script
stringlengths
113
767k
import numpy as np import pandas as pd import os BATCH_SIZE = 32 import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import tensorflow_addons as tfa import matplotlib.pyplot as plt import re try: from kaggle_datasets import KaggleDatasets except: pass try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print("Device:", tpu.master()) tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) except: strategy = tf.distribute.get_strategy() print("Number of replicas:", strategy.num_replicas_in_sync) AUTOTUNE = tf.data.experimental.AUTOTUNE print(tf.__version__) GCS_PATH = KaggleDatasets().get_gcs_path("gan-getting-started") MONET_FILENAMES = tf.io.gfile.glob(str(GCS_PATH + "/monet_tfrec/*.tfrec")) PHOTO_FILENAMES = tf.io.gfile.glob(str(GCS_PATH + "/photo_tfrec/*.tfrec")) IMAGE_SIZE = [256, 256] def decode_image(image): image = tf.image.decode_jpeg(image, channels=3) image = (tf.cast(image, tf.float32) / 127.5) - 1 image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image def read_tfrecord(example): tfrecord_format = {"image": tf.io.FixedLenFeature([], tf.string)} example = tf.io.parse_single_example(example, tfrecord_format) image = decode_image(example["image"]) return image def load_dataset(filenames): dataset = tf.data.TFRecordDataset(filenames) dataset = dataset.map(read_tfrecord, num_parallel_calls=AUTOTUNE) return dataset monet_ds = load_dataset(MONET_FILENAMES).batch(1) photo_ds = load_dataset(PHOTO_FILENAMES).batch(1) fast_photo_ds = ( load_dataset(PHOTO_FILENAMES).batch(32 * strategy.num_replicas_in_sync).prefetch(32) ) fid_photo_ds = ( load_dataset(PHOTO_FILENAMES) .take(1024) .batch(32 * strategy.num_replicas_in_sync) .prefetch(32) ) fid_monet_ds = ( load_dataset(MONET_FILENAMES).batch(32 * strategy.num_replicas_in_sync).prefetch(32) ) def get_gan_dataset( monet_files, photo_files, augment=None, repeat=True, shuffle=True, batch_size=1 ): monet_ds = load_dataset(monet_files) photo_ds = load_dataset(photo_files) if augment: monet_ds = monet_ds.map(augment, num_parallel_calls=AUTOTUNE) photo_ds = photo_ds.map(augment, num_parallel_calls=AUTOTUNE) if repeat: monet_ds = monet_ds.repeat() photo_ds = photo_ds.repeat() # if shuffle: # monet_ds = monet_ds.shuffle(2048) # photo_ds = photo_ds.shuffle(2048) monet_ds = monet_ds.batch(batch_size, drop_remainder=True) photo_ds = photo_ds.batch(batch_size, drop_remainder=True) # monet_ds = monet_ds.cache() # photo_ds = photo_ds.cache() monet_ds = monet_ds.prefetch(AUTOTUNE) photo_ds = photo_ds.prefetch(AUTOTUNE) gan_ds = tf.data.Dataset.zip((monet_ds, photo_ds)) return gan_ds final_dataset = get_gan_dataset( MONET_FILENAMES, PHOTO_FILENAMES, augment=None, repeat=True, shuffle=True, batch_size=BATCH_SIZE, ) with strategy.scope(): inception_model = tf.keras.applications.InceptionV3( input_shape=(256, 256, 3), pooling="avg", include_top=False ) mix3 = inception_model.get_layer("mixed9").output f0 = tf.keras.layers.GlobalAveragePooling2D()(mix3) inception_model = tf.keras.Model(inputs=inception_model.input, outputs=f0) inception_model.trainable = False def calculate_activation_statistics_mod(images, fid_model): act = tf.cast(fid_model.predict(images), tf.float32) mu = tf.reduce_mean(act, axis=0) mean_x = tf.reduce_mean(act, axis=0, keepdims=True) mx = tf.matmul(tf.transpose(mean_x), mean_x) vx = tf.matmul(tf.transpose(act), act) / tf.cast(tf.shape(act)[0], tf.float32) sigma = vx - mx return mu, sigma myFID_mu2, myFID_sigma2 = calculate_activation_statistics_mod( fid_monet_ds, inception_model ) fids = [] with strategy.scope(): def calculate_frechet_distance(mu1, sigma1, mu2, sigma2): fid_epsilon = 1e-14 covmean = tf.linalg.sqrtm(tf.cast(tf.matmul(sigma1, sigma2), tf.complex64)) # isgood=tf.cast(tf.math.is_finite(covmean), tf.int32) # if tf.size(isgood)!=tf.math.reduce_sum(isgood): # return 0 covmean = tf.cast(tf.math.real(covmean), tf.float32) tr_covmean = tf.linalg.trace(covmean) return ( tf.matmul( tf.expand_dims(mu1 - mu2, axis=0), tf.expand_dims(mu1 - mu2, axis=1) ) + tf.linalg.trace(sigma1) + tf.linalg.trace(sigma2) - 2 * tr_covmean ) def FID( images, gen_model, inception_model=inception_model, myFID_mu2=myFID_mu2, myFID_sigma2=myFID_sigma2, ): inp = layers.Input(shape=[256, 256, 3], name="input_image") x = gen_model(inp) x = inception_model(x) fid_model = tf.keras.Model(inputs=inp, outputs=x) mu1, sigma1 = calculate_activation_statistics_mod(images, fid_model) fid_value = calculate_frechet_distance(mu1, sigma1, myFID_mu2, myFID_sigma2) return fid_value def up_sample(filters, size, apply_dropout=False): initializer = tf.random_normal_initializer(0.0, 0.02) gamma_init = keras.initializers.RandomNormal(mean=0.0, stddev=0.02) layer = keras.Sequential() layer.add( layers.Conv2DTranspose( filters, size, strides=2, padding="same", kernel_initializer=initializer, use_bias=False, ) ) layer.add(tfa.layers.InstanceNormalization(gamma_initializer=gamma_init)) if apply_dropout: layer.add(layers.Dropout(0.5)) layer.add(layers.ReLU()) return layer
# This R environment comes with many helpful analytics packages installed # It is defined by the kaggle/rstats Docker image: https://github.com/kaggle/docker-rstats # For example, here's a helpful package to load library(tidyverse) # metapackage of all tidyverse packages # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory list.files(path="../input") # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # * This is an optimization problem involving a list of 100 projects--each taking a given number of person-hours to build, and each having a given potential savings of hours per year in manual labor. # * The one constraint is total number of person-hours per year available. # * The optimizer selects which of the 100 projects should be undertaken in order to maximize the total number of manual hours saved, given the total number of person hours available in a year. # First load the solver package library(lpSolveAPI) ########################################################################### # variables data_path < -"../input/bigger-data/bigger_data.csv" result_path < -"/kaggle/working/result.csv" # Here is where to set the maximum number of person hours in a year max_person_hours < -10000 # only one constraint, i.e. the number of person-hours for each project constraint_count < -1 ########################################################################### # Import the data and look at the first six rows df < -read.csv(file=data_path) head(df)
# ## Keşifçi Veri Analizi | Becerileri Pekiştirme # Aşağıda ihtiyacımız doğrultusunda kullanacağımız kütüphaneleri yükleyelim. import numpy as np import seaborn as sns import pandas as pd # Veri çerçevemizi bulunduğumuz dizinden yükleyelim ve bir veri çerçevesi haline getirerek df değişkenine atayalım. (pd.read_csv(...csv)) df = pd.read_csv("/kaggle/input/iris/Iris.csv") # Veri çerçevesinin ilk 5 gözlemini görüntüleyelim. print(df.head()) # Veri çerçevesinin kaç öznitelik ve kaç gözlemden oluştuğunu görüntüleyelim. print("Öznitelik Sayısı:", df.shape[1]) print("Gözlem Sayısı:", df.shape[0]) # Veri çerçevesindeki değişkenlerin hangi tipte olduğunu ve bellek kullanımını görüntüleyelim. df.info() # Veri çerçevesindeki sayısal değişkenler için temel istatistik değerlerini görüntüleyelim. # Standart sapma ve ortalama değerlerden çıkarımda bulunarak hangi değişkenlerin ne kadar varyansa sahip olduğu hakkında fikir yürütelim. # Buna göre, PetalLengthCm değişkeni en yüksek varyansa sahipken, SepalWidthCm değişkeni en düşük varyansa sahiptir. SepalLengthCm ve PetalWidthCm değişkenleri ise orta düzeyde varyansa sahiptir. df.describe() # Veri çerçevesinde hangi öznitelikte kaç adet eksik değer olduğunu gözlemleyelim. df.isnull().sum() # Sayısal değişkenler arasında korelasyon olup olmadığını göstermek için korelasyon matrisi çizdirelim. Korelasyon katsayıları hakkında fikir yürütelim. # En güçlü pozitif ilişki hangi iki değişken arasındadır? # en güçlü pozitif ilişki 0.96 değeriyle PetalLengthCm ve PetalWidthCm değişkenleri arasındadır. import seaborn as sns import matplotlib.pyplot as plt correlation_matrix = df.corr() sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm") plt.show() # Korelasyon katsayılarını daha iyi okuyabilmek için ısı haritası çizdirelim. corr_matrix = df.corr() plt.figure(figsize=(10, 8)) sns.heatmap(corr_matrix, annot=True, cmap="coolwarm", linewidths=0.5) plt.title("Korelasyon Matrisi Isı Haritası") plt.show() # Veri çerçevemizin hedef değişkeninin "variety" benzersiz değerlerini görüntüleyelim. unique_species = df["Species"].unique() print(unique_species) # Veri çerçevemizin hedef değişkeninin "variety" benzersiz kaç adet değer içerdiğini görüntüleyelim. unique_species_count = df["Species"].nunique() print(unique_species_count) # Veri çerçevesindeki sepal.width ve sepal.length değişkenlerinin sürekli olduğunu görüyoruz. Bu iki sürekli veriyi görselleştirmek için önce scatterplot kullanalım. sns.scatterplot(data=df, x="SepalWidthCm", y="SepalLengthCm") plt.xlabel("Sepal Width (cm)") plt.ylabel("Sepal Length (cm)") plt.title("Sepal Width vs Sepal Length") plt.show() # Aynı iki veriyi daha farklı bir açıdan frekanslarıyla incelemek için jointplot kullanarak görselleştirelim. sns.jointplot( data=df, x="SepalWidthCm", y="SepalLengthCm", kind="scatter", palette="Set2" ) plt.xlabel("Sepal Width (cm)") plt.ylabel("Sepal Length (cm)") plt.suptitle("Sepal Width vs Sepal Length Joint Plot", y=1.02) plt.show() # Aynı iki veriyi scatterplot ile tekrardan görselleştirelim fakat bu sefer "variety" parametresi ile hedef değişkenine göre kırdıralım. # 3 farklı renk arasında sepal değişkenleriyle bir kümeleme yapılabilir mi? Ne kadar ayırt edilebilir bunun üzerine düşünelim. # Grafikte bazı türlerin diğerlerinden daha iyi ayrıldığı görülüyor. "Setosa" türü diğerlerinden daha açık bir şekilde ayrılırken, "versicolor" ve "virginica" türleri arasındaki ayrım daha az net görünüyor. Sepal ölçüleri kullanarak gruplama yapılabilir, ancak "versicolor" ve "virginica" türlerinin tam olarak ayrılması zor olabilir. sns.scatterplot( data=df, x="SepalWidthCm", y="SepalLengthCm", hue="Species", style="Species" ) plt.xlabel("Sepal Width (cm)") plt.ylabel("Sepal Length (cm)") plt.title("Sepal Width vs Sepal Length Scatter Plot Grouped by Species") plt.legend(title="Species") plt.show() # value_counts() fonksiyonu ile veri çerçevemizin ne kadar dengeli dağıldığını sorgulayalım. df["Species"].value_counts() # Keman grafiği çizdirerek sepal.width değişkeninin dağılımını inceleyin. # Söz konusu dağılım bizim için ne ifade ediyor, normal bir dağılım olduğunu söyleyebilir miyiz? # Sepal genişliği dağılımı, normal dağılım gibi görünmüyor. Soldaki kuyruk daha uzun ve sağa doğru eğilimli, yani dağılım sağa çarpıktır. sns.violinplot(x="Species", y="SepalWidthCm", data=df) # Daha iyi anlayabilmek için sepal.width üzerine bir distplot çizdirelim. sns.histplot(df["SepalWidthCm"]) # Üç çiçek türü için üç farklı keman grafiğini sepal.length değişkeninin dağılımı üzerine tek bir satır ile görselleştirelim. sns.violinplot(x="Species", y="SepalLengthCm", data=df) # Hangi çiçek türünden kaçar adet gözlem barındırıyor veri çerçevemiz? # 50 x 3 olduğunu ve dengeli olduğunu value_counts ile zaten görmüştük, ancak bunu görsel olarak ifade etmek için sns.countplot() fonksiyonuna variety parametresini vereilm. sns.countplot(x="Species", data=df) plt.show() # sepal.length ve sepal.width değişkenlerini sns.jointplot ile görselleştirelim, dağılımı ve dağılımın frekansı yüksek olduğu bölgelerini inceleyelim. sns.scatterplot( x="SepalLengthCm", y="SepalWidthCm", hue="Species", data=df, palette="Set2" ) # Bir önceki hücrede yapmış olduğumuz görselleştirmeye kind = "kde" parametresini ekleyelim. Böylelikle dağılımın noktalı gösterimden çıkıp yoğunluk odaklı bir görselleştirmeye dönüştüğünü görmüş olacağız. sns.jointplot(x="SepalLengthCm", y="SepalWidthCm", data=df, kind="kde") plt.xlabel("Sepal Length (cm)") plt.ylabel("Sepal Width (cm)") plt.suptitle("Sepal Width vs Sepal Length Joint Plot (KDE)", y=1.02) plt.show() # scatterplot ile petal.length ve petal.width değişkenlerinin dağılımlarını çizdirelim. sns.scatterplot(x="PetalLengthCm", y="PetalWidthCm", data=df) plt.title("Petal Width vs Petal Length Scatterplot") plt.show() # Aynı görselleştirmeye hue = "variety" parametresini ekleyerek 3. bir boyut verelim. sns.scatterplot( x="PetalLengthCm", y="PetalWidthCm", hue="Species", data=df, palette="Set2" ) plt.xlabel("Petal Length (cm)") plt.ylabel("Petal Width (cm)") plt.suptitle("Petal Width vs Petal Length Scatter Plot", y=1.02) plt.show() # sns.lmplot() görselleştirmesini petal.length ve petal.width değişkenleriyle implemente edelim. Petal length ile petal width arasında ne tür bir ilişki var ve bu ilişki güçlü müdür? sorusunu yanıtlayalım. # Görselleştirme sonucunda, petal uzunluğu ile genişliği arasında pozitif ve güçlü bir ilişki olduğu görülebilir. Yani, petal uzunluğu arttıkça petal genişliği de artmaktadır. # sns.lmplot(x="PetalLengthCm", y="PetalWidthCm", data=df) plt.xlabel("Petal Length (cm)") plt.ylabel("Petal Width (cm)") plt.suptitle("Petal Width vs Petal Length", y=1.02) plt.show() # Bu sorunun yanıtını pekiştirmek için iki değişken arasında korelasyon katsayısını yazdıralım. corr = df[["PetalLengthCm", "PetalWidthCm"]].corr() print(corr) # Petal Length ile Sepal Length değerlerini toplayarak yeni bir total length özniteliği oluşturalım. df["total_length"] = df["PetalLengthCm"] + df["SepalLengthCm"] # total.length'in ortalama değerini yazdıralım. print("Total Length ortalama değeri: ", df["total_length"].mean()) # total.length'in standart sapma değerini yazdıralım. print("Total Length Standard Deviation:", df["total_length"].std()) # sepal.length'in maksimum değerini yazdıralım. print("Sepal length maximum value:", df["SepalLengthCm"].max()) # sepal.length'i 5.5'den büyük ve türü setosa olan gözlemleri yazdıralım. df[(df["Species"] == "Iris-setosa") & (df["SepalLengthCm"] > 5.5)] # petal.length'i 5'den küçük ve türü virginica olan gözlemlerin sadece sepal.length ve sepal.width değişkenlerini ve değerlerini yazdıralım. df_filtered = df[(df["PetalLengthCm"] < 5) & (df["Species"] == "Iris-virginica")] df_filtered.loc[:, ["SepalLengthCm", "SepalWidthCm"]] # Hedef değişkenimiz variety'e göre bir gruplama işlemi yapalım değişken değerlerimizin ortalamasını görüntüleyelim. df_filtered = df[(df["PetalLengthCm"] < 5) & (df["Species"] == "Iris-virginica")] print(df_filtered.loc[:, ["SepalLengthCm", "SepalWidthCm"]]) # Hedef değişkenimiz variety'e göre gruplama işlemi yaparak sadece petal.length değişkenimizin standart sapma değerlerini yazdıralım. std_by_variety = df.groupby("Species")["PetalLengthCm"].std() print(std_by_variety)
# # TPS - Mar 2021 - EDA + Models # ![](https://www.lifewire.com/thmb/WGo_EVL86KWQrv5Mr1BzwdTpG70=/1135x851/smart/filters:no_upscale()/med241050-56a9f68a3df78cf772abc65f.jpg) # Packages import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # Dataset for train df_train = pd.read_csv("../input/tabular-playground-series-mar-2021/train.csv") # Dataset for test df_test = pd.read_csv("../input/tabular-playground-series-mar-2021/test.csv") # Datasetfor submission sample_submission = pd.read_csv( "../input/tabular-playground-series-mar-2021/sample_submission.csv" ) # # 1. Exploratory Data Analysis (EDA) # ## 1.1 General # Columns of train dataset df_train.columns # Columns of train dataset df_test.columns # All of the feature columns, cat0 - cat18 are categorical, and the feature columns cont0 - cont10 are continuous. # Dataset Shape - Train df_train.shape # Dataset Shape - Test df_test.shape # First 5 rows - Train df_train.head() # First 5 rows - Test df_test.head() # Info - Train df_train.info() # Info - Test df_test.info() # As can be seen, there are no NaN in the columns # Categorical columna - Names cat_columns = ["cat" + str(i) for i in range(0, 19)] cat_columns # Continuos columna - Names cont_columns = ["cont" + str(i) for i in range(0, 11)] cont_columns # Describe (continuos variables) - Train df_train.describe() # Describe (continuos variables) - Train df_test.describe() # ## 1.2 Categorical Variables # Quantity per category and column - Train df_train[cat_columns].apply(pd.Series.value_counts).fillna(0) # Quantity per category and column - Test df_test[cat_columns].apply(pd.Series.value_counts).fillna(0) def grafico_contador(columna, dataset): import random paleta = sns.color_palette() color = random.choice(paleta) cantidad = dataset[columna].value_counts() df_cantidad = pd.DataFrame(cantidad) plt.figure(figsize=(8, 6)) ax = plt.bar(x=df_cantidad.index, height=df_cantidad[columna], color=color) plt.title("Quantity per Type for " + columna, fontsize=20) plt.ylabel("n") # Quantity per category and column - Train for columna in cat_columns: grafico_contador(columna, df_train) # Quantity per category and column - Test for columna in cat_columns: grafico_contador(columna, df_test) # ## 1.2 Continuous variables def grafico_distribucion(columna, dataset): import random datos = dataset[columna] paleta = sns.color_palette() color = random.choice(paleta) sns.displot(datos, color=color) plt.show() # Distribution for continuous variables - Train for columna in cont_columns: grafico_distribucion(columna, df_train) # Distribution for continuous variables - Test for columna in cont_columns: grafico_distribucion(columna, df_test) # # 2. Encoding for categorical variables # ## 2.2 Label encoding from sklearn.preprocessing import LabelEncoder # Label column by column - Train and test for columna in cat_columns: LB_encoder = LabelEncoder() LB_encoder.fit(df_train[columna]) df_train[columna] = LB_encoder.transform(df_train[columna]) df_test[columna] = LB_encoder.transform(df_test[columna]) df_train.head() df_test.head() # # 3. Seleccion de modelos base con Pycaret # Below are the Pycaret results obtained at the beginning of the competition. I take them as a baseline for model selection # ![image.png](attachment:image.png) # # 4. Datasets for Model training # Target for training target = df_train["target"] target.head() # Train dataset train_LB = df_train.drop(columns=["target"]) train_LB.head() # Columns for train train_LB.columns # # 5. LightGBM Model # from lightgbm import LGBMRegressor hyperparameters = { "random_state": 42, "metric": "rmse", "n_jobs": -1, "cat_feature": [x for x in range(len(cat_columns))], "reg_alpha": 6.147694913504962, "reg_lambda": 0.002457826062076097, "colsample_bytree": 0.20, "learning_rate": 0.01, "max_depth": 48, "num_leaves": 100, "min_child_samples": 275, "n_estimators": 2200, "cat_smooth": 40.0, "max_bin": 512, "min_data_per_group": 100, "bagging_freq": 1, "bagging_fraction": 0.70, "cat_l2": 12.0, } model = LGBMRegressor(**hyperparameters) model.fit(train_LB, target) # # 6. Prediction and submit sample_submission["target"] = model.predict(df_test) sample_submission.to_csv("lightgbm.csv", index=False)
import random import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score from sklearn.datasets import load_diabetes x, y = load_diabetes(return_X_y=True) # # Batch Gradient Descent class GD: def __init__(self, lr=0.01, epochs=1000): self.lr = lr self.epochs = epochs self.coeff_ = None self.intercept_ = None def fit(self, x_train, y_train): self.intercept_ = 0 self.coeff_ = np.ones(x_train.shape[1]) for i in range(self.epochs): y_pred = self.intercept_ + np.dot(x_train, self.coeff_) der = -2 * np.mean(y_train - y_pred) self.intercept_ = self.intercept_ - (self.lr * der) # coeffs coeff_der = -2 * (np.dot((y_train - y_pred), x_train) / (x_train.shape[0])) self.coeff_ = self.coeff_ - (self.lr * coeff_der) print(self.intercept_, self.coeff_) def predict(self, x): return np.dot(x, self.coeff_) + self.intercept_ X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2) gd = GD(lr=0.1, epochs=1000) gd.fit(X_train, y_train) y_pred = gd.predict(X_test) r2_score(y_test, y_pred) # # Stochastic Gradient Descent class SGD: def __init__(self, lr=0.01, epochs=100): self.lr = lr self.epochs = epochs self.coeff_ = None self.intercept_ = None def fit(self, x_train, y_train): self.intercept_ = 0 self.coeff_ = np.ones(x_train.shape[1]) for i in range(self.epochs): for i in range(x_train.shape[0]): idx = np.random.randint(0, x_train.shape[0]) y_pred = self.intercept_ + np.dot(x_train[idx], self.coeff_) der = -2 * (y_train[idx] - y_pred) self.intercept_ = self.intercept_ - (self.lr * der) # coeffs coeff_der = -2 * np.dot((y_train[idx] - y_pred), x_train[idx]) self.coeff_ = self.coeff_ - (self.lr * coeff_der) print(self.intercept_, self.coeff_) def predict(self, x): return np.dot(x, self.coeff_) + self.intercept_ sgd = SGD(lr=0.1, epochs=1000) sgd.fit(X_train, y_train) y_preds = sgd.predict(X_test) r2_score(y_test, y_preds) # # Mini Batch Gradient Descent class MbGD: def __init__(self, lr=0.01, epochs=100, batch_size=10): self.lr = lr self.epochs = epochs self.coeff_ = None self.intercept_ = None self.batch_size = batch_size def fit(self, x_train, y_train): self.intercept_ = 0 self.coeff_ = np.ones(x_train.shape[1]) for i in range(self.epochs): for i in range(int(x_train.shape[0] / self.batch_size)): idx = random.sample(range(x_train.shape[0]), self.batch_size) y_pred = self.intercept_ + np.dot(x_train[idx], self.coeff_) intercept_der = -2 * np.mean(y_train[idx] - y_pred) self.intercept_ = self.intercept_ - (self.lr * intercept_der) # coeffs coeff_der = -2 * np.dot((y_train[idx] - y_pred), x_train[idx]) self.coeff_ = self.coeff_ - (self.lr * coeff_der) print(self.intercept_, self.coeff_) def predict(self, x): return np.dot(x, self.coeff_) + self.intercept_ Mbgd = MbGD(lr=0.2, epochs=1000, batch_size=100) Mbgd.fit(X_train, y_train) y_predm = Mbgd.predict(X_test) r2_score(y_test, y_predm)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session train_df = pd.read_csv("/kaggle/input/us-accidents/US_Accidents_Dec21_updated.csv") train_df.shape train_df.head(1) train_df["State"].unique() train_df.columns # Using DataFrame.query() method extract column values. df2 = train_df.loc[train_df["State"] == "TX"] df3 = train_df.loc[train_df["State"] == "FL"] frames = [df2, df3] result = pd.concat(frames) display(result) # # Select Features # print(train_df.columns df_TX = df2.loc[ :, [ "ID", "Start_Lat", "Start_Lng", "State", "Start_Time", "End_Time", "Distance(mi)", "Temperature(F)", "Wind_Chill(F)", "Humidity(%)", "Pressure(in)", "Visibility(mi)", "Wind_Direction", "Wind_Speed(mph)", "Precipitation(in)", "Weather_Condition", "Amenity", "Bump", "Crossing", "Give_Way", "Junction", "No_Exit", "Railway", "Roundabout", "Station", "Stop", "Traffic_Calming", "Traffic_Signal", "Sunrise_Sunset", "Civil_Twilight", "Nautical_Twilight", "Astronomical_Twilight", "Severity", ], ] df_TX.head(1) # # Feature Transform from datetime import datetime # convert date columns to datetime objects df_TX["Start_Time"] = pd.to_datetime(df_TX["Start_Time"], format="%Y-%m-%d %H:%M:%S") df_TX["End_Time"] = pd.to_datetime(df_TX["End_Time"], format="%Y-%m-%d %H:%M:%S") # subtract columns to get time difference df_TX["time_diff"] = (df_TX["End_Time"] - df_TX["Start_Time"]).dt.total_seconds() / 60 df_TX["time_binary"] = df_TX["time_diff"].apply(lambda x: 1 if x > 156 else 0) import pandas as pd # read in your original dataframe # calculate the lower and upper bounds for the middle 95% range lower_bound = df_TX["time_diff"].quantile(0.05) upper_bound = df_TX["time_diff"].quantile(0.95) # select all rows in the dataframe where time_diff is within the middle 90% range df_TX_filtered = df_TX[ (df_TX["time_diff"] >= lower_bound) & (df_TX["time_diff"] <= upper_bound) ] print("Before removing outliers") print(np.max(df_TX["time_diff"])) print(np.min(df_TX["time_diff"])) print(np.average(df_TX["time_diff"])) print(np.std(df_TX["time_diff"])) print("After removing outliers") print(np.max(df_TX_filtered["time_diff"])) print(np.min(df_TX_filtered["time_diff"])) print(np.average(df_TX_filtered["time_diff"])) print(np.std(df_TX_filtered["time_diff"])) df_TX_filtered # import pandas as pd # import matplotlib.pyplot as plt # # plot density plot of the column data # df_TX_filtered.boxplot(column='time_diff') # plt.ylabel('Accident duration (in minutes)') # plt.savefig('/kaggle/working/plotd.jpg', format='jpg', dpi=300) # # plot density plot of the column data # df_TX_filtered['time_diff'].plot(kind='density') # plt.xlabel('Accident Duration (in minutes)') # plt.xlim(0,400) # plt.show() # plt.savefig('/kaggle/working/plotd.jpg', format='jpg', dpi=300) df_TX["Temperature(F)"] = df_TX["Temperature(F)"].fillna( np.mean(df_TX["Temperature(F)"]) ) df_TX["Wind_Chill(F)"] = df_TX["Wind_Chill(F)"].fillna(np.mean(df_TX["Wind_Chill(F)"])) df_TX["Humidity(%)"] = df_TX["Humidity(%)"].fillna(np.mean(df_TX["Humidity(%)"])) df_TX["Pressure(in)"] = df_TX["Pressure(in)"].fillna(np.mean(df_TX["Pressure(in)"])) df_TX["Pressure(in)"] = df_TX["Visibility(mi)"].fillna(np.mean(df_TX["Visibility(mi)"])) df_TX["Wind_Direction"] = df_TX["Wind_Direction"].fillna( df_TX["Wind_Direction"].mode()[0] ) df_TX["Wind_Speed(mph)"] = df_TX["Wind_Speed(mph)"].fillna( np.mean(df_TX["Wind_Speed(mph)"]) ) df_TX["Precipitation(in)"] = df_TX["Precipitation(in)"].fillna( np.mean(df_TX["Precipitation(in)"]) ) df_TX["Sunrise_Sunset"] = df_TX["Sunrise_Sunset"].fillna( df_TX["Sunrise_Sunset"].mode()[0] ) df_TX["Weather_Condition"] = df_TX["Weather_Condition"].fillna( df_TX["Weather_Condition"].mode()[0] ) df_TX["Civil_Twilight"] = df_TX["Civil_Twilight"].fillna( df_TX["Civil_Twilight"].mode()[0] ) df_TX["Nautical_Twilight"] = df_TX["Nautical_Twilight"].fillna( df_TX["Nautical_Twilight"].mode()[0] ) df_TX["Astronomical_Twilight"] = df_TX["Astronomical_Twilight"].fillna( df_TX["Astronomical_Twilight"].mode()[0] ) df_TX["Visibility(mi)"] = df_TX["Visibility(mi)"].fillna( np.mean(df_TX["Visibility(mi)"]) ) df_TX[ [ "Amenity", "Bump", "Crossing", "Give_Way", "Junction", "No_Exit", "Railway", "Roundabout", "Station", "Stop", "Traffic_Calming", "Traffic_Signal", ] ] = ( df_TX[ [ "Amenity", "Bump", "Crossing", "Give_Way", "Junction", "No_Exit", "Railway", "Roundabout", "Station", "Stop", "Traffic_Calming", "Traffic_Signal", ] ] * 1 ) df_TX["Weather_Condition"] = pd.factorize(df_TX["Weather_Condition"])[0] df_TX["Sunrise_Sunset"] = pd.factorize(df_TX["Sunrise_Sunset"])[0] df_TX["Civil_Twilight"] = pd.factorize(df_TX["Civil_Twilight"])[0] df_TX["Astronomical_Twilight"] = pd.factorize(df_TX["Astronomical_Twilight"])[0] df_TX["Nautical_Twilight"] = pd.factorize(df_TX["Nautical_Twilight"])[0] df_TX["Wind_Direction"] = pd.factorize(df_TX["Wind_Direction"])[0] pd.set_option("display.max_columns", 29) print(df_TX.head(n=1)) df_TX = df_TX.drop(["ID", "State", "End_Time"], axis=1) df_TX_input = df_TX.drop(["Distance(mi)", "Severity"], axis=1) df_TX["time_diff"] import pandas as pd # read in your original dataframe # calculate the lower and upper bounds for the middle 95% range lower_bound = df_TX["time_diff"].quantile(0.05) upper_bound = df_TX["time_diff"].quantile(0.95) # select all rows in the dataframe where time_diff is within the middle 90% range df_TX_filtered = df_TX[ (df_TX["time_diff"] >= lower_bound) & (df_TX["time_diff"] <= upper_bound) ] # df_TX_input.head(1) df_TX_input1 = df_TX_filtered.drop( [ "Start_Lat", "Start_Lng", "Start_Time", "time_binary", "time_diff", "Severity", "Distance(mi)", ], axis=1, ) df_TX_output1 = df_TX_filtered["time_diff"] df_TX_output2 = df_TX["Severity"] df_TX_output3 = df_TX_filtered["time_binary"] df_TX_concat1 = pd.concat([df_TX_input1, df_TX_output1], axis=1) df_TX_concat2 = pd.concat([df_TX_input1, df_TX_output2], axis=1) df_TX_concat3 = pd.concat([df_TX_input1, df_TX_output3], axis=1) df_TX_input1 # # **start testing** # # continous regression testing df_TX_concat1 = pd.concat([df_TX_input1, df_TX_output1], axis=1) df_TX_input1 # **Full version** # Convert to numpy arrays import numpy as np regression_input_concat = pd.concat([df_TX_input1, df_TX_output1], axis=1) features = np.array(df_TX_input1) labels = np.array(df_TX_output1) # Training and Testing Sets from sklearn.model_selection import train_test_split train_features, test_features, train_labels, test_labels = train_test_split( features, labels, test_size=0.25, random_state=42 ) # **Two parts** regression_input_concat = pd.concat([df_TX_input1, df_TX_output1], axis=1) # assuming your DataFrame is named regression_input_concat # filter the rows where time_diff is less than 156 accident_short_p = regression_input_concat[regression_input_concat["time_diff"] < 156] # filter the rows where time_diff is greater than or equal to 156 accident_long_p = regression_input_concat[regression_input_concat["time_diff"] >= 156] accident_long_p # split the DataFrame into features and labels features_short_p = accident_short_p.drop("time_diff", axis=1) labels_short_p = accident_short_p["time_diff"] # split the DataFrame into features and labels features_long_p = accident_long_p.drop("time_diff", axis=1) labels_long_p = accident_long_p["time_diff"] # Training and Testing Sets from sklearn.model_selection import train_test_split features_short_p = np.array(features_short_p) labels_short_p = np.array(labels_short_p) train_features, test_features, train_labels, test_labels = train_test_split( features_short_p, labels_short_p, test_size=0.25, random_state=42 ) len(features_short_p) print("Training Features Shape:", train_features.shape) print("Training Labels Shape:", train_labels.shape) print("Testing Features Shape:", test_features.shape) print("Testing Labels Shape:", test_labels.shape) # # **Catboost** import catboost as cb import numpy as np import pandas as pd import seaborn as sns import shap # from matplotlib import pyplot as pltfrom sklearn.datasets from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score from sklearn.inspection import permutation_importance train_dataset = cb.Pool(train_features, train_labels) test_dataset = cb.Pool(test_features, test_labels) model = cb.CatBoostRegressor(loss_function="RMSE") grid = { "iterations": [100, 150, 200], "learning_rate": [0.03, 0.1], "depth": [2, 4, 6, 8], "l2_leaf_reg": [0.2, 0.5, 1, 3], } model.grid_search(grid, train_dataset) pred = model.predict(test_features) rmse = np.sqrt(mean_squared_error(test_labels, pred)) r2 = r2_score(test_labels, pred) print("Testing performance") print("RMSE: {:.2f}".format(rmse)) print("R2: {:.2f}".format(r2)) from sklearn.metrics import mean_absolute_error # assuming test_labels and pred are arrays or lists of the same length mae = mean_absolute_error(test_labels, pred) print(f"Mean Absolute Error: {mae:.4f}") import matplotlib.pyplot as plt # Assuming y_pred and test_labels are numpy arrays or lists of the same length # plt.plot(range(100), y_pred[:100], label='Predicted Values') plt.plot(range(100), pred[:100], label="Predicted Values") plt.plot(range(100), test_labels[:100], label="Actual Values") plt.xlabel("Index") plt.ylabel("Values") plt.legend() plt.show() # **Long term prediction** # Training and Testing Sets from sklearn.model_selection import train_test_split features_long_p = np.array(features_long_p) labels_long_p = np.array(labels_long_p) train_features, test_features, train_labels, test_labels = train_test_split( features_long_p, labels_long_p, test_size=0.25, random_state=42 ) train_dataset = cb.Pool(train_features, train_labels) test_dataset = cb.Pool(test_features, test_labels) model = cb.CatBoostRegressor(loss_function="RMSE") grid = { "iterations": [100, 150, 200], "learning_rate": [0.03, 0.1], "depth": [2, 4, 6, 8], "l2_leaf_reg": [0.2, 0.5, 1, 3], } model.grid_search(grid, train_dataset) pred = model.predict(test_features) rmse = np.sqrt(mean_squared_error(test_labels, pred)) r2 = r2_score(test_labels, pred) print("Testing performance") print("RMSE: {:.2f}".format(rmse)) print("R2: {:.2f}".format(r2)) from sklearn.metrics import mean_absolute_error # assuming test_labels and pred are arrays or lists of the same length mae = mean_absolute_error(test_labels, pred) print(f"Mean Absolute Error: {mae:.4f}") import matplotlib.pyplot as plt # Assuming y_pred and test_labels are numpy arrays or lists of the same length # plt.plot(range(100), y_pred[:100], label='Predicted Values') plt.plot(range(100), pred[:100], label="Predicted Values") plt.plot(range(100), test_labels[:100], label="Actual Values") plt.xlabel("Index") plt.ylabel("Values") plt.legend() plt.show() # # RFCNN import numpy as np from sklearn.ensemble import RandomForestClassifier from keras.layers import Input, Conv1D, MaxPooling1D, Flatten, Dense, Dropout from keras.models import Model # Assume you have preprocessed time series data in the form of numpy arrays train_features and train_labels for training, # and test_features and test_labels for testing train_features = train_features.reshape( train_features.shape[0], train_features.shape[1], 1 ) test_features = test_features.reshape(test_features.shape[0], test_features.shape[1], 1) # Build RFCNN model inputs = Input(shape=(train_features.shape[1], train_features.shape[2])) x = Conv1D(filters=64, kernel_size=3, activation="relu")(inputs) x = MaxPooling1D(pool_size=2)(x) x = Conv1D(filters=32, kernel_size=3, activation="relu")(x) x = MaxPooling1D(pool_size=2)(x) x = Flatten()(x) x = Dropout(0.5)(x) outputs = Dense(1, activation="linear")(x) model = Model(inputs=inputs, outputs=outputs) # Compile model model.compile(loss="mean_squared_error", optimizer="adam") # Train RFCNN model model.fit( train_features, train_labels, epochs=50, batch_size=32, validation_split=0.1, verbose=0, ) # Get RFCNN predictions on test set y_pred = model.predict(test_features) import matplotlib.pyplot as plt # Assuming y_pred and test_labels are numpy arrays or lists of the same length plt.plot(range(100), y_pred[:100], label="Predicted Values") plt.plot(range(100), test_labels[:100], label="Actual Values") plt.xlabel("Index") plt.ylabel("Values") plt.legend() plt.show() from sklearn.ensemble import RandomForestRegressor # Build Random Forest model rf = RandomForestRegressor(n_estimators=100, max_depth=10) # Get CNN output as input features for Random Forest cnn_output = Model(inputs=model.inputs, outputs=model.layers[-2].output) train_rf_features = cnn_output.predict(train_features) test_rf_features = cnn_output.predict(test_features) # Train Random Forest model rf.fit(train_rf_features, train_labels) # Get Random Forest predictions on test set y_pred_rf = rf.predict(test_rf_features) from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score from sklearn.inspection import permutation_importance rmse = np.sqrt(mean_squared_error(test_labels, y_pred_rf)) r2 = r2_score(test_labels, y_pred_rf) print("Testing performance") print("RMSE: {:.2f}".format(rmse)) print("R2: {:.2f}".format(r2)) from sklearn.metrics import mean_absolute_error # assuming test_labels and pred are arrays or lists of the same length mae = mean_absolute_error(test_labels, pred) print(f"Mean Absolute Error: {mae:.4f}") y_pred, test_labels import matplotlib.pyplot as plt # Assuming y_pred and test_labels are numpy arrays or lists of the same length # plt.plot(range(100), y_pred[:100], label='Predicted Values') plt.plot(range(100), y_pred_rf[:100], label="Predicted Values") plt.plot(range(100), test_labels[:100], label="Actual Values") plt.xlabel("Index") plt.ylabel("Values") plt.legend() plt.show() plt.savefig("rfcnn.jpg", dpi=300) rmse = np.sqrt(mean_squared_error(test_labels[:100], y_pred_rf[:100])) r2 = r2_score(test_labels, y_pred_rf) print("Testing performance") print("RMSE: {:.2f}".format(rmse)) print("R2: {:.2f}".format(r2)) # **Long term regression** # Training and Testing Sets from sklearn.model_selection import train_test_split features_long_p = np.array(features_long_p) labels_long_p = np.array(labels_long_p) train_features, test_features, train_labels, test_labels = train_test_split( features_long_p, labels_long_p, test_size=0.25, random_state=42 ) print("Training Features Shape:", train_features.shape) print("Training Labels Shape:", train_labels.shape) print("Testing Features Shape:", test_features.shape) print("Testing Labels Shape:", test_labels.shape) # Assume you have preprocessed time series data in the form of numpy arrays train_features and train_labels for training, # and test_features and test_labels for testing train_features = train_features.reshape( train_features.shape[0], train_features.shape[1], 1 ) test_features = test_features.reshape(test_features.shape[0], test_features.shape[1], 1) # Build RFCNN model inputs = Input(shape=(train_features.shape[1], train_features.shape[2])) x = Conv1D(filters=64, kernel_size=3, activation="relu")(inputs) x = MaxPooling1D(pool_size=2)(x) x = Conv1D(filters=32, kernel_size=3, activation="relu")(x) x = MaxPooling1D(pool_size=2)(x) x = Flatten()(x) x = Dropout(0.5)(x) outputs = Dense(1, activation="linear")(x) model = Model(inputs=inputs, outputs=outputs) # Compile model model.compile(loss="mean_squared_error", optimizer="adam") # Train RFCNN model model.fit( train_features, train_labels, epochs=50, batch_size=32, validation_split=0.1, verbose=0, ) # Get RFCNN predictions on test set y_pred = model.predict(test_features) import matplotlib.pyplot as plt # Assuming y_pred and test_labels are numpy arrays or lists of the same length plt.plot(range(100), y_pred[:100], label="Predicted Values") plt.plot(range(100), test_labels[:100], label="Actual Values") plt.xlabel("Index") plt.ylabel("Values") plt.legend() plt.show() from sklearn.ensemble import RandomForestRegressor # Build Random Forest model rf = RandomForestRegressor(n_estimators=100, max_depth=10) # Get CNN output as input features for Random Forest cnn_output = Model(inputs=model.inputs, outputs=model.layers[-2].output) train_rf_features = cnn_output.predict(train_features) test_rf_features = cnn_output.predict(test_features) # Train Random Forest model rf.fit(train_rf_features, train_labels) # Get Random Forest predictions on test set y_pred_rf = rf.predict(test_rf_features) from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score from sklearn.inspection import permutation_importance rmse = np.sqrt(mean_squared_error(test_labels, y_pred_rf)) r2 = r2_score(test_labels, y_pred_rf) print("Testing performance") print("RMSE: {:.2f}".format(rmse)) print("R2: {:.2f}".format(r2)) from sklearn.metrics import mean_absolute_error # assuming test_labels and pred are arrays or lists of the same length mae = mean_absolute_error(test_labels, y_pred_rf) print(f"Mean Absolute Error: {mae:.4f}") import matplotlib.pyplot as plt # Assuming y_pred and test_labels are numpy arrays or lists of the same length # plt.plot(range(100), y_pred[:100], label='Predicted Values') plt.plot(range(100), y_pred_rf[:100], label="Predicted Values bt rf") plt.plot(range(100), test_labels[:100], label="Actual Values") plt.xlabel("Index") plt.ylabel("Values") plt.legend() plt.show() rmse = np.sqrt(mean_squared_error(test_labels[:100], y_pred_rf[:100])) r2 = r2_score(test_labels, y_pred_rf) print("Testing performance") print("RMSE: {:.2f}".format(rmse)) print("R2: {:.2f}".format(r2)) # # **LightGBM** # **Short term prediciton** # Training and Testing Sets from sklearn.model_selection import train_test_split features_short_p = np.array(features_short_p) labels_short_p = np.array(labels_short_p) train_features, test_features, train_labels, test_labels = train_test_split( features_short_p, labels_short_p, test_size=0.25, random_state=42 ) from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score from sklearn.inspection import permutation_importance import lightgbm as lgb # create the LightGBM dataset for training and validation train_data = lgb.Dataset(train_features, label=train_labels) val_data = lgb.Dataset(test_features, label=test_labels) # set up the LightGBM hyperparameters params = { "objective": "regression", "metric": "rmse", "num_leaves": 31, "learning_rate": 0.05, "feature_fraction": 0.9, "bagging_fraction": 0.8, "bagging_freq": 5, "verbose": -1, } # train the LightGBM model num_round = 10000 model = lgb.train( params, train_data, num_round, valid_sets=[val_data], early_stopping_rounds=100 ) # make predictions on the test set and calculate the RMSE y_pred = model.predict(test_features) rmse = mean_squared_error(test_labels, y_pred, squared=False) r2 = r2_score(test_labels, y_pred) print(f"Root Mean Squared Error: {rmse:.4f}") print("R2: {:.2f}".format(r2)) from sklearn.metrics import mean_absolute_error # assuming test_labels and pred are arrays or lists of the same length mae = mean_absolute_error(test_labels, y_pred) print(f"Mean Absolute Error: {mae:.4f}") import shap # compute SHAP values for the test set using the TreeExplainer method explainer = shap.TreeExplainer(model) shap_values = explainer.shap_values(test_features) # # plot the SHAP values for a single instance # shap.initjs() # shap.force_plot(explainer.expected_value, shap_values[0,:], test_features[0,:]) # plot the SHAP values for all instances shap.summary_plot( shap_values, test_features, feature_names=df_TX_input1.columns, plot_type="bar" ) # save the SHAP summary plot as a PNG image # save the SHAP summary plot as a PNG image plt.savefig("shap_summary_plot1.jpg") import matplotlib.pyplot as plt # Assuming y_pred and test_labels are numpy arrays or lists of the same length plt.plot(range(100), test_labels[:100], label="Predicted Values") plt.plot(range(100), y_pred[:100], label="Predicted Values bt rf") # plt.plot(range(100), test_labels[:100], label='Actual Values') plt.xlabel("Index") plt.ylabel("Values") plt.legend() plt.show() # **Long Term Prediction** # Training and Testing Sets from sklearn.model_selection import train_test_split features_long_p = np.array(features_long_p) labels_long_p = np.array(labels_long_p) train_features, test_features, train_labels, test_labels = train_test_split( features_long_p, labels_long_p, test_size=0.25, random_state=42 ) import lightgbm as lgb # create the LightGBM dataset for training and validation train_data = lgb.Dataset(train_features, label=train_labels) val_data = lgb.Dataset(test_features, label=test_labels) # set up the LightGBM hyperparameters params = { "objective": "regression", "metric": "rmse", "num_leaves": 31, "learning_rate": 0.05, "feature_fraction": 0.9, "bagging_fraction": 0.8, "bagging_freq": 5, "verbose": -1, } # train the LightGBM model num_round = 10000 model = lgb.train( params, train_data, num_round, valid_sets=[val_data], early_stopping_rounds=100 ) # make predictions on the test set and calculate the RMSE y_pred = model.predict(test_features) rmse = mean_squared_error(test_labels, y_pred, squared=False) r2 = r2_score(test_labels, y_pred) print(f"Root Mean Squared Error: {rmse:.4f}") print("R2: {:.2f}".format(r2)) from sklearn.metrics import mean_absolute_error # assuming test_labels and pred are arrays or lists of the same length mae = mean_absolute_error(test_labels, y_pred) print(f"Mean Absolute Error: {mae:.4f}") import matplotlib.pyplot as plt # Assuming y_pred and test_labels are numpy arrays or lists of the same length plt.plot(range(100), test_labels[:100], label="Predicted Values") plt.plot(range(100), y_pred[:100], label="Predicted Values bt rf") # plt.plot(range(100), test_labels[:100], label='Actual Values') plt.xlabel("Index") plt.ylabel("Values") plt.legend() plt.show() import shap # compute SHAP values for the test set using the TreeExplainer method explainer = shap.TreeExplainer(model) shap_values = explainer.shap_values(test_features) # # plot the SHAP values for a single instance # shap.initjs() # shap.force_plot(explainer.expected_value, shap_values[0,:], test_features[0,:]) # plot the SHAP values for all instances shap.summary_plot( shap_values, test_features, feature_names=df_TX_input1.columns, plot_type="bar" ) # save the SHAP summary plot as a PNG image # save the SHAP summary plot as a PNG image plt.savefig("shap_summary_plot1.jpg") # # **Binary Classification** # # Short and Long term prediction # #df_TX_input.head(1) # df_TX_input1 = df_TX_input.drop(['Start_Lat','Start_Lng','Start_Time','time_binary','time_diff'],axis=1) df_TX_input1 # Convert to numpy arrays import numpy as np features = np.array(df_TX_input1) labels = np.array(df_TX_output3) # Training and Testing Sets from sklearn.model_selection import train_test_split train_features, test_features, train_labels, test_labels = train_test_split( features, labels, test_size=0.25, random_state=42 ) average = df_TX_output1.mean() std_dev = df_TX_output1.std() # print the results print("Average: ", average) print("Standard Deviation: ", std_dev) value_counts = df_TX_output3.value_counts() # print the results print(value_counts) from sklearn.preprocessing import StandardScaler scalar = StandardScaler() train_features = scalar.fit_transform(train_features) test_features = scalar.fit_transform(test_features) # # Random Forest # importing random forest classifier from assemble module from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV # Create the parameter grid based on the results of random search param_grid = { "bootstrap": [True], "max_depth": [80, 200], "max_features": [2, 5], "min_samples_leaf": [2, 4], "min_samples_split": [4, 8], "n_estimators": [100], } # Create a base model rf = RandomForestClassifier(random_state=42) # Instantiate the grid search model grid_search = GridSearchCV( estimator=rf, param_grid=param_grid, cv=2, n_jobs=-1, verbose=1, return_train_score=True, ) # Fit the grid search to the data grid_search.fit(train_features, train_labels) grid_search.best_params_ best_grid = grid_search.best_estimator_ # performing predictions on the test dataset y_pred_rf = best_grid.predict(test_features) # import shap # # compute SHAP values for the test set using the TreeExplainer method # explainer = shap.TreeExplainer(best_grid) # shap_values = explainer.shap_values(test_features) # # # plot the SHAP values for a single instance # # shap.initjs() # # shap.force_plot(explainer.expected_value, shap_values[0,:], test_features[0,:]) # # plot the SHAP values for all instances # shap.summary_plot(shap_values,test_features,feature_names=df_TX_input1.columns, plot_type='bar') # # save the SHAP summary plot as a PNG image # # save the SHAP summary plot as a PNG image # plt.savefig('shap_summary_plot1.jpg') # metrics are used to find accuracy or error from sklearn import metrics print() # using metrics module for accuracy calculation print("ACCURACY OF THE MODEL: ", metrics.accuracy_score(test_labels, y_pred_rf)) from sklearn.metrics import confusion_matrix # assuming test_labels and y_pred are already defined cm = confusion_matrix(test_labels, y_pred_rf) # print the confusion matrix print(cm) import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix, classification_report # Get confusion matrix and classification report cm = confusion_matrix(test_labels, y_pred_rf) cr = classification_report(test_labels, y_pred_rf) # Plot confusion matrix sns.heatmap(cm, annot=True, fmt="d", cmap="Blues") plt.title("Confusion Matrix") plt.xlabel("Predicted Label") plt.ylabel("True Label") # Save confusion matrix as an image file plt.savefig("confusion_matrix_rf.png", dpi=300) # Print classification report print(cr) from sklearn.metrics import classification_report # assuming test_labels and y_pred are already defined report = classification_report(test_labels, y_pred_rf) # print the classification report print(report) # # XGBoost import xgboost as xgb from sklearn.metrics import accuracy_score # Train XGBoost classifier params = { "max_depth": 3, "eta": 0.1, "objective": "binary:logistic", "eval_metric": "error", } dtrain = xgb.DMatrix(train_features, label=train_labels) dtest = xgb.DMatrix(test_features, label=test_labels) num_round = 50 bst = xgb.train(params, dtrain, num_round) # Predict on test set y_pred = bst.predict(dtest) # Evaluate model y_pred_xg = [round(value) for value in y_pred] accuracy = accuracy_score(test_labels, y_pred_xg) print("Accuracy: %.2f%%" % (accuracy * 100.0)) import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix, classification_report # Get confusion matrix and classification report cm = confusion_matrix(test_labels, y_pred_xg) cr = classification_report(test_labels, y_pred_xg) # Plot confusion matrix sns.heatmap(cm, annot=True, fmt="d", cmap="Blues") plt.title("Confusion Matrix") plt.xlabel("Predicted Label") plt.ylabel("True Label") # Save confusion matrix as an image file plt.savefig("confusion_matrix_xg.png", dpi=300) # Print classification report print(cr) # **Tree image generation** from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import make_classification from sklearn.tree import plot_tree import matplotlib.pyplot as plt # # visualize the first tree in the random forest # fig, ax = plt.subplots(figsize=(12, 12)) # plot_tree(best_grid.estimators_[0], ax=ax) fig, ax = plt.subplots(figsize=(300, 200)) plot_tree( best_grid.estimators_[0], filled=True, feature_names=df_TX_input1.columns, fontsize=5, ) # plt.savefig('DT2.jpg', dpi = 640) # plt.show() # plt.savefig('random_forest_tree.png') # # **Catboost** from catboost import CatBoostClassifier from sklearn.metrics import accuracy_score # Train CatBoost classifier with early stopping clf = CatBoostClassifier( iterations=10000, use_best_model=True, early_stopping_rounds=50 ) clf.fit(train_features, train_labels, eval_set=(test_features, test_labels)) # Predict on test set y_pred = clf.predict(test_features) # Evaluate model accuracy = accuracy_score(test_labels, y_pred) print("Accuracy: %.2f%%" % (accuracy * 100.0)) import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix, classification_report # Get confusion matrix and classification report cm = confusion_matrix(test_labels, y_pred) cr = classification_report(test_labels, y_pred) # Plot confusion matrix sns.heatmap(cm, annot=True, fmt="d", cmap="Blues") plt.title("Confusion Matrix") plt.xlabel("Predicted Label") plt.ylabel("True Label") # Save confusion matrix as an image file plt.savefig("confusion_matrix_Catboost.png", dpi=300) # Print classification report print(cr) from sklearn.metrics import classification_report # assuming test_labels and y_pred are already defined report = classification_report(test_labels, y_pred) # print the classification report print(report) # # ****#****weather Info filtered_df = (df_TX_concat2[df_TX_concat2["Severity"] > 1]).dropna() filtered_df["Start_Time"] = filtered_df["Start_Time"].dt.floor("H") filtered_df import seaborn as sns corr2 = df_TX_concat3.corr() fig, ax = plt.subplots(figsize=(20, 16)) # Display the heatmap in the larger figure sns.heatmap(corr2, annot=True, cmap="coolwarm", ax=ax) plt.show() fig.savefig("heatmap_duration.png") # **Florida Test** df_FL = df3.loc[ :, [ "ID", "State", "Weather_Timestamp", "Temperature(F)", "Wind_Chill(F)", "Humidity(%)", "Pressure(in)", "Visibility(mi)", "Wind_Direction", "Wind_Speed(mph)", "Precipitation(in)", "Weather_Condition", "Sunrise_Sunset", "Civil_Twilight", "Nautical_Twilight", "Astronomical_Twilight", "Severity", ], ] df_FL.head() df_FL["Temperature(F)"].fillna(np.mean(df_FL["Temperature(F)"])) df_FL["Wind_Chill(F)"].fillna(np.mean(df_FL["Wind_Chill(F)"])) df_FL["Humidity(%)"].fillna(np.mean(df_FL["Humidity(%)"])) df_FL["Pressure(in)"].fillna(np.mean(df_FL["Pressure(in)"])) df_FL["Visibility(mi)"].fillna(np.mean(df_FL["Visibility(mi)"])) df_FL["Wind_Direction"].fillna(df_FL["Wind_Direction"].mode()[0]) df_FL["Wind_Speed(mph)"].fillna(np.mean(df_FL["Wind_Speed(mph)"])) df_FL["Precipitation(in)"].fillna(np.mean(df_FL["Precipitation(in)"])) df_FL["Sunrise_Sunset"].fillna(df_FL["Sunrise_Sunset"].mode()[0]) df_FL["Weather_Condition"].fillna(df_FL["Weather_Condition"].mode()[0]) df_FL["Civil_Twilight"].fillna(df_FL["Civil_Twilight"].mode()[0]) df_FL["Nautical_Twilight"].fillna(df_FL["Nautical_Twilight"].mode()[0]) df_FL["Astronomical_Twilight"].fillna(df_FL["Astronomical_Twilight"].mode()[0]) df_FL["Wind_Direction"].mode()[0] X = df_TX.iloc[:, 0:16].values y = df_TX.iloc[:, 16].values df_TX.dropna() import matplotlib.pyplot as plt # x = [value1, value2, value3,....] plt.hist(df_FL["Temperature(F)"], bins=20) plt.show() plt.hist(df_FL["Wind_Chill(F)"], bins=20) plt.show() plt.hist(df_FL["Humidity(%)"], bins=20) plt.show() df_TX_concat3 df_TX.corr() corr = df_TX_concat3.corr() corr.style.background_gradient(cmap="coolwarm") # 'RdBu_r', 'BrBG_r', & PuOr_r are other good diverging colormaps import pandas as pd import numpy as np import matplotlib.pyplot as plt # create some random data # data = pd.Series(np.random.normal(size=1000)) # plot the density df_TX["Temperature(F)"].plot.density() ax = df_TX["Temperature(F)"].plot.density(color="green") ax.set_xlabel("Temperature") ax.set_ylabel("Density_Counts") # show the plot plt.show() # plot the density df_TX["Pressure(in)"].plot.density() ax = df_TX["Pressure(in)"].plot.density(color="blue") ax.set_xlabel("Pressure(in)") ax.set_ylabel("Density_Counts") ax.set_xlim([8, 15]) # show the plot plt.show() # plot the density df_TX["Wind_Chill(F)"].plot.density() ax = df_TX["Wind_Chill(F)"].plot.density(color="green") ax.set_xlabel("Wind_Chill(F)") ax.set_ylabel("Density_Counts") # show the plot plt.show() # plot a bar chart ax = df_TX["Bump"].plot.bar(x="1", y="0", rot=0) # add axis labels and a title ax.set_xlabel("Category") ax.set_ylabel("Value") ax.set_title("Bar chart of discontinuous data") # show the plot plt.show() plt.bar(df_TX["Bump"]) import pandas as pd import matplotlib.pyplot as plt # count the values counts = df_TX["Stop"].value_counts() # plot a pie chart fig, ax = plt.subplots() ax.pie(counts, labels=["No Stop Sign", "Stop Sign"], autopct="%1.1f%%") ax.set_title("Pie chart of Stop") # show the plot plt.show() counts = df_TX["Junction"].value_counts() # plot a pie chart fig, ax = plt.subplots() ax.pie(counts, labels=["No Junction", "Junction"], autopct="%1.1f%%") ax.set_title("Pie chart of Junctions") # show the plot plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: os.path.join(dirname, filename) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Import required libraries import os import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Dropout, Conv2D, MaxPooling2D from tensorflow.keras.applications import InceptionV3 from tensorflow.keras.optimizers import Adam from keras.layers import GlobalAveragePooling2D # ## Read Data # Define the paths to the train and test directories train_dir = "/kaggle/input/melanoma-skin-cancer-dataset-of-10000-images/melanoma_cancer_dataset/train" test_dir = "/kaggle/input/melanoma-skin-cancer-dataset-of-10000-images/melanoma_cancer_dataset/test" # Set the image dimensions and batch size img_width, img_height = 224, 224 batch_size = 128 # Define the data generators for the train and test sets train_datagen = ImageDataGenerator( rescale=1.0 / 255, # Scale the pixel values from 0-255 to 0-1 rotation_range=40, # Randomly rotate the images up to 40 degrees width_shift_range=0.2, # Randomly shift the images horizontally up to 20% of the width height_shift_range=0.2, # Randomly shift the images vertically up to 20% of the height # shear_range=0.2, # Randomly apply shear transformations zoom_range=0.2, # Randomly zoom in on the images horizontal_flip=True, # Randomly flip the images horizontally fill_mode="nearest", ) # Fill any empty pixels with the nearest available pixel test_datagen = ImageDataGenerator(rescale=1.0 / 255) print("Num GPUs Available: ", len(tf.config.list_physical_devices("GPU"))) train_generator = train_datagen.flow_from_directory( train_dir, # Path to the train directory target_size=( img_width, img_height, ), # Resize the images to the specified dimensions batch_size=batch_size, class_mode="binary", ) test_generator = test_datagen.flow_from_directory( test_dir, # Path to the test directory target_size=(img_width, img_height), batch_size=batch_size, class_mode="binary", ) train_generator.__len__() label = np.concatenate( [test_generator.next()[1] for i in range(test_generator.__len__())] ) img, label = test_generator.next() label.shape label for i in range(5): print(img.shape) # (1,256,256,3) print(label[i]) plt.imshow(img[i]) plt.show() # ## Create Model model = Sequential() model.add(Conv2D(32, 3, activation="relu", input_shape=(img_width, img_height, 3))) model.add(Dropout(0.1)) model.add(MaxPooling2D()) model.add(Conv2D(64, 3, activation="relu")) model.add(Dropout(0.15)) # model_1.add(keras.layers.MaxPooling2D()) model.add(GlobalAveragePooling2D()) model.add(Flatten()) model.add(Dense(128, activation="relu")) model.add(Dense(1, activation="sigmoid")) # Compile the model # RMSprop -opt opt = Adam(lr=0.0001) model.compile(optimizer=opt, loss="binary_crossentropy", metrics=["accuracy"]) model.summary() # ## Training and Validation from keras.callbacks import EarlyStopping early_stop = EarlyStopping(patience=3, verbose=1) tf.config.list_physical_devices("GPU") # Fine tuning the model tf.debugging.set_log_device_placement(True) with tf.device("/GPU:0"): history = model.fit( train_generator, epochs=25, validation_data=test_generator, callbacks=[early_stop], verbose=1, ) # ## Model Evaluation # Evaluate the model on the test set loss, accuracy = model.evaluate(test_generator, batch_size=128) print("Test accuracy:", accuracy) # Plot loss values vs epoch import matplotlib.pyplot as plt plt.plot(history.history["accuracy"]) plt.plot(history.history["val_accuracy"]) plt.title("Model loss") plt.ylabel("Loss") plt.xlabel("Epoch") plt.legend(["Train", "Test"], loc="upper left") plt.show() cm = confusion_matrix(y_true, y_pred) cm from sklearn.metrics import accuracy_score accuracy_score(label, y_pred) test_generator predictions = model.predict(test_generator) y_pred = np.round(predictions) label.shape print(y_pred[0:10], label[0:10]) tf.math.confusion_matrix(label, y_pred) import matplotlib.pyplot as plt from sklearn.metrics import ConfusionMatrixDisplay from sklearn.metrics import confusion_matrix y_pred = np.round(model.predict_classes(test_generator)) y_true = test_generator.classes class_names = list(train_generator.class_indices.keys()) cm = confusion_matrix(y_true, y_pred) cm_display = ConfusionMatrixDisplay(cm, display_labels=class_names) fig, ax = plt.subplots(figsize=(10, 10)) cm_display.plot(ax=ax, cmap=plt.cm.Blues, values_format=".0f") plt.title("Confusion Matrix") plt.show()
# # *Hey All!* # # *This notebook is for ur reference to make submissions* # # *1.Go to Code Section of the Competition Page* # # *2.Click on 'Your Work'* # # *3.Hit 'New Notebook' and get started* # # *You can copy paste the code below for getting started with the Ps* import pandas as pd import numpy as np train = pd.read_csv( "/kaggle/input/ctrl-shift-intelligence-cops-week-2k23/train_data.csv" ) train.head() test = pd.read_csv( "/kaggle/input/ctrl-shift-intelligence-cops-week-2k23/test_dataset.csv" ) test.head() # # **Your All Other Preprocessing and Model Building goes here....** # Your code # # *Submitting Predictions* arr = np.ones(100000, dtype=int) arr # Your prediction obtained from model # y_pred # for example lets take it to contain all ones # note this is not a prediction , it just for ur reference to make submission y_pred = arr sub = pd.read_csv( "/kaggle/input/ctrl-shift-intelligence-cops-week-2k23/sample_submission.csv" ) sub.head() sub["is_similar"] = y_pred sub.head() sub = sub.set_index("Id") sub.head() sub.to_csv("submission.csv")
import numpy as np import matplotlib.pyplot as plt from keras.preprocessing.image import ( ImageDataGenerator, load_img, img_to_array, array_to_img, ) from keras.layers import Conv2D, Flatten, MaxPooling2D, Dense from keras.models import Sequential import glob, os, random base_path = "../input/garbage classification/Garbage classification" img_list = glob.glob(os.path.join(base_path, "*/*.jpg")) print(len(img_list)) for i, img_path in enumerate(random.sample(img_list, 6)): img = load_img(img_path) img = img_to_array(img, dtype=np.uint8) plt.subplot(2, 3, i + 1) plt.imshow(img.squeeze()) train_datagen = ImageDataGenerator( rescale=1.0 / 255, shear_range=0.1, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=True, validation_split=0.1, ) test_datagen = ImageDataGenerator(rescale=1.0 / 255, validation_split=0.1) train_generator = train_datagen.flow_from_directory( base_path, target_size=(300, 300), batch_size=16, class_mode="categorical", subset="training", seed=0, ) validation_generator = test_datagen.flow_from_directory( base_path, target_size=(300, 300), batch_size=16, class_mode="categorical", subset="validation", seed=0, ) labels = train_generator.class_indices labels = dict((v, k) for k, v in labels.items()) print(labels) model = Sequential( [ Conv2D( filters=32, kernel_size=3, padding="same", activation="relu", input_shape=(300, 300, 3), ), MaxPooling2D(pool_size=2), Conv2D(filters=64, kernel_size=3, padding="same", activation="relu"), MaxPooling2D(pool_size=2), Conv2D(filters=32, kernel_size=3, padding="same", activation="relu"), MaxPooling2D(pool_size=2), Conv2D(filters=32, kernel_size=3, padding="same", activation="relu"), MaxPooling2D(pool_size=2), Flatten(), Dense(64, activation="relu"), Dense(6, activation="softmax"), ] ) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["acc"]) model.summary() # # Take a Shot model.fit_generator(train_generator, epochs=5, validation_data=validation_generator) # # Another Shot model.fit_generator(train_generator, epochs=1, validation_data=validation_generator) model.fit_generator(train_generator, epochs=1, validation_data=validation_generator) model.fit_generator(train_generator, epochs=1, validation_data=validation_generator) model.fit_generator(train_generator, epochs=1, validation_data=validation_generator) test_x, test_y = validation_generator.__getitem__(1) preds = model.predict(test_x) plt.figure(figsize=(16, 16)) for i in range(16): plt.subplot(4, 4, i + 1) plt.title( "pred:%s / truth:%s" % (labels[np.argmax(preds[i])], labels[np.argmax(test_y[i])]) ) plt.imshow(test_x[i])
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score # # Prepare data # df = pd.read_csv("/kaggle/input/playground-series-s3e12/train.csv") dfX = df.drop(["id", "target"], axis=1) dfY = df.target # # Baseline # Lets just split our data and test it as ususal with a default RandomForestClassifier np.random.seed(42) xtrain, xtest, ytrain, ytest = train_test_split( dfX, dfY, test_size=0.25 ) # Default test_size m = RandomForestClassifier(random_state=42) m.fit(xtrain, ytrain) score = roc_auc_score(ytrain, m.predict(xtrain)) print(f"AUC on train dataset: {score}") score = roc_auc_score(ytest, m.predict(xtest)) print(f"AUC on test dataset: {score}") # See that? We already have **1.0 AUC** for train data. This made me suspicious. # ## Let's check out the overfit curve def train_and_draw_w_params(params, tuned_param, begin, end): train_scores = [] test_scores = [] for i in range(begin, end): params[tuned_param] = i m = RandomForestClassifier(random_state=42, **params) m.fit(xtrain, ytrain) score = roc_auc_score(ytrain, m.predict(xtrain)) train_scores.append(score) score = roc_auc_score(ytest, m.predict(xtest)) test_scores.append(score) pd.DataFrame({"train": train_scores, "test": test_scores}).plot() np.random.seed(42) xtrain, xtest, ytrain, ytest = train_test_split( dfX, dfY, test_size=0.25 ) # Default test_size train_and_draw_w_params({}, "n_estimators", 1, 30) # See that? Something wrong is happening here, the test set doesn't show that we are improving. Why is that? # # Less training, more test np.random.seed(42) xtrain, xtest, ytrain, ytest = train_test_split(dfX, dfY, test_size=0.7) train_and_draw_w_params({}, "n_estimators", 1, 30) # Great, now test line looks better, but still, there is a great distance between train & test results. # # Try another hyperparameters np.random.seed(42) xtrain, xtest, ytrain, ytest = train_test_split(dfX, dfY, test_size=0.7) train_and_draw_w_params({"n_estimators": 10}, "max_leaf_nodes", 2, 30)
mylist = ["apple", "banana", "mango"] mylist mylist = [1, 2, 3] mylist mylist = [True, False, True] mylist mylist = ["apple", True, 1] mylist mylist = [True, False, True] mylist2 = ["apple", "banana", "mango"] mylist3 = [1, 2, 3] mylist + mylist2 + mylist3 mylist = list(("apple", "banana", "mango")) mylist[-1] mylist = list(("apple", "banana", "mango")) if "apple" in mylist: print("yes") else: print("No") mylist = ["apple", "banana", "mango", "apple"] mylist[0:2] = ["watermalon", "cherry"] mylist mylist = ["apple", "banana", "mango", "apple"] mylist.append("Lichchi") mylist mylist = ["apple", "banana", "mango", "apple"] mylist.insert(2, "watermalon") mylist mylist = ["apple", "banana", "mango", "apple"] mylist.remove("mango") mylist mylist = ["apple", "banana", "mango", "apple"] mylist.pop() mylist mylist = ["apple", "banana", "mango", "apple"] len(mylist) tuple1 = ("apple", "banana", "mango", "apple") for x in tuple1: print(x) mylist = ["apple", "banana", "mango", "apple"] for i in range(len(mylist)): print(mylist[i]) mylist = ["apple", "banana", "mango", "apple"] i = 0 while i < len(mylist): print(mylist[i]) i = i + 1 tupele = ("apple", "banana", "mango", "apple") [print(x) for x in tupele] mylist = ["apple", "banana", "mango", "apple"] mylist.sort(reverse=True) mylist mylist = [500, 21, 30, 5, 1000] mylist.sort(reverse=True) mylist mylist = ["apple", "banana", "mango", "apple"] mylist1 = mylist mylist1 mylist = ["apple", "banana", "mango", "apple"] len(mylist) mylist = ["apple", "banana", "mango", "apple"] mylist.count("banana") mytuple = ("apple", "banana", "mango", "apple") len(mytuple) mytuple = ("apple", "banana", "mango", "apple") mytuple[2:4] mytuple = ("apple", "banana", "mango", "apple") (x, y, z, a) = mytuple z mytuple = ("apple", "banana", "mango", "apple") mylist = list(mytuple) mylist[1] = "cherry" mytuple = tuple(mylist) # mytuple.index("banana") mytuple.count("apple") mytuple = ("apple", "banana", "mango", "apple") mytuple.index("mango") # mytuple.count("banana") # List mylist = ["apple", 1, 2, True] mylist1 = [True, False] mylist + mylist1 mylist = ["apple", "Mango", "banana", "apple", "cherry"] mylist[-4:-1] mylist = ["apple", "Mango", "banana", "apple", "cherry"] if "apple" in mylist: print("Yes") else: print("no") mylist = ["apple", "Mango", "banana", "apple", "cherry"] mylist[1:3] = ["watermalon", "stovery"] mylist mylist = ["apple", "Mango", "banana", "apple", "cherry"] [print(x) for x in mylist] mylist = ["apple", "Mango", "banana", "apple", "cherry"] for i in range(len(mylist)): print(mylist[i]) mylist = ["apple", "mango", "banana", "apple", "cherry"] mylist.sort(reverse=True) mylist # mylist= ["apple","mango","banana","apple","cherry"] mylist = list(("apple", "mango", "banana", "apple", "cherry")) mylist.index("mango") # Tuple mytuple = ("apple", "mango", "banana", "apple", "cherry") mytuple = tuple(("apple", "mango", "banana", "apple", "cherry")) if "apple" in mytuple: print("Yes") else: print("no") mytuple = ("apple", "mango", "banana", "apple", "cherry") mylist = list(mytuple) mylist[1] = "B" mytuple = tuple(mylist) mytuple mytuple = ("apple", "mango", "banana") mytuple.index("apple") # set myset1 = set(("apple", "cow", 1)) # myset.add("cherry") # myset.discard("cherry") # myset1=myset.copy() myset1.pop() myset1 # Dictionary # pair-> (key,value) thisdict = {"a": "A", "c": "B", "d": ["X", "Y", "Z"]} thisdict.update({"c": "b"}) thisdict thisdict = {"a": "A", "c": "B", "d": ["X", "Y", "Z"]} for x, y in thisdict.items(): print(x, y) child1 = {"name": "A", "year": 2004} child2 = {"name": "B", "year": 2005} child3 = {"name": "C", "year": 2005} myfamily = { "child1": child1, "child2": child2, "child3": child3, } myfamily.values()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re # Read the file into a variable fifa_data df1 = pd.read_csv("/kaggle/input/data-news/Fake.csv") df1["label"] = 0 df1.shape df1.head() df2 = pd.read_csv("/kaggle/input/data-news/True.csv") df2["label"] = 1 df2.shape df2.head() # Stack the DataFrames on top of each other df = pd.concat([df1, df2], axis=0) df.head() df = df.reset_index(drop=True) df.head() df["title and text"] = df["title"] + " " + df["text"] df["title and text"].str.lower().head() url = r"http\S+|www.\S+" df["title and text"] = df["title and text"].apply(lambda x: re.sub(url, "", x)) df["title and text"] html = re.compile("<.*?>") df["title and text"] = df["title and text"].apply(lambda x: re.sub(html, "", x)) df["title and text"] punct = r"[^\w\s]" df["title and text"] = df["title and text"].apply(lambda x: re.sub(punct, "", x)) df["title and text"] number = r"\d+" df["title and text"] = df["title and text"].apply(lambda x: re.sub(number, "", x)) df["title and text"]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train_ = pd.read_csv("/kaggle/input/playground-series-s3e12/train.csv") test_ = pd.read_csv("/kaggle/input/playground-series-s3e12/test.csv") original = pd.read_csv( "/kaggle/input/kidney-stone-prediction-based-on-urine-analysis/kindey stone urine analysis.csv" ) train_.info() train_.drop(columns=["id"], inplace=True) train_df = pd.concat([train_, original]) train_df = train_df.drop_duplicates() train_df.info() corr = train_df.corr() mask = np.triu(corr) ax, fig = plt.subplots(figsize=(20, 10)) sns.heatmap(corr, mask=mask, annot=True, fmt=".3f") train_df.columns def kde_df(data, grid, figsize=(20, 20)): x, y = grid[0], grid[1] fig, axes = plt.subplots(x, y, figsize=figsize) for i, col in enumerate(data.columns): ax = axes[i // y, i % y] sns.kdeplot(data=data[col], ax=ax, fill=None) ax.axvline(data[col].mean(), color="red") fig.suptitle("Density function of each features", y=0.9, fontsize=20) kde_df(train_df, (4, 2)) import xgboost as xgb from sklearn.inspection import permutation_importance from sklearn.model_selection import train_test_split y = train_df["target"] X = train_df.drop(columns=["target"]) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) params = { "n_estimators": 100, "alpha": 0.5, "lambda": 0.5, "learning_rate": 0.1, "max_depth": 3, "min_child_weight": 1, "colsample_bytree": 1, "scale_pos_weight": 1, "objective": "binary:logistic", "booster": "gbtree", "verbosity": 1, } model = xgb.XGBClassifier(**params) model.fit(X_train, y_train) def plot_fi(data, ax=None, title=None): fi = pd.Series(data, index=X.columns).sort_values(ascending=True) fi.plot(kind="barh", ax=ax) plot_fi(model.feature_importances_) r = permutation_importance(model, X_test, y_test, n_repeats=1, random_state=46) plot_fi( r["importances"].reshape( 6, ) ) cols_to_drop = ["gravity", "cond", "urea", "osmo"] Y = train_df["target"] X = train_df.drop(columns=cols_to_drop + ["target"]) test_df = test_.drop(columns=(cols_to_drop + ["id"])) Y import optuna import xgboost as xgb from sklearn.metrics import accuracy_score from sklearn.model_selection import RepeatedStratifiedKFold, cross_val_score optuna.logging.set_verbosity(optuna.logging.WARNING) def objective(trial): params = { "verbosity": 0, "n_estimators": trial.suggest_int("n_estimators", 50, 1500), "learning_rate": trial.suggest_float("learning_rate", 1e-7, 1e-1), "max_depth": trial.suggest_int("max_depth", 3, 20), "colsample_bytree": trial.suggest_float("colsample_bytree", 0.1, 1.0), "alpha": trial.suggest_float("alpha", 1e-5, 1e2), "lambda": trial.suggest_float("lambda", 1e-5, 1e2), "objective": "binary:logistic", "eval_metric": "auc", "booster": trial.suggest_categorical("booster", ["dart", "gbtree", "gblinear"]), "min_child_weight": trial.suggest_int("min_child_weight", 0, 5), "tree_method": "gpu_hist", } kf = RepeatedStratifiedKFold(n_splits=10, n_repeats=10, random_state=42) scores = [] for train_idx, val_idx in kf.split(X, Y): X_train, X_val = X.iloc[train_idx], X.iloc[val_idx] y_train, y_val = Y.iloc[train_idx], Y.iloc[val_idx] d_train = xgb.DMatrix(X_train, label=y_train) d_val = xgb.DMatrix(X_val, label=y_val) evallist = [(d_val, "eval")] xgb_model = xgb.train( params, d_train, num_boost_round=100, evals=evallist, early_stopping_rounds=20, verbose_eval=False, ) y_pred = xgb_model.predict(d_val) score = accuracy_score(y_val, y_pred.round()) scores.append(score) return np.mean(scores) study = optuna.create_study(direction="maximize") study.best_value from sklearn.model_selection import StratifiedKFold kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=42) scores = [] target_pred = np.zeros(len(test_df)) for train_idx, valid_idx in kfold.split(X, y): # Split data into training and validation sets X_train, y_train = X.iloc[train_idx], y.iloc[train_idx] X_valid, y_valid = X.iloc[valid_idx], y.iloc[valid_idx] # Initialize and train the model model = xgb.XGBClassifier(**study.best_params) model.fit(X_train, y_train) y_pred = model.predict(X_valid) score = accuracy_score(y_valid, y_pred) scores.append(score) pred = model.predict(test_df) target_pred += pred / 10 X.drop(columns=cols_to_drop, inplace=True) target_pred test_df.info() model = xgb.XGBClassifier(**study.best_params) model.fit(X, y) model.predict(test_df) submission = pd.read_csv("/kaggle/input/playground-series-s3e12/sample_submission.csv") submission["target"] = target_pred submission.to_csv("submission.csv", index=False)
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import cv2 from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.model_selection import GridSearchCV from imblearn.over_sampling import SMOTE from imblearn.combine import SMOTETomek from imblearn.under_sampling import TomekLinks from yellowbrick.model_selection import learning_curve from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.utils import shuffle as shf import pickle import os import glob as gb import warnings as wr wr.filterwarnings("ignore") code = {"non_hemmorhage_data": 0, "hemmorhage_data": 1} # function to return the class of the images from its number, so the function would return 'Normal' if given 0, and 'PNEUMONIA' if given 1. def getcode(n): for x, y in code.items(): if n == y: return x # the directory that contain the train images set trainpath = ( "/kaggle/input/brain-tumor-images-dataset/Brain Tumor Images Dataset/training_set/" ) X_train = [] y_train = [] for folder in os.listdir(trainpath): files = gb.glob(pathname=str(trainpath + folder + "/*.png")) for file in files: image = cv2.imread(file) # resize images to 64 x 64 pixels image_array = cv2.resize(image, (64, 64)) X_train.append(list(image_array)) y_train.append(code[folder]) np.save("X_train", X_train) np.save("y_train", y_train) X_train[0][0] y_train[:10] # the directory that contain the test images set testpath = ( "/kaggle/input/brain-tumor-images-dataset/Brain Tumor Images Dataset/test_set/" ) X_test = [] y_test = [] for folder in os.listdir(testpath): files = gb.glob(pathname=str(testpath + folder + "/*.png")) for file in files: image = cv2.imread(file) # resize images to 64 x 64 pixels image_array = cv2.resize(image, (64, 64)) X_test.append(list(image_array)) y_test.append(code[folder]) np.save("X_test", X_test) np.save("y_test", y_test) # X_train, X_test contain the images as numpy arrays, while y_train, y_test contain the class of each image # Loading the .npy files as numpy arrays loaded_X_train = np.load("./X_train.npy") loaded_X_test = np.load("./X_test.npy") loaded_y_train = np.load("./y_train.npy") loaded_y_test = np.load("./y_test.npy") print(loaded_X_train.shape) # the shape return dimensions of X_train, we have 5216 images of 64 x 64 pixels. # while the forth dimension stores the RGB information of each pixel print(loaded_X_test.shape) # y_train and y_test contain the labels of each image, whether 0 'NORMAL' or 1 'PNEUMONIA' print(loaded_y_train.shape) print(loaded_y_test.shape) plt.figure(figsize=(20, 10)) for n, i in enumerate(np.random.randint(0, len(loaded_X_train), 16)): plt.subplot(2, 8, n + 1) plt.imshow(loaded_X_train[i]) plt.axis("off") plt.title(getcode(loaded_y_train[i])) plt.figure(figsize=(20, 10)) for n, i in enumerate(np.random.randint(0, len(loaded_X_test), 16)): plt.subplot(2, 8, n + 1) plt.imshow(loaded_X_test[i]) plt.axis("off") plt.title(getcode(loaded_y_train[i])) # flatten the images into a 2d array, for model training and testing X_train = loaded_X_train.reshape([-1, np.product((64, 64, 3))]) X_test = loaded_X_test.reshape([-1, np.product((64, 64, 3))]) print(X_train.shape) print(X_test.shape) y_train = loaded_y_train y_test = loaded_y_test # Scaling sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.fit_transform(X_test) # # Decision Tree from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier() clf.fit(X_train, y_train) from sklearn import tree plt.figure(figsize=(30, 20)) tree.plot_tree(clf) print( "Traning Accuracy: ", clf.score(X_train, y_train) * 100 ) # Check training accuracy print("Testing Accuracy: ", clf.score(X_test, y_test) * 100) # Check testing accuracy from sklearn.ensemble import ( BaggingClassifier, RandomForestClassifier, AdaBoostClassifier, ExtraTreesClassifier, ) from sklearn.tree import DecisionTreeClassifier from sklearn.svm import NuSVC, SVC from sklearn.semi_supervised import LabelPropagation from xgboost import XGBClassifier from lightgbm import LGBMClassifier import matplotlib.pyplot as plt from sklearn.linear_model import SGDClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import ( classification_report, accuracy_score, confusion_matrix, precision_score, recall_score, f1_score, ConfusionMatrixDisplay, ) # from sklearn.metrics.ConfusionMatrixDisplay pred = clf.predict(X_test) accuracy_score(pred, y_test) * 100 print(classification_report(y_test, pred)) # main cm = confusion_matrix(y_test, pred) cm sns.heatmap(cm, square=True, annot=True, cmap="Blues", fmt="d", cbar=True) from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(clf, X_test, y_test) from sklearn.metrics import ( confusion_matrix, roc_curve, recall_score, f1_score, plot_roc_curve, roc_auc_score, ) plot_roc_curve(clf, X_test, y_test, color="red") plt.plot([1, 0], [1, 0], "go--") # **Finding an appropiate n_neighbors value for kNN classifier by uniform and distance weight function:** from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import f1_score f1s = [] f2s = [] for i in range(1, 51): knct = KNeighborsClassifier(n_neighbors=i, weights="uniform") knct.fit(X_train, y_train) pred_i = knct.predict(X_test) f1s.append(f1_score(y_test, pred_i, average="weighted")) knct2 = KNeighborsClassifier(n_neighbors=i, weights="distance") knct2.fit(X_train, y_train) pred_i2 = knct2.predict(X_test) f2s.append(f1_score(y_test, pred_i2, average="weighted")) plt.figure(figsize=(10, 6)) plt.plot( range(1, 51), f1s, color="red", linestyle="dashed", marker="o", markerfacecolor="blue", markersize=10, ) plt.plot( range(1, 51), f2s, color="black", linestyle="dashed", marker="o", markerfacecolor="green", markersize=10, ) plt.title("F1 Score vs K Value") plt.xlabel("K Value") plt.ylabel("F1 Score") plt.xticks(range(0, 51, 5)) plt.tick_params(labeltop=True, labelright=True, top=True, right=True) f1_max = 0 f2_max = 0 for i in range(0, 50): if f1s[i] > f1_max or f2s[i] > f2_max: f1_max = f1s[i] f2_max = f2s[i] x = i print(i, f1s[i], f2s[i]) print(f1_max, f2_max, x) # **kNN Classification** neigh_classifier = KNeighborsClassifier(n_neighbors=x + 1, weights="uniform") neigh_classifier.fit(X_train, y_train) print( "Traning Accuracy: ", neigh_classifier.score(X_train, y_train) * 100 ) # Check training accuracy print( "Testing Accuracy: ", neigh_classifier.score(X_test, y_test) * 100 ) # Check testing accuracy pred = neigh_classifier.predict(X_test) accuracy_score(pred, y_test) * 100 print(classification_report(y_test, pred)) # main cm = confusion_matrix(y_test, pred) cm sns.heatmap(cm, square=True, annot=True, cmap="Blues", fmt="d", cbar=True) from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(neigh_classifier, X_test, y_test) plot_roc_curve(neigh_classifier, X_test, y_test, color="red") plt.plot([1, 0], [1, 0], "go--") # # Logistic Regression logist = LogisticRegression(C=1.0, random_state=2, max_iter=100) logist.fit(X_train, y_train) print( "Traning Accuracy: ", logist.score(X_train, y_train) * 100 ) # Check training accuracy print( "Testing Accuracy: ", logist.score(X_test, y_test) * 100 ) # Check testing accuracy pred = logist.predict(X_test) accuracy_score(pred, y_test) * 100 print(classification_report(y_test, pred)) # main cm = confusion_matrix(y_test, pred) cm sns.heatmap(cm, square=True, annot=True, cmap="Blues", fmt="d", cbar=True) sns.heatmap(cm, square=True, annot=True, cmap="Blues", fmt="d", cbar=True) from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(logist, X_test, y_test) plot_roc_curve(logist, X_test, y_test, color="red") plt.plot([1, 0], [1, 0], "go--") # # XGBoost Classifier (Extreme Gradient Boosting) import xgboost from xgboost import XGBClassifier xgb = XGBClassifier() xgb.fit(X_train, y_train) print( "Traning Accuracy: ", xgb.score(X_train, y_train) * 100 ) # Check training accuracy print("Testing Accuracy: ", xgb.score(X_test, y_test) * 100) # Check testing accuracy pred = xgb.predict(X_test) accuracy_score(pred, y_test) * 100 print(classification_report(y_test, pred)) # main cm = confusion_matrix(y_test, pred) cm sns.heatmap(cm, square=True, annot=True, cmap="Blues", fmt="d", cbar=True) from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(xgb, X_test, y_test) plot_roc_curve(xgb, X_test, y_test, color="red") plt.plot([1, 0], [1, 0], "go--") # # Support vector classifier from sklearn.svm import SVC # support vector classifier # from sklearn.svm import SVR # support vector REGRESSOR svm1 = SVC(kernel="linear") svm1.fit(X_train, y_train) print( "Traning Accuracy: ", svm1.score(X_train, y_train) * 100 ) # Check training accuracy print("Testing Accuracy: ", svm1.score(X_test, y_test) * 100) # Check testing accuracy pred = svm1.predict(X_test) accuracy_score(pred, y_test) * 100 print(classification_report(y_test, pred)) # main cm = confusion_matrix(y_test, pred) cm cm = confusion_matrix(y_test, pred) cm sns.heatmap(cm, square=True, annot=True, cmap="Blues", fmt="d", cbar=True) from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(clf, X_test, y_test) plot_roc_curve(xgb, X_test, y_test, color="red") plt.plot([1, 0], [1, 0], "go--") # # support vector REGRESSOR from sklearn.svm import SVR svm2 = SVC(kernel="linear") svm2.fit(X_train, y_train) print( "Traning Accuracy: ", svm2.score(X_train, y_train) * 100 ) # Check training accuracy print("Testing Accuracy: ", svm2.score(X_test, y_test) * 100) # Check testing accuracy pred = svm2.predict(X_test) accuracy_score(pred, y_test) * 100 print(classification_report(y_test, pred)) # main cm = confusion_matrix(y_test, pred) cm sns.heatmap(cm, square=True, annot=True, cmap="Blues", fmt="d", cbar=True) from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(svm2, X_test, y_test) plot_roc_curve(svm2, X_test, y_test, color="red") plt.plot([1, 0], [1, 0], "go--") svm3 = SVC(kernel="poly") # 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' svm3.fit(X_train, y_train) print( "Traning Accuracy: ", svm3.score(X_train, y_train) * 100 ) # Check training accuracy print("Testing Accuracy: ", svm3.score(X_test, y_test) * 100) # Check testing accuracy pred = svm3.predict(X_test) accuracy_score(pred, y_test) * 100 print(classification_report(y_test, pred)) # main cm = confusion_matrix(y_test, pred) cm sns.heatmap(cm, square=True, annot=True, cmap="Blues", fmt="d", cbar=True) from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(svm3, X_test, y_test) plot_roc_curve(svm3, X_test, y_test, color="red") plt.plot([1, 0], [1, 0], "go--") # # Naive Bayes # # GaussianNB from sklearn.naive_bayes import MultinomialNB, GaussianNB, BernoulliNB gnb = GaussianNB() gnb.fit(X_train, y_train) print( "Traning Accuracy: ", gnb.score(X_train, y_train) * 100 ) # Check training accuracy print("Testing Accuracy: ", gnb.score(X_test, y_test) * 100) # Check testing accuracy pred = gnb.predict(X_test) accuracy_score(pred, y_test) * 100 print(classification_report(y_test, pred)) # main cm = confusion_matrix(y_test, pred) cm sns.heatmap(cm, square=True, annot=True, cmap="Blues", fmt="d", cbar=True) from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(gnb, X_test, y_test) plot_roc_curve(gnb, X_test, y_test, color="red") plt.plot([1, 0], [1, 0], "go--") # # BernoulliNB bnb = BernoulliNB() bnb.fit(X_train, y_train) print( "Traning Accuracy: ", bnb.score(X_train, y_train) * 100 ) # Check training accuracy print("Testing Accuracy: ", bnb.score(X_test, y_test) * 100) # Check testing accuracy pred = bnb.predict(X_test) accuracy_score(pred, y_test) * 100 print(classification_report(y_test, pred)) # main sns.heatmap(cm, square=True, annot=True, cmap="Blues", fmt="d", cbar=True) from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(bnb, X_test, y_test) plot_roc_curve(bnb, X_test, y_test, color="red") plt.plot([1, 0], [1, 0], "go--") # # Random Forest from sklearn.ensemble import RandomForestClassifier rnd_clf = RandomForestClassifier( n_estimators=100, max_depth=3, n_jobs=-1, random_state=42 ) rnd_clf.fit(X_train, y_train) rnd_clf.estimators_ len(rnd_clf.estimators_) from sklearn import tree plt.figure(figsize=(30, 15)) for i in range(len(rnd_clf.estimators_)): tree.plot_tree(rnd_clf.estimators_[i], filled=True) for i in range(len(rnd_clf.estimators_)): print(tree.export_text(rnd_clf.estimators_[i])) print( "Traning Accuracy: ", rnd_clf.score(X_train, y_train) * 100 ) # Check training accuracy print( "Testing Accuracy: ", rnd_clf.score(X_test, y_test) * 100 ) # Check testing accuracy pred = rnd_clf.predict(X_test) accuracy_score(pred, y_test) * 100 print(classification_report(y_test, pred)) # main cm = confusion_matrix(y_test, pred) cm sns.heatmap(cm, square=True, annot=True, cmap="Blues", fmt="d", cbar=True) plot_roc_curve(rnd_clf, X_test, y_test, color="red") plt.plot([1, 0], [1, 0], "go--") # # AdaBoostClassifier from sklearn.ensemble import AdaBoostClassifier abc = AdaBoostClassifier(n_estimators=100, random_state=0) # abc=AdaBoostClassifier(DecisionTreeClassifier(criterion = 'entropy', random_state = 200), # n_estimators=2000, # learning_rate=0.1, # algorithm='SAMME.R', # random_state=1,) abc.fit(X_train, y_train) print( "Traning Accuracy: ", abc.score(X_train, y_train) * 100 ) # Check training accuracy print("Testing Accuracy: ", abc.score(X_test, y_test) * 100) # Check testing accuracy pred = abc.predict(X_test) accuracy_score(pred, y_test) * 100 print(classification_report(y_test, pred)) # main cm = confusion_matrix(y_test, pred) cm sns.heatmap(cm, square=True, annot=True, cmap="Blues", fmt="d", cbar=True) from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(abc, X_test, y_test) plot_roc_curve(abc, X_test, y_test, color="red") plt.plot([1, 0], [1, 0], "go--") # # XGBoost Classifier from xgboost import XGBClassifier xgb_classifier = XGBClassifier() xgb_classifier.fit(X_train, y_train) print( "Traning Accuracy: ", xgb_classifier.score(X_train, y_train) * 100 ) # Check training accuracy print( "Testing Accuracy: ", xgb_classifier.score(X_test, y_test) * 100 ) # Check testing accuracy pred = xgb_classifier.predict(X_test) accuracy_score(pred, y_test) * 100 print(classification_report(y_test, pred)) # main cm = confusion_matrix(y_test, pred) cm sns.heatmap(cm, square=True, annot=True, cmap="Blues", fmt="d", cbar=True) from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(xgb_classifier, X_test, y_test) plot_roc_curve(xgb_classifier, X_test, y_test, color="red") plt.plot([1, 0], [1, 0], "go--") import tensorflow as tf ann = tf.keras.models.Sequential() # Prepare the ANN for fitting the model ann.add(tf.keras.layers.Dense(units=6, activation="relu")) ann.add(tf.keras.layers.Dense(units=6, activation="relu")) ann.add(tf.keras.layers.Dense(units=1, activation="sigmoid")) ann.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) # Fit with ANN ann.fit(X_train, y_train, batch_size=1, epochs=10) # ANN Accuracy Score ann_pred = ann.predict(X_test) ann_score = accuracy_score(y_test, pred) ann_score # # Gradient Boosting import xgboost as xgb model = xgb.XGBClassifier(use_label_encoder=False) model.fit(X_train, y_train) predicted = model.predict(X_test) cm = confusion_matrix(y_test, predicted) print() print( "The accuracy of X Gradient Boosting is : ", accuracy_score(y_test, predicted) * 100, "%", ) # # LazyClassifier from lazypredict.Supervised import LazyClassifier from lazypredict.Supervised import LazyClassifier # Create a LazyClassifier instance and fit the training data clf = LazyClassifier( verbose=0, ignore_warnings=True, custom_metric=None, predictions=True, random_state=12, classifiers="all", ) LazyClassifier() # model, predictions = clf.fit(X_train_res, x_test,y_train_res, y_test) model, predictions = clf.fit(X_train, X_test, y_train, y_test) model predictions.head() top_10 = model.sort_values(by="Accuracy", ascending=False).head(12) print(top_10)
# ## Import Modul import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import StratifiedShuffleSplit, train_test_split # ## Read Data df = pd.read_csv("/kaggle/input/dataset-covid-19-2020-2021/data.csv") df.tail(5) target_column = "Province" split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in split.split(df, df[target_column]): train_set = df.loc[train_index] test_set = df.loc[test_index] # ## Preprocessing Data # cek missing value pada variabel train_set train_set.isna().sum() # cek missing value pada variabel tes_set test_set.isna().sum() # Cek outlier pada variabel train_set train_set.plot(subplots=True, layout=(4, 4), kind="box", figsize=(12, 14)) # Cek outlier pada variabel test_set test_set.plot(subplots=True, layout=(4, 4), kind="box", figsize=(12, 14)) # # ### padahasil cek outlier diatas ditemukan pada kedua variabel memiliki outlier pada kolom Active case # Perbaikan pada kedua variabel dengan menghapus nilai yang dibawah nol train_set["Active_Case"] = np.where( train_set["Active_Case"] < 0, 0, train_set["Active_Case"] ) test_set["Active_Case"] = np.where( test_set["Active_Case"] < 0, 0, test_set["Active_Case"] ) # cek tipe data print(train_set.info()) print(test_set.info()) # mengubah tipe data kolom Date dari objek menjadi Date and Time train_set["Date"] = pd.to_datetime(train_set["Date"]) test_set["Date"] = pd.to_datetime(test_set["Date"]) # ### Data Exploration # numeric_cols = train_set.select_dtypes(include=["float64", "int64"]).columns summary_stats = train_set[numeric_cols].describe() print(summary_stats) # ### Data Visualisasi # membuat histogram dan boxplot untuk setiap variabel numerik pada dataset for col in numeric_cols: fig, ax = plt.subplots(1, 2, figsize=(10, 4)) ax[0].hist(train_set[col], bins=20) ax[0].set_xlabel(col) ax[0].set_ylabel("Frequency") ax[1].boxplot(train_set[col]) ax[1].set_ylabel(col) plt.show() # Line chart for col in numeric_cols: plt.figure(figsize=(10, 6)) plt.plot(train_set[col], label=col) plt.title(col) plt.legend() plt.show() # kalkulasi untuk mengetahui korelasi corr_matrix = train_set.corr() # plot heatmap sns.heatmap(corr_matrix, annot=True, cmap="coolwarm")
# Importing libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Setting up the numbers of columns to show pd.set_option("display.max_columns", 10) # Importing the dataset df = pd.read_csv("/kaggle/input/port-of-los-angeles/shipping_data.csv") df # Some names, are inconsistent, like plural or uppercase, so we do a littler treatment df["name"] = df["name"].replace( { "Air Conditioners": "Air Conditioner", "Tablets": "Tablet", "Washing machine": "Washing Machine", } ) # let's rename all the columns to make more eficcient our work df = df.rename( columns={ "price ($)": "price_($)", "weight (kg)": "weight_(kg)", "destination port": "destination_port", "weight (kg)": "weight_(kg)", "length (m)": "length_(m)", "width (m)": "width_(m)", "height (m)": "height_(m)", "shipment date": "shipment_date", } ) df # Let's make a filter to exclude about 150 lines of data with no destination port defined non_null_ports = df["destination_port"].notna() df_with_ports = df[non_null_ports] # Now we make an map, to determine the country of each port df_with_ports["country"] = df_with_ports["destination_port"].map( { "Port of Singapore (Singapore)": "Singapore", "Port of Busan (South Korea)": "South Korea", "Port of Tianjin (China)": "China", "Port of Shanghai (China)": "China", "Port of Tokyo (Japan)": "Japan", } ) df_with_ports = df_with_ports.reset_index() # Now we can see the amount in dollars in products by destination port df_with_ports.groupby("destination_port")["price_($)"].sum().sort_values( ascending=False ).plot.bar(title="Value in US Dollars by destination port") # How we have two ports of china, lets now see the amount of products adreesed to each country df_with_ports.groupby("country")["country"].count().sort_values( ascending=False ).plot.bar(title="Counting of product by country of destionation") # Let's see the count of each 15 first products df_with_ports.groupby("name")["name"].count().head(15).sort_values( ascending=False ).plot.bar(title="Count of Top 15 products delivered by the ship", xlabel="Products") # Now we see the value in US Dollars by the 20 firts products df_with_ports.groupby("name")["price_($)"].sum().head(20).sort_values( ascending=False ).plot.bar( title="The sum of Top 15 products delivered by the ship", xlabel="Products", ylabel="Price in US Dollars", )
# # Intro to Python - DataCamp # **Python** is the most powerful programming language for Data Science (**R** is another mentionable one). # ## List Indexing var_list = ["py", 2, "3rd", "last_element"] # Subsetting list # Calling 1st element print(var_list[0]) # Python is a zero-indexed programming language # Calling last element print(var_list[-1]) # ## List Slicing print( "1-3: ", var_list[1:3] ) # calling 2nd, 3rd element. But, many are expecting the 4th element to be called as well. # Developers are often find it difficult why **2**nd element is called, but **4**th element is not called. It's because in List[start_element: end_element], start_element is taken **inclusively** whereas end_element is taken **exclusively**. Wait, what? # Let me clarify. When I call var_list[1:3], 1 is included, but 3 is not included (digits until 3 are included), thereby it invokes from 2nd element to 3rd element (NOT the 4th). # ![image.png](attachment:image.png) print(var_list[1:]) # taking 2nd element and onwards; again inclusive print(var_list[:2]) # taking until 2nd element (not 3rd element); again exclusive # ## Python List vs Numpy Array import numpy as np list1 = ["Maple Snap Ltd", 2, False, "Tanmoy", "DataIE", 33] print( list1 ) # When it comes to mixed datatype, Numpy convert everything into str unlike Python LIST that preserves datatype print([2, False, "Das"]) py_list = [2, 4, 5] numpy_array = np.array([2, 4, 6]) sum_np = numpy_array + numpy_array print("Summing Python Lists: ", (py_list + py_list)) # Concatinating them print("Summing numpy arrays: ", sum_np) # ![image.png](attachment:image.png) # Source: DataCamp # **List Slicing** # list1 = ["Maple Snap Ltd", 2, False, "Tanmoy", ["DataIE", 2021], 33] display(list1) display( list1[:2] ) # Starting from zero'th element until 2nd; EXCLUSIVE (meaning 3rd element will not be added) display( list1[2:] ) # from 3rd element until the end; INCLUSIVE (3nd element and onwards) list1[ 2:4 ] # what it will produce? 3rd & 4th element, you guessed it right! Remember 2 inclusive, 4 exclusive # Subsetting List of List # Calling elements inside another element of a list e.g. list1[-2][1] # 2nd element of the child list ['DataIE', 2021] of list1 # ## Manipulating List # Adding elements list1_ext = list1 + [ "Tanm", 220, 3, ] # new contents are just PASTED beside previous elements (not mathematical addition) print(list1_ext) # Removing elements del list1_ext[-2] print(list1_ext) # Editing your LIST a = [2, 3, 7] b = a b[2] = "Tan" print("a: ", a) # Kinda frustrating # so, we have a few options here to keep original list (or whatever object) intact # Option 1 c = list(a) c[2] = "DataIE" print("c: ", c) print("a afterward: ", a) # Option 2 d = a[:] print("d before modification: ", d) d[2] = "MapleSnap" print("d: ", d) print("a afterward d: ", a) # More contents will be added shortly thereafter.
