max_stars_repo_path
stringlengths 4
182
| max_stars_repo_name
stringlengths 6
116
| max_stars_count
int64 0
191k
| id
stringlengths 7
7
| content
stringlengths 100
10k
| size
int64 100
10k
|
---|---|---|---|---|---|
setup.py
|
MrManlu/dorna
| 39 |
2023279
|
import setuptools
with open("README.md", "r") as fh:
readme = fh.read()
setuptools.setup(
name="dorna",
version="1.4.2",
author="<NAME>",
author_email="<EMAIL>",
description="Dorna Python API",
long_description=readme,
long_description_content_type='text/markdown',
url="https://dorna.ai/",
project_urls={
'Latest release': 'https://github.com/dorna-robotics/dorna/releases/',
},
packages=setuptools.find_packages(),
classifiers=[
'Intended Audience :: Developers',
'Programming Language :: Python :: 3.7',
"Operating System :: OS Independent",
'Topic :: Software Development :: Libraries :: Python Modules',
],
install_requires=[
"setuptools",
"PyYAML",
"numpy",
"pyserial",
],
license="MIT",
include_package_data=True,
zip_safe = False,
)
| 929 |
tests/test_match_result.py
|
julianirwin/predthread
| 0 |
2023275
|
from predthread import MatchResult
from pytest import fixture
equal_scores = (
((0, 0), (0, 0)),
((1, 0), (1, 0)),
((0, 1), (0, 1)),
((1, 1), (1, 1)),
((5, 5), (5, 5)),
)
@fixture(params=equal_scores)
def exactly_equal_match_results(request):
return MatchResult(*request.param[0]), MatchResult(*request.param[1])
unequal_scores = (
((0, 0), (0, 1)),
((1, 0), (0, 0)),
((1, 1), (0, 0)),
((1, 1), (3, 1)),
((5, 5), (0, 5)),
)
@fixture(params=unequal_scores)
def not_exactly_equal_match_results(request):
return MatchResult(*request.param[0]), MatchResult(*request.param[1])
same_result_scores = (
((0, 0), (1, 1)),
((1, 0), (3, 0)),
((2, 2), (0, 0)),
((1, 3), (2, 4)),
)
@fixture(params=same_result_scores)
def same_result_match_results(request):
return MatchResult(*request.param[0]), MatchResult(*request.param[1])
not_same_result_scores = (
((0, 0), (2, 1)),
((1, 1), (3, 0)),
((2, 0), (0, 2)),
((1, 3), (4, 4)),
)
@fixture(params=not_same_result_scores)
def not_same_result_match_results(request):
return MatchResult(*request.param[0]), MatchResult(*request.param[1])
class TestMatchResult:
def test_init(self):
match_result = MatchResult(0, 0)
def test_exactly_equal(self, exactly_equal_match_results):
mr1, mr2 = exactly_equal_match_results
assert mr1.exactly_equals(mr2)
def test_not_exactly_equal(self, not_exactly_equal_match_results):
mr1, mr2 = not_exactly_equal_match_results
assert not mr1.exactly_equals(mr2)
def test_same_result_as(self, same_result_match_results):
mr1, mr2 = same_result_match_results
assert mr1.same_result_as(mr2)
def test_not_same_result_as(self, not_same_result_match_results):
mr1, mr2 = not_same_result_match_results
assert not mr1.same_result_as(mr2)
| 1,877 |
cocpit/predictions.py
|
vprzybylo/vprzybylo.github.io
| 2 |
2024487
|
"""holds methods regarding making model predictions
for confusion matrices and running the model on new data"""
import itertools
import os
import numpy as np
import torch
import torch.nn.functional as F
import cocpit.config as config
from cocpit.auto_str import auto_str
@auto_str
class LoaderPredictions:
"""setup methods for predictions across batches"""
def __init__(self):
self.all_labels = []
self.all_paths = []
self.all_topk_probs = []
self.all_topk_classes = []
self.all_max_preds = []
self.wrong_trunc = []
def concat(self, var):
return np.asarray(list(itertools.chain(*var)))
def concatenate_loader_vars(
self,
):
"""
flatten arrays from appending in batches
"""
if self.labels is None:
pred_list = [
self.all_paths,
self.all_topk_probs,
self.all_topk_classes,
self.all_max_preds,
]
(
self.all_paths,
self.all_topk_probs,
self.all_topk_classes,
self.all_max_preds,
) = map(self.concat, pred_list)
else:
pred_list = [
self.all_labels,
self.all_paths,
self.all_topk_probs,
self.all_topk_classes,
self.all_max_preds,
]
# print(pred_list)
(
self.all_labels,
self.all_paths,
self.all_topk_probs,
self.all_topk_classes,
self.all_max_preds,
) = map(self.concat, pred_list)
def hone_incorrect_predictions(self, label_list, human_label, model_label):
"""
find indices where human labeled as one thing and model labeled as another
"""
idx_human = np.where(self.all_labels == human_label)
[
self.wrong_trunc.append(i)
for i in idx_human[0]
if self.all_max_preds[i] == model_label
]
cat1 = list(label_list.keys())[list(label_list.values()).index(human_label)]
cat2 = list(label_list.keys())[list(label_list.values()).index(model_label)]
print(f"{len(self.wrong_trunc)} wrong predictions between {cat1} and {cat2}")
def find_wrong_indices(self):
""" """
self.wrong_idx = [
index
for index, elem in enumerate(self.all_max_preds)
if elem != self.all_labels[index]
] # and
# labels[index]==actual and elem == model_label]
@auto_str
class BatchPredictions(LoaderPredictions):
"""finds predictions for a given batch of test data (no label)"""
def __init__(
self,
imgs,
paths,
model,
labels=None,
):
super().__init__()
self.imgs = imgs.to(config.DEVICE)
self.paths = paths
self.model = model.to(config.DEVICE)
self.labels = labels
self.max_preds = None
self.probs = None
self.classes = None
def find_logits(self):
return self.model(self.imgs)
def find_max_preds(self):
"""find the class with the highest probability
across all images in the batch"""
_, max_preds = torch.max(self.find_logits(), dim=1)
# convert back to lists from being on gpus
self.max_preds = max_preds.cpu().tolist()
def preds_softmax(self):
return F.softmax(self.find_logits(), dim=1)
def top_k_preds(self, top_k_preds=9):
'''get top k predictions for each index in the batch for bar chart'''
topk = self.preds_softmax().cpu().topk(top_k_preds)
self.probs, self.classes = [e.data.numpy().squeeze().tolist() for e in topk]
def append_preds(self):
"""create a list of paths, top k predicted probabilities/classes and
the class with the highest probability across batches.
Stored in LoaderPredictions."""
self.all_paths.append(self.paths)
self.all_topk_probs.append(self.probs)
self.all_topk_classes.append(self.classes)
self.all_max_preds.append(self.max_preds)
self.all_labels.append(self.labels)
| 4,262 |
py_integration.py
|
RLuR/py-integration
| 1 |
2023531
|
import argparse
import random
import numpy as np
import math
MONTE_CARLO = 0
RIEMANN = 1
random.seed(1)
def integrate_string(functionstring, lower_boundry, upper_boundry, method=1, iterations=10000):
function = _parse_Function(functionstring)
if method == 0:
return monte_carlo_integrate(function, lower_boundry, upper_boundry, iterations)
if method == 1:
return riemann_integrate(function, lower_boundry, upper_boundry, iterations)
def riemann_integrate(function, lower_boundry, upper_boundry, iterations=10000):
step_size = (upper_boundry - lower_boundry)/iterations
steps = np.arange(lower_boundry, upper_boundry, step_size)
function_array = np.vectorize(function)
results = function_array(steps)
return np.mean(results) * (upper_boundry - lower_boundry)
def monte_carlo_integrate(function, lower_boundry, upper_boundry, iterations=10000, min_height = None, max_height= None):
if min_height is None or max_height is None:
min_height, max_height = _generate_y_boundries(function, lower_boundry, upper_boundry, iterations)
results = 0
for step in range(1, iterations):
random_point = _generate_random_point(lower_boundry, upper_boundry, min_height, max_height)
stepresult = _monte_Carlostep(function, random_point)
if stepresult:
results += 1
minresult = (upper_boundry - lower_boundry) * (min_height)
return minresult + (upper_boundry - lower_boundry) * (max_height - min_height) * results / iterations
def _generate_random_point(lower_boundry, upper_boundry, min_height, max_height):
return [random.uniform(lower_boundry,upper_boundry), random.uniform(min_height, max_height)]
def _parse_Function(expression):
funcstr= '''\
def f(x):
return {e}'''.format(e=expression)
exec(funcstr, globals())
return f
def _generate_y_boundries(function, lower_x_boundry, upper_x_boundry, iterations=1000):
step_size = (upper_x_boundry - lower_x_boundry) / iterations
steps = np.arange(lower_x_boundry, upper_x_boundry, step_size)
function_array = np.vectorize(function)
results = function_array(steps)
return np.min(results), np.max(results)
def _monte_Carlostep(function, point):
if point[1] < function(point[0]):
return True
else:
return False
if __name__ == '__main__':
argumentparser = argparse.ArgumentParser()
argumentparser.add_argument("function", type=str)
argumentparser.add_argument("lower_boundry", type=float)
argumentparser.add_argument("upper_boundry", type=float)
argumentparser.add_argument('-i', help='number of iterations (10000 default)', type=int, default=10000)
argumentparser.add_argument("-m", type=int, choices=[0, 1, 2], default=2,
help="which approximation method used: 0 = Monte Carlo, 1 = Riemann sum, 2 = both (default)")
args=argumentparser.parse_args()
iterations = 10000
if args.m in [0,2]:
print(f"Monte Carlo approximation: {integrate_string(args.function, args.lower_boundry, args.upper_boundry, MONTE_CARLO, args.i)}")
if args.m in [1,2]:
print(f"Riemann approximation: {integrate_string(args.function, args.lower_boundry, args.upper_boundry, RIEMANN, args.i)}")
| 3,261 |
openDAM/plot/plot_bids.py
|
bcornelusse/openDAM
| 15 |
2024513
|
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import os
plt.style.use('bmh')
FONT_SIZE = 9
class BidPlotter:
def __init__(self, dam, path, case):
self.dam = dam
self.case_ = case
self.plots_folder = "%s/plots_%s_%s" % (
path, case, datetime.now().strftime('%Y%m%d_%H%M%S'))
if not os.path.isdir(self.plots_folder):
os.mkdir(self.plots_folder)
def plot(self, locations=None):
if locations is None:
locations = self.dam.zones.keys()
n_subplots = len(locations)
fig = plt.figure(1, figsize=(8, 5 * n_subplots))
curves = self.dam.curves
pun_orders = self.dam.punOrders
l = 1
for location in locations:
ax1 = plt.subplot(n_subplots, 1, l)
# plot PUN
pun_curve = []
last_volume = 0.0
for po in pun_orders:
if po.location == location:
pun_curve.append((last_volume, po.price))
pun_curve.append((last_volume + po.volume, po.price))
last_volume += po.volume
pun_curve.append((last_volume, 0.0))
ax1.plot([x[0] for x in pun_curve], [x[1] for x in pun_curve], label="PUN curve")
maxPrice = pun_curve[0][1]
# Plot supply
supply_curve_points = []
last_volume = 0.0
for curve in curves:
if curve.location == location:
for bid in curve.bids:
if bid.volume > 0: # Supply
supply_curve_points.append((last_volume, bid.price))
supply_curve_points.append((last_volume + bid.volume, bid.price))
last_volume += bid.volume
if supply_curve_points:
maxPrice = max(maxPrice, supply_curve_points[-1][1])
supply_curve_points.append((last_volume, maxPrice))
ax1.plot([x[0] for x in supply_curve_points], [x[1] for x in supply_curve_points],
label="Supply")
# Plot demand
demand_curve_points = []
last_volume = 0.0
for curve in curves:
if curve.location == location:
for bid in curve.bids:
if bid.volume < 0: # Demand
demand_curve_points.append((last_volume, bid.price))
last_volume -= bid.volume
demand_curve_points.append((last_volume, bid.price))
if demand_curve_points:
demand_curve_points.append((last_volume, 0))
ax1.plot([x[0] for x in demand_curve_points], [x[1] for x in demand_curve_points],
label="Demand")
ax1.legend(fontsize=FONT_SIZE)
ax1.set_xlabel('MWh', fontsize=FONT_SIZE)
ax1.set_ylabel('EUR/MWh', fontsize=FONT_SIZE)
ax1.set_title("Zone %d" % l)
l += 1
fig.savefig("%s/bids.pdf" % self.plots_folder)
| 3,145 |
src/tenants/migrations/0001_initial.py
|
litedesk/litedesk-webserver-provision
| 1 |
2023410
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import models, migrations
import django.utils.timezone
from django.conf import settings
import model_utils.fields
class Migration(migrations.Migration):
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
('contenttypes', '0001_initial'),
]
operations = [
migrations.CreateModel(
name='ActiveDirectory',
fields=[
('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
('url', models.CharField(max_length=300)),
('domain', models.CharField(max_length=200)),
('ou', models.CharField(max_length=200)),
('username', models.CharField(max_length=80)),
('password', models.CharField(max_length=1000)),
],
options={
},
bases=(models.Model,),
),
migrations.CreateModel(
name='Tenant',
fields=[
('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
('created', model_utils.fields.AutoCreatedField(default=django.utils.timezone.now, verbose_name='created', editable=False)),
('modified', model_utils.fields.AutoLastModifiedField(default=django.utils.timezone.now, verbose_name='modified', editable=False)),
('name', models.CharField(unique=True, max_length=1000, db_index=True)),
('active', models.BooleanField(default=True)),
('email_domain', models.CharField(default=b'onmicrosoft.com', max_length=300)),
('active_directory', models.OneToOneField(null=True, blank=True, to='tenants.ActiveDirectory')),
],
options={
'abstract': False,
},
bases=(models.Model,),
),
migrations.CreateModel(
name='TenantItem',
fields=[
('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
('object_id', models.PositiveIntegerField()),
('content_type', models.ForeignKey(to='contenttypes.ContentType')),
('tenant', models.ForeignKey(to='tenants.Tenant')),
],
options={
},
bases=(models.Model,),
),
migrations.CreateModel(
name='TenantService',
fields=[
('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
('is_active', models.BooleanField(default=True)),
('api_token', models.CharField(max_length=128)),
('tenant', models.ForeignKey(to='tenants.Tenant')),
],
options={
},
bases=(models.Model,),
),
migrations.CreateModel(
name='User',
fields=[
('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
('created', model_utils.fields.AutoCreatedField(default=django.utils.timezone.now, verbose_name='created', editable=False)),
('modified', model_utils.fields.AutoLastModifiedField(default=django.utils.timezone.now, verbose_name='modified', editable=False)),
('last_remote_read', models.DateTimeField(null=True, editable=False)),
('last_remote_save', models.DateTimeField(null=True, editable=False)),
('last_modified', models.DateTimeField(auto_now=True)),
('first_name', models.CharField(max_length=100, null=True)),
('last_name', models.CharField(max_length=100, null=True)),
('display_name', models.CharField(max_length=200, null=True)),
('mobile_phone_number', models.CharField(max_length=16, null=True, blank=True)),
('username', models.CharField(max_length=100, editable=False)),
('email', models.EmailField(max_length=75, null=True)),
('status', model_utils.fields.StatusField(default=b'staged', max_length=100, no_check_for_status=True, choices=[(b'staged', b'staged'), (b'pending', b'pending'), (b'active', b'active'), (b'suspended', b'suspended'), (b'disabled', b'disabled')])),
('services', models.ManyToManyField(to='tenants.TenantService')),
('tenant', models.ForeignKey(to='tenants.Tenant')),
],
options={
},
bases=(models.Model,),
),
migrations.CreateModel(
name='UserGroup',
fields=[
('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
('name', models.CharField(max_length=80)),
('members', models.ManyToManyField(to='tenants.User', blank=True)),
('tenant', models.ForeignKey(to='tenants.Tenant')),
],
options={
},
bases=(models.Model,),
),
migrations.AlterUniqueTogether(
name='usergroup',
unique_together=set([('name', 'tenant')]),
),
migrations.AlterUniqueTogether(
name='user',
unique_together=set([('tenant', 'username')]),
),
migrations.AddField(
model_name='tenant',
name='members',
field=models.ManyToManyField(related_name='peers', to=settings.AUTH_USER_MODEL, blank=True),
preserve_default=True,
),
migrations.AddField(
model_name='tenant',
name='primary_contact',
field=models.OneToOneField(related_name='tenant', to=settings.AUTH_USER_MODEL),
preserve_default=True,
),
]
| 5,970 |
uri.py
|
Kondziowy/PythonBasicTraining
| 1 |
2023471
|
import requests
HTTP = "http"
FILE = "file"
class UriHandler:
def __init__(self, uri):
self.protocol = uri.split(":")[0].lower()
self.resource = uri.split("/")[2]
self.uri = uri
print("URI handler initialized")
def get(self):
raise NotImplementedError()
def get_contents(self):
if self.protocol == HTTP:
return HttpHandler(self.uri).get()
if self.protocol == FILE:
return FileHandler(self.uri).get()
def __eq__(self, right):
return super(UriHandler, self).__eq__(right)
class HttpHandler(UriHandler):
def __init__(self, uri):
super(HttpHandler, self).__init__(uri)
print("HTTP handler initialized")
def get(self):
return requests.get(self.uri).text
class FileHandler(UriHandler):
pass
print(UriHandler("http://wp.pl").get_contents())
print(50 * "=")
print(HttpHandler("http://wp.pl") == HttpHandler("http://wp.pl"))
| 998 |
main.py
|
jamesnoria/el_comercio_scraper
| 2 |
2022745
|
import pandas as pd
from comercio_scraper import Scraper
from options import UserOptions
from helpers import Helper
import os
import json
class ElComercio:
""" Un scraper de las paginas del diario peruano El Comercio.
Se extrae el titulo, breve descripción y el enlace de referencia. """
def __init__(self, main_url, news_number):
self.main_url = main_url
self.news_number = news_number
def export(self, output):
""" Funcion que exporta datos en diferentes formatos, format_option: 1: CSV , 2:JSON. """
if output == 1:
self._export_to_csv()
elif output == 2:
self._export_to_json()
def _export_to_csv(self):
""" Haciendo el data-frame y exportandolo a un archivo .csv """
news = Scraper(self.main_url, self.news_number)
news_scraper = pd.DataFrame({
'TITULAR': news.header_scraper(),
'DESCRIPCIÓN': news.description_scraper(),
'LINKS': news.link_scraper()
})
news_scraper.to_csv(f"./csv_files/{Helper.filename_generator(1)}")
def _export_to_json(self):
""" Haciendo el json y exportandolo a un archivo .json: """
news = Scraper(self.main_url, self.news_number)
keys = ['title', 'description', 'link']
news_array = [{keys[n]: value for n, value in enumerate(new)} for new in zip(
news.header_scraper(), news.description_scraper(), news.link_scraper())]
json_object = json.dumps(news_array, indent=4)
filename = f"./json_files/{Helper.filename_generator(2)}"
if os.path.exists(filename):
os.remove(filename)
with open(filename, 'x') as output_file:
output_file.write(json_object)
if __name__ == "__main__":
name = UserOptions(input('¿Cual es tu nombre: '))
name.greeting()
try:
p_number = int(
input('¿Cuantas noticias deseas investigar? (max. 50): '))
if p_number > 50 or p_number < 0:
raise ValueError(
'Por favor inserte un número de página valido (valor entero)')
output = int(input(
'¿En que formato quieres recibir las noticias?\n1. CSV\n2. JSON\n\nEleccion: '))
if output < 1 or output > 2:
raise ValueError(
'Por favor inserte un número de opción valido (1 o 2)')
elcomercio = ElComercio('https://elcomercio.pe/noticias/coronavirus/',
p_number)
elcomercio.export(output)
name.progress_bar()
print(
f'¡LISTO!, puedes revisar el archivo: "{Helper.filename_generator(output)}" dentro de la carpeta: "{Helper.folder_generator(output)}"')
except ValueError as ex:
print(ex)
| 2,770 |
ext/opentelemetry-ext-system-metrics/src/opentelemetry/ext/system_metrics/__init__.py
|
cnnradams/opentelemetry-python
| 2 |
2023108
|
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Instrument to report system (CPU, memory, network) and
process (CPU, memory, garbage collection) metrics. By default, the
following metrics are configured:
"system_memory": ["total", "available", "used", "free"],
"system_cpu": ["user", "system", "idle"],
"network_bytes": ["bytes_recv", "bytes_sent"],
"runtime_memory": ["rss", "vms"],
"runtime_cpu": ["user", "system"],
Usage
-----
.. code:: python
from opentelemetry import metrics
from opentelemetry.ext.system_metrics import SystemMetrics
from opentelemetry.sdk.metrics import MeterProvider,
from opentelemetry.sdk.metrics.export import ConsoleMetricsExporter
metrics.set_meter_provider(MeterProvider())
exporter = ConsoleMetricsExporter()
SystemMetrics(exporter)
# metrics are collected asynchronously
input("...")
# to configure custom metrics
configuration = {
"system_memory": ["total", "available", "used", "free", "active", "inactive", "wired"],
"system_cpu": ["user", "nice", "system", "idle"],
"network_bytes": ["bytes_recv", "bytes_sent"],
"runtime_memory": ["rss", "vms"],
"runtime_cpu": ["user", "system"],
}
SystemMetrics(exporter, config=configuration)
API
---
"""
import gc
import os
import typing
import psutil
from opentelemetry import metrics
from opentelemetry.sdk.metrics import ValueObserver
from opentelemetry.sdk.metrics.export import MetricsExporter
from opentelemetry.sdk.metrics.export.controller import PushController
class SystemMetrics:
def __init__(
self,
exporter: MetricsExporter,
interval: int = 30,
labels: typing.Optional[typing.Dict[str, str]] = None,
config: typing.Optional[typing.Dict[str, typing.List[str]]] = None,
):
self._labels = {} if labels is None else labels
self.meter = metrics.get_meter(__name__)
self.controller = PushController(
meter=self.meter, exporter=exporter, interval=interval
)
if config is None:
self._config = {
"system_memory": ["total", "available", "used", "free"],
"system_cpu": ["user", "system", "idle"],
"network_bytes": ["bytes_recv", "bytes_sent"],
"runtime_memory": ["rss", "vms"],
"runtime_cpu": ["user", "system"],
}
else:
self._config = config
self._proc = psutil.Process(os.getpid())
self._system_memory_labels = {}
self._system_cpu_labels = {}
self._network_bytes_labels = {}
self._runtime_memory_labels = {}
self._runtime_cpu_labels = {}
self._runtime_gc_labels = {}
# create the label set for each observer once
for key, value in self._labels.items():
self._system_memory_labels[key] = value
self._system_cpu_labels[key] = value
self._network_bytes_labels[key] = value
self._runtime_memory_labels[key] = value
self._runtime_gc_labels[key] = value
self.meter.register_observer(
callback=self._get_system_memory,
name="system.mem",
description="System memory",
unit="bytes",
value_type=int,
observer_type=ValueObserver,
)
self.meter.register_observer(
callback=self._get_system_cpu,
name="system.cpu",
description="System CPU",
unit="seconds",
value_type=float,
observer_type=ValueObserver,
)
self.meter.register_observer(
callback=self._get_network_bytes,
name="system.net.bytes",
description="System network bytes",
unit="bytes",
value_type=int,
observer_type=ValueObserver,
)
self.meter.register_observer(
callback=self._get_runtime_memory,
name="runtime.python.mem",
description="Runtime memory",
unit="bytes",
value_type=int,
observer_type=ValueObserver,
)
self.meter.register_observer(
callback=self._get_runtime_cpu,
name="runtime.python.cpu",
description="Runtime CPU",
unit="seconds",
value_type=float,
observer_type=ValueObserver,
)
self.meter.register_observer(
callback=self._get_runtime_gc_count,
name="runtime.python.gc.count",
description="Runtime: gc objects",
unit="objects",
value_type=int,
observer_type=ValueObserver,
)
def _get_system_memory(self, observer: metrics.ValueObserver) -> None:
"""Observer callback for memory available
Args:
observer: the observer to update
"""
system_memory = psutil.virtual_memory()
for metric in self._config["system_memory"]:
self._system_memory_labels["type"] = metric
observer.observe(
getattr(system_memory, metric), self._system_memory_labels
)
def _get_system_cpu(self, observer: metrics.ValueObserver) -> None:
"""Observer callback for system cpu
Args:
observer: the observer to update
"""
cpu_times = psutil.cpu_times()
for _type in self._config["system_cpu"]:
self._system_cpu_labels["type"] = _type
observer.observe(
getattr(cpu_times, _type), self._system_cpu_labels
)
def _get_network_bytes(self, observer: metrics.ValueObserver) -> None:
"""Observer callback for network bytes
Args:
observer: the observer to update
"""
net_io = psutil.net_io_counters()
for _type in self._config["network_bytes"]:
self._network_bytes_labels["type"] = _type
observer.observe(
getattr(net_io, _type), self._network_bytes_labels
)
def _get_runtime_memory(self, observer: metrics.ValueObserver) -> None:
"""Observer callback for runtime memory
Args:
observer: the observer to update
"""
proc_memory = self._proc.memory_info()
for _type in self._config["runtime_memory"]:
self._runtime_memory_labels["type"] = _type
observer.observe(
getattr(proc_memory, _type), self._runtime_memory_labels
)
def _get_runtime_cpu(self, observer: metrics.ValueObserver) -> None:
"""Observer callback for runtime CPU
Args:
observer: the observer to update
"""
proc_cpu = self._proc.cpu_times()
for _type in self._config["runtime_cpu"]:
self._runtime_cpu_labels["type"] = _type
observer.observe(
getattr(proc_cpu, _type), self._runtime_cpu_labels
)
def _get_runtime_gc_count(self, observer: metrics.ValueObserver) -> None:
"""Observer callback for garbage collection
Args:
observer: the observer to update
"""
gc_count = gc.get_count()
for index, count in enumerate(gc_count):
self._runtime_gc_labels["count"] = str(index)
observer.observe(count, self._runtime_gc_labels)
| 7,946 |
10-advanced-python-dev/1-args-kargs-expm.py
|
saidulislam/Python-Experiment
| 0 |
2022698
|
def mul(*args):
print("args[0] : ", args[0])
print("args[1] : ", args[1])
return (args[0]*args[1])
num = mul(3, 9, 7)
print(num)
def multigreet(*args):
for item in args:
print(f"Hello {item}!")
multigreet("John", "Conner", "Ryan", "Tim")
print("\n\n")
# *args has to be the last argument
def multigreet2(msg, *args):
for item in args:
print(f"{msg} {item}!")
