB array x *= 255 if K.image_data_format() == 'channels_first': x = x.transpose((1, 2, 0)) x = np.clip(x, 0, 255).astype('uint8') return x model = build_lenet(width=28, height=28, depth=1, classes=10, weightsPath="data/lenet_weights.hdf5") print('Model loaded.') # get the summary of the model model.summary() # we remove the fully-connected layers from the model model.layers.pop() model.layers.pop() model.layers.pop() model.layers.pop() model.layers.pop() opt = SGD(lr=0.01) model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"]) # get the summary of the model again, in order to get the layer names model.summary() # this is the placeholder for the input images input_img = model.input # get the symbolic outputs of each "key" layer (we gave them unique names). layer_dict = dict([(layer.name, layer) for layer in model.layers[1:]]) # utility function to normalize a tensor by its L2 norm def normalize(x): return x / (K.sqrt(K.mean(K.square(x))) + 1e-5) kept_filters = [] for filter_index in range(0, 50): # we only scan through the first 200 filters, # but there are actually 512 of them print('Processing filter %d' % filter_index) start_time = time.time() # we build a loss function that maximizes the activation # of the nth filter of the layer considered layer_output = layer_dict[layer_name].output if K.image_data_format() == 'channels_first': loss = K.mean(layer_output[:, filter_index, :, :]) else: loss = K.mean(layer_output[:, :, :, filter_index]) # we compute the gradient of the input picture wrt this loss grads = K.gradients(loss, input_img)[0] # normalization trick: we normalize the gradient grads = normalize(grads) # this function returns the loss and grads given the input picture iterate = K.function([input_img], [loss, grads]) # step size for gradient ascent step = 1. # we start from a gray image with some random noise input_img_data = np.random.random((1, img_width, img_height, 1)) input_img_data = (input_img_data - 0.5) * 20 + 128 # we run gradient ascent for 20 steps for i in range(20): loss_value, grads_value = iterate([input_img_data]) input_img_data += grads_value * step print('Current loss value:', loss_value) if loss_value <= 0.: # some filters get stuck to 0, we can skip them break # decode the resulting input image if loss_value > 0: img = deprocess_image(input_img_data[0]) kept_filters.append((img, loss_value)) end_time = time.time() print('Filter %d processed in %ds' % (filter_index, end_time - start_time)) # we will stich the best 36 filters on a 6 x 6 grid. n = 6 # the filters that have the highest loss are assumed to be better-looking. # we will only keep the top 36 filters. kept_filters.sort(key=lambda x: x[1], reverse=True) kept_filters = kept_filters[:n * n] # build a black picture with enough space for # our 8 x 8 filters of size 28 x 28, with a 5px margin in between margin = 5 width = n * img_width + (n - 1) * margin height = n * img_height + (n - 1) * margin stitched_filters = np.zeros((width, height, 3)) # fill the picture with our saved filters for i in range(n): for j in range(n): img, loss = kept_filters[i * n + j] stitched_filters[(img_width + margin) * i: (img_width + margin) * i + img_width, (img_height + margin) * j: (img_height + margin) * j + img_height, :] = img # save the result to disk imsave('lenet_filters_%dx%d.png' % (n, n), stitched_filters)
5,767
profiles_api/serializers.py
aakratij/profiles-rest-api
0
2024804
from rest_framework import serializers from profiles_api import models class HelloSerializer(serializers.Serializer): """ Serializes a name field for testing our APIView """ name= serializers.CharField(max_length=10) class UserProfileSerializer(serializers.ModelSerializer): """ Serializes a user profile object """ class Meta: model=models.UserProfile fields=( 'id' , 'name' , 'email' , 'password') extra_kwargs = { 'password' : { 'write_only' : True , 'style' : { 'input_type' : 'password' } } } def create(self , validated_data): """ Create and return a new user """ user = models.UserProfile.objects.create_user( email = validated_data['email'], name=validated_data['name'], password=<PASSWORD>_data['password'], ) return user
910