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import matplotlib.pyplot as plt import seaborn as sns import keras from keras.models import Sequential from keras.layers import Conv2D, Flatten, Dense, MaxPooling2D, Dropout from sklearn.metrics import accuracy_score train_dir = "../input/dog-vs-cat/dogvscat/train" test_dir = "../input/dog-vs-cat/dogvscat/test" from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale=1.0 / 255) test_datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(224, 224), batch_size=20, class_mode="binary" ) test_generator = test_datagen.flow_from_directory( test_dir, target_size=(224, 224), batch_size=20, class_mode="binary" ) model = Sequential() model.add(Conv2D(32, (3, 3), activation="relu", input_shape=(224, 224, 3))) model.add(MaxPooling2D(2, 2)) model.add(Conv2D(64, (3, 3), activation="relu")) model.add(MaxPooling2D(2, 2)) model.add(Conv2D(128, (3, 3), activation="relu")) model.add(MaxPooling2D(2, 2)) model.add(Conv2D(128, (3, 3), activation="relu")) model.add(MaxPooling2D(2, 2)) model.add(Flatten()) model.add(Dense(512, activation="relu")) model.add(Dense(1, activation="sigmoid")) model.summary() from tensorflow.keras import optimizers model.compile( loss="binary_crossentropy", optimizer=optimizers.RMSprop(learning_rate=1e-3), metrics=["accuracy"], ) history = model.fit_generator( train_generator, steps_per_epoch=train_generator.samples // 20, epochs=10, validation_data=test_generator, validation_steps=test_generator.samples // 20, ) acc = history.history["accuracy"] val_acc = history.history["val_accuracy"] loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, "bo", label="Training acc") plt.plot(epochs, val_acc, "b", label="Validation acc") plt.legend() plt.show() loss = history.history["loss"] val_loss = history.history["val_loss"] plt.plot(epochs, loss, "bo", label="Training loss") plt.plot(epochs, val_loss, "b", label="Validation loss") plt.legend() model.save("catvsdog.h5") from tensorflow.keras.preprocessing import image path = "../input/dog-vs-cat/dogvscat/train/1/12.jpg" img = image.load_img(path, target_size=(224, 224)) plt.imshow(img, interpolation="nearest") plt.show() img_array = np.array(img) img_array.shape img_array = img_array.reshape(1, 224, 224, 3) a = model.predict(img_array) if a == [[0]]: print("cat") else: print("dog")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import roc_auc_score from sklearn.metrics import f1_score from sklearn.ensemble import BaggingClassifier from sklearn.metrics import confusion_matrix from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.ensemble import AdaBoostClassifier # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Import the data: train_data = pd.read_csv("../input/cap-4611-spring-21-assignment-1/train.csv").drop( columns=["id"] ) test_data = pd.read_csv("../input/cap-4611-spring-21-assignment-1/test.csv").drop( columns=["id"] ) train_data train_data.describe() # We don't need normalization/standardization when using trees becaue one of the advantaged of trees is that they are not sensitive to variance in the data # Checking outliers: mean = train_data.describe().loc["mean"] std = train_data.describe().loc["std"] df = train_data.copy() # names of the colomns col_names = df.columns.map(str) col_names = col_names.drop(["Bankrupt"]) # index that we wanna see in the plot, for testing element = 45 # instantiate figure fig, ax = plt.subplots(1, 2) sns.scatterplot(data=train_data[col_names[element]], ax=ax[0]) # before filter for name in col_names: num_sd = 9 # num std from the mean threshold_a = mean.loc[name] + num_sd * std.loc[name] # threshold above threshold_b = mean.loc[name] - num_sd * std.loc[name] # threshold below condition = (df[name] > threshold_a) | (df[name] < threshold_b) df.drop(df[condition].index, inplace=True) sns.scatterplot(data=df[col_names[element]], ax=ax[1]) # after filter fig.show() print(train_data.shape) print(df.shape) # train_data = df.copy() # Because it was better when I didn't remove any outliers, I am purposfully choosing to keep them # Checking if there's missing data # In order to get the total summation of all missing values in the DataFrame, we chain two .sum() methods together train_data.isnull().values.sum().sum() # there seems to be no missing data # Split the training_data # split the data y = train_data["Bankrupt"] X = train_data.drop("Bankrupt", axis=1) # random split SEED = 24 X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.50, random_state=SEED ) X_val, X_test, y_val, y_test = train_test_split( X_test, y_test, test_size=0.50, random_state=SEED ) # I'm splitting the test data into 3: train, test, validate to avoid overfitting # First I will try a single desision tree # single desision tree dt = DecisionTreeClassifier(max_depth=2, random_state=SEED, min_samples_leaf=0.2) dt.fit(X_train, y_train) y_pred_dt = dt.predict(X_test) acc_dt = accuracy_score(y_pred_dt, y_test) print("accuracy score: " + str(acc_dt)) y_dt_pred_proba = dt.predict_proba(X_test)[:, 1] dt_roc_auc = roc_auc_score(y_test, y_dt_pred_proba) print("roc aoc score: " + str(dt_roc_auc)) dt_f1 = f1_score(y_test, y_pred_dt, average=None) print("f1 score: " + str(dt_f1)) df = pd.DataFrame({"Actual": y_test, "Predicted": y_pred_dt, "proba": y_dt_pred_proba}) pd.set_option("display.max_rows", df.shape[0] + 1) # so the accuracy is good but the ROC AUC score is bad # UPDATE: the base accuracy if you just guessed all 0s is like 96% so actually this is terrible # Use RandomizedSearch to find better parameters for a single desision tree # params dt = DecisionTreeClassifier(random_state=SEED) dt.fit(X_train, y_train) max_depth = range(7, 12) min_leaf = [0.0185, 0.019, 0.0193, 0.0195, 0.0198, 0.02, 0.025] params_dt = { "max_depth": max_depth, "min_samples_leaf": min_leaf, "random_state": [SEED], } grid_dt = RandomizedSearchCV( estimator=dt, param_distributions=params_dt, scoring="roc_auc", cv=10, n_jobs=-1 ) grid_dt.fit(X_train, y_train) print(grid_dt.best_score_) print(grid_dt.best_params_) # beat : 0.8166695874406719 # > {'random_state': 42, 'min_samples_leaf': 0.019, 'max_depth': 11} 0.8476964769647696 # > {'random_state': 42, 'min_samples_leaf': 0.0195, 'max_depth': 6} 0.8544742547425473 # > {'random_state': 42, 'min_samples_leaf': 0.019, 'max_depth': 9} 0.8476964769647696 # also use those parameters here # Since one tree isn't good, we try a decision tree with bagging # single decision tree 2, w bagging this time dt2 = DecisionTreeClassifier(max_depth=8, random_state=SEED, min_samples_leaf=0.0185) # dt2.fit(X_train, y_train) # y_pred = dt2.predict(X_test) bc = BaggingClassifier( base_estimator=dt2, n_estimators=88, oob_score=True, random_state=SEED ) bc.fit(X_train, y_train) y_pred_dt2 = bc.predict(X_test) acc_dt2 = accuracy_score(y_pred_dt2, y_test) acc_oob = bc.oob_score_ print("accuracy score: " + str(acc_dt2)) print("accuracy out of bag score: " + str(acc_oob)) y_dt_pred_proba2 = bc.predict_proba(X_test)[:, 1] dt_roc_auc2 = roc_auc_score(y_test, y_dt_pred_proba2) print("roc aoc score: " + str(dt_roc_auc2)) dt_f1 = f1_score(y_test, y_pred_dt2, average=None) print("f1 score: " + str(dt_f1)) df = pd.DataFrame( {"Actual": y_test, "Predicted": y_pred_dt2, "proba": y_dt_pred_proba2} ) pd.set_option("display.max_rows", df.shape[0] + 1) # beat this: 0.9010935601458081 # beat this: 0.9631152460984393 # beat this: 0.9634453781512605 # bagging makes the decision tree noticably better, but lets go on to try other options # Trying a random forest # random forest rf = RandomForestClassifier( n_estimators=69, max_depth=10, random_state=SEED, min_samples_leaf=0.0124 ) rf.fit(X_train, y_train) y_rf_predict = rf.predict(X_test) df_rf = pd.DataFrame({"Actual": y_test, "Predicted": y_rf_predict}) pd.set_option("display.max_rows", df_rf.shape[0] + 1) acc_rf = accuracy_score(y_rf_predict, y_test) print("accuracy score: " + str(acc_rf)) y_rf_pred_proba = rf.predict_proba(X_test)[:, 1] rf_roc_auc = roc_auc_score(y_test, y_rf_pred_proba) print("roc aoc score: " + str(rf_roc_auc)) dt_rf = f1_score(y_test, y_rf_predict, average=None) print("f1 score: " + str(dt_f1)) # beat this: 0.9004252733900365 # both the accuracy is better than the decision tree, and the ROC AUC is better than the single tree # Use randomized search to find better parameters for the random forest # params rf = RandomForestClassifier() rf.fit(X_train, y_train) max_depth = list(range(9, 13)) min_leaf = [ 0.01215, 0.0122, 0.01225, 0.0123, 0.01233, 0.01235, 0.01237, 0.0124, 0.0125, 0.0126, 0.0127, 0.0128, 0.0129, ] # [0.014,0.015,0.016,0.017,0.018,0.019,0.02] #[0.01,0.02,0.03,0.04,0.05] #[0.09, 0.1,0.12,0.13,0.14,0.15,0.16,0.17,0.18] n_estimators = list(range(69, 72)) params_rf = { "max_depth": max_depth, "min_samples_leaf": min_leaf, "n_estimators": n_estimators, "random_state": [SEED], } grid_rf2 = RandomizedSearchCV( estimator=rf, param_distributions=params_rf, scoring="roc_auc", cv=10, n_jobs=-1 ) grid_rf2.fit(X_train, y_train) print(grid_rf2.best_params_) print(grid_rf2.best_score_) # > {'max_depth': 5, 'min_samples_leaf': 0.15, 'n_estimators': 67, 'random_state': 5}, 0.9205330412559329 # > {'random_state': 5, 'n_estimators': 66, 'min_samples_leaf': 0.01, 'max_depth': 5}, 0.9305111354508944 # > {'random_state': 5, 'n_estimators': 67, 'min_samples_leaf': 0.01, 'max_depth': 8}, 0.9310003650967508 # > {'random_state': 5, 'n_estimators': 67, 'min_samples_leaf': 0.013, 'max_depth': 11}, 0.9331843738590726 # > {'random_state': 5, 'n_estimators': 68, 'min_samples_leaf': 0.0127, 'max_depth': 11},0.9331836436655714 # > {'random_state': 42, 'n_estimators': 69, 'min_samples_leaf': 0.0123, 'max_depth': 9}, 0.9392540034491255 # > {'random_state': 42, 'n_estimators': 70, 'min_samples_leaf': 0.0123, 'max_depth': 11}, 0.9399825080068982 # > {'random_state': 24, 'n_estimators': 70, 'min_samples_leaf': 0.0124, 'max_depth': 12}, 0.9476425702811244 # Use the calulated best hyperparameters in a new random forest: # random forest using parameters rf_p = RandomForestClassifier( n_estimators=69, max_depth=10, random_state=SEED, min_samples_leaf=0.0124 ) rf_p.fit(X_train, y_train) y_rf_p_predict = rf_p.predict(X_test) df_rf_p = pd.DataFrame({"Actual": y_test, "Predicted": y_rf_p_predict}) pd.set_option("display.max_rows", df_rf_p.shape[0] + 1) acc_rf_p = accuracy_score(y_rf_p_predict, y_test) print("accuracy score: " + str(acc_rf_p)) y_rf_p_pred_proba = rf_p.predict_proba(X_test)[:, 1] rf_p_roc_auc = roc_auc_score(y_test, y_rf_p_pred_proba) print("roc aoc score: " + str(rf_p_roc_auc)) dt_rf_p = f1_score(y_test, y_rf_p_predict, average=None) print("f1 score: " + str(dt_rf_p)) # beat this: 0.9527339003645201 # beat this: 0.9517213446739571 # beat this: 0.9656062424969988 # I tried to test for the important features, and I got a bunch of them but was unable to build it in such a way that I could test for accuracy with or without some of them importances_rf = pd.DataFrame(rf.feature_importances_, index=X.columns) sorted_importances_rf = importances_rf.sort_values(by=0, ascending=False) df = train_data.copy() zero_names = sorted_importances_rf.loc[ "one if net income was negative for the last two year zero otherwise": ] n = zero_names.iterrows() print(n) print("--------------------------------------------") print(sorted_importances_rf) print(train_data.shape) print(df.shape) # sorted_importances_rf.plot(kind='barh', color='lightgreen');plt.show() # Try to use AdaBost on the Random Forest # AdaBoost dt = rf_p ada = AdaBoostClassifier(base_estimator=dt, n_estimators=193, random_state=SEED) ada.fit(X_train, y_train) y_pred_proba = ada.predict_proba(X_test)[:, 1] ada_roc_auc = roc_auc_score(y_test, y_pred_proba) ada_roc_auc # beat this: 0.9386796273795059 # beat this: 0.9392871607938438 # beat this: 0.9652460984393757 # Use Randomized Search to find the best parameters and put them back into the above adaboost classifier # params ada = AdaBoostClassifier(base_estimator=dt, n_estimators=240, random_state=SEED) rf.fit(X_train, y_train) n_estimators = list(range(150, 200)) params_ada = { "base_estimator": rf_p, "n_estimators": n_estimators, "random_state": [SEED], } grid_ada = RandomizedSearchCV( estimator=ada, param_distributions=params_ada, scoring="roc_auc", cv=10, n_jobs=-1 ) grid_ada.fit(X_train, y_train) print(grid_ada.best_params_) print(grid_ada.best_score_) # beat this: 0.9291449434100036 # beat this: 0.9294589266155532 # Test the resulting classifier with the validation test # validation evaluator = ada # grid_ada.best_estimator_ evaluator.fit(X_train, y_train) y_pred = evaluator.predict(X_val) acc = accuracy_score(y_pred, y_val) print("accuracy score: " + str(acc)) y_proba = evaluator.predict_proba(X_val)[:, 1] roc_auc = roc_auc_score(y_val, y_proba) print("roc aoc score: " + str(roc_auc)) f1 = f1_score(y_val, y_pred, average=None) print("f1 score: " + str(f1)) # beat this: 0.9378345498783455 # beat this: 0.9376723438767235 # 0.9323673234575004 # Use the ada classifier on the test set imStealingTheIDColumn = pd.read_csv("../input/cap-4611-spring-21-assignment-1/test.csv") evaluator = ada predict = evaluator.predict(test_data) prob = evaluator.predict_proba(test_data)[:, 1] output = pd.DataFrame({"id": imStealingTheIDColumn.id, "Bankrupt": prob}) output.to_csv("my_submission13.csv", index=False) print("Your submission was successfully saved!") # commented out so it doesn't try to calculate all this when I hit Run All # colormap = plt.cm.viridis # plt.figure(figsize=(30,30)) # sns.heatmap(train_data.astype(float).corr(),linewidths=0.1,vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=False)
# # Exp 꼴의 손실 함수 # ---------------------------------------- # 손실 함수가 음수 값이 나올 경우에, 가독성이 떨어지는 문제를 해결하기 위함. # 밑이 자연대수(e)인 지수함수에 기존 손실값을 대입한 손실 함수와, 기존 손실 함수의 성능 비교. from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR from matplotlib import pyplot as plt class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def train(model, device, train_loader, optimizer, epoch, log_interval=1): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % log_interval == 0: print( "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( epoch, batch_idx * len(data), len(train_loader.dataset), 100.0 * batch_idx / len(train_loader), loss.item(), ) ) def train_exp(model, device, train_loader, optimizer, epoch, log_interval=1): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = torch.exp(F.nll_loss(output, target)) loss.backward() optimizer.step() if batch_idx % log_interval == 0: print( "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( epoch, batch_idx * len(data), len(train_loader.dataset), 100.0 * batch_idx / len(train_loader), loss.item(), ) ) def test(model, device, test_loader, prefix=""): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss( output, target, reduction="sum" ).item() # sum up batch loss pred = output.argmax( dim=1, keepdim=True ) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print( "[ " + prefix + " ]\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format( test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset), ) ) return 100.0 * correct / len(test_loader.dataset) def drawgraph(losslist1, losslist2): plt.plot(range(len(losslist1)), losslist1, color="red", label="EXP Loss") plt.plot(range(len(losslist2)), losslist2, color="blue", label="Default Loss") plt.title("Accurate of Default Loss and Exp Loss") plt.xlabel("Epcoh") plt.ylabel("Accurate") plt.legend() plt.show() default_loss = [] exp_loss = [] def main(): global exp_loss, default_loss use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") train_kwargs = {"batch_size": 50} test_kwargs = {"batch_size": 50} if use_cuda: cuda_kwargs = {"num_workers": 1, "pin_memory": True, "shuffle": True} train_kwargs.update(cuda_kwargs) test_kwargs.update(cuda_kwargs) transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ) dataset1 = datasets.MNIST("../data", train=True, download=True, transform=transform) dataset2 = datasets.MNIST("../data", train=False, transform=transform) train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs) test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) model = Net().to(device) Expmodel = Net().to(device) optimizer = optim.Adadelta(model.parameters(), lr=1.0) Expoptimizer = optim.Adadelta(Expmodel.parameters(), lr=1.0) scheduler = StepLR(optimizer, step_size=1, gamma=0.7) Expscheduler = StepLR(Expoptimizer, step_size=1, gamma=0.7) for epoch in range(1, 30 + 1): train(model, device, train_loader, optimizer, epoch) default_loss.append(test(model, device, test_loader, prefix="기존 방식")) scheduler.step() for epoch in range(1, 30 + 1): train_exp(Expmodel, device, train_loader, Expoptimizer, epoch) exp_loss.append(test(Expmodel, device, test_loader, prefix="exp 방식")) Expscheduler.step() if __name__ == "__main__": main() drawgraph(exp_loss, default_loss)
from tqdm.auto import tqdm from collections import defaultdict import pandas as pd import numpy as np import os import random import gc import cv2 import glob gc.enable() pd.set_option("display.max_columns", None) # Visialisation import matplotlib.pyplot as plt # Image Aug import albumentations from albumentations.pytorch.transforms import ToTensorV2 # Deep Learning from torch.utils.data import Dataset, DataLoader from torch.optim.lr_scheduler import ( CosineAnnealingWarmRestarts, OneCycleLR, CosineAnnealingLR, ) import torch import torchvision import timm import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import PIL import torchvision.transforms as T from torch.utils.data import DataLoader, Dataset # Metrics from sklearn.metrics import mean_squared_error # Random Seed Initialize RANDOM_SEED = 42 def seed_everything(seed=RANDOM_SEED): os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True seed_everything() # Device Optimization if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") print(f"Using device: {device}") def asMinutes(s): """Convert Seconds to Minutes.""" m = math.floor(s / 60) s -= m * 60 return "%dm %ds" % (m, s) def timeSince(since, percent): """Accessing and Converting Time Data.""" now = time.time() s = now - since es = s / (percent) rs = es - s return "%s (remain %s)" % (asMinutes(s), asMinutes(rs)) class AverageMeter(object): """Computes and stores the average and current value.""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count cat_categories = [] path = "/kaggle/input/cats-breed-dataset/cat_v1" for directory in os.listdir(path): if "." not in directory: cat_categories.append(directory) print(cat_categories) image_directory = {} for i in cat_categories: image_directory[i] = [ os.path.join(path, i, j) for j in os.listdir(os.path.join(path, i)) ] file_category = [] file_name = [] for i in image_directory.keys(): for j in image_directory[i]: file_category.append(i) file_name.append(j) data = {"categories": file_category, "file_name": file_name} train_df = pd.DataFrame(data) train_df.head() import matplotlib.pyplot as plt x = train_df.sample() random_category = x.categories.values[0] random_file_name = x.file_name.values[0] print(random_category) print(random_file_name) img = PIL.Image.open(random_file_name) plt.imshow(img) plt.title(random_category) str_to_int = {} for i in range(len(cat_categories)): str_to_int[cat_categories[i]] = i print(str_to_int) class CatDataset(Dataset): def __init__(self, data, path, transform=None): self.data = data self.path = path self.transform = transform def __len__(self): return len(self.data) def __getitem__(self, idx): image_path = self.data["file_name"][idx] image = PIL.Image.open(image_path) category_name = self.data["categories"][idx] label = str_to_int[category_name] image = image.convert("RGB") if self.transform: image = self.transform(image) # image = torch.Tensor(np.transpose(np.array(image),(2,0,1))) return image, label transform = T.Compose( [ T.Resize((224, 224)), T.ToTensor(), T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ] ) from sklearn.model_selection import train_test_split f0, f1 = train_test_split(train_df, test_size=0.2) # 学習用と評価用に分ける train_df["folds"] = -1 train_df.loc[f0.index, "folds"] = 1 train_df.loc[f1.index, "folds"] = 0 train_df.head() path = "/kaggle/input/cats-breed-dataset/cat_v1" train_index = train_df[train_df["folds"] != 1].index valid_index = train_df[train_df["folds"] == 1].index train_dataset = CatDataset( data=train_df.loc[train_index].reset_index(drop=True), path=path, transform=transform, ) val_dataset = CatDataset( data=train_df.loc[valid_index].reset_index(drop=True), path=path, transform=transform, ) train_loader = DataLoader( train_dataset, batch_size=32, shuffle=True, num_workers=0, pin_memory=True, drop_last=True, ) # 学習用のdatasetsのbatchを作成 val_loader = DataLoader( val_dataset, batch_size=32, shuffle=False, num_workers=0, pin_memory=True, drop_last=False, ) class BaseModel(nn.Module): def __init__(self, model_name="tf_efficientnet_b0_ns", n_class=5, pretrained=True): super().__init__() self.backbone = timm.create_model( model_name, pretrained=pretrained, num_classes=0 ) self.in_features = self.backbone.num_features self.head = nn.Sequential( nn.Linear(self.in_features, 1024), nn.ReLU(), nn.Dropout(), nn.Linear(1024, 512), nn.Dropout(), nn.Linear(512, n_class), ) def forward(self, x): x = self.backbone(x) x = self.head(x) output = x return output from torch.optim import SGD, Adam, AdamW from torch.optim.lr_scheduler import ( CosineAnnealingLR, CosineAnnealingWarmRestarts, ReduceLROnPlateau, ) model = BaseModel("tf_efficientnet_b0_ns", 5).to(device) optimizer = Adam(model.parameters(), lr=0.01, weight_decay=1e-3, amsgrad=False) scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=1e-5, last_epoch=-1) criterion = nn.CrossEntropyLoss() import tqdm.notebook as tqdm def train_fn(train_loader, model, criterion, optimizer, epoch, scheduler): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() scores = AverageMeter() # avg_score = AverageMeter() model.train() # 学習モード for step, (images, labels) in enumerate(train_loader): images = images.to(device) # 画像をcpuからgpuヘ labels = labels.to(device) # 正解ラベルをcpuからgpuヘ batch_size = labels.size(0) y_preds = model(images) # 予測ラベル loss = criterion(y_preds, labels) # lossの計算 losses.update(loss.item(), batch_size) loss.backward() # パラメータの勾配を計算 optimizer.step() # モデル更新 optimizer.zero_grad() # 勾配の初期化 # vramの余計なの削除 torch.cuda.empty_cache() return losses.avg, model def val_fn(val_loader, model): model.eval() final_targets = [] final_outputs = [] with torch.no_grad(): for i, (images, target) in enumerate(val_loader): images = images.to(device) target = target.to(device) output = model(images) targets = target.detach().cpu().numpy() outputs = output.detach().cpu().numpy() final_targets.extend(targets) final_outputs.extend(outputs) return final_outputs, final_targets for epoch in range(0, 1): avg_loss, model = train_fn( train_loader, model, criterion, optimizer, epoch, scheduler ) print(avg_loss) scheduler.step() predict, target = val_fn(val_loader, model)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # 1A import pandas as pd from sklearn.decomposition import PCA import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import OneHotEncoder # Load Car Seat dataset car_seat_df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/Carseats.csv" ) # Load Bank Personal Loan dataset bank_loan_df = pd.read_csv( "https://raw.githubusercontent.com/ChaithrikaRao/DataChime/master/Bank_Personal_Loan_Modelling.csv" ) car_seat_df bank_loan_df # Encode the 'Urban' and 'US' columns using the fit_transform method encoded_cols = pd.get_dummies(car_seat_df[["Urban", "US", "ShelveLoc"]]) car_seat_df_new = pd.concat([encoded_cols, car_seat_df], axis=1) car_seat_features = car_seat_df_new.drop(["Sales", "Urban", "ShelveLoc", "US"], axis=1) car_seat_features # a)prepare the datasets for PCA car_seat_df_scaled = StandardScaler().fit_transform(car_seat_features) bank_loan_features = bank_loan_df.drop(["ID", "ZIP Code", "Personal Loan"], axis=1) bank_loan_df_scaled = StandardScaler().fit_transform(bank_loan_features) # perform PCA on the standardized data car_seat_df_pca = PCA().fit(car_seat_df_scaled) bank_loan_df_pca = PCA().fit(bank_loan_df_scaled) # Create scree plots plt.plot( range(1, len(car_seat_df_pca.explained_variance_ratio_) + 1), car_seat_df_pca.explained_variance_ratio_, "bo-", ) plt.title("Carseats Scree Plot") plt.xlabel("Principal Component") plt.ylabel("Explained Variance Ratio") plt.show() # Create scree plots plt.plot( range(1, len(bank_loan_df_pca.explained_variance_ratio_) + 1), bank_loan_df_pca.explained_variance_ratio_, "bo-", ) plt.title("Bank Personal Loan Scree Plot") plt.xlabel("Principal Component") plt.ylabel("Explained Variance Ratio") plt.show() # 1B) # To determine the optimal number of components for each dataset, we can look at the scree plots and choose the number of components where the explained variance ratio starts to level off or diminish. # For the Car Seat dataset, the scree plot shows that the first 4 principal components explain the majority of the variance in the data. After the 4th component, the explained variance ratio levels off and does not decrease significantly, so we could choose to keep the first 4 components as our optimal number. # For the Bank Personal Loan dataset, the scree plot shows that the first 5 principal components explain the majority of the variance in the data. After the 5th component, the explained variance ratio levels off and does not decrease significantly, so we could choose to keep the first 5 components as our optimal number. # So, based on the scree plots, we can suggest the optimum number of components for the Car Seat dataset as 4 and for the Bank Personal Loan dataset as 5. # 1C bank_loan_df_pca = PCA().fit_transform(bank_loan_df_scaled) ploan_pca = bank_loan_df_pca ploan_pca car_seat_df_pca = PCA().fit_transform(car_seat_df_scaled) carseat_pca = car_seat_df_pca carseat_pca
a = 8 print(a) type(a) c = 2.3 b = "abc123" print(b) type(c) # Variabes With Number # **Integer, Floating, Cpmlex number** a = 234.5 print(a) type(a) a = 2 + 3j print(a) type(a) # **"Working with multiple variable"** Gross_profit = 15 Revenue = 100 Gross_Profit_Margin = (Gross_profit / Revenue) * 100 print(Gross_Profit_Margin) type(Gross_Profit_Margin) Revenue = 100 RevA = 8 Revenue = Revenue + RevA print(Revenue) # **Variable With String** address = "84/9 Juhi Safed Colony Kanpur, Uttar Pradesh" print(address) type(address) first_name = "Vaibhav" last_name = "Srivastava" name = first_name + " " + last_name print(name) # **Variable With Booleans** - True / False a = 3 b = 5 c = a < b print(c) type(c) c = True print(c) type(c) # **Multiple Assignments** a, b, c = "Ayush Jain", 26, 34.6 print(a) print(b) print(c) # **Naming Convention Of Variables** a = 3 # Variables are case sensitive A = 4 print(a) print(A) # **Reserved Keywords** - for, in, else, end, break, continue.... # **Print Satement** a = 3 print(a) c = 2 * 3**3 / 2 print(c) print("The vlue of a and b is", a, b) # **Swapping 2 Variables** a = 2 b = 3 c = a a = b b = c print(a, b) # Swapping 2 Variables
# # Import Packages # Data Handling import numpy as np import pandas as pd # Model Selection from sklearn.model_selection import train_test_split # Make and Compose Pipeline from sklearn.pipeline import make_pipeline from sklearn.compose import make_column_transformer # Preprocessing ## Missing Values from sklearn.impute import SimpleImputer ## Feature Scaling from sklearn.preprocessing import StandardScaler ## Categorical Encoding from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder # Model from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier # Peformance - Classification from sklearn.metrics import ( accuracy_score, precision_score, recall_score, f1_score, cohen_kappa_score, ) # Export # # Import Data train = pd.read_csv("/kaggle/input/DontGetKicked/training.csv") test = pd.read_csv("/kaggle/input/DontGetKicked/test.csv") # # Check train["IsBadBuy"].value_counts().plot.bar() train.info() test.info() # # Numerical and Categorical Feature Names numerical_features = ( train.drop(["RefId", "IsBadBuy"], axis=1) .select_dtypes(include="number") .columns.tolist() ) categorical_features = ( train.drop(["RefId", "IsBadBuy"], axis=1) .select_dtypes(exclude="number") .columns.tolist() ) numerical_features categorical_features # # Partition Data y = train["IsBadBuy"] X = train.drop(["RefId", "IsBadBuy"], axis=1) X_test = test.drop(["RefId"], axis=1) # train test split X_train, X_val, y_train, y_val = train_test_split( X, y, test_size=0.2, random_state=42, stratify=y ) # # Preprocessing # - Numerical # - Categorical # - Import Package, Create an Instance, Fit, tranform train, val, test # Create Preprocessor Pipeline preprocessor = make_column_transformer( ( make_pipeline(SimpleImputer(strategy="median"), StandardScaler()), numerical_features, ), ( make_pipeline( SimpleImputer(strategy="most_frequent"), OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1), ), categorical_features, ), ) # # Build Model model = make_pipeline( preprocessor, RandomForestClassifier(n_estimators=10, random_state=42, class_weight="balanced"), ) model.fit(X_train, y_train) # # Make Predictions # Make predictions on the training, validation, and testing sets y_train_pred = model.predict(X_train) y_val_pred = model.predict(X_val) y_test_pred = model.predict(X_test) # # Calculate Performance Scores # Calculate performance metrics for each set train_acc = accuracy_score(y_train, y_train_pred) train_prec = precision_score(y_train, y_train_pred) train_rec = recall_score(y_train, y_train_pred) train_f1 = f1_score(y_train, y_train_pred) train_kappa = cohen_kappa_score(y_train, y_train_pred) val_acc = accuracy_score(y_val, y_val_pred) val_prec = precision_score(y_val, y_val_pred) val_rec = recall_score(y_val, y_val_pred) val_f1 = f1_score(y_val, y_val_pred) val_kappa = cohen_kappa_score(y_val, y_val_pred) # Print the performance metrics print("Training set metrics:") print("Accuracy: {:.2f}".format(train_acc)) print("Precision: {:.2f}".format(train_prec)) print("Recall: {:.2f}".format(train_rec)) print("F1-score: {:.2f}".format(train_f1)) print("Cohen's Kappa: {:.2f}".format(train_kappa)) print() print("Validation set metrics:") print("Accuracy: {:.2f}".format(val_acc)) print("Precision: {:.2f}".format(val_prec)) print("Recall: {:.2f}".format(val_rec)) print("F1-score: {:.2f}".format(val_f1)) print("Cohen's Kappa: {:.2f}".format(val_kappa)) print()
# # Agenda of the meeting # * How recent developments in AI could impact us as software engineers? # * What exactly goes behind the scenes in a simple AI/ML Model? how does it work? # * Intro to Natural Language Processing, what are LLMs, How ChatGPT works? # # Recents Advancements in NLP # # * All of us have beeing seeing the staggering advancements in Natural Language Processing field recently with ChatGPT and # big LLMs(Large Language Models) that power ChatGPT and similar things. # # * Why we as software engineers should care? # ## My Own experience With GPT # ## Writing Multithreaded JDBC code for some Mysql analysis. # ![Screenshot 2023-04-10 at 2.49.47 PM.png](attachment:1f577ad9-8f9a-4e0b-bae0-c0aa2f31c549.png) # ## Generating mock data using sample tables for the same. # ![Screenshot 2023-04-10 at 2.54.10 PM.png](attachment:b7082a8a-de89-4237-a2b9-0fef4556667a.png) # # What would have taken normally 30 - 40 mins, took me less than 5 mins. # Ofcourse I had to tweak the code to make some changes here and there. 1 bug was there. I fixed it. still a huge improvement in productivity. # ## This is just GPT-3.5. GPT-4 is much much better at coding and logical reasoning. # GPT-4 can solve full fledged problem statements. Normally what would take few days or weeks, might be possible in few hours. # Github is coming up with latest version of Coding assistant - CopilotX. # ## What this means for us specifically in programming # 1. If we are already skilled at something, then tools like ChatGPT might be a big productivity boost. # 2. These tools allow us to try more things, try more projects, since time taken to implement a new project comes down. # 3. Many times it generates code with minor bugs/errors, so we have to be cautious while using it. # ### What chatGPT and code generation tools are good at, # * Generating code for simple use cases. # * Generating boiler plate code. # * Given a code snippet, explain the code in English. # * We can use it as a chatbot for any API/framework documentation. # * Generating Unit tests. # * Writing Shell scripts for trivial tasks. # ### What chatGPT and code generation tools are not good at, # * Proper designing and structuring of code. # * Deciding what to build(ultimately we have to decide and start thinking more like PMs). # ChatGPT, Github Copilot and similar tools will become even better than their current state. # Based on what we are seeing for the few weeks/months, it is very clear we have to make use of these tools/models in our work. # So for all these reasons, it really is worth looking into what exactly is AI and ML. What happens behind the scenes. It will help us use these AI/ML models properly. # # Intro to Machine Learning Basics # What do we mean by Machine Learning? AI is an umbrella term that covers a lot of topics and ML is the core part of it. so we will cover ML basics here. # > Input --> Algorithm --> output # ### Traditional Programming # > We provide - Input, algorithm # > We get - Output # ### Machine Learning # > We provide - Input, Output (As training dataset) # > We get - algorithm (i.e. the computer itself will learn what algorithm to use.) # Based on the learned algorithm, the computer will act on inputs it has not yet seen. # ## Types of Machine Learning Methods # # 1. Supervised Learning (Regression, Classification, etc.) # 2. Unsupervised Learning(Anamoly Detection, PCA, etc.) # # Supervised Learning # * Specifically We will focus on a supervised learning example. # ## Prediction of housing prices based on size of the house import numpy as np # Generate some random data x = np.random.rand(50) y = np.random.rand(50) import matplotlib.pyplot as plt # Sort the data along the x-axis sort_idx = np.argsort(x) x = x[sort_idx] # Normalize the x-axis data to the range of 500 to 10000 x = np.interp(x, (x.min(), x.max()), (500, 10000)) sort_idx = np.argsort(y) y = y[sort_idx] y = np.interp(y, (y.min(), y.max()), (15000, 150000)) # Create a figure and axis object fig, ax = plt.subplots() # Plot the data ax.scatter(x, y) # Set the plot title and axis labels ax.set_title("Housing Prices vs Size of the house") ax.set_xlabel("Size of the house(in sq.feet)") ax.set_ylabel("Housing Prices in INR") # fit a line through the data. # ax.plot([0, 1], [0, 1], color='red', transform=ax.transAxes) # fit a horizontal line through the data # ax.hlines(y=100000, xmin=0, xmax=10000, linewidth=2, color='r') # Display the plot plt.show() # ## (Size of the house in sq.feet) X - Input. # ## (House Price in INR) Y - output. # Given X and Y, our goal is to find f(x) that would best fit the given data. By looking at the data we can say fitting a straight line would be accurate. # Using this line we can extrapolate for all the data not present in given dataset. # ## Y = F(X) # # ### So how do we do that? # # Finding the best F(X) that would accurately calculate housing prices is called as training a model. # > F(X) = AX + B # > Y = AX + B # # We know X and Y, we need to find out optimal values of A and B (A and B are model params/weights) that would predict housing prices accurately. # (Note: This model we are training has only 2 params, since this is a very simple model) # (For comparision GPT-3 model has 175 billion params and it's very very big and complicated). # # Steps to do that would be, # # 1. Initializing Random weights for params # # 2. Let A = 0 and B = 100000. # # 3. Based on these params, we can apply them on the input data X and find out F(X). # # 4. We will get some incorrect housing prices, say Y'. # # 5. We can find the difference between actual value Y and predicted value Y'. # # ## Cost Function # > C = $(Y - Y')^{2}$ # 6. Our goal is to minimize the value of this particular cost function. (bring it as close as possbile to zero) # The absolute diff between actual value and predicted value would should very neary zero. # # 7. Inorder to minimize the cost function, we will do something called gradient descent. # # # ## Gradient Descent # `for 10000 iterations: # A = A - differentiation(Cost of function) # B = B - differentiation(Cost of function) # Y' = AX + B # C = (Y' - Y)^2 ` # # We do this again and again until A and B converge to a particular set of values. # # At that point, we can be sure that cost function is minimized. # # To get the intuition behind this gradient descent step, how differential calculus is used, take up the intro to ML course in Coursera. # 8. Once we bring down the cost function to a minimum value, we will arrive at some values of A and B. # > In this particular case something like A = 10000 and B = 0.01 # > Y = AX + B --> Y = 10000X + 0.01 # 9. These values of A and B are called as trained/learned weights. # 10. Y = 10000X + 0.01 this equation is called as a trained model. # 11. Using this trained model, we can predict house prices for any arbitarily sized house. # ## Some Points to Note. # * This is a two param model.(A and B). Real world models are much more complicated and has ton of params. # * Even in the above data a straight line properly does not fit it. We need somthing like a curved line. # * To represent to a curved line we need a quadratic equation. f(x) = A$X^2$ + BX + C # * so here the number of params in three. This quadratic eqn better fits the data than the straight line. # * so as the number params increase, we have better chances of accurately modeling the given data and prediction accuracy goes up. # * That's why GPT with each release keeps getting powerful. # > GPT 2 - 1.5 billion params # > GPT 3 - 175 billion params # # > GPT 4 - 10 Trillion params (exact value not disclosed. Based on rumours). # # * Size of the training dataset also contributes to model accuracy. # # * Disclaimer: In the above explanation, I have conveniently skipped over a lot of important micro details to keep the explanation simple. # (You can take ML intro course in Cousera to know more) # ## There are three steps to use a ML model. # 1. Preparing a dataset. # # 2. Training a model on the dataset. # # 3. Using the trained model to do prediction/classifications.(This step is also called as inference) # # This is common between all the supervised learning models(irrespective of their size). # ## Supervised Learning # * The above model was a regression model or a prediction model. Output could be anything on that line. # * There are classification models.Output will be one among the defined set of values # (Email - Spam/Not spam, Dog vs Cat Images, Handwritten digits - (0-9) classification) # ## Neural Networks # * Neural Networks is a very complicated model that tries to mimic the way a human brain works. # * In simple words, it is a very very very complicated maths equation that would do a lot amazing things. # * Explaining them would be a topic for another day. # # Sample Demo: Image Classification using a Convolutional Neural Network model # ResNet -50 with 1000 ouput classes of images(Different animal species, cars, vehicles, etc.) from datasets import load_dataset from matplotlib import pyplot as plt from PIL import Image import requests from io import BytesIO # car image # response = requests.get('https://stimg.cardekho.com/images/carexteriorimages/930x620/Porsche/911/7652/1677566789939/front-left-side-47.jpg?tr=w-880,h-495') # elephant response = requests.get( "https://t1.gstatic.com/licensed-image?q=tbn:ANd9GcTkSca_mIEnlFmPU_hGz03cfzQekbr7xlVuMWmt_XVadGbCDaTf5bn5fEPi_6NMVHeRzmMhmF9RI9-VTDU" ) img = Image.open(BytesIO(response.content)) ## plotting the image plt.imshow(img, interpolation="nearest") plt.figure() from transformers import AutoImageProcessor, ResNetForImageClassification import torch ## Importing a pretrained cnn model and image preprocessor here. processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50") ## converting the input image into vectors of numbers inputs = processor(img, return_tensors="pt") ## doing inference with the model. with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() # Printing out the predicted label print("The given image is a " + model.config.id2label[predicted_label])
# # InstructPix2Pix # ## Change the runtime to GPU and install all the dependencies. # ## Import all the installed required libraries and load the models. import os import glob import tarfile import shutil import random import requests import torch import PIL from PIL import ImageOps from IPython.display import display from diffusers import StableDiffusionInstructPix2PixPipeline model_id = "timbrooks/instruct-pix2pix" pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( model_id, torch_dtype=torch.float16 ).to("cuda") # ## Demo: Make the mountain snowy. def open_image(fp): image = PIL.Image.open(fp) image = PIL.ImageOps.exif_transpose(image) image = image.convert("RGB") return image def download_image(url): image = open_image(requests.get(url, stream=True).raw) return image url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" # Download the image image = download_image(url) # Define the prompt prompt = "make the mountains snowy" # Process the image with the prompt using the pipeline images = pipe( prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7, ).images # Display the original and processed images side by side new_image = PIL.Image.new("RGB", (image.width * 2, image.height)) new_image.paste(image, (0, 0)) new_image.paste(images[0], (image.width, 0)) display(new_image) # Define the prompt prompt = "change the weather to sunny" # Process the image with the prompt using the pipeline images = pipe( prompt, image=image, num_inference_steps=50, image_guidance_scale=1.5, guidance_scale=7, ).images # Display the original and processed images side by side new_image = PIL.Image.new("RGB", (image.width * 2, image.height)) new_image.paste(image, (0, 0)) new_image.paste(images[0], (image.width, 0)) display(new_image) # Define the prompt prompt = "change the season to autumn" # Process the image with the prompt using the pipeline images = pipe( prompt, image=image, num_inference_steps=50, image_guidance_scale=1.5, guidance_scale=7, ).images # Display the original and processed images side by side new_image = PIL.Image.new("RGB", (image.width * 2, image.height)) new_image.paste(image, (0, 0)) new_image.paste(images[0], (image.width, 0)) display(new_image) # ## Virtual try-on with LFW dataset import tarfile with tarfile.open("/kaggle/input/lfwpeople/lfw-funneled.tgz", "r") as tar: for member in tar.getmembers(): tar.extract(member, "data") PATH = "/kaggle/working/data/lfw_funneled" image_path = os.path.join(PATH, "AJ_Cook/AJ_Cook_0001.jpg") # Download the image image = open_image(image_path) # Define the prompt prompt = "make her wear a hat" # Process the image with the prompt using the pipeline images = pipe( prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7, ).images # Display the original and processed images side by side new_image = PIL.Image.new("RGB", (image.width * 2, image.height)) new_image.paste(image, (0, 0)) new_image.paste(images[0], (image.width, 0)) display(new_image) image_path = os.path.join(PATH, "AJ_Cook/AJ_Cook_0001.jpg") # Download the image image = open_image(image_path) # Define the prompt prompt = "change hair color to platinum" # Process the image with the prompt using the pipeline images = pipe( prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7, ).images # Display the original and processed images side by side new_image = PIL.Image.new("RGB", (image.width * 2, image.height)) new_image.paste(image, (0, 0)) new_image.paste(images[0], (image.width, 0)) display(new_image)
import numpy as np import pandas as pd import matplotlib.pyplot as plt import random, os, glob, cv2, h5py from keras.models import Model, model_from_json from sklearn import svm from sklearn.utils import shuffle from sklearn.metrics import classification_report, accuracy_score, f1_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import LabelEncoder, MinMaxScaler from sklearn.model_selection import train_test_split fire_path_test = r"../input/fire-detection/Dataset/Testing/fire/" nonfire_path_test = r"../input/fire-detection/Dataset/Testing/nofire/" fire_path_train = r"../input/fire-detection/Dataset/Training and Validation/fire/" nonfire_path_train = r"../input/fire-detection/Dataset/Training and Validation/nofire/" fire_df_train = pd.DataFrame( {"path": [fire_path_train + file for file in os.listdir(fire_path_train)]} ) fire_df_train["label"] = pd.Series(1, index=range(fire_df_train.shape[0])) fire_df_train.head() fire_df_test = pd.DataFrame( {"path": [fire_path_test + file for file in os.listdir(fire_path_test)]} ) fire_df_test["label"] = pd.Series(1, index=range(fire_df_test.shape[0])) fire_df_test.head() nonfire_df_train = pd.DataFrame( {"path": [nonfire_path_train + file for file in os.listdir(nonfire_path_train)]} ) nonfire_df_train["label"] = pd.Series(0, index=range(nonfire_df_train.shape[0])) nonfire_df_train.head() nonfire_df_test = pd.DataFrame( {"path": [nonfire_path_test + file for file in os.listdir(nonfire_path_test)]} ) nonfire_df_test["label"] = pd.Series(0, index=range(nonfire_df_test.shape[0])) nonfire_df_test.head() # Fire print(fire_df_train.shape, fire_df_test.shape) fire_df = pd.concat([fire_df_train, fire_df_test]) print(fire_df.shape) # nofire print(nonfire_df_train.shape, nonfire_df_test.shape) nonfire_df = pd.concat([nonfire_df_train, nonfire_df_test]) print(nonfire_df.shape) # Fire fire_df = shuffle(fire_df, random_state=0) fire_train, fire_test = train_test_split(fire_df, test_size=0.4, random_state=1) fire_valid, fire_test = train_test_split(fire_test, test_size=0.5, random_state=1) print(fire_train.shape, fire_test.shape, fire_valid.shape) # Non Fire nonfire_df = shuffle(nonfire_df, random_state=0) nonfire_train, nonfire_test = train_test_split( nonfire_df, test_size=0.4, random_state=1 ) nonfire_valid, nonfire_test = train_test_split( nonfire_test, test_size=0.5, random_state=1 ) print(nonfire_train.shape, nonfire_test.shape, nonfire_valid.shape) train_df = pd.concat([fire_train, nonfire_train]).reset_index().drop(["index"], axis=1) test_df = pd.concat([fire_test, nonfire_test]).reset_index().drop(["index"], axis=1) valid_df = pd.concat([fire_valid, nonfire_valid]).reset_index().drop(["index"], axis=1) print(train_df.shape, valid_df.shape, test_df.shape) plt.figure(figsize=(20, 5)) plt.subplot(1, 3, 1) train_df.label.hist() plt.subplot(1, 3, 2) test_df.label.hist() plt.subplot(1, 3, 3) valid_df.label.hist() size_img = (224, 224) def read_img(path, size): img = cv2.imread(path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, size) / 255 return img def read_all_img(paths, labels, size): x = np.array( [ cv2.resize(cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB), size) for path in paths ] ) y = labels.to_numpy() return x, y x_train, y_train = read_all_img(train_df.path, train_df.label, size_img) x_valid, y_valid = read_all_img(valid_df.path, valid_df.label, size_img) x_test, y_test = read_all_img(test_df.path, test_df.label, size_img) for idx, i in enumerate(x_train[:3]): plt.imshow(i) plt.title(y_train[idx]) plt.show() import tensorflow as tf from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.models import Model from tensorflow.keras.layers import GlobalAveragePooling2D, Dense, Input, Dropout from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import CSVLogger from keras.callbacks import Callback, CSVLogger, ModelCheckpoint batch_size = 32 size_image = 224 train_paths = train_df.path y_train = train_df.label test_paths = test_df.path y_test = test_df.label valid_paths = valid_df.path y_valid = valid_df.label # Callbacks checkpoint_min_val_loss = ModelCheckpoint( "../working/model_min_val_loss.h5", verbose=1, monitor="val_loss", mode="min", save_best_only=True, save_weights_only=True, ) checkpoint_max_val_acc = ModelCheckpoint( "../working/model_max_val_acc.h5", verbose=1, monitor="val_binary_accuracy", mode="max", save_best_only=True, save_weights_only=True, ) csvlogger = CSVLogger( filename="../working/training_log.csv", separator=",", append=True ) callbacks_list = [checkpoint_min_val_loss, checkpoint_max_val_acc, csvlogger] # for keras from classification_models.keras import Classifiers ResNet18, preprocess_input = Classifiers.get("resnet18") resnet18 = ResNet18((224, 224, 3), weights="imagenet", include_top=False) x = GlobalAveragePooling2D()(resnet18.output) x = Dropout(0.7)(x) x = Dense(1024, activation="relu")(x) x = Dropout(0.7)(x) output = Dense(1, activation="sigmoid")(x) # Model model_resnet18 = Model(resnet18.input, output) model_resnet18.summary() # warm-up for layer in model_resnet18.layers: layer.trainable = False for i in range(-5, 0): model_resnet18.layers[i].trainable = True model_resnet18.compile( loss="binary_crossentropy", optimizer="Adam", metrics=[ "binary_accuracy", ], ) model_resnet18.fit( x_train, y_train, epochs=2, shuffle=True, validation_data=(x_valid, y_valid), callbacks=callbacks_list, ) epochs = 32 for layer in model_resnet18.layers: layer.trainable = True model_resnet18.compile( loss="binary_crossentropy", optimizer=Adam(learning_rate=1e-4), metrics=["binary_accuracy"], ) model_resnet18.fit( x_train, y_train, epochs=epochs, shuffle=True, validation_data=(x_valid, y_valid), callbacks=callbacks_list, ) save = pd.read_csv("../working/training_log.csv") print(save.shape) # Plot plt.figure(figsize=(20, 5)) plt.subplot(121) plt.title("Binary accuracy") plt.plot(save.binary_accuracy) plt.plot(save.val_binary_accuracy) plt.legend(("Train", "Valid")) plt.subplot(122) plt.title("Loss") plt.plot(save.loss) plt.plot(save.val_loss) plt.legend(("Train", "Valid")) # Save model model_json = model_resnet18.to_json() with open("model.json", "w") as json_file: json_file.write(model_json) # load json and create model json_file = open("model.json", "r") loaded_model_json = json_file.read() json_file.close() model_resnet18 = model_from_json(loaded_model_json) print("Train f1:", f1_score(y_train, model_resnet18.predict(x_train).round())) print("Valid f1:", f1_score(y_valid, model_resnet18.predict(x_valid).round())) print("Test f1:", f1_score(y_test, model_resnet18.predict(x_test).round())) pred = model_resnet18.predict(x_test[:5]) for idx, i in enumerate(x_test[:3]): plt.imshow(i) plt.title( str(y_test[idx]) + " ( dự đoán đúng)" if pred[idx] == y_test[idx] else +" (dự đoán sai)" ) plt.show()