multigreet2("Hey", "John", "Conner", "Ryan", "Tim")
def print_family_info(**kwargs):
family = {}
for key, value in kwargs.items():
family[key] = value
print(family)
print("\n\n")
print_family_info(mom="Jane", dad="John", child1="Rick", child2="Ellie")
print("\n\n")
# more use of *args
def print_movie(*args):
for value in args:
print(value)
movie = {
"title": "The Matrix",
"director": "Wachowski",
"year": 1999
}
print_movie(*movie.values())
print("\n\n")
# more use of **kwargs
def print_movie(**kwargs):
for key, value in kwargs.items():
print(f"{key}: {value}")
movie = {
"title": "The Matrix",
"director": "Wachowski",
"year": 1999
}
print_movie(**movie)
print("\n\n")
# **kwargs can give us more flexibility
# when it comes to collecting unassigned keyword arguments,
# and not only those coming from a dictionary.
# For example, we could do this:
def print_movie(**kwargs):
for key, value in kwargs.items():
print(f"{key}: {value}")
movie = {
"title": "The Matrix",
"director": "Wachowski",
"year": 1999
}
print_movie(studio="<NAME>", **movie)
print("\n\n")
# There are plenty more uses for a technique like this, including merging dictionaries,
# and saving us a lot of typing when using format
# for example, instead of the following
def show_books(books):
# Adds an empty line before the output
print()
for book in books:
print(f"{book['title']}, by {book['author']} ({book['year']})")
print()
# you can do something like the following
def show_books(books):
# Adds an empty line before the output
print()
for book in books:
print("{title}, by {author} ({year})".format(**book))
print()
# One of the nice things about this approach is that
# we can define the template elsewhere, which also means
# we can refer to it in multiple places in our code.
book_template = "{title}, by {author} ({year})"
def show_books(books):
# Adds an empty line before the output
print()
for book in books:
print(book_template.format(**book))
print()
| 2,575 |
fibonacci/trampolinely.py
|
csuriano23/pycombinator
| 0 |
2024565
|
from __future__ import absolute_import
from structure.trampoline import Trampoline
class Fibonacci(Trampoline):
def __init__(self, create_fn, original, current, prev2, prev1):
self.create_fn = create_fn
self.original = original
self.current = current
self.prev1 = prev1
self.prev2 = prev2
def value(self):
return self.prev2 + self.prev1
def next(self):
return self.create_fn(self.original, self.current + 1, self.prev1, self.value())
def calculate(value):
def _inner(n, current, fibt2, fibt1):
if current == n or n < 2:
return Fibonacci(lambda *args: None, n, current, fibt2, fibt1)
return Fibonacci(_inner, n, current, fibt2, fibt1)
return _inner(value, 2, 0, 1 if value else 0).compute()
| 803 |
Oxenfree/oxenfree_binary_unpack_resources.py
|
Lenferd/TranslationTools
| 1 |
2024735
|
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# Программа: OxenfreeUnpacker
# Назначение: Вытаскиваем текст из файлов
# Версия: 3.1
# Дата: 8.04.17
# Модифик: 21.04.17
# Автор: Lenferd (<EMAIL>)
import os
import sys
sys.path.insert(0, os.path.pardir)
from Modules.BinaryParser import binary_parser as bparser
from Modules.FilesOperation import find as ffind
from Modules.FilesOperation import readFile as freader
from Modules.FilesOperation import writeFile as fwriter
from Modules.TextOperations import text_filter
# file_patch = "/mnt/sda3/TT/TT_OF4/Unity_Assets_Files/resources"
# filepatch = "/mnt/sda3/TT/TT_OF4/test"
dir_path = r"../Oxenfree_data/test2"
dir_resources = r"../Oxenfree_data/test2/input_resources"
# filepatch = "./examples"
# out path
prefix = "result_resources" # folder in the result
postfix = "fileinfo" # underfolder in the prefix folder (for file info)
if __name__ == "__main__":
""" Block 0 """
if len(sys.argv) < 2:
pass
else:
dir_path = sys.argv[1]
dir_resources = sys.argv[1] + "/input_resources"
""" Block 1 open & read
На выходе получаем list из листов соответствующих поданных на вход файлов (file_list)
+ данные внутри преобразованы в UTF8 из бинарного вида
"""
# Construct list of files (full route)
# TODO можно добавить возможность указывать маску, по которой будут искаться файлы (т.е. разрешение)
file_list = ffind.construct_file_three(dir_resources)
# get all file data
binary_data = freader.read_binary_files(file_list)
# get strings
strings = bparser.parse_binary_list(binary_data)
""" Block 2
Использование фильтра для отсеивания лишних строг (грубая обработка)
Фильтр настраивается
"""
# now we can use filtres
result, removed = text_filter.oxenfree_filter_resources(strings)
""" Block 3
Упорядочивание массивов данных по типу файлов
"""
# ordering
result, ordering_result = text_filter.ordering_by_filetype(result, file_list)
removed, ordering_removed = text_filter.ordering_by_filetype(removed, file_list)
fwriter.write_data_only_one_writted_type_sorted(result, ordering_result, "result_all",
prefix=prefix, path=dir_path)
fwriter.write_data_to_many_file_witch_sorting_ordering(result, ordering_result, "result",
prefix=prefix, path=dir_path)
fwriter.write_data_with_filename_wo_empty(removed, ordering_removed, "removed",
prefix=prefix, path=dir_path)
# print filetype
fwriter.write_list(ffind.find_all_type(ordering_result), "filetype",
prefix=prefix, postfix=postfix, path=dir_path)
empty_files_list = ffind.find_empty_files(result, ordering_result)
fwriter.write_list(empty_files_list, 'empty',
prefix=prefix, postfix=postfix, path=dir_path)
| 3,027 |
src/main/python/geeksforgeeks/dp/path-in-matrix.py
|
sonymoon/algorithm
| 0 |
2023839
|
def pathInMatrix(result, matrix, i, j, m, n):
if i >= 0 and j >= 0:
result.append(matrix[i][j])
if 0 <= i - 1 < m and 0 <= j < n and matrix[i - 1][j] - matrix[i][j] == 1:
pathInMatrix(result, matrix, i - 1, j, m, n)
if 0 <= i < m and 0 <= j + 1 < n and matrix[i][j + 1] - matrix[i][j] == 1:
pathInMatrix(result, matrix, i, j + 1, m, n)
if 0 <= i + 1 < m and 0 <= j < n and matrix[i + 1][j] - matrix[i][j] == 1:
pathInMatrix(result, matrix, i + 1, j, m, n)
if 0 <= i - 1 < m and 0 <= j - 1 < n and matrix[i - 1][j - 1] - matrix[i][j] == 1:
pathInMatrix(result, matrix, i - 1, j - 1, m, n)
return result
def main(matrix):
m = len(matrix)
if m == 0:
return
n = len(matrix[0])
result = []
for i in range(m):
for j in range(n):
result.append(pathInMatrix([], matrix, i, j, m, n))
max0 = 0
maxLength = 0
for x in range(len(result)):
if len(result[x]) > maxLength:
maxLength = len(result[x])
max0 = x
if result:
print(result[max0])
return len(result[max0])
return 0
matrix = [
[1, 2, 9],
[5, 3, 8],
[4, 6, 7]
]
print main(matrix)
| 1,222 |
pylayers/measures/test/test_switch.py
|
usmanwardag/pylayers
| 143 |
2024789
|
import pylayers.measures.switch.ni_usb_6501 as sw
import time
switch = sw.get_adapter()
#reattach=False
if not switch:
print("No device found")
#
#very important : to use at the beginning of the initialization of the switch
#for each measurements, set up the NI USB 6501 mode : bit 1 means write and bit 0 read
#
switch.set_io_mode(0b11111111, 0b11111111, 0b00000000)
#
#SISO case
#
#example for use the switch 1 to 4
#switch 1 to 4 : port 1 is allowed
#switch.write_port(1, 1) #select output 2 of the switch 1-4
#switch.write_port(1, 2) #select output 3 of the switch 1-4
#example for use the switch 1 to 8
#switch 1 to 8 : port 0 is allowed
#for each measurements, set up the NI USB 6501 mode : bit 1 means write and bit 0 read
#switch.set_io_mode(0b11111111, 0b11111111, 0b00000000)
#switch.write_port(1, 1) #select output 2 of the switch 1-4
#switch.write_port(1, 2) #select output 3 of the switch 1-4
#switch.write_port(0, 4) #select channel 5 of the switch 1-8
#switch.write_port(0, 5) #select channel 6 of the switch 1-8
#
#MIMO case
#
tic = time.time()
for k in range(8):
print " Transmiter : select output number ",k
switch.write_port(0,k)
for l in range(4):
print "Receiver : select output number ",l
switch.write_port(1,l)
time.sleep(1) #time waiting of the switch between antennas
toc = time.time()
t = toc - tic
print "Measurement time (s) with switching :",t
# tic = time.time()
# for k in range(8):
# print " Transmiter side (ULA 8) : output selected ",k
# switch.write_port(0,k)
# for l in range(4):
# print "Receiver side (ULA 4) : output selected ",l
# switch.write_port(1,l)
# time.sleep(1) #time waiting of the switch between antennas
# toc = time.time()
# t = toc - tic
# print "time switch (s):",t
| 1,821 |
actions/ceph_ops.py
|
johnsca/charm-ceph-mon
| 0 |
2024050
|
# Copyright 2016 Canonical Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from subprocess import CalledProcessError, check_output
import sys
sys.path.append('hooks')
from charmhelpers.core.hookenv import action_get, action_fail
from charmhelpers.contrib.storage.linux.ceph import pool_set, \
set_pool_quota, snapshot_pool, remove_pool_snapshot
def list_pools():
"""Return a list of all Ceph pools."""
try:
pool_list = check_output(['ceph', 'osd', 'pool', 'ls']).decode('UTF-8')
return pool_list
except CalledProcessError as e:
action_fail(str(e))
def get_health():
"""
Returns the output of 'ceph health'.
On error, 'unknown' is returned.
"""
try:
value = check_output(['ceph', 'health']).decode('UTF-8')
return value
except CalledProcessError as e:
action_fail(str(e))
return 'Getting health failed, health unknown'
def pool_get():
"""
Returns a key from a pool using 'ceph osd pool get'.
The key is provided via the 'key' action parameter and the
pool provided by the 'pool_name' parameter. These are used when
running 'ceph osd pool get <pool_name> <key>', the result of
which is returned.
On failure, 'unknown' will be returned.
"""
key = action_get("key")
pool_name = action_get("pool_name")
try:
value = (check_output(['ceph', 'osd', 'pool', 'get', pool_name, key])
.decode('UTF-8'))
return value
except CalledProcessError as e:
action_fail(str(e))
return 'unknown'
def set_pool():
"""
Sets an arbitrary key key in a Ceph pool.
Sets the key specified by the action parameter 'key' to the value
specified in the action parameter 'value' for the pool specified
by the action parameter 'pool_name' using the charmhelpers
'pool_set' function.
"""
key = action_get("key")
value = action_get("value")
pool_name = action_get("pool_name")
pool_set(service='ceph', pool_name=pool_name, key=key, value=value)
def pool_stats():
"""
Returns statistics for a pool.
The pool name is provided by the action parameter 'name'.
"""
try:
pool_name = action_get("name")
stats = (
check_output(['ceph', 'osd', 'pool', 'stats', pool_name])
.decode('UTF-8')
)
return stats
except CalledProcessError as e:
action_fail(str(e))
def delete_pool_snapshot():
"""
Delete a pool snapshot.
Deletes a snapshot from the pool provided by the action
parameter 'name', with the snapshot name provided by
action parameter 'snapshot-name'
"""
pool_name = action_get("name")
snapshot_name = action_get("snapshot-name")
remove_pool_snapshot(service='ceph',
pool_name=pool_name,
snapshot_name=snapshot_name)
# Note only one or the other can be set
def set_pool_max_bytes():
"""
Sets the max bytes quota for a pool.
Sets the pool quota maximum bytes for the pool specified by
the action parameter 'name' to the value specified by
the action parameter 'max'
"""
pool_name = action_get("name")
max_bytes = action_get("max")
set_pool_quota(service='ceph',
pool_name=pool_name,
max_bytes=max_bytes)
def snapshot_ceph_pool():
"""
Snapshots a Ceph pool.
Snapshots the pool provided in action parameter 'name' and
uses the parameter provided in the action parameter 'snapshot-name'
as the name for the snapshot.
"""
pool_name = action_get("name")
snapshot_name = action_get("snapshot-name")
snapshot_pool(service='ceph',
pool_name=pool_name,
snapshot_name=snapshot_name)
| 4,311 |
tests/unit/opera/parser/tosca/v_1_3/test_event_filter_definition.py
|
abitrolly/xopera-opera
| 31 |
2023768
|
from opera.parser.tosca.v_1_3.event_filter_definition import EventFilterDefinition
class TestParse:
def test_full(self, yaml_ast):
EventFilterDefinition.parse(yaml_ast(
# language=yaml
"""
node: node_type_name
requirement: requirement_name
capability: capability_name
"""
))
def test_minimal(self, yaml_ast):
EventFilterDefinition.parse(yaml_ast(
# language=yaml
"""
node: node_template_name
"""
))
| 562 |
WebMirror/OutputFilters/ScribbleHub/SHSeriesUpdateFilter.py
|
fake-name/ReadableWebProxy
| 193 |
2022730
|
import re
import WebRequest
import common.util.urlFuncs
import WebMirror.OutputFilters.FilterBase
class SHSeriesUpdateFilter(WebMirror.OutputFilters.FilterBase.FilterBase):
wanted_mimetypes = [
'text/html',
]
want_priority = 50
loggerPath = "Main.Filter.ScribbleHub.Series"
match_re = re.compile(r"^^https://www\.scribblehub\.com/(?:series-ranking|latest-series)/.*$", flags=re.IGNORECASE)
@classmethod
def wantsUrl(cls, url):
if cls.match_re.search(url):
print("SHSeriesUpdateFilter Wants url: '%s'" % url)
return True
# else:
print("SHSeriesUpdateFilter doesn't want url: '%s'" % url)
return False
def __init__(self, **kwargs):
self.kwargs = kwargs
self.pageUrl = kwargs['pageUrl']
self.content = kwargs['pgContent']
self.type = kwargs['type']
self.db_sess = kwargs['db_sess']
self.log.info("Processing ScribbleHub SeriesUpdate Item")
super().__init__(**kwargs)
##################################################################################################################################
##################################################################################################################################
##################################################################################################################################
def extractSeriesReleases(self, seriesPageUrl, soup):
containers = soup.find_all('div', class_='search_main_box')
# print(soup)
# print("container: ", containers)
if not containers:
return []
urls = []
for item in containers:
div = item.find('div', class_='search_title')
a = div.find("a")
if a:
url = common.util.urlFuncs.rebaseUrl(url=a['href'], base=seriesPageUrl)
urls.append(url)
else:
self.log.error("No series in container: %s", item)
return set(urls)
def retrigger_pages(self, releases):
self.log.info("Total releases found on page: %s. Forcing retrigger of item pages.", len(releases))
for release_url in releases:
self.retrigger_page(release_url)
def processPage(self, url, content):
print("processPage() call")
soup = WebRequest.as_soup(self.content)
releases = self.extractSeriesReleases(self.pageUrl, soup)
if releases:
self.retrigger_pages(releases)
##################################################################################################################################
##################################################################################################################################
##################################################################################################################################
def extractContent(self):
# print("Call to extract!")
# print(self.amqpint)
self.processPage(self.pageUrl, self.content)
def test():
print("Test mode!")
import logSetup
from WebMirror.Engine import SiteArchiver
import common.database as db
logSetup.initLogging()
def fetch(url):
with db.session_context() as sess:
archiver = SiteArchiver(
cookie_lock = None,
db_interface = sess,
new_job_queue = None
)
archiver.synchronousJobRequest(url, ignore_cache=True, debug=True)
# engine.dispatchRequest(testJobFromUrl('http://www.ScribbleHub.com/fiction/3021'))
# engine.dispatchRequest(testJobFromUrl('http://www.ScribbleHub.com/fictions/latest-updates/'))
# engine.dispatchRequest(testJobFromUrl('http://www.ScribbleHub.com/fictions/best-rated/'))
# fetch('https://www.scribblehub.com/series-ranking/')
fetch('https://www.scribblehub.com/series-ranking/?sort=3&order=1')
# fetch('https://www.scribblehub.com/latest-series/')
if __name__ == "__main__":
test()
| 3,708 |
crawler/alice crawler.py
|
xiepeiheng/xiepeiheng
| 0 |
2024188
|
import urllib.request
from bs4 import BeautifulSoup
import re
result = urllib.request.urlopen('http://1172.16.58.3:5000/alice')
html = result.read().decode('utf-8')
soup = BeautifulSoup(html, 'html.parser')
print(soup)
| 220 |
desktop_simple/ebuilds/v1.12.0-noetic/libqicore-1.12.0-noetic/xarconverter/converter/node/bitmap_v2.py
|
Maelic/ros_overlay_on_gentoo_prefix_32b
| 0 |
2023370
|
#!/usr/bin/env python
## Copyright (c) 2012 Aldebaran Robotics. All rights reserved.
## Use of this source code is governed by a BSD-style license that can be
## found in the COPYING file.
""" Contains a class that holds diagram informations
.. module:: node
"""
import converter.node as node
class BitmapV2(node.Node):
""" Stores informations about bitmap in the box interface format
"""
def __init__(self, attrs):
super(BitmapV2, self).__init__("BitmapV2")
# Elements
self.path = attrs.getValue("path")
def beacon(self):
return "Bitmap"
| 595 |
src/django/pfb_analysis/management/commands/analysis_batch_cancel.py
|
PeopleForBikes/pfb-network-connectivity
| 35 |
2023602
|
from django.core.management.base import BaseCommand
from pfb_analysis.models import AnalysisBatch
class Command(BaseCommand):
help = """ Cancel all jobs in an AnalysisBatch """
def add_arguments(self, parser):
parser.add_argument('batch_uuid', type=str)
def handle(self, *args, **options):
batch_uuid = options['batch_uuid']
batch = AnalysisBatch.objects.get(uuid=batch_uuid)
self.stdout.write('Cancelling {}'.format(batch))
batch.cancel()
| 498 |
morphine/unigram_model.py
|
kmike/morphine
| 11 |
2024124
|
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from pymorphy2 import MorphAnalyzer
from pymorphy2.tokenizers import simple_word_tokenize
class Tagger(object):
def __init__(self, morph=None):
if morph is None:
morph = MorphAnalyzer()
self.morph = morph
def predict(self, tokens):
if not isinstance(tokens, (list, tuple)):
tokens = simple_word_tokenize(tokens)
return [self.morph.parse(token)[0] for token in tokens]
| 498 |
scripts/price_feed_scripts/deploy_price_consumer_v3.py
|
coozebra/chainlink-mix
| 9 |
2023068
|
#!/usr/bin/python3
import os
from brownie import PriceFeed, accounts, network, config
# mainnet_eth_usd_address = '0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419'
# kovan_eth_usd_address = '0x9326BFA02ADD2366b30bacB125260Af641031331'
def main():
if network.show_active() in ['mainnet-fork', 'binance-fork', 'matic-fork']:
price_feed = PriceFeed.deploy(config['networks'][network.show_active(
)]['eth_usd_price_feed'], {'from': accounts[0]})
print("The current price of ETH is " +
str(price_feed.getLatestPrice({'from': accounts[0]})))
return price_feed
elif network.show_active() in ['kovan', 'rinkeby', 'mainnet']:
dev = accounts.add(os.getenv(config['wallets']['from_key']))
return PriceFeed.deploy(config['networks'][network.show_active()]['eth_usd_price_feed'], {'from': dev})
else:
print('Please pick a supported network, or fork a chain')
| 926 |
src/marshmallow3_annotations/_compat.py
|
dkunitsk/marshmallow3-annotations
| 48 |
2024132
|
import sys
IS_PY36 = sys.version_info[:2] == (3, 6)
if IS_PY36:
def _is_class_var(typehint):
from typing import _ClassVar # type: ignore
try:
return isinstance(typehint, _ClassVar)
except TypeError: # pragma: no branch
return False
def _get_base(typehint):
return typehint.__base__
else:
def _is_class_var(typehint):
# follow the lead of stdlib's dataclass implementation
from typing import ClassVar, _GenericAlias # type: ignore
return typehint is ClassVar or (
type(typehint) is _GenericAlias and typehint.__origin__ is ClassVar
)
def _get_base(typehint):
return typehint.__origin__
| 722 |
main.py
|
c3systems/sdk-python-example-eyescream
| 3 |
2024229
|
from lib.c3_sdk_python_0_0_2 import sdk
from lib.eyescream.dataset import generate_dataset as gd
from PIL import Image
import io
import os
import subprocess
c3 = None
PillowImageRequired = Exception("pillow image is required")
InvalidImage = Exception("invalid image")
C3Required = Exception("c3 cannot be None")
TrainingFailed = Exception("model training failed")
SubprocessFailed = Exception("subprocess failed")
standardImgFormat = "JPEG"
tmpDir = "tmp"
libDir = "lib"
inputRelPath = tmpDir + os.path.sep + "input"
augRelPath = tmpDir + os.path.sep + "aug_64x64"
unaugRelPath = tmpDir + os.path.sep + "unaug_64x64"
networkRelPath = tmpDir + os.path.sep + "network"
scriptFileRelPath = libDir + os.path.sep + "eyescream" + os.path.sep + "train.lua"
inputAbsPath = os.path.dirname(os.path.abspath(__file__)) + os.path.sep + inputRelPath
augAbsPath = os.path.dirname(os.path.abspath(__file__)) + os.path.sep + augRelPath
unaugAbsPath = os.path.dirname(os.path.abspath(__file__)) + os.path.sep + unaugRelPath
networkAbsPath = os.path.dirname(os.path.abspath(__file__)) + os.path.sep + networkRelPath
oldNetworkAbsPath = networkAbsPath + os.path.sep + "old.net"
newNetworkAbsPath = networkAbsPath + os.path.sep + "adversarial.net"
scriptFileAbsPath = os.path.dirname(os.path.abspath(__file__)) + os.path.sep + scriptFileRelPath
augImagesKey = "aug_images"
networkKey = "network"
def main():
global c3
c3 = sdk.NewC3()
c3.registerMethod("acceptImage", acceptImage)
initState()
c3.serve()
def initState():
global c3
if c3 == None:
print("c3 is none")
raise C3Required
if not os.path.exists(inputAbsPath):
os.makedirs(inputAbsPath)
if not os.path.exists(augAbsPath):
os.makedirs(augAbsPath)
if not os.path.exists(unaugAbsPath):
os.makedirs(unaugAbsPath)
if not os.path.exists(networkAbsPath):
os.makedirs(networkAbsPath)
if augImagesKey in c3.state:
for idx in range(len(c3.state[augImagesKey])):
b = c3.state[augImagesKey][idx]
im = imageFromBytes(b)
im.save(augAbsPath + os.path.sep + idx + standardImgFormat)
network = bytearray()
if networkKey in c3.state:
network = c3.state[networkKey]
writeBytesToFile(network, oldNetworkAbsPath)
def writeBytesToFile(b, fileName):
with open(fileName, 'wb+') as f:
f.write(b)
f.close()
# http://www.codecodex.com/wiki/Read_a_file_into_a_byte_array#Python
def readBytesFromFile(filename):
with open(filename, "rb+") as file:
return file.read()
def imageFromBytes(b):
im = Image.open(b)
return im
def imageToBytes(name, ext, img):
b = io.BytesIO()
img.save(b, format=ext)
b.name = name + "." + ext
b.seek(0)
return b
def acceptImage(img):
if img == None:
print("pillow image is required")
raise PillowImageRequired
imgCP = img.copy()
try:
imgCP.verify()
except Exception as err:
print("invalid img", err)
raise InvalidImage
img.save(inputAbsPath + os.path.sep + "input.jpg", format=standardImgFormat)
# augment the input image and save it to disk
gd.gen(inputAbsPath, augAbsPath, unaugAbsPath)
# run an epoch of the model and save the weights
# note: it's not ideal to run an epoch after each image is added \
# but this code is for example purposes, only...
result = None
try:
cmd = ["th", scriptFileAbsPath]
if os.stat(oldNetworkAbsPath).st_size != 0:
cmd.extend(["--network", oldNetworkAbsPath])
cmd.extend(["--save", networkAbsPath, "--dataDir", augAbsPath])
result = subprocess.run(cmd)
except Exception as err:
print("subprocess errored", err)
raise SubprocessFailed
if result.returncode != 0:
print("Preprocess failed: ", result.stderr, result)
raise TrainingFailed
gatherState()
def gatherState():
global c3
if not networkKey in c3.state:
c3.state[networkKey] = bytearray()
with open(newNetworkAbsPath, "rb+") as file:
c3.state[networkKey] = file.read()
c3.state[augImagesKey] = []
# r=root, d=directories, f=files
for r, d, f in os.walk(augAbsPath):
for file in f:
if "." + standardImgFormat in file:
c3.state[augImagesKey].append(readBytesFromFile(os.path.join(r, file)))
if __name__ == "__main__":
main()
| 4,458 |
tests/test_config_toolkit.py
|
FlexiGroBots-H2020/datacube-ows
| 4 |
2024481
|
# This file is part of datacube-ows, part of the Open Data Cube project.
# See https://opendatacube.org for more information.
#
# Copyright (c) 2017-2021 OWS Contributors
# SPDX-License-Identifier: Apache-2.0
from datacube_ows.config_toolkit import deepinherit
def test_deepinherit_shallow():
parent = {
"a": 72,
"b": "eagle",
"c": False
}
child = {
"a": 365
}
child = deepinherit(parent, child)
assert child['a'] == 365
assert child["b"] == "eagle"
assert not child["c"]
def test_deepinherit_deep():
parent = {
"a": 72,
"b": {
"fruit": "grapes",
"spice": "cummin",
"cake": "chocolate",
"y": ["some", "body", "once"],
"z": [44, 42, 53],
"c": {
"foo": "bar",
"wing": "wang"
}
}
}
child = {
"b": {
"spice": "nutmeg",
"c": {
"wing": "chicken"
},
"y": ["told", "me"],
"z": [11]
}
}
child = deepinherit(parent, child)
assert child["a"] == 72
assert child["b"]["spice"] == "nutmeg"
assert child["b"]["fruit"] == "grapes"
assert child["b"]["c"]["foo"] == "bar"
assert child["b"]["c"]["wing"] == "chicken"
assert child["b"]["z"] == [11]
assert child["b"]["y"] == ["some", "body", "once", "told", "me"]
def test_array_inheritance():
inherit_from = {
"foo": "bar",
"ding": "dong",
"bing": "bang",
"wham": ["a-lam", "a-bing", "bong"],
"king": {
"tide": "oceanography",
"crab": "crustacean",
"Sick-Nasty": "Spades",
}
}
inherit_to = {
"foo": "baz",
"wham": [],
"king": {
"Penguin": "Antarctica"
}
}
inherited = deepinherit(inherit_from, inherit_to)
assert inherited["foo"] == "baz"
assert inherited["wham"] == []
assert inherited["king"]["Penguin"] == "Antarctica"
assert inherited["king"]["tide"] == "oceanography"
inherit_to["wham"] = ["bim", "bala", "boom"]
inherited = deepinherit(inherit_from, inherit_to)
assert "a-bing" in inherited["wham"]
assert "bim" in inherited["wham"]
| 2,303 |
test_path.py
|
devsysenv/tests
| 0 |
2022781
|
#!/usr/bin/env python
import pytest
import os
import sys
import logging
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
from pathlib import Path
from dselib.thread import initTLS
initTLS()
from constants import CONST
from dselib.path import normalizePath, dumpPath, isRootdir, GetBinpath, GetRootBinpath
from dselib.path import GetRootShellpath, AddElementToSysPath, AddElementToSearchPath
from dselib.path import RemoveElementFromSysPath, RemoveElementFromSearchPath
from dselib.path import RemoveElementFromPath, RemoveElementsFromPath
from dselib.path import chmodx, chpymod, pysymlink, pysymlinkdir
def test_1():
assert isRootdir(r'\\unc\path\foo\bar') == False
assert isRootdir(r'\\unc\path') == (True if os.name == 'nt' else False)
def test_2():
# add tests for dumpenvstrings
assert True
def test_3():
# add tests for pushenvvar/removefromenv/getenvironmentvariabledictionary
assert True
def test_4():
# add tests for SubstituteEnvStrings
assert True
if __name__ == '__main__':
pytest.main(['-k', 'test_path.py'])
| 1,112 |
neuro-cli/src/neuro_cli/completion.py
|
neuro-inc/neuro-cli
| 5 |
2023812
|
import os
import sys
from pathlib import Path
import click
from .root import Root
from .utils import argument, group
CFG_FILE = {"bash": Path("~/.bashrc"), "zsh": Path("~/.zshrc")}
SOURCE_CMD = {"bash": "bash_source", "zsh": "zsh_source"}
ACTIVATION_TEMPLATE = 'eval "$(_NEURO_COMPLETE={cmd} {exe})"'
@group()
def completion() -> None:
"""
Output shell completion code.
"""
@completion.command()
@argument("shell", type=click.Choice(["bash", "zsh"]))
async def generate(root: Root, shell: str) -> None:
"""
Show instructions for shell completion.
"""
root.print(f"Push the following line into your {CFG_FILE[shell]}")
root.print(
ACTIVATION_TEMPLATE.format(cmd=SOURCE_CMD[shell], exe=sys.argv[0]),
crop=False,
overflow="ignore",
)
@completion.command()
@argument("shell", type=click.Choice(["bash", "zsh"]))
async def patch(root: Root, shell: str) -> None:
"""
Patch shell profile to enable completion
Patches shell configuration while depending of current shell.