# loading the library import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt # loading the datasets train = pd.read_csv("/kaggle/input/playground-series-s3e12/train.csv", index_col=0) test = pd.read_csv("/kaggle/input/playground-series-s3e12/test.csv", index_col=0) submission_file = pd.read_csv( "/kaggle/input/playground-series-s3e12/sample_submission.csv", index_col=0 ) # # what to do here: # * Bulding machine learning models to predict target; # * I have to use the classification method probably; # * Learn how to do that and practice here; # # Data # * Need to know what they mean: id', 'gravity', 'ph', 'osmo', 'cond', 'urea', 'calc', 'target' # checking with the data train.shape train.columns train.size train.head() train.info() train.isna().sum() train.isnull().sum() # test dataset test.shape test.columns test.size test.head() test.info() test.isna().sum() test.isnull().sum() # # Descriptive statistics (EDA) # * check the missing values of the data # * calculate the descriptive statistics # * correlation analysis # * basic regression analysis (multiple regression using couple of models) descriptive = train.describe().transpose() # calculating skewness and kurtosis and t-value of the data from scipy.stats import skew, kurtosis, t # skewness = skew(train, axis=0) # kurtosis= kurtosis(train,axis=0) # or using the following command to get results with column names skew = pd.DataFrame([train[:].skew()], index=["skewness"]).transpose() kurtosis = pd.DataFrame([train[:].kurtosis()], index=["kurtosis"]).transpose() skewness_kurtosis = skew.join(kurtosis) # creating a function for calculating a t-value (to see whether the mean is different from 0 or not) def t_value(data): import pandas as pd t_value = (data.mean(axis=0) - 0) / (np.std(data) / np.sqrt(len(data))) return pd.DataFrame(t_value) t_value = t_value(data=train) t_value.rename(columns={"0": "tScore"}, inplace=True) # combining all the results together (descriptive statistics) ds_results = descriptive.join(skewness_kurtosis) ds_statistics = ds_results.join(t_value) ds_statistics = pd.DataFrame(ds_statistics) ds_statistics.rename( columns={ "count": "Count", "mean": "Mean", "std": "SD", "min": "Min", "25%": "25%", "50%": "50%", "75%": "75%", "max": "Max", "skewness": "Skewness", "kurtosis": "Kurtosis", "0": "t-value", } ) # box plot for the train data train.boxplot() plt.show() # showing histogram of the variables train.hist() plt.tight_layout() plt.show() # plotting the correlation heatmap to the show the results corr = train.corr() sns.heatmap(data=corr, cmap="coolwarm", annot=True, robust=True, cbar=True) plt.show() # develop general regression models to investigate the issue
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.preprocessing import StandardScaler from sklearn.metrics import roc_auc_score from sklearn.model_selection import StratifiedKFold from catboost import CatBoostClassifier from functools import partial from skopt import space from skopt import gp_minimize import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # ### Loading data files along with original data df_train = pd.read_csv("/kaggle/input/playground-series-s3e12/train.csv") df_test = pd.read_csv("/kaggle/input/playground-series-s3e12/test.csv") original_data = pd.read_csv( "/kaggle/input/kidney-stone-prediction-based-on-urine-analysis/kindey stone urine analysis.csv" ) submission = pd.read_csv("/kaggle/input/playground-series-s3e12/sample_submission.csv") df_train.head() original_data.shape # ### Making a Dataframe based on given files and original data file # Is_generated df_train["is_generated"] = 1 df_test["is_generated"] = 1 original_data["is_generated"] = 0 # Join data train_full = pd.concat( [df_train, original_data], axis=0, ignore_index=True ).reset_index(drop=True) train_full.head() df_test.head() # ### Feature Engineering # # From https://www.kaggle.com/code/tetsutani/ps3e12-eda-ensemble-baseline def create_new_features(data): # Ion product of calcium and urea data["ion_product"] = data["calc"] * data["urea"] # Calcium-to-urea ratio data["calcium_to_urea_ratio"] = data["calc"] / data["urea"] # Electrolyte balance data["electrolyte_balance"] = data["cond"] / (10 ** (-data["ph"])) # Osmolality-to-specific gravity ratio data["osmolality_to_sg_ratio"] = data["osmo"] / data["gravity"] ## Add Feature engineering part # The product of osmolarity and density is created as a new property data["osmo_density"] = data["osmo"] * data["gravity"] # Converting pH column to categorical variable data["pH_cat"] = pd.cut( data["ph"], bins=[0, 4.5, 6.5, 8.5, 14], labels=["sangat acidic", "acidic", "neutral", "basic"], ) dummies = pd.get_dummies(data["pH_cat"]) data = pd.concat([data, dummies], axis=1) # Deleting columns using dummy variables. data.drop( ["pH_cat", "sangat acidic", "basic", "neutral", "ph"], axis=1, inplace=True ) return data # Create Feature train_full = create_new_features(train_full) df_test = create_new_features(df_test) # ### Observing Correlation # https://www.kaggle.com/code/naesalang/little-beautiful-notebook/notebook correlation = train_full.corr() correlation["target"].drop("target").plot(kind="bar", color="xkcd:magenta") plt.grid(True) plt.xlabel("Features") plt.ylabel("Correlation") # ### Simple Preprocessing useful_columns = [c for c in train_full.columns if c not in ["id", "target"]] print(useful_columns) df_test = pd.DataFrame(df_test, columns=useful_columns) df_test.columns # ### Building X and y datasets from training full dataset y = train_full["target"] X = train_full[useful_columns] # ### Scaling the datasets by applying StandardScalar() # Scale scaler = StandardScaler() X = pd.DataFrame(scaler.fit_transform(X)) X_test = pd.DataFrame(scaler.transform(df_test)) X = np.asarray(X) X_test = np.asarray(X_test) # ### Using the Bayesian OPtimization # Following two cells may be uncommented, if you wanna hyperparameter tune. """def optimize(params, param_names, x, y): # convert params to dictionary params = dict(zip(param_names, params)) model = CatBoostClassifier(**params, random_state = 42, verbose = False) num_folds = 5 kf = StratifiedKFold(n_splits = num_folds, shuffle = True, random_state = 42) scores = [] for fold, (trn_idx, val_idx) in enumerate(kf.split(X,y)): print('-'*20, 'Fold:', fold, '-'*20) X_train, X_valid = X[trn_idx], X[val_idx] y_train, y_valid = y[trn_idx], y[val_idx] model.fit(X_train, y_train) y_pred = model.predict_proba(X_valid)[:,1] score = roc_auc_score(y_valid,y_pred) print('roc_auc_score: ', score) scores.append(score) return -1*np.mean(scores)""" """param_space = [ space.Integer(2,10, name = "max_depth"), space.Integer(50, 1000, name = "n_estimators"), space.Real(0.01, 0.5, name = 'learning_rate'), space.Real(1.0, 10.0, name = 'l2_leaf_reg') ] param_names = ["max_depth", "n_estimators","learning_rate", "l2_leaf_reg"] optimization_function = partial(optimize, param_names = param_names, x = X, y = y) result = gp_minimize(optimization_function, dimensions = param_space, n_calls = 15, n_random_starts = 10, verbose = 10) best_params = dict(zip(param_names, result.x)) print(best_params)""" # #### Running Final Model after Parameters Tuning best_params = { "max_depth": 10, "n_estimators": 50, "learning_rate": 0.44980085135871845, "l2_leaf_reg": 10.0, } y_preds = np.zeros(len(X_test)) num_folds = 5 kf = StratifiedKFold(n_splits=num_folds, shuffle=True, random_state=42) scores = [] for fold, (trn_idx, val_idx) in enumerate(kf.split(X, y)): print("-" * 20, "Fold:", fold, "-" * 20) X_train, X_valid = X[trn_idx], X[val_idx] y_train, y_valid = y[trn_idx], y[val_idx] model = CatBoostClassifier(**best_params, random_state=42, verbose=False) model.fit(X_train, y_train) y_pred = model.predict_proba(X_valid)[:, 1] score = roc_auc_score(y_valid, y_pred) y_preds += model.predict_proba(X_test)[:, 1] / num_folds print("roc_auc_score: ", score) scores.append(score) print(-1 * np.mean(scores)) # ### Submission submission["target"] = y_preds submission.to_csv("submission.csv", index=False)
NUM_SENTENCE = 4 import pandas as pd df_train = pd.read_csv("/kaggle/input/mtsamples-v2/summ_train.tsv", sep="\t") df_test = pd.read_csv("/kaggle/input/mtsamples-v2/summ_test_new.tsv", sep="\t") # df = pd.concat([df_train, df_test], ignore_index = True) df_train.shape, df_test.shape df_train.sample(2) from sumy.parsers.plaintext import PlaintextParser from sumy.nlp.tokenizers import Tokenizer from sumy.summarizers.luhn import LuhnSummarizer import nltk import re nltk.download("punkt") summarizer = LuhnSummarizer() def section_wise_luhn(df_old, num_sent): transc = df_old["transcription"].values desc = df_old["description"].values assert len(transc) == len(desc) new_trans = [] new_desc = [] lens_old = [] lens_new = [] for i in range(len(transc)): x = transc[i] lens_old.append(len(x)) flag = 0 new_x = "" splits = {} pattern = r"[A-Z\s]+:" match = re.findall(pattern, x) l = len(match) for j in range(l): if j < l - 1: splits[match[j]] = x[ x.find(match[j]) + len(match[j]) : x.find(match[j + 1]) ] else: splits[match[j]] = x[x.find(match[j]) + len(match[j]) :] assert (len(splits.keys()) == len(re.findall(pattern, x)), x) for sec, text in splits.items(): parser = PlaintextParser.from_string(text, Tokenizer("english")) summary = summarizer(parser.document, num_sent) new_x += sec new_x += " " for sent in summary: new_x += str(sent) new_x += ". " if len(new_x) > 0: new_trans.append(new_x) lens_new.append(len(new_x)) new_desc.append(desc[i]) else: new_trans.append(x) lens_new.append(len(new_x)) new_desc.append(desc[i]) print("OLD: ", sum(lens_old) / len(lens_old)) print("NEW: ", sum(lens_new) / len(lens_new)) return pd.DataFrame.from_dict({"description": new_desc, "transcription": new_trans}) print(df_train.shape) df_train = section_wise_luhn(df_train, NUM_SENTENCE) print(df_train.shape) print(df_test.shape) df_test = section_wise_luhn(df_test, NUM_SENTENCE) print(df_test.shape) from nltk.translate.bleu_score import corpus_bleu def bleu_score(refs, preds): actual, predicted = [], [] for r, p in zip(refs, preds): actual.append([r.split()]) predicted.append(p.split()) return round(corpus_bleu(actual, predicted) * 100, 2) # Importing libraries import random, os import numpy as np import pandas as pd import torch import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler from torch.optim.lr_scheduler import ReduceLROnPlateau import matplotlib.pyplot as plt # Importing the T5 modules from huggingface/transformers from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from rich.table import Column, Table from rich import box from rich.console import Console import evaluate def seed_everything(seed: int): random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False rouge_score = evaluate.load("rouge") # define a rich console logger console = Console(record=True) def display_df(df): """display dataframe in ASCII format""" console = Console() table = Table( Column("source_text", justify="center"), Column("target_text", justify="center"), title="Sample Data", pad_edge=False, box=box.ASCII, ) for i, row in enumerate(df.values.tolist()): table.add_row(row[0], row[1]) console.print(table) training_logger = Table( Column("Epoch", justify="center"), Column("Steps", justify="center"), Column("Loss", justify="center"), Column("Rouge/BLEU score", justify="center"), title="Training Status", pad_edge=False, box=box.ASCII, ) # Setting up the device for GPU usage from torch import cuda device = "cuda" if cuda.is_available() else "cpu" class YourDataSetClass(Dataset): """ Creating a custom dataset for reading the dataset and loading it into the dataloader to pass it to the neural network for finetuning the model """ def __init__( self, dataframe, tokenizer, source_len, target_len, source_text, target_text ): self.tokenizer = tokenizer self.data = dataframe self.source_len = source_len self.summ_len = target_len self.target_text = self.data[target_text] self.source_text = self.data[source_text] def __len__(self): return len(self.target_text) def __getitem__(self, index): source_text = str(self.source_text[index]) target_text = str(self.target_text[index]) # cleaning data so as to ensure data is in string type source_text = " ".join(source_text.split()) target_text = " ".join(target_text.split()) source = self.tokenizer.batch_encode_plus( [source_text], max_length=self.source_len, pad_to_max_length=True, truncation=True, padding="max_length", return_tensors="pt", ) target = self.tokenizer.batch_encode_plus( [target_text], max_length=self.summ_len, pad_to_max_length=True, truncation=True, padding="max_length", return_tensors="pt", ) source_ids = source["input_ids"].squeeze() source_mask = source["attention_mask"].squeeze() target_ids = target["input_ids"].squeeze() target_mask = target["attention_mask"].squeeze() return { "source_ids": source_ids.to(dtype=torch.long), "source_mask": source_mask.to(dtype=torch.long), "target_ids": target_ids.to(dtype=torch.long), "target_ids_y": target_ids.to(dtype=torch.long), } def train( epoch, tokenizer, model, device, train_loader, val_loader, optimizer, scheduler ): """ Function to be called for training with the parameters passed from main function """ model.train() r1 = [] r2 = [] rl = [] rlsum = [] b = [] te_losses = [] tr_loss = 0 for _, data in enumerate(train_loader, 0): y = data["target_ids"].to(device, dtype=torch.long) y_ids = y[:, :-1].contiguous() lm_labels = y[:, 1:].clone().detach() lm_labels[y[:, 1:] == tokenizer.pad_token_id] = -100 ids = data["source_ids"].to(device, dtype=torch.long) mask = data["source_mask"].to(device, dtype=torch.long) optimizer.zero_grad() outputs = model( input_ids=ids, attention_mask=mask, decoder_input_ids=y_ids, labels=lm_labels, ) loss = outputs[0] loss.backward() optimizer.step() tr_loss += loss.item() if _ % 50 == 0: predictions, actuals, l = validate( epoch, tokenizer, model, device, val_loader ) scores = rouge_score.compute(predictions=predictions, references=actuals) te_losses.append(l) temp = bleu_score(actuals, predictions) b.append(temp) r1.append(round(scores["rouge1"] * 100, 2)) r2.append(round(scores["rouge2"] * 100, 2)) rl.append(round(scores["rougeL"] * 100, 2)) rlsum.append(round(scores["rougeLsum"] * 100, 2)) r_dict = { "r1": round(scores["rouge1"] * 100, 2), "r2": round(scores["rouge2"] * 100, 2), "rl": round(scores["rougeL"] * 100, 2), "rlsum": round(scores["rougeLsum"] * 100, 2), "bleu": temp, } training_logger.add_row(str(epoch), str(_), str(l), str(r_dict)) console.print(training_logger) scheduler.step(l) return r1, r2, rl, rlsum, b, float(tr_loss / len(train_loader)), te_losses def validate(epoch, tokenizer, model, device, loader): """ Function to evaluate model for predictions """ model.eval() predictions = [] actuals = [] t_loss = 0 with torch.no_grad(): for _, data in enumerate(loader, 0): y = data["target_ids"].to(device, dtype=torch.long) y_ids = y[:, :-1].contiguous() lm_labels = y[:, 1:].clone().detach() lm_labels[y[:, 1:] == tokenizer.pad_token_id] = -100 ids = data["source_ids"].to(device, dtype=torch.long) mask = data["source_mask"].to(device, dtype=torch.long) outputs = model( input_ids=ids, attention_mask=mask, decoder_input_ids=y_ids, labels=lm_labels, ) loss = outputs[0] t_loss += loss.item() generated_ids = model.generate( input_ids=ids, attention_mask=mask, max_length=150, num_beams=2, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, ) preds = [ tokenizer.decode( g, skip_special_tokens=True, clean_up_tokenization_spaces=True ) for g in generated_ids ] target = [ tokenizer.decode( t, skip_special_tokens=True, clean_up_tokenization_spaces=True ) for t in y ] # if _%10==0: # console.print(f'Completed {_}') predictions.extend(preds) actuals.extend(target) return predictions, actuals, float(t_loss / len(loader)) def T5Trainer( train_dataset, val_dataset, source_text, target_text, model_params, output_dir="./outputs/", ): """ T5 trainer """ # Set random seeds and deterministic pytorch for reproducibility # torch.manual_seed(model_params["SEED"]) # pytorch random seed # np.random.seed(model_params["SEED"]) # numpy random seed # torch.backends.cudnn.deterministic = True seed_everything(model_params["SEED"]) # logging console.log(f"""[Model]: Loading {model_params["MODEL"]}...\n""") # tokenzier for encoding the text tokenizer = AutoTokenizer.from_pretrained(model_params["MODEL"]) # Defining the model. We are using t5-base model and added a Language model layer on top for generation of Summary. # Further this model is sent to device (GPU/TPU) for using the hardware. model = AutoModelForSeq2SeqLM.from_pretrained(model_params["MODEL"]) model = model.to(device) # logging console.log(f"[Data]: Reading data...\n") # Importing the raw dataset # dataframe = dataframe[[source_text,target_text]] # display_df(df_train.head(2)) # console.print(f"FULL Dataset: {dataframe.shape}") console.print(f"TRAIN Dataset: {train_dataset.shape}") console.print(f"TEST Dataset: {val_dataset.shape}\n") # Creating the Training and Validation dataset for further creation of Dataloader training_set = YourDataSetClass( train_dataset, tokenizer, model_params["MAX_SOURCE_TEXT_LENGTH"], model_params["MAX_TARGET_TEXT_LENGTH"], source_text, target_text, ) val_set = YourDataSetClass( val_dataset, tokenizer, model_params["MAX_SOURCE_TEXT_LENGTH"], model_params["MAX_TARGET_TEXT_LENGTH"], source_text, target_text, ) # Defining the parameters for creation of dataloaders train_params = { "batch_size": model_params["TRAIN_BATCH_SIZE"], "shuffle": True, "num_workers": 0, } val_params = { "batch_size": model_params["VALID_BATCH_SIZE"], "shuffle": False, "num_workers": 0, } # Creation of Dataloaders for testing and validation. This will be used down for training and validation stage for the model. training_loader = DataLoader(training_set, **train_params) val_loader = DataLoader(val_set, **val_params) # Defining the optimizer that will be used to tune the weights of the network in the training session. optimizer = torch.optim.Adam( params=model.parameters(), lr=model_params["LEARNING_RATE"] ) scheduler = ReduceLROnPlateau(optimizer, "min", factor=0.5) # Training loop console.log(f"[Initiating Fine Tuning]...\n") r1s = [] r2s = [] rls = [] rlsums = [] bs = [] trl = [] tel = [] path = os.path.join(output_dir, "best_model.pt") for epoch in range(model_params["TRAIN_EPOCHS"]): r1, r2, rl, rlsum, b, tr, te = train( epoch, tokenizer, model, device, training_loader, val_loader, optimizer, scheduler, ) # if len(r1s) == 0: # torch.save(model, path) # elif max(r1) > max(r1s) and max(r2) > max(r2s) and max(rl) > max(rls) and max(rlsum) > max(rlsums): # torch.save(model, path) r1s += r1 r2s += r2 rls += rl rlsums += rlsum bs += b trl.append(tr) tel += te for epoch in range(model_params["VAL_EPOCHS"]): predictions, actuals, _ = validate( epoch, tokenizer, model, device, val_loader ) final_df = pd.DataFrame( {"Generated Text": predictions, "Actual Text": actuals} ) final_df.to_csv(os.path.join(output_dir, "predictions.csv")) scores = rouge_score.compute(predictions=predictions, references=actuals) rouge_names = ["rouge1", "rouge2", "rougeL", "rougeLsum"] rouge_dict = dict((rn, round(scores[rn] * 100, 2)) for rn in rouge_names) print(rouge_dict) l = len(r1s) x = [50 * (i + 1) for i in range(l)] fig = plt.figure(figsize=(15, 24)) plt.subplot(4, 2, 1) plt.plot( x, r1s, label="rouge1", color="green", linestyle="dashed", linewidth=3, marker="o", markerfacecolor="blue", markersize=8, ) plt.subplot(4, 2, 2) plt.plot( x, r2s, label="rouge2", color="green", linestyle="dashed", linewidth=3, marker="o", markerfacecolor="blue", markersize=8, ) plt.subplot(4, 2, 3) plt.plot( x, rls, label="rougeL", color="green", linestyle="dashed", linewidth=3, marker="o", markerfacecolor="blue", markersize=8, ) plt.subplot(4, 2, 4) plt.plot( x, rlsums, label="rougeLsum", color="green", linestyle="dashed", linewidth=3, marker="o", markerfacecolor="blue", markersize=8, ) plt.subplot(4, 2, 5) plt.plot( x, bs, label="BLEU", color="green", linestyle="dashed", linewidth=3, marker="o", markerfacecolor="blue", markersize=8, ) plt.subplot(4, 2, 6) plt.plot( x, tel, label="Val Loss", color="green", linestyle="dashed", linewidth=3, marker="o", markerfacecolor="blue", markersize=8, ) plt.subplot(4, 2, 7) plt.plot( [i for i in range(model_params["TRAIN_EPOCHS"])], trl, label="Train Loss", color="green", linestyle="dashed", linewidth=3, marker="o", markerfacecolor="blue", markersize=8, ) plt.show() console.log(f"[Saving Model]...\n") # Saving the model after training # path = os.path.join(output_dir, "model_files") # model.save_pretrained(path) # tokenizer.save_pretrained(path) # evaluating test dataset console.log(f"[Initiating Validation]...\n") # del model # model = torch.load(path) console.save_text(os.path.join(output_dir, "logs.txt")) console.log(f"[Validation Completed.]\n") console.print( f"""[Model] Model saved @ {os.path.join(output_dir, "model_files")}\n""" ) console.print( f"""[Validation] Generation on Validation data saved @ {os.path.join(output_dir,'predictions.csv')}\n""" ) console.print(f"""[Logs] Logs saved @ {os.path.join(output_dir,'logs.txt')}\n""") model_params = { "MODEL": "facebook/bart-base", # model_type: t5-base/t5-large "TRAIN_BATCH_SIZE": 8, # training batch size "VALID_BATCH_SIZE": 8, # validation batch size "TRAIN_EPOCHS": 4, # number of training epochs "VAL_EPOCHS": 1, # number of validation epochs "LEARNING_RATE": 2e-5, # learning rate "MAX_SOURCE_TEXT_LENGTH": 512, # max length of source text "MAX_TARGET_TEXT_LENGTH": 150, # max length of target text "SEED": 42, # set seed for reproducibility } T5Trainer( train_dataset=df_train, val_dataset=df_test, source_text="transcription", target_text="description", model_params=model_params, output_dir="/kaggle/working/", )
# # Welcome to import land import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import matplotlib from sklearn.neighbors import KNeighborsClassifier import sklearn from sklearn.model_selection import train_test_split from sklearn import metrics import seaborn as sns import matplotlib.pyplot as pyplt from sklearn.ensemble import RandomForestClassifier import os import glob from glob import glob import xgboost as xgb import keras from keras.datasets import mnist from keras.layers import Dense from keras.models import Sequential import tensorflow as tf from matplotlib import pyplot as plt from sklearn.linear_model import LogisticRegression from random import randint from sklearn.linear_model import Perceptron from keras.layers import Dropout from sklearn.preprocessing import StandardScaler # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import LabelBinarizer from keras.layers import Dropout from sklearn.model_selection import GridSearchCV lb = LabelEncoder() from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session from sklearn.ensemble import VotingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from mpl_toolkits.mplot3d import Axes3D import cv2 import tqdm from sklearn.utils import shuffle from PIL import Image # from torchvision import transforms from keras.preprocessing.image import ImageDataGenerator from keras.layers import ( Activation, Conv2D, MaxPooling2D, ZeroPadding2D, GlobalAveragePooling2D, Flatten, ) from tensorflow.keras.layers import BatchNormalization # # Importing files # there are two csv's :) # However, BBox just includes some of the image sizes so it is useless and will not be used # Bbox[x y w h] is a bounding box coordinate system and I believe it is useless. So, this entire csv is slightly useless. path = "/kaggle/input/data/" file = path + "Data_Entry_2017.csv" # print(file) Data_entry = pd.read_csv(file) Data_entry = Data_entry.drop(columns=["Unnamed: 11"]) Data_entry # ## Expanding the diseases diseases = [ "No Finding", "Cardiomegaly", "Emphysema", "Effusion", "Hernia", "Nodule", "Pneumothorax", "Atelectasis", "Pleural_Thickening", "Mass", "Edema", "Consolidation", "Infiltration", "Fibrosis", "Pneumonia", ] # Number diseases for disease in diseases: Data_entry[disease] = Data_entry["Finding Labels"].apply( lambda x: 1 if disease in x else 0 ) # separate df for target, might use this as the y value target = Data_entry[diseases].to_numpy() target Data_entry.rename(columns={"Finding Labels": "Specific Diagnosis"}, inplace=True) Data_entry.head(5) Data_entry["Simple Diagnosis"] = Data_entry["Specific Diagnosis"].str.split("|").str[0] Data_entry simpleDiseases = [ "(s)No Finding", "(s)Cardiomegaly", "(s)Emphysema", "(s)Effusion", "(s)Hernia", "(s)Nodule", "(s)Pneumothorax", "(s)Atelectasis", "(s)Pleural_Thickening", "(s)Mass", "(s)Edema", "(s)Consolidation", "(s)Infiltration", "(s)Fibrosis", "(s)Pneumonia", ] for disease in diseases: Data_entry["(s)" + disease] = Data_entry["Simple Diagnosis"].apply( lambda x: 1 if disease in x else 0 ) Data_entry.head(10) simpleTarget = Data_entry[simpleDiseases].to_numpy() simpleTarget simpleTarget.shape # # EDA (slightly) sns.pairplot(pd.read_csv("/kaggle/input/data/Data_Entry_2017.csv")) sns.violinplot(x="Patient Gender", y="Patient Age", data=Data_entry) # i smell outliers Data_entry[Data_entry["Patient Age"] > 120] Data_entry["Patient Age"] = Data_entry["Patient Age"].replace([148], 14) Data_entry["Patient Age"] = Data_entry["Patient Age"].replace([149], 14) Data_entry["Patient Age"] = Data_entry["Patient Age"].replace([150], 15) Data_entry["Patient Age"] = Data_entry["Patient Age"].replace([151], 15) Data_entry["Patient Age"] = Data_entry["Patient Age"].replace([152], 15) Data_entry["Patient Age"] = Data_entry["Patient Age"].replace([153], 15) Data_entry["Patient Age"] = Data_entry["Patient Age"].replace([154], 15) Data_entry["Patient Age"] = Data_entry["Patient Age"].replace([155], 15) Data_entry["Patient Age"] = Data_entry["Patient Age"].replace([411], 41) Data_entry["Patient Age"] = Data_entry["Patient Age"].replace([412], 41) Data_entry["Patient Age"] = Data_entry["Patient Age"].replace([413], 41) Data_entry["Patient Age"] = Data_entry["Patient Age"].replace([414], 41) Data_entry[Data_entry["Patient Age"] > 120] sns.violinplot( x="Cardiomegaly", y="Patient Age", data=Data_entry, hue="Patient Gender", split=True ) sns.violinplot( x="Emphysema", y="Patient Age", hue="Patient Gender", data=Data_entry, split=True ) sns.violinplot( x="Effusion", y="Patient Age", data=Data_entry, hue="Patient Gender", split=True ) sns.violinplot(x="Patient Gender", y="Patient Age", data=Data_entry) sns.violinplot( x="Hernia", y="Patient Age", data=Data_entry, hue="Patient Gender", split=True ) sns.violinplot( x="Nodule", y="Patient Age", data=Data_entry, hue="Patient Gender", split=True ) sns.violinplot( x="Pneumothorax", y="Patient Age", data=Data_entry, hue="Patient Gender", split=True ) sns.violinplot( x="Atelectasis", y="Patient Age", data=Data_entry, hue="Patient Gender", split=True ) sns.violinplot( x="Pleural_Thickening", y="Patient Age", data=Data_entry, hue="Patient Gender", split=True, ) sns.violinplot( x="Mass", y="Patient Age", data=Data_entry, hue="Patient Gender", split=True ) sns.violinplot( x="Edema", y="Patient Age", data=Data_entry, hue="Patient Gender", split=True ) sns.violinplot( x="Consolidation", y="Patient Age", data=Data_entry, hue="Patient Gender", split=True, ) sns.violinplot( x="Infiltration", y="Patient Age", data=Data_entry, hue="Patient Gender", split=True ) sns.violinplot( x="Fibrosis", y="Patient Age", data=Data_entry, hue="Patient Gender", split=True ) sns.violinplot( x="Pneumonia", y="Patient Age", data=Data_entry, hue="Patient Gender", split=True ) plt.figure(figsize=(10, 10)) plt.xlabel("Disease") plt.ylabel("No. of Patients") ax = Data_entry[diseases].sum().sort_values(ascending=False).plot(kind="bar") # # Image stuff all_image_paths = { os.path.basename(x): x for x in glob(os.path.join("..", "input", "data", "images*", "images", "*.png")) } Data_entry["Path"] = Data_entry["Image Index"].map(all_image_paths.get) files_list = Data_entry["Path"].tolist() Data_entry def show_image(img_path): f = plt.figure(figsize=(20, 8)) s1 = f.add_subplot(1, 2, 1) row = Data_entry[Data_entry["Path"] == img_path] ID = int(row["Patient ID"]) age = int(row["Patient Age"]) gender = str(row["Patient Gender"].item()) diagnosis = str(row["Specific Diagnosis"].item()) s1.set_title( f"Patient's Image\nPatient ID: {ID}\nPatient Age: {age}\nPateint Gender: {gender}\nSpecific Diagnosis: {diagnosis}" ) img = cv2.imread(img_path) plt.imshow(img, cmap="gray") plt.axis("off") plt.show() show_image("../input/data/images_001/images/00000010_000.png") # yay # ## Starting to mess with images images = list(Data_entry["Path"]) train_img, val_img, train_label, val_label = train_test_split( images, simpleTarget, test_size=10000, random_state=42, stratify=simpleTarget, ) Data_entry["Path"] train_img[0] # ## Model !?? new = Data_entry[Data_entry["Height]"] == 2500][ Data_entry["OriginalImage[Width"] == 2048 ] new pathArr = new["Path"].to_numpy() pathArr targetArr = new[simpleDiseases].to_numpy() targetArr train_ds = tf.keras.utils.image_dataset_from_directory( "/kaggle/input/data", seed=123, image_size=(img_height, img_width), batch_size=batch_size, ) train_ds.class_names for image_batch, labels_batch in train_ds: print(image_batch.shape) print(labels_batch.shape) break normalization_layer = tf.keras.layers.Rescaling(1.0 / 255) normalized_ds = train_ds.map(lambda x, y: normalization_layer(x), y) image_batch, labels_batch = next(iter(normalized_ds)) first_image = image_batch[0] print(np.min(first_image), np.max(first_image)) test_ds = tf.keras.utils.image_dataset_from_directory( "/kaggle/input/data/", validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size, ) targetArr = new[simpleDiseases].iloc[:4998].to_numpy() targetArr.shape val_ds.class_names X_train, X_test, y_train, y_test = train_test_split( pathArr, targetArr, test_size=0.25, random_state=42 ) train_ds y_train y_train.shape # # Attempt #1 starts here img_width = 2048 img_height = 2500 batch_size = 32 num_classes = 15 image_size = (img_height, img_width) flat_image_size = 5120000 import pathlib data_dir = pathlib.Path("/kaggle/input/data").with_suffix("") list_ds = tf.data.Dataset.list_files(str(data_dir / "*/*/*"), shuffle=False) list_ds = list_ds.shuffle(112120, reshuffle_each_iteration=False) for f in list_ds.take(5): print(f.numpy()) class_names = diseases val_size = int(112120 * 0.25) X_train = list_ds.skip(val_size) X_test = list_ds.take(val_size) for f in X_train.take(2): print(f.numpy()) print(tf.data.experimental.cardinality(X_train).numpy()) print(tf.data.experimental.cardinality(X_test).numpy()) def get_label(file_path): # image = file_path.str.split("images/").str[0] file_name = tf.strings.split(file_path, os.path.sep)[-1] row = Data_entry.loc[Data_entry["Image Index"] == file_name] s_label = row["Simple Diagnosis"] e_label = row[simpleDiseases].to_numpy() o_label = row[diseases].to_numpy() # print(s_label) return s_label def decode_img(img): # Convert the compressed string to a 3D uint8 tensor img = tf.io.decode_jpeg(img, channels=3) # Resize the image to the desired size return tf.image.resize(img, [img_height, img_width]) def process_path(file_path): label = get_label(file_path) # Load the raw data from the file as a string img = tf.io.read_file(file_path) img = decode_img(img) return img, label process_path("/kaggle/input/data/images_001/images/00000001_002.png") AUTOTUNE = tf.data.AUTOTUNE train_ds = X_train.cache().prefetch(buffer_size=AUTOTUNE) val_ds = X_test.cache().prefetch(buffer_size=AUTOTUNE) # Set `num_parallel_calls` so multiple images are loaded/processed in parallel. train_ds = X_train.map(process_path, num_parallel_calls=AUTOTUNE) val_ds = X_test.map(process_path, num_parallel_calls=AUTOTUNE) for image, label in train_ds.take(1): print("Image shape: ", image.numpy().shape) print("Label: ", label.numpy()) # to-do: # -get label: # should take in path and return {0,0,0,0,0,0,1,0,0,0,..} o 1-15 # -decode_img # -process_img # -dataset.map # -configure_for_performance # **label is not being stored** # # Attempt #1 ends here # # Attempt #2 starts here data = pd.read_csv("/kaggle/input/data/Data_Entry_2017.csv") data = data[ data["Patient Age"] < 100 ] # removing datapoints which having age greater than 100 data_image_paths = { os.path.basename(x): x for x in glob(os.path.join("kaggle", "input", "images*", "*", "*.png")) } print("Scans found:", len(data_image_paths), ", Total Headers", data.shape[0]) all_image_paths = { os.path.basename(x): x for x in glob(os.path.join("..", "input", "data", "images*", "images", "*.png")) } data["path"] = Data_entry["Image Index"].map(all_image_paths.get) files_list = Data_entry["path"].tolist() data["Patient Age"] = data["Patient Age"].map(lambda x: int(x)) data.sample(3) data data["Finding Labels"] = data["Finding Labels"].map( lambda x: x.replace("No Finding", "") ) from itertools import chain all_labels = np.unique( list(chain(*data["Finding Labels"].map(lambda x: x.split("|")).tolist())) ) all_labels = [x for x in all_labels if len(x) > 0] print("All Labels ({}): {}".format(len(all_labels), all_labels)) for c_label in all_labels: if len(c_label) > 1: # leave out empty labels data[c_label] = data["Finding Labels"].map( lambda finding: 1.0 if c_label in finding else 0 ) data.sample(3) # keep at least 1000 cases MIN_CASES = 1000 all_labels = [c_label for c_label in all_labels if data[c_label].sum() > MIN_CASES] print( "Clean Labels ({})".format(len(all_labels)), [(c_label, int(data[c_label].sum())) for c_label in all_labels], ) # since the dataset is very unbiased, we can resample it to be a more reasonable collection # weight is 0.04 + number of findings sample_weights = ( data["Finding Labels"].map(lambda x: len(x.split("|")) if len(x) > 0 else 0).values + 4e-2 ) sample_weights /= sample_weights.sum() data = data.sample(40000, weights=sample_weights) label_counts = data["Finding Labels"].value_counts()[:15] fig, ax1 = plt.subplots(1, 1, figsize=(12, 8)) ax1.bar(np.arange(len(label_counts)) + 0.5, label_counts) ax1.set_xticks(np.arange(len(label_counts)) + 0.5) _ = ax1.set_xticklabels(label_counts.index, rotation=90) # creating vector of diseases data["disease_vec"] = data.apply(lambda x: [x[all_labels].values], 1).map( lambda x: x[0] ) data data.iloc[0]["disease_vec"] from sklearn.model_selection import train_test_split train_df, valid_df = train_test_split( data, test_size=0.25, random_state=2018, stratify=data["Finding Labels"].map(lambda x: x[:4]), ) print("train", train_df.shape[0], "validation", valid_df.shape[0]) from keras.preprocessing.image import ImageDataGenerator IMG_SIZE = (128, 128) core_idg = ImageDataGenerator( samplewise_center=True, samplewise_std_normalization=True, horizontal_flip=True, vertical_flip=False, height_shift_range=0.05, width_shift_range=0.1, rotation_range=5, shear_range=0.1, fill_mode="reflect", zoom_range=0.15, ) def flow_from_dataframe(img_data_gen, in_df, path_col, y_col, **dflow_args): base_dir = os.path.dirname(in_df[path_col].values[0]) print("## Ignore next message from keras, values are replaced anyways") df_gen = img_data_gen.flow_from_directory( base_dir, class_mode="sparse", **dflow_args ) df_gen.filenames = in_df[path_col].values df_gen.classes = np.stack(in_df[y_col].values) df_gen.samples = in_df.shape[0] df_gen.n = in_df.shape[0] df_gen._set_index_array() df_gen.directory = "" # since we have the full path df_gen.filepaths.extend(df_gen.filenames) print("Reinserting dataframe: {} images".format(in_df.shape[0])) return df_gen train_gen = flow_from_dataframe( core_idg, train_df, path_col="path", y_col="disease_vec", target_size=IMG_SIZE, color_mode="grayscale", batch_size=32, ) valid_gen = flow_from_dataframe( core_idg, valid_df, path_col="path", y_col="disease_vec", target_size=IMG_SIZE, color_mode="grayscale", batch_size=256, ) # we can use much larger batches for evaluation # used a fixed dataset for evaluating the algorithm test_X, test_Y = next( flow_from_dataframe( core_idg, valid_df, path_col="path", y_col="disease_vec", target_size=IMG_SIZE, color_mode="grayscale", batch_size=2048, ) ) # one big batch # # Attempt #2 ends here # # Attempt #3 starts here all_xray_df = pd.read_csv("../input/data/Data_Entry_2017.csv") all_image_paths = { os.path.basename(x): x for x in glob(os.path.join("..", "input", "images*", "*", "*.png")) } print("Scans found:", len(all_image_paths), ", Total Headers", all_xray_df.shape[0]) all_image_paths = { os.path.basename(x): x for x in glob(os.path.join("..", "input", "data", "images*", "images", "*.png")) } all_xray_df["path"] = all_xray_df["Image Index"].map(all_image_paths.get) files_list = all_xray_df["path"].tolist() # all_xray_df['Patient Age'] = all_xray_df['Patient Age'].map(lambda x: int(x[:-1])) all_xray_df.sample(3) label_counts = all_xray_df["Finding Labels"].value_counts()[:15] fig, ax1 = plt.subplots(1, 1, figsize=(12, 8)) ax1.bar(np.arange(len(label_counts)) + 0.5, label_counts) ax1.set_xticks(np.arange(len(label_counts)) + 0.5) _ = ax1.set_xticklabels(label_counts.index, rotation=90) all_xray_df["Finding Labels"] = all_xray_df["Finding Labels"].map( lambda x: x.replace("No Finding", "") ) from itertools import chain all_labels = np.unique( list(chain(*all_xray_df["Finding Labels"].map(lambda x: x.split("|")).tolist())) ) all_labels = [x for x in all_labels if len(x) > 0] print("All Labels ({}): {}".format(len(all_labels), all_labels)) for c_label in all_labels: if len(c_label) > 1: # leave out empty labels all_xray_df[c_label] = all_xray_df["Finding Labels"].map( lambda finding: 1.0 if c_label in finding else 0 ) all_xray_df.sample(3) # keep at least 1000 cases MIN_CASES = 1000 all_labels = [ c_label for c_label in all_labels if all_xray_df[c_label].sum() > MIN_CASES ] print( "Clean Labels ({})".format(len(all_labels)), [(c_label, int(all_xray_df[c_label].sum())) for c_label in all_labels], ) # since the dataset is very unbiased, we can resample it to be a more reasonable collection # weight is 0.1 + number of findings sample_weights = ( all_xray_df["Finding Labels"] .map(lambda x: len(x.split("|")) if len(x) > 0 else 0) .values + 4e-2 ) sample_weights /= sample_weights.sum() all_xray_df = all_xray_df.sample(40000, weights=sample_weights) label_counts = all_xray_df["Finding Labels"].value_counts()[:15] fig, ax1 = plt.subplots(1, 1, figsize=(12, 8)) ax1.bar(np.arange(len(label_counts)) + 0.5, label_counts) ax1.set_xticks(np.arange(len(label_counts)) + 0.5) _ = ax1.set_xticklabels(label_counts.index, rotation=90) label_counts = 100 * np.mean(all_xray_df[all_labels].values, 0) fig, ax1 = plt.subplots(1, 1, figsize=(12, 8)) ax1.bar(np.arange(len(label_counts)) + 0.5, label_counts) ax1.set_xticks(np.arange(len(label_counts)) + 0.5) ax1.set_xticklabels(all_labels, rotation=90) ax1.set_title("Adjusted Frequency of Diseases in Patient Group") _ = ax1.set_ylabel("Frequency (%)") all_xray_df["disease_vec"] = all_xray_df.apply(lambda x: [x[all_labels].values], 1).map( lambda x: x[0] ) from sklearn.model_selection import train_test_split train_df, valid_df = train_test_split( all_xray_df, test_size=0.25, random_state=2018, stratify=all_xray_df["Finding Labels"].map(lambda x: x[:4]), ) print("train", train_df.shape[0], "validation", valid_df.shape[0]) from keras.preprocessing.image import ImageDataGenerator IMG_SIZE = (128, 128) core_idg = ImageDataGenerator( samplewise_center=True, samplewise_std_normalization=True, horizontal_flip=True, vertical_flip=False, height_shift_range=0.05, width_shift_range=0.1, rotation_range=5, shear_range=0.1, fill_mode="reflect", zoom_range=0.15, ) def flow_from_dataframe(img_data_gen, in_df, path_col, y_col, **dflow_args): base_dir = os.path.dirname(in_df[path_col].values[0]) print("## Ignore next message from keras, values are replaced anyways") df_gen = img_data_gen.flow_from_directory( base_dir, class_mode="sparse", **dflow_args ) df_gen.filenames = in_df[path_col].values df_gen.classes = np.stack(in_df[y_col].values) df_gen.samples = in_df.shape[0] df_gen.n = in_df.shape[0] df_gen._set_index_array() df_gen.directory = "" # since we have the full path df_gen.filepaths.extend(df_gen.filenames) print("Reinserting dataframe: {} images".format(in_df.shape[0])) return df_gen train_gen = flow_from_dataframe( core_idg, train_df, path_col="path", y_col="disease_vec", target_size=IMG_SIZE, color_mode="grayscale", batch_size=32, ) valid_gen = flow_from_dataframe( core_idg, valid_df, path_col="path", y_col="disease_vec", target_size=IMG_SIZE, color_mode="grayscale", batch_size=256, ) # we can use much larger batches for evaluation # used a fixed dataset for evaluating the algorithm test_X, test_Y = next( flow_from_dataframe( core_idg, valid_df, path_col="path", y_col="disease_vec", target_size=IMG_SIZE, color_mode="grayscale", batch_size=1024, ) ) # one big batch ## Ignore next message from keras, values are replaced anyways t_x, t_y = next(train_gen) fig, m_axs = plt.subplots(4, 4, figsize=(16, 16)) for c_x, c_y, c_ax in zip(t_x, t_y, m_axs.flatten()): c_ax.imshow(c_x[:, :, 0], cmap="bone", vmin=-1.5, vmax=1.5) c_ax.set_title( ", ".join( [n_class for n_class, n_score in zip(all_labels, c_y) if n_score > 0.5] ) ) c_ax.axis("off") # # Attempt #3 ends here # # Attempt #4 starts here IMAGE_SIZE = [128, 128] EPOCHS = 20 # BATCH_SIZE = 8 * strategy.num_replicas_in_sync BATCH_SIZE = 64 train_df_main = pd.read_csv("../input/chestxray8-dataframe/train_df.csv") # valid_df = pd.read_csv("nih/valid-small.csv") # test_df = pd.read_csv("nih/test.csv") train_df_main.drop(["No Finding"], axis=1, inplace=True) labels = train_df_main.columns[2:-1] labels train_df_main from sklearn.model_selection import train_test_split train_df, discard = train_test_split(train_df_main, test_size=0.7, random_state=1993) train_and_valid_set, test_set = train_test_split( train_df, test_size=0.2, random_state=1993 ) train_set, valid_set = train_test_split( train_and_valid_set, test_size=0.2, random_state=1993 ) def check_for_leakage(df1, df2, patient_col): """ Return True if there any patients are in both df1 and df2. Args: df1 (dataframe): dataframe describing first dataset df2 (dataframe): dataframe describing second dataset patient_col (str): string name of column with patient IDs Returns: leakage (bool): True if there is leakage, otherwise False """ df1_patients_unique = set(df1[patient_col].values) df2_patients_unique = set(df2[patient_col].values) patients_in_both_groups = df1_patients_unique.intersection(df2_patients_unique) # leakage contains true if there is patient overlap, otherwise false. leakage = len(patients_in_both_groups) > 0 return leakage def get_train_generator( df, image_dir, x_col, y_cols, shuffle=True, batch_size=8, seed=1, target_w=320, target_h=320, ): """ Return generator for training set, normalizing using batch statistics. Args: train_df (dataframe): dataframe specifying training data. image_dir (str): directory where image files are held. x_col (str): name of column in df that holds filenames. y_cols (list): list of strings that hold y labels for images. batch_size (int): images per batch to be fed into model during training. seed (int): random seed. target_w (int): final width of input images. target_h (int): final height of input images. Returns: train_generator (DataFrameIterator): iterator over training set """ print("getting train generator...") # normalize images image_generator = ImageDataGenerator( samplewise_center=True, samplewise_std_normalization=True, shear_range=0.1, zoom_range=0.15, rotation_range=5, width_shift_range=0.1, height_shift_range=0.05, horizontal_flip=True, vertical_flip=False, fill_mode="reflect", ) # flow from directory with specified batch size # and target image size generator = image_generator.flow_from_dataframe( dataframe=df, directory=None, x_col=x_col, y_col=y_cols, class_mode="raw", batch_size=batch_size, shuffle=shuffle, seed=seed, target_size=(target_w, target_h), ) return generator def get_test_and_valid_generator( valid_df, test_df, train_df, image_dir, x_col, y_cols, sample_size=100, batch_size=8, seed=1, target_w=320, target_h=320, ): """ Return generator for validation set and test test set using normalization statistics from training set. Args: valid_df (dataframe): dataframe specifying validation data. test_df (dataframe): dataframe specifying test data. train_df (dataframe): dataframe specifying training data. image_dir (str): directory where image files are held. x_col (str): name of column in df that holds filenames. y_cols (list): list of strings that hold y labels for images. sample_size (int): size of sample to use for normalization statistics. batch_size (int): images per batch to be fed into model during training. seed (int): random seed. target_w (int): final width of input images. target_h (int): final height of input images. Returns: test_generator (DataFrameIterator) and valid_generator: iterators over test set and validation set respectively """ print("getting train and valid generators...") # get generator to sample dataset raw_train_generator = ImageDataGenerator().flow_from_dataframe( dataframe=train_df, directory=image_dir, x_col="FilePath", y_col=labels, class_mode="raw", batch_size=sample_size, shuffle=True, target_size=(target_w, target_h), ) # get data sample batch = raw_train_generator.next() data_sample = batch[0] # use sample to fit mean and std for test set generator image_generator = ImageDataGenerator( featurewise_center=True, featurewise_std_normalization=True ) # fit generator to sample from training data image_generator.fit(data_sample) # get test generator valid_generator = image_generator.flow_from_dataframe( dataframe=valid_df, directory=image_dir, x_col=x_col, y_col=y_cols, class_mode="raw", batch_size=batch_size, shuffle=False, seed=seed, target_size=(target_w, target_h), ) test_generator = image_generator.flow_from_dataframe( dataframe=test_df, directory=image_dir, x_col=x_col, y_col=y_cols, class_mode="raw", batch_size=batch_size, shuffle=False, seed=seed, target_size=(target_w, target_h), ) return valid_generator, test_generator train_generator = get_train_generator( df=train_set, image_dir=None, x_col="FilePath", y_cols=labels, batch_size=BATCH_SIZE, target_w=IMAGE_SIZE[0], target_h=IMAGE_SIZE[1], ) valid_generator, test_generator = get_test_and_valid_generator( valid_df=valid_set, test_df=test_set, train_df=train_set, image_dir=None, x_col="FilePath", y_cols=labels, batch_size=BATCH_SIZE, target_w=IMAGE_SIZE[0], target_h=IMAGE_SIZE[1], ) def get_label(y): """ Returns the appended label list of the given set. y(list) the one hot vector list containing the label encoding. """ ret_labels = [] i = 0 for idx in y: if idx: ret_labels.append(labels[i]) i += 1 if not ret_labels: return "No Label" else: return "|".join(ret_labels) # get one batch of images from the imageset x, y = train_generator.