Files patched:
bash: `~/.bashrc`
zsh: `~/.zshrc`
"""
GENERATED_START = (
b"# Start of generated by neuro. Please do not edit this comment.\n"
)
GENERATED_END = b"\n# End of generated by neuro. Please do not edit this comment.\n"
profile_file = CFG_FILE[shell].expanduser()
code = (
GENERATED_START
+ os.fsencode(
ACTIVATION_TEMPLATE.format(cmd=SOURCE_CMD[shell], exe=sys.argv[0])
)
+ GENERATED_END
)
try:
with profile_file.open("rb+") as profile:
content = profile.read()
except FileNotFoundError:
content = b""
start = content.find(GENERATED_START)
if start != -1:
end = content.find(GENERATED_END)
if end == -1:
raise click.ClickException(
f"Malformed guarding comments. Please modify {profile_file} manually"
)
content = content[:start] + code + content[end + len(GENERATED_END) :]
else:
if content != b"":
content += b"\n" + code
else:
content = code
with profile_file.open("wb+") as profile:
profile.write(content)
root.print(f"Added completion configuration into '{profile_file}'")
| 2,301 |
tests/unit/test_conf_parser.py
|
splunk/addonfactory-ucc-generator
| 16 |
2024275
|
#
# Copyright 2021 Splunk Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import configparser
import io
import unittest
from splunk_add_on_ucc_framework import conf_parser
class TABConfigParserTest(unittest.TestCase):
def test_read(self):
conf = """
#
# Very big copyright comment.
#
[source]
# This is a very simple field aliasing.
FIELDALIAS-field1 = field2 AS field1
EVAL-field3 = case(isnotnull(field4), "success",\
isnotnull(field5), "failure")
[sourcetype:deprecated]
EVAL-deprecated_field = "old_value"
[eventtype=some_eventtype]
tag = enabled
"""
parser = conf_parser.TABConfigParser()
parser.read_string(conf)
self.assertEqual(parser.get("source", "FIELDALIAS-field1"), "field2 AS field1")
self.assertEqual(
parser.get("source", "EVAL-field3"),
'case(isnotnull(field4), "success", isnotnull(field5), "failure")',
)
self.assertEqual(
parser.get("sourcetype:deprecated", "EVAL-deprecated_field"), '"old_value"'
)
self.assertEqual(parser.get("eventtype=some_eventtype", "tag"), "enabled")
def test_read_incorrect_conf(self):
conf = """
[source]
# This is a very simple field aliasing.
FIELDALIAS-field1 = field2 AS field1
EVAL-field3 = case(isnotnull(field4), "success",
isnotnull(field5), "failure")
"""
parser = conf_parser.TABConfigParser()
with self.assertRaises(configparser.ParsingError):
parser.read_string(conf)
def test_write(self):
conf = """
#
# Very big copyright comment.
#
[source]
# This is a very simple field aliasing.
FIELDALIAS-field1 = field2 AS field1
EVAL-field3 = case(isnotnull(field4), "success",\
isnotnull(field5), "failure")
[sourcetype:deprecated]
EVAL-deprecated_field = "old_value"
[eventtype=some_eventtype]
tag = enabled
"""
parser = conf_parser.TABConfigParser()
parser.read_string(conf)
output = io.StringIO()
parser.write(output)
expected_output = conf + "\n"
self.assertEqual(expected_output, output.getvalue())
def test_items(self):
conf = """
#
# Very big copyright comment.
#
[source]
# This is a very simple field aliasing.
FIELDALIAS-field1 = field2 AS field1
EVAL-field3 = case(isnotnull(field4), "success",\
isnotnull(field5), "failure")
[sourcetype:deprecated]
EVAL-deprecated_field = "old_value"
[eventtype=some_eventtype]
tag1 = enabled
tag2 = enabled
"""
parser = conf_parser.TABConfigParser()
parser.read_string(conf)
expected_items = [
("__name__", "eventtype=some_eventtype"),
("tag1", "enabled"),
("tag2", "enabled"),
]
self.assertEqual(expected_items, parser.items("eventtype=some_eventtype"))
def test_options(self):
conf = """
# Comment
[source]
EVAL-field1 = "field1" # please pay attention to this extraction
FIELDALIAS-field2 = field3 AS field2
[not_used_sourcetype]
EVAL-field1 = "field1"
"""
parser = conf_parser.TABConfigParser()
parser.read_string(conf)
expected_options = ["__name__", "EVAL-field1", "FIELDALIAS-field2"]
self.assertEqual(expected_options, parser.options("source"))
def test_item_dict(self):
conf = """
#
# Very big copyright comment.
#
[source]
# This is a very simple field aliasing.
FIELDALIAS-field1 = field2 AS field1
EVAL-field3 = case(isnotnull(field4), "success",\
isnotnull(field5), "failure")
[sourcetype:deprecated]
EVAL-deprecated_field = "old_value"
[eventtype=some_eventtype]
tag1 = enabled
tag2 = enabled
"""
parser = conf_parser.TABConfigParser()
parser.read_string(conf)
expected_item_dict = {
"source": {
"FIELDALIAS-field1": "field2 AS field1",
"EVAL-field3": 'case(isnotnull(field4), "success", isnotnull(field5), "failure")',
},
"sourcetype:deprecated": {
"EVAL-deprecated_field": '"old_value"',
},
"eventtype=some_eventtype": {
"tag1": "enabled",
"tag2": "enabled",
},
}
self.assertEqual(expected_item_dict, parser.item_dict())
def test_remove_existing_section(self):
conf = """
# Comment
[source]
EVAL-field1 = "field1" # please pay attention to this extraction
FIELDALIAS-field2 = field3 AS field2
[not_used_sourcetype]
EVAL-field1 = "field1"
"""
parser = conf_parser.TABConfigParser()
parser.read_string(conf)
parser.remove_section("not_used_sourcetype")
def test_remove_section_that_does_not_exist(self):
conf = """
# Comment
[source]
EVAL-field1 = "field1" # please pay attention to this extraction
FIELDALIAS-field2 = field3 AS field2
[not_used_sourcetype]
EVAL-field1 = "field1"
"""
parser = conf_parser.TABConfigParser()
parser.read_string(conf)
parser.remove_section("does_not_exist")
def test_add_remove_section(self):
conf = """
# Comment
[source]
EVAL-field1 = "field1" # please pay attention to this extraction
FIELDALIAS-field2 = field3 AS field2
[not_used_sourcetype]
EVAL-field1 = "field1"
"""
parser = conf_parser.TABConfigParser()
parser.read_string(conf)
parser.add_section("useless_section")
parser.set("useless_section", "deprecated_tag", "enabled")
self.assertEqual(parser.get("useless_section", "deprecated_tag"), "enabled")
parser.remove_section("useless_section")
| 6,135 |
tests/difficulty/wide_difficulty.py
|
Project-WAZN/wazn
| 2 |
2024008
|
#!/usr/bin/env python
from __future__ import print_function
import sys
import subprocess
python = sys.argv[1]
py = sys.argv[2]
c = sys.argv[3]
data = sys.argv[4]
first = python + " " + py + " > " + data
second = [c, '--wide', data]
try:
print('running: ', first)
subprocess.check_call(first, shell=True)
print('running: ', second)
subprocess.check_call(second)
except:
sys.exit(1)
| 418 |
python/test_formula_to_intervals.py
|
chaosite/SMTSampler
| 0 |
2024701
|
from z3_utils import *
import sys as _sys
from formula_strengthener import strengthen
from interval import Interval, IntervalSet, INF, MINF
def timed(func):
def func_wrapper(*args, **kwargs):
from datetime import datetime
s = datetime.now()
result = func(*args, **kwargs)
e = datetime.now()
return result, e-s
return func_wrapper
def solve_and_strengthen_formula(f, debug = True):
print("f is: " + str(f))
s = Solver()
s.add(f)
s.check()
m = s.model()
r, stren_time = timed(strengthen)(f, m, debug)
print("f after strengthening:")
print(r)
print(f"time to strengthen f: {stren_time.total_seconds()}s")
return r
def read_smt2(filename):
formula = parse_smt2_file(filename)
if is_and(formula):
return formula.children()
else:
return formula
def built_in_tests():
x = Int("x")
y = Int("y")
z = Int("z")
t = Int("t")
b = Bool("b")
f = (x * y >= 60)
r = solve_and_strengthen_formula(f, True)
assert not r.unsimplified_demands
# # I_1 == IntervalSet({"x": Interval(3, 4), "y": Interval(-3, -2), "z": Interval(3,4)})
# I = IntervalSet({"x": Interval(60, INF), "y": Interval(1, INF)})
# assert r.interval_set == I
f = (x % y == 4)
r = solve_and_strengthen_formula(f, True)
assert not r.unsimplified_demands
f = (x % y >= 4)
r = solve_and_strengthen_formula(f, True)
assert r.unsimplified_demands
f = (x * y * z >= 70)
solve_and_strengthen_formula(f, True)
f = And(x * y * z >= 70, y==-1, z==-1)
solve_and_strengthen_formula(f, True)
f = And(x * y * z >= -70, y==1, z==-1)
solve_and_strengthen_formula(f, True)
f = And(x * y * 4 * z >= -70, y==1, z==-1)
solve_and_strengthen_formula(f, True)
f = And(x * y * 4 * z >= -70, x + 3*y <= 9)
solve_and_strengthen_formula(f, True)
f = And(((x + y) * (x + 1) <= 8), (y <= 2), (x + z > 3))
solve_and_strengthen_formula(f, True)
f = Or(Not(b), x>8)
solve_and_strengthen_formula(f, True)
f = (x > 0)
solve_and_strengthen_formula(f, True)
f = Implies(And(Not(If(x > 0, y < 0, y > 0)), Or(z <= 7, x <= 8)), y == 2)
solve_and_strengthen_formula(f, True)
f = And(x > 0, And(y < 0, x >= 7))
solve_and_strengthen_formula(f, True)
f = And(x <= 0, y + z <= 7)
solve_and_strengthen_formula(f, True)
f = And(x > 0, x - t <= 3, 5 * y >= 4, y + z <= 7, z == 5, t != 4)
solve_and_strengthen_formula(f, True)
f = And(-7 * z + 2 * t - 6 * y != 5)
solve_and_strengthen_formula(f, True)
if __name__ == "__main__":
sys_args = _sys.argv[1:]
if len(sys_args) == 0:
print("No files were given. Running built-in tests.")
built_in_tests()
for file in sys_args:
print(f"reading from file: {file}")
constraints = read_smt2(file) # file-error handling is done inside read_smt2
f = And(constraints)
solve_and_strengthen_formula(f)
| 2,992 |
main/lib/idds/rest/v1/logs.py
|
wguanicedew/iDDS
| 0 |
2023682
|
#!/usr/bin/env python
#
# Licensed under the Apache License, Version 2.0 (the "License");
# You may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0OA
#
# Authors:
# - <NAME>, <<EMAIL>>, 2020
import os
from traceback import format_exc
from flask import Blueprint, send_from_directory
from idds.common import exceptions
from idds.common.constants import HTTP_STATUS_CODE
from idds.common.utils import tar_zip_files, get_rest_cacher_dir
from idds.core import (transforms as core_transforms)
from idds.rest.v1.controller import IDDSController
class Logs(IDDSController):
""" get(download) logs. """
def get(self, workload_id, request_id):
""" Get(download) logs.
:param workload_id: the workload id.
:param request_id: The id of the request.
HTTP Success:
200 OK
HTTP Error:
404 Not Found
500 InternalError
:returns: logs.
"""
try:
if workload_id == 'null':
workload_id = None
if request_id == 'null':
request_id = None
if workload_id is None and request_id is None:
error = "One of workload_id and request_id should not be None or empty"
return self.generate_http_response(HTTP_STATUS_CODE.InternalError, exc_cls=exceptions.CoreException.__name__, exc_msg=error)
except Exception as error:
print(error)
print(format_exc())
return self.generate_http_response(HTTP_STATUS_CODE.InternalError, exc_cls=exceptions.CoreException.__name__, exc_msg=error)
try:
transforms = core_transforms.get_transforms(request_id=request_id, workload_id=workload_id)
workdirs = []
for transform in transforms:
work = transform['transform_metadata']['work']
workdir = work.get_workdir()
if workdir:
workdirs.append(workdir)
if not workdirs:
error = "No log files founded."
return self.generate_http_response(HTTP_STATUS_CODE.InternalError, exc_cls=exceptions.CoreException.__name__, exc_msg=error)
cache_dir = get_rest_cacher_dir()
if request_id and workload_id:
output_filename = "request_%s.workload_%s.logs.tar.gz" % (request_id, workload_id)
elif request_id:
output_filename = "request_%s.logs.tar.gz" % (request_id)
elif workload_id:
output_filename = "workload_%s.logs.tar.gz" % (workload_id)
else:
output_filename = "%s.logs.tar.gz" % (os.path.basename(cache_dir))
tar_zip_files(cache_dir, output_filename, workdirs)
return send_from_directory(cache_dir, output_filename, as_attachment=True, mimetype='application/x-tgz')
except exceptions.NoObject as error:
return self.generate_http_response(HTTP_STATUS_CODE.NotFound, exc_cls=error.__class__.__name__, exc_msg=error)
except exceptions.IDDSException as error:
return self.generate_http_response(HTTP_STATUS_CODE.InternalError, exc_cls=error.__class__.__name__, exc_msg=error)
except Exception as error:
print(error)
print(format_exc())
return self.generate_http_response(HTTP_STATUS_CODE.InternalError, exc_cls=exceptions.CoreException.__name__, exc_msg=error)
def post_test(self):
import pprint
pprint.pprint(self.get_request())
pprint.pprint(self.get_request().endpoint)
pprint.pprint(self.get_request().url_rule)
"""----------------------
Web service url maps
----------------------"""
def get_blueprint():
bp = Blueprint('logs', __name__)
logs_view = Logs.as_view('logs')
bp.add_url_rule('/logs/<workload_id>/<request_id>', view_func=logs_view, methods=['get', ])
return bp
| 4,022 |
libs/auth_token.py
|
zhanghe06/flask_restful
| 1 |
2024098
|
#!/usr/bin/env python
# encoding: utf-8
"""
@author: zhanghe
@software: PyCharm
@file: auth_token.py
@time: 2018-06-21 10:52
"""
from itsdangerous import TimedJSONWebSignatureSerializer as Serializer
from config import current_config
SECRET_KEY = current_config.SECRET_KEY
TOKEN_TTL = current_config.TOKEN_TTL
def generate_auth_token(user_id):
s = Serializer(SECRET_KEY, expires_in=TOKEN_TTL)
return s.dumps({'user_id': user_id})
def verify_auth_token(token):
s = Serializer(SECRET_KEY)
data = s.loads(token)
return data
| 550 |
tests/end2end/test_cpc.py
|
srinivas32/python-zhmcclient
| 0 |
2023291
|
# Copyright 2019 IBM Corp. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
End2end tests for CPCs that do not change anything.
"""
from __future__ import absolute_import, print_function
from requests.packages import urllib3
import zhmcclient
# pylint: disable=line-too-long,unused-import
from zhmcclient.testutils.hmc_definition_fixtures import hmc_definition, hmc_session # noqa: F401, E501
# pylint: disable=unused-import
from zhmcclient.testutils.cpc_fixtures import all_cpcs # noqa: F401
urllib3.disable_warnings()
# Detect machine generation from machine type
MACHINE_GENERATIONS = {
'2817': 'gen11', # z196
'2818': 'gen11', # z114
'2827': 'gen12', # EC12
'2828': 'gen12', # BC12
'2964': 'gen13', # z13
'2965': 'gen13', # z13s
'3906': 'gen14', # z14
'3907': 'gen14', # z14-ZR1 (MR)
}
# Properties in Cpc objects returned by List CPC Objects
PROPS_CPC_LIST = {
'gen11': ['object-uri', 'name', 'status'],
'gen12': ['object-uri', 'name', 'status'],
'gen13': ['object-uri', 'name', 'status'],
'gen14': ['object-uri', 'name', 'status', 'has-unacceptable-status',
'dpm-enabled', 'se-version'],
}
# Properties in minimalistic Cpc objects
PROPS_CPC_MINIMAL = ['object-uri', 'name']
def assert_cpc_minimal(cpc, exp_name, exp_prop_names):
"""
Check a Cpc object.
"""
act_prop_names = cpc.properties.keys()
for prop_name in exp_prop_names:
assert prop_name in act_prop_names, \
"CPC {0}".format(exp_name)
assert cpc.properties['name'] == exp_name, \
"CPC {0}".format(exp_name)
assert cpc.name == exp_name, \
"CPC {0}".format(exp_name)
# Printing is disabled by default, rename to test_...() to enable it.
def disabled_test_print_cpcs(all_cpcs): # noqa: F811
# pylint: disable=redefined-outer-name
"""
Print some information about the CPCs under test.
"""
for cpc in sorted(all_cpcs, key=lambda obj: obj.name):
hd = cpc.manager.client.session.hmc_definition
print("")
print("CPC {} on HMC {}:".format(cpc.name, hd.nickname))
if cpc.dpm_enabled:
print(" Partitions:")
partitions = cpc.partitions.list()
for partition in sorted(partitions, key=lambda obj: obj.name):
print(" {}".format(partition.name))
print(" Adapters:")
adapters = cpc.adapters.list()
for adapter in sorted(adapters, key=lambda obj: obj.name):
print(" {}".format(adapter.name))
else:
print(" LPARs:")
lpars = cpc.lpars.list()
for lpar in sorted(lpars, key=lambda obj: obj.name):
print(" {}".format(lpar.name))
print(" Reset profiles:")
reset_profiles = cpc.reset_activation_profiles.list()
for reset_profile in sorted(reset_profiles,
key=lambda obj: obj.name):
print(" {}".format(reset_profile.name))
print(" Load profiles:")
load_profiles = cpc.load_activation_profiles.list()
for load_profile in sorted(load_profiles,
key=lambda obj: obj.name):
print(" {}".format(load_profile.name))
print(" Image profiles:")
image_profiles = cpc.image_activation_profiles.list()
for image_profile in sorted(image_profiles,
key=lambda obj: obj.name):
print(" {}".format(image_profile.name))
def test_cpc_find_by_name(hmc_session): # noqa: F811
# pylint: disable=redefined-outer-name
"""
Test that all CPCs in the HMC definition can be found using find_by_name().
"""
client = zhmcclient.Client(hmc_session)
hd = hmc_session.hmc_definition
for def_name in hd.cpcs:
# The code to be tested
cpc = client.cpcs.find_by_name(def_name)
assert_cpc_minimal(cpc, def_name, PROPS_CPC_MINIMAL)
def test_cpc_find_with_name(hmc_session): # noqa: F811
# pylint: disable=redefined-outer-name
"""
Test that all CPCs in the HMC definition can be found using find()
with the name as a filter argument.
"""
client = zhmcclient.Client(hmc_session)
hd = hmc_session.hmc_definition
for def_name in hd.cpcs:
# The code to be tested
found_cpc = client.cpcs.find(name=def_name)
assert_cpc_minimal(found_cpc, def_name, PROPS_CPC_MINIMAL)
def test_cpc_findall_with_name(hmc_session): # noqa: F811
# pylint: disable=redefined-outer-name
"""
Test that all CPCs in the HMC definition can be found using findall()
with the name as a filter argument.
"""
client = zhmcclient.Client(hmc_session)
hd = hmc_session.hmc_definition
for def_name in hd.cpcs:
# The code to be tested
found_cpcs = client.cpcs.findall(name=def_name)
assert len(found_cpcs) == 1
found_cpc = found_cpcs[0]
assert_cpc_minimal(found_cpc, def_name, PROPS_CPC_MINIMAL)
def test_cpc_list_with_name(hmc_session): # noqa: F811
# pylint: disable=redefined-outer-name
"""
Test that all CPCs in the HMC definition can be found using list()
with the name as a filter argument.
"""
client = zhmcclient.Client(hmc_session)
hd = hmc_session.hmc_definition
for def_name in hd.cpcs:
# The code to be tested
found_cpcs = client.cpcs.list(filter_args=dict(name=def_name))
exp_prop_names = []
def_machine_type = hd.cpcs[def_name].get('machine_type', None)
if def_machine_type:
gen = MACHINE_GENERATIONS.get(def_machine_type, None)
if gen:
exp_prop_names = PROPS_CPC_LIST[gen]
assert len(found_cpcs) == 1
found_cpc = found_cpcs[0]
assert_cpc_minimal(found_cpc, def_name, exp_prop_names)
def test_cpc_list_with_name_full(hmc_session): # noqa: F811
# pylint: disable=redefined-outer-name
"""
Test that all CPCs in the HMC definition can be found using list()
with full properties and the name as a filter argument.
"""
client = zhmcclient.Client(hmc_session)
hd = hmc_session.hmc_definition
for def_name in hd.cpcs:
# The code to be tested
found_cpcs = client.cpcs.list(filter_args=dict(name=def_name),
full_properties=True)
exp_prop_names = []
def_machine_type = hd.cpcs[def_name].get('machine_type', None)
if def_machine_type:
gen = MACHINE_GENERATIONS.get(def_machine_type, None)
if gen:
exp_prop_names = PROPS_CPC_LIST[gen]
assert len(found_cpcs) == 1
found_cpc = found_cpcs[0]
assert_cpc_minimal(found_cpc, def_name, exp_prop_names)
| 7,415 |
yat-master/pymodule/yat/cli/command/backup.py
|
opengauss-mirror/Yat
| 0 |
2023871
|
#!/usr/bin/env python
# encoding=utf-8
"""
Copyright (c) 2021 Huawei Technologies Co.,Ltd.
openGauss is licensed under Mulan PSL v2.
You can use this software according to the terms and conditions of the Mulan PSL v2.
You may obtain a copy of Mulan PSL v2 at:
http://license.coscl.org.cn/MulanPSL2
THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
See the Mulan PSL v2 for more details.
"""
import click
from yat.backup import backup
from yat.cli.entry import cli
from yat.errors import YatError
@cli.command(name='backup', short_help='Backup last running result')
@click.option('-a', '--action', help='Action to do', required=True, type=click.Choice(['backup', 'init', 'config']))
@click.option('-d', '--dir', help='Directory to scan and backup suite', default='.')
@click.option('-m', '--mode', type=click.Choice(['full', 'quick', 'log']), help='Backup mode to using', default='quick')
@click.option('-b', '--backup-dir', help='Set the backup directory')
@click.option('-c', '--config', help='Set the config content[key=value]')
def backup_cli(action, **opts):
"""
Backup last running result
\b
yat backup [-d /path/to/suite/dirs] [-m mode] -b /path/to/backup/dir
"""
if action == 'backup':
backup.do_backup(**opts)
elif action == 'init':
backup.do_init(**opts)
elif action == 'config':
backup.do_config(**opts)
else:
raise YatError('error: unknown value for -a/--action')
| 1,613 |
interfaces/ATS_VM/utils/airtime-test-soundcard.py
|
krattai/AEBL
| 4 |
2023271
|
import subprocess
import os
import pwd
import grp
import sys
import getopt
"""
we need to run the program as non-root because Liquidsoap refuses to run as root.
It is possible to run change the effective user id (seteuid) before calling Liquidsoap
but this introduces other problems (fake root user is not part of audio group after calling seteuid)
"""
if os.geteuid() == 0:
print "Please run this program as non-root"
sys.exit(1)
def printUsage():
print "airtime-test-soundcard [-v] [-o alsa | ao | oss | portaudio | pulseaudio ] [-h]"
print " Where: "
print " -v verbose mode"
print " -o Linux Sound API (default: alsa)"
print " -h show help menu "
def find_liquidsoap_binary():
"""
Starting with Airtime 2.0, we don't know the exact location of the Liquidsoap
binary because it may have been installed through a debian package. Let's find
the location of this binary.
"""
rv = subprocess.call("which airtime-liquidsoap > /dev/null", shell=True)
if rv == 0:
return "airtime-liquidsoap"
return None
try:
optlist, args = getopt.getopt(sys.argv[1:], 'hvo:')
except getopt.GetoptError, g:
printUsage()
sys.exit(1)
sound_api_types = set(["alsa", "ao", "oss", "portaudio", "pulseaudio"])
verbose = False
sound_api = "alsa"
for o, a in optlist:
if "-v" == o:
verbose = True
if "-o" == o:
if a.lower() in sound_api_types:
sound_api = a.lower()
else:
print "Unknown sound api type\n"
printUsage()
sys.exit(1)
if "-h" == o and len(optlist) == 1:
printUsage()
sys.exit(0)
try:
print "Sound API: %s" % sound_api
print "Outputting to soundcard. You should be able to hear a monotonous tone. Press ctrl-c to quit."
liquidsoap_exe = find_liquidsoap_binary()
if liquidsoap_exe is None:
raise Exception("Liquidsoap not found!")
command = "%s 'output.%s(sine())'" % (liquidsoap_exe, sound_api)
if not verbose:
command += " > /dev/null"
#print command
rv = subprocess.call(command, shell=True)
#if we reach this point, it means that our subprocess exited without the user
#doing a keyboard interrupt. This means there was a problem outputting to the
#soundcard. Print appropriate message.
print "There was an error using the selected sound API. Please select a different API " + \
"and run this program again. Use the -h option for help"
except KeyboardInterrupt, ki:
print "\nExiting"
except Exception, e:
raise
| 2,634 |
image_helper/tests/test_fields.py
|
madisona/django-image-helper
| 1 |
2024328
|
import os
import shutil
from os.path import join, dirname
from django import test
from django.core.files.uploadedfile import SimpleUploadedFile
from django.core.management import call_command
from django.conf import settings
from image_helper.tests.test_app.models import TestModel
from image_helper.fields import _get_thumbnail_filename
class SizedImageFieldTests(test.TestCase):
def setUp(self):
call_command("migrate", verbosity=0)
def tearDown(self):
test_images_path = os.path.join(settings.MEDIA_ROOT, "test_images")
if os.path.exists(test_images_path):
shutil.rmtree(test_images_path)
def _get_simple_uploaded_file(self):
return SimpleUploadedFile(
"sample_photo.png",
open(join(dirname(__file__), "test_app/sample_photo.png"),
'rb').read(),
content_type="image/png")
def _save_image_model(self):
upload_file = self._get_simple_uploaded_file()
m = TestModel(image=upload_file)
m.save()
return m
def test_saves_image_and_thumbnail(self):
upload_file = self._get_simple_uploaded_file()
m = TestModel(image=upload_file)
m.save()
model = TestModel.objects.get(pk=1)
self.assertEqual("test_images/sample_photo.png", model.image.name)
self.assertEqual("{}test_images/sample_photo.png".format(
settings.MEDIA_URL), model.image.url)
self.assertEqual("{}/test_images/sample_photo.png".format(
settings.MEDIA_ROOT), model.image.path)
self.assertEqual(True, os.path.exists(model.image.path))
self.assertEqual("test_images/sample_photo-thumbnail.png",
model.image.thumbnail.name)
self.assertEqual("{}test_images/sample_photo-thumbnail.png".format(
settings.MEDIA_URL), model.image.thumbnail.url)
self.assertEqual("{}/test_images/sample_photo-thumbnail.png".format(
settings.MEDIA_ROOT), model.image.thumbnail.path)
self.assertEqual(True, os.path.exists(model.image.thumbnail.path))
def test_saves_appropriately_when_finding_valid_image_name(self):
# Thumbnail should be named the same as image, just with the -thumbnail piece.
self._save_image_model()
self._save_image_model()
model = TestModel.objects.get(pk=2)
self.assertTrue(
model.image.name.startswith("test_images/sample_photo"))
self.assertNotEqual("test_images/sample_photo.png", model.image.name)
self.assertEqual("{}{}".format(settings.MEDIA_URL, model.image.name),
model.image.url)
self.assertEqual("{}/{}".format(settings.MEDIA_ROOT, model.image.name),
model.image.path)
self.assertEqual(True, os.path.exists(model.image.path))
expected_thumbnail_name = _get_thumbnail_filename(model.image.name)
self.assertEqual(expected_thumbnail_name, model.image.thumbnail.name)
self.assertEqual("{}{}".format(settings.MEDIA_URL,
expected_thumbnail_name),
model.image.thumbnail.url)
self.assertEqual("{}/{}".format(settings.MEDIA_ROOT,
expected_thumbnail_name),
model.image.thumbnail.path)
self.assertEqual(True, os.path.exists(model.image.thumbnail.path))
class GetThumbnailFilenameTests(test.TestCase):
def test_get_thumbnail_filename(self):
thumbnail_name = _get_thumbnail_filename("my_image.jpg")
self.assertEqual("my_image-thumbnail.jpg", thumbnail_name)
def test_allows_customized_append_text(self):
thumbnail_name = _get_thumbnail_filename(
"my_image.jpg", append_text="-small")
self.assertEqual("my_image-small.jpg", thumbnail_name)
| 3,879 |
scripts/textgrid_stats.py
|
RuntimeRacer/Real-Time-Voice-Cloning
| 0 |
2024081
|
# use a different docker image!
# make build_align && make run_align
# bin/mfa_align \
# /datasets/CommonVoice/en/speakers \
# /datasets/slr60/english.dict \
# /opt/Montreal-Forced-Aligner/dist/montreal-forced-aligner/pretrained_models/english.zip \
# /output/montreal-aligned/cv-en/
# bin/mfa_validate_dataset \
# /datasets/slr60/test-clean \
# /datasets/slr60/english.dict\
# english
import sys
import tgt
import json
from pathlib import Path
from tqdm import tqdm
import numpy as np
DATASET = 'dev-clean'
# DATASET = 'dev-other'
# DATASET = 'test-clean'
# DATASET = 'test-other'
# DATASET = 'train-clean-100'
# DATASET = 'train-clean-360'
# DATASET = 'train-other-500'
base_path = Path('/output/montreal-aligned/{}'.format(DATASET))
speaker_dirs = [f for f in base_path.glob("*") if f.is_dir()]
dataset_phones = {}
dataset_words = {}
for speaker_dir in tqdm(speaker_dirs):
book_dirs = [f for f in speaker_dir.glob("*") if f.is_dir()]
for book_dir in book_dirs:
# find our textgrid files
textgrid_files = sorted([f for f in book_dir.glob("*.TextGrid") if f.is_file()])
# process each grid file and add to our output
for textgrid_file in textgrid_files:
# read the grid
input = tgt.io.read_textgrid(textgrid_file)
# print("input: {}".format(input))
# sys.exit(1)
# get all the word tiers
word_tier = input.get_tier_by_name('words')
phone_tier = input.get_tier_by_name('phones')
for interval in word_tier:
if interval.text not in dataset_words:
dataset_words[interval.text] = {
"text": interval.text,
"count": 0,
"duration": []
}
# increase the count
dataset_words[interval.text]["count"] += 1
# add to our duration
dataset_words[interval.text]["duration"].append(
interval.end_time - interval.start_time
)
for interval in phone_tier:
if interval.text not in dataset_phones:
dataset_phones[interval.text] = {
"text": interval.text,
"count": 0,
"duration": []
}
# increase the count
dataset_phones[interval.text]["count"] += 1
# add to our duration
dataset_phones[interval.text]["duration"].append(
interval.end_time - interval.start_time
)
def duration_stats(dataset):
for k in dataset.keys():
vals = np.array(dataset[k]["duration"])
dataset[k]["duration"] = {
"min": np.min(vals),
"max": np.max(vals),
"avg": np.mean(vals),
"std": np.std(vals)
}
return dataset
duration_stats(dataset_words)
duration_stats(dataset_phones)
with open(base_path.joinpath("stats.json"), "w") as json_out:
json.dump(
{
"words": dataset_words,
"phones": dataset_phones,
},
json_out,
indent=4
)
print("All done, thanks for playing!")
| 3,290 |
tests/test_document.py
|
gitwyy/chinese-calendar
| 616 |
2023821
|
# -*- coding: utf-8 -*-
from __future__ import absolute_import, unicode_literals
import unittest
class DocTests(unittest.TestCase):
def test_same_code_as_readme(self):
import datetime
# Check if 2018-04-30 is holiday in China
from chinese_calendar import is_holiday, is_workday
april_last = datetime.date(2018, 4, 30)
self.assertFalse(is_workday(april_last))
self.assertTrue(is_holiday(april_last))
# or check and get the holiday name
import chinese_calendar as calendar # with different import style
on_holiday, holiday_name = calendar.get_holiday_detail(april_last)
self.assertTrue(on_holiday)
self.assertEqual(calendar.Holiday.labour_day.value, holiday_name)
# even check if a holiday is in lieu
import chinese_calendar
self.assertFalse(chinese_calendar.is_in_lieu(datetime.date(2006, 2, 1)))
self.assertTrue(chinese_calendar.is_in_lieu(datetime.date(2006, 2, 2)))
| 1,002 |
pydeepmerge/errors/__init__.py
|
sjhewitt/pydeepmerge
| 2 |
2024434
|
from pydeepmerge.errors.errors import ( # noqa: F401
FileTypeError,
ParserNotAvailableError,
)
| 104 |
nncf/tensorflow/sparsity/rb/functions.py
|
sarthakpati/nncf
| 310 |
2023004
|
"""
Copyright (c) 2021 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import tensorflow as tf
from nncf.tensorflow.functions import logit, st_threshold
def binary_mask(mask):
return tf.round(tf.math.sigmoid(mask))
def st_binary_mask(mask):
return st_threshold(tf.math.sigmoid(mask))
def calc_rb_binary_mask(mask, seed, eps=0.01):
uniform = tf.random.stateless_uniform(mask.shape, seed=seed, minval=0, maxval=1)
mask = mask + logit(tf.clip_by_value(uniform, eps, 1 - eps))
return st_binary_mask(mask)
| 1,036 |
flaskr/settings.py
|
datahappy1/flask_mvc_github_boilerplate
| 0 |
2024801
|
"""
settings module
"""
REPO = "datahappy1/flask_mvc_github_example_project"
REPO_FOLDER = "files_playground/"
INITIAL_BRANCH_NAME = "master"
EDITABLE_FILE_EXTENSION_LIST = ['.csv', '.txt', '.json', '.ini', '.conf', '.yml', '.yaml']
API_BASE_ENDPOINT = 'api/version1'
| 268 |
notifications/signals/posts.py
|
RawrLion/vas3k.club
| 0 |
2024444
|
import telegram
from django.db.models.signals import post_save
from django.dispatch import receiver
from django_q.tasks import async_task
from bot.common import ADMIN_CHAT, send_telegram_message, render_html_message, CLUB_ONLINE
from posts.models import Post
@receiver(post_save, sender=Post)
def create_or_update_post(sender, instance, created, **kwargs):
if not created and "is_visible" not in instance.changed_fields:
return None # we're not interested in updates, only if it's changing visibility
if instance.type in {Post.TYPE_INTRO, Post.TYPE_WEEKLY_DIGEST}:
return None # skip intros and emails
if not instance.is_visible:
return None # skip drafts too
async_task(async_create_or_update_post, instance, created)
def async_create_or_update_post(post, is_created):
if not post.is_approved_by_moderator:
send_telegram_message(
chat=ADMIN_CHAT,
text=render_html_message("moderator_post.html", post=post),
reply_markup=telegram.InlineKeyboardMarkup([
[
telegram.InlineKeyboardButton("👍 Одобрить", callback_data=f"approve_post:{post.id}"),
telegram.InlineKeyboardButton("😕 Так себе", callback_data=f"forgive_post:{post.id}"),
],
[
telegram.InlineKeyboardButton("❌ В черновики", callback_data=f"delete_post:{post.id}"),
]
])
)
# post to online channel
send_telegram_message(
chat=CLUB_ONLINE,
text=render_html_message("channel_post_announce.html", post=post),
parse_mode=telegram.ParseMode.HTML,
disable_preview=True,
)
| 1,708 |
project/testmodule/__init__.py
|
nanvel/tornado-boilerplate
| 0 |
2023284
|
from project.common import settings
settings.register(name='DEBUG', content_type=settings.TYPE_BOOL, default_value=True)
settings.register(name='PORT', setting_type=settings.TYPE_INTEGER, default_value=8000)
from .handlers import *
from .urls import *
| 256 |
test/__init__.py
|
phseiff/gender-render
| 24 |
2024335
|
# ToDo: Apparently, the warnings-module's warning catching function is not thread save; feel free to make a pr to
# replace it with `self.assertWarns` in all tests. Tests that expect no warning to happen could be implemented by
# stickign a `@unittest.expectedFailure` to them.
# On 2nd thought, that might not be a good idea for any test except the tests of the `warnings` module, since these are
# the only multi-threaded tests, and `@unittest.expectedFailure` would require fragmenting the test functions.
| 513 |
app/menus/gameover_menu.py
|
Ahmed-Khaled-dev/modern-meerkats
| 1 |
2024816
|
import asyncio
from typing import Literal, Optional
from asciimatics.effects import Print
from asciimatics.renderers import FigletText, Fire, SpeechBubble
from asciimatics.scene import Scene
from asciimatics.screen import Screen
from app.types.events import Event
_gameover_key: Optional[Literal["m", "r"]] = None
def update_screen(
end_time: int, loop: asyncio.AbstractEventLoop, screen: Screen
) -> None:
"""Checks if the user input matches with keys m or r."""
event = screen.get_event()
screen.draw_next_frame()
global _gameover_key
try:
if event is not None and chr(event.key_code) == "m":
_gameover_key = "m"
loop.stop()
elif event is not None and chr(event.key_code) == "r":
_gameover_key = "r"
loop.stop()
else:
if loop.time() < end_time:
loop.call_later(0.05, update_screen, end_time, loop, screen)
else:
loop.stop()
except: # noqa: E722
if loop.time() < end_time:
loop.call_later(0.05, update_screen, end_time, loop, screen)
else:
loop.stop()
def gameover(screen: Screen, fail_reason: str) -> Event:
"""Displays the gameover screen."""
scenes = []
effects = [
Print(
screen,
SpeechBubble("Press m to return to main menu."),
x=screen.width // 2 - 40,
y=screen.height // 2 + 3,
start_frame=5,
transparent=True,
colour=Screen.COLOUR_RED,
),
]
effects.append(
Print(
screen,
SpeechBubble("Press r to retry the level."),
x=screen.width // 2 + 10,
y=screen.height // 2 + 3,
start_frame=5,
transparent=False,
colour=Screen.COLOUR_RED,
)
)
# Check https://asciimatics.readthedocs.io/en/stable/asciimatics.html?highlight=fire#asciimatics.renderers.Fire
effects.append(
Print(
screen,
Fire(screen.height // 2 - 10, 80, "!!!!@@@@###", 1, 40, screen.colours),
speed=1,
transparent=True,
x=screen.width // 2 + 30,
y=screen.height // 2 - 20,
),
)
# Check https://asciimatics.readthedocs.io/en/stable/asciimatics.html?highlight=fire#asciimatics.renderers.Fire
effects.append(
Print(
screen,
Fire(screen.height // 2 - 10, 80, "!!!!@@@@###", 1, 40, screen.colours),
speed=1,
transparent=True,
x=screen.width // 2 - 110,
y=screen.height // 2 - 20,
),
)
effects.append(
Print(
screen,
SpeechBubble(f"Congratulations! {fail_reason}."),
screen.height // 2 - 8,
speed=1,
start_frame=5,
transparent=False,
)
)
effects.append(
Print(
screen,
FigletText("GAME OVER!", "banner"),
screen.height // 2 - 17,
colour=Screen.COLOUR_RED,
bg=Screen.COLOUR_BLACK,
speed=1,
)
)
scenes.append(Scene(effects, -1))
screen.set_scenes(scenes)
loop = asyncio.new_event_loop()
end_time = loop.time() + 500.0
loop.call_soon(update_screen, end_time, loop, screen)
loop.run_forever()
loop.close()
screen.clear()
screen.close()
if _gameover_key == "m":
return Event.ToMainMenu
elif _gameover_key == "r":
return Event.RetryLevel
else:
return Event.RetryLevel
| 3,618 |
examples/hlapi/v1arch/asyncore/sync/manager/cmdgen/enable-mib-lookup.py
|
RKinsey/pysnmp
| 492 |
2023031
|
"""
Enable MIB lookup
+++++++++++++++++
Perform SNMP GETNEXT operation with the following options:
* with SNMPv2c, community 'public'
* over IPv4/UDP
* to an Agent at demo.snmplabs.com:161
* for an OID in string form
* resolve request and response OIDs and values from/to human-friendly form
The `lookupMib=True` keyword argument makes pysnmp resolving
request and response variable-bindings from/to human-friendly form.
Functionally similar to:
| $ snmpwalk -v2c -c public -ObentU demo.snmplabs.com 1.3.6.1.2.1
"""#
from pysnmp.hlapi.v1arch import *
iterator = nextCmd(
SnmpDispatcher(),
CommunityData('public'),
UdpTransportTarget(('demo.snmplabs.com', 161)),
ObjectType(ObjectIdentity('1.3.6.1.2.1.1')),
lookupMib=True
)
for errorIndication, errorStatus, errorIndex, varBinds in iterator:
if errorIndication:
print(errorIndication)
break
elif errorStatus:
print('%s at %s' % (errorStatus.prettyPrint(),
errorIndex and varBinds[int(errorIndex) - 1][0] or '?'))
break
else:
for varBind in varBinds:
print(' = '.join([x.prettyPrint() for x in varBind]))
| 1,178 |
lab10/lab10.py
|
ilyacoding/datascience
| 0 |
2024628
|
#!/usr/bin/env python
# coding: utf-8
# # ml lab10
# In[52]:
import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import sklearn.model_selection
import sklearn.metrics
import sklearn.tree
import sklearn.linear_model
# ### 1. get dataset from `sklearn`
# In[7]:
boston = sklearn.datasets.load_boston()
boston.data.shape
# ### 2. get train and validation sets
# In[12]:
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
boston.data.astype(np.float32),
boston.target,
test_size=0.25,
random_state=42
)
X_train.shape, X_test.shape
# ### 3-6. train with `DecisionTreeRegressor`
# In[34]:
def default_get_weight(x):
return 0.9
def iter_get_weight(i):
return 0.9 / (1.0 + i)
def get_clf(depth):
return sklearn.tree.DecisionTreeRegressor(max_depth=depth, random_state=42)
def predict_boosted(models, X, y, weights):
p = np.zeros(y.shape)
for i, model in enumerate(models):
p += model.predict(X) * weights[i]
loss = sklearn.metrics.mean_squared_error(y, p)
return p, loss
def train_boosted(X, y, num_iters=50, get_weight=default_get_weight, depth=5):
models = []
y = np.copy(y)
weights = np.ones(shape=(num_iters,))
for i in range(num_iters):
clf = get_clf(depth)
clf.fit(X_train, y)
models.append(clf)
weights[i] = get_weight(i)
pred, loss = predict_boosted(models, X_train, y_train, weights)
h = clf.predict(X_train)
y = y - h * weights[i]
return models, weights
# In[68]:
models, weights = train_boosted(X_train, y_train)
# In[69]:
def print_results(models, weights):
p, loss = predict_boosted(models, X_train, y_train, weights)
test_p, test_loss = predict_boosted(models, X_test, y_test, weights)
print(f'Training Set MSE loss:\t{loss}')
print(f'Test Set MSE loss:\t{test_loss}')
return test_loss
test_loss = print_results(models, weights)
# ### 7. change weights on each iteration
# In[70]:
models, weights = train_boosted(X_train, y_train, get_weight=iter_get_weight)
test_loss = print_results(models, weights)
# > при константном весе модель имеет меньшую ошибку на тренировочных данных, но большую на валидационной выборке
# ### 8a. test on large number of iterations
# In[39]:
def test_num_iters(X_train, y_train, X_val, y_val):
steps = 10
iters = np.linspace(10, 400, steps, dtype=int)
train_loss = np.zeros(steps)
val_loss = np.zeros(steps)
for i, num_iters in enumerate(iters):
models, weights = train_boosted(X_train, y_train, num_iters, get_weight=iter_get_weight)
p, loss = predict_boosted(models, X_train, y_train, weights)
test_p, test_loss = predict_boosted(models, X_val, y_val, weights)
train_loss[i] = loss
val_loss[i] = test_loss
best_iters = iters[val_loss.argmin()]
return best_iters, train_loss, val_loss, iters
# In[40]:
best_num_iters, train_loss, test_loss, iters = test_num_iters(X_train, y_train, X_test, y_test)
best_num_iters
# In[41]:
def plot_data(iters, train_loss, test_loss, xlabel):
plt.figure(figsize=(10, 6))
plt.plot(iters, train_loss, c='b', label='Train')
plt.plot(iters, test_loss, c='r', label='Test')
plt.xlabel(xlabel)
plt.ylabel('MSE Loss')
plt.legend()
plt.show()
plot_data(iters, train_loss, test_loss, 'Number of iterations')
# > По графику ошибка убывает с числом итераций для обоих выборок (тренировочной и валидационной) - те модель не переобучается с ростом числа итераций
# ### 8b. test on large tree depth
# In[53]:
def test_tree_depth(X_train, y_train, X_val, y_val):
depths = range(2, 20)
steps = len(depths)
train_loss = np.zeros(steps)
val_loss = np.zeros(steps)
for i, depth in enumerate(depths):
models, weights = train_boosted(X_train, y_train, depth=depth, get_weight=iter_get_weight)
p, loss = predict_boosted(models, X_train, y_train, weights)
test_p, test_loss = predict_boosted(models, X_val, y_val, weights)
train_loss[i] = loss
val_loss[i] = test_loss
best_depth = depths[val_loss.argmin()]
return best_depth, train_loss, val_loss, depths
# In[54]:
best_depth, train_loss, test_loss, depths = test_tree_depth(X_train, y_train, X_test, y_test)
best_depth
# In[55]:
plot_data(depths, train_loss, test_loss, 'Max Tree Depth')
# > При увеличении глубины дерева, ошибка на тренировочной выборке падает, а на валидационной скачет - что говорит о переобучении модели
# ### 9. compare with `sklearn.linear_model`
# In[72]:
lr = sklearn.linear_model.LinearRegression()
lr.fit(X_train, y_train)
lr_p = lr.predict(X_train)
lr_test_p = lr.predict(X_test)
lr_train_loss = sklearn.metrics.mean_squared_error(y_train, lr_p)
lr_test_loss = sklearn.metrics.mean_squared_error(y_test, lr_test_p)
# In[74]:
print(f'LR train MSE:\t{lr_train_loss}')
print(f'LR test MSE:\t{lr_test_loss}')
print(f'GB RMSE loss:\t{np.sqrt(test_loss)}')
print(f'LR RMSE loss:\t{np.sqrt(lr_test_loss)}')
print(f'GB perfomance is {np.sqrt(lr_test_loss)/np.sqrt(test_loss):.2}x better')
# ### 10. conclusions
# Был рассмотрен метод градиентного бустинга используя деревья решений.
#
# Проанализировано влияние параметров (количество итераций и глубина дерева) на качество обучения.
#
# Проведено сравнение градиентного бустинга с линейной регрессией.
| 5,536 |
commiter/src/factories.py
|
Rob174/Commiter
| 0 |
2024323
|
from commiter.src.backend.backend import Backend
from pathlib import Path
from commiter.src.command.actions import *
from commiter.src.command.selectors import *
from commiter.src.backend.tasks import *
class Factory1:
def create(self, path_config: Path, path_backup: Path):
task_type = Task1
backend = Backend(path=path_backup, tasks_parsers=[task_type])
selector = IndexSelector(backend)
actions = [AddTask(backend, task_type), DeleteTask(backend, selector), ModifyProperty(
backend, selector), Issue(backend, task_type, selector)]
return task_type, backend, selector, actions
class Processor:
def __init__(self, backend: Backend, actions: List):
self.backend = backend
self.actions = actions
def process(self, command: str):
commands = command.split(";")
for command in commands:
for action in self.actions:
if action.can_parse(command):
action.parse(command)
break
else:
print("Unknown command: " + command)
self.backend.write()
| 1,138 |
Xana/XParam/scratch.py
|
ClLov/Xana
| 0 |
2023779
|
kb = 1.381e-23
R = 11e-9
T = 25
e_rheo = 10
def getD(eta, err=0):
dD = 0
D = kb*(T+273.15)/(6*np.pi*R*eta)
if err:
dD = D*err/eta
return D, dD
def geteta(D, err=0):
deta = 0
eta = kb*(T+273.15)/(6*np.pi*R*D*1e-18)
if err:
deta = eta*err/D
return eta, deta
fig, ax = plt.subplots(2,2,figsize=(9,8))
ax = ax.ravel()
cmap = plt.get_cmap('Set1')
qp = np.arange(nq)
qvn = qv[qp]*10
qvn2 = qvn**2
x = np.linspace(np.min(qvn),np.max(qvn),100)
x2 = x*x
#-------plot decay rates--------
for i in range(2):
y = 1/rates[qp,1+3*i,0]
dy = y**2*rates[qp,1+3*i,1]
ax[0].errorbar(qvn2[qp],y,dy,fmt='o',color=cmap(i), alpha=.6, label=r'$\Gamma_{}$'.format(i))
nfl = [np.arange(9)]
if i==0:
nfl.append(np.arange(11,16))
qp = np.arange(9)
if i==1:
continue
for nf in nfl:
nf = np.delete(nf,np.where(rates[nf,1,1]==0))
D_mc, b_mc = emceefit_sl(qvn2[nf], y[nf], dy[nf])[:2]
D_mc, b_mc = map(lambda x: (x[0],np.mean(x[1:])),[D_mc,b_mc])
popt, pcov = np.polyfit(qvn2[nf], y[nf], 1, w=1/dy[nf], cov=1)
perr = np.sqrt(np.diag(pcov))
D_exp, b_exp = (popt[0],perr[0]), (popt[1],perr[1])
y_dif = y[nf] / qvn2[nf]
dy_dif = dy[nf] / qvn2[nf]
D_dif = (np.sum(y_dif/dy_dif**2)/np.sum(1/dy_dif**2), np.sqrt(1/np.sum(1/dy_dif**2)))
e_dif = geteta(*D_dif)
e_exp = geteta(*D_exp)
e_mle = geteta(*D_mc)
D_rheo = getD(e_rheo)
ax[0].plot(x2, np.polyval(popt,x2), color=cmap(i))
#ax[0].plot(x2, np.polyval([D_dif[0],0],x2), color='gray')
print('\nResults for {} decay:'.format(i+1))
print('-'*20)
print('D_rheo = {:.2f} nm2s-1'.format(D_rheo[0]*1e18))
print(r'D_exp = {:.2f} +/- {:.2f} nm2s-1'.format(*D_exp))
print(r'b_exp = {:.2f} +/- {:.2f} s-1'.format(*b_exp))
print(r'D_mle = {:.4f} +/- {:.4f} nm2s-1'.format(*D_mc))
print(r'b_mle = {:.4f} +/- {:.4f} s-1'.format(*b_mc))
print(r'D_dif = {:.2f} +/- {:.2f} nm2s-1'.format(*D_dif))
print('\neta_rheo = {:.2f} Pas'.format(e_rheo))
print(r'eta_exp = {:.2f} +/- {:.2f} Pas'.format(*e_exp))
print(r'eta_mle = {:.4f} +/- {:.4f} Pas'.format(*e_mle))
print(r'eta_dif = {:.2f} +/- {:.2f} Pas'.format(*e_dif))
#-------plot KWW exponent--------
qp = np.arange(nq)
g = rates[qp,2,0]
dg = rates[qp,2,1]
ax[2].errorbar(qvn,g,dg,fmt='o',color=cmap(0), alpha=.6, label=r'$\gamma_{}$'.format(0))
qp = np.arange(9)
g = rates[qp,5,0]
dg = rates[qp,5,1]
ax[2].errorbar(qvn[qp],g,dg,fmt='s',color=cmap(1), alpha=.6, label=r'$\gamma_{}$'.format(1))
#-------plot nonergodicity parameter--------
def blc(q,L,k,lc):
def A(q):
return 4*np.pi/lc*q/k*np.sqrt(1-q**2/(4*k**2))
return 2*(A(q)*L-1+np.exp(-A(q)*L))/(A(q)*L)**2
b = np.sum(rates[:,3::3,0],1)
db = np.sum(rates[:,3::3,1],1)
ax[1].errorbar(qvn2, b, db, fmt='o', color=cmap(0), alpha=.6, label=r'$f_0(q)$')
nf = np.arange(8)
nf = np.delete(nf,np.where(rates[nf,1,1]==0))
y = np.log(b[nf])
dy = db[nf]/b[nf]
popt1, cov1 = np.polyfit(qvn2[nf], y, 1, w=1/dy, cov=1)
cov1 = np.sqrt(np.diag(cov1))[0]
ax[1].plot(x2, exp(np.polyval(popt1,x2)), '-', color=cmap(0))
#label=r'${:.3g}\, \exp{{(-q^2\cdot{:.3g}nm^{{2}})}}$'.format(np.exp(popt1[1]),-1*popt1[0]))
#----
b = rates[qp,6,0]
db = rates[qp,6,1]
ax[1].errorbar(qvn2[qp], b, db, fmt='s', color=cmap(1), alpha=.6, label=r'$f_1(q)$')
#----
y_th = exp(popt[1])*blc(x, 1e-5, 2*np.pi/(12.4/21/10), 1e-6)
y = np.mean(cnorm[2:nq+2,1:6],1)
dy = np.std(cnorm[2:nq+2,1:6],1)
ax[1].errorbar(qvn2, y, dy, fmt='o', color='k', alpha=.6, label=r'$\beta_0(q)$')
popt2, cov2 = np.polyfit(qvn2, np.log(y), 1, w=y/dy, cov=1)
cov2 = np.sqrt(np.diag(cov2))[0]
ax[1].plot(x2, exp(np.polyval(popt2,x2)), '-', color='k')
#ax[1].legend(loc=3)
x_labels = ax[1].get_xticks()
ax[1].xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.0g'))
c = popt2[0]-popt1[0]
r_loc = np.sqrt(6*(c)/2)
dr_loc = 3/2/r_loc*np.sqrt(cov1**2+cov2**2)
print('\n\nlocalization length: {:.2f} +/- {:.2f} nm'.format(r_loc,dr_loc))
# set style
ax[0].set_xlabel(r'$\mathrm{q}^2$ [$\mathrm{nm}^{-2}]$')
ax[0].set_ylabel(r'$\Gamma [s^{-1}]$')
ax[2].set_xlabel(r'$\mathrm{q}$ [$\mathrm{nm}^{-1}]$')
ax[2].set_ylabel(r'KWW exponent')
ax[1].set_yscale('log')
ax[1].set_xlabel(r'$\mathrm{q}^2$ [$\mathrm{nm}^{-2}]$')
ax[1].set_ylabel(r'contrast')
for axi in ax:
axi.legend(loc='best')
niceplot(axi)
plt.tight_layout()
plt.savefig('um2018/cfpars1.eps')
| 4,597 |
backtester/urls.py
|
gem763/qit
| 2 |
2023277
|
from django.urls import path
from . import views as v
urlpatterns = [
path('', v.dashboard, name='dashboard'),
path('run_backtest/', v.RunBacktestView.as_view(), name='run_backtest'),
path('get_source/', v.GetSourceView.as_view(), name='get_source')
]
| 265 |
zbmain/utils/file.py
|
zbmain/py_pub
| 0 |
2024210
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author : zb
# @Time : 2020/11/18 22:27
# @Blog : https://blog.zbmain.com
def write(char, filepath='tmp.txt', mode='w'):
with open(filepath, mode) as file:
file.write(str(char) + "\n")
| 254 |
ui/webapp.py
|
phucnh22/mapintel_dev
| 0 |
2024365
|
import os
import sys
from datetime import date, timedelta
import pandas as pd
import streamlit as st
dirname = os.path.dirname(__file__)
sys.path.append(os.path.join(dirname, "../"))
from ui.ui_components.umap_search import umap_page
from ui.utils import (
feedback_doc,
retrieve_doc,
get_all_docs,
umap_query,
topic_names,
doc_count
)
# TODO: A problem with the application is that when setting the slider value the query
# will execute even if we didn't finish selecting the value we want. A temporary solution
# is to wrap the sliders inside a form component. The ideal solution would be to create
# a custom slider component that only updates the value when we release the mouse.
# TODO: When selecting a point in the UMAP, show the KNN points highlighted on the plot
# and the listed below (the action of selecting the point will call the query endpoint)
# TODO: Create a function to parse the query and allow search operators like "term" to
# restrict the query to documents that contain "term"
# Init variables
default_question = "Stock Market News"
unique_topics = topic_names()
debug = False
batch_size = 10000
filters = []
# Set page configuration
st.set_page_config(
page_title = "MapIntel App",
layout = "wide"
)
# Title
st.write("# Mapintel App")
# UI sidebar
with st.sidebar:
st.header("Options:")
with st.form(key="options_form"):
end_of_week = date.today() + timedelta(6 - date.today().weekday())
_, mid, _ = st.beta_columns([1, 10, 1])
with mid: # Use columns to avoid slider labels being off-window
filter_date = st.slider(
"Date range",
min_value=date(2020,1,1),
value=(date(2020,1,1), end_of_week),
step=timedelta(7),
format="DD-MM-YY"
)
with st.beta_expander("Query Options"):
filter_category = st.multiselect(
"Category",
options=unique_topics,
default="-1_news_covid_people_2021"
)
filter_category_exclude = st.checkbox(
"Exclude",
value=True
)
with st.beta_expander("Results Options"):
top_k_reader = st.slider(
"Number of returned documents",
min_value=1,
max_value=20,
value=10,
step=1
)
top_k_retriever = st.slider(
"Number of candidate documents",
min_value=1,
max_value=200,
value=100,
step=1
)
with st.beta_expander("Visualization Options"):
umap_perc = st.slider(
"Percentage of documents displayed",
min_value=1,
max_value=100,
value=10,
step=1,
help="Display a randomly sampled percentage of the documents to improve performance"
)
st.form_submit_button(label='Submit')
# Prepare filters
if filter_category:
filter_topics = list(map(lambda x: x.lower(), filter_category))
# If filters should be excluded
if filter_category_exclude:
filter_topics = list(set(unique_topics).difference(set(filter_topics)))
# Sort filters
filter_topics.sort(key=lambda x: int(x.split("_")[0]))
filters.append(
{
"terms": {
"topic_label": filter_topics
}
}
)
else:
filter_topics = unique_topics
filters.append(
{
"range": {
"publishedat": {
"gte": filter_date[0].strftime("%Y-%m-%d"),
"lte": filter_date[1].strftime("%Y-%m-%d")
}
}
}
)
# Search bar
question = st.text_input(label="Please provide your query:", value=default_question)
# TODO: create a umatrix endpoint much like the umap one and use it to display the umatrix?
# Sampling the docs and passing them to the UMAP plot
doc_num = doc_count(filters)
sample_size = int(umap_perc/100 * doc_num)
st.subheader("UMAP")
with st.spinner(
"Getting documents from database... \n "
"Documents will be plotted when ready."