__getitem__(0) from tqdm import tqdm # show a set of images along with the labels appended at the top as title. fig = plt.figure(figsize=(20, 10)) columns = 4 rows = 2 for i in tqdm(range(1, columns * rows + 1)): fig.add_subplot(rows, columns, i) plt.imshow(x[i - 1], cmap="gray") plt.title(get_label(y[i - 1])) plt.axis(False) fig.add_subplot from keras.applications.mobilenet import MobileNet from keras.layers import ( GlobalAveragePooling2D, Dense, Dropout, Flatten, Conv2D, MaxPool2D, ) from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.models import Sequential import tensorflow as tf from tensorflow.keras.optimizers import Adam model = Sequential() model.add( Conv2D( 16, kernel_size=(3, 3), input_shape=(128, 128, 1), activation="relu", padding="same", ) ) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Conv2D(32, kernel_size=(3, 3), activation="relu", padding="same")) model.add(MaxPool2D(pool_size=(2, 2), padding="same")) model.add(Conv2D(64, kernel_size=(3, 3), activation="relu", padding="same")) model.add(MaxPool2D(pool_size=(2, 2), padding="same")) model.add(Conv2D(128, kernel_size=(3, 3), activation="relu", padding="same")) model.add(MaxPool2D(pool_size=(2, 2), padding="same")) model.add(Flatten()) model.add(Dense(64, activation="relu")) model.add(Dense(32, activation="relu")) model.add(Dense(len(all_labels), activation="softmax")) # optimizer = tf.keras.optimizers.Adam(lr = 0.001) # model.compile(loss = 'sparse_categorical_crossentropy',optimizer = optimizer,metrics = ['accuracy']) model.compile( loss="binary_crossentropy", optimizer="Adam", metrics=["mae", "binary_accuracy"] ) model.summary() from keras.callbacks import ( ModelCheckpoint, LearningRateScheduler, EarlyStopping, ReduceLROnPlateau, ) weight_path = "{}_weights.best.hdf5".format("xray_class") checkpoint = ModelCheckpoint( weight_path, monitor="val_loss", verbose=1, save_best_only=True, mode="min", save_weights_only=True, ) early = EarlyStopping(monitor="val_loss", mode="min", patience=3) callbacks_list = [checkpoint, early] model.fit_generator( train_generator, steps_per_epoch=20, validation_data=valid_generator, epochs=5, callbacks=callbacks_list, ) # # Attempt #4 ends here # # Attempt #5 starts here df = pd.read_csv("../input/data/Data_Entry_2017.csv") # Leer datos como CSV diseases = [ "Cardiomegaly", "Emphysema", "Effusion", "Hernia", "Nodule", "Pneumothorax", "Atelectasis", "Pleural_Thickening", "Mass", "Edema", "Consolidation", "Infiltration", "Fibrosis", "Pneumonia", ] # Number diseases for disease in diseases: df[disease] = df["Finding Labels"].apply( lambda x: 1 if disease in x else 0 ) # Etiqueta si es patología o no df labels = df[diseases].to_numpy() all_image_paths = { os.path.basename(x): x for x in glob(os.path.join("..", "input", "data", "images*", "images", "*.png")) } # Ubica la ruta de las imágenes en un diccionario print("Images found:", len(all_image_paths)) df["Path"] = df["Image Index"].map( all_image_paths.get ) # Reemplaza la columna 'Image Index' por las rutas en el diccionario anterior files_list = df["Path"].tolist() # Convierte la columna anterior en una lista labelB = ( df[diseases].sum(axis=1) > 0 ).tolist() # Convierte en lista la columna que contiene la información de patología o no labelB = np.array(labelB, dtype=int) del df # Elimina el DataFrame creado anteriormente df = pd.DataFrame( {"path": files_list, "labels": labelB} ) # Crea un nuevo DataFrame con las listes definidas df["labels"] = df["labels"].astype( str ) # Define el nombre de las columnas como Strings o 'letras' df.head(100) # Primeras 100 muestras del DataFrame from sklearn.model_selection import ( train_test_split, ) # Función para separar el conjunto de entrenamiento y de test. df, _ = train_test_split( df, test_size=0.9, stratify=df["labels"] ) # Se utiliza solo el 10% de los datos df_train, df_test = train_test_split( df, test_size=0.3, stratify=df["labels"], random_state=1993 ) # Separa 70% para train y 30% para test df_train, df_val = train_test_split( df_train, test_size=0.3, stratify=df_train["labels"], random_state=1993 ) # Del 70% anterior saca 30% para validación print("Conjunto de entrenamiento:", df_train.shape) print("Conjunto de validación en entrenamiento:", df_val.shape) print("Conjunto de de prueba:", df_test.shape) from tensorflow.keras.preprocessing.image import ( ImageDataGenerator, ) # Generador de datos para el modelo from tensorflow.keras.preprocessing.image import ( array_to_img, img_to_array, load_img, ) # Procesos para las imágenes from ipywidgets import interact datagen = ImageDataGenerator( fill_mode="nearest", # Los pixeles fuera de los bordes toman el valor más cercano rotation_range=20, # Rotación de 20 grados rescale=1.0 / 255, ) # Reescala la intensidad de las imagenes a valores entre [0,1] nimag = df.shape[0] # Número de muestras @interact(nray_num=(0, nimag - 1, 1)) def plot_Data_Augmentation(nray_num): img_path = df["path"].iloc[nray_num] # Define una muestra img = load_img(img_path, target_size=(150, 150)) # Carga la imagen x = img_to_array(img) # Convierte la imagen en numpy array con tamaño (150, 150, 3) x = x.reshape((1,) + x.shape) # Numpy array con tamaño (1, 150, 150, 3) # Se generarán imagenes aleatorias indefinidas por lo que se utiliza 'break' para detener la iteración i = 0 plt.figure(figsize=(20, 5)) for batch in datagen.flow(x, batch_size=1): plt.subplot(1, 5, i + 1) imgplot = plt.imshow(array_to_img(batch[0])) plt.axis("off") i += 1 if i % 5 == 0: break plt.show() train_datagen = ImageDataGenerator(rescale=1.0 / 255) # , # rotation_range=40, # width_shift_range=0.2, # height_shift_range=0.2, ## Diferentes aumentos de datos # shear_range=0.2, # zoom_range=0.2, # horizontal_flip=True) # El generador de prueba (test) no necesita un Data Augmentation test_datagen = ImageDataGenerator(rescale=1.0 / 255) img_size = 128 # Tamaño deseado de las imágenes batch_size = 128 # Cantidad de datos que se le entrega al modelo en cada iteración train_generator = train_datagen.flow_from_dataframe( df_train, x_col="path", y_col="labels", target_size=( img_size, img_size, ), # Se define el generador con los argumentos necesarios batch_size=batch_size, color_mode="grayscale", class_mode="binary", ) validation_generator = test_datagen.flow_from_dataframe( df_val, x_col="path", y_col="labels", target_size=(img_size, img_size), batch_size=batch_size, color_mode="grayscale", class_mode="binary", ) from tensorflow.keras import layers # Define las capas de la aquitectura from tensorflow.keras import Model # Define la arquitectura como un modelo from tensorflow.keras.optimizers import RMSprop, Adam, SGD # Diferentes optimizadores # Se define la entrada una imagen (128x128x1) en escala grises img_input = layers.Input(shape=(img_size, img_size, 1)) # First convolution extracts 16 filters that are 3x3 # Convolution is followed by max-pooling layer with a 2x2 window x = layers.Conv2D(16, 3, activation="relu")(img_input) x = layers.MaxPooling2D(2)(x) # Second convolution extracts 32 filters that are 3x3 # Convolution is followed by max-pooling layer with a 2x2 window x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.MaxPooling2D(2)(x) # Third convolution extracts 64 filters that are 3x3 # Convolution is followed by max-pooling layer with a 2x2 window x = layers.Convolution2D(64, 3, activation="relu")(x) x = layers.MaxPooling2D(2)(x) # Flatten feature map to a 1-dim tensor x = layers.Flatten()(x) # Create a fully connected layer with ReLU activation and 512 hidden units x = layers.Dense(512, activation="relu")(x) # Add a dropout rate of 0.5 x = layers.Dropout(0.5)(x) # Create output layer with a single node and sigmoid activation output = layers.Dense(1, activation="sigmoid")(x) # Configure and compile the model model = Model(img_input, output) model.compile( loss="binary_crossentropy", optimizer=Adam(learning_rate=0.001), metrics=["acc"] ) model.summary() from tensorflow.keras.utils import ( plot_model, ) # Herramienta para visualizar gráficamente el modelo plot_model(model, to_file="model.png", show_shapes=True, show_layer_names=True) history = model.fit( train_generator, epochs=10, batch_size=batch_size, validation_data=validation_generator, verbose=2, ) # Información adicional history.history # Accuracy para entrenamiento y validación acc = history.history["acc"] val_acc = history.history["val_acc"] # Loss para entrenamiento y validación loss = history.history["loss"] val_loss = history.history["val_loss"] loss # # Número de epocas # epochs = range(len(acc)) # # Gráfica de accuracy respecto a las epocas # plt.plot(epochs, acc) # plt.plot(epochs, val_acc) # plt.title('Training and validation accuracy') # plt.figure() # # Gráfica de loss respecto a las epocas # plt.plot(epochs, loss) # plt.plot(epochs, val_loss) # plt.title('Training and validation loss') # # Attempt #5 ends here model = Sequential() model.add(Dense(units=512, activation="sigmoid", input_shape=(img_height, img_width))) model.add(Dense(units=512, activation="sigmoid")) model.add(Dense(units=num_classes, activation="softmax")) model.build() model.summary() model.compile(optimizer="sgd", loss="categorical_crossentropy", metrics=["accuracy"]) history = model.fit(train_ds, val_ds, batch_size=64, epochs=5, verbose=True) loss, accuracy = model.evaluate(val_ds, y_test, verbose=False) # Again, do some formatting # Except we do not flatten each image into a 784-length vector because we want to perform convolutions first X_train = X_train.reshape( 6512, 1, 1, 1 ) # add an additional dimension to represent the single-channel X_test = X_test.reshape(2171, 1, 1, 1) X_train = X_train.astype("str") # change integers to 32-bit floating point numbers X_test = X_test.astype("str") model = Sequential() # Linear stacking of layers # Convolution Layer 1 model.add( Conv2D(32, (3, 3), input_shape=(2048, 2500, 1)) ) # 32 different 3x3 kernels -- so 32 feature maps model.add(BatchNormalization(axis=-1)) # normalize each feature map before activation convLayer01 = Activation("relu") # activation model.add(convLayer01) # Convolution Layer 2 model.add(Conv2D(32, (3, 3))) # 32 different 3x3 kernels -- so 32 feature maps model.add(BatchNormalization(axis=-1)) # normalize each feature map before activation model.add(Activation("relu")) # activation convLayer02 = MaxPooling2D(pool_size=(2, 2)) # Pool the max values over a 2x2 kernel model.add(convLayer02) # Convolution Layer 3 model.add(Conv2D(64, (3, 3))) # 64 different 3x3 kernels -- so 64 feature maps model.add(BatchNormalization(axis=-1)) # normalize each feature map before activation convLayer03 = Activation("relu") # activation model.add(convLayer03) # Convolution Layer 4 model.add(Conv2D(64, (3, 3))) # 64 different 3x3 kernels -- so 64 feature maps model.add(BatchNormalization(axis=-1)) # normalize each feature map before activation model.add(Activation("relu")) # activation convLayer04 = MaxPooling2D(pool_size=(2, 2)) # Pool the max values over a 2x2 kernel model.add(convLayer04) model.add(Flatten()) # Flatten final 4x4x64 output matrix into a 1024-length vector # Fully Connected Layer 5 model.add(Dense(512)) # 512 FCN nodes model.add(BatchNormalization()) # normalization model.add(Activation("relu")) # activation # Fully Connected Layer 6 model.add(Dropout(0.2)) # 20% dropout of randomly selected nodes model.add(Dense(10)) # final 10 FCN nodes model.add(Activation("softmax")) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) model.fit(train_ds, validation_data=val_ds, epochs=3) train_generator = gen.flow(X_train, y_train, batch_size=128) test_generator = test_gen.flow(X_test, y_test, batch_size=128) model.fit( train_generator, steps_per_epoch=60000 // 128, epochs=5, verbose=1, validation_data=test_generator, validation_steps=10000 // 128, )
# # Import Library # Data load import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from scipy import stats # Preprocessing from sklearn.feature_selection import SelectKBest, f_regression from sklearn.preprocessing import MinMaxScaler, OrdinalEncoder # Modeling from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.metrics import mean_absolute_error, r2_score, mean_squared_error # # Loading Data # ### Problem Statement # House price prediction has been an important area of research and practical application in real estate and finance for many years. Understanding the factors that contribute to a property's value and being able to accurately predict its price is crucial for real estate agents, buyers, and sellers to make informed decisions. # In recent years, the development of machine learning algorithms and big data technology has revolutionized the way we analyze and predict home prices. These technologies allow us to process and analyze large amounts of data, including information on property characteristics, local market trends, economic indicators, and demographic factors, to produce more accurate and reliable price predictions. # In this project, I aim to develop a machine learning model that can accurately predict the price of residential properties based on various features such as location, size, number of rooms, amenities, and other relevant factors. The goal is to create a model that can estimate the value of a house based on its characteristics. pd.set_option("display.max_columns", None) # Loading Data df_train = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/train.csv" ) df_train.head(20) df_train.tail(20) df_train.info() df_train.describe() pd.set_option("display.max_rows", None) df_train.isna().sum() # Too much missing value in categorical column such as `Alley, FireplaceQu, PoolQC, Fence, MiscFeature` I think this column is not useful so we can drop this 3 column, and take a look at the another column who had missing value. # # Exploratory Data Analysis df_train.head() plt.figure(figsize=(30, 20)) sns.heatmap(df_train.corr(), annot=True, cmap="coolwarm") plt.show() sns.displot( data=df_train, x=df_train["SalePrice"], bins=50, kde=True, height=5, aspect=2 ) plt.title("Sale Price") plt.show() print("-" * 250) fig = plt.figure(figsize=(11, 5)) res = stats.probplot(df_train["SalePrice"], plot=plt) plt.show() # The target variable is abnormal or right skewed. So, we need to transform this variable and make it more normally distributed. df_hist = df_train.select_dtypes(include=np.number) df_hist.hist(figsize=(30, 20), bins=50, xlabelsize=8, ylabelsize=8) # From the histogram plot above, almost all columns have an abnormal data distribution, although there are several columns with normal data distribution. # Scatter from top 3 correlaltion plt.subplots(figsize=(20, 8)) plt.subplot(1, 3, 1) sns.scatterplot( data=df_train, x=df_train["SalePrice"], y=df_train["OverallQual"], color="red" ) plt.subplot(1, 3, 2) sns.scatterplot( data=df_train, x=df_train["SalePrice"], y=df_train["GrLivArea"], color="blue" ) plt.subplot(1, 3, 3) sns.scatterplot( data=df_train, x=df_train["SalePrice"], y=df_train["GarageCars"], color="green" ) plt.show() # OverallQual: Rates the overall material and finish of the house 1-10 # GrLivArea: Above grade (ground) living area square feet # GarageCars: Size of garage in car capacity # From all the feature like `OverallQual, GrLivArea, Garage Cars` We can conclude that the higher the value of the feature, the more it affects the selling price. # However, the highest value garagecars do not have much influence because according to the local community garage cars with level 4 are too big than what is needed. # # Data Preprocessing df_test = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/test.csv" ) df_test.head() # ## Handle Missing value df_train_cleaned = df_train.drop( columns=["Id", "Alley", "FireplaceQu", "PoolQC", "Fence", "MiscFeature"] ) df_test_cleaned = df_test.drop( columns=["Id", "Alley", "FireplaceQu", "PoolQC", "Fence", "MiscFeature"] ) cols_with_missing = df_train_cleaned.columns[df_train_cleaned.isnull().any()] col_test_with_missing = df_test_cleaned.columns[df_test_cleaned.isnull().any()] print(f"Columns that contain missing values: {cols_with_missing}") def imputation(dataframe, cols): mode_val = dataframe[cols].mode() if mode_val.empty: # Handle empty mode value DataFrame return dataframe else: # fill missing value with mode mode_val = mode_val.iloc[0] dataframe[cols] = dataframe[cols].fillna(mode_val) return dataframe df_train_cleaned = imputation(df_train_cleaned, cols_with_missing) df_test_cleaned = imputation(df_test_cleaned, col_test_with_missing) df_test_cleaned.isna().sum() # ## Handling Outlier # Outliers are the extreme value or significantly different from other values in the dataset. In regression analysis, outliers can lead to inaccurate and unreliable prediction results. Therefore, handling outliers is necessary in regression analysis. # Outliers can affect regression results in different ways, depending on their location in the data. If outliers are located in low or high x regions, then they can cause a significant influence on the calculation of regression coefficients, and lead to inaccurate results. Outliers can also affect the overall prediction of the model, reducing the quality and reliability of the regression model. # The IQR (Interquartile Range) method is used for handling outliers in data that has an abnormal distribution. This method uses the distance between the first quartile (Q1) and the third quartile (Q3) as a measure of the distance between the outlier data and the median value in the dataset. # The IQR method is performed by calculating the distance between the first quartile and the third quartile, then multiplying it by a multiplier value k (usually k=1.5) to determine the lower bound and upper bound to identify outlier data. # make function IQR def limit(data, variable): IQR = df_train_cleaned[variable].quantile(0.75) - df_train_cleaned[ variable ].quantile(0.25) lower_limit = df_train_cleaned[variable].quantile(0.25) - (IQR * 1.5) upper_limit = df_train_cleaned[variable].quantile(0.75) + (IQR * 1.5) return lower_limit, upper_limit # menentukan lower limit dan upper limit dari kolom limit balance lower_sale, upper_sale = limit(df_train_cleaned, "SalePrice") # menghapus outlier df_no_outliers = df_train_cleaned[ (df_train_cleaned.SalePrice > lower_sale) & (df_train_cleaned.SalePrice < upper_sale) ] print(f"Jumlah row dan kolom : {df_no_outliers.shape}") print(f"Jumlah outlier pada kolom age : {len(df_train_cleaned)-len(df_no_outliers)}") # Probability plot after handling outlier stats.probplot(df_no_outliers["SalePrice"], plot=plt) # After we handled an outlier using IQR the target variable is getting close to the normal distribution # ## Feature Engineering # Split column between numerical and categorical for feature engineering num_columns = df_train_cleaned.select_dtypes(include=np.number).columns.tolist() cat_columns = df_train_cleaned.select_dtypes(include=["object"]).columns.tolist() num_columns # Data by Dtypes data_numeric = df_no_outliers[num_columns] data_categoric = df_no_outliers[cat_columns] data_numeric.head() # ### Find out correlation by numeric values # The Spearman and Pearson methods are two commonly used methods in correlation analysis. Both methods have their own advantages and disadvantages, and the choice of method depends on the type of data and the purpose of the analysis to be achieved. # According to `Kendall and Stuart in their book "The Advanced Theory of Statistics" (1958)`, the Spearman method is more suitable for data that does not have a normal distribution, while the Pearson method is more suitable for data that has a normal distribution. However, both methods can produce the same results if the data has a normal distribution. # So in this case I used the Spearman method because most of feature were not normally distributed. plt.figure(figsize=(30, 16)) sns.heatmap(data_numeric.corr(method="spearman"), annot=True, cmap="coolwarm") plt.show() # In this case, the columns that have a high correlation include: # `LotFrontage, LotArea, OverallQual, YearBuilt, YearRemodAdd, MasVnrArea, BsmtFinSF1, TotalBsmtSF, 1stFlrSF, 2ndFlrSF, GrLivArea, FullBath, HalfBath, BedroomAbvGr, TotRmsAbvGrd, FirePlaces, GarageYrBlt, GarageCars, WoodDeckSF, OpenPorchSF, EnclosedPorch.` # ### Find out correlation by categorical values using ANOVA # ANOVA (Analysis of Variance) is a statistical analysis method used to compare the means of several independent groups of data. This method was first introduced by a statistician named Ronald A. Fisher in 1925. # According to Fisher, ANOVA aims to test the null hypothesis that there is no significant difference between the means of the groups being compared. Fisher also developed the F-ratio method used in ANOVA to calculate the variance between groups (between variance) and the variance within groups (within variance), and compare the two variances to determine whether the difference between groups is statistically significant or not. # In this case I used ANOVA to determine which features can be used for training during modeling. # P_value # P_value > 0.05 : Delete feature data_categoric.head(10) # Encoding for ANOVA oe = OrdinalEncoder() cat = oe.fit_transform(data_categoric) cat target = df_no_outliers["SalePrice"] anova = SelectKBest(score_func=f_regression, k=30) anova.fit_transform(cat, target) anova_score = pd.DataFrame( {"Anova_score": anova.scores_, "P_value_anova": anova.pvalues_}, index=data_categoric.columns, ) anova_score.sort_values(by=["P_value_anova"], ascending=False) # From the ANOVA test, the columns with the results of the P_value # `['MSZoning', 'LotShape', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', # 'BsmtExposure', 'BsmtFinType1', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'KitchenQual', 'Functional', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'SaleCondition']` # ### Choosing important Feature after Correlation and ANOVA Testing df_no_outliers.head() num_feature = [ "LotFrontage", "LotArea", "OverallQual", "YearBuilt", "YearRemodAdd", "MasVnrArea", "BsmtFinSF1", "TotalBsmtSF", "1stFlrSF", "2ndFlrSF", "GrLivArea", "FullBath", "HalfBath", "BedroomAbvGr", "TotRmsAbvGrd", "Fireplaces", "GarageYrBlt", "GarageCars", "WoodDeckSF", "OpenPorchSF", "EnclosedPorch", ] cat_feature = [ "MSZoning", "LotShape", "LotConfig", "LandSlope", "Neighborhood", "Condition1", "BldgType", "HouseStyle", "RoofStyle", "RoofMatl", "Exterior1st", "Exterior2nd", "ExterQual", "ExterCond", "Foundation", "BsmtQual", "BsmtExposure", "BsmtFinType1", "Heating", "HeatingQC", "CentralAir", "Electrical", "KitchenQual", "Functional", "GarageType", "GarageFinish", "GarageQual", "GarageCond", "PavedDrive", "SaleCondition", ] # ## Scalling & Encoding # Scaling is the process of changing the range of values of features or variables in a dataset into a smaller or larger range of values. The goal is to ensure that each variable has an equal contribution to the formation of the machine learning model, without affecting the significance of other variables. # Encoding is the process of converting the value or category of a variable into a form that can be processed by machine learning algorithms. In the context of classification, encoded variables are often categorical or nominal variables, which cannot be processed directly by machine learning algorithms. # - Jason Brownlee. (2020). Machine Learning Mastery. Data Preparation for Machine Learning: Encoding. # - Raschka, S., & Mirjalili, V. (2017). Python Machine Learning (2nd Ed.). Packt Publishing. # minmax = MinMaxScaler() train_scaled = minmax.fit_transform(df_no_outliers[num_feature]) test_scaled = minmax.transform(df_test_cleaned[num_feature]) test_scaled oe = OrdinalEncoder() train_encoded = oe.fit_transform(df_no_outliers[cat_feature]) test_encoded = oe.transform(df_test_cleaned[cat_feature]) test_encoded # #### concat after scalling and enocoding X_train_final = np.concatenate((train_scaled, train_encoded), axis=1) X_test_final = np.concatenate((test_scaled, test_encoded), axis=1) y_train = df_no_outliers["SalePrice"] y_train.reset_index(drop=True, inplace=True) # # Model Definition # Define the Model rf = RandomForestRegressor() gb = GradientBoostingRegressor() rf.fit(X_train_final, y_train) gb.fit(X_train_final, y_train) rf_pred = rf.predict(X_train_final) gb_pred = gb.predict(X_train_final) # ## Comparison Actual and Prediction Data a = pd.DataFrame(rf_pred, columns=["prediction"]) comparison_rf = pd.concat([y_train, a], axis=1) comparison_rf.head(10) b = pd.DataFrame(gb_pred, columns=["prediction"]) comparison_gb = pd.concat([y_train, b], axis=1) comparison_gb.head(10) # # Model Evaluation # Evaluation Random Forest mae = mean_absolute_error(y_train, rf_pred) r2 = r2_score(y_train, rf_pred) mse = mean_squared_error(y_train, rf_pred) # Evaluation Gradient Boosting mae_gb = mean_absolute_error(y_train, gb_pred) r2_gb = r2_score(y_train, gb_pred) mse_gb = mean_squared_error(y_train, gb_pred) data = { "Model": ["Random Forest", "Gradient Boosting"], "Mean Absolute Error (MAE)": [mae, mae_gb], "R-Squared (R2)": [r2, r2_gb], "Mean Squared Error (MSE)": [mse, mse_gb], } # Buat dataframe dari dictionary df = pd.DataFrame(data) df # # Submission df_test_cleaned.head() ids = df_test.pop("Id") result = rf.predict(X_test_final) df = pd.DataFrame({"Id": ids, "SalePrice": result.squeeze()}) df.head(10) # and write to output df.to_csv("final_submission.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory # import warnings import warnings # filter warnings warnings.filterwarnings("ignore") from subprocess import check_output print(check_output(["ls", "../input"]).decode("utf8")) # Any results you write to the current directory are saved as output. data1 = pd.read_csv(r"../input/digit-recognizer/train.csv", dtype=np.float32) data1.shape data1.info() data1.head(10) data1.columns.values data1.label.values targets_numpy = data1.label.values # etiketlerimiz 0 9 features_numpy = data1.loc[:, data1.columns != "label"].values / 255 # pixellerimiz plt.imshow(features_numpy[10].reshape(28, 28)) plt.axis("off") plt.title(str(targets_numpy[10])) plt.savefig("graph.png") plt.show() features_numpy.shape[1] t = targets_numpy.reshape(42000, 1) plt.imshow(features_numpy[21].reshape(28, 28)) t[21] from keras.wrappers.scikit_learn import KerasClassifier from sklearn.model_selection import cross_val_score from keras.models import Sequential # initialize neural network library from keras.layers import Dense # build our layers library def build_classifier(): classifier = Sequential() # initialize neural network classifier.add( Dense( units=16, kernel_initializer="uniform", activation="relu", input_dim=features_numpy.shape[1], ) ) classifier.add(Dense(units=8, kernel_initializer="uniform", activation="relu")) classifier.add(Dense(units=4, kernel_initializer="uniform", activation="relu")) classifier.add(Dense(units=2, kernel_initializer="uniform", activation="relu")) classifier.add(Dense(units=1, kernel_initializer="uniform", activation="sigmoid")) classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # bınary yapmaya calısıldı return classifier classifier = KerasClassifier(build_fn=build_classifier, epochs=120) accuracies = cross_val_score(estimator=classifier, X=features_numpy, y=t, cv=3) mean = accuracies.mean() variance = accuracies.std() print("Accuracy mean: " + str(mean)) print("Accuracy variance: " + str(variance))
import numpy as np import matplotlib.pyplot as plt class Helper_functions: def Acceleration(position, mass, G): """ Calculate the acceleration on each particle due to Newton's Law pos is an N x 3 matrix of positions mass is an N x 1 vector of masses G is Newton's Gravitational constant softening is the softening length a is N x 3 matrix of accelerations """ # positions r = [x,y,z] for all particles x = position[:, 0:1] y = position[:, 1:2] z = position[:, 2:3] # dx, dy, dz store all pairwise particle separations dx = x.T - x dy = y.T - y dz = z.T - z # inv_r3 stores 1/r^3 for all particle pairwise particle separations inv_r3 = dx**2 + dy**2 + dz**2 inv_r3[inv_r3 > 0] = inv_r3[inv_r3 > 0] ** (-1.5) ax = G * (dx * inv_r3) @ mass ay = G * (dy * inv_r3) @ mass az = G * (dz * inv_r3) @ mass # All the acceleration components acceleration = np.hstack((ax, ay, az)) return acceleration class N_body_simulator: def Simulate(N, t, t_end, dt, position, velocity, mass, G=1, plot=True): # Converting to COM frame velocity -= np.mean(mass * velocity, 0) / np.mean(mass) # calculate initial gravitational accelerations acceleration = Helper_functions.Acceleration(position, mass, G) # number of timesteps Nt = int(np.ceil(t_end / dt)) # save particle orbits for plotting trails position_save = np.zeros((N, 3, Nt + 1)) position_save[:, :, 0] = pos t_all = np.arange(Nt + 1) * dt # Running the simulation loop for i in range(Nt): velocity += acceleration * dt / 2.0 # update position position += velocity * dt # update accelerations acceleration = Helper_functions.Acceleration(position, mass, G) # update velocities velocity += acceleration * dt / 2.0 # update time t += dt # save positions position_save[:, :, i + 1] = position # Plotting the particle trajectories if plot or (i == Nt - 1): xx = position_save[:, 0, max(i - 50, 0) : i + 1] yy = position_save[:, 1, max(i - 50, 0) : i + 1] plt.scatter(xx, yy, s=1, color=[0.7, 0.7, 1]) plt.scatter(position[:, 0], position[:, 1], s=10, color="black") plt.xticks([]) plt.yticks([]) plt.pause(0.001) N = 10 t = 0 tEnd = 5 dt = 0.01 mass = 20 * np.ones((N, 1)) / N pos = np.random.randn(N, 3) vel = np.random.randn(N, 3) N_body_simulator.Simulate(N, t, tEnd, dt, pos, vel, mass)
import tensorflow as tf import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import cv2 import random import os from tensorflow.keras import layers from tensorflow.keras.layers import * from tensorflow.keras.models import Sequential print(tf.__version__) gpus = tf.config.experimental.list_physical_devices("GPU") for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) path = "/kaggle/input/animals10/raw-img" names = [] nums = [] data = {"Name of class": [], "Number of samples": []} for i in os.listdir(path): nums.append(len(os.listdir(path + "/" + i))) names.append(i) num_classes = len(names) data["Name of class"] += names data["Number of samples"] += nums df = pd.DataFrame(data) df shape = (224, 224) # image_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale = 1./255 , rotation_range=20, # width_shift_range=0.2, # height_shift_range=0.2, # horizontal_flip=True, validation_split=0.2) train_ds = tf.keras.utils.image_dataset_from_directory( path, validation_split=0.2, subset="training", seed=123, image_size=shape, batch_size=32, ) val_ds = tf.keras.utils.image_dataset_from_directory( path, validation_split=0.2, subset="validation", seed=123, image_size=shape, batch_size=3, ) translate = { "cane": "狗", "cavallo": "马", "elefante": "大象", "farfalla": "蝴蝶", "gallina": "鸡", "gatto": "猫", "mucca": "牛", "pecora": "羊", "scoiattolo": "松鼠", "ragno": "蜘蛛", } # image_dataset_from_directory 函数会按字母排序label,所以这里也按字母排序 s = sorted(list(translate.keys())) labels = [translate[x] for x in s] print(labels) for image_batch, labels_batch in train_ds: print(image_batch.shape) print(labels_batch.shape) break for image_batch, labels_batch in val_ds: print(image_batch.shape) print(labels_batch.shape) break normalization_layer = layers.Rescaling(1.0 / 255) train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y)) val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y)) pretrained = tf.keras.applications.MobileNet( input_shape=(*shape, 3), weights="imagenet", alpha=0.25 ) pretrained.trainable = False # pretrained = tf.keras.applications.MobileNetV3Small( # input_shape=(*shape , 3), # include_top=False, # weights='imagenet', # dropout_rate=0.2, # alpha=0.75, # ) # pretrained.trainable = False model = tf.keras.models.Sequential() model.add(tf.keras.layers.InputLayer(input_shape=(*shape, 3))) model.add( tf.keras.Model(inputs=pretrained.inputs, outputs=pretrained.layers[-5].output) ) model.add(tf.keras.layers.Reshape((-1,))) model.add(tf.keras.layers.Dropout(0.1)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(num_classes)) model.compile( optimizer="adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"], ) model.summary() history = model.fit(train_ds, validation_data=val_ds, epochs=15) converter = tf.lite.TFLiteConverter.from_keras_model(model) def representative_dataset(): for _ in range(1000): yield ([np.random.rand(1, 224, 224, 3).astype(np.float32)]) # Set the optimization flag. converter.optimizations = [tf.lite.Optimize.DEFAULT] # Enforce integer only quantization converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] # Provide a representative dataset to ensure we quantize correctly. converter.representative_dataset = representative_dataset converter.inference_input_type = tf.int8 converter.inference_output_type = tf.int8 model_tflite = converter.convert() # 将 TensorFlow Lite 模型保存到磁盘中 with open("my_model.tflite", "wb") as f: f.write(model_tflite) interpreter = tf.lite.Interpreter(model_path="my_model.tflite") interpreter.allocate_tensors() input_details = interpreter.get_input_details()[0] output_details = interpreter.get_output_details()[0] input_details output_details img = cv2.imread("/kaggle/input/animals10/raw-img/gallina/10.jpeg") img = cv2.resize(img, (224, 224)) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) plt.imshow(img) img = (img.copy().astype("int32") - 128).astype("int8") print(img.shape) # img = img.astype("float32")/255.0 # img = img.reshape(( 3, 352, 352)) # img = np.transpose(img, (2, 0, 1)) # print(img.shape) interpreter.set_tensor(input_details["index"], [img]) interpreter.invoke() result = interpreter.get_tensor(output_details["index"]) print(result) m = np.argmax(result) labels[m]
# **Task**: It is your job to predict the sales price for each house. For each Id in the test set, you must predict the value of the SalePrice variable. # **Evaluation**: Submissions are evaluated on Root-Mean-Squared-Error (RMSE) between the logarithm of the predicted value and the logarithm of the observed sales price. # This notebook has been created after studying [this notebook.](https://www.kaggle.com/ankitverma2010/house-prices-prediction-beginner-to-advanced#Exploratory-Data-Analysis) import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # ## Import libraries # Python imports import os # Maths and data imports import numpy as np import pandas as pd # Plot imports import seaborn as sns import matplotlib.pyplot as plt # ML modeling imports from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import AdaBoostRegressor from sklearn.metrics import mean_squared_error as mse from xgboost import XGBRegressor sns.set() import warnings warnings.filterwarnings("ignore") train = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/train.csv", index_col="Id", ) test = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/test.csv", index_col="Id" ) train_df = train.copy() test_df = test.copy() # ## Data Preprocessing train_df.head() train_df.shape train_df.info() # MSSubClass, OverallQual and OverallCond and categorical variable, lets convert it into one. train_df["MSSubClass"] = train_df["MSSubClass"].astype("object") train_df["OverallQual"] = train_df["OverallQual"].astype("object") train_df["OverallCond"] = train_df["OverallCond"].astype("object") test_df["MSSubClass"] = test_df["MSSubClass"].astype("object") test_df["OverallQual"] = test_df["OverallQual"].astype("object") test_df["OverallCond"] = test_df["OverallCond"].astype("object") # Let's now seperate the categorical and numerical columns def get_var_dtype_list(df): cat_cols = [] num_cols = [] for col in df.columns: if df[col].dtypes == "object": cat_cols.append(col) else: num_cols.append(col) return (cat_cols, num_cols) cat_cols_train, num_cols_train = get_var_dtype_list(train_df) cat_cols_test, num_cols_test = get_var_dtype_list(test_df) # Let's take log of SalePrice as our evaluation metric is log RMS value. train_df["SalePrice"] = np.log(train_df["SalePrice"]) # ## EDA # In EDA we will analyse data to see if there is any - # 1. Skewness in features # 2. Check for missing values and ouliers and fix them. # 3. Check the variability of different features and scale them. # 4. Check for multicolinearity among multiple exploratory variables (features). # 5. Check if response variable is correlated to any/may exploratory variable(s). # 6. Analyse the target/response variable. # ### Lets check distribution fo continuous columns fig, axs = plt.subplots(len(num_cols_train) // 5, 5, figsize=(30, 30)) for col, ax in zip(num_cols_train[:-1], axs.flatten()): sns.distplot(train_df[col], ax=ax) ax.set_title(col) ax.set_xlabel("") ax.set_ylabel("") plt.show() # **Conclusion** # 1. There is large variation in the scale of each continuous variables, hence, we need to scale them. # 2. Features such as YearBuilt and GarageYrBlt are left skewed, indicating that more houses were build in the later years hence, more garages were also built then. So, we might want to leave such variable for outlier check. # 3. Exploratory varibales - 'LotArea', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'LowQualFinSF', 'BsmtHalfBath', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal' are heavily right skewed. # Let's further explore these variables. right_skewed = [ "LotArea", "MasVnrArea", "BsmtFinSF1", "BsmtFinSF2", "BsmtUnfSF", "LowQualFinSF", "BsmtHalfBath", "WoodDeckSF", "OpenPorchSF", "EnclosedPorch", "3SsnPorch", "ScreenPorch", "PoolArea", "MiscVal", ] r_skew_desc = train_df[right_skewed].describe().T r_skew_desc["coef_of_var"] = r_skew_desc["std"] / r_skew_desc["mean"] r_skew_desc # We can see a huge variation in lot of features. For now we can drop the columns with coefficient of variation > 3. # As the number of missing values is zero or near to zero in most of the features we would like to further analyse them (maybe take log to reduce the right skewness) and embrace the variability. # But for now lets got with dropping them off, and compare the effects in the next iteration/followup. r_skew_desc[r_skew_desc["coef_of_var"] > 3].T.columns drop_skew_cols = [ "BsmtFinSF2", "LowQualFinSF", "BsmtHalfBath", "3SsnPorch", "ScreenPorch", "PoolArea", "MiscVal", ] train_df.drop(drop_skew_cols, axis=1, inplace=True) test_df.drop(drop_skew_cols, axis=1, inplace=True) train_df.columns # Let's update out list of numerical columns list. cat_cols_train, num_cols_train = get_var_dtype_list(train_df) cat_cols_test, num_cols_test = get_var_dtype_list(test_df) # ### Let check and impute missing values in continuous variables def get_missing_stats(df, col_list, threshold=0): total = len(df) for col in col_list: null = df[col].isnull().sum() if null > 0 and null / total >= threshold: print(col) if df[col].dtypes == "object": print(df[col].value_counts()) print(f"Missing values: {null} of {total}") print(f"Percent missing values: {round((null*100)/total, 2)}%\n") get_missing_stats(train_df, num_cols_train) get_missing_stats(test_df, num_cols_test) # It does not seem to be extreme case of missing values so, we can simply replace by the median (as the data seem to be highly variable and median is a robust metric) of training set in both the training and test set. imputer = SimpleImputer(strategy="median") train_df[num_cols_train[:-1]] = imputer.fit_transform(train_df[num_cols_train[:-1]]) test_df[num_cols_test] = imputer.transform(test_df[num_cols_test]) get_missing_stats(train_df, num_cols_train) get_missing_stats(test_df, num_cols_test) # So, the missing values for numerical columns have disappeared. Now, lets hit the categorical columns. # ### Now, lets check and impute missing values of categorical columns. get_missing_stats(train_df, cat_cols_train) get_missing_stats(test_df, cat_cols_test) # Some columns seet to have quite a number of missing values. Lets further analyse them using barplot. fig, axs = plt.subplots(len(cat_cols_train) // 5, 5, figsize=(30, 40)) for col, ax in zip(cat_cols_train, axs.flatten()): y = train_df[col].value_counts() ax.bar(y.index, y.values) ax.set_title(col) ax.set_xlabel("") ax.set_ylabel("") for tick in ax.get_xticklabels(): tick.set_rotation(35) plt.show() # Let's just analyse the columns with missing frequency greater than 40%. get_missing_stats(train_df, cat_cols_train, 0.4) get_missing_stats(test_df, cat_cols_test, 0.4) # We can infer two cases from above: # 1. The houses did not have these features # 2. The houses did have these features but were not reported. # However, if we think then it seems feasible to assume that all the houses surveyed did not have all the 80 features. So, for now we can impute the missing values (with freq. > 40%) with N.A, where as missing values of columns with freq < 40% with most frequent value. # I think it will be safe to assume and hypothesise that maybe the localities in which the houses were surveyed did not have the above features, thus introducing selective bias in data collection. Although, we can not be certain of it. train_df.drop(["PoolQC"], axis=1, inplace=True) test_df.drop(["PoolQC"], axis=1, inplace=True) na_cols = ["Alley", "FireplaceQu", "Fence", "MiscFeature"] na_imputer = SimpleImputer(strategy="constant", fill_value="N.A") train_df[na_cols] = na_imputer.fit_transform(train_df[na_cols]) test_df[na_cols] = na_imputer.transform(test_df[na_cols]) cat_cols_train, num_cols_train = get_var_dtype_list(train_df) cat_cols_test, num_cols_test = get_var_dtype_list(test_df) mf_imputer = SimpleImputer(strategy="most_frequent") train_df[cat_cols_train] = mf_imputer.fit_transform(train_df[cat_cols_train]) test_df[cat_cols_test] = mf_imputer.transform(test_df[cat_cols_test]) get_missing_stats(train_df, cat_cols_train) get_missing_stats(test_df, cat_cols_test) # Finally, we have dealt with missing values. Now, lets check for multicolinearity among exploratory variables. plt.figure(figsize=(20, 20)) sns.heatmap(train_df.drop(["SalePrice"], axis=1).corr(), annot=True) plt.show() cor = train_df.drop(["SalePrice"], axis=1).corr() for i, col in enumerate(cor.columns): for row in cor.index[i + 1 :]: if col != row and cor[col][row] > 0.7: print(f"({row}, {col}): {cor[col][row]}") # Hmm...From the overwhelming plots above we can see that few varibles are highly correlated, and it makes sense for them to be correlated. Hence, for now we might want to keep them. # ### Scale variables scaler = StandardScaler() train_df[num_cols_train[:-1]] = scaler.fit_transform(train_df[num_cols_train[:-1]]) test_df[num_cols_test] = scaler.transform(test_df[num_cols_test]) # ### One-hot encoding of categorical columns # For now, let's simply one hot encode the categorical columns. cat_cols_train cat_cols_train, num_cols_train = get_var_dtype_list(train_df) cat_cols_test, num_cols_test = get_var_dtype_list(test_df) train_df = pd.get_dummies(train_df, drop_first=True, columns=cat_cols_train) test_df = pd.get_dummies(test_df, drop_first=True, columns=cat_cols_test) train_df.head() # ### Check train and test for compatability # check if both train and test contain same columns train_df.columns test_df.columns compat_list = list(set(train_df.columns).intersection(test_df.columns)) len(compat_list) train_X, y = train_df[compat_list], train_df["SalePrice"] test_X = test_df[compat_list] (train_X.columns == test_X.columns).sum() # ## Train Test split train_x, valid_x, train_y, valid_y = train_test_split( train_X, y, test_size=0.2, random_state=42 ) # ## Model linear_regressor = LinearRegression() linear_regressor.fit(train_x, train_y) preds = linear_regressor.predict(valid_x) mse(valid_y, preds, squared=False) models = {"RFR": RandomForestRegressor, "ADR": AdaBoostRegressor, "XGB": XGBRegressor} def fit_model(name, model, train_ds, valid_ds): X, y = train_ds X_val, y_val = valid_ds model.fit(X, y) y_hat = model.predict(X) y_hat_val = model.predict(X_val) mse_ = mse(y, y_hat, squared=False) mse_val = mse(y_val, y_hat_val, squared=False) print(f"Model: {name}, Train MSE: {mse_}, Val MSE: {mse_val}") n_est = [10, 25, 50, 100, 125] for i in range(len(n_est)): print(f"n_estimators: {n_est[i]}") for name, model in models.items(): model = model(n_estimators=n_est[i]) fit_model(name, model, (train_x, train_y), (valid_x, valid_y)) print("-" * 20) # `n_estimators=25` seems like a sweet spot for `AdaBoostRegressor` and `XGBRegressor`. Lets ensemble te ensembles abr = AdaBoostRegressor(n_estimators=25) xgr = XGBRegressor(n_estimators=25) abr.fit(train_x, train_y) xgr.fit(train_x, train_y) p1 = abr.predict(valid_x) p2 = xgr.predict(valid_x) p3 = linear_regressor.predict(valid_x) m1 = mse(valid_y, p1, squared=False) m2 = mse(valid_y, p2, squared=False) m3 = mse(valid_y, p3, squared=False) m4 = mse(valid_y, (p1 + p2) / 2, squared=False) m5 = mse(valid_y, (p1 + p2 + p3) / 3, squared=False) print( f"Ensemble MSE: \nABR: {m1}\nXGR: {m2}\nLinear: {m3}\nABR+XGR: {m4}\nABR+XGR+Linear: {m5}" ) # Let's try them all, # * linear regressor # * Ensemble of AdaBoost and XGBoost # * Ensemble of all of the above pred_1 = linear_regressor.predict(test_X) pred_2 = (abr.predict(test_X) + xgr.predict(test_X)) / 2 pred_3 = (2 * pred_2 + pred_1) / 3 def create_submission(preds, name="submission.csv"): preds = np.expm1(preds) submission = pd.DataFrame({"Id": test_X.index, "SalePrice": preds}) submission.to_csv(name, index=False) return submission create_submission(pred_1, "submission1.csv") create_submission(pred_2, "submission2.csv") create_submission(pred_3, "submission3.csv")
import numpy as np import pandas as pd TRAIN_PATH = "/kaggle/input/titanic/train.csv" CATEGORY_DELETE_BASESIZE = 20 train = pd.read_csv(TRAIN_PATH) train.info() # # 1.delete columns len(train["Name"].value_counts()) len(train["Sex"].value_counts()) len(train["Cabin"].value_counts()) len(train["Embarked"].value_counts()) train_only_object = train.select_dtypes(include="object") cate_col = train_only_object.columns.tolist() cate_col deleteCol = [] for i in range(len(cate_col)): if len(train[cate_col[i]].value_counts()) > CATEGORY_DELETE_BASESIZE: deleteCol.append(cate_col[i]) deleteCol train_drop = train.drop(columns=deleteCol, axis=1) train_drop.info() # # 2.N/A => non N/A def checkNull_fillData(df): for col in df.columns: if len(df.loc[df[col].isnull() == True]) != 0: if df[col].dtype == "object": df.loc[df[col].isnull() == True, col] = df[col].mode()[0] else: df.loc[df[col].isnull() == True, col] = df[col].mean() checkNull_fillData(train_drop) train_drop.info() # # 3.object => number train_object = train_drop.select_dtypes(include="object") train_object.info() train_object_list = train_object.columns.values.tolist() train_object_list train_convert = pd.get_dummies(train_drop, columns=train_object_list) train_convert.info() train_convert.head()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import matplotlib.pyplot as plt import seaborn as sns # ## Show max Rows and Columns pd.set_option("display.max_columns", None) pd.set_option("display.max_rows", None) # ## Read files using pandas train_df = pd.read_csv("../input/house-prices-advanced-regression-techniques/train.csv") train_df.head() # ## Check information of dataframe train_df.info() # ## Check Shape of a dataframe train_df.shape # ## Check for null values train_df.isnull().sum() # ## Verifying values which are null train_df["LotFrontage"].value_counts() train_df["Alley"].value_counts() train_df["BsmtQual"].value_counts() train_df["PoolQC"].value_counts() train_df["Fence"].value_counts() train_df["MiscFeature"].value_counts() train_df["GarageCond"].value_counts() train_df["GarageCond"].value_counts() train_df["GarageFinish"].value_counts() train_df["GarageYrBlt"].value_counts() train_df["GarageType"].value_counts() train_df["FireplaceQu"].value_counts() train_df["Electrical"].value_counts() train_df["BsmtFinType2"].value_counts() train_df["BsmtFinType1"].value_counts() train_df["BsmtExposure"].value_counts() train_df["BsmtCond"].value_counts() # ## Imputing the null values lot_front = train_df["LotFrontage"] price = train_df["SalePrice"] plt.figure(figsize=(30, 10)) ax = sns.barplot(x=lot_front, y=price) ax.set_xticklabels(ax.get_xticklabels(), rotation=90) lot_front_null_df = train_df[train_df["LotFrontage"].isnull()] sns.histplot(data=lot_front_null_df, x=train_df["SalePrice"]) lot_mean = train_df["LotFrontage"].mean() train_df["LotFrontage"].fillna(lot_mean, inplace=True) train_df["Alley"].value_counts() alley_null_df = train_df[train_df["Alley"].notnull()] alley_null_df sns.barplot(data=alley_null_df, x=alley_null_df["Alley"], y=alley_null_df["SalePrice"]) for i in alley_null_df["SalePrice"]: if i < 100000: train_df["Alley"].fillna("Grvl", inplace=True) else: train_df["Alley"].fillna("Pave", inplace=True) train_df["BsmtQual"].value_counts() bsmtqual_null_df = train_df[train_df["BsmtQual"].notnull()] bsmtqual_null_df sns.barplot( data=bsmtqual_null_df, x=bsmtqual_null_df["BsmtQual"], y=bsmtqual_null_df["SalePrice"], ) for i in bsmtqual_null_df["SalePrice"]: if i < 100000: train_df["BsmtQual"].fillna("Fa", inplace=True) elif i > 100000 and i < 1500000: train_df["BsmtQual"].fillna("TA", inplace=True) elif i > 1500000 and i < 200000: train_df["BsmtQual"].fillna("Gd", inplace=True) elif i > 200000: train_df["BsmtQual"].fillna("Ex", inplace=True) train_df["BsmtQual"].isnull().sum() train_df["BsmtCond"].value_counts() bsmtcond_null_df = train_df[train_df["BsmtCond"].notnull()] sns.barplot( data=bsmtcond_null_df, x=bsmtcond_null_df["BsmtCond"], y=bsmtcond_null_df["SalePrice"], ) for i in bsmtcond_null_df["SalePrice"]: if i > 50000 and i < 100000: train_df["BsmtCond"].fillna("Po", inplace=True) elif i > 100000 and i < 1500000: train_df["BsmtCond"].fillna("Fa", inplace=True) elif i > 1500000 and i < 200000: train_df["BsmtCond"].fillna("TA", inplace=True) elif i > 200000: train_df["BsmtCond"].fillna("Gd", inplace=True) train_df["BsmtCond"].isnull().sum() train_df["BsmtExposure"].value_counts() bsmtexposure_null_df = train_df[train_df["BsmtExposure"].notnull()] sns.barplot( data=bsmtexposure_null_df, x=bsmtexposure_null_df["BsmtExposure"], y=bsmtexposure_null_df["SalePrice"], ) for i in bsmtexposure_null_df["SalePrice"]: if i > 150000 and i < 170000: train_df["BsmtExposure"].fillna("No", inplace=True) elif i > 170000 and i < 200000: train_df["BsmtExposure"].fillna("Mn", inplace=True) elif i > 200000 and i < 250000: train_df["BsmtExposure"].fillna("Av", inplace=True) elif i > 250000: train_df["BsmtExposure"].fillna("Gd", inplace=True) train_df["BsmtExposure"].isnull().sum() bsmtfintype1_null_df = train_df[train_df["BsmtFinType1"].notnull()] sns.barplot( data=bsmtfintype1_null_df, x=bsmtfintype1_null_df["BsmtFinType1"], y=bsmtfintype1_null_df["SalePrice"], ) for i in bsmtfintype1_null_df["SalePrice"]: if i < 150000: train_df["BsmtFinType1"].fillna("Rec", inplace=True) elif i > 150000 and i < 200000: train_df["BsmtFinType1"].fillna("Unf", inplace=True) elif i > 200000: train_df["BsmtFinType1"].fillna("GLQ", inplace=True) train_df["BsmtFinType1"].isnull().sum() bsmtFinType2_null_df = train_df[train_df["BsmtFinType2"].notnull()] sns.barplot( data=bsmtFinType2_null_df, x=bsmtFinType2_null_df["BsmtFinType2"], y=bsmtFinType2_null_df["SalePrice"], ) for i in bsmtFinType2_null_df["SalePrice"]: if i < 150000: train_df["BsmtFinType2"].fillna("BLQ", inplace=True) elif i > 150000 and i < 200000: train_df["BsmtFinType2"].fillna("Unf", inplace=True) elif i > 200000: train_df["BsmtFinType2"].fillna("ALQ", inplace=True) train_df["BsmtFinType2"].isnull().sum() electrical_null_df = train_df[train_df["Electrical"].notnull()] sns.barplot( data=electrical_null_df, x=electrical_null_df["Electrical"], y=electrical_null_df["SalePrice"], ) train_df["Electrical"].fillna("SBrkr", inplace=True) FireplaceQu_null_df = train_df[train_df["FireplaceQu"].notnull()] sns.barplot( data=FireplaceQu_null_df, x=FireplaceQu_null_df["FireplaceQu"], y=FireplaceQu_null_df["SalePrice"], ) for i in FireplaceQu_null_df["SalePrice"]: if i < 150000: train_df["FireplaceQu"].fillna("Po", inplace=True) elif i > 150000 and i < 200000: train_df["FireplaceQu"].fillna("Fa", inplace=True) elif i > 200000 and i < 225000: train_df["FireplaceQu"].fillna("TA", inplace=True) elif i > 225000 and i < 250000: train_df["FireplaceQu"].fillna("Gd", inplace=True) elif i > 250000: train_df["FireplaceQu"].fillna("Ex", inplace=True) train_df["FireplaceQu"].isnull().sum() GarageType_null_df = train_df[train_df["GarageType"].notnull()] sns.barplot( data=GarageType_null_df, x=GarageType_null_df["GarageType"], y=GarageType_null_df["SalePrice"], ) for i in GarageType_null_df["SalePrice"]: if i > 50000 and i < 110000: train_df["GarageType"].fillna("CarPort", inplace=True) elif i > 110000 and i < 150000: train_df["GarageType"].fillna("Detchd", inplace=True) elif i > 150000 and i < 200000: train_df["GarageType"].fillna("Basment", inplace=True) elif i > 200000 and i < 250000: train_df["GarageType"].fillna("Attchd", inplace=True) elif i > 250000: train_df["GarageType"].fillna("BuiltIn", inplace=True) train_df["GarageType"].isnull().sum() GarageYrBlt_null_df = train_df[train_df["GarageYrBlt"].notnull()] plt.figure(figsize=(25, 10)) ax = sns.barplot( data=GarageYrBlt_null_df, x=GarageYrBlt_null_df["GarageYrBlt"], y=GarageYrBlt_null_df["SalePrice"], ) ax.set_xticklabels(ax.get_xticklabels(), rotation=90) for i in GarageYrBlt_null_df["SalePrice"]: if i < 200000: train_df["GarageYrBlt"].fillna(1960.0, inplace=True) else: train_df["GarageYrBlt"].fillna(2010.0, inplace=True) train_df["GarageYrBlt"].isnull().sum() GarageFinish_null_df = train_df[train_df["GarageFinish"].notnull()] sns.barplot( data=GarageFinish_null_df, x=GarageFinish_null_df["GarageFinish"], y=GarageFinish_null_df["SalePrice"], ) for i in GarageFinish_null_df["SalePrice"]: if i < 150000: train_df["GarageFinish"].fillna("Unf", inplace=True) elif i > 150000 and i < 200000: train_df["GarageFinish"].fillna("RFn", inplace=True) elif i > 200000: train_df["GarageFinish"].fillna("Fin", inplace=True) train_df["GarageFinish"].isnull().sum() GarageQual_null_df = train_df[train_df["GarageQual"].notnull()] sns.barplot( data=GarageQual_null_df, x=GarageQual_null_df["GarageQual"], y=GarageQual_null_df["SalePrice"], ) for i in GarageQual_null_df["SalePrice"]: if i < 100000: train_df["GarageQual"].fillna("Po", inplace=True) elif i > 100000 and i < 150000: train_df["GarageQual"].fillna("Fa", inplace=True) elif i > 150000 and i < 200000: train_df["GarageQual"].fillna("TA", inplace=True) elif i > 200000 and i < 215000: train_df["GarageQual"].fillna("Gd", inplace=True) elif i > 215000: train_df["GarageQual"].fillna("Ex", inplace=True) train_df["GarageQual"].isnull().sum() GarageCond_null_df = train_df[train_df["GarageCond"].notnull()] sns.barplot( data=GarageCond_null_df, x=GarageCond_null_df["GarageCond"], y=GarageCond_null_df["SalePrice"], ) for i in GarageCond_null_df["SalePrice"]: if i > 50000 and i < 150000: train_df["GarageCond"].fillna("Ex", inplace=True) else: train_df["GarageCond"].fillna("TA", inplace=True) train_df["GarageCond"].isnull().sum() PoolQC_null_df = train_df[train_df["PoolQC"].notnull()] sns.barplot( data=PoolQC_null_df, x=PoolQC_null_df["PoolQC"], y=PoolQC_null_df["SalePrice"] ) for i in PoolQC_null_df["SalePrice"]: if i > 100000 and i < 200000: train_df["PoolQC"].fillna("Gd", inplace=True) elif i > 200000 and i < 300000: train_df["PoolQC"].fillna("Fa", inplace=True) elif i > 300000: train_df["PoolQC"].fillna("Ex", inplace=True) train_df["PoolQC"].isnull().sum() Fence_null_df = train_df[train_df["Fence"].notnull()] sns.barplot(data=Fence_null_df, x=Fence_null_df["Fence"], y=Fence_null_df["SalePrice"]) for i in Fence_null_df["SalePrice"]: if i > 100000 and i < 170000: train_df["Fence"].fillna("MnPrv", inplace=True) else: train_df["Fence"].fillna("GdPrv", inplace=True) train_df["Fence"].isnull().sum() MiscFeature_null_df = train_df[train_df["MiscFeature"].notnull()] sns.barplot( data=MiscFeature_null_df, x=MiscFeature_null_df["MiscFeature"], y=MiscFeature_null_df["SalePrice"], ) for i in MiscFeature_null_df["SalePrice"]: if i > 50000 and i < 100000: train_df["MiscFeature"].fillna("Othr", inplace=True) elif i > 100000 and i < 150000: train_df["MiscFeature"].fillna("Shed", inplace=True) elif i > 150000 and i < 170000: train_df["MiscFeature"].fillna("Gar2", inplace=True) else: train_df["MiscFeature"].fillna("TenC", inplace=True) train_df["MiscFeature"].isnull().sum() MasVnrType_null_df = train_df[train_df["MasVnrType"].notnull()] sns.barplot( data=MasVnrType_null_df, x=MasVnrType_null_df["MasVnrType"], y=MasVnrType_null_df["SalePrice"], ) for i in MasVnrType_null_df["SalePrice"]: if i > 100000 and i < 150000: train_df["MasVnrType"].fillna("BrkCmn", inplace=True) elif i > 150000 and i < 200000: train_df["MasVnrType"].fillna("None", inplace=True) elif i > 200000 and i < 250000: train_df["MasVnrType"].fillna("BrkFace", inplace=True) else: train_df["MasVnrType"].fillna("Stone", inplace=True) MasVnrArea_null_df = train_df[train_df["MasVnrArea"].notnull()] plt.figure(figsize=(40, 30)) ax = sns.barplot( data=MasVnrArea_null_df, x=MasVnrArea_null_df["MasVnrArea"], y=MasVnrArea_null_df["SalePrice"], ) ax.set_xticklabels(ax.get_xticklabels(), rotation=90) MasVnrArea_mean = train_df["MasVnrArea"].mean() MasVnrArea_mean train_df["MasVnrArea"].fillna(MasVnrArea_mean, inplace=True) a = dict(train_df.dtypes == "object") l = [] for i in a: if a[i] == True: l.append(i) print(l) from pycaret.regression import * data = train_df.sample(frac=0.9, random_state=786) data_unseen = train_df.drop(data.index) data.reset_index(drop=True, inplace=True) data_unseen.reset_index(drop=True, inplace=True) print("Data for Modeling: " + str(data.shape)) print("Unseen Data For Predictions: " + str(data_unseen.shape)) regression_experiment = setup( data=data, ignore_features=["Id"], numeric_features=[ "MSSubClass", "LotFrontage", "LotArea", "OverallQual", "OverallCond", "YearBuilt", "YearRemodAdd", "MasVnrArea", "BsmtFinSF1", "BsmtFinSF2", "BsmtUnfSF", "TotalBsmtSF", "1stFlrSF", "2ndFlrSF", "LowQualFinSF", "GrLivArea", "BsmtFullBath", "BsmtHalfBath", "FullBath", "HalfBath", "BedroomAbvGr", "KitchenAbvGr", "TotRmsAbvGrd", "Fireplaces", "GarageYrBlt", "GarageCars", "GarageArea", "WoodDeckSF", "OpenPorchSF", "EnclosedPorch", "3SsnPorch", "ScreenPorch", "PoolArea", "MiscVal", "MoSold", "YrSold", ], normalize=True, transformation=True, normalize_method="robust", target="SalePrice", use_gpu=True, session_id=123, ) best = compare_models(exclude=["ransac"]) catboost = create_model("catboost") tuned_cat = tune_model(catboost) plot_model(catboost) plot_model(catboost, plot="error") plot_model(catboost, plot="feature") evaluate_model(catboost) predict_model(catboost) final_catboost = finalize_model(catboost) print(final_catboost) predict_model(final_catboost) unseen_predictions = predict_model(final_catboost, data=data_unseen) unseen_predictions.head() from pycaret.utils import check_metric check_metric(unseen_predictions.SalePrice, unseen_predictions.Label, "RMSLE") save_model(final_catboost, "Final house price kaggle catboost Model 03Mar2021") saved_final_catboost = load_model("Final house price kaggle catboost Model 03Mar2021") pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) test_df = pd.read_csv("../input/house-prices-advanced-regression-techniques/test.csv") test_df.head() test_df.isnull().sum() test_df["MSZoning"].value_counts() MSZoning_null_df = train_df[train_df["MSZoning"].notnull()] sns.barplot( data=MSZoning_null_df, x=MSZoning_null_df["MSZoning"], y=MSZoning_null_df["SalePrice"], ) MSZonin_mode = test_df["MSZoning"].mode()[0] test_df["MSZoning"].fillna(MSZonin_mode, inplace=True) test_df["MSZoning"].isnull().sum() lotfront_mean = test_df["LotFrontage"].mean() test_df["LotFrontage"].fillna(lotfront_mean, inplace=True) test_df["LotFrontage"].isnull().sum() test_df["Alley"].value_counts() alley_mode = test_df["Alley"].mode()[0] test_df["Alley"].fillna(alley_mode, inplace=True) test_df["Alley"].isnull().sum() test_df["Utilities"].value_counts() uti_mode = test_df["Utilities"].mode()[0] test_df["Utilities"].fillna(uti_mode, inplace=True) test_df["Utilities"].isnull().sum() test_df["Exterior1st"].value_counts() ext_mode = test_df["Exterior1st"].mode()[0] test_df["Exterior1st"].fillna(ext_mode, inplace=True) test_df["Exterior1st"].isnull().sum() test_df["Exterior2nd"].value_counts() ext2_mode = test_df["Exterior2nd"].mode()[0] test_df["Exterior2nd"].fillna(ext2_mode, inplace=True) test_df["Exterior2nd"].isnull().sum() test_df["MasVnrType"].value_counts() masvnr_mode = test_df["MasVnrType"].mode()[0] test_df["MasVnrType"].fillna(masvnr_mode, inplace=True) test_df["MasVnrType"].isnull().sum() test_df["MasVnrArea"].value_counts() MasVnrArea_mean = test_df["MasVnrArea"].mean() test_df["MasVnrArea"].fillna(MasVnrArea_mean, inplace=True) test_df["MasVnrArea"].isnull().sum() test_df["BsmtQual"].value_counts() BsmtQual_mode = test_df["BsmtQual"].mode()[0] test_df["BsmtQual"].fillna(BsmtQual_mode, inplace=True) test_df["BsmtQual"].isnull().sum() test_df["BsmtCond"].value_counts() BsmtCond_mode = test_df["BsmtCond"].mode()[0] test_df["BsmtCond"].fillna(BsmtCond_mode, inplace=True) test_df["BsmtCond"].isnull().sum() test_df["BsmtExposure"].value_counts() BsmtExposure_mode = test_df["BsmtExposure"].mode()[0] test_df["BsmtExposure"].fillna(BsmtCond_mode, inplace=True) test_df["BsmtExposure"].isnull().sum() test_df["BsmtFinType1"].value_counts() BsmtFinType1_mode = test_df["BsmtFinType1"].mode()[0] test_df["BsmtFinType1"].fillna(BsmtFinType1_mode, inplace=True) test_df["BsmtFinType1"].isnull().sum() test_df["BsmtFinSF1"].value_counts() BsmtFinSF1_mean = test_df["BsmtFinSF1"].mean() test_df["BsmtFinSF1"].fillna(BsmtFinSF1_mean, inplace=True) test_df["BsmtFinSF1"].isnull().sum() test_df["BsmtFinType2"].value_counts() BsmtFinType2_mean = test_df["BsmtFinType2"].mode()[0] test_df["BsmtFinType2"].fillna(BsmtFinType2_mean, inplace=True) test_df["BsmtFinType2"].isnull().sum() test_df["BsmtFinSF2"].value_counts() BsmtFinSF2_mean = test_df["BsmtFinSF2"].mean() test_df["BsmtFinSF2"].fillna(BsmtFinSF2_mean, inplace=True) test_df["BsmtFinSF2"].isnull().sum() test_df["BsmtUnfSF"].value_counts() BsmtUnfSF_mean = test_df["BsmtUnfSF"].mean() test_df["BsmtUnfSF"].fillna(BsmtUnfSF_mean, inplace=True) test_df["BsmtUnfSF"].isnull().sum() test_df["TotalBsmtSF"].value_counts() TotalBsmtSF_mean = test_df["TotalBsmtSF"].mean() test_df["TotalBsmtSF"].fillna(TotalBsmtSF_mean, inplace=True) test_df["TotalBsmtSF"].isnull().sum() test_df["BsmtFullBath"].value_counts() BsmtFullBath_mean = test_df["BsmtFullBath"].mode()[0] test_df["BsmtFullBath"].fillna(BsmtFullBath_mean, inplace=True) test_df["BsmtFullBath"].isnull().sum() test_df["BsmtHalfBath"].value_counts() BsmtHalfBath_mode = test_df["BsmtHalfBath"].mode()[0] test_df["BsmtHalfBath"].fillna(BsmtHalfBath_mode, inplace=True) test_df["BsmtHalfBath"].isnull().sum() test_df["KitchenQual"].value_counts() KitchenQual_mode = test_df["KitchenQual"].mode()[0] test_df["KitchenQual"].fillna(KitchenQual_mode, inplace=True) test_df["BsmtHalfBath"].isnull().sum() test_df["Functional"].value_counts() Functional_mode = test_df["Functional"].mode()[0] test_df["Functional"].fillna(Functional_mode, inplace=True) test_df["Functional"].isnull().sum() test_df["FireplaceQu"].value_counts() FireplaceQu_mode = test_df["FireplaceQu"].mode()[0] test_df["FireplaceQu"].fillna(FireplaceQu_mode, inplace=True) test_df["FireplaceQu"].isnull().sum() test_df["GarageType"].value_counts() GarageType_mode = test_df["GarageType"].mode()[0] test_df["GarageType"].fillna(GarageType_mode, inplace=True) test_df["GarageType"].isnull().sum() test_df["GarageYrBlt"].value_counts() GarageYrBlt_mode = test_df["GarageYrBlt"].mode()[0] test_df["GarageYrBlt"].fillna(GarageYrBlt_mode, inplace=True) test_df["GarageYrBlt"].isnull().sum() test_df["GarageFinish"].value_counts() GarageFinish_mode = test_df["GarageFinish"].mode()[0] test_df["GarageFinish"].fillna(GarageFinish_mode, inplace=True) test_df["GarageFinish"].isnull().sum() test_df["GarageCars"].value_counts() GarageCars_mode = test_df["GarageCars"].mode()[0] test_df["GarageCars"].fillna(GarageCars_mode, inplace=True) test_df["GarageCars"].isnull().sum() test_df["GarageArea"].value_counts() GarageArea_mean = test_df["GarageArea"].mean() test_df["GarageArea"].fillna(GarageArea_mean, inplace=True) test_df["GarageArea"].isnull().sum() test_df["GarageQual"].value_counts() GarageQual_mode = test_df["GarageQual"].mode()[0] test_df["GarageQual"].fillna(GarageQual_mode, inplace=True) test_df["GarageQual"].isnull().sum() test_df["GarageCond"].value_counts() GarageCond_mode = test_df["GarageCond"].mode()[0] test_df["GarageCond"].fillna(GarageCond_mode, inplace=True) test_df["GarageCond"].isnull().sum() test_df["PoolQC"].value_counts() PoolQC_mode = test_df["PoolQC"].mode()[0] test_df["PoolQC"].fillna(PoolQC_mode, inplace=True) test_df["PoolQC"].isnull().sum() test_df["Fence"].value_counts() Fence_mode = test_df["Fence"].mode()[0] test_df["Fence"].fillna(Fence_mode, inplace=True) test_df["Fence"].isnull().sum() MiscFeature_mode = test_df["MiscFeature"].mode()[0] test_df["MiscFeature"].fillna(MiscFeature_mode, inplace=True) test_df["MiscFeature"].isnull().sum() SaleType_mode = test_df["SaleType"].mode()[0] test_df["SaleType"].fillna(SaleType_mode, inplace=True) test_df["SaleType"].isnull().sum() saved_final_catboost = load_model("Final house price kaggle catboost Model 03Mar2021") new_prediction = predict_model(saved_final_catboost, data=test_df) new_prediction.head() new_prediction.to_excel("House_prediction.xlsx")
# # Welcome to my Kernel ! # # Introduction # This particular challenge is perfect for data scientists looking to get started with Natural Language Processing. # Competition Description # Twitter has become an important communication channel in times of emergency. # The ubiquitousness of smartphones enables people to announce an emergency they’re observing in real-time. Because of this, more agencies are interested in programatically monitoring Twitter (i.e. disaster relief organizations and news agencies). # But, it’s not always clear whether a person’s words are actually announcing a disaster. # Take an example: # The author explicitly uses the word “ABLAZE” but means it metaphorically. This is clear to a human right away, especially with the visual aid. But it’s less clear to a machine. # In this competition, you’re challenged to build a machine learning model that predicts which Tweets are about real disasters and which one’s aren’t. You’ll have access to a dataset of 10,000 tweets that were hand classified. # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from matplotlib.pyplot import xticks from nltk.corpus import stopwords import nltk import re from nltk.stem import WordNetLemmatizer import string from nltk.tokenize import word_tokenize from nltk.util import ngrams from collections import defaultdict from tqdm import tqdm from sklearn.model_selection import train_test_split from keras.utils.vis_utils import plot_model from keras.models import Sequential from keras.layers import Dense from keras.callbacks import ModelCheckpoint, EarlyStopping, Callback import tensorflow as tf from sklearn.metrics import f1_score from wordcloud import WordCloud, STOPWORDS from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline from keras.preprocessing.sequence import pad_sequences from numpy import array from numpy import asarray from numpy import zeros from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense, Flatten, Embedding, Activation, Dropout from keras.layers import Conv1D, MaxPooling1D, GlobalMaxPooling1D, LSTM from keras.layers import Bidirectional # load train and test datasets train = pd.read_csv("../input/nlp-getting-started/train.csv") test = pd.read_csv("../input/nlp-getting-started/test.csv") # check the no. of rows and columns in the dataset train.shape, test.shape train.head() train.isnull().sum().sort_values(ascending=False) # We can see a lots of null values for "keyword" and "location" columns sns.countplot(x=train.target) # **We have a balanced dataset, which is good** # ### Data Cleaning # In order to get accurate results from the predictive model, we need to remove these stop words & punctuations. # Apart from removing these stopwords & puncuations, we would also convert all the messages in lowercase so that words like "Go" & "go" can be treated as same word and not different words. # We will also convert the words to its lemma form (for example, lemma of word "running" would be run), converting words to their lemmas would also help improving the predictive power of our model. # We would also remove embedded special characters from the tweets, for example, #earthquake should be replaced by earthquake # We also need to remove the "URLs" from the tweets # And then finally we remove the digits from the tweets # Lets write a small function "preprocess" to achive all these tasks. # lets save stopwords in a variable stop = list(stopwords.words("english")) # save list of punctuation/special characters in a variable punctuation = list(string.punctuation) # create an object to convert the words to its lemma form lemma = WordNetLemmatizer() # lets make a combine list of stopwords and punctuations sw_pun = stop + punctuation # function to preprocess the messages def preprocess(tweet): tweet = re.sub(r"https?:\/\/t.co\/[A-Za-z0-9]+", "", tweet) # removing urls tweet = re.sub( "[^\w]", " ", tweet ) # remove embedded special characters in words (for example #earthquake) tweet = re.sub("[\d]", "", tweet) # this will remove numeric characters tweet = tweet.lower() words = tweet.split() sentence = "" for word in words: if word not in (sw_pun): # removing stopwords & punctuations word = lemma.lemmatize(word, pos="v") # converting to lemma if len(word) > 3: # we will consider words with length greater than 3 only sentence = sentence + word + " " return sentence # apply preprocessing functions on the train and test datasets train["text"] = train["text"].apply(lambda s: preprocess(s)) test["text"] = test["text"].apply(lambda s: preprocess(s)) # function to remove emojis def remove_emoji(text): emoji_pattern = re.compile( "[" "\U0001F600-\U0001F64F" # emoticons "\U0001F300-\U0001F5FF" # symbols & pictographs "\U0001F680-\U0001F6FF" # transport & map symbols "\U0001F1E0-\U0001F1FF" # flags (iOS) "\U00002702-\U000027B0" "\U000024C2-\U0001F251" "]+", flags=re.UNICODE, ) return emoji_pattern.sub(r"", text) # applying the function on the train and the test datasets train["text"] = train["text"].apply(lambda s: remove_emoji(s)) test["text"] = test["text"].apply(lambda s: remove_emoji(s)) # # Vocabulary creation # Lets create our own vocabulary # function to create vocab from collections import Counter def create_vocab(df): vocab = Counter() for i in range(df.shape[0]): vocab.update(df.text[i].split()) return vocab # concatenate training and testing datasets master = pd.concat((train, test)).reset_index(drop=True) # call vocabulary creation function on master dataset vocab = create_vocab(master) # lets check the no. of words in the vocabulary len(vocab) # lets check the most common 50 words in the vocabulary vocab.most_common(50) # lets consider only those words which have appeared more than once in the corpus # # create the final vocab by considering words with more than one occurence final_vocab = [] min_occur = 2 for k, v in vocab.items(): if v >= min_occur: final_vocab.append(k) # lets check the no. of the words in the final vocabulary vocab_size = len(final_vocab) vocab_size # vocab size reduced drastically from 16k to 6k # Now lets apply this vocab on our train and test datasets, we will keep only those words in training and testing datasets which appear in the vocabulary # function to filter the dataset, keep only words which are present in the vocab def filter(tweet): sentence = "" for word in tweet.split(): if word in final_vocab: sentence = sentence + word + " " return sentence # apply filter function on the train and test datasets train["text"] = train["text"].apply(lambda s: filter(s)) test["text"] = test["text"].apply(lambda s: filter(s)) # lets take a look at the update training dataset train.text.head() # # Data Preprocessing # the different units into which you can break down text (words, characters, or n-grams) are called tokens, # and breaking text into such tokens is called tokenization, this can be achieved using Tokenizer in Keras from keras.preprocessing.text import Tokenizer # fit a tokenizer def create_tokenizer(lines): # num_words = vocab_size will create a tokenizer,configured to only take into account the vocab_size(6025) tokenizer = Tokenizer(num_words=vocab_size) # Build th word index, Turns strings into lists of integer indices tokenizer.fit_on_texts(lines) return tokenizer # create and apply tokenizer on the training dataset tokenizer = create_tokenizer(train.text) word_index = tokenizer.word_index print("Found %s unique tokens." % len(word_index)) # Now we will apply texts_to_matrix() function to convert text into vectors. # The texts_to_matrix() function on the Tokenizer can be used to create one vector per document provided per input. The length of the vectors is the total size of the vocabulary, which is 6025 here (we passed 6025 as num_words into tokenizer) # This function provides a suite of standard bag-of-words model text encoding schemes that can be provided via a mode argument to the function. # The modes available include: # * ‘binary‘: Whether or not each word is present in the document. This is the default. # * ‘count‘: The count of each word in the document. # * ‘tfidf‘: The Text Frequency-Inverse DocumentFrequency (TF-IDF) scoring for each word in the document. # * ‘freq‘: The frequency of each word as a ratio of words within each document. # converting texts into vectors train_text = tokenizer.texts_to_matrix(train.text, mode="freq") # # Model Building & Evaluation # ### 1. Neural Network # We will create an Artificial Neural Network, this competition is evaluated on f1 scores,which is not shown by default after every epoch, so lets create a function to achieve the same. # Test train split X_train, X_test, y_train, y_test = train_test_split( train_text, train.target, test_size=0.2, random_state=42 ) # function to calculate f1 score for each epoch import keras.backend as K def get_f1(y_true, y_pred): # taken from old keras source code true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) recall = true_positives / (possible_positives + K.epsilon()) f1_val = 2 * (precision * recall) / (precision + recall + K.epsilon()) return f1_val # define the model def define_model(n_words): # define network model = Sequential() model.add(Dense(1024, input_shape=(n_words,), activation="relu")) model.add(Dropout(0.3)) model.add(Dense(512, activation="relu")) model.add(Dropout(0.3)) model.add(Dense(256, activation="relu")) model.add(Dropout(0.3)) model.add(Dense(1, activation="sigmoid")) # compile network model.compile(loss="binary_crossentropy", optimizer="adam", metrics=[get_f1]) # summarize defined model model.summary() return model X_train.shape callbacks_list = [ EarlyStopping( monitor="get_f1", patience=10, ), ModelCheckpoint(filepath="./NN.h5", monitor="val_loss", save_best_only=True), ] # create the model n_words = X_train.shape[1] model = define_model(n_words) # fit network history = model.fit( X_train, y_train, epochs=100, verbose=2, callbacks=callbacks_list, validation_split=0.2, ) acc = history.history["get_f1"] val_acc = history.history["val_get_f1"] loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, "bo", label="Training acc") plt.plot(epochs, val_acc, "b", label="Validation acc") plt.title("Training and validation accuracy") plt.legend() plt.figure() plt.plot(epochs, loss, "bo", label="Training loss") plt.plot(epochs, val_loss, "b", label="Validation loss") plt.title("Training and validation loss") plt.legend() plt.show() # There is a huge difference between training and validation accuracies and losses import keras dependencies = {"get_f1": get_f1} # load the model from disk loaded_model_NN = keras.models.load_model("./NN.h5", custom_objects=dependencies) # prediction on the test dataset # X_test_Set = tokenizer.texts_to_matrix(X_test, mode = 'freq') y_pred = loaded_model_NN.predict_classes(X_test) # important metrices print(classification_report(y_test, y_pred)) # # Predictions on the test dataset test_id = test.id test.drop(["id", "location", "keyword"], 1, inplace=True) # apply tokenizer on the test dataset test_set = tokenizer.texts_to_matrix(test.text, mode="freq") # make predictions on the test dataset y_test_pred = loaded_model_NN.predict_classes(test_set) # lets prepare for the prediction submission sub = pd.DataFrame() sub["Id"] = test_id sub["target"] = y_test_pred sub.head() sub.to_csv("submission_NN.csv", index=False) # # Model using Word Embeddings # Another popular and powerful way to associate a vector with a word is the use of dense word vectors, also called `word embeddings`. # The Embedding layer is best understood as a dictionary that maps integer indices (which stand for specific words) to dense vectors. It takes integers as input, it looks up these integers in an internal dictionary, and it returns the associated vectors. It’s effectively a dictionary lookup. # Whereas the vectors obtained through one-hot encoding are binary, sparse (mostly made of zeros), and very high-dimensional (same dimensionality as the number of words in the vocabulary), word embeddings are low dimensional floating-point vectors (that is, dense vectors, as opposed to sparse vectors); # Unlike the word vectors obtained via one-hot encoding, word embeddings are learned from data. It’s common to see word embeddings that are 256-dimensional, 512-dimensional, or 1,024-dimensional when dealing with very large vocabularies. # On the other hand, one-hot encoding words generally leads to vectors that are 20,000-dimensional or greater (capturing a vocabulary of 6,025 tokens, above). So, word embeddings pack more information into far fewer dimensions. # ### There are two ways to obtain word embeddings: # * Learn word embeddings jointly with the main task you care about (such as document classification or sentiment prediction). In this setup, you start with random word vectors and then learn word vectors in the same way you learn the # weights of a neural network. # * Load into your model word embeddings that were precomputed using a different machine-learning task than the one you’re trying to solve. These are called # pretrained word embeddings. from keras.layers import Embedding # The Embedding layer takes at least two arguments: the number of possible tokens (here, 5,000: 1 + maximum word index) # and the dimensionality of the embeddings (here, 64). # embedding_layer = Embedding(5000, 64) # Number of words to consider as features max_features = vocab_size # Cuts off the text after this number of words (among the max_features most common words) maxlen = 100 # create and apply tokenizer on the training dataset tokenizer = create_tokenizer(train.text) from keras import preprocessing # conver text to sequences sequences = tokenizer.texts_to_sequences(train.text) # print(sequences) # Turns the lists of integers into a 2D integer tensor of shape (samples, maxlen), padding shorter sequences with 0s train_text = preprocessing.sequence.pad_sequences(sequences, maxlen=maxlen) # Test train split X_train, X_test, y_train, y_test = train_test_split( train_text, train.target, test_size=0.2, random_state=42 ) # ### 2. Neural Network with Embedding Layer # build the model model = Sequential() # Specifies the maximum input length to the Embedding layer so you can later flatten the embedded inputs. # After the Embedding layer, the activations have shape (samples, maxlen, 8) model.add(Embedding(vocab_size, 8, input_length=maxlen)) # Flattens the 3D tensor of embeddings into a 2D tensor of shape (samples, maxlen * 8) model.add(Flatten()) # Dense layer for classification model.add(Dense(1, activation="sigmoid")) # compile the model model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=[get_f1]) model.summary() callbacks_list = [ EarlyStopping( monitor="get_f1", patience=1, ), ModelCheckpoint(filepath="./embd.h5", monitor="val_loss", save_best_only=True), ] # train the model history = model.fit( X_train, y_train, epochs=100, batch_size=32, callbacks=callbacks_list, validation_split=0.2, ) # check model performance acc = history.history["get_f1"] val_acc = history.history["val_get_f1"] loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, "bo", label="Training acc") plt.plot(epochs, val_acc, "b", label="Validation acc") plt.title("Training and validation accuracy") plt.legend() plt.figure() plt.plot(epochs, loss, "bo", label="Training loss") plt.plot(epochs, val_loss, "b", label="Validation loss") plt.title("Training and validation loss") plt.legend() plt.show() dependencies = {"get_f1": get_f1} # load the model from disk loaded_model_embd = keras.models.load_model("./embd.h5", custom_objects=dependencies) # prediction on the test dataset y_pred = loaded_model_embd.predict_classes(X_test) # important metrices print(classification_report(y_test, y_pred)) # We got to a f1 score of 81%, which is pretty good considering that we’re only looking at the first 20 words in every review. But note that merely flattening the embedded sequences and training a single Dense layer on top leads to a model that treats each word in the input sequence separately, without considering inter-word relationships and sentence structure (for example, this model would likely treat both “this movie is a bomb” and “this movie is the bomb” as being negative reviews). # It’s much better to add recurrent layers or 1D convolutional layers on top of the embedded sequences to learn features that take into account each sequence as a whole. We will do this later. # conver text to sequences sequences = tokenizer.texts_to_sequences(test.text) # Turns the lists of integers into a 2D integer tensor of shape (samples, maxlen) test_text = preprocessing.sequence.pad_sequences(sequences, maxlen=maxlen) # make predictions on the test dataset y_test_pred = loaded_model_embd.predict_classes(test_text) # lets prepare for the prediction submission sub = pd.DataFrame() sub["Id"] = test_id sub["target"] = y_test_pred sub.head() sub.to_csv("submission_embedding.csv", index=False) # ### 3. Neural Network with pre trained Embedding Layer(GLOVE) # Considers only the top 5000 words in the dataset max_words = 5000 # We’ll build an embedding matrix that you can load into an Embedding layer. # It must be a matrix of shape (max_words, embedding_dim), where each entry i contains the embedding_dim-dimensional vector for the word of index i in the reference word index (built during tokenization). # Note that index 0 isn’t supposed to stand for any word or token—it’s a placeholde import os glove_dir = "../input/glove6b100dtxt/" embeddings_index = {} f = open(os.path.join(glove_dir, "glove.6B.100d.txt")) for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype="float32") embeddings_index[word] = coefs f.close() print("Found %s word vectors." % len(embeddings_index)) embedding_dim = 100 embedding_matrix = np.zeros((max_words, embedding_dim)) for word, i in word_index.items(): if i < max_words: embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[ i ] = embedding_vector # Words not found in the embedding index will be all zeros. # lets use the same model architecture we used earlier model = Sequential() model.add(Embedding(max_words, embedding_dim, input_length=maxlen)) model.add(Flatten()) model.add(Dense(32, activation="relu")) model.add(Dense(1, activation="sigmoid")) model.summary() # ### LOADING THE GLOVE EMBEDDINGS IN THE MODEL # The Embedding layer has a single weight matrix: a 2D float matrix where each entry i is the word vector meant to be associated with index i. Simple enough. # Load the GloVe matrix we prepared into the Embedding layer, the first layer in the model model.layers[0].set_weights([embedding_matrix]) model.layers[0].trainable = False # Compile the model model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=[get_f1]) callbacks_list = [ EarlyStopping( monitor="get_f1", patience=1, ), ModelCheckpoint(filepath="./pre_embd.h5", monitor="val_loss", save_best_only=True), ] # train the model history = model.fit( X_train, y_train, epochs=100, batch_size=32, callbacks=callbacks_list, validation_split=0.2, ) # check model performance acc = history.history["get_f1"] val_acc = history.history["val_get_f1"] loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, "bo", label="Training acc") plt.plot(epochs, val_acc, "b", label="Validation acc") plt.title("Training and validation accuracy") plt.legend() plt.figure() plt.plot(epochs, loss, "bo", label="Training loss") plt.plot(epochs, val_loss, "b", label="Validation loss") plt.title("Training and validation loss") plt.legend() plt.show() dependencies = {"get_f1": get_f1} # load the model from disk loaded_model_pre_embd = keras.models.load_model( "./pre_embd.h5", custom_objects=dependencies ) # prediction on the test dataset # X_test_Set = tokenizer.texts_to_matrix(X_test, mode = 'freq') y_pred = loaded_model_pre_embd.predict_classes(X_test) # important metrices print(classification_report(y_test, y_pred)) # make predictions on the test dataset y_test_pred = loaded_model_pre_embd.predict_classes(test_text) # lets prepare for the prediction submission sub = pd.DataFrame() sub["Id"] = test_id sub["target"] = y_test_pred sub.head() sub.to_csv("submission_pre_embedding.csv", index=False) # Embedding layer that learnt embeddings with the model training proved to be better than pre trained embedding. # ### 4.SIMPLE RNN from keras.layers import Embedding, SimpleRNN model = Sequential() model.add(Embedding(max_words, 32)) model.add(SimpleRNN(32)) model.add(Dense(1, activation="sigmoid")) model.summary() callbacks_list = [ EarlyStopping( monitor="get_f1", patience=1, ), ModelCheckpoint(filepath="./SRNN.h5", monitor="val_loss", save_best_only=True), ] model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=[get_f1]) history = model.fit( X_train, y_train, epochs=100, batch_size=128, callbacks=callbacks_list, validation_split=0.2, ) # check model performance acc = history.history["get_f1"] val_acc = history.history["val_get_f1"] loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, "bo", label="Training acc") plt.plot(epochs, val_acc, "b", label="Validation acc") plt.title("Training and validation accuracy") plt.legend() plt.figure() plt.plot(epochs, loss, "bo", label="Training loss") plt.plot(epochs, val_loss, "b", label="Validation loss") plt.title("Training and validation loss") plt.legend() plt.show() dependencies = {"get_f1": get_f1} # load the model from disk loaded_model_SRNN = keras.models.load_model("./SRNN.h5", custom_objects=dependencies) # prediction on the test dataset # X_test_Set = tokenizer.texts_to_matrix(X_test, mode = 'freq') y_pred = loaded_model_SRNN.predict_classes(X_test) # important metrices print(classification_report(y_test, y_pred)) # make predictions on the test dataset y_test_pred = loaded_model_SRNN.predict_classes(test_text) # lets prepare for the prediction submission sub = pd.DataFrame() sub["Id"] = test_id sub["target"] = y_test_pred sub.head() sub.to_csv("submission_SRNN.csv", index=False) # Model's performance not yet improved, lets stack some layers. # ### 5. Stack multiple SimpleRNN layers from keras.layers import Embedding, SimpleRNN model = Sequential() model.add(Embedding(max_words, 32)) model.add(SimpleRNN(32, return_sequences=True)) model.add(SimpleRNN(32, return_sequences=True)) model.add(SimpleRNN(32, return_sequences=True)) model.add(SimpleRNN(32)) model.add(Dense(1, activation="sigmoid")) model.summary() callbacks_list = [ EarlyStopping( monitor="get_f1", patience=1, ), ModelCheckpoint(filepath="./STRNN.h5", monitor="val_loss", save_best_only=True), ] model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=[get_f1]) history = model.fit( X_train, y_train, epochs=100, batch_size=128, callbacks=callbacks_list, validation_split=0.2, ) # check model performance acc = history.history["get_f1"] val_acc = history.history["val_get_f1"] loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, "bo", label="Training acc") plt.plot(epochs, val_acc, "b", label="Validation acc") plt.title("Training and validation accuracy") plt.legend() plt.figure() plt.plot(epochs, loss, "bo", label="Training loss") plt.plot(epochs, val_loss, "b", label="Validation loss") plt.title("Training and validation loss") plt.legend() plt.show() dependencies = {"get_f1": get_f1} # load the model from disk loaded_model_STRNN = keras.models.load_model("./STRNN.h5", custom_objects=dependencies) # prediction on the test dataset # X_test_Set = tokenizer.texts_to_matrix(X_test, mode = 'freq') y_pred = loaded_model_STRNN.predict_classes(X_test) # important metrices print(classification_report(y_test, y_pred)) # make predictions on the test dataset y_test_pred = loaded_model_STRNN.predict_classes(test_text) # lets prepare for the prediction submission sub = pd.DataFrame() sub["Id"] = test_id sub["target"] = y_test_pred sub.head() sub.to_csv("submission_stackRNN.csv", index=False) # Didn't help, lets try LSTM # ### 6. LSTM from keras.layers import LSTM model = Sequential() model.add(Embedding(max_features, 32)) model.add(LSTM(32)) model.add(Dense(1, activation="sigmoid")) model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=[get_f1]) callbacks_list = [ EarlyStopping( monitor="get_f1", patience=1, ), ModelCheckpoint(filepath="./LSTM.h5", monitor="val_loss", save_best_only=True), ] history = model.fit( X_train, y_train, epochs=100, batch_size=128, callbacks=callbacks_list, validation_split=0.2, ) # check model performance acc = history.history["get_f1"] val_acc = history.history["val_get_f1"] loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, "bo", label="Training acc") plt.plot(epochs, val_acc, "b", label="Validation acc") plt.title("Training and validation accuracy") plt.legend() plt.figure() plt.plot(epochs, loss, "bo", label="Training loss") plt.plot(epochs, val_loss, "b", label="Validation loss") plt.title("Training and validation loss") plt.legend() plt.show() dependencies = {"get_f1": get_f1} # load the model from disk loaded_model_LSTM = keras.models.load_model("./LSTM.h5", custom_objects=dependencies) # prediction on the test dataset # X_test_Set = tokenizer.texts_to_matrix(X_test, mode = 'freq') y_pred = loaded_model_LSTM.predict_classes(X_test) # important metrices print(classification_report(y_test, y_pred)) # make predictions on the test dataset y_test_pred = loaded_model_LSTM.predict_classes(test_text) # lets prepare for the prediction submission sub = pd.DataFrame() sub["Id"] = test_id sub["target"] = y_test_pred sub.head() sub.to_csv("LSTM.csv", index=False) # LSTM doing a decent job here, lets try Bi directional LSTM # ### 7. Bi-Direction LSTM model = Sequential() model.add(Embedding(max_features, 32)) model.add(Bidirectional(LSTM(32, return_sequences=True))) model.add(Bidirectional(LSTM(32, return_sequences=True))) model.add(Bidirectional(LSTM(32, return_sequences=True))) model.add(Bidirectional(LSTM(32))) model.add(Dense(1, activation="sigmoid")) model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=[get_f1]) callbacks_list = [ EarlyStopping( monitor="get_f1", patience=1, ), ModelCheckpoint(filepath="./BILSTM.h5", monitor="val_loss", save_best_only=True), ] history = model.fit( X_train, y_train, epochs=100, batch_size=128, callbacks=callbacks_list, validation_split=0.2, ) # check model performance acc = history.history["get_f1"] val_acc = history.history["val_get_f1"] loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, "bo", label="Training acc") plt.plot(epochs, val_acc, "b", label="Validation acc") plt.title("Training and validation accuracy") plt.legend() plt.figure() plt.plot(epochs, loss, "bo", label="Training loss") plt.plot(epochs, val_loss, "b", label="Validation loss") plt.title("Training and validation loss") plt.legend() plt.show() dependencies = {"get_f1": get_f1} # load the model from disk loaded_model_BILSTM = keras.models.load_model( "./BILSTM.h5", custom_objects=dependencies ) # prediction on the test dataset # X_test_Set = tokenizer.texts_to_matrix(X_test, mode = 'freq') y_pred = loaded_model_BILSTM.predict_classes(X_test) # important metrices print(classification_report(y_test, y_pred)) # make predictions on the test dataset y_test_pred = loaded_model_BILSTM.predict_classes(test_text) # lets prepare for the prediction submission sub = pd.DataFrame() sub["Id"] = test_id sub["target"] = y_test_pred sub.head() sub.to_csv("BiLSTM.csv", index=False) # Neural Network with Embedding layer seems to the best model for this classification task. # # Please upvote if you like this kernel. # # GRU from keras.layers import GRU model = Sequential() model.add(Embedding(max_features, 32)) model.add(GRU(32)) model.add(Dense(1, activation="sigmoid")) model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=[get_f1]) callbacks_list = [ EarlyStopping( monitor="get_f1", patience=1, ), ModelCheckpoint(filepath="./GRU.h5", monitor="val_loss", save_best_only=True), ] history = model.fit( X_train, y_train, epochs=100, batch_size=128, callbacks=callbacks_list, validation_split=0.2, ) # check model performance acc = history.history["get_f1"] val_acc = history.history["val_get_f1"] loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, "bo", label="Training acc") plt.plot(epochs, val_acc, "b", label="Validation acc") plt.title("Training and validation accuracy") plt.legend() plt.figure() plt.plot(epochs, loss, "bo", label="Training loss") plt.plot(epochs, val_loss, "b", label="Validation loss") plt.title("Training and validation loss") plt.legend() plt.show() dependencies = {"get_f1": get_f1} # load the model from disk loaded_model_GRU = keras.models.load_model("./GRU.h5", custom_objects=dependencies) # prediction on the test dataset # X_test_Set = tokenizer.texts_to_matrix(X_test, mode = 'freq') y_pred = loaded_model_GRU.predict_classes(X_test) # important metrices print(classification_report(y_test, y_pred)) # make predictions on the test dataset y_test_pred = loaded_model_GRU.predict_classes(test_text) # lets prepare for the prediction submission sub = pd.DataFrame() sub["Id"] = test_id sub["target"] = y_test_pred sub.head() sub.to_csv("GRU.csv", index=False) # # Stacked GRU from keras.layers import GRU model = Sequential() model.add(Embedding(max_features, 32)) model.add(GRU(32, return_sequences=True)) model.add(GRU(32, return_sequences=True)) model.add(GRU(32, return_sequences=True)) model.add(GRU(32)) model.add(Dense(1, activation="sigmoid")) model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=[get_f1]) callbacks_list = [ EarlyStopping( monitor="get_f1", patience=1, ), ModelCheckpoint(filepath="./SGRU.h5", monitor="val_loss", save_best_only=True), ] history = model.fit( X_train, y_train, epochs=100, batch_size=128, callbacks=callbacks_list, validation_split=0.2, ) # check model performance acc = history.history["get_f1"] val_acc = history.history["val_get_f1"] loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, "bo", label="Training acc") plt.plot(epochs, val_acc, "b", label="Validation acc") plt.title("Training and validation accuracy") plt.legend() plt.figure() plt.plot(epochs, loss, "bo", label="Training loss") plt.plot(epochs, val_loss, "b", label="Validation loss") plt.title("Training and validation loss") plt.legend() plt.show() dependencies = {"get_f1": get_f1} # load the model from disk loaded_model_SGRU = keras.models.load_model("./SGRU.h5", custom_objects=dependencies) # prediction on the test dataset # X_test_Set = tokenizer.texts_to_matrix(X_test, mode = 'freq') y_pred = loaded_model_SGRU.predict_classes(X_test) # important metrices print(classification_report(y_test, y_pred)) # make predictions on the test dataset y_test_pred = loaded_model_SGRU.predict_classes(test_text) # lets prepare for the prediction submission sub = pd.DataFrame() sub["Id"] = test_id sub["target"] = y_test_pred sub.head() sub.to_csv("SGRU.csv", index=False) # # Stacked GRU with Dropouts from keras.layers import GRU model = Sequential() model.add(Embedding(max_features, 32)) model.add(GRU(32, dropout=0.2, recurrent_dropout=0.2, return_sequences=True)) model.add(GRU(32, return_sequences=True)) model.add(GRU(32, dropout=0.2, recurrent_dropout=0.2, return_sequences=True)) model.add(GRU(32, return_sequences=True)) model.add(GRU(32, dropout=0.2, recurrent_dropout=0.2, return_sequences=True)) model.add(GRU(32)) model.add(Dense(1, activation="sigmoid")) model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=[get_f1]) callbacks_list = [ EarlyStopping( monitor="get_f1", patience=1, ), ModelCheckpoint(filepath="./DSGRU.h5", monitor="val_loss", save_best_only=True), ] history = model.fit( X_train, y_train, epochs=100, batch_size=128, callbacks=callbacks_list, validation_split=0.2, ) # check model performance acc = history.history["get_f1"] val_acc = history.history["val_get_f1"] loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, "bo", label="Training acc") plt.plot(epochs, val_acc, "b", label="Validation acc") plt.title("Training and validation accuracy") plt.legend() plt.figure() plt.plot(epochs, loss, "bo", label="Training loss") plt.plot(epochs, val_loss, "b", label="Validation loss") plt.title("Training and validation loss") plt.legend() plt.show() dependencies = {"get_f1": get_f1} # load the model from disk loaded_model_DSGRU = keras.models.load_model("./DSGRU.h5", custom_objects=dependencies) # prediction on the test dataset # X_test_Set = tokenizer.texts_to_matrix(X_test, mode = 'freq') y_pred = loaded_model_DSGRU.predict_classes(X_test) # important metrices print(classification_report(y_test, y_pred)) # make predictions on the test dataset y_test_pred = loaded_model_DSGRU.predict_classes(test_text) # lets prepare for the prediction submission sub = pd.DataFrame() sub["Id"] = test_id sub["target"] = y_test_pred sub.head() sub.to_csv("GRUDropOut.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import numpy as np from astropy import units as u from astropy.coordinates import Angle import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv("/kaggle/input/data-bulan-sabit/datasabit01.csv") data arcv = Angle(data["ARCV"], unit=u.deg) daz = Angle(data["DAZ"], unit=u.deg) arcl = Angle(data["ARCL"], unit=u.deg) plt.plot(arcv, arcl, "k.")