):
# Read data for umap plot (create generator)
umap_docs = get_all_docs(
filters=filters,
batch_size=batch_size,
sample_size=sample_size
)
# Plot the completed UMAP plot
fig, config = umap_page(
documents=pd.DataFrame(umap_docs),
query=umap_query(question),
unique_topics=filter_topics
)
st.plotly_chart(fig, use_container_width=True, config=config)
st.write("___")
# Get results for query
with st.spinner(
"Performing neural search on documents... 🧠 \n "
"Do you want to optimize speed or accuracy? \n"
"Check out the docs: https://haystack.deepset.ai/docs/latest/optimizationmd "
):
results, raw_json = retrieve_doc(
query=question,
filters=filters,
top_k_reader=top_k_reader,
top_k_retriever=top_k_retriever
)
st.write("## Retrieved answers:")
# Make every button key unique
count = 0
raw_json_feedback = ""
for result in results:
# Define columns for answer text and image
col1, _, col2 = st.beta_columns([6, 1, 3])
with col1:
title, description, content = result["answer"].split("#SEPTAG#")
st.write(f"### {title}\n{description}\n\n{content}")
with col2:
if result['image_url'] is not None and result['image_url'] != "null":
image_url = result['image_url']
else:
image_url = 'http://www.jennybeaumont.com/wp-content/uploads/2015/03/placeholder.gif'
if result['url'] is not None:
st.markdown(
f"""
<a href={result['url']}>
<img src={image_url} alt={result['url']} style="width:600px;"/>
</a>
"""
, unsafe_allow_html=True
)
else:
st.markdown(
f"""
<img src={image_url} alt="Placeholder Image" style="width:600px;">
"""
, unsafe_allow_html=True
)
"**Relevance:** ", result["relevance"], "**Topic:** ", result["topic"], "**Published At:** ", result["publishedat"][:-4].replace('T', ', ')
# Define columns for feedback buttons
button_col1, button_col2, _ = st.beta_columns([1, 1, 8])
if button_col1.button("👍", key=(result["answer"] + str(count)), help="Relevant document"):
raw_json_feedback = feedback_doc(
question, result["answer"], result["document_id"], 1, "true", "true"
)
st.success("Thanks for your feedback")
if button_col2.button("👎", key=(result["answer"] + str(count)), help="Irrelevant document"):
raw_json_feedback = feedback_doc(
question, result["answer"], result["document_id"], 1, "false", "false"
)
st.success("Thanks for your feedback!")
count += 1
st.write("___")
if debug:
st.subheader("REST API JSON response")
st.write(raw_json)
| 7,131 |
debexpo/settings/common.py
|
debexpo/debexpo
| 3 |
2024061
|
# common.py - Django settings for debexpo project, common settings
#
# This file is part of debexpo
# https://salsa.debian.org/mentors.debian.net-team/debexpo
#
# Copyright © 2019 <NAME> <<EMAIL>>
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation
# files (the "Software"), to deal in the Software without
# restriction, including without limitation the rights to use,
# copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following
# conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
from os import path
from django.utils.translation import gettext_lazy as _
# Build paths inside the project like this: path.join(BASE_DIR, ...)
BASE_DIR = path.dirname(
path.dirname(path.dirname(path.abspath(__file__)))
)
# Application definition
INSTALLED_APPS = [
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'django_celery_beat',
'debexpo.base',
'debexpo.accounts',
'debexpo.keyring',
'debexpo.packages',
'debexpo.comments',
'debexpo.importer',
'debexpo.repository',
'debexpo.plugins',
'debexpo.bugs',
'debexpo.nntp',
'rest_framework',
'django_filters',
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.locale.LocaleMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.contrib.sites.middleware.CurrentSiteMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'debexpo.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
LANGUAGES = [
('en', _('English')),
# ('fr', _('French')),
]
LOCALE_PATHS = [
path.join(BASE_DIR, 'debexpo', 'locale')
]
WSGI_APPLICATION = 'debexpo.wsgi.application'
CACHES = {
'default': {
'BACKEND': 'django_redis.cache.RedisCache',
'LOCATION': 'redis://127.0.0.1:6379/1',
'OPTIONS': {
'CLIENT_CLASS': 'django_redis.client.DefaultClient',
}
}
}
# Internationalization
# https://docs.djangoproject.com/en/2.2/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/2.2/howto/static-files/
STATIC_URL = '/static/'
STATIC_ROOT = path.join(BASE_DIR, 'static')
# Password hashes (read bcrypt and md5, update/create to bcrypt)
# https://docs.djangoproject.com/en/2.2/topics/auth/passwords/
PASSWORD_HASHERS = (
'django.contrib.auth.hashers.BCryptPasswordHasher',
'django.contrib.auth.hashers.UnsaltedMD5PasswordHasher',
)
# Debexpo common settings
LOGO = '/img/debexpo-logo.png'
SITE_NAME = 'debexpo'
SITE_TITLE = 'Debexpo'
TAGLINE = _('Helps you get your packages into Debian')
VCS_BROWSER = 'https://salsa.debian.org/mentors.debian.net-team/debexpo'
# SMTP and NNTP settings
SMTP_SERVER = 'localhost'
SMTP_PORT = 25
# SMTP_USERNAME = 'foo'
# SMTP_PASSWORD = '<PASSWORD>'
NNTP_SERVER = 'news.gmane.io'
# Debexpo User model
AUTH_USER_MODEL = 'accounts.User'
# GPG settings
GPG_PATH = '/usr/bin/gpg'
# Celery settings
CELERY_BROKER_URL = 'redis://localhost:6379'
CELERY_RESULT_BACKEND = 'redis://localhost:6379'
CELERY_ACCEPT_CONTENT = ['application/json']
CELERY_TASK_SERIALIZER = 'json'
CELERY_RESULT_SERIALIZER = 'json'
CELERY_TIMEZONE = TIME_ZONE
CELERY_BEAT_SCHEDULER = 'django'
CELERY_BEAT_SCHEDULE = {
'remove-old-uploads': {
'task': 'debexpo.packages.tasks.remove_old_uploads',
'schedule': 60 * 10, # Every 10 minutes
},
'cleanup-accounts': {
'task': 'debexpo.accounts.tasks.CleanupAccounts',
'schedule': 60 * 60, # Every hours
},
'importer': {
'task': 'debexpo.importer.tasks.importer',
'schedule': 60 * 15, # Every 15 minutes
},
'remove-uploaded-packages': {
'task': 'debexpo.packages.tasks.remove_uploaded_packages',
'schedule': 60 * 10, # Every 10 minutes
},
}
# Account registration expiration
REGISTRATION_EXPIRATION_DAYS = 7
# Plugins to load
IMPORTER_PLUGINS = (
('debexpo.plugins.distribution', 'PluginDistribution',),
('debexpo.plugins.buildsystem', 'PluginBuildSystem',),
('debexpo.plugins.watch-file', 'PluginWatchFile',),
('debexpo.plugins.native', 'PluginNative',),
('debexpo.plugins.maintaineremail', 'PluginMaintainerEmail',),
('debexpo.plugins.lintian', 'PluginLintian',),
('debexpo.plugins.diffclean', 'PluginDiffClean',),
('debexpo.plugins.closedbugs', 'PluginClosedBugs'),
('debexpo.plugins.controlfields', 'PluginControlFields',),
('debexpo.plugins.debianqa', 'PluginDebianQA',),
('debexpo.plugins.rfs', 'PluginRFS',),
)
# Debian Archive access
DEBIAN_ARCHIVE_URL = 'https://deb.debian.org/debian'
LIMIT_SIZE_DOWNLOAD = 100 * 1024 * 1024
# Bug plugin settings
BUGS_REPORT_NOT_OPEN = True
# Debian tracker access
TRACKER_URL = 'https://tracker.debian.org'
FTP_MASTER_NEW_PACKAGES_URL = 'https://ftp-master.debian.org/new.822'
FTP_MASTER_API_URL = 'https://api.ftp-master.debian.org'
# Cleanup package older than NN weeks
MAX_AGE_UPLOAD_WEEKS = 20
# Cleanup incoming queue
QUEUE_EXPIRED_TIME = 6 * 60 * 60 # File TTL is 6 hours
# API settings
REST_FRAMEWORK = {
# Filtering
'DEFAULT_FILTER_BACKENDS':
('django_filters.rest_framework.DjangoFilterBackend',),
# Versioning
'DEFAULT_VERSIONING_CLASS':
'rest_framework.versioning.AcceptHeaderVersioning',
'DEFAULT_VERSION': '1',
'ALLOWED_VERSIONS': ('1',),
# Rate Limiting
'DEFAULT_THROTTLE_CLASSES': (
'rest_framework.throttling.AnonRateThrottle',
),
'DEFAULT_THROTTLE_RATES': {
'anon': '200/day', # Approximatively 2 request every 15 minutes
},
}
# Spam detection
REGISTRATION_SPAM_DETECTION = False
# Time between GET and POST of the registration form
REGISTRATION_MIN_ELAPSED = 3
# How any time an IP can register an account (currently per day)
REGISTRATION_PER_IP = 5
# Forget the IP after 1 day (set to 0 to disable spam detection)
REGISTRATION_CACHE_TIMEOUT = 1 * 24 * 3600
# Timeout for processes (10 minutes by default, 30 minutes for lintian)
SUBPROCESS_TIMEOUT = 10 * 60
SUBPROCESS_TIMEOUT_LINTIAN = 30 * 60
| 7,708 |
VGGish/f_FeatureExtraction.py
|
ducphucnguyen/TransferLearningWFN
| 0 |
2024645
|
from __future__ import print_function
import numpy as np
import tensorflow.compat.v1 as tf
import vggish_input
import vggish_params
import vggish_slim
import pyenvnoise
from pyenvnoise.utils import ptiread
import scipy.io
print('\nTesting your install of VGGish\n')
# Paths to downloaded VGGish files.
checkpoint_path = 'vggish_model.ckpt'
pca_params_path = 'vggish_pca_params.npz'
# Load audio files from folder
info = scipy.io.loadmat('R:\\CMPH-Windfarm Field Study\\Hallett\\Hallett_file_info.mat')
num_secs = 624
num_files = info['filelist'].shape[0]
# X = np.empty([num_files, 128])
result_conv1 = np.empty([1000, 32])
for i in range(0,1000): # range(1, num_files)
try:
# wav_file = 'R:\\CMPH-Windfarm Field Study\\Duc Phuc Nguyen\\4. Machine Listening\\Data set\\set8\\audio\\so%d.wav'%(i+1,)
# input_batch = vggish_input.wavfile_to_examples(wav_file)
# Produce a batch of log mel spectrogram examples.
#wav_file = 'R:\\CMPH-Windfarm Field Study\\Hallett\\set1\\Recording-3.%d.pti'%(i+1,)
name = info['filelist'][i]['name'][0][0]
folder = info['filelist'][i]['folder'][0][0]
file_name_i = folder + '\\' + name
x, sr, t, d = ptiread(file_name_i)
input_batch = vggish_input.waveform_to_examples(x[:,3], sr)
#print(file_name_i)
# np.testing.assert_equal(
# input_batch.shape,
# [num_secs, vggish_params.NUM_FRAMES, vggish_params.NUM_BANDS])
# Define VGGish,load the checkpoint,and run the batch through the model to
# produce embeddings.
with tf.Graph().as_default(), tf.Session() as sess:
vggish_slim.define_vggish_slim()
vggish_slim.load_vggish_slim_checkpoint(sess, checkpoint_path)
features_tensor = sess.graph.get_tensor_by_name(
vggish_params.INPUT_TENSOR_NAME)
embedding_tensor = sess.graph.get_tensor_by_name(
vggish_params.OUTPUT_TENSOR_NAME)
[embedding_batch] = sess.run([embedding_tensor],
feed_dict={features_tensor: input_batch})
# print('VGGish embedding: ', embedding_batch[2])
# print(embedding_batch.shape)
result_conv1[i] = embedding_batch.mean(axis=-1).mean(axis=1).mean(axis=0)
# X[i] = np.mean(embedding_batch, axis=0)
# X = np.mean(embedding_batch, axis=0)
# print('\nLooks Good To Me!\n')
print(i)
#np.savetxt("R:\\CMPH-Windfarm Field Study\\Duc Phuc Nguyen\\4. Machine Listening\\Deepfeature\\HL\\X%d.txt"%(i+1), X,
# delimiter=",")
except:
print("An exception occurred")
np.savetxt("R:\\CMPH-Windfarm Field Study\\Duc Phuc Nguyen\\4. Machine Listening\\Low_high_feature\\2.Hallett\\result_conv1.csv", result_conv1, delimiter=",")
| 2,912 |
scripts/clarity/metaData.py
|
alee156/clarityexplorer
| 2 |
2024218
|
#!/usr/bin/python
#-*- coding:utf-8 -*-
__author__ = 'david'
from __builtin__ import *
import ndio
import ndio.remote.neurodata as ND
import pprint, json
import resources
def metaFile(token):
return resources.METADATAPATH+"%s.meta"%(token)
def getMetaData(token):
with open(metaFile(token)+".json",'r') as file:
metaData = json.load(file)
return metaData
def downloadMetaData(nd,token):
metadata = nd.get_proj_info(token)
return metadata
def main():
nd = ND()
print "Download and save meta datas."
print 'ndio version = %s ... ...'%(ndio.version),
for token in resources.TOKENS+resources.ANNO_TOKENS:
print "Downloading meta TOKEN=%s"%(token)
metaData = downloadMetaData(nd,token)
filename = metaFile(token)
with open(filename,'w') as file:
pprint.pprint(metaData, file)
with open(filename+".json",'w') as file:
json.dump(metaData,file)
print "OK"
print "Finish all."
if __name__ == '__main__':
main()
| 1,037 |
python/challenges/python/introduction-if-else.py
|
KoderDojo/hackerrank
| 1 |
2024592
|
"""
Given an integer, , perform the following conditional actions:
If is odd, print Weird
If is even and in the inclusive range of to , print Not Weird
If is even and in the inclusive range of to , print Weird
If is even and greater than , print Not Weird
"""
N = int(input().strip())
if N % 2 == 1 or 6 <= N <= 20:
print('Weird')
else:
print('Not Weird')
| 373 |
python_test/anjuke.py
|
doubtfire009/huizhi_python
| 0 |
2023482
|
from selenium import webdriver
from bs4 import BeautifulSoup
import time
default_encoding = 'utf-8'
driver = webdriver.PhantomJS() # webdriver.Firefox()
page_num_max = 6
page_num = 1
url1= 'http://shanghai.anjuke.com/sale/hongkou/p'
url2= '-rd1/?kw=%E5%9C%B0%E6%9A%96&from_url=kw_final'
while(page_num <= page_num_max):
url3 = url1 + str(page_num) + url2
print(url3)
driver.get(url3)
f=open(r'f:/data/anjukehk'+ str(page_num) +'.txt','w',encoding='utf-8')
f.write(driver.page_source)
time.sleep(3)
page_num = page_num + 1
f.close()
driver.quit()
# driver.find_element_by_id('search-esf').send_keys("地暖")
# driver.find_element_by_id("search-button").click()
# print(driver.find_element_by_xpath("//span[@class='comm-address']").text)
# print(driver.page_source)
| 802 |
BOJ14494.py
|
INYEONGKIM/BOJ
| 2 |
2023713
|
m,n=map(int,input().split());d=[]
for i in range(m):
if i==0:
d.append([1]*n)
else:
t=[1];t+=[0]*(n-1)
d.append(t)
for i in range(1,m):
for j in range(1,n):
d[i][j]=(d[i-1][j-1]+d[i-1][j]+d[i][j-1])%(1e9+7)
print(int(d[-1][-1]))
| 273 |
source/apps/modules/urls.py
|
udbhav/eurorack-planner
| 1 |
2024808
|
from django.conf.urls.defaults import patterns, url
from django.contrib.auth.decorators import login_required
from apps.modules.views import *
urlpatterns = patterns(
'',
#url(r'^manufacturers/$', ManufacturersView.as_view(), {}, name='manufacturers'),
#url(r'^manufacturers/(?P<pk>\d+)/modules/$', ModulesByManufacturer.as_view(), name='modules_by_manufacturer'),
#url(r'^$', ModulesView.as_view(), {}, name='modules'),
url(r'^(?P<pk>\d+)/$', ModuleView.as_view(), name='module'),
url(r'^json/(?P<pk>\d+)/$', JSONModuleView.as_view(), name='json_module'),
url(r'^setups/$', login_required(SetupsView.as_view()), name='setups'),
url(r'^setup/(?P<pk>\d+)/$', login_required(SetupView.as_view()), name='setup'),
url(r'^setup/(?P<pk>\d+)/delete/$', 'apps.modules.views.delete_setup', name='delete_setup'),
url(r'^setup/save/$', 'apps.modules.views.save_setup', name='save_online_setup'),
url(r'^planner/$', 'apps.modules.views.planner', name='planner'),
url(r'^save-to-file/$', 'apps.modules.views.save_to_file', name='save_to_file'),
url(r'^save-setup-image/$', 'apps.modules.views.save_setup_image', name='save_setup_image'),
url(r'^custom/$', login_required(CustomModulesView.as_view()), name='custom_modules'),
url(r'^custom/new$', login_required(NewCustomModuleView.as_view()), name='new_custom_module'),
url(r'^custom/(?P<pk>\d+)/$', login_required(EditCustomModuleView.as_view()), name='edit_custom_module'),
url(r'^custom/(?P<pk>\d+)/delete/$', login_required(DeleteCustomModuleView.as_view()), name='delete_custom_module'),
)
| 1,613 |
plotter/__main__.py
|
majo48/froeling-web-connect-logger
| 2 |
2024733
|
""" main part of the plotter app
Copyright (c) 2020 <NAME> (<EMAIL>)
"""
from plotter import app
if __name__ == '__main__':
app.manage_arguments()
| 156 |
local_ancestry/fix_classes.py
|
berebolledo/sofia
| 0 |
2023781
|
#! /bin/env python
import sys
newvalues = []
for line in sys.stdin:
values = line.strip().split()
for value in values:
newvalues.append(str(value))
newvalues.append(str(value))
newvalues.append('\n')
sys.stdout.write(' '.join(newvalues))
| 264 |
src/olympia/amo/migrations/__init__.py
|
covariant/addons-server
| 843 |
2024793
|
from django.db import migrations
class RenameConstraintsOperation(migrations.RunSQL):
RENAME_FRAGMENT = "RENAME KEY `{0}` TO `{1}`"
RENAME_FRAGMENT_REVERSE = "RENAME KEY `{1}` TO `{0}`"
REMOVE_CLASS = migrations.RemoveConstraint
OPERATION_PROP = 'constraint'
def _format_renames(self, fragment, adds):
return [
fragment.format(old_name, getattr(operation, self.OPERATION_PROP).name)
for operation, old_name in adds
]
def _gather_state_operations(self, adds):
state_operations = []
for operation, old_name in adds:
state_operations.append(operation)
state_operations.append(
self.REMOVE_CLASS(
model_name=operation.model_name,
name=old_name,
)
)
return state_operations
def __init__(self, table_name, adds):
"""
`table_name` is the database table name.
`adds` is a iterable of (<AddOperation>, <old name>) tuples.
"""
state_operations = self._gather_state_operations(adds)
forward_sql = f'ALTER TABLE `{table_name}` {", ".join(self._format_renames(self.RENAME_FRAGMENT, adds))}'
reverse_sql = f'ALTER TABLE `{table_name}` {", ".join(self._format_renames(self.RENAME_FRAGMENT_REVERSE, adds))}'
return super().__init__(
sql=forward_sql,
reverse_sql=reverse_sql,
state_operations=state_operations)
class RenameIndexesOperation(RenameConstraintsOperation):
RENAME_FRAGMENT = "RENAME INDEX `{0}` TO `{1}`"
RENAME_FRAGMENT_REVERSE = "RENAME INDEX `{1}` TO `{0}`"
REMOVE_CLASS = migrations.RemoveIndex
OPERATION_PROP = 'index'
| 1,744 |
cogs/games/__init__.py
|
z03h/stella_bot
| 0 |
2022672
|
from __future__ import annotations
from typing import TYPE_CHECKING
from .wordle import WordleCommandCog
if TYPE_CHECKING:
from main import StellaBot
class GamesCog(WordleCommandCog, name="Games"):
"""Contains games that stella made."""
async def setup(bot: StellaBot):
await bot.add_cog(GamesCog(bot))
| 320 |
tests/run_test_DataSplitter.py
|
damicoedoardo/NNMF
| 2 |
2024408
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on 02/08/18
@author: XXX
"""
import unittest
from RecSysFramework.DataManager.Reader import Movielens1MReader
from RecSysFramework.DataManager.Splitter import Holdout, ColdItemsHoldout
from RecSysFramework.DataManager.Splitter import WarmItemsKFold, ColdItemsKFold
from RecSysFramework.DataManager.Splitter import LeaveKOut
from RecSysFramework.Utils import invert_dictionary
class SplitterTestCase(unittest.TestCase):
def setUp(self):
self.reader = Movielens1MReader()
self.dataset = self.reader.load_data()
def matrix_contained(self, new_URM, old_URM, new_mapper, old_mapper):
new_mapper = invert_dictionary(new_mapper[0]), invert_dictionary(new_mapper[1])
old_URM.eliminate_zeros()
nnz_row, nnz_col = new_URM.nonzero()
for t in range(len(nnz_row)):
row, col = old_mapper[0][new_mapper[0][nnz_row[t]]], old_mapper[1][new_mapper[1][nnz_col[t]]]
self.assertEqual(old_URM[row, col], new_URM[nnz_row[t], nnz_col[t]],
"Value {} in ({}, {}) of new URM is zero in old URM"
.format(new_URM[nnz_row[t], nnz_col[t]], nnz_row[t], nnz_col[t]))
def split_contained(self, URM_train, URM_test, URM_valid, new_mapper, sum_equals_original=False):
URM_all = self.dataset.get_URM()
old_mapper = self.dataset.get_URM_mapper()
URM_sum = URM_train + URM_test
if URM_valid is not None:
URM_sum += URM_valid
if sum_equals_original:
self.assertEqual(len(URM_sum.data), len(URM_all.data),
"Original URM and sum of train, test and validation have different number of entries")
self.matrix_contained(URM_train, URM_all, new_mapper, old_mapper)
self.matrix_contained(URM_test, URM_all, new_mapper, old_mapper)
if URM_valid is not None:
self.matrix_contained(URM_valid, URM_all, new_mapper, old_mapper)
self.matrix_contained(URM_sum, URM_all, new_mapper, old_mapper)
class SplitterHoldoutTest(SplitterTestCase):
splits = [(0.6, 0.2, 0.2), (0.8, 0.2, 0.0)]
def test_holdout(self):
print("Holdout Test")
for trio in self.splits:
train_perc, test_perc, validation_perc = trio
splitter = Holdout(train_perc=train_perc, test_perc=test_perc, validation_perc=validation_perc)
if validation_perc > 0.0:
train, test, validation = splitter.split(self.dataset)
URM_valid = validation.get_URM()
else:
train, test = splitter.split(self.dataset)
URM_valid = None
URM_train = train.get_URM()
URM_test = test.get_URM()
self.split_contained(URM_train, URM_test, URM_valid, train.get_URM_mapper())
def test_cold_holdout(self):
print("Cold Items Holdout Test")
for trio in self.splits:
train_perc, test_perc, validation_perc = trio
splitter = ColdItemsHoldout(train_perc=train_perc, test_perc=test_perc, validation_perc=validation_perc)
if validation_perc > 0.0:
train, test, validation = splitter.split(self.dataset)
URM_valid = validation.get_URM()
else:
train, test = splitter.split(self.dataset)
URM_valid = None
URM_train = train.get_URM()
URM_test = test.get_URM()
self.split_contained(URM_train, URM_test, URM_valid, train.get_URM_mapper())
def test_load_and_save_data(self):
print("Holdout load and save Test")
splitter = Holdout(train_perc=0.6, test_perc=0.2, validation_perc=0.2)
train, test, validation = splitter.load_split(self.reader)
splitter.save_split([train, test, validation])
class SplitterKFoldTest(SplitterTestCase):
def test_kfold(self):
print("K Fold Test")
n_folds = 5
splitter = WarmItemsKFold(n_folds=n_folds)
counter = 0
for train, test in splitter.split(self.dataset):
URM_train = train.get_URM()
URM_test = test.get_URM()
self.split_contained(URM_train, URM_test, None, train.get_URM_mapper())
counter += 1
self.assertEqual(counter, n_folds, "Number of folds generated not consistent")
def test_cold_kfold(self):
print("Cold Items K Fold Test")
n_folds = 5
splitter = ColdItemsKFold(n_folds=n_folds)
counter = 0
for train, test in splitter.split(self.dataset):
URM_train = train.get_URM()
URM_test = test.get_URM()
self.split_contained(URM_train, URM_test, None, train.get_URM_mapper())
counter += 1
self.assertEqual(counter, n_folds, "Number of folds generated not consistent")
def test_load_and_save_data(self):
print("K Fold load and save Test")
splitter = WarmItemsKFold(n_folds=5)
for train, test in splitter.load_split(self.reader):
splitter.save_split([train, test])
class SplitterLeaveKOutTest(SplitterTestCase):
def test_leavekout(self):
print("Leave K Out Test")
for k_value, with_validation in [(1, False), (5, True)]:
splitter = LeaveKOut(k_value=k_value, with_validation=with_validation)
if with_validation:
train, test, validation = splitter.split(self.dataset)
URM_valid = validation.get_URM()
else:
train, test = splitter.split(self.dataset)
URM_valid = None
URM_train = train.get_URM()
URM_test = test.get_URM()
self.split_contained(URM_train, URM_test, URM_valid, train.get_URM_mapper())
def test_load_and_save_data(self):
print("Leave K Out load and save Test")
splitter = LeaveKOut(k_value=1, with_validation=True)
train, test, validation = splitter.load_split(self.reader)
splitter.save_split([train, test, validation])
if __name__ == '__main__':
unittest.main()
| 6,192 |
jpeg/huffman/core.py
|
alexa-infra/py-imagineer
| 1 |
2022858
|
""" Huffman table
"""
from collections import defaultdict
from collections import namedtuple
import heapq
from .utils import byte_to_bits
from .utils import rev_dict
Node = namedtuple('Node', ['cargo', 'left', 'right'])
def iter_nodes(node):
""" Depth-first, left-to-right binary tree traversal
"""
stack = list()
while stack or node:
if node:
stack.append(node)
node = node.left
else:
node = stack.pop()
yield node
node = node.right
def iter_leafs(root):
""" Iterate throw leafs in binary tree
For each leaf returns its value (cargo) and the path from root node to
the leaf. Path is represented by (1, 0, 1) tuple, where 0 is left,
1 is right.
"""
parents = dict()
leafs = list()
node_is_leaf = lambda node: not node.left and not node.right
for node in iter_nodes(root):
if node_is_leaf(node):
leafs.append(node)
else:
parents[node.left] = (node, 0)
parents[node.right] = (node, 1)
for node in leafs:
cargo = node.cargo
path = list()
while node in parents:
node, left_or_right = parents[node]
path.append(left_or_right)
path.reverse()
yield cargo, tuple(path)
def get_frequences(array):
""" Get frequency of each element of array
Returns dictionary where key is unique element of the array,
value is the number of occurances of the element
"""
frequences = defaultdict(int)
for element in array:
frequences[element] += 1
return frequences
def make_huffman_tree(freq):
""" Make a binary-tree from array-element frequences,
where left node is more probable than right node. So more frequent
element will have shorter path from the root.
Note: we sort at first by number of nodes in subtree and then by weight
In this case leafs on n-th raw will have no gaps. It give us an advantage
in more optimal size of resulting table. In general case this doesn't
matter, so we can simply use only weight (frequency).
"""
nodes = {k: Node(k, None, None) for k, v in freq.items()}
heap = [(0, v, nodes[k]) for k, v in freq.items()]
heapq.heapify(heap)
while len(heap) > 1:
num1, weight1, node1 = heapq.heappop(heap)
num2, weight2, node2 = heapq.heappop(heap)
ttype = type(node1.cargo)
node = Node(ttype(), node1, node2)
heapq.heappush(heap, (num1+num2+2, weight1+weight2, node))
_, _, root = heap[0]
return root
def get_huffman_table(freq):
""" Gives Huffman encoding table, by making a binary tree from frequences
and then building a path of each node from the root.
Returns a dictionary, where key is element, value is (1, 0, 1) tuple
"""
root = make_huffman_tree(freq)
codes = {ch: path for ch, path in iter_leafs(root)}
return codes
def check_huffman_table(codes):
""" Check huffman table for validity
"""
code = 0
revcodes = rev_dict(codes)
codeslist = list(codes.values())
codeslist.sort(key=len)
last_size = 0
for value in codeslist:
size = len(value)
if size != last_size:
code = code << 1
last_size = size
bits = byte_to_bits(code, size)
if bits not in revcodes:
return False
code += 1
for i, value in enumerate(codeslist):
size = len(value)
for value2 in codeslist[i+1:]:
if value == value2[:size]:
return False
return True
| 3,605 |
RLtoolkit/G/gtests1.py
|
AmiiThinks/rltoolkit
| 6 |
2023992
|
# G tests - color and font
from RLtoolkit.g import *
w = Gwindow(gdViewport=(0, 20, 600, 800))
# named colors
colors = ['black', 'white', 'pink', 'red', 'orange', 'yellow', 'green', \
'dark green', 'light blue', 'blue', 'purple', 'brown', 'tan', \
'light gray', 'gray', 'dark gray', 'cyan', 'magenta']
i = 0
for c in colors:
gdFillRect(w, i, 0, i + 20, 20, c)
i += 20
gdDrawLine(w, 0, 21, 600, 21)
# colors globals
colors = [gBlack, gWhite, gPink, gRed, gOrange, gYellow, gGreen, \
gDarkGreen, gLightBlue, gBlue, gPurple, gBrown, gTan, \
gLightGray, gGray, gDarkGray, gCyan, gMagenta]
i = 0
j = 22
for c in colors:
gdFillRect(w, i, j, i + 20, j + 20, c)
i += 20
gdDrawLine(w, 0, 43, 600, 43)
# Now try calculating shades of one color given intensity in 256 range (red)
i = 0
j = 44
for c in range(256):
col = gColorRGB255(w, 255, 255 - c, 255 - c)
gdFillRect(w, i, j, i + 20, j + 20, col)
i += 20
if i > 580:
i = 0
j += 20
j += 21
gdDrawLine(w, 0, j, 600, j)
# Now try calculating black and white shades
i = 0
j += 1
for c in range(256):
col = gColorBW(w, float(c) / 256)
gdFillRect(w, i, j, i + 20, j + 20, col)
i += 20
if i > 580:
i = 0
j += 20
j += 21
gdDrawLine(w, 0, j, 600, j)
# Now try calculating shades of one color with intensities 0-1 (green)
i = 0
j += 1
for c in range(256):
col = gColorRGB(w, float(255 - c) / 256, 1.0, float(255 - c) / 256)
gdFillRect(w, i, j, i + 20, j + 20, col)
i += 20
if i > 580:
i = 0
j += 20
j += 21
gdDrawLine(w, 0, j, 600, j)
# change pen sizes to get thicker lines
j += 5
p = gColorPen(w, 'red')
gdDrawLine(w, 0, j, 600, j, p)
j += 5
p2 = gColorPen(w, p, xsize=2)
gdDrawLine(w, 0, j, 600, j, p2)
j += 5
p3 = gColorPen(w, p, '', 'copy', 3, 2)
gdDrawLine(w, 0, j, 600, j, p3)
j += 5
gdDrawLine(w, 0, j, 600, j)
# Draw lines and text with default color, color for view and specified color
gSetColor(w, 'purple')
gdDrawLine(w, 0, j + 5, 600, j + 5)
gdDrawText(w, 'purple', None, 10, j + 20)
gdDrawText(w, 'red', None, 100, j + 20, p2)
gdDrawText(w, 'black', None, 190, j + 20, 'black')
# check out fonts
f = gFont('Times', 14, 'italic')
gdDrawText(w, 'purple', f, 10, j + 50)
f2 = gFont('Times', 14, 'bold')
gdDrawText(w, 'red', f2, 100, j + 50, p2)
f3 = gFont('Times', 14, 'bold italic')
gdDrawText(w, 'black', f3, 190, j + 50, 'black')
gStartEventLoop()
| 2,462 |
src/model_tools.py
|
ivallesp/abs
| 0 |
2023938
|
import torch
import random
import numpy as np
from torch import nn
from torch.optim.lr_scheduler import _LRScheduler
def set_random_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
def initialize_weights(net):
# https://discuss.pytorch.org/t/initializing-parameters-of-a-multi-layer-lstm/5791
for name, param in net.named_parameters():
if "bias" in name:
nn.init.constant_(param, 0.0)
elif "weight" in name:
nn.init.kaiming_normal_(param)
elif "emb" in name:
nn.init.kaiming_normal_(param)
class GradualWarmupScheduler(_LRScheduler):
"""Gradually warm-up(increasing) learning rate in optimizer.
Borrowed from here https://github.com/ildoonet/pytorch-gradual-warmup-lr/blob/master/warmup_scheduler/scheduler.py
Proposed in 'Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour'.
Args:
optimizer (Optimizer): Wrapped optimizer.
multiplier: target learning rate = base lr * multiplier if multiplier > 1.0. if multiplier = 1.0, lr starts from 0 and ends up with the base_lr.
total_epoch: target learning rate is reached at total_epoch, gradually
after_scheduler: after target_epoch, use this scheduler(eg. ReduceLROnPlateau)
"""
def __init__(self, optimizer, multiplier, total_epoch, after_scheduler=None):
self.multiplier = multiplier
if self.multiplier <= 1.0:
raise ValueError("multiplier should be greater than 1.")
self.total_epoch = total_epoch
self.after_scheduler = after_scheduler
self.finished = False
super(GradualWarmupScheduler, self).__init__(optimizer)
def get_lr(self):
if self.last_epoch > self.total_epoch:
if self.after_scheduler:
if not self.finished:
self.after_scheduler.base_lrs = [
base_lr * self.multiplier for base_lr in self.base_lrs
]
self.finished = True
return self.after_scheduler.get_last_lr()
return [base_lr * self.multiplier for base_lr in self.base_lrs]
lr = [
base_lr / self.multiplier
+ (base_lr - (base_lr / self.multiplier)) # Delta
* (self.last_epoch - 1)
/ self.total_epoch
for base_lr in self.base_lrs
]
return lr
def step(self, epoch=None, metrics=None):
if self.finished and self.after_scheduler:
if epoch is None:
self.after_scheduler.step(None)
else:
self.after_scheduler.step(epoch - self.total_epoch)
self._last_lr = self.after_scheduler.get_last_lr()
else:
return super(GradualWarmupScheduler, self).step(epoch)
| 2,833 |
bin/install.py
|
dingzg/onepanel
| 2 |
2024755
|
#!/usr/bin/env python2.6
#-*- coding: utf-8 -*-
# Copyright [OnePanel]
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Install script for OnePanel """
import os
import sys
import platform
import shlex
import subprocess
import urllib2
import re
import socket
onepanel_downloadurl = 'https://github.com/dingzg/onepanel/archive/master.zip'
paramiko_downloadurl = 'https://github.com/paramiko/paramiko/archive/release-1.7.5.zip'
class Install(object):
def __init__(self):
if hasattr(platform, 'linux_distribution'):
self.dist = platform.linux_distribution(full_distribution_name=0)
else:
self.dist = platform.dist()
self.arch = platform.machine()
if self.arch != 'x86_64': self.arch = 'i386'
self.installpath = '/usr/local/onepanel'
self.distname = self.dist[0].lower()
self.version = self.dist[1]
def _run(self, cmd, shell=False):
if shell:
return subprocess.call(cmd, shell=shell)
else:
return subprocess.call(shlex.split(cmd))
def check_platform(self):
supported = True
if self.distname == 'centos':
if float(self.version) < 5.4:
supported = False
elif self.distname == 'redhat':
if float(self.version) < 5.4:
supported = False
#elif self.distname == 'ubuntu':
# if float(self.version) < 10.10:
# supported = False
#elif self.distname == 'debian':
# if float(self.version) < 6.0:
# supported = False
else:
supported = False
return supported
def install_python(self):
if self.distname in ('centos', 'redhat'):
# following this: http://fedoraproject.org/wiki/EPEL/FAQ
if int(float(self.version)) == 5:
epelrpm = 'epel-release-5-4.noarch.rpm'
epelurl = 'http://download.fedoraproject.org/pub/epel/5/%s/%s' % (self.arch, epelrpm)
# install fastestmirror plugin for yum
fastestmirror = 'http://mirror.centos.org/centos/5/os/%s/CentOS/yum-fastestmirror-1.1.16-21.el5.centos.noarch.rpm' % (self.arch, )
elif int(float(self.version)) == 6:
epelrpm = 'epel-release-6-7.noarch.rpm'
epelurl = 'http://download.fedoraproject.org/pub/epel/6/%s/' % (self.arch, epelrpm)
fastestmirror = 'http://mirror.centos.org/centos/6/os/%s/Packages/yum-plugin-fastestmirror-1.1.30-14.el6.noarch.rpm' % (self.arch, )
self._run('wget -nv -c %s' % epelurl)
self._run('rpm -Uvh %s' % epelrpm)
self._run('rpm -Uvh %s' % fastestmirror)
self._run('yum -y install python26')
if self.distname == 'centos':
pass
elif self.distname == 'redhat':
pass
elif self.distname == 'ubuntu':
pass
elif self.distname == 'debian':
pass
def install_paramiko(self):
localpkg_found = False
if os.path.exists(os.path.join(os.path.dirname(__file__), 'paramiko.zip')):
localpkg_found = True
else:
self._run('wget -nv -c "%s" -O paramiko.zip' % paramiko_downloadurl)
self._run('unzip -o paramiko.zip')
if not localpkg_found: os.remove('paramiko.zip')
self._run('cd paramiko-release-1.7.5;python setup.py install;cd ..', True)
def install_onepanel(self):
localpkg_found = False
if os.path.exists(os.path.join(os.path.dirname(__file__), 'onepanel.zip')):
# local install package found
localpkg_found = True
else:
# or else install online
print '* Downloading install package from www.onepanel.org'
#f = urllib2.urlopen('http://www.onepanel.org/api/latest')
#data = f.read()
#f.close()
#https://github.com/dingzg/onepanel/archive/master.zip
#onepanel-master.zip
#downloadurl = re.search('"download":"([^"]+)"', data).group(1).replace('\/', '/')
self._run('wget -nv -c "%s" -O onepanel.zip' % onepanel_downloadurl)
# uncompress and install it
#self._run('mkdir onepanel')
#self._run('tar zxmf onepanel.tar.gz -C onepanel')
self._run('unzip onepanel.zip')
if not localpkg_found: os.remove('onepanel.zip')
# stop service
print
if os.path.exists('/etc/init.d/onepanel'):
self._run('/etc/init.d/onepanel stop')
# backup data and remove old code
if os.path.exists('%s/data/' % self.installpath):
self._run('cp -r %s/data/ onepanel-master/data/' % self.installpath, True)
self._run('rm -rf %s' % self.installpath)
# install new code
self._run('mv onepanel-master %s' % self.installpath)
self._run('chmod +x %s/bin/install_config.py %s/bin/start_server.py' % (self.installpath, self.installpath))
# install service
initscript = '%s/bin/init.d/%s/onepanel' % (self.installpath, self.distname)
self._run('cp %s /etc/init.d/onepanel' % initscript)
if os.path.exists('%s/data/' % self.installpath)==False:
self._run('mkdir %s/data/' % self.installpath)
self._run('chmod +x /etc/init.d/onepanel')
# start service
if self.distname in ('centos', 'redhat'):
#self._run('chkconfig onepanel on')
self._run('service onepanel start')
elif self.distname == 'ubuntu':
pass
elif self.distname == 'debian':
pass
def config(self, username, password):
self._run('%s/bin/install_config.py username "%s"' % (self.installpath, username))
self._run('%s/bin/install_config.py password "%s"' % (self.installpath, password))
def detect_ip(self):
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect(('www.baidu.com', 80))
ip = s.getsockname()[0]
s.close()
return ip
def install(self):
# check platform environment
print '* Checking platform...',
supported = self.check_platform()
if not supported:
print 'FAILED'
print 'Unsupport platform %s %s %s' % self.dist
sys.exit()
else:
print 'OK'
# check python version
print '* Checking python version ...',
if sys.version_info[:2] == (2, 6):
print 'OK'
else:
print 'FAILED'
# install the right version
print '* Installing python 2.6 ...'
self.install_python()
# check paramiko
print '* Checking paramiko ...',
try:
import paramiko
print 'OK'
except:
print 'FAILED'
# install the right version
print '* Installing paramiko ...'
self.install_paramiko()
# stop firewall
if os.path.exists('/etc/init.d/iptables'):
self._run('/etc/init.d/iptables stop')
# get the latest onepanel version
print '* Installing latest OnePanel'
self.install_onepanel()
# set username and password
print
print '============================'
print '* INSTALL COMPLETED! *'
print '============================'
print
username = 'onepanel'
password = '<PASSWORD>'
self.config(username, password)
print
print '* The URL of your OnePanel is:',
print 'http://%s:6666/' % self.detect_ip()
print
pass
def main():
print('==============================Warning==============================')
print('If you want to update OnePanel,please copy install.py to other path and run it!')
print('')
continueflg = raw_input('Press "Y" to Continue or press "N" to Quit: ').strip()
if continueflg in ('Y','y'):
install = Install()
install.install()
else:
exit
if __name__ == "__main__":
main()
| 8,731 |
cs15211/FindEventualSafeStates.py
|
JulyKikuAkita/PythonPrac
| 1 |
2024324
|
__source__ = 'https://leetcode.com/problems/find-eventual-safe-states/'
# Time: O(N + E)
# Space: O(N)
#
# Description: Leetcode # 802. Find Eventual Safe States
#
# In a directed graph, we start at some node and every turn,
# walk along a directed edge of the graph.
# If we reach a node that is terminal (that is, it has no outgoing directed edges), we stop.
#
# Now, say our starting node is eventually safe if and only if we must eventually walk to a terminal node.
# More specifically, there exists a natural number K so that for any choice of where to walk,
# we must have stopped at a terminal node in less than K steps.
#
# Which nodes are eventually safe? Return them as an array in sorted order.
#
# The directed graph has N nodes with labels 0, 1, ..., N-1, where N is the length of graph.
# The graph is given in the following form: graph[i] is a list of labels j
# such that (i, j) is a directed edge of the graph.
#
# Example:
# Input: graph = [[1,2],[2,3],[5],[0],[5],[],[]]
# Output: [2,4,5,6]
# Here is a diagram of the above graph.
#
# Illustration of graph
#
# Note:
#
# graph will have length at most 10000.
# The number of edges in the graph will not exceed 32000.
# Each graph[i] will be a sorted list of different integers,
# chosen within the range [0, graph.length - 1].
#
import collections
import unittest
# 512ms 18.54%
class Solution(object):
def eventualSafeNodes(self, graph):
"""
:type graph: List[List[int]]
:rtype: List[int]
"""
N = len(graph)
safe = [False] * N
graph = map(set, graph)
rgraph = [set() for _ in xrange(N)]
q = collections.deque()
for i, js in enumerate(graph):
if not js:
q.append(i)
for j in js:
rgraph[j].add(i)
while q:
j = q.popleft()
safe[j] = True
for i in rgraph[j]:
graph[i].remove(j)
if len(graph[i]) == 0:
q.append(i)
return [i for i, v in enumerate(safe) if v]
# 304ms 35.35%
class Solution2(object):
def eventualSafeNodes(self, graph):
"""
:type graph: List[List[int]]
:rtype: List[int]
"""
WHITE, GRAY, BLACK = 0, 1, 2
color = collections.defaultdict(int)
def dfs(node):
if color[node] != WHITE:
return color[node] == BLACK
color[node] = GRAY
for nei in graph[node]:
if color[nei] == BLACK:
continue
if color[nei] == GRAY or not dfs(nei):
return False
color[node] = BLACK
return True
return filter(dfs, range(len(graph)))
class TestMethods(unittest.TestCase):
def test_Local(self):
self.assertEqual(1, 1)
if __name__ == '__main__':
unittest.main()
Java = '''
# Thought: https://leetcode.com/problems/find-eventual-safe-states/solution/
Approach #1: Reverse Edges [Accepted]
Complexity Analysis
Time Complexity: O(N + E), where N is the number of nodes in the given graph, and E is the total number of edges.
Space Complexity: O(N) in additional space complexity.
# 114ms 22.56%
class Solution {
public List<Integer> eventualSafeNodes(int[][] graph) {
int N = graph.length;
boolean[] safe = new boolean[N];
List<Set<Integer>> tmp = new ArrayList();
List<Set<Integer>> rgraph = new ArrayList();
for (int i = 0; i < N; ++i) {
tmp.add(new HashSet());
rgraph.add(new HashSet());
}
Queue<Integer> queue = new LinkedList();
for (int i = 0; i < N; i++) {
if (graph[i].length == 0) queue.offer(i);
for (int j : graph[i]) {
tmp.get(i).add(j);
rgraph.get(j).add(i);
}
}
while (!queue.isEmpty()) {
int j = queue.poll();
safe[j] = true;
for (int i : rgraph.get(j)) {
tmp.get(i).remove(j);
if (tmp.get(i).isEmpty()) queue.offer(i);
}
}
List<Integer> ans = new ArrayList();
for (int i = 0; i < N; i++) {
if (safe[i]) ans.add(i);
}
return ans;
}
}
Approach #2: Depth-First Search [Accepted]
Complexity Analysis
Time Complexity: O(N + E), where N is the number of nodes in the given graph, and E is the total number of edges.
Space Complexity: O(N) in additional space complexity.
# 11ms 97.36%
class Solution {
public List<Integer> eventualSafeNodes(int[][] graph) {
int N = graph.length;
int[] color = new int[N];
List<Integer> ans = new ArrayList();
for (int i = 0; i < N; i++) {
if (dfs(i, color, graph)) ans.add(i);
}
return ans;
}
// colors: WHITE 0, GRAY 1, BLACK 2;
private boolean dfs(int node, int[] color, int[][] graph) {
if (color[node] > 0) return color[node] == 2;
color[node] = 1;
for (int nei: graph[node]) {
if (color[node] == 2) continue;
if (color[nei] == 1 || !dfs(nei, color, graph)) return false;
}
color[node] = 2;
return true;
}
}
# https://leetcode.com/problems/find-eventual-safe-states/discuss/120633/Java-Solution-(DFS-andand-Topological-Sort)
# topological sort
# 62ms 36.36%
class Solution {
public List<Integer> eventualSafeNodes(int[][] graph) {
int n = graph.length;
int[] degree = new int [n];
Set<Integer>[] map = new HashSet[n];
for (int i = 0; i < n; i++) map[i] = new HashSet();
for (int i = 0; i < n; i++) {
for (int node : graph[i]) {
map[node].add(i);
degree[i]++;
}
}
Queue<Integer> queue = new LinkedList();
Set<Integer> set = new HashSet();
for (int i = 0; i < n; i++) {
if (degree[i] == 0) {
set.add(i);
queue.add(i);
}
}
while (!queue.isEmpty()) {
int node = queue.poll();
set.add(node);
for (int nei : map[node]) {
degree[nei]--;
if (degree[nei] == 0) {
queue.add(nei);
}
}
}
List<Integer> ans = new ArrayList(set);
Collections.sort(ans);
return ans;
}
}
# https://leetcode.com/problems/find-eventual-safe-states/discuss/119871/Straightforward-Java-solution-easy-to-understand!
# 14ms 60.33%
class Solution {
// value of color represents three states:
static int NOT_V = 0; // 0:have not been visited
static int SAFE = 1; // 1:safe
static int LOOP = 2; // 2:unsafe
public List<Integer> eventualSafeNodes(int[][] graph) {
List<Integer> res = new ArrayList();
int[] color = new int[graph.length];
for (int i = 0; i < graph.length; i++) {
if (dfs(graph, color, i)) res.add(i);
}
return res;
}
private boolean dfs(int[][] graph, int[] color, int start) {
if (color[start] == LOOP) return false;
if (color[start] == SAFE) return true;
color[start] = LOOP;
for (int nei : graph[start]) {
if (!dfs(graph, color, nei)) return false;
}
color[start] = SAFE;
return true;
}
}
'''
| 7,463 |
girder_plugin/arbor_nova/__init__.py
|
girder/arbor_tasks
| 4 |
2022919
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from girder.plugin import getPlugin, GirderPlugin
from girder.models.user import User
from .client_webroot import ClientWebroot
from . import rest
class ArborNovaGirderPlugin(GirderPlugin):
DISPLAY_NAME = '<NAME>'
def _create_anonymous_user(self):
ANONYMOUS_USER = 'anonymous'
ANONYMOUS_PASSWORD = '<PASSWORD>'
anon_user = User().findOne({
'login': ANONYMOUS_USER
})
if not anon_user:
anon_user = User().createUser(
login=ANONYMOUS_USER,
password=<PASSWORD>,
firstName='Public',
lastName='User',
email='<EMAIL>',
admin=False,
public=False)
anon_user['status'] = 'enabled'
anon_user = User().save(anon_user)
return anon_user
def load(self, info):
# Relocate Girder
info['serverRoot'], info['serverRoot'].girder = (ClientWebroot(),
info['serverRoot'])
info['serverRoot'].api = info['serverRoot'].girder.api
self._create_anonymous_user()
getPlugin('jobs').load(info)
info['apiRoot'].arbor_nova = rest.ArborNova()
| 1,289 |
rat-sql-gap/bart/model.py
|
JuruoMP/Text2SQL-Multiturn
| 0 |
2023278
|
import torch
import torch.nn as nn
from transformers import BartModel, BartTokenizer, BartConfig
class SQLBartModel(nn.Module):
def __init__(self):
super().__init__()
config_name = 'facebook/bart-large'
self.bart_config = BartConfig.from_pretrained(config_name, cache_dir='bart/cache')
self.bart_tokenizer = BartTokenizer.from_pretrained(config_name, cache_dir='bart/cache')
self.bart_model = BartModel.from_pretrained(config_name, cache_dir='bart/cache')
self.register_buffer("final_logits_bias", torch.zeros((1, self.bart_model.shared.num_embeddings)))
self.lm_head = nn.Linear(self.bart_config.d_model, self.bart_model.shared.num_embeddings, bias=False)
def forward(self, x):
bart_outputs = self.bart_model(
input_ids=x['input_ids'],
attention_mask=x['attention_mask'],
decoder_input_ids=x['decoder_input_ids'],
decoder_attention_mask=x['decoder_attention_mask']
)
lm_logits = self.lm_head(bart_outputs[0]) + self.final_logits_bias
return lm_logits
| 1,100 |
Batch_5_August2021/Week4/Kodlar/main.py
|
seccily/Applied-AI-Study-Group
| 40 |
2023936
|
import numpy as np
import pandas as pd
import mlflow
from lightgbm import LGBMClassifier
from sklearn.metrics import classification_report, average_precision_score, accuracy_score, f1_score, roc_auc_score
from ray import tune
from ray.tune.integration.mlflow import mlflow_mixin
from ray.tune.suggest.optuna import OptunaSearch
from ray.tune.suggest.ax import AxSearch
from helper_funcs import give_data
import logging
logging.basicConfig(level=logging.WARN)
logger = logging.getLogger(__name__)
experiment_name = "LGBM + SMOTETomek + E50 + Ax "
fet_sel_dict = {0: "No Selection", 1: "KBest", 2: "Selector"}
#experiment_name = "Default"
@mlflow_mixin
def LightGBMCallback(env):
"""Assumes that `valid_0` is the target validation score."""
_, metric, score, _ = env.evaluation_result_list[0]
mlflow.log_metric(metric, score)
@mlflow_mixin
def objective(config):
# Get and log parameters
params = {
"num_leaves": config["num_leaves"],
"learning_rate": config["learning_rate"],
"n_estimators": config["n_estimators"],
"objective": config["objective"],
"reg_alpha": config["reg_alpha"],
"reg_lambda": config["reg_lambda"],
"tree_learner": config["tree_learner"],
"subsample" : config["subsample"],
"subsample_freq": config["subsample_freq"],
"feature_sel": fet_sel_dict[config["feature_sel"]]
}
mlflow.log_params(params)
model = LGBMClassifier(**params, random_state=0)
X_train, X_test, y_train, y_test = give_data(feature_sel=config["feature_sel"])
model.fit(X_train, np.ravel(y_train), eval_set=[(X_test, np.ravel(y_test))], verbose=False, early_stopping_rounds=50, callbacks=[LightGBMCallback])
eval_results = classification_report(np.ravel(y_test), model.predict(X_test), output_dict=True)
eval_results["accuracy"] = accuracy_score(y_test, model.predict(X_test))
eval_results["auroc"] = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1])
mlflow.log_metric("val_auroc", eval_results["auroc"])
fold_accuracy = eval_results["accuracy"]
mlflow.log_metric("val_accuracy", fold_accuracy)
fold_f1 = eval_results["1"]["f1-score"]
mlflow.log_metric("val_f1-score-1", fold_f1)
mlflow.log_metric("val_f1-score-0", eval_results["0"]["f1-score"])
fold_precision = eval_results["1"]["precision"]
mlflow.log_metric("val_precision", fold_precision)
fold_recall = eval_results["1"]["recall"]
mlflow.log_metric("val_recall", fold_recall)
eval_results_tr = classification_report(np.ravel(y_train), model.predict(X_train), output_dict=True)
eval_results_tr["accuracy"] = accuracy_score(y_train, model.predict(X_train))
fold_accuracy_tr = eval_results_tr["accuracy"]
mlflow.log_metric("tr_accuracy", fold_accuracy_tr)
fold_f1_tr = eval_results_tr["1"]["f1-score"]
mlflow.log_metric("tr_f1-score", fold_f1_tr)
fold_precision_tr = eval_results_tr["1"]["precision"]
mlflow.log_metric("tr_precision", fold_precision_tr)
fold_recall_tr = eval_results_tr["1"]["recall"]
mlflow.log_metric("tr_recall", fold_recall_tr)
tune.report(auroc = eval_results["auroc"], done=True)
def tune_fn():
mlflow.set_experiment(experiment_name=experiment_name)
optuna_search = OptunaSearch(
metric="auroc",
mode="max")
ax_search = AxSearch(
metric="auroc",
mode="max")
tune.run(
objective,
name="mlflow_gbdt",
num_samples=65,
config={
"num_leaves": tune.randint(5, 95),
"learning_rate": tune.loguniform(1e-4, 1.0),
"n_estimators": tune.randint(100, 100000),
"subsample" : tune.loguniform(0.01, 1.0),
"subsample_freq": tune.randint(1, 5),
"objective": "binary",
"reg_alpha": tune.loguniform(1e-4, 1.0),
"reg_lambda": tune.loguniform(1e-4, 1.0),
"tree_learner": "feature",
"feature_sel": 0,
"mlflow": {
"experiment_name": experiment_name,
"tracking_uri": mlflow.get_tracking_uri()
}
},
search_alg=optuna_search
)
if __name__=="__main__":
tune_fn()
# "n_components": tune.qrandint(20, 1000, 10),
# "gamma": tune.uniform(0.1, 2.0),
| 4,353 |
accounting/jslink.py
|
jacob22/accounting
| 0 |
2023562
|
# Copyright 2019 Open End AB
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
log = logging.getLogger(__name__)
from bson.errors import InvalidId
from bson.objectid import ObjectId
import os
import time
import uuid
import simplejson
import werkzeug
import flask
from pytransact.object.attribute import BlobVal
from pytransact.contextbroker import ContextBroker
from pytransact import link as Link
from pytransact import mongo
try:
from cStringIO import StringIO
except ImportError:
from io import StringIO
StringIOs = StringIO, type(StringIO()) #, io.BytesIO
def simpleResponse(code, stream):
return werkzeug.Response(response=stream, status=code)
class JsLink(object):
"""
resource to create python endpoint for JsLink callback system
"""
version = 2
TOUCH_INTERVAL = 60 * 60
def __init__(self, linkFactory, registerClient=None, logout=None):
"""
linkFactory - factory function which takes the request and returns
a Link subclass
"""
self.linkFactory = linkFactory
self.registerClient = registerClient
self.logout = logout
@property
def database(self):
return ContextBroker().context.database
def render(self, request):
try:
messages = request.json['messages']
except (TypeError, KeyError):
raise werkzeug.exceptions.UnprocessableEntity()
resp = []
for msg in messages:
msgType = msg['type']
meth = getattr(self, '_msg_%s' % msgType)
clientId = msg.get('clientId')
if clientId is not None:
try:
clientId = ObjectId(msg['clientId'])
except (InvalidId, KeyError):
return simpleResponse(403, "Unknown clientId")
answ = meth(clientId, msg, request)
resp.append(answ)
return flask.jsonify(results=resp)
def _msg_client_deactivate(self, clientId, msg, request):
log.debug('client deactivate %s', clientId)
database = self.database
mongo.remove(database.links, {'client': clientId}, multi=True)
mongo.remove(database.clients, {'_id': clientId})
return {'client_deactivate': str(clientId)}
def _msg_handshake(self, client, msg, request):
clientId = mongo.insert(self.database.clients,
{'updates': [], 'timestamp': time.time()})
if self.registerClient:
self.registerClient(clientId, request)
return {
'type' : 'handshake',
'version' : self.version,
'clientId' : str(clientId),
'extraInfo': {}
}
def _msg_poll(self, clientId, msg, request):
log.debug('client poll %s', clientId)
updated_or_outdated = False
for link in self.linkFactory.iter({'client': clientId,
'outdatedBy': {'$ne': None}}):
link.run()
updated_or_outdated = True
now = time.time()
if not updated_or_outdated:
updated_or_outdated = mongo.find(
self.database.clients,
{'_id': clientId,
'$or': [{'updates': {'$ne': []}},
{'timestamp': {'$lt': now - self.TOUCH_INTERVAL}}]},
projection=[]).count()
if updated_or_outdated:
client = mongo.find_and_modify(self.database.clients,
{'_id': clientId},
{'$set': {'updates': [],
'timestamp': now}},
projection={'updates'})