import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns # Reading the file data = pd.read_csv("/kaggle/input/corona-virus-report/country_wise_latest.csv") # **to display the data from csv file** data # **info() tells The information contains the number of columns, column labels, column data types, memory usage, range index, and the number of cells in each column (non-null values). Note: the info() method actually prints the info.** data.info() # descrbe() - The describe() method returns description of the data in the DataFrame. If the DataFrame contains numerical data, the description contains these information for each column: # * count - The number of not-empty values. # * mean - The average (mean) value # * upper nd lower quartile data.describe() # # Checking for Missing Data # We can see missing data in general way by using "isnull()", statement data.isnull().sum() # we can also use seaborn to create simple HeatMap where we can see mising values "in this case there are no null values" sns.heatmap(data.isnull(), yticklabels=False, cbar=False, cmap="coolwarm") # **Top 10 Countries by Death cases** top_cuntries = ( data[["Country/Region", "Deaths"]] .sort_values(by=["Deaths"], ascending=False) .head(10) ) top_cuntries # **plotting the graph using sns from seaborn library nd labelling the graph** plt.figure(figsize=(10, 8)) sns.barplot(x="Deaths", y="Country/Region", data=top_cuntries) plt.xlabel("Totla Deaths", fontsize=20) plt.ylabel("Country", fontsize=20) plt.title("Top 10 Countries with Highest Deaths Recorded", fontsize=30) # plt.legend(bbox_to_anchor=(2.05, 1.5), loc='best') plt.show() data.info() Recovered_Data = ( data[["Country/Region", "Recovered"]] .sort_values(by=["Recovered"], ascending=False) .head(10) ) Recovered_Data.info() # **plotting the graph on data with higest recovery covid cases by top 10 countries** plt.figure(figsize=(18, 10)) sns.barplot(x="Recovered", y="Country/Region", data=Recovered_Data) plt.xlabel("Recovered Count", fontsize=20) plt.ylabel("Country", fontsize=20) plt.title("Top 10 Countries with higest recovered cases", fontsize=25) plt.show() d1 = data.head(20) # countries with highest deaths per 100 covid cases, here i am sorting the column in desending order to get he highest value on top death_per_100_cases = ( data[["Deaths / 100 Cases", "Country/Region"]] .sort_values(by=["Deaths / 100 Cases"], ascending=False) .head(20) ) death_per_100_cases # plotting the graph by countries with highest deaths per 100 covid cases plt.figure(figsize=(18, 10)) sns.barplot(x="Deaths / 100 Cases", y="Country/Region", data=death_per_100_cases) plt.xlabel("Deaths per 100 cases", fontsize=15) plt.ylabel("Country", fontsize=15) plt.title("Top countries with deaths per 100 cases", fontsize=25) plt.show() # **Average Deaths per 100 cases across the world** d2 = data["Deaths / 100 Cases"].mean() d2 # **Average recovered cases per 100 cases across the world** d3 = data["Recovered / 100 Cases"].mean() d3 data.info() # **No of active cases** active_cases = data["Active"].sum() active_cases total_conformed_cases = data["Confirmed"].sum() total_conformed_cases # **Total deaths across the world** total_deaths = data["Deaths"].sum() total_deaths # **Total recoveries across the globe** total_recoveres = data["Recovered"].sum() total_recoveres # summing the values in the columns to get total data2 = data[["Confirmed", "Deaths", "Recovered", "Active"]] df # **plotting the graph to ger the overview on deaths recovered confirmed nd active covid cases** data[["Confirmed", "Deaths", "Recovered", "Active"]].sum().plot.bar() plt.title("Covid Cases overview") plt.ylabel("Count") plt.show()
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt sns.set_palette("Set2") from sklearn.model_selection import train_test_split from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" pd.set_option("display.max_columns", None) pd.set_option("display.max_rows", None) train = pd.read_csv(r"../input/titanic-prepared-dataset/train_prep.csv") test = pd.read_csv(r"../input/titanic-prepared-dataset/test_prep.csv") predictions = pd.read_csv(r"../input/titanic/gender_submission.csv") # ### Model Validation train.head() X = train[list(set(train.columns) - {"PassengerId", "Survived", "Age_", "Fare"})] Y = train["Survived"] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, Y, test_size=0.2, random_state=42, stratify=Y ) # y_train=train_v5['Survived'] # X_train=train_v5[list(set(train_v5.columns)-{'PassengerId','Survived'})] # X_test=test_v5[list(set(test_v5.columns)-{'PassengerId'})] # X_train= import statsmodels.api as sm lg_reg_model = sm.GLM( y_train, sm.add_constant(X_train), family=sm.families.Binomial() ).fit() # add const and famili bonom??? lg_reg_model.summary2() def get_significant_vars(modelobject): var_p_vals_df = pd.DataFrame(modelobject.pvalues) var_p_vals_df["vars"] = var_p_vals_df.index var_p_vals_df.columns = ["pvals", "vars"] return var_p_vals_df[var_p_vals_df.pvals <= 0.05][["pvals"]] significant_vars = get_significant_vars(lg_reg_model) significant_vars sig_var = ["Sex_male", "Cabin_flag", "Age_scaled", "Pclass_low"] X_train = X_train[sig_var] X_test = X_test[sig_var] import statsmodels.api as sm lg_reg_model2 = sm.GLM( y_train, sm.add_constant(X_train), family=sm.families.Binomial() ).fit() # add const and famili bonom??? lg_reg_model2.summary2() # ### Only significant variables included in the model # pass_formula = 'Survived ~ C(Pclass)+C(Sex) +SibSp +Cabin_flag+Age_' # lg_reg_model2 = smf.glm(formula=pass_formula, data=train_v4, family=sm.families.Binomial()).fit() # lg_reg_model2.summary2() """PREDICTED CLASS WITH ACTUAL CLASS""" def get_predictions(test_class, model, test_data): y_pred_df = pd.DataFrame( { "actual": test_class, "predicted_prob": model.get_prediction( sm.add_constant(test_data) ).predicted_mean, } ) return y_pred_df "PREDICTED CLASS WITH ACTUAL CLASS" predict_test_df = pd.DataFrame(get_predictions(y_test, lg_reg_model2, X_test)) predict_test_df.head() # DEFAULT CUTOFF TAKEN =0.7 predict_test_df["predicted"] = predict_test_df.predicted_prob.apply( lambda x: "1" if x > 0.45 else "0" ) predict_test_df[0:10] """CONFUSION MATRIX""" from sklearn import metrics from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report print("The model with dummy variable coding output: ") confusion_matrix(predict_test_df.actual, predict_test_df.predicted.astype("int")) lg_reg_report_50 = classification_report( y_test, predict_test_df.predicted.astype("int") ) print(lg_reg_report_50) """PERFORMANCE MEASUREMENT""" def measure_performance(clasf_matrix): measure = pd.DataFrame( { "sensitivity": [ round(clasf_matrix[0, 0] / (clasf_matrix[0, 0] + clasf_matrix[0, 1]), 2) ], "specificity": [ round(clasf_matrix[1, 1] / (clasf_matrix[1, 0] + clasf_matrix[1, 1]), 2) ], "recall": [ round(clasf_matrix[0, 0] / (clasf_matrix[0, 0] + clasf_matrix[0, 1]), 2) ], "precision": [ round(clasf_matrix[0, 0] / (clasf_matrix[0, 0] + clasf_matrix[1, 0]), 2) ], "overall_acc": [ round( (clasf_matrix[0, 0] + clasf_matrix[1, 1]) / ( clasf_matrix[0, 0] + clasf_matrix[0, 1] + clasf_matrix[1, 0] + clasf_matrix[1, 1] ), 2, ) ], } ) return measure cm = metrics.confusion_matrix( predict_test_df.actual, predict_test_df.predicted.astype(int) ) lg_reg_metrics_df = pd.DataFrame(measure_performance(cm)) lg_reg_metrics_df """optimal cut-off""" lg_pred_prob_df = lg_reg_model2.predict(sm.add_constant(X_test)) n = len(X_test) # -->since classifying someone as winning and then losing in actual would cost us a lot hence assigning double # penalty in this case """COST TABLE""" d = {"Not-survived": (0, 2), "Survived": (1, 0)} costs = pd.DataFrame(d, index=("Not-survived", "Survived")) print(costs) def frange(start, stop, step): s = start while s < stop: yield s s += step # creating empty vectors to store the results. cutoff = [] P11 = [] # correct classification of positive as positive P00 = [] # correct classification of negative as negative P10 = [] # misclassification of positive class to negative class P01 = [] # misclassification of negative class to positive class for i in frange(0.00, 1, 0.05): predicted_y = lg_pred_prob_df.map(lambda x: 1 if x > i else 0) tbl = metrics.confusion_matrix(y_test, predicted_y) if i <= 1: j = int(20 * i) P01.append(tbl[0, 1] / (tbl[0, 1] + tbl[0, 0])) P00.append(tbl[0, 0] / (tbl[0, 1] + tbl[0, 0])) P10.append(tbl[1, 0] / (tbl[1, 0] + tbl[1, 1])) P11.append(tbl[1, 1] / (tbl[1, 0] + tbl[1, 1])) cutoff.append(i) d = {"cutoff": cutoff, "P10": P10, "P01": P01, "P00": P00, "P11": P11} df_cost_table = pd.DataFrame(d, columns=["cutoff", "P00", "P01", "P10", "P11"]) df_cost_table df_cost_table["msclaf_cost"] = ( df_cost_table.P01 * costs.iloc[0][1] + df_cost_table.P10 * costs.iloc[1][0] ) df_cost_table["youden_index"] = df_cost_table.P00 + df_cost_table.P11 - 1 df_cost_table """MAX YOUDENS INDEX - CUTOFF""" max_youden_cutoff = df_cost_table.loc[ df_cost_table.youden_index == df_cost_table.youden_index.max() ]["cutoff"].values plt.plot(df_cost_table.cutoff, df_cost_table.youden_index, label="Youdens curve") plt.title("Youdens Index vs Cutoff-P") plt.axvline(max_youden_cutoff, label="Cutoff", color="b", ls=":") plt.legend() print("Cutoff value according to max Youdens index : ", max_youden_cutoff) """MIN PENALTY - CUTOFF""" min_cost_cutoff = df_cost_table.loc[ df_cost_table.msclaf_cost == df_cost_table.msclaf_cost.min() ]["cutoff"].values plt.plot(df_cost_table.cutoff, df_cost_table.msclaf_cost, label="Penalty curve") plt.title("Miscalculation Penalty vs Cutoff-P") plt.axvline(min_cost_cutoff, label="Cutoff", color="b", ls=":") plt.legend() print("Cutoff value according to min. Miscalc Penalty : ", min_cost_cutoff) "" "ROC CURVE AND OPTIMAL CUTOFF" "" def draw_roc(actual, probs): fpr, tpr, thresholds = metrics.roc_curve(actual, probs, drop_intermediate=False) auc_score = metrics.roc_auc_score(actual, probs) plt.figure(figsize=(10, 10)) plt.plot(fpr, tpr, label="ROC curve (area = %0.2f)" % auc_score) plt.plot([0, 1], [0, 1], "k--") plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel("False Positive Rate or [1 - True Negative Rate]") plt.ylabel("True Positive Rate") plt.title("Receiver operating characteristic example") plt.legend(loc="lower right") plt.show() return fpr, tpr, thresholds fpr, tpr, thresholds = draw_roc(predict_test_df.actual, predict_test_df.predicted_prob) auc_score = metrics.roc_auc_score( predict_test_df.actual, predict_test_df.predicted_prob ) round(float(auc_score), 2) # ## Actual Predictions ## Combining the data # taking signifigant variables only y_train = train["Survived"] X_train = train[sig_var] X_test = test[sig_var] import statsmodels.api as sm lg_reg_model2 = sm.GLM( y_train, sm.add_constant(X_train), family=sm.families.Binomial() ).fit() # add const and famili bonom??? lg_reg_model2.summary2() # ### Only significant variables included in the model # pass_formula = 'Survived ~ C(Pclass)+C(Sex) +SibSp +Cabin_flag+Age_' # lg_reg_model2 = smf.glm(formula=pass_formula, data=train_v4, family=sm.families.Binomial()).fit() # lg_reg_model2.summary2() """PREDICTED CLASS WITH ACTUAL CLASS""" def get_predictions(test_class, model, test_data): y_pred_df = pd.DataFrame( { "actual": test_class, "predicted_prob": model.get_prediction( sm.add_constant(test_data) ).predicted_mean, } ) return y_pred_df "PREDICTED CLASS WITH ACTUAL CLASS" y_test.head() "PREDICTED CLASS WITH ACTUAL CLASS" predict_test_df = pd.DataFrame(get_predictions("", lg_reg_model2, X_test)) predict_test_df.head() # DEFAULT CUTOFF TAKEN =0.7 predict_test_df["predicted"] = predict_test_df.predicted_prob.apply( lambda x: "1" if x > 0.45 else "0" ) predict_test_df[0:10] predictions["Survived"] = predict_test_df["predicted"] ## kaggle output predictions.to_csv("LR_Output.csv", index=False) train.columns X_train = train[ [ "SibSp", "Parch", "Cabin_flag", "Pclass_low", "Pclass_med", "Sex_male", "Embarked_Q", "Embarked_S", "Age_scaled", "Fare_scaled", ] ] y_train = train["Survived"] X_test = test[ [ "SibSp", "Parch", "Cabin_flag", "Pclass_low", "Pclass_med", "Sex_male", "Embarked_Q", "Embarked_S", "Age_scaled", "Fare_scaled", ] ] # y_test # ### Decision Trees from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier from sklearn.model_selection import train_test_split # Import train_test_split function from sklearn import ( metrics, ) # Import scikit-learn metrics module for accuracy calculation # Create Decision Tree classifer object clf = DecisionTreeClassifier() # Train Decision Tree Classifer clf = clf.fit(X_train, y_train) # Predict the response for test dataset y_pred = clf.predict(X_test) predictions["Survived_DT"] = y_pred predictions.to_csv() ## kaggle output predictions[["PassengerId", "Survived_DT"]].rename( columns={"Survived_DT": "Survived"} ).to_csv("DT_Output.csv", index=False) # Important features for i, j in dict(zip(X_train.columns, clf.feature_importances_)).items(): print(i, ":", j) # sex, age, Fare are the most important variables # ### Random forest from sklearn import ( ensemble, ) # linear_model, ensemble, neural_network, naive bayes, svm, tree # dir(ensemble) """ The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)) """ rf_model = ensemble.RandomForestClassifier( bootstrap=True, criterion="gini", max_depth=4, max_features="auto", min_impurity_decrease=0.001, min_samples_leaf=30, min_samples_split=50, class_weight="balanced_subsample", # to remove class imbalance (balanced) n_estimators=500, oob_score=True, random_state=42, verbose=0, warm_start=False, ) rf_model.fit(X_train, y_train.values.ravel()) # rf_model.fit(os_data_X,os_data_y) # Number of trees in random forest n_estimators = [100, 120, 130, 150] # Maximum number of levels in tree max_depth = [2, 3, 4, 5, 6, 7, 8, 9] max_depth.append(None) # Number of features to consider at every split max_features = ["auto", "log2"] # Minimum number of samples required to split a node min_samples_split = [50, 75, 100] # Minimum number of samples required at each leaf node min_samples_leaf = [30, 35, 40] # Method of selecting samples for training each tree bootstrap = [True, False] # How to remove the class imbalance class_weight = ["balanced_subsample", "balanced"] # Create the random grid random_grid = { "n_estimators": n_estimators, "max_depth": max_depth, "max_features": max_features, "min_samples_split": min_samples_split, "min_samples_leaf": min_samples_leaf, "bootstrap": bootstrap, "class_weight": class_weight, } random_grid from sklearn.metrics import SCORERS SCORERS.keys() from sklearn.model_selection import RandomizedSearchCV # RandomizedSearchCV? # Use the random grid to search for best hyperparameters # from sklearn.model_selection import RandomizedSearchCV rf_model = ensemble.RandomForestClassifier() # Random search of parameters, using 3 fold cross validation, rf_best_model = RandomizedSearchCV( estimator=rf_model, param_distributions=random_grid, scoring="accuracy", n_iter=100, cv=3, verbose=2, random_state=42, n_jobs=-2, pre_dispatch=2, ) rf_best_model.fit(X_train, y_train.values.ravel()) rf_best_model = rf_best_model.best_estimator_ # Fit the random search model rf_best_model.fit(X_train, y_train.values.ravel()) predictions["Survived_RF"] = y_pred ## kaggle output predictions[["PassengerId", "Survived_RF"]].rename( columns={"Survived_RF": "Survived"} ).to_csv("RF_Output.csv", index=False) # Important features for i, j in dict(zip(X_train.columns, rf_best_model.feature_importances_)).items(): print(i, ":", j) # sex, age, Fare are the most important variables # ### Adaboost Classifier from sklearn.ensemble import AdaBoostClassifier # adaboost with the tree as base estimator estimators = list(range(100, 150, 10)) # abc_scores = [] # for n_est in estimators: # ABC = AdaBoostClassifier( n_estimators = n_est, random_state=101) # ABC.fit(X_train, y_train) # y_pred = ABC.predict(X_test) # score = metrics.accuracy_score(y_test, y_pred) # abc_scores.append(score) # print(n_est,':',score) adb_classifier = AdaBoostClassifier(n_estimators=130, random_state=101) adb_classifier.fit(X_train, y_train) adb_predicted = adb_classifier.predict(X_test) predictions["Survived_ADB"] = adb_predicted ## kaggle output predictions[["PassengerId", "Survived_ADB"]].rename( columns={"Survived_ADB": "Survived"} ).to_csv("ADB_Output.csv", index=False) # Important features for i, j in dict(zip(X_train.columns, adb_classifier.feature_importances_)).items(): print(i, ":", j) # sex, age, Fare are the most important variables # from numpy import mean # from numpy import std # from sklearn.datasets import make_classification # from sklearn.model_selection import cross_val_score # from sklearn.model_selection import RepeatedStratifiedKFold # ### Gradient Boosting from sklearn.ensemble import GradientBoostingClassifier # define the model GBM = GradientBoostingClassifier() # define the evaluation method # cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1) # evaluate the model on the dataset # n_scores = cross_val_score(model, X, y, scoring='precision', n_jobs=-1) # report performance # print('Mean Accuracy: %.3f (%.3f)' % (mean(n_scores), std(n_scores))) GBM.fit(X_train, y_train.values.ravel()) gbm_predict = GBM.predict(X_test) predictions["Survived_GBM"] = gbm_predict ## kaggle output predictions[["PassengerId", "Survived_GBM"]].rename( columns={"Survived_GBM": "Survived"} ).to_csv("GBM_Output.csv", index=False) # Important features for i, j in dict(zip(X_train.columns, GBM.feature_importances_)).items(): print(i, ":", j) # sex, age, Fare are the most important variables # Only taking good variables from all of the above modelling and analysis and applying XGBoost X_train = X_train[["Sex_male", "Age_scaled", "Fare_scaled", "SibSp", "Cabin_flag"]] X_test = X_test[["Sex_male", "Age_scaled", "Fare_scaled", "SibSp", "Cabin_flag"]] import xgboost as xgb from sklearn import metrics xgclf = xgb.XGBClassifier() xgclf.fit(X_train, y_train) ## This code takes a while to run hence commenting out-- the hyperparameters obtained through gridsearch are directly used in the next cell # from sklearn.model_selection import GridSearchCV # from sklearn.model_selection import model_selection # 1st-Run for best hyperparameters # parameters = {'learning_rate': [0.1, 0.2, 0.3, 0.4, 0.5], # 'max_depth': [2, 4, 6, 8, 10], # 'min_child_weight': [3, 7, 11, 19, 25], # 'n_estimators': [50, 100, 150, 200]} # clf_xgb = GridSearchCV(estimator=xgclf, # param_grid=parameters, # n_jobs=-1, # cv=3, # scoring="accuracy", # refit=True) # clf_xgb.fit(X_train, y_train) clf_xgb_best = xgb.XGBClassifier( base_score=0.5, booster="gbtree", colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1, importance_type="gain", interaction_constraints="", learning_rate=0.1, max_delta_step=0, max_depth=6, min_child_weight=7, monotone_constraints="()", n_estimators=50, n_jobs=0, num_parallel_tree=1, random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method="exact", validate_parameters=1, verbosity=None, ) clf_xgb_best.fit(X_train, y_train.values.ravel()) xgb_predict = clf_xgb_best.predict(X_test) predictions["Survived_XGB"] = xgb_predict ## kaggle output predictions[["PassengerId", "Survived_XGB"]].rename( columns={"Survived_XGB": "Survived"} ).to_csv("XGB_Output.csv", index=False) # Important features for i, j in dict(zip(X_train.columns, clf_xgb_best.feature_importances_)).items(): print(i, ":", j) # sex, age, Fare are the most important variables
# # What is about ? # Analysis of the splicing related genes for the NIPS2021 CITE-seq data. # # Preparations import matplotlib.pyplot as plt import seaborn as sns import time t0start = time.time() import gc import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: if "research-project-01-around-multimodal-singlecell" not in os.path.join( dirname, filename ): print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import scanpy as sc # # Load data # Here we use more general setup which allows to with many datasets - from the Notebook: https://www.kaggle.com/code/alexandervc/many-citeseq-02-just-load-full-data # Presently we consider only one dataset so it is overkill, but nevertheless dict_df_prot = {} dict_df_rna = {} dict_df_meta = {} N_rows2take = int( 1e5 ) # Work only with first rows of the data - to speed up, avoid RAM crashes , etc... work_with_rna_data = "Yes" # If No - we will not store/work with protein data - only rna - For some fast analysis we need only protein data, which much more smaller work_with_protein_data = "Yes" dict_datasets2consider = {} dict_datasets2consider["NIPS2021"] = "Yes" import gc if dict_datasets2consider["NIPS2021"] == "Yes": key4dict = "NIPS2021" fn = "/kaggle/input/citeseqscrnaseqproteins-challenge-neurips2021/GSE194122_openproblems_neurips2021_cite_BMMC_processed.h5ad" adata = sc.read(fn) adata.var_names_make_unique() # print(adata) if work_with_protein_data == "Yes": mask = adata.var["feature_types"] == "ADT" X = adata[:N_rows2take, mask].X.todense() # type(X) df = pd.DataFrame(X, columns=list(adata.var["feature_types"][mask].index)) l = [t.replace("-1", "") for t in df.columns] df.columns = l print( [t for t in df.columns if "CD45" in t.upper()], [t for t in df.columns if "CD53" in t.upper()], ) print("Protein data shape:", df.shape) dict_df_prot[key4dict] = df display(df.head(2)) # df if work_with_rna_data == "Yes": mask = adata.var["feature_types"] != "ADT" X = adata[:N_rows2take, mask].X.todense() df = pd.DataFrame(X, columns=list(adata.var["feature_types"][mask].index)) print("RNA data shape:", df.shape) dict_df_rna[key4dict] = df display(df.head(2)) df = adata.obs.iloc[:N_rows2take, :] print("Meta data shape:", df.shape) dict_df_meta[key4dict] = df display(df.head(2)) gc.collect() for k in dict_df_meta: df_prot = dict_df_prot[k] df_rna = dict_df_rna[k] df_meta = dict_df_meta[k] print(df_prot.shape, df_rna.shape, df_meta.shape) # # Genes related to splicing # From Antonina Dolgorukova notebook: # https://www.kaggle.com/code/antoninadolgorukova/mmscel-cd45-iso-go-enrichment?scriptVersionId=122260628&cellId=124 # list_genes_splicing1 = [ "PTPRC", "UBL5", "SNRPD3", "POLR2F", "SNRPG", "YBX1", "SF3B5", "HSPA8", "POLR2L", "SNU13", "SNRPB", "SRSF7", "SRSF2", "SNRPD1", "C1QBP", ] l = list_genes_splicing1 print(len(l), l[:4]) s = set(df_rna.columns) & set(l) print(len(s), list(s)) # Task 1 (from 15/03/2023) # dict_df_prot[key4dict]['UBL5'] # dict_df_rna[key4dict]['UBL5'] splicing_rna = [col for col in dict_df_rna[key4dict].columns if col in s] rna = dict_df_rna[key4dict][splicing_rna] cd45_cols = [t for t in dict_df_prot[key4dict].columns if "CD45" in t.upper()] prot = dict_df_prot[key4dict][cd45_cols] result = pd.concat([rna, prot], axis=1, join="inner") sns.clustermap(result.corr().round(2), annot=True) plt.show() # # hnRNP genes # https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947485/ # # Heterogeneous ribonucleoprotein particle # Heterogeneous nuclear ribonucleoproteins (hnRNPs) are complexes of RNA and protein present in the cell nucleus during gene transcription and subsequent post-transcriptional modification of the newly synthesized RNA (pre-mRNA). The presence of the proteins bound to a pre-mRNA molecule serves as a signal that the pre-mRNA is not yet fully processed and therefore not ready for export to the cytoplasm.[1] Since most mature RNA is exported from the nucleus relatively quickly, most RNA-binding protein in the nucleus exist as heterogeneous ribonucleoprotein particles. After splicing has occurred, the proteins remain bound to spliced introns and target them for degradation. # hnRNPs are also integral to the 40s subunit of the ribosome and therefore important for the translation of mRNA in the cytoplasm.[2] However, hnRNPs also have their own nuclear localization sequences (NLS) and are therefore found mainly in the nucleus. Though it is known that a few hnRNPs shuttle between the cytoplasm and nucleus, immunofluorescence microscopy with hnRNP-specific antibodies shows nucleoplasmic localization of these proteins with little staining in the nucleolus or cytoplasm.[3] This is likely because of its major role in binding to newly transcribed RNAs. High-resolution immunoelectron microscopy has shown that hnRNPs localize predominantly to the border regions of chromatin, where it has access to these nascent RNAs.[4] # The proteins involved in the hnRNP complexes are collectively known as heterogeneous ribonucleoproteins. They include protein K and polypyrimidine tract-binding protein (PTB), which is regulated by phosphorylation catalyzed by protein kinase A and is responsible for suppressing RNA splicing at a particular exon by blocking access of the spliceosome to the polypyrimidine tract.[5]: 326  hnRNPs are also responsible for strengthening and inhibiting splice sites by making such sites more or less accessible to the spliceosome.[6] Cooperative interactions between attached hnRNPs may encourage certain splicing combinations while inhibiting others.[7] # # https://t.me/c/1889733548/12776 Antonina Dolgorukova: # вот 14 РНК, которые образуют кластер в данных 2022 # Про большинство есть в обзоре - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947485/. Для остальных что-то о функции нашла в genecards или вики. # 'HNRNPA0' - Involved in post-transcriptional regulation of cytokines mRNAs (https://www.genecards.org/cgi-bin/carddisp.pl?gene=HNRNPA0) # 'HNRNPA2B1' - Splicing # 'HNRNPA3' - paralog of HNRNPA0, Plays a role in cytoplasmic trafficking of RNA. Binds to the cis-acting response element, A2RE. May be involved in pre-mRNA splicing (https://www.genecards.org/cgi-bin/carddisp.pl?gene=HNRNPA3&keywords=HNRNPA3) # 'HNRNPAB' - it is not a member of the HNRNP A/B subfamily of HNRNPs, but groups together closely with HNRNPD/AUF1 and HNRNPDL (https://en.wikipedia.org/wiki/HNRNPAB) # 'HNRNPC' - May play a role in the early steps of spliceosome assembly and pre-mRNA splicing (https://www.genecards.org/cgi-bin/carddisp.pl?gene=HNRNPC&keywords=HNRNPC) # 'HNRNPD' - mRNA decay, Telomere maintenance # 'HNRNPDL' - Acts as a transcriptional regulator. Promotes transcription repression (https://www.genecards.org/cgi-bin/carddisp.pl?gene=HNRNPDL&keywords=HNRNPDL) # 'HNRNPF' - Splicing # 'HNRNPH2' - ? # 'HNRNPH3' - Involved in the splicing process and participates in early heat shock-induced splicing arrest (https://www.genecards.org/cgi-bin/carddisp.pl?gene=HNRNPH3&keywords=HNRNPH3) # 'HNRNPK' - Translational regulation, Transcriptional regulation, mRNA stability, Splicing # 'HNRNPM' - Splicing # 'HNRNPR' - Transcriptional regulation # 'HNRNPU' - Splicing, Transcriptional regulation # df = dict_df_rna[key4dict] list_hnRN_genes = [] for i in range(len(df.columns)): if "HNRN" in df.columns[i]: list_hnRN_genes.append(df.columns[i]) print(len(list_hnRN_genes), list_hnRN_genes) sns.clustermap(df[list_hnRN_genes].corr().round(2), annot=True) plt.suptitle("Pearson correlations") plt.show() sns.clustermap(df[list_hnRN_genes].corr(method="spearman").round(2), annot=True) plt.suptitle("Spearman correlations") plt.show() # dict_df_prot[key4dict]['UBL5'] # dict_df_rna[key4dict]['UBL5'] list_rna_loc = list_hnRN_genes + ["PTPRC"] list_rna_loc = [col for col in dict_df_rna[key4dict].columns if col in list_rna_loc] rna = dict_df_rna[key4dict][list_rna_loc] cd45_cols = [t for t in dict_df_prot[key4dict].columns if "CD45" in t.upper()] prot = dict_df_prot[key4dict][cd45_cols] result = pd.concat([rna, prot], axis=1, join="inner") sns.clustermap(result.corr(method="spearman").round(1), annot=True) plt.show() list_rna_loc = list_hnRN_genes + ["PTPRC"] + list_genes_splicing1 list_rna_loc = [col for col in dict_df_rna[key4dict].columns if col in list_rna_loc] rna = dict_df_rna[key4dict][list_rna_loc] cd45_cols = [t for t in dict_df_prot[key4dict].columns if "CD45" in t.upper()] prot = dict_df_prot[key4dict][cd45_cols] result = pd.concat([rna, prot], axis=1, join="inner") sns.clustermap( result.corr(method="spearman").round(2), yticklabels=1 ) # , ,annot=True) plt.show() df = dict_df_rna[key4dict] list_hnRN_genes = [] for i in range(len(df.columns)): if "RNU" in df.columns[i]: list_hnRN_genes.append(df.columns[i]) print(len(list_hnRN_genes), list_hnRN_genes) # # More splicing related genes gene_symbols_splicing_chatGPT = [ "SNRNP70", "RNU2-1", "SNRPN", "SNRNP200", "RNU6-1", "RNU6-2", "RNU6-3", ] list_rna_loc = ( gene_symbols_splicing_chatGPT # list_hnRN_genes + ['PTPRC'] + list_genes_splicing1 ) list_rna_loc = [col for col in dict_df_rna[key4dict].columns if col in list_rna_loc] rna = dict_df_rna[key4dict][list_rna_loc] cd45_cols = [t for t in dict_df_prot[key4dict].columns if "CD45" in t.upper()] prot = dict_df_prot[key4dict][cd45_cols] result = pd.concat([rna, prot], axis=1, join="inner") sns.clustermap(result.corr(method="spearman").round(2), yticklabels=1, annot=True) plt.show() # gene_symbols_splicing_chatGPT = ['SNRNP70', 'RNU2-1', 'SNRPN', 'SNRNP200', 'RNU6-1', 'RNU6-2', 'RNU6-3'] list_rna_loc = spliceosome_gene_symbols_chatgpt # gene_symbols_splicing_chatGPT # list_hnRN_genes + ['PTPRC'] + list_genes_splicing1 list_rna_loc = [col for col in dict_df_rna[key4dict].columns if col in list_rna_loc] rna = dict_df_rna[key4dict][list_rna_loc] cd45_cols = [t for t in dict_df_prot[key4dict].columns if "CD45" in t.upper()] prot = dict_df_prot[key4dict][cd45_cols] result = pd.concat([rna, prot], axis=1, join="inner") sns.clustermap(result.corr(method="spearman").round(2), yticklabels=1) # , annot=True) plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # This notebook is for the people who want to get a basic concept of recommendation system. # # I used the Amazon Food rating data (from 1996 to 2018) # # Dataset used : https://nijianmo.github.io/amazon/index.html # * There are many types of datasets on the website. The dataset I used was a simple version which only contains the ratings. # * This 'Grocery and Gourmet food' data includes reviews in the range May 1996 - Oct 2018. # * Please read the description on the website above for more details. data = pd.read_csv("/kaggle/input/amazonfooddataset/Grocery_and_Gourmet_Food.csv") data # Since the raw data has no column names, I put the column names (based on the data description page) manually. data = pd.read_csv( "/kaggle/input/amazonfooddataset/Grocery_and_Gourmet_Food.csv", header=None, index_col=None, ) data.columns = ["ProductId", "UserId", "Rating", "Timestamp"] data # Number of unique product id - 283,507 data["ProductId"].nunique() # There could be two kinds of recommendation systems for the data like this: # # 1. ProductId-based recommendation # * We can use cosine_similarity package which is provided from sklearn (from sklearn.metrics.pairwise import cosine_similarity) # * In this case, the similarity of the products would be calculated by each product's rating. In other words, the recommendation based on the ProductId is not a good approach since a rating doesn't represent the whole product feature. # # 2. UserId-based recommendation # * So we use 'UserId-based recommendation' for this data # Number of UserId - 2,695,974 data["UserId"].nunique() # # Top 30 Amazon Grocery & Gourmet food (1996~2018) # * ProductId is ASIN number of Amazon product. Since the 'metadata' is too large to open here (and also, this notebook is just for showing the concept of recommendation system) I manually show the product by typing the ProductId on www.amazon.com/dp/ProductId product_count = data.groupby("ProductId")["UserId"].count() product_count.sort_values(ascending=False).head(30) # # FYI # * Number 1 product : www.amazon.com/dp/B00BUKL666 (KIND healthy grains bar. Not suprised) # * Number 2 product : www.amazon.com/dp/B00542YXFW (a bag of some tea. Interesting) # * Number 3 product : www.amazon.com/dp/B008QMX2SG (another category for KIND healthy snack) # * Number 4 product : www.amazon.com/dp/B00D3M2QP4 (again, another category for KIND healthy snack. Please note that I'm not related with the brand at all.) # * Number 5 product : www.amazon.com/dp/B000YN2GVY (Organic unfiltered apple cider vinegar. Many people(especially Americans) like apple cider vinegar. Not surprised) # # Now, I am adding myself to the data and will see how the model recommends foods for me # First, I have to lookup the product I want to add before I add it into the data (because the data don't have product launched after 2018) # I used the ASIN code for Monster Energy Zero Ultra(B00MEFXEB6) and it was in the data. np.where(data.ProductId == "B00MEFXEB6") # My top 5 favorite foods converted to ASIN number (most of those selected from Top 30) # Energy drink, Coconut Oil,Sparkling Juice, Matcha Green Tea Powder, Beef Jerkey my_favorite = ["B00MEFXEB6", "B000H2XXRS", "B0014WYXYW", "B00PFDH0IC", "B000GW0U9I"] my_foodlist = pd.DataFrame( { "UserId": ["yohann"] * 5, "Rating": [5] * 5, "Timestamp": [12345678] * 5, "ProductId": [ "B00MEFXEB6", "B000H2XXRS", "B0014WYXYW", "B00PFDH0IC", "B000GW0U9I", ], } ) if not data.isin({"UserId": ["yohann"]})["UserId"].any(): data = data.append(my_foodlist) data.tail(10) # Finding an unique user and product user_unique = data["UserId"].unique() product_unique = data["ProductId"].unique() # indexing the users and products user_to_idx = {v: k for k, v in enumerate(user_unique)} product_to_idx = {v: k for k, v in enumerate(product_unique)} print(user_to_idx["yohann"]) # # building a CSR Matrix # Indexing temp_user_data = data["UserId"].map(user_to_idx.get).dropna() if len(temp_user_data) == len(data): print("UserId Column Indexing Completed.") data["UserId"] = temp_user_data else: print("UserId Column Indexing Failed.") # Same on the product temp_product_data = data["ProductId"].map(product_to_idx.get).dropna() if len(temp_product_data) == len(data): print("Product Column Indexing Completed.") data["ProductId"] = temp_product_data else: print("Product Column Indexing Failed.") data # # Compressed Sparse Row Matrix # UserId x Product matrix requires huge memories. # Furthermore, the calculation will also contains the product information that the user doesn't like. # So, in order to minimize the memory loss, I only used the product that the user likes. # # CSR MATRIX from scipy.sparse import csr_matrix num_user = data["UserId"].nunique() num_product = data["ProductId"].nunique() csr_data = csr_matrix( (data["Rating"], (data.UserId, data.ProductId)), shape=(num_user, num_product) ) csr_data # # Using ALS (Alternating Least Squares) model # I used the package called 'implicit' (als model) # Two feature matrices came from Matrix Factorization are hard to train all at once. So this ALS model fixes one side and train the other side alternately. from implicit.als import AlternatingLeastSquares import os import numpy as np # recommended part from the implicit package: os.environ["OPENBLAS_NUM_THREAD"] = "1" os.environ["KMP_DUPLICATE_LIB_OK"] = "True" os.environ["MKL_NUM_THREADS"] = "1" # ALS class's __init__ parameters: # 1. factors : the dimension of UserId x Product vector. # 2. regularization : for preventing overfitting problem. Using regularization. 0.01 is okay in general. # 3. use_gpu : usage of GPU # 4. iterations : it is like 'epoch' als_model = AlternatingLeastSquares( factors=100, regularization=0.01, use_gpu=False, iterations=15, dtype=np.float32 ) # ALS model takes 'Product x User' matrix as an input, so we have to convert it (Transpose) csr_data_transpose = csr_data.T csr_data_transpose # # Train ALS model (it will take few mins) als_model.fit(csr_data_transpose) # # The expected preference of a new random product yohann, monsterUltra = user_to_idx["yohann"], product_to_idx["B00MEFXEB6"] yohann_vector, monster_vector = ( als_model.user_factors[yohann], als_model.item_factors[monsterUltra], ) yohann_vector monster_vector # the dot product of Yohann and Monster vector (my preference for Monster drink) np.dot(yohann_vector, monster_vector) # the expected preference of 'Yohann and Kind bar' (which was not added on my favorite list) kindbar = product_to_idx["B00BUKL666"] kindbar_vector = als_model.item_factors[kindbar] np.dot(yohann_vector, kindbar_vector) # # Recommendation from the model 1 (based on the similar product) # Get recommendation similar to 'Kindbar' kindbar = "B00BUKL666" product_id = product_to_idx[kindbar] similar_food = als_model.similar_items(product_id, N=15) similar_food # Convert the indices to ASIN numbers idx_to_product = {v: k for k, v in product_to_idx.items()} [idx_to_product[i[0]] for i in similar_food] # # -------------------------------------------------------- # # Some recommendations seem reasonable: # * https://www.amazon.com/dp/B00F6UH8JK - Hershey Special Dark Chocolate Topping # * https://www.amazon.com/dp/B00F78I7ZK - Candy coated almonds # # Some are not: # * https://www.amazon.com/dp/B007NJFQ1O - Badia Mojo Marina # * https://www.amazon.com/dp/B001F0BEZE - Biscuit cut Ham # # --------------------------------------------------------- # # Recommendation from the model 2 (the food I might like) user = user_to_idx["yohann"] food_recommended = als_model.recommend( user, csr_data, N=20, filter_already_liked_items=True ) food_recommended [idx_to_product[i[0]] for i in food_recommended] # # -------------------------------------------------------- # # Some recommendations seem reasonable: # * https://www.amazon.com/dp/B00HNTPF7E - organic coconut oil (different brand) # * https://www.amazon.com/dp/B014LT0712 - organic matcha powder (different type) # * https://www.amazon.com/dp/B001XUO8AY - tonic water # # Some are not: # https://www.amazon.com/dp/B0015DGDR0 - mentos mint flavor # # -------------------------------------------------------- # Contribution of the Coconut Oil for this recommendation coconut = product_to_idx["B000H2XXRS"] explain = als_model.explain(user, csr_data, itemid=coconut) [(idx_to_product[i[0]], i[1]) for i in explain[1]]
from collections import Counter import cv2 import os import glob import skimage import numpy as np import pandas as pd import seaborn as sn import preprocessing from tqdm import tqdm from PIL import Image from os import listdir import matplotlib.pyplot as plt from skimage.transform import resize from collections import Counter sn.set() from sklearn.svm import SVC # SVC from sklearn import metrics from sklearn.utils import shuffle from xgboost import XGBClassifier # XGBClassifier from sklearn import metrics from sklearn.metrics import confusion_matrix, classification_report from sklearn.utils import compute_class_weight from sklearn.preprocessing import MinMaxScaler, LabelBinarizer from sklearn.ensemble import AdaBoostClassifier # AdaBoostClassifier from sklearn.neighbors import KNeighborsClassifier # KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier # RandomForestClassifier from sklearn.model_selection import train_test_split import tensorflow from tensorflow.keras.utils import to_categorical from tensorflow.keras.metrics import AUC from tensorflow.keras.preprocessing import image from tensorflow.keras.models import Model, Sequential from tensorflow.keras.applications.vgg16 import VGG16 # VGG16 from tensorflow.keras.applications.vgg19 import VGG19 # VGG19 from tensorflow.keras.applications.resnet50 import ResNet50 # ResNet50 from tensorflow.keras.applications.xception import Xception # Xception from tensorflow.keras.applications.mobilenet import MobileNet # MobileNet from tensorflow.keras.applications.nasnet import NASNetMobile # NASNetMobile from tensorflow.keras.applications.densenet import DenseNet169 # DenseNet169 from tensorflow.keras.applications.densenet import DenseNet121 # DenseNet121 from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2 # MobileNetV2 from tensorflow.keras.applications.inception_v3 import InceptionV3 # InceptionV3 from tensorflow.keras.layers import ( Input, Dense, Dropout, BatchNormalization, Flatten, Activation, GlobalAveragePooling2D, Conv2D, MaxPooling2D, ) from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint link_t = "/kaggle/input/ddsm-yolo-512/ddsm_512/train/images/" train_link = os.listdir("/kaggle/input/ddsm-yolo-512/ddsm_512/train/images") train_link = pd.DataFrame(train_link, columns=["fileName"]) train_link["link"] = train_link["fileName"].apply(lambda x: link + x) train_link link_v = "/kaggle/input/ddsm-yolo-512/ddsm_512/val/images/" val_link = os.listdir("/kaggle/input/ddsm-yolo-512/ddsm_512/val/images") val_link = pd.DataFrame(val_link, columns=["fileName"]) val_link["link"] = val_link["fileName"].apply(lambda x: link_v + x) val_link link_image = pd.concat([train_link, val_link]) link_image["mask"] = link_image["fileName"].apply(lambda x: x.split("_")[-1:][0]) link_image df = pd.read_excel("/kaggle/input/miniddsm2/MINI-DDSM-Complete-JPEG-8/DataWMask.xlsx") df df_concat = pd.merge(df, link_image, on="fileName") df_concat = df_concat[["fileName", "Status", "link"]] df_concat label_map = {"Benign": 0, "Cancer": 1, "Normal": 2} text_labels = df_concat["Status"].values # def mapping lable def apply_mapping(label): return label_map.get(label, -1) int_labels = list(map(apply_mapping, text_labels)) df_concat["labels"] = int_labels df_concat X = [] for i in df_concat["link"]: X.append(cv2.imread(i)) Y = df_concat["labels"] from sklearn.model_selection import train_test_split from tensorflow.keras.utils import to_categorical import numpy as np X = np.array(X) Y = np.array(Y) x_train, x_test, y_train, y_test = train_test_split( X, Y, test_size=0.15, random_state=2021, shuffle=True ) # cancer_prediction_cnn(x_train, y_train, x_test, y_test) y_train import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Conv2D, MaxPool2D, Flatten from keras import optimizers from keras import losses from sklearn import metrics rows, cols, color = x_train[0].shape print(x_train[0].shape) base_model = ResNet50(input_shape=(512, 512, 3), weights="imagenet", include_top=False) model = Sequential() model.add(base_model) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(BatchNormalization()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(BatchNormalization()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(BatchNormalization()) model.add(Dense(3, activation="softmax")) for layer in base_model.layers: layer.trainable = False model.summary() from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint es = EarlyStopping( monitor="val_loss", mode="min", patience=6, restore_best_weights=True, verbose=1 ) model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) history = model.fit( x_train, y_train, validation_split=0.15, shuffle=True, epochs=3, batch_size=64, callbacks=[es], ) loss_value, accuracy = model.evaluate(x_test, y_test) print("Test_loss_value = " + str(loss_value)) print("test_accuracy = " + str(accuracy)) # print(model.predict(x_test)) # model.save('breast_cance_model.h5') save_dictionary("history1.dat", history.history) # %% PLOTTING RESULTS (Train vs Validation) import matplotlib.pyplot as plt def Train_Val_Plot(acc, val_acc, loss, val_loss): fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 10)) fig.suptitle(" MODEL'S METRICS VISUALIZATION ") ax1.plot(range(1, len(acc) + 1), acc) ax1.plot(range(1, len(val_acc) + 1), val_acc) ax1.set_title("History of Accuracy") ax1.set_xlabel("Epochs") ax1.set_ylabel("Accuracy") ax1.legend(["training", "validation"]) ax2.plot(range(1, len(loss) + 1), loss) ax2.plot(range(1, len(val_loss) + 1), val_loss) ax2.set_title("History of Loss") ax2.set_xlabel("Epochs") ax2.set_ylabel("Loss") ax2.legend(["training", "validation"]) plt.show() Train_Val_Plot( history.history["accuracy"], history.history["val_accuracy"], history.history["loss"], history.history["val_loss"], ) y_pred = model.predict_classes(x_test) y_pred_prb = model.predict_proba(x_test) # def print_performance_metrics(y_test,y_pred): # """ # parameters # ---------- # y_test : actual label (must be in non-one hot encoded form) # y_pred_test : predicted labels (must be in non-one hot encoded form, common output of predict methods of classifers) # returns # ------- # prints the accuracy, precision, recall, F1 score, ROC AUC score, Cohen Kappa Score, Matthews Corrcoef and classification report # """ target = ["B", "M"] from sklearn import metrics print("Accuracy:", np.round(metrics.accuracy_score(y_test, y_pred), 4)) print( "Precision:", np.round(metrics.precision_score(y_test, y_pred, average="weighted"), 4), ) print("Recall:", np.round(metrics.recall_score(y_test, y_pred, average="weighted"), 4)) print("F1 Score:", np.round(metrics.f1_score(y_test, y_pred, average="weighted"), 4)) print( "ROC AUC Score:", np.round( metrics.roc_auc_score( y_test, y_pred_prb, multi_class="ovo", average="weighted" ), 4, ), ) print("Cohen Kappa Score:", np.round(metrics.cohen_kappa_score(y_test, y_pred), 4)) print( "\t\tClassification Report:\n", metrics.classification_report(y_test, y_pred, target_names=target), )