# Only dereference, files should not be deleted yet, as they are
# used when json serializing.
# Will be deleted by gridfs garbage collector.
mongo.update(self.database.blobvals.files,
{'metadata.references.value': {'$in': [clientId]}},
{'$pull': {'metadata.references.value': clientId}},
multi=True)
return client['updates']
return []
def _msg_link(self, client, msg, request):
linkId = msg['id']
log.debug("link start %s %s", client, linkId)
args = dict([(str(k),v) for (k,v) in msg['args'].items()])
link = self.linkFactory.create(msg['name'], client, linkId, **args)
link.run()
return {'new': linkId}
def _msg_upload(self, client, msg, request):
import ntpath
linkId = msg['id']
log.debug("link start %s %s", client, linkId)
args = dict([(str(k),v) for (k,v) in msg['args'].items()])
value = []
for fkey, fobj in request.files.iteritems(multi=True):
if not fobj.filename:
pos = fobj.tell()
fobj.seek(0, os.SEEK_END)
if fobj.tell() == 0:
continue
fobj.seek(pos)
value.append(BlobVal(fobj, filename=ntpath.basename(fobj.filename),
content_type=fobj.content_type))
args.setdefault('params',{}).setdefault('args',[]).append(value)
link = self.linkFactory.create(msg['name'], client, linkId, **args)
link.run()
return {'new': linkId}
def _msg_link_update(self, client, msg, request):
linkId = msg['id']
log.debug("link update %s %s", client, linkId)
link = self.linkFactory.create(None, client, linkId)
if link is None:
return {}
args = dict([(str(k),v) for (k,v) in msg['args'].items()])
getattr(link, msg['name'])(**args)
return {'link_update': linkId}
def _msg_grant(self, client, msg, request):
toid = ObjectId(msg['toid'])
auth = str(uuid.uuid4())
log.debug('grant %s %s %s', client, toid, auth)
self.database.grants.insert({'toid': toid, 'auth': auth,
'timestamp': time.time()})
return {'auth': auth}
def _msg_link_deactivate(self, client, msg, request):
linkId = msg['id']
coll = self.database.links
link = self.linkFactory.create(None, client, linkId)
log.debug("link end %s %s", client, linkId)
if link:
link.remove()
return {'link_deactivate': linkId}
else:
return {}
def _msg_logout(self, client, msg, request):
if self.logout:
self.logout(client)
| 7,113 |
cron/closeout_listings.py
|
slavik81/market43
| 1 |
2024284
|
#!/usr/bin/python
import MySQLdb
db = MySQLdb.connect(host="localhost",
user="root", passwd="<PASSWORD>", db="market43")
cursor = db.cursor()
cursor.execute("""SELECT ListingId, ListingUserId, ListedItemId
FROM listing
WHERE CURRENT_TIMESTAMP > ExpiryTimestamp
AND Open <> 0
""")
db.commit()
biddercursor = db.cursor()
writecursor = db.cursor()
numrows = int(cursor.rowcount)
for x in range(0, numrows):
row = cursor.fetchone()
item = row[2]
seller = row[1]
listingid = row[0]
biddercursor.execute("""SELECT Bidder, Value FROM bid
WHERE Listing = """ + str(listingid) +
" ORDER BY Value DESC")
winner = 0
saleprice = 0
numbidderrows = int(cursor.rowcount)
for y in range(numbidderrows):
try:
bidderrow = biddercursor.fetchone()
winner = bidderrow[0]
saleprice = bidderrow[1]
break;
except:
break;
if winner > 0:
print "transfering " + str(item) + ":" + str(saleprice) + " between " + str(seller) + ":" + str(winner)
writecursor.execute("UPDATE item SET OwnerUserId = " + str(winner) +
" WHERE ItemId = """ + str(item))
writecursor.execute("""INSERT INTO transaction (
NetBalanceChange, TransactionType, TransactionUser) values (-""" +
str(saleprice) + ", 0, " + str(winner) + ")")
writecursor.execute("""INSERT INTO transaction (
NetBalanceChange, TransactionType, TransactionUser) values (""" +
str(saleprice) + ", 0, " + str(seller) + ")")
writecursor.execute("UPDATE listing SET Open=false WHERE ListingId = " + str(listingid))
print "closing transaction " + str(listingid)
db.commit()
| 1,620 |
acwingcli/config.py
|
jasonsun0310/acwingcli
| 0 |
2024562
|
from colorama import Fore, Back, Style, init
import acwingcli.commandline_writer as cmdwrite
import sys
import os
import json
package_data_file = os.path.join(os.path.dirname(__file__), 'assets/data.json')
def input_with_default(title_name, default):
path = default
if str(input(Fore.LIGHTCYAN_EX + Style.BRIGHT + 'default {} is {}, accept? [y/n] '.format(title_name, path))).lower() == 'n':
path = str(input('enter custom {}: '.format(title_name)))
sys.stdout.write(Style.RESET_ALL)
sys.stdout.flush()
return path
def setup_assistant():
print()
config_path = input_with_default('config path',
os.path.join(os.path.expanduser('~'), '.acwing/'))
cache_path = os.path.join(config_path, 'cache')
problembook_path = input_with_default('problembook path',
os.path.join(os.path.expanduser('~'), 'acwing-problembook/'))
submission_template_path = input_with_default('submission template path',
os.path.join(problembook_path, 'submission_templates/'))
default_language = input_with_default('default language', 'C++')
if not os.path.exists(config_path):
os.makedirs(config_path)
if not os.path.exists(problembook_path):
os.makedirs(problembook_path)
if not os.path.exists(submission_template_path):
os.makedirs(submission_template_path)
if not os.path.exists(cache_path):
os.makedirs(cache_path)
with open(os.path.join(os.path.dirname(__file__), 'assets/data.json'), 'w') as f:
json.dump({'config_path' : config_path}, f)
f.close()
with open(config_path + 'config.json', 'w') as f:
json.dump({'path_problem_book_folder' : problembook_path,
'path_problem_cache_file' : os.path.join(config_path, 'cache/problem.json'),
'path_cookie_file' : os.path.join(config_path, 'cache/cookie'),
'path_submission_template_files' : submission_template_path,
'default_language' : default_language}, f)
f.close()
def load_problem_cache(path):
try:
with open(path, 'r') as f:
problem_cache = dict(map(lambda kv : (int(kv[0]), kv[1]), json.load(f).items()))
return problem_cache
except FileNotFoundError:
return {}
def load_package_data():
try:
with open(package_data_file, 'r') as f:
return json.load(f)
except Exception as e:
print(e)
return None
def load_config_data():
package_data = load_package_data()
if package_data is None or not 'config_path' in package_data.keys():
setup_assistant()
package_data = load_package_data()
if not os.path.exists(package_data['config_path']):
os.makedirs(package_data['config_path'])
config_file_path = os.path.join(package_data['config_path'], 'config.json')
with open(config_file_path, 'r') as f:
config_data = json.load(f)
problem_cache_file_path = config_data['path_problem_cache_file']
path_problem_book = config_data['path_problem_book_folder']
path_cookie = config_data['path_cookie_file']
cmdwrite.client_debug('config data: {}'.format(config_data))
problem_cache = load_problem_cache(problem_cache_file_path)
if problem_cache == {}:
import acwingcli.update
acwingcli.update.problem_list(problem_cache_file_path, path_cookie)
problem_cache = load_problem_cache(problem_cache_file_path)
# cmdwrite.client_debug('cache updated, ' + str(problem_cache))
return (config_data,
problem_cache_file_path,
path_problem_book,
path_cookie,
problem_cache)
config_data, problem_cache_file_path, path_problem_book, path_cookie, problem_cache = load_config_data()
def reload():
config_data, problem_cache_file_path, path_problem_book, path_cookie, problem_cache = load_config_data()
| 4,095 |
src/database/base.py
|
week-with-me/quiz-server
| 0 |
2024809
|
from datetime import datetime
from sqlalchemy import Column, DateTime, Integer, func
from sqlalchemy.ext.declarative import as_declarative, declared_attr
@as_declarative()
class Base:
id: int = Column('id', Integer, primary_key=True, autoincrement=True)
created_at: datetime = Column(
'created_at',
DateTime(timezone=True),
default = func.now()
)
updated_at: datetime = Column('updated_at', DateTime(timezone=True))
deleted_at: datetime = Column('deleted_at', DateTime(timezone=True))
@declared_attr
def __tablename__(cls):
return cls.__name__.lower() + 's'
| 625 |
burp_plugins/filter_plugins/copsf_burp.py
|
corpusops/roles
| 0 |
2024773
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
def copsfburp_get_cname(avars, hvars, *args, **kwargs):
return hvars.get('burp_cname', '') or hvars['inventory_hostname']
def copsfburp_get_cname_and_profile(avars, hvars, profile_key=None,
*args, **kwargs):
cname = copsfburp_get_cname(avars, hvars, *args, **kwargs)
if profile_key is None:
profile_key = 'burp_client_profile'
if profile_key in ['burp_clientside_profile']:
profile = None
else:
profile = avars.get('ansible_virtualization_type', None) in [
'docker', 'lxc', 'container'] and 'vm' or 'baremetal'
try:
if profile_key is None:
raise KeyError('next')
profile = hvars[profile_key]
except KeyError:
try:
hvars['cops_burpclientserver_profiles_{0}'.format(cname)]
profile = cname
except KeyError:
try:
avars['cops_burpclientserver_profiles_{0}'.format(cname)]
profile = cname
except KeyError:
pass
return cname, profile
def copsfburp_finish_settings(data, prefixmode, hvars, *args, **kwargs):
prefixes = {
'client': 'burp_client_conf_',
'server': 'burp_client_',
}
for k in ['restore_clients', 'custom_lines']:
val = hvars.get(prefixes[prefixmode] + k, None)
if val is not None:
data.update({k: val})
data.update(hvars.get(prefixes['client'] + 'extras', {}))
return data
__funcs__ = {
'copsfburp_get_cname': copsfburp_get_cname,
'copsfburp_get_cname_and_profile': copsfburp_get_cname_and_profile,
'copsfburp_finish_settings': copsfburp_finish_settings,
}
class FilterModule(object):
def filters(self):
return __funcs__
# vim:set et sts=4 ts=4 tw=80
| 1,955 |
exercises/exc_01_11.py
|
tuomastik/spacy-course
| 4 |
2024402
|
import spacy
# Import the Matcher
from spacy.____ import ____
nlp = spacy.load("en_core_web_sm")
doc = nlp("New iPhone X release date leaked as Apple reveals pre-orders by mistake")
# Initialize the Matcher with the shared vocabulary
matcher = ____(____.____)
# Create a pattern matching two tokens: "iPhone" and "X"
pattern = [____]
# Add the pattern to the matcher
____.____("IPHONE_X_PATTERN", None, ____)
# Use the matcher on the doc
matches = ____
print("Matches:", [doc[start:end].text for match_id, start, end in matches])
| 536 |
integration_test/test_all.py
|
cffbots/muscle3
| 11 |
2024056
|
from collections import OrderedDict
import numpy as np
from ymmsl import (Component, Conduit, Configuration, Model, Operator,
Settings)
from libmuscle import Grid, Instance, Message
from libmuscle.runner import run_simulation
def macro():
"""Macro model implementation.
"""
instance = Instance({
Operator.O_I: ['out[]'],
Operator.S: ['in[]']})
while instance.reuse_instance():
# f_init
assert instance.get_setting('test1') == 13
# o_i
assert instance.is_vector_port('out')
for slot in range(10):
instance.send('out', Message(0.0, 10.0, 'testing'), slot)
# s/b
for slot in range(10):
msg = instance.receive('in', slot)
assert msg.data['string'] == 'testing back'
assert msg.data['int'] == 42
assert msg.data['float'] == 3.1416
assert msg.data['grid'].array.dtype == np.float64
assert msg.data['grid'].array[0, 1] == 34.0
def micro():
"""Micro model implementation.
"""
instance = Instance({
Operator.F_INIT: ['in'],
Operator.O_F: ['out']})
while instance.reuse_instance():
# f_init
assert instance.get_setting('test3', 'str') == 'testing'
assert instance.get_setting('test4', 'bool') is True
assert instance.get_setting('test6', '[[float]]')[0][1] == 2.0
msg = instance.receive('in')
assert msg.data == 'testing'
# o_f
result = {
'string': 'testing back',
'int': 42,
'float': 3.1416,
'grid': Grid(np.array([[12.0, 34.0, 56.0], [1.0, 2.0, 3.0]]))}
instance.send('out', Message(0.1, None, result))
def test_all(log_file_in_tmpdir):
"""A positive all-up test of everything.
"""
elements = [
Component('macro', 'macro_impl'),
Component('micro', 'micro_impl', [10])]
conduits = [
Conduit('macro.out', 'micro.in'),
Conduit('micro.out', 'macro.in')]
model = Model('test_model', elements, conduits)
settings = Settings(OrderedDict([
('test1', 13),
('test2', 13.3),
('test3', 'testing'),
('test4', True),
('test5', [2.3, 5.6]),
('test6', [[1.0, 2.0], [3.0, 1.0]])]))
configuration = Configuration(model, settings)
implementations = {'macro_impl': macro, 'micro_impl': micro}
run_simulation(configuration, implementations)
| 2,585 |
python_face_swap/utils.py
|
ForrestPi/FaceSolution
| 1 |
2024151
|
import numpy as np
import cv2
import models
from dlib import rectangle
import NonLinearLeastSquares
def getNormal(triangle):
a = triangle[:, 0]
b = triangle[:, 1]
c = triangle[:, 2]
axisX = b - a
axisX = axisX / np.linalg.norm(axisX)
axisY = c - a
axisY = axisY / np.linalg.norm(axisY)
axisZ = np.cross(axisX, axisY)
axisZ = axisZ / np.linalg.norm(axisZ)
return axisZ
def flipWinding(triangle):
return [triangle[1], triangle[0], triangle[2]]
def fixMeshWinding(mesh, vertices):
for i in range(mesh.shape[0]):
triangle = mesh[i]
normal = getNormal(vertices[:, triangle])
if normal[2] > 0:
mesh[i] = flipWinding(triangle)
return mesh
def getShape3D(mean3DShape, blendshapes, params):
#skalowanie
s = params[0]
#rotacja
r = params[1:4]
#przesuniecie (translacja)
t = params[4:6]
w = params[6:]
#macierz rotacji z wektora rotacji, wzor Rodriguesa
R = cv2.Rodrigues(r)[0]
shape3D = mean3DShape + np.sum(w[:, np.newaxis, np.newaxis] * blendshapes, axis=0)
shape3D = s * np.dot(R, shape3D)
shape3D[:2, :] = shape3D[:2, :] + t[:, np.newaxis]
return shape3D
def getMask(renderedImg):
mask = np.zeros(renderedImg.shape[:2], dtype=np.uint8)
def load3DFaceModel(filename):
faceModelFile = np.load(filename)
mean3DShape = faceModelFile["mean3DShape"]
mesh = faceModelFile["mesh"]
idxs3D = faceModelFile["idxs3D"]
idxs2D = faceModelFile["idxs2D"]
blendshapes = faceModelFile["blendshapes"]
mesh = fixMeshWinding(mesh, mean3DShape)
return mean3DShape, blendshapes, mesh, idxs3D, idxs2D
def getFaceTextureCoords(img, mean3DShape, blendshapes, idxs2D, idxs3D, detector, predictor):
projectionModel = models.OrthographicProjectionBlendshapes(blendshapes.shape[0])
keypoints = getFaceKeypoints(img, detector, predictor)[0]
modelParams = projectionModel.getInitialParameters(mean3DShape[:, idxs3D], keypoints[:, idxs2D])
modelParams = NonLinearLeastSquares.GaussNewton(modelParams, projectionModel.residual, projectionModel.jacobian, ([mean3DShape[:, idxs3D], blendshapes[:, :, idxs3D]], keypoints[:, idxs2D]), verbose=0)
textureCoords = projectionModel.fun([mean3DShape, blendshapes], modelParams)
return textureCoords
| 2,315 |
ssrlsim/__init__.py
|
tangkong/ssrlsim
| 0 |
2023999
|
from ._version import get_versions
__version__ = get_versions()['version']
del get_versions
import os
import numpy as np
import random
from pathlib import Path
import uuid
from ophyd import Signal
from ophyd.sim import SynSignal
from ophyd.areadetector.filestore_mixins import resource_factory
import tifffile
import h5py
# Basic signals
# TODO: sort out file formats into trigger mixins?
class SynTiffFilestore(SynSignal):
def trigger(self):
# not running at the moment.... but super.trigger() is.
tmpRoot = Path(self.fstore_path)
tmpPath = 'tmp'
os.makedirs(tmpRoot / tmpPath, exist_ok=True)
st = super().trigger() # re-evaluates self._func, puts into value
# Returns NullType
ret = super().read() # Signal.read() exists, not SynSignal.read()
# But using Signal.read() does not allow uid's to be passed into mem.
val = ret[self.name]['value']
# AD_TIFF handler generates filename by populating template
# self.template % (self.path, self.filename, self.point_number)
self.point_number += 1
resource, datum_factory = resource_factory(
spec='AD_TIFF',
root=tmpRoot,
resource_path=tmpRoot / tmpPath,
resource_kwargs={'template': '%s%s_%d.tiff' ,
'filename': f'{uuid.uuid4()}'},
path_semantics='windows')
datum = datum_factory({'point_number': self.point_number})
self._asset_docs_cache.append(('resource', resource))
self._asset_docs_cache.append(('datum', datum))
fname = (resource['resource_kwargs']['filename']
+ f'_{self.point_number}.tiff')
fpath = Path(resource['root']) / resource['resource_path'] / fname
# for tiff spec
tifffile.imsave(fpath, val)
# replace 'value' in read dict with some datum id
ret[self.name]['value'] = datum['datum_id']
self._last_ret = ret
return st
class SynHDF5Filestore(SynSignal):
def trigger(self):
# not running at the moment.... but super.trigger() is.
tmpRoot = Path(self.fstore_path)
tmpPath = 'tmp'
os.makedirs(tmpRoot / tmpPath, exist_ok=True)
st = super().trigger() # re-evaluates self._func, puts into value
# Returns NullType
ret = super().read() # Signal.read() exists, not SynSignal.read()
# But using Signal.read() does not allow uid's to be passed into mem.
val = ret[self.name]['value']
self.point_number += 1
fn = f'{uuid.uuid4()}.h5'
resource, datum_factory = resource_factory(
spec='XSP3',
root=tmpRoot,
resource_path=tmpRoot / tmpPath / fn,
resource_kwargs={}, # Handler takes only one 'filename' argument, which is pulled from the...
path_semantics='windows')
datum = datum_factory({})
print(resource)
self._asset_docs_cache.append(('resource', resource))
self._asset_docs_cache.append(('datum', datum))
fpath = Path(resource['root']) / resource['resource_path']
# for h5 spec
with h5py.File(fpath, 'w') as f:
e = f.create_group('/entry/instrument/detector')
dset = e.create_dataset('data', data=val)
# replace 'value' in read dict with some datum id
ret[self.name]['value'] = datum['datum_id']
self._last_ret = ret
return st
class ArraySynSignal(SynSignal):
"""
Base class for synthetic array signals.
Same interface as a normal ArraySignal, but with simulated data and
filestore
"""
_asset_docs_cache = []
_last_ret = None
point_number = 0
def __init__(self, fstore_path=None, *args, **kwargs):
self.fstore_path = fstore_path
super(ArraySynSignal, self).__init__(*args, **kwargs)
def describe(self):
ret = super().describe()
ret[self.name]['external'] = 'FILESTORE:'
return ret
def read(self):
'''Put the status of the signal into a simple dictionary format
for data acquisition
Returns
-------
dict
'''
# Appears to break things, throw resource sentinel issue...
# need to initialize sentinel when starting RunEngine
# Is ostensibly the same as Signal.read()?...
if self._last_ret is not None:
return self._last_ret
# return {self.name: {'value': self._last_ret,
# 'timestamp': self.timestamp}}
else: # If detector has not been triggered already
raise Exception('read before being triggered')
# return {self.name: {'value': self.get(),
# 'timestamp': self.timestamp}}
def collect_asset_docs(self):
items = list(self._asset_docs_cache)
self._asset_docs_cache.clear()
for item in items:
yield item
# position generator
def gen_wafer_locs(shape='circle', radius=10):
"""
Create square grid of locations, with spacing of 1 between
return lists of x, y locations
"""
vals = np.arange(-radius, radius+1, 1)
xv, yv = np.meshgrid(vals, vals)
x = xv.flatten()
y = yv.flatten()
if shape == 'circle':
xout = [] #np.array([])
yout = [] # np.array([])
for i in range(len(x)):
if (x[i]**2 + y[i]**2) <= radius**2:
xout.append(x[i])
yout.append(y[i])
return xout, yout
else:
return x, y
| 5,701 |
examples/csv_parse_entity.py
|
raipc/atsd-api-python
| 20 |
2024538
|
import pandas as pd
from atsd_client import connect
from atsd_client.models import Entity
from atsd_client.services import EntitiesService
def read_csv(path):
return pd.read_csv(path, sep=',', dtype=str)
# Connect to ATSD
# connection = connect_url('https://atsd_hostname:8443', 'username', 'password')
connection = connect('/path/to/connection.properties')
entities_service = EntitiesService(connection)
df = read_csv('Entity.csv')
fields_dict = {
'asset_name': 'label',
'asset_path': 'name'
}
time_zone_dict = {
'USRI': 'EDT',
'PRJU': 'PRT'
}
time_zone_field = 'site_is_code'
for index, row in df.where(pd.notnull(df), None).iterrows():
row_dict = row.to_dict()
fields_columns = {k: v for k, v in row_dict.iteritems()
if k in fields_dict and row_dict[k] is not None}
entity_params = dict(map(lambda kv: (fields_dict[kv[0]], kv[1]), fields_columns.iteritems()))
if time_zone_field in row_dict and row_dict[time_zone_field] in time_zone_dict:
site_code = row_dict[time_zone_field]
entity_params['time_zone'] = time_zone_dict[site_code]
entity_params['tags'] = dict(
{k: v for k, v in row_dict.iteritems() if k not in fields_dict
and row_dict[k] is not None})
entity = Entity(**entity_params)
print(entity)
# entities_service.create_or_replace(entity)
| 1,371 |
import_playlists.py
|
arru/plex-utilities
| 1 |
2024195
|
import ImportUtils
import plexapi.playlist
CONFIGURATION = ImportUtils.get_configuration()
plex = ImportUtils.PlexWrapper(CONFIGURATION)
MUSIC_SECTION = plex.server.library.section('Music')
plex_tracks = plex.get_tracks_dict()
itunes = ImportUtils.ItunesWrapper(CONFIGURATION)
itunesPlaylists=itunes.library.getPlaylistNames()
print("[INFO] Getting ready to import %d iTunes playlists" % len(itunesPlaylists))
nonempty_playlists_counter = 0
not_found_set = set()
for playlist in itunesPlaylists:
playlist_content = itunes.library.getPlaylist(playlist)
# name (String)
# tracks (List[Song])
# is_folder = False (Boolean)
# playlist_persistent_id = None (String)
# parent_persistent_id = None (String)
if playlist_content.is_folder:
print("Skipping playlist folder %s" % playlist_content.name)
elif len(playlist_content.tracks) == 0:
print("Skipping empty playlist %s" % playlist_content.name)
else:
playlist_items = []
for track in playlist_content.tracks:
if not ImportUtils.is_song_on_disk(track) or not '/iTunes Media/Music/' in track.location:
continue
track_path = ImportUtils.normalizeTrackPath(track.location)
if track_path in plex_tracks:
playlist_items.append (plex_tracks[track_path])
else:
not_found_set.add(track_path)
if len(playlist_items) > 0:
plexapi.playlist.Playlist.create(plex.server, playlist_content.name, items=playlist_items, section=MUSIC_SECTION)
print ("%s\t(%d)\timported" % (playlist_content.name, len(playlist_items)))
nonempty_playlists_counter += 1
print ("Tracks not found: %d" % len(not_found_set))
| 1,754 |
pipeline/metadata/beam_metadata.py
|
censoredplanet/censoredplanet-analysis
| 6 |
2024452
|
"""Helpers for merging metadata with rows in beam pipelines"""
from __future__ import absolute_import
from typing import Tuple, Dict, List, Iterator
from pipeline.metadata.flatten import Row
# A key containing a date and IP
# ex: ("2020-01-01", '1.2.3.4')
DateIpKey = Tuple[str, str]
# PCollection key names used internally by the beam pipeline
IP_METADATA_PCOLLECTION_NAME = 'metadata'
ROWS_PCOLLECION_NAME = 'rows'
def make_date_ip_key(row: Row) -> DateIpKey:
"""Makes a tuple key of the date and ip from a given row dict."""
return (row['date'], row['ip'])
def merge_metadata_with_rows( # pylint: disable=unused-argument
key: DateIpKey,
value: Dict[str, List[Row]],
field: str = None) -> Iterator[Row]:
# pyformat: disable
"""Merge a list of rows with their corresponding metadata information.
Args:
key: The DateIpKey tuple that we joined on. This is thrown away.
value: A two-element dict
{IP_METADATA_PCOLLECTION_NAME: One element list containing an ipmetadata
ROWS_PCOLLECION_NAME: Many element list containing row dicts}
where ipmetadata is a dict of the format {column_name, value}
{'netblock': '1.0.0.1/24', 'asn': 13335, 'as_name': 'CLOUDFLARENET', ...}
and row is a dict of the format {column_name, value}
{'domain': 'test.com', 'ip': '1.1.1.1', 'success': true ...}
field: indicates a row field to update with metadata instead of the row (default).
Yields:
row dict {column_name, value} containing both row and metadata cols/values
"""
# pyformat: enable
if value[IP_METADATA_PCOLLECTION_NAME]:
ip_metadata = value[IP_METADATA_PCOLLECTION_NAME][0]
else:
ip_metadata = {}
rows = value[ROWS_PCOLLECION_NAME]
for row in rows:
new_row: Row = {}
new_row.update(row)
if field == 'received':
if new_row['received']:
new_row['received'].update(ip_metadata)
new_row['received'].pop('date', None)
new_row['received'].pop('name', None)
new_row['received'].pop('country', None)
else:
new_row.update(ip_metadata)
yield new_row
| 2,111 |
api/dorest/dorest/libs/django/decorators/validation/arguments.py
|
ichise-laboratory/uwkgm
| 0 |
2023553
|
"""Argument-validator decorator for Dorest-based endpoints
The Dorest project
:copyright: (c) 2020 Ichise Laboratory at NII & AIST
:author: <NAME>
"""
from rest_framework.response import Response
from django.utils.translation import ugettext_lazy as _
def existence(**params):
"""Checks whether all required request parameters are included in an HTTP request to an APIView
:param params: parameter 'fields' contains required request parameters
parameter 'strict_fields' are 'fields' that cannot be blank
"""
def decorator(func):
def wrapper(*args, **kwargs):
"""Receives HTTP request handler (function) of Django rest_framework's APIView class."""
# Assign rest_framework.request.Request object to 'request' variable, which is to be validated
request = args[1]
missings = []
blanks = []
fields = params['fields'] if 'fields' in params else [] + params['strict_fields'] if 'strict_fields' in params else []
strict_fields = params['strict_fields'] if 'strict_fields' in params else []
for kwarg in fields:
if kwarg not in request.data and kwarg not in request.GET:
missings.append(kwarg)
for kwarg in strict_fields:
if kwarg in request.data and len(request.data[kwarg]) == 0:
blanks.append(kwarg)
if len(missings) > 0 or len(blanks):
return Response({'detail': _('Parameters missing or containing blank value'),
'missing': missings,
'blank': blanks}, status=400)
return func(*args, **kwargs)
return wrapper
return decorator
| 1,777 |
application/forms.py
|
PyColorado/boulderpython.org
| 5 |
2023663
|
# -*- coding: utf-8 -*-
"""
forms.py
~~~~~~~~
Flask-WTForms
"""
from flask_wtf import FlaskForm
from wtforms import TextField, TextAreaField, SelectField
from wtforms.fields.html5 import EmailField
from wtforms.validators import InputRequired, Email
pitchPlaceholder = 'You have 300 characters to sell your talk. This is known as the "elevator pitch". \
Make it exciting.'
talkFormats = [
(0, "-- select --"),
("IN-DEPTH", "In-Depth Talk (~20-30 minutes, 5-10 minute Q&A)"),
("LIGHTNING", "Lightning Talk (~5-10 minutes, no Q&A)"),
("DEMO", "Short Demo (~15-20 minutes, < 5 minute Q&A)"),
("BEGINNER", "Beginner Track (20 minutes, 5 minute Q&A)"),
]
audienceLevels = [
(0, "-- select --"),
("BEGINNER", "Beginner"),
("INTERMEDIATE", "Intermediate"),
("ADVANCED", "Advanced"),
]
descPlaceholder = "This field supports Markdown. The description will be seen by reviewers during \
the CFP process and may eventually be seen by the attendees of the event."
notesPlaceholder = "This field supports Markdown. Notes will only be seen by reviewers during the CFP \
process. This is where you should explain things such as technical requirements, \
why you're the best person to speak on this subject, etc..."
class SubmissionForm(FlaskForm):
email = EmailField(
"Email",
validators=[InputRequired("Please enter your email address."), Email("Please enter your email address.")],
render_kw={"placeholder": "Email"},
)
title = TextField(
"Title", validators=[InputRequired("Your talk needs a name.")], render_kw={"placeholder": "Talk Title"}
)
pitch = TextAreaField(
"Pitch", validators=[InputRequired("Field is required.")], render_kw={"placeholder": pitchPlaceholder}
)
format = SelectField("Talk Format", choices=talkFormats)
audience = SelectField("Audience Level", choices=audienceLevels)
description = TextAreaField(
"Description", validators=[InputRequired("Field is required.")], render_kw={"placeholder": descPlaceholder}
)
notes = TextAreaField("Notes", render_kw={"placeholder": notesPlaceholder})
| 2,150 |
queue_/queue_on_stack_test.py
|
katearb/programming-2021-19fpl
| 0 |
2023899
|
"""
Programming for linguists
Tests for Queue class.
"""
import unittest
from queue_.queue_on_stack import QueueOnStack_, LimitError
class QueueOnStackTestCase(unittest.TestCase):
"""
This Case of tests checks the functionality of the implementation of Queue on stack
"""
def test_new_queue_is_empty(self):
"""
Create an empty Queue.
Test that its size is 0.
"""
queue_on_stack = QueueOnStack_()
self.assertTrue(queue_on_stack.empty())
self.assertEqual(queue_on_stack.size(), 0)
def test_get_element(self):
"""
Get an element from a queue.
Test that it is 1.
"""
data = (1, 2, 3, 4)
queue_on_stack = QueueOnStack_(data)
self.assertEqual(queue_on_stack.get(), data[0])
def test_new_queue_from_tuple(self):
"""
Create a Queue from an iterable object.
Check that the size of queue_ equals to the size of the given tuple.
"""
data = (1, 2, 3, 4)
queue_on_stack = QueueOnStack_(data)
self.assertFalse(queue_on_stack.empty())
self.assertEqual(queue_on_stack.size(), len(data))
for value in data:
test_value = queue_on_stack.get()
self.assertEqual(test_value, value)
self.assertTrue(queue_on_stack.empty())
self.assertEqual(queue_on_stack.size(), 0)
def test_new_queue_from_list(self):
"""
Create a Queue from a list.
Check that the size of queue equals to the size of the queue.
Check that the top element of queue equals to the latest element of the list.
"""
data = [1, 3, 5, 7, 2, 4]
queue_on_stack = QueueOnStack_(data)
self.assertFalse(queue_on_stack.empty())
self.assertEqual(queue_on_stack.size(), len(data))
self.assertEqual(queue_on_stack.top(), data[0])
def test_new_queue_from_generator(self):
"""
Create a Queue_ from a generator.
Test that its size equals to the number provided in the generator.
"""
queue_on_stack = QueueOnStack_(range(10))
self.assertFalse(queue_on_stack.empty())
self.assertEqual(queue_on_stack.size(), 10)
self.assertEqual(queue_on_stack.top(), 0)
def test_put_element(self):
"""
Put an element in queue.
Test that its size is 1.
"""
queue_on_stack = QueueOnStack_()
queue_on_stack.put(1)
self.assertFalse(queue_on_stack.empty())
self.assertEqual(queue_on_stack.size(), 1)
self.assertEqual(queue_on_stack.top(), 1)
def test_call_get_of_empty_queue_raised_error(self):
"""
Create an empty Queue.
Test that call of get function raises Assertion error
"""
queue_on_stack = QueueOnStack_()
self.assertRaises(IndexError, queue_on_stack.get)
def test_push_limit(self):
"""
Create a Queue with max number of elements.
Test that an exception will be raised
"""
queue_on_stack = QueueOnStack_([1, 2, 3], 3)
self.assertRaises(LimitError, queue_on_stack.put, 4)
| 3,172 |
Course/exceptions/example_12.py
|
zevgenia/Python_shultais
| 0 |
2023315
|
# -*- coding: utf-8 -*-
import sys
print("Открыть соединение с БД")
try:
raise ValueError
print("Запись данных")
finally:
print("Закрыть соединение с БД")
print("Продолжение программы")
| 200 |
venv/lib/python2.7/site-packages/geocode/geocode.py
|
NoahFlowa/glowing-spoon
| 0 |
2024605
|
import os
import urllib
import cPickle as pickle
import json
import time
class NoResultError(Exception): pass
class QueryLimitError(Exception): pass
last_read = time.time()
try:
pickle_dir = os.path.expanduser('~/.geocode/')
os.makedirs(pickle_dir)
except:
pickle_dir = './'
pickle_path = os.path.join(pickle_dir, 'latlons.pkl')
try:
with open(pickle_path) as pkl_file:
_latlons = pickle.load(pkl_file)
except: _latlons = {}
def save_cache():
with open(pickle_path, 'w') as pkl_file:
pickle.dump(_latlons, pkl_file, -1)
def latlon(location, throttle=0.5, center=True, round_digits=2):
'''Look up the latitude/longitude coordinates of a given location using the
Google Maps API. The result is cached to avoid redundant API requests.
throttle: send at most one request in this many seconds
center: return the center of the region; if False, returns the region
(lat1, lon1, lat2, lon2)
round_digits: round coordinates to this many digits
'''
global last_read
if isinstance(location, list):
return map(lambda x: latlon(x, throttle=throttle, center=center, round_digits=round_digits),
location)
if location in _latlons:
result = _latlons[location]
if center:
lat1, lon1, lat2, lon2 = result
result = (lat1+lat2)/2, (lon1+lon2)/2
return tuple([round(n) for n in result])
while time.time() - last_read < throttle:
pass
last_read = time.time()
try:
url = "http://maps.google.com/maps/api/geocode/json?address=%s&sensor=false" % location.replace(' ', '+')
data = json.loads(urllib.urlopen(url).read())
if data['status'] == 'OVER_QUERY_LIMIT':
raise QueryLimitError('Google Maps API query limit exceeded. (Use the throttle keyword to control the request rate.')
try:
bounds = data['results'][0]['geometry']['bounds']
result1 = bounds['northeast']
lat1, lon1 = result1['lat'], result1['lng']
result2 = bounds['southwest']
lat2, lon2 = result2['lat'], result2['lng']
except KeyError:
bounds = data['results'][0]['geometry']['location']
lat1 = bounds['lat']
lon1 = bounds['lng']
lat2 = lat1
lon2 = lon1
except IndexError:
raise NoResultError('No result was found for location %s' % location)
_latlons[location] = (lat1, lon1, lat2, lon2)
save_cache()
if center: return round((lat1+lat2)/2, round_digits), round((lon1+lon2)/2, round_digits)
else: return tuple([round(n, round_digits) for n in (lat1, lon1, lat2, lon2)])
except Exception as e:
raise
return None
if __name__ == '__main__':
input = True
while input:
input = raw_input('Enter the name of a location: ')
print latlon(input)
| 2,974 |
src/specific_models/bezerra/attack_identification/cnn_sample_based_2d.py
|
kaylani2/sbseg2020
| 7 |
2023866
|
import functools
import time
import math
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow import keras
import datetime
import sys
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import time
import sklearn
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import StandardScaler
STATES = [0, 10, 100, 1000, 10000]
DATASET_DIR = '../../../datasets/Dataset-IoT/'
NETFLOW_DIRS = ['MC/NetFlow/', 'SC/NetFlow/', 'ST/NetFlow/']
# MC_I_FIRST: Has infected data by Hajime, Aidra and BashLite botnets'
# MC_I_SECOND: Has infected data from Mirai botnets
# MC_I_THIR: Has infected data from Mirai, Doflo, Tsunami and Wroba botnets
# MC_L: Has legitimate data, no infection
df = load_dataset ()
print ("Data Loaded")
#making the final DataFrame
#dropping the number of the rows column
df = df.sample (frac = 1, replace = True, random_state = 0)
df = df.drop (df.columns [0], axis = 1)
#dropping bad columns
nUniques = df.nunique ()
for column, nUnique in zip (df.columns, nUniques):
if (nUnique == 1):
df.drop (axis = 'columns', columns = column, inplace = True)
#dropping unrelated columns
df.drop (axis = 'columns', columns= ['ts', 'te', 'sa', 'da'], inplace = True)
#counting different labels
neg, pos = np.bincount (df ['Label'])
##################################
## encoding categorical columns ##
##################################
from sklearn import preprocessing
cat_cols, num_cols = df.columns [df.dtypes == 'O'], df.columns [df.dtypes != 'O']
num_cols = num_cols [1:]
categories = [df [column].unique () for column in df [cat_cols]]
categorical_encoder = preprocessing.OrdinalEncoder (categories = categories)
categorical_encoder.fit (df [cat_cols])
df [cat_cols] = categorical_encoder.transform (df [cat_cols])
#########################
## Splitting the Data ##
#########################
from tensorflow import feature_column
from tensorflow.keras import layers
from sklearn.model_selection import train_test_split
#for state in STATES:
train, test = train_test_split (df, test_size = 0.3, random_state = state)
train, val = train_test_split (train, test_size = 0.25, random_state = state)
print (len (train), 'train examples')
print (len (val), 'validation examples')
print (len (test), 'test examples')
train_labels = np.array (train.pop ('Label'))
bool_train_labels = train_labels != 0
val_labels = np.array (val.pop ('Label'))
test_labels = np.array (test.pop ('Label'))
train_features = np.array (train)
val_features = np.array (val)
test_features = np.array (test)
###########################
## Normalizing the Data ##
###########################
#getting the index of the numerical columns
index = [df.columns.get_loc (c)-1 for c in num_cols]
index = np.array (index)
cat_index = [df.columns.get_loc (c) for c in cat_cols]
cat_index = np.array (index)
scaler = StandardScaler ()
train_features [:, index] = scaler.fit_transform (train_features [:, index])
val_features [:, index] = scaler.transform (val_features [:, index])
test_features [:, index] = scaler.transform (test_features [:, index])
train_features [:, index] = np.clip (train_features [:, index], -5, 5)
val_features [:, index] = np.clip (val_features [:, index], -5, 5)
test_features [:, index] = np.clip (test_features [:, index], -5, 5)
########################
## Reshaping the Data ##
########################
SAMPLE_2D_SIZE = 3 # 3x3
## zero padding and reshaping
train_features.resize ((train_features.shape [0], SAMPLE_2D_SIZE, SAMPLE_2D_SIZE))
train_features = train_features.reshape ((train_features.shape [0], 3, 3, 1))
val_features.resize ((val_features.shape [0], SAMPLE_2D_SIZE, SAMPLE_2D_SIZE))
val_features = val_features.reshape ((val_features.shape [0], 3, 3, 1))
test_features.resize ((test_features.shape [0], SAMPLE_2D_SIZE, SAMPLE_2D_SIZE))
test_features = test_features.reshape ((test_features.shape [0], 3, 3, 1))
print (train_features.shape)
########################
## Building the Model ##
########################
FILTERS = 4
METRICS = [
keras.metrics.TruePositives (name = 'tp'),
keras.metrics.FalsePositives (name = 'fp'),
keras.metrics.TrueNegatives (name = 'tn'),
keras.metrics.FalseNegatives (name = 'fn'),
keras.metrics.BinaryAccuracy (name = 'accuracy'),
keras.metrics.Precision (name = 'precision'),
keras.metrics.Recall (name = 'recall'),
keras.metrics.AUC (name = 'auc'),
]
def create_model (lr = 1e-1, dropout_rate = 0.0):
initializer = tf.initializers.VarianceScaling (scale = 2.0)
model = models.Sequential ()
model.add (layers.Conv2D (64, (2, 2), activation = 'relu', input_shape= (3, 3, 1), kernel_initializer = initializer))
model.add (layers.Flatten ())
model.add (layers.Dense (64, activation = 'relu', kernel_initializer = initializer))
model.add (layers.Dropout (dropout_rate))
model.add (layers.Dense (1, activation = 'sigmoid', kernel_initializer = initializer))
# model.summary ()
model.compile (optimizer = keras.optimizers.Adam (lr = 1e-3),
loss = keras.losses.BinaryCrossentropy (),
metrics= ['binary_accuracy'])
return model
# ####GRID SEARCH
# from sklearn.model_selection import GridSearchCV
# from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
# from sklearn.model_selection import PredefinedSplit
# model = KerasClassifier (build_fn = create_model, verbose = 2)
# batch_size = [1000, 2048, 3200]
# epochs = [3, 5, 10]
# lr = [1e-3, 1e-2, 1e-1, 2e-1]
# dropout_rate = [0.0, 0.2, 0.3]
# test_fold = np.repeat ( [-1, 0] , [train_features.shape [0], val_features.shape [0]])
# myPreSplit = PredefinedSplit (test_fold)
# param_grid = dict (batch_size = batch_size, epochs = epochs, lr = lr, dropout_rate = dropout_rate)
# grid = GridSearchCV (estimator = model, cv = myPreSplit, param_grid = param_grid, scoring= 'f1_weighted', verbose = 2, n_jobs = -1)
# grid_result = grid.fit ( np.concatenate ((train_features, val_features), axis = 0,),
# np.concatenate ((train_labels, val_labels), axis = 0))
# print (grid_result.best_params_)
# print ("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
# means = grid_result.cv_results_ ['mean_test_score']
# stds = grid_result.cv_results_ ['std_test_score']
# params = grid_result.cv_results_ ['params']
# for mean, stdev, param in zip (means, stds, params):
# print ("%f (%f) with: %r" % (mean, stdev, param))
# sys.exit ()
model = create_model (lr = 1e-3)
startTime = time.time ()
history = model.fit (train_features, train_labels,
epochs = 50, validation_data= (val_features, val_labels), batch_size = 100, verbose = 2)
print ("{} s to train model".format (time.time ()-startTime))
from sklearn.metrics import confusion_matrix, precision_score, recall_score
from sklearn.metrics import f1_score, classification_report, accuracy_score
from sklearn.metrics import cohen_kappa_score
y_pred = model.predict (test_features)
y_pred = y_pred.round ()
# print (y_pred)
TARGET = 'Label'
print ('\nPerformance on TEST set:')
my_confusion_matrix = confusion_matrix (test_labels, y_pred, labels = df [TARGET].unique ())
tn, fp, fn, tp = my_confusion_matrix.ravel ()
print ('Confusion matrix:')
print (my_confusion_matrix)
print ('Accuracy:', accuracy_score (test_labels, y_pred))
print ('Precision:', precision_score (test_labels, y_pred, average = 'macro'))
print ('Recall:', recall_score (test_labels, y_pred, average = 'macro'))
print ('F1:', f1_score (test_labels, y_pred, average = 'macro'))
print ('Cohen Kappa:', cohen_kappa_score (test_labels, y_pred,
labels = df [TARGET].unique ()))
print ('TP:', tp)
print ('TN:', tn)
print ('FP:', fp)
print ('FN:', fn)
| 7,802 |
adsl_server/main.py
|
pythonyhd/AdslProxy
| 11 |
2023930
|
# -*- coding: utf-8 -*-
import re
import platform
import time
import requests
from requests.exceptions import ConnectionError, ConnectTimeout, ReadTimeout
from fake_useragent import UserAgent
from adsl_server.settings import ADSL_NETMASK, TEST_URL, TEST_TIMEOUT, VALID_STATUS_CODES, CLIENT_NAME, ADSL_BASH, \
PROXY_PORT, USER_NAME, PASSWORD, REDIS_URI, ADSL_ERROR_CYCLE, ADSL_CYCLE, ADSL_KEEP_USE
if platform.python_version().startswith('2.'):
import commands as subprocess
elif platform.python_version().startswith('3.'):
import subprocess
else:
raise ValueError('python version must be 2 or 3')
class SenderAdsl(object):
def get_ip(self, netname=ADSL_NETMASK):
"""
获取拨号IP
:param netname: 网卡名称
:return: 拨号ip
"""
(status, output) = subprocess.getstatusoutput('ifconfig')
if status == 0:
pattern = re.compile(netname + '.*?inet.*?(\d+\.\d+\.\d+\.\d+).*?netmask', re.S)
result = re.search(pattern, output)
if result:
ip = result.group(1)
return ip
def test_proxy(self, proxy):
"""
测试代理
:param proxy: 代理
:return: 测试结果
"""
proxies = {
'http': 'http://{}:{}@{}:{}'.format(USER_NAME, PASSWORD, proxy, PROXY_PORT),
'https': 'https://{}:{}@{}:{}'.format(USER_NAME, PASSWORD, proxy, PROXY_PORT),
}
headers = {'User-Agent': UserAgent().random}
try:
response = requests.get(url=TEST_URL, headers=headers, proxies=proxies, timeout=TEST_TIMEOUT)
if response.status_code in VALID_STATUS_CODES:
# print(response.text)
return True
except (ConnectTimeout, ReadTimeout, ConnectionError):
return False
def remove_proxy(self):
""" 移除代理 """
url = '{}/remove?name={}'.format(REDIS_URI, CLIENT_NAME)
res = requests.get(url=url)
print(res.text)
def add_proxy(self, proxy):
""" 添加代理 """
url = '{}/put?name={}&proxy={}'.format(REDIS_URI, CLIENT_NAME, proxy)
res = requests.get(url=url)
print(res.text)
def adsl(self):
"""
拨号主进程
ADSL代码优化,保证拨号前把IP删掉,
确保入库的IP在拨号前都是可用的。
执行删除后再次休眠10秒,确保取出来的IP最少能用10秒
"""
while True:
try:
self.remove_proxy()
# 删除之后再次休眠10秒,万一在刚要拨号的时候取到那个IP,那么取出来就拨号了,IP直接不能使用
# 再次休眠确保即使已经删除,取到之后还能用,但是删除后会有一段时间没有IP进来,所以需要开尽可能多的服务器
# 确保池子里面有IP可用
time.sleep(ADSL_KEEP_USE)
except:
while True:
(status, output) = subprocess.getstatusoutput(ADSL_BASH)
if status == 0:
self.remove_proxy()
break
(status, output) = subprocess.getstatusoutput(ADSL_BASH)
if status == 0:
print('ADSL拨号成功')
ip = self.get_ip()
if ip:
if self.test_proxy(ip):
proxies = str(ip) + ":" + PROXY_PORT
self.add_proxy(proxies)
time.sleep(ADSL_CYCLE)
else:
print('代理IP不可用,测试不通过,上次已经拨号成功的IP已经不可用,删除')
self.remove_proxy()
else:
print('没有匹配到IP')
time.sleep(ADSL_ERROR_CYCLE)
else:
print('ADSL拨号失败')
time.sleep(ADSL_ERROR_CYCLE)
self.adsl()
if __name__ == '__main__':
conn = SenderAdsl()
conn.adsl()
| 3,688 |
benchmarks/microbenchmarks/atomic_ops.py
|
gaoxinge/taichi
| 1 |
2024484
|
from microbenchmarks._items import AtomicOps, Container, DataSize, DataType
from microbenchmarks._metric import MetricType
from microbenchmarks._plan import BenchmarkPlan
from microbenchmarks._utils import dtype_size, fill_random, scaled_repeat_times
import taichi as ti
def reduction_default(arch, repeat, atomic_op, container, dtype, dsize,
get_metric):
repeat = scaled_repeat_times(arch, dsize, repeat)
num_elements = dsize // dtype_size(dtype)
x = container(dtype, shape=num_elements)
y = container(dtype, shape=())
y[None] = 0
@ti.kernel
def reduction_field(y: ti.template(), x: ti.template()):
for i in x:
atomic_op(y[None], x[i])
@ti.kernel
def reduction_array(y: ti.types.ndarray(), x: ti.types.ndarray()):
for i in x:
atomic_op(y[None], x[i])
fill_random(x, dtype, container)
func = reduction_field if container == ti.field else reduction_array
return get_metric(repeat, func, y, x)
class AtomicOpsPlan(BenchmarkPlan):
def __init__(self, arch: str):
super().__init__('atomic_ops', arch, basic_repeat_times=10)
atomic_ops = AtomicOps()
atomic_ops.remove(
['atomic_sub', 'atomic_and', 'atomic_xor', 'atomic_max'])
self.create_plan(atomic_ops, Container(), DataType(), DataSize(),
MetricType())
self.add_func(['field'], reduction_default)
self.add_func(['ndarray'], reduction_default)
| 1,499 |
smu/geometry/topology_from_geom_main.py
|
xxdreck/google-research
| 23,901 |
2024649
|
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Topology from Geometry."""
from absl import app
from absl import flags
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
import topology_from_geom
from smu import dataset_pb2
from smu.geometry import bond_length_distribution
FLAGS = flags.FLAGS
flags.DEFINE_string("input", None,
"TFDataRecord file containg Conformer protos")
flags.DEFINE_string("bonds", None,
"File name stem for bond length distributions")
flags.DEFINE_string("output", None, "Output file")
flags.DEFINE_boolean("xnonbond", False, "Exclude non bonded interactions")
class SummaryData(beam.DoFn):
"""Given BondTopologies as input, yield summary data."""
def process(self, topology_matches):
result = f"{len(topology_matches.bond_topology)}"
for bt in topology_matches.bond_topology:
result += f",{bt.score:.3f},{bt.smiles}"
if len(topology_matches.bond_topology) == 1:
break
if bt.is_starting_topology:
result += ",T"
else:
result += ",F"
yield result
def ReadConFormer(
bond_lengths,
input_string, output):
"""Reads conformer.
Args:
bond_lengths:
input_string:
output:
Returns:
"""
# class GetAtoms(beam.DoFn):
# def process(self, item):
# yield item.optimized_geometry.atom_positions[0].x
with beam.Pipeline(options=PipelineOptions()) as p:
protos = (
p | beam.io.tfrecordio.ReadFromTFRecord(
input_string,
coder=beam.coders.ProtoCoder(dataset_pb2.Conformer().__class__))
| beam.ParDo(topology_from_geom.TopologyFromGeom(bond_lengths))
| beam.ParDo(SummaryData()) | beam.io.textio.WriteToText(output))
return protos
def TopologyFromGeometryMain(unused_argv):
del unused_argv
bond_lengths = bond_length_distribution.AllAtomPairLengthDistributions()
bond_lengths.add_from_files(FLAGS.bonds, 0.0, FLAGS.xnonbond)
protos = ReadConFormer(bond_lengths, FLAGS.input, FLAGS.output)
print(protos)
if __name__ == "__main__":
flags.mark_flag_as_required("input")
flags.mark_flag_as_required("bonds")
flags.mark_flag_as_required("output")
app.run(TopologyFromGeometryMain)
| 2,832 |
giraffez/encrypt.py
|
istvan-fodor/giraffez
| 122 |
2023998
|
# -*- coding: utf-8 -*-
#
# Copyright 2016 Capital One Services, LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import hashlib
import base64
from Crypto.Cipher import AES
from ._compat import *
__all__ = ['create_key_file', 'generate_key', 'Crypto']
def create_key_file(path):
"""
Creates a new encryption key in the path provided and sets the file
permissions. Setting the file permissions currently does not work
on Windows platforms because of the differences in how file
permissions are read and modified.
"""
iv = "{}{}".format(os.urandom(32), time.time())
new_key = generate_key(ensure_bytes(iv))
with open(path, "wb") as f:
f.write(base64.b64encode(new_key))
os.chmod(path, 0o400)
def generate_key(s):
for i in range(65536):
s = hashlib.sha256(s).digest()
return s
class Crypto(object):
def __init__(self, key, bs=16):
self.key = hashlib.sha256(key).digest()
self.bs = bs
def decrypt(self, enc):
enc = base64.b64decode(enc)
iv = enc[:self.bs]
cipher = AES.new(self.key, AES.MODE_CBC, iv)
return self.unpad(cipher.decrypt(enc[self.bs:])).decode("utf-8")
def encrypt(self, raw):
raw = self.pad(raw).encode("utf-8")
iv = os.urandom(self.bs)
cipher = AES.new(self.key, AES.MODE_CBC, iv)
return base64.b64encode(iv + cipher.encrypt(raw))
def pad(self, s):
return s + (self.bs - len(s) % self.bs) * chr(self.bs - len(s) % self.bs)
def unpad(self, s):
return s[:-ord(s[len(s)-1:])]
@classmethod
def from_key_file(cls, path):
with open(path, "rb") as f:
return cls(base64.b64decode(f.read()))
| 2,242 |
cli/menu.py
|
merwane/shield
| 0 |
2024630
|
from PyInquirer import prompt
from cli.upload import upload_file
from cli.download import download_file, delete_file, nuke_everything
from cli.access import revoke_access
from config import RESTART_CLI_COMMAND
import time
import os
menu_list = [{
"type": "list",
"name": "action",
"message": "What do you want to do?",
"choices": ['Upload a file', 'Download a file', 'Delete a file', 'Exit', 'Reload CLI', 'Revoke access', 'Nuke everything']
}]
def restart_cli(n=3):
time.sleep(n)
os.system(RESTART_CLI_COMMAND)
def display():
menu_list_answer = prompt(menu_list)
menu_list_answer = menu_list_answer['action']
if menu_list_answer == 'Upload a file':
upload_file()
elif menu_list_answer == 'Download a file':
download_file()
elif menu_list_answer == 'Delete a file':
delete_file()
elif menu_list_answer == 'Reload CLI':
restart_cli(0.1)
elif menu_list_answer == 'Revoke access':
revoke_access()
elif menu_list_answer == 'Nuke everything':
nuke_everything()
else:
os.system('clear')
exit()
| 1,120 |
dotnet/deps.bzl
|
purkhusid/rules_dotnet
| 143 |
2023079
|
"Public declarations"
load(
"@io_bazel_rules_dotnet//dotnet/private:repositories.bzl",
_dotnet_repositories = "dotnet_repositories",
)
dotnet_repositories = _dotnet_repositories
| 188 |
calrissian/retry.py
|
pymonger/calrissian
| 25 |
2024211
|
from tenacity import retry, wait_exponential, retry_if_exception_type, stop_after_attempt, before_sleep_log
import logging
import os
class RetryParameters(object):
MULTIPLIER = float(os.getenv('RETRY_MULTIPLIER', 5)) # Unit for multiplying the exponent
MIN = float(os.getenv('RETRY_MIN', 5)) # Min time for retrying
MAX = float(os.getenv('RETRY_MAX', 1200)) # Max interval between retries
ATTEMPTS = int(os.getenv('RETRY_ATTEMPTS', 10)) # Max number of retries before giving up
def retry_exponential_if_exception_type(exc_type, logger):
"""
Decorator function that returns the tenacity @retry decorator with our commonly-used config
:param exc_type: Type of exception (or tuple of types) to retry if encountered
:param logger: A logger instance to send retry logs to
:return: Result of tenacity.retry decorator function
"""
return retry(retry=retry_if_exception_type(exc_type),
wait=wait_exponential(multiplier=RetryParameters.MULTIPLIER, min=RetryParameters.MIN, max=RetryParameters.MAX),
stop=stop_after_attempt(RetryParameters.ATTEMPTS),
before_sleep=before_sleep_log(logger, logging.DEBUG),
reraise=True)
| 1,206 |
2021/12a.py
|
combatopera/advent2020
| 2 |
2024764
|
#!/usr/bin/env python3
from pathlib import Path
class Graph:
def __init__(self, edges):
self.smallnodes = {n for e in edges for n in e if n == n.lower()}
self.edges = edges
def _paths(self, p, visited):
if p[-1] == 'end':
yield p
else:
for e in self.edges:
n = e - {p[-1]}
if 1 == len(n):
n, = n
if not (n in self.smallnodes and n in visited):
yield from self._paths(p + [n], visited | {n})
def paths(self):
yield from self._paths(['start'], {'start'})
def main():
g = Graph([set(line.split('-')) for line in Path('input', '12').read_text().splitlines()])
print(sum(1 for _ in g.paths()))
if '__main__' == __name__:
main()
| 814 |
find-center-of-star-graph.py
|
xXHachimanXx/LeetCode-Problems
| 0 |
2023371
|
# docs: https://docs.google.com/document/d/1mkb83sHrXUhwyjFkqzQfyOAxfrBB0IBkZLddTVRuGdY/edit
def findCenter(graph):
dict = {}
for edge in graph:
dict[edge[0]] = 0
dict[edge[1]] = 0
for edge in graph:
dict[edge[0]] += 1
dict[edge[1]] += 1
if dict[edge[0]] > 1:
return edge[0]
if dict[edge[1]] > 1:
return edge[1]
return 1
assert findCenter([[1,2],[2,3],[4,2]]) == 2
assert findCenter([[1,2],[5,1],[1,3],[1,4]]) == 1
| 547 |
4band_to_NIR_G_R_3band.py
|
gfrancis-ALElab/tools
| 0 |
2023348
|
# -*- coding: utf-8 -*-
"""
Created on Mon May 10 15:52:58 2021
Tool for creating a 3band (NIR,G,R) image from Planet images
Images are converted to uint8 with average magnitudes balanced on 127
@author: <NAME>
email: <EMAIL>
"""
import os
home = os.path.expanduser('~')
### Set OSGEO env PATHS
os.environ['PROJ_LIB'] = '/usr/share/proj'
os.environ['GDAL_DATA'] = '/usr/share/gdal'
import rasterio
import numpy as np
import glob
import geopandas as gpd
from shapely import speedups
speedups.disable()
### IO
folder = home + '/Planet/HWC/Data'
lib = folder + '/mosaics'
out = folder + '/NIR_G_R_mosaics'
if os.path.isdir(out) is False:
os.makedirs(out)
### Get CRS from truths
path_t = home + '/Planet/HWC/Data/Slumps/HotWeatherCreek_slumps.shp'
truths = gpd.read_file(path_t)
crs = truths.crs
def get_name(file_location):
filename = file_location.split('/')[-1]
filename = filename.split('.')
return filename[0]
for pic in glob.glob(lib + '/Hot*.tif'):
ras = rasterio.open(pic)
name = get_name(pic)
if ras.meta['count'] == 4:
bandRed = ras.read(3)
bandgreen = ras.read(2)
bandNIR = ras.read(4) ### NIR is channel 4 in Planet Scope 4band
if ras.meta['count'] == 5:
bandRed = ras.read(3)
bandgreen = ras.read(2)
bandNIR = ras.read(5) ### NIR is channel 5 in Rapid Eye 5band
NIR_arr = bandNIR.astype(float)
green_arr = bandgreen.astype(float)
red_arr = bandRed.astype(float)
### replace nodata zeros & 65535 to Nan
if NIR_arr.min() == 0:
NIR_arr = np.where(NIR_arr==0, np.nan, NIR_arr)
green_arr = np.where(green_arr==0, np.nan, green_arr)
red_arr = np.where(red_arr==0, np.nan, red_arr)
if NIR_arr.max() == 65535:
NIR_arr = np.where(NIR_arr==65535, np.nan, NIR_arr)
green_arr = np.where(green_arr==65535, np.nan, green_arr)
red_arr = np.where(red_arr==65535, np.nan, red_arr)
### normalize 0 to 1
NIR_norm = NIR_arr/np.nanmax(NIR_arr)
green_norm = green_arr/np.nanmax(green_arr)
red_norm = red_arr/np.nanmax(red_arr)
### center average on 50%
NIR_norm = NIR_norm + (0.5 - np.nanmean(NIR_norm))
green_norm = green_norm + (0.5 - np.nanmean(green_norm))
red_norm = red_norm + (0.5 - np.nanmean(red_norm))
# ### scale (0 to 255)
NIR_scaled = NIR_norm*255
green_scaled = green_norm*255
red_scaled = red_norm*255
### change dtype
NIR_scaled = NIR_scaled.astype(np.uint8)
green_scaled = green_scaled.astype(np.uint8)
red_scaled = red_scaled.astype(np.uint8)
kwargs3band = ras.meta
kwargs3band.update(
dtype=rasterio.uint8,
nodata=255,
crs=crs,
count=3)
# print(kwargs3band)
# print('\n')
with rasterio.open(out + '/%s_NIR_G_R_avg50_scaled0_255.tif'%name, 'w', **kwargs3band) as dst:
dst.write_band(1, NIR_scaled.astype(rasterio.uint8))
dst.write_band(2, green_scaled.astype(rasterio.uint8))
dst.write_band(3, red_scaled.astype(rasterio.uint8))
ras.close()
| 3,084 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.