from pathlib import Path import json import math import time import numpy as np import pandas as pd import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader import torchinfo from tqdm import tqdm import onnx import onnxruntime import onnx_tf import tensorflow as tf import tflite_runtime.interpreter as tflite INPUT_DIR = Path("/kaggle/input/") ASL_DIR = INPUT_DIR / "asl-signs" DATASET_DIR = INPUT_DIR / "asl-dataset" device = ( "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" ) data = np.load(INPUT_DIR / "asl-dataset" / "data.npz") tensor = torch.tensor(data[data.files[0]]) tensor with (INPUT_DIR / "asl-dataset" / "landmarks.json").open() as f: landmarks = json.load(f) points = torch.cat( [torch.tensor(value).unfold(0, 3, 1) for value in landmarks.values()] ) view = tensor[:, points] view vectors = torch.stack( (view[:, :, 1] - view[:, :, 0], view[:, :, 2] - view[:, :, 1]), dim=2 ).float() angles = torch.div( vectors.prod(dim=2).sum(dim=2), vectors.square().sum(dim=3).sqrt().prod(dim=2) ).acos() torch.cat((tensor.flatten(1), angles), 1).size() signs_df = pd.read_csv(DATASET_DIR / "train.csv") signs_df train_df = signs_df.sample(frac=0.8) test_df = signs_df.drop(train_df.index).sample(frac=1) train_df.shape, test_df.shape class ASLDataset(Dataset): def __init__(self, dataset_df, agg, preload=None): files = np.load(DATASET_DIR / "data.npz") if len(preload or []) != len(dataset_df): preload = None self.items = preload or [ torch.Tensor(files[str(i)]).to(device) for i in tqdm( dataset_df.sequence_id, desc="Loading data", total=len(dataset_df) ) ] self.labels = torch.Tensor(dataset_df.label.values).long().to(device) self.agg = agg def __len__(self): return len(self.items) def __getitem__(self, index): return self.agg(self.items[index]).float(), self.labels[index] ROWS_PER_FRAME = 543 # number of landmarks per frame def load_relevant_data_subset(pq_path): data_columns = ["x", "y", "z"] data = pd.read_parquet(pq_path, columns=data_columns) n_frames = int(len(data) / ROWS_PER_FRAME) data = data.values.reshape(n_frames, ROWS_PER_FRAME, len(data_columns)) return data.astype(np.float32) POINTS = torch.cat( [torch.tensor(value).unfold(0, 3, 1) for value in landmarks.values()] ) INDICES = np.load(DATASET_DIR / "indices.npy") class Preprocess(nn.Module): def __init__(self, agg): super().__init__() self.agg = agg def forward(self, x): x = x[:, INDICES] x = self.agg(x) return x class PositionalEncoding(nn.Module): def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000): super().__init__() self.dropout = nn.Dropout(p=dropout) position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp( torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) ) pe = torch.zeros(max_len, 1, d_model) pe[:, 0, 0::2] = torch.sin(position * div_term) pe[:, 0, 1::2] = torch.cos(position * div_term) self.register_buffer("pe", pe) def forward(self, x: torch.Tensor) -> torch.Tensor: x = x + self.pe[: x.size(0)] return self.dropout(x).to(device) # return self.pe def pad_batch(batch): max_frames = max([len(entry) for entry in batch]) size = (max_frames, len(batch), len(batch[0][0])) padded = torch.zeros(size).to(device) mask = torch.full((len(batch), max_frames), True).to(device) for index, entry in enumerate(batch): frames = len(entry) padded[:frames, index] = entry mask[index, :frames] = False return padded, mask class TransformerModel(nn.Module): def __init__( self, in_tokens: int = 534, d_model: int = 1024, out_tokens: int = 250, nhead: int = 8, d_ff: int = 2048, nlayers: int = 1, dropout: float = 0.5, ): super().__init__() self.model_type = "Transformer" self.in_tokens = 534 self.d_model = 1024 self.out_tokens = 250 self.nhead = 8 self.d_ff = 1024 self.nlayers = 1 self.dropout = 0.4 self.embed = nn.Linear(self.in_tokens, self.d_model) self.pos_encoder = PositionalEncoding(self.d_model, self.dropout) encoder_layers = nn.TransformerEncoderLayer( self.d_model, self.nhead, self.d_ff, self.dropout ) self.transformer_encoder = nn.TransformerEncoder(encoder_layers, self.nlayers) self.decoder = nn.Linear(self.d_model, self.out_tokens) def forward(self, X: [torch.Tensor]) -> torch.Tensor: src, mask = pad_batch(X) src = self.embed(src) src = self.pos_encoder(src) src = torch.cat([torch.zeros((1, src.size(1), self.d_model)).to(src), src], 0) mask = torch.cat([torch.full((src.size(1), 1), False).to(mask), mask], 1) output = self.transformer_encoder(src, src_key_padding_mask=mask) output = output[0] output = self.decoder(output) return output @staticmethod def agg(x: torch.Tensor) -> torch.Tensor: # Find "angles" view = x[:, POINTS] vectors = torch.stack( (view[..., 1, :] - view[..., 0, :], view[..., 2, :] - view[..., 1, :]), dim=-2, ).float() angles = torch.div( vectors.prod(dim=-2).sum(dim=-1), vectors.square().sum(dim=-1).sqrt().prod(dim=-1), ) # .acos() # Coordinate normalisation coord_counts = (~x.isnan()).sum(dim=(0, 1)) coord_no_nan = x.clone() coord_no_nan[coord_no_nan.isnan()] = 0 coord_mean = coord_no_nan.sum(dim=(0, 1)) / coord_counts normed = x - coord_mean # normed[normed.isnan()] = 0 # normed = nn.functional.normalize(normed, dim=-1) # Coords + Angles tensor = torch.cat((normed.flatten(-2), angles), 1) tensor[tensor.isnan()] = 0 return tensor TransformerModel.agg(tensor).size() x = torch.Tensor([[1, 1, 0], [1, 2, 3], [3, 0, 0]]) mask = torch.Tensor( [[False, False, True], [False, False, False], [False, True, True]] ).bool() torch.rand((23, 32, 45)).sum(0).size() (~mask).sum(1) x.sum(1) / (~mask).sum(1) preprocess = Preprocess(TransformerModel.agg) preprocess( torch.Tensor( load_relevant_data_subset( "/kaggle/input/asl-signs/train_landmark_files/16069/100015657.parquet" ) ) ) if "train_preload" not in locals(): train_preload = None if "test_preload" not in locals(): test_preload = None train_dataset = ASLDataset(train_df, TransformerModel.agg, train_preload) train_preload = train_dataset.items test_dataset = ASLDataset(test_df, TransformerModel.agg, test_preload) test_preload = test_dataset.items len(train_dataset), len(test_dataset) def collate(batch): transposed = list(zip(*batch)) sequence = list(transposed[0]) X = [ torch.Tensor(x).nan_to_num(nan=0).flatten(1).float().to(device) for x in sequence ] y = torch.Tensor(transposed[1]).long().to(device) return X, y dataloader = DataLoader(train_dataset, batch_size=128, collate_fn=collate) train_dataloader = DataLoader( train_dataset, batch_size=128, shuffle=True, collate_fn=collate ) test_dataloader = DataLoader( test_dataset, batch_size=128, shuffle=True, collate_fn=collate ) model = TransformerModel( in_tokens=534, d_model=1024, out_tokens=250, nhead=8, d_ff=1024, nlayers=1, dropout=0.4, ).to(device) learning_rate = 5.0 weight_decay = 1.5 * 1e-3 epochs = 32 loss_fn = nn.CrossEntropyLoss() # optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay) optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95) def train_val_loop(epoch, train_dataloader, val_dataloader, model, loss_fn, optimizer): total_batches = len(train_dataloader) train_size, train_batches = 0, 0 train_loss, train_correct = 0, 0 with tqdm(desc=f"Epoch {epoch}", total=total_batches) as bar: for batch, (X, y) in enumerate(train_dataloader): start = time.time() # Compute prediction and loss pred = model(X) loss = loss_fn(pred, y) train_loss += loss.item() train_correct += (pred.argmax(1) == y).type(torch.float).sum().item() train_size += len(y) train_batches += 1 # print(any(x.isnan().any() for x in X), pred.isnan().any()) # Backpropagation optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optimizer.step() # scheduler.step(epoch + batch / total_batches) bar.update() # if batch % 10 == 0: bar.set_postfix( accuracy=train_correct / train_size, loss=train_loss / train_batches, lr=scheduler.get_last_lr(), ) bar.set_postfix( accuracy=train_correct / train_size, loss=train_loss / train_batches ) scheduler.step() with torch.no_grad(): val_size, val_batches = 0, 0 val_loss, val_correct = 0, 0 for batch, (X, y) in enumerate(val_dataloader): pred = model(X) val_loss += loss_fn(pred, y).item() val_correct += (pred.argmax(1) == y).type(torch.float).sum().item() val_size += len(y) val_batches += 1 if batch % 10 == 0 or batch + 1 == len(val_dataloader): bar.set_postfix( accuracy=train_correct / train_size, loss=train_loss / train_batches, val_accuracy=val_correct / val_size, val_loss=val_loss / val_batches, ) return ( train_correct / train_size, train_loss / train_batches, val_correct / val_size, val_loss / val_batches, ) epochs = 2 best_loss = float("inf") saved_state = model.state_dict() for epoch in range(epochs): acc, loss, v_acc, v_loss = train_val_loop( epoch, train_dataloader, test_dataloader, model, loss_fn, optimizer ) if v_loss < best_loss: best_loss = v_loss saved_state = model.state_dict() torch.save(saved_state, "model_weights.pth") class EvalModel(TransformerModel): # src should be a single sequence of frames of size [frames, 534] def forward(self, src: torch.Tensor): src = src.unsqueeze(1) src = self.embed(src) src = self.pos_encoder(src) src = torch.cat([torch.zeros((1, 1, self.d_model)).to(device), src], 0) output = self.transformer_encoder(src) # [frames+1,1,d_model] output = output[0] # [1,d_model] output = self.decoder(output) # [1,250] output = output[0] # [250] return output eval_model = EvalModel(d_ff=1024) eval_model.load_state_dict(saved_state) eval_model.eval() torchinfo.summary(eval_model, (105, 534)) # ### PyTorch → ONNX preprocess.eval() preprocess_sample = torch.rand((23, 543, 3)).to( device ) # 23 is an arbitrary number of frames, 543 is the number of rows/landmarks, 3 is the x, y, z columns onnx_preprocess_path = "preprocess.onnx" torch.onnx.export( preprocess, preprocess_sample, onnx_preprocess_path, opset_version=12, input_names=["inputs"], output_names=["outputs"], dynamic_axes={"inputs": {0: "frames"}, "outputs": {0: "frames"}}, ) eval_model.eval() model_sample = torch.rand((23, 534)).to(device) # 1 is the batch size onnx_model_path = "model.onnx" torch.onnx.export( eval_model, model_sample, onnx_model_path, opset_version=12, input_names=["inputs"], output_names=["outputs"], dynamic_axes={"inputs": {0: "frames"}}, ) # Will raise an exception if checks fail onnx_preprocess = onnx.load(onnx_preprocess_path) onnx.checker.check_model(onnx_preprocess) onnx_model = onnx.load(onnx_model_path) onnx.checker.check_model(onnx_model) # ### ONNX → Tensorflow tf_preprocess_path = "tf_preprocess" tf_preprocess = onnx_tf.backend.prepare(onnx_preprocess) tf_preprocess.export_graph(tf_preprocess_path) tf_model_path = "tf_model" tf_model = onnx_tf.backend.prepare(onnx_model) tf_model.export_graph(tf_model_path) class InferenceModel(tf.Module): def __init__(self): super().__init__() self.preprocess = tf.saved_model.load(tf_preprocess_path) self.model = tf.saved_model.load(tf_model_path) self.preprocess.trainable = False self.model.trainable = False @tf.function( input_signature=[ tf.TensorSpec(shape=[None, 543, 3], dtype=tf.float32, name="inputs") ] ) def call(self, x): outputs = {} preprocessed = self.preprocess(inputs=x)["outputs"] pred = self.model(inputs=preprocessed)["outputs"] # pred = tf.nn.softmax(pred) return {"outputs": pred} tf_inference = InferenceModel() tf_inference_path = "tf_inference" tf.saved_model.save( tf_inference, tf_inference_path, signatures={"serving_default": tf_inference.call} ) # ### Tensorflow → TFLite model_converter = tf.lite.TFLiteConverter.from_saved_model( tf_inference_path ) # path to the SavedModel directory tflite_model = model_converter.convert() # Save the model. with open("model.tflite", "wb") as f: f.write(tflite_model) # The submission file (submission.zip) is created by compressing the TFLite model. # ## Evaluating the TFLite model import tflite_runtime.interpreter as tflite interpreter = tflite.Interpreter("model.tflite") found_signatures = list(interpreter.get_signature_list().keys()) # if REQUIRED_SIGNATURE not in found_signatures: # raise KernelEvalException('Required input signature not found.') frames = load_relevant_data_subset( "/kaggle/input/asl-signs/train_landmark_files/16069/100015657.parquet" ) prediction_fn = interpreter.get_signature_runner("serving_default") output = prediction_fn(inputs=frames) sign = np.argmax(output["outputs"]) print(sign, output["outputs"].shape) interpreter.get_input_details() interpreter.get_output_details() interpreter.get_signature_list() tests = [] for index, row in signs_df.iloc[:50].iterrows(): frames = load_relevant_data_subset(ASL_DIR / row.path) interpreter = tflite.Interpreter("model.tflite") prediction_fn = interpreter.get_signature_runner("serving_default") output = prediction_fn(inputs=frames) # output = tf_inference.call(frames) # output = model(preprocess(torch.Tensor(frames)).unsqueeze(0)) sign = np.argmax(output["outputs"]) # sign = torch.argmax(output) tests.append((sign, row.label)) tests
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 5GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session train_data = pd.read_csv("../input/titanic/train.csv") train_data.head() test_data = pd.read_csv("../input/titanic/test.csv") test_data.head() train_data.shape test_data.shape train_data.dtypes # * Numerical: PassengerId, Pclass, Age, SibSp, Parch, Fare # * Categorical: Name, Sex, Ticket, Cabin, Embarked # * Target: Survived train_data.describe() train_data.count() # 1. Missing values: age, cabin and embarked # 2. Unwanted columns or features: PassengerId, ticket(does not provide much information about survival) and cabin (has a high number of missing values) # # Dropping the unwanted columns - PassengerId, Ticket, Cabin train_data.drop(["PassengerId", "Ticket", "Cabin"], axis=1, inplace=True) train_data # # Missing Value Imputation # input median(Age) for na's in Age column train_data["Age"] = train_data["Age"].fillna(value=train_data["Age"].median()) # input mode(Embarked) which is 'S' for na's in Embarked column train_data["Embarked"] = train_data["Embarked"].fillna("S") train_data.count() train_data.head() # input median(Age) for na's in Age column test_data["Age"] = test_data["Age"].fillna(value=test_data["Age"].median()) # input median(Fare) for na's in Fare column test_data["Fare"] = test_data["Fare"].fillna(value=test_data["Fare"].median()) test_data.count() # feature selection features = ["Pclass", "Sex", "SibSp", "Parch", "Age", "Embarked"] train_X = train_data[features] train_X test_X = test_data[features] test_X train_y = train_data["Survived"] train_y # ## Decision Tree Model from sklearn.tree import DecisionTreeClassifier decision_tree_model = DecisionTreeClassifier(random_state=0) X = pd.get_dummies(train_X) decision_tree_model.fit(X, train_y) tX = pd.get_dummies(test_X) pred_y = decision_tree_model.predict(tX) decision_tree_model_accuracy = round(decision_tree_model.score(X, train_y) * 100, 2) decision_tree_model_accuracy # ## Random Forest Model from sklearn.ensemble import RandomForestClassifier random_forest_model = RandomForestClassifier(random_state=0) random_forest_model.fit(X, train_y) predictions = random_forest_model.predict(tX) random_forest_model_accuracy = round(random_forest_model.score(X, train_y) * 100, 2) random_forest_model_accuracy # ## Support Vector Model from sklearn import svm clf = svm.SVC(kernel="poly", random_state=0) clf.fit(X, train_y) pred_y = clf.predict(tX) clf_accuracy = round(clf.score(X, train_y) * 100, 2) clf_accuracy output = pd.DataFrame({"PassengerId": test_data.PassengerId, "Survived": predictions}) output.to_csv("my_submission.csv", index=False) print("Your submission was successfully saved!")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import re import chardet import operator import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from nltk import pos_tag from nltk.corpus import wordnet from nltk.corpus import stopwords from nltk.stem.wordnet import WordNetLemmatizer from tensorflow.keras.layers import Embedding from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.models import Sequential from tensorflow.keras.callbacks import EarlyStopping from keras.layers.normalization import BatchNormalization from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.layers import LSTM, Dense, Bidirectional from tensorflow.keras.layers import Dropout, SpatialDropout1D from tqdm import tqdm from wordcloud import WordCloud, STOPWORDS from sklearn.model_selection import train_test_split with open("../input/covid-19-nlp-text-classification/Corona_NLP_train.csv", "rb") as f: result = chardet.detect(f.read()) print(result) f.close() # can be tried cp1254, latin and iso-8859-1 train_data = pd.read_csv( "../input/covid-19-nlp-text-classification/Corona_NLP_train.csv", encoding="iso-8859-1", ) test_data = pd.read_csv( "../input/covid-19-nlp-text-classification/Corona_NLP_test.csv", encoding="iso-8859-1", ) train_data.head() train_data.tail() test_data.head() train_data.isna().sum() train_data.shape, test_data.shape train_data.drop(["UserName", "ScreenName", "Location", "TweetAt"], axis=1, inplace=True) train_data.head() train_data.Sentiment.value_counts().plot(kind="bar") pd.set_option("display.max_colwidth", None) train_data.OriginalTweet[0:5] # extract hashtag train_data["hashtag"] = train_data["OriginalTweet"].apply( lambda x: re.findall(r"#(\w+)", x) ) # data pre processing # extract url used train_data["uri"] = train_data["OriginalTweet"].apply( lambda x: re.findall( r"http[s]?://(?:[a-z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-f][0-9a-f]))+", x ) ) train_data["handler"] = train_data["OriginalTweet"].apply( lambda x: re.findall(r"@(\w+)", x) ) # Lemmatize Words def get_pos_tag(tag): if tag.startswith("J"): return wordnet.ADJ elif tag.startswith("V"): return wordnet.VERB elif tag.startswith("N"): return wordnet.NOUN elif tag.startswith("R"): return wordnet.ADV else: # As default pos in lemmatization is Noun return wordnet.NOUN lemmatizer = WordNetLemmatizer() pos_tag(["going"]) # clean the data now regex = [ r"<[^>]+>", # HTML tags r"@(\w+)", # @-mentions r"#(\w+)", # hashtags r"http[s]?://(?:[a-z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-f][0-9a-f]))+", # URLs r"[^0-9a-z #+_\\r\\n\\t]", # BAD SYMBOLS ] REPLACE_URLS = re.compile( r"http[s]?://(?:[a-z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-f][0-9a-f]))+" ) REPLACE_HASH = re.compile(r"#(\w+)") REPLACE_AT = re.compile(r"@(\w+)") REPLACE_HTML_TAGS = re.compile(r"<[^>]+>") # REPLACE_DIGITS = re.compile(r'\d+') # REPLACE_BY = re.compile(r"[/(){}\[\]\|,;.:?\-\'\"$]") REPLACE_BY = re.compile(r"[^a-z0-9\-]") STOPWORDS = set(stopwords.words("english")) # tokens_re = re.compile(r'('+'|'.join(regex)+')', re.VERBOSE | re.IGNORECASE) def clean_text(text): text = text.lower() text = REPLACE_HTML_TAGS.sub(" ", text) text = REPLACE_URLS.sub("", text) text = REPLACE_HASH.sub("", text) text = REPLACE_AT.sub("", text) # text = REPLACE_DIGITS.sub(' ', text) text = REPLACE_BY.sub(" ", text) text = " ".join( lemmatizer.lemmatize(word.strip(), get_pos_tag(pos_tag([word.strip()])[0][1])) for word in text.split() if word not in STOPWORDS and len(word) > 3 ) return text train_data["Tweet"] = train_data["OriginalTweet"].apply(clean_text) test_data["Tweet"] = test_data["OriginalTweet"].apply(clean_text) # Now lets do some eda on the data # how sentiments are related with the hashtag and user handler # ext_pos = train_data[train_data['Sentiment'] == 'Extremely Positive'] pos = train_data[train_data["Sentiment"] == "Positive"] neu = train_data[train_data["Sentiment"] == "Neutral"] neg = train_data[train_data["Sentiment"] == "Negative"] # ext_neg = train_data[train_data["Sentiment"] == "Extremely Negative"] for param in ["hashtag", "handler", "uri"]: for df in [pos, neu, neg]: # , ext_neg, ext_pos,]: print( "------------------------------TOP {0} IN {1}------------------------------".format( param, df["Sentiment"].values[0] ) ) hash_count = {} for tag in df[param]: for value in tag: hash_count[value] = hash_count.get(value, 0) + 1 print(sorted(hash_count.items(), key=operator.itemgetter(1))[-10:]) print("\n") pd.set_option("display.max_colwidth", None) train_data.Tweet[50:55] # word Cloud # for color, df in {"green":ext_pos, "yellow":pos, "white":neu, "pink":neg, "orange":ext_neg}.items(): for color, df in {"yellow": pos, "white": neu, "pink": neg}.items(): plt.figure(figsize=(18, 18)) wc_pos = WordCloud( width=400, height=250, min_font_size=5, background_color=color, max_words=10000 ).generate(" ".join(df["Tweet"])) plt.title("word cloud for {0}".format(df["Sentiment"].values[0]), fontsize=25) plt.imshow(wc_pos, interpolation="bilinear") # max len of clean data import numpy as np max_len = np.max(train_data["Tweet"].apply(lambda x: len(x))) max_len tokenizer = Tokenizer() tokenizer.fit_on_texts(train_data["Tweet"].values) vocab_size = len(tokenizer.word_index) + 1 X = tokenizer.texts_to_sequences(train_data["Tweet"].values) X = pad_sequences(X, maxlen=max_len, padding="post") tokenizer.word_index # pre process test data with param of train data X_test = tokenizer.texts_to_sequences(test_data["Tweet"].values) X_test = pad_sequences(X_test, maxlen=max_len, padding="post") # load the GloVe vectors in a dictionary: # ValueError: could not convert string to float: '.' this is why using ingore embeddings_index = {} glovefile = open("../input/glove42b300dtxt/glove.42B.300d.txt", "r", encoding="utf-8") for line in tqdm(glovefile): values = line.split(" ") word = values[0] coefs = np.asarray(values[1:], dtype="float32") embeddings_index[word] = coefs glovefile.close() print("Found %s word vectors." % len(embeddings_index)) # create an embedding matrix for the words we have in the dataset embedding_matrix = np.zeros((len(tokenizer.word_index) + 1, 300)) for word, index in tqdm(tokenizer.word_index.items()): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[index] = embedding_vector X.shape X_test.shape encoding = { "Extremely Negative": 0, "Negative": 0, "Neutral": 1, "Positive": 2, "Extremely Positive": 2, } labels = ["Negative", "Neutral", "Positive"] train_data["Sentiment"].replace(encoding, inplace=True) test_data["Sentiment"].replace(encoding, inplace=True) labels = pd.get_dummies(train_data["Sentiment"]).columns y = pd.get_dummies(train_data["Sentiment"]).values y y_test = pd.get_dummies(test_data["Sentiment"]).values y_test.shape # train valid split X_train, X_valid, y_train, y_valid = train_test_split( X, y, test_size=0.20, random_state=12 ) print(X_train.shape, y_train.shape) print(X_valid.shape, y_valid.shape) vector_features = 300 model = Sequential() model.add( Embedding( vocab_size, vector_features, input_length=X.shape[1], weights=[embedding_matrix], trainable=False, ) ) model.add(SpatialDropout1D(0.2)) model.add( Bidirectional( LSTM(300, activation="relu", dropout=0.3, recurrent_dropout=0.3), input_shape=(vector_features, vocab_size), ) ) model.add(Dense(1024, activation="relu")) model.add(Dropout(0.8)) model.add(Dense(1024, activation="relu")) model.add(Dropout(0.8)) model.add(Dense(3, activation="softmax")) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) model.summary() epochs = 100 batch_size = 512 history = model.fit( X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_valid, y_valid), callbacks=[EarlyStopping(monitor="val_loss", patience=3, min_delta=0.0001)], ) # Model Accuracy accuracy = history.history["accuracy"] loss = history.history["loss"] val_accuracy = history.history["val_accuracy"] val_loss = history.history["val_loss"] print( "training acuuracy {0}% and training loss {1}%".format( accuracy[-1] * 100, loss[-1] * 100 ) ) print( "validation acuuracy {0}% and validation loss {1}%".format( val_accuracy[-1] * 100, val_loss[-1] * 100 ) ) # plot plt.plot(accuracy, "g", label="training accuracy") plt.plot(val_accuracy, "r", label="validation accuracy") plt.legend() plt.show() plt.plot(loss, "g", label="training loss") plt.plot(val_loss, "r", label="validation loss") plt.legend() plt.show() # y_pred = model.predict_classes(X_test) # y_pred = np.argmax(model.predict(X_test), axis=-1) y_pred = model.predict(X_test) print(labels[np.argmax(y_test, 1)][100:120]) print(labels[np.argmax(y_pred, 1)][100:120]) from sklearn.metrics import confusion_matrix, accuracy_score, classification_report cm = confusion_matrix(np.argmax(y_test, 1), np.argmax(y_pred, 1)) print(cm) sns.heatmap(cm, annot=True)
import numpy as np import scipy.io import scipy import numpy.matlib import scipy.stats from sklearn.decomposition import PCA import sys import scipy.sparse as sps import time import warnings warnings.filterwarnings("ignore") def Config(source=None, target=None): """Initiazation of necessary parametrs for compuatation Input:: source(string) : source domain index (Default : webcam) target(string) : target domain index (Default : dslr) Output:: param : Output dictionary containing parameters""" amazon = 0 webcam = 1 dslr = 2 caltech = 3 param = {} param["domains"] = [amazon, webcam, dslr, caltech] param["domain_names"] = ["amazon", "webcam", "dslr", "caltech"] param["categories"] = [ "back_pack", "bike", "calculator", "headphones", "keyboard", "laptop_computer", "monitor", "mouse", "mug", "projector", ] param["DATA_DIR"] = "/kaggle/input/domain-adaptain-splits/data/original_data/" param["held_out_categories"] = False if source is None: param["source"] = webcam else: param["source"] = source if target is None: param["target"] = dslr else: param["target"] = target param["num_trials"] = 20 param["dim"] = 20 param["C_s"] = 0.05 param["C_t"] = 1 param["mmdt_iter"] = 2 if param["source"] == amazon: param["num_train_source"] = 20 else: param["num_train_source"] = 8 param["num_train_target"] = 3 param[ "result_filename" ] = "/kaggle/input/domain-adaptain-splits/data/DataSplitsOfficeCaltech/SameCategory_{0}-{1}_{2}RandomTrials_10Categories.mat".format( param["domain_names"][param["source"]], param["domain_names"][param["target"]], param["num_trials"], ) param["telapsed"] = {} return param def NormData(fts): """Normalizes the data and returns the zscore""" sqr_fts = np.sqrt(np.sum(fts**2, 1)) sqr_fts = np.array(sqr_fts).reshape(1, -1).T # print(fts.shape[1] , sqr_fts.shape) sqr_fts = np.matlib.repmat(sqr_fts, 1, fts.shape[1]) fts = fts / sqr_fts return scipy.stats.zscore(fts) def LoadOfficePlusCaltechData(foldername): """Loads the Office and Caltech Dataset and returns the Data and corresponding Labels Input:: foldername(string) : Path to the dataset Output:: Data(list) : SURF features of the dataset. Labels(list) : Corresponding labels of the images in the dataset. """ domain_names = [ "amazon_SURF_L10.mat", "webcam_SURF_L10.mat", "dslr_SURF_L10.mat", "Caltech10_SURF_L10.mat", ] Data = [] Labels = [] for idx, name in enumerate(domain_names): fullfilename = foldername + name obj = scipy.io.loadmat(fullfilename) fts = obj["fts"] labels = obj["labels"] fts = NormData(fts) Data.append(fts) Labels.append(labels) return Data, Labels def princomp(A): """Returns the principal component of the data.""" M = (A - np.mean(A.T, axis=1).reshape(1, -1)).T [latent, coeff] = np.linalg.eig(np.cov(M)) score = np.dot(coeff.T, M) # projection of the data in the new space args = np.argsort(-latent) coeff = coeff[:, args] return coeff, score, latent param = Config() [Data, Labels] = LoadOfficePlusCaltechData(param["DATA_DIR"]) from sklearn.svm import LinearSVC import numpy as np from scipy.io import loadmat from tqdm import tqdm import warnings from sklearn.decomposition import PCA warnings.filterwarnings("ignore") import torch from sklearn.metrics import hinge_loss from torch import nn from tqdm import tqdm import sklearn def trainsvm(data, labels, gamma=1e-4, c=1): svm = LinearSVC(tol=gamma, C=c, penalty="l2", loss="hinge") svm.fit(data, labels) return svm def normalize(data): return sklearn.preprocessing.normalize(data) def step1(itr, data_a, label_a, data_b, label_b): augmented_X = np.vstack([data_a, data_b]) augmented_y = np.hstack([label_a, label_b]) svm = trainsvm(augmented_X, augmented_y) return svm def step2(itr, transformation_matrix, target_x, target_y, theta, beta, lr): target_x = torch.tensor(np.double(target_x)) target_y = torch.tensor(target_y).long() ly = -torch.ones((target_x.shape[0], theta.shape[0])) theta = torch.tensor(np.double(theta)) beta = torch.tensor(np.double(beta)) ly[np.arange(0, target_x.shape[0]), target_y] = 1 transformation_matrix = torch.tensor(transformation_matrix) for _ in range(10): w = torch.tensor(transformation_matrix, requires_grad=True) target = target_x @ w res = torch.einsum("ab,bc -> ca", theta, target.T) res = target @ theta.T + beta err = torch.sum(torch.fmax(torch.zeros((res.shape)), 1 - res * ly)) out = 0.5 * torch.norm(w, p="fro") ** 2 + err # print(err) err.backward() transformation_matrix -= lr * w.grad return transformation_matrix.detach().numpy(), err.item() def adapt(data_a, label_a, data_b, label_b, tx=None, ty=None, iterations=10, lr=0.015): n_features_a = data_a.shape[1] n_features_b = data_b.shape[1] if n_features_a == n_features_b: transformation_matrix = np.eye(n_features_b) else: # transformation_matrix = np.ones((n_features_b , n_features_a)) transformation_matrix = np.random.random((n_features_b, n_features_a)) error = [] scores = [] for x in range(iterations): transformed_b = data_b @ transformation_matrix model = step1(x, data_a, label_a, transformed_b, label_b) theta = model.coef_ beta = model.intercept_ transformation_matrix, err = step2( x, transformation_matrix, data_b, label_b, theta, beta, lr ) # print(dw) # transformation_matrix -= lr * dw error.append(err) if type(tx) != type(None): ttx = tx @ transformation_matrix scores.append(model.score(ttx, ty)) return transformation_matrix, model, error, scores def UpdateLabelValues(labels, param): """Updates labels for the training source, target and testing target dataset.""" if "all_categories" not in param: return labels all_categories = param["all_categories"] categories = param["categories"] labels["train"]["source"] = UpdateLabels( labels["train"]["source"], all_categories, categories ) labels["train"]["target"] = UpdateLabels( labels["train"]["target"], all_categories, categories ) labels["test"]["target"] = UpdateLabels( labels["test"]["target"], all_categories, categories ) return labels d1 = [0, 1, 2, 3] d2 = [0, 1, 2, 3] all_models = [] # Try for all possible cominations of source and target mapping = {0: "a", 1: "w", 2: "d", 3: "c"} for src in d1: for tar in d2: if tar == src: continue def run(src, tar, lr, itr): global param param = Config(source=src, target=tar) source_domain = param["source"] target_domain = param["target"] # Load splits based on filename and update train and test ids splits = scipy.io.loadmat(param["result_filename"]) train_ids = splits["train"] test_ids = splits["test"] train_ids_source = train_ids[0][0][0][0] train_ids_target = train_ids[0][0][1][0] test_ids_source = test_ids[0][0][0][0] test_ids_target = test_ids[0][0][1][0] elaps = 20 for i in tqdm(range(0, elaps)): # Data Loading data = {} accuracy = [] data["train"] = {} data["test"] = {} data["train"]["source"] = Data[source_domain][train_ids_source[i] - 1][0] data["train"]["target"] = Data[target_domain][train_ids_target[i] - 1][0] data["test"]["target"] = Data[target_domain][test_ids_target[i] - 1][0] labels = {} labels["train"] = {} labels["test"] = {} labels["train"]["source"] = ( Labels[source_domain][train_ids_source[i] - 1][0].ravel() - 1 ) labels["train"]["target"] = ( Labels[target_domain][train_ids_target[i] - 1][0].ravel() - 1 ) labels["test"]["target"] = ( Labels[target_domain][test_ids_target[i] - 1][0].ravel() - 1 ) # labels = UpdateLabelValues(labels, param) # if param['dim'] < np.shape(data['train']['source'])[1]: # arr = np.array(data['train']['source']) # arr = np.vstack((arr, data['train']['target'])) # arr = np.vstack((arr, data['test']['target'])) # arr= sklearn.preprocessing.normalize(arr) # P, _, _ = princomp(arr) # data['train']['source'] = normalize(np.matmul(data['train']['source'], P[:, :20]).real) # data['train']['target'] = normalize(np.matmul(data['train']['target'], P[:, :20]).real) # data['test']['target'] = normalize(np.matmul(data['test']['target'], P[:, :20]).real) # Main function call for getting the trained models w, model, error, scores = adapt( data["train"]["source"], labels["train"]["source"], data["train"]["target"], labels["train"]["target"], data["test"]["target"], labels["test"]["target"], lr=lr, iterations=itr, ) accuracy.append(max(scores)) # accuracy.append(model.score(data['test']['target']@w,labels['test']['target'])) print( "Mean Accuracy = {} +/- {} ".format( np.mean(accuracy), np.std(accuracy) / np.sqrt(elaps) ) ) return np.mean(accuracy) for s in range(4): for t in range(4): if s == t: continue print("=" * 55) print("Source ", mapping[s], "Target", mapping[t]) for i in [[1, 5], [0.1, 10], [0.001, 20], [0.0001, 25]]: print("lr : ", i[0]) run(s, t, i[0], i[1]) # outcome["{}->{}".format(mapping[src] , mapping[tar])] = np.mean(accuracy)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session train_data = pd.read_csv("/kaggle/input/DontGetKicked/training.csv") train_data.head() train_data.shape test_data = pd.read_csv("/kaggle/input/DontGetKicked/test.csv") test_data.head() test_data.shape train_data.isnull().sum() test_data.isnull().sum() train_data.keys() train_data.IsBadBuy.value_counts() train_data.Model.isnull().value_counts() train_data.Model.shape train_data.drop("Model", axis=1, inplace=True) test_data.drop("Model", axis=1, inplace=True) train_data.drop("Trim", axis=1, inplace=True) test_data.drop("Trim", axis=1, inplace=True) train_data.drop("SubModel", axis=1, inplace=True) test_data.drop("SubModel", axis=1, inplace=True) train_data.Color.value_counts() train_data.Color.shape test_data.Color.value_counts() test_data.Color.shape train_data["Color"].fillna(value="Color_Unknown", inplace=True) test_data["Color"].fillna(value="Color_Unknown", inplace=True) print(train_data.Color.isnull().sum()) print(test_data.Color.isnull().sum()) test_data.isnull().sum() train_data["Transmission"].value_counts() test_data["Transmission"].value_counts() train_data[train_data.Transmission == "Manual"] train_data.Transmission.replace("Manual", "MANUAL", inplace=True) train_data.Transmission.value_counts() train_data.Transmission.isnull().sum() train_data.Transmission.fillna(value="Transmission_unk", inplace=True) train_data.Transmission.isnull().sum() train_data.WheelTypeID.value_counts() test_data.WheelTypeID.value_counts() train_data.drop("WheelTypeID", inplace=True, axis=1) test_data.drop("WheelTypeID", inplace=True, axis=1) train_data.WheelType.isnull().sum() train_data.WheelType.value_counts() train_data.WheelType.fillna(value="WheelType_unk", inplace=True) test_data.WheelType.fillna(value="WheelType_unk", inplace=True) train_data.WheelType.isnull().sum() train_data.WheelType.value_counts() train_data.Nationality.isnull().sum() test_data.Nationality.isnull().sum() train_data.Nationality.fillna("Nationality_unk", inplace=True) test_data.Nationality.fillna("Nationality_unk", inplace=True) train_data.Nationality.isnull().sum() train_data.Size.isnull().sum() train_data.Size.fillna("Size_unk", inplace=True) test_data.Size.fillna("Size_unk", inplace=True) train_data.Size.isnull().sum() train_data.keys() train_data.TopThreeAmericanName.value_counts() train_data.TopThreeAmericanName.isnull().sum() train_data.TopThreeAmericanName.fillna(value="Top_unk", inplace=True) test_data.TopThreeAmericanName.fillna(value="Top_unk", inplace=True) train_data.PRIMEUNIT.value_counts() test_data.PRIMEUNIT.value_counts() train_data.PRIMEUNIT.isnull().sum() train_data.PRIMEUNIT.fillna(value="Prime_unk", inplace=True) test_data.PRIMEUNIT.fillna(value="Prime_unk", inplace=True) test_data.PRIMEUNIT.isnull().sum() train_data.AUCGUART.value_counts() test_data.AUCGUART.value_counts() test_data.AUCGUART.isnull().sum() train_data.AUCGUART.fillna(value="AUC_unk", inplace=True) test_data.AUCGUART.fillna(value="AUC_unk", inplace=True) train_data.AUCGUART.isnull().sum() train_data.keys() train_data.drop( [ "MMRAcquisitionAuctionAveragePrice", "MMRAcquisitionAuctionCleanPrice", "MMRAcquisitionRetailAveragePrice", "MMRAcquisitonRetailCleanPrice", "MMRCurrentAuctionAveragePrice", "MMRCurrentAuctionCleanPrice", "MMRCurrentRetailAveragePrice", "MMRCurrentRetailCleanPrice", ], axis=1, inplace=True, ) test_data.drop( [ "MMRAcquisitionAuctionAveragePrice", "MMRAcquisitionAuctionCleanPrice", "MMRAcquisitionRetailAveragePrice", "MMRAcquisitonRetailCleanPrice", "MMRCurrentAuctionAveragePrice", "MMRCurrentAuctionCleanPrice", "MMRCurrentRetailAveragePrice", "MMRCurrentRetailCleanPrice", ], axis=1, inplace=True, ) train_data.keys() train_data.drop("PurchDate", axis=1, inplace=True) test_data.drop("PurchDate", axis=1, inplace=True) train_data.shape test_data.shape train_data.head() test_data.head() train_data.dtypes train_data.columns train_data.drop(["RefId", "IsBadBuy"], axis=1).dtypes != "object" not_categorical = train_data.drop(["RefId", "IsBadBuy"], axis=1).columns[ train_data.drop(["RefId", "IsBadBuy"], axis=1).dtypes != "object" ] for i in not_categorical: maximum = np.max(train_data[i]) train_data[i] = train_data[i] / maximum maximum_test = np.max(test_data[i]) test_data[i] = test_data[i] / maximum_test train_data[not_categorical].head() test_data[not_categorical].head() categorical = train_data.drop(["RefId", "IsBadBuy"], axis=1).columns[ train_data.drop(["RefId", "IsBadBuy"], axis=1).dtypes == "object" ] categorical train_data[categorical[0]] pd.get_dummies(train_data[categorical[0]]) for i in categorical: dummies = pd.get_dummies(train_data[i]) dummies.columns = str(i) + "_" + dummies.columns train_data = pd.concat([train_data, dummies], axis=1) train_data.drop(i, inplace=True, axis=1) dummies = pd.get_dummies(test_data[i]) dummies.columns = str(i) + "_" + dummies.columns test_data = pd.concat([test_data, dummies], axis=1) test_data.drop(i, inplace=True, axis=1) train_data.head() train_data.shape test_data.shape for i in train_data.drop("IsBadBuy", axis=1).columns: if i not in test_data.columns: test_data[i] = np.zeros(len(test_data)) for i in test_data.columns: if i not in train_data.columns: train_data[i] = np.zeros(len(train_data)) train_data.shape test_data.shape train_data.head() test_data.head() test_data = test_data[train_data.drop("IsBadBuy", axis=1).columns] print(train_data.shape) print(test_data.shape) train_data.columns test_data.columns from sklearn.model_selection import train_test_split X = train_data.drop(["RefId", "IsBadBuy"], axis=1) y = train_data["IsBadBuy"] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) print(X_train.shape, y_train.shape) print(X_test.shape, y_test.shape) from sklearn.neighbors import KNeighborsClassifier KNN = KNeighborsClassifier(n_neighbors=11) KNN.fit(X_train, y_train) KNN.score(X_test, y_test) predict = KNN.predict(test_data.drop("RefId", axis=1)) Submission = pd.DataFrame(data=predict, columns=["IsBadBuy"]) Submission.head() Submission["RefId"] = test_data["RefId"] Submission.set_index("RefId", inplace=True) Submission.head() Submission.to_csv("Submission.csv")
# 克隆YLCLS项目并安装依赖包 # 使用wandb可视化展示,需要注册wandb账号 import wandb from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() wandb_api = user_secrets.get_secret("wandb_key") wandb.login(key=wandb_api) import warnings warnings.filterwarnings("ignore") from ylcls import cifar10_clsconfig_dict, get_config, CLSConfig cifar10_clsconfig_dict cifar10_clsconfig_dict["train_batch_size"] = 256 cifar10_clsconfig_dict["eval_batch_size"] = 256 cifar10_clsconfig_dict["model_args"] = dict( model_type="mymodel", model_config="ylcls/configs/ResNet/ResNet50_dropout0.3.yaml" ) # cifar10_clsconfig_dict['use_wandb'] = False #可以设置True使用wandb,上面就需要登陆 cifar10_clsconfig_dict["workers"] = 16 config = get_config(cifar10_clsconfig_dict, CLSConfig) config.model.info() from ylcls import Classification cls = Classification(config) cls.train()
# # **Introduction** # This is my first machine learning kernel. I used logistic regression. # ## **Content:** # 1. [Load and check data](#1) # 1. [Variable Description](#2) # 1. [Normalization](#3) # 1. [Train Test Split](#4) # 1. [Paramter Initialize and Sigmoid Function](#5) # 1. [Forward and Backward Propagation](#6) # 1. [Updating (Learning) Parameters](#7) # 1. [Prediction](#8) # 1. [Logistic Regression](#9) # 1. [Sklearn with Linear Regression](#10) import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session hd = pd.read_csv("/kaggle/input/heart-disease-uci/heart.csv") # # ## **1.Load and Check Data** hd.head(20) hd.columns # # ## **2.Veriable Description** # * age: age # * sex: sex # * cp: chest pain type # * trestbps: resting blood pressure (in mm Hg on admission to the hospital) # * chol:serum cholestoral in mg/dl # * fbs: fasting blood sugar &gt; 120 mg/dl) (1 = true; 0 = false # * restecg:resting electrocardiographic results # * thalach: maximum heart rate achieved # * exang: exercise induced angina # * oldpeak: ST depression induced by exercise relative to rest hd.info() y = hd.sex.values y x_data = hd.drop(["sex"], axis=1) x_data # # ## **3.Normalization** # I reduced the values between 1 and 0. # -normalization formula:(x-min(x))/(max(x)-min(x)) x = (x_data - np.min(x_data)) / (np.max(x_data) - np.min(x_data)).values x # # ## **4.Train Test Split** # _train: real values x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.2, random_state=42 ) x_train = x_train.T x_test = x_test.T y_train = y_train.T y_test = y_test.T print("x train: ", x_train.shape) print("x test: ", x_test.shape) print("y train: ", y_train.shape) print("y test: ", y_test.shape) # # ## **5.Paramter Initialize and Sigmoid Function** # * w = weighs # * b = bias def initialize_w_and_b(dimension): w = np.full((dimension, 1), 0.01) b = 0.0 return w, b def sigmoid(z): y_head = 1 / (1 + np.exp(-z)) return y_head print(sigmoid(0)) # # ## **6.Forward and Backward Propagation** # -der:derivative def forward_backward_propagation(w, b, x_train, y_train): # forward z = np.dot(w.T, x_train) + b y_head = sigmoid(z) loss = -y_train * np.log(y_head) - (1 - y_train) * np.log(1 - y_head) cost = (np.sum(loss)) / x_train.shape[1] # backward der_w = (np.dot(x_train, ((y_head - y_train).T))) / x_train.shape[1] der_b = np.sum(y_head - y_train) / x_train.shape[1] gradients = {"der_w": der_w, "der_b": der_b} return cost, gradients # # ## **7.Updating (Learning) Parameters** def update(w, b, learning_rate, number_of_iteration): cost_list1 = [] cost_list2 = [] index = [] for i in range(number_of_iteration): cost, gradients = forward_backward_propagation(w, b, x_train, y_train) cost_list1.append(cost) w = w - learning_rate * gradients["der_w"] b = b - learning_rate * gradients["der_b"] if i % 10 == 0: cost_list2.append(cost) index.append(i) print("Cost after iteration %i: %f" % (i, cost)) parameters = {"weigh": w, "bias": b} plt.plot(index, cost_list2) plt.xticks(index, rotation="vertical") plt.xlabel("Number of Iteration") plt.ylabel("Cost") plt.show() return parameters, gradients, cost_list1 # # ## **8.Prediction** def predict(w, b, x_test): z = sigmoid(np.dot(w.T, x_test) + b) Y_prediction = np.zeros((1, x_test.shape[1])) for i in range(z.shape[1]): if z[0, i] <= 0.5: Y_prediction[0, i] = 0 else: Y_prediction[0, i] = 1 return Y_prediction # # ## **9.Logistic Regression** def logistic_regression( x_train, y_train, x_test, y_test, learning_rate, num_iterations ): # initialize dimension = x_train.shape[0] w, b = initialize_w_and_b(dimension) parameters, gradients, cost_list1 = update(w, b, learning_rate, num_iterations) y_prediction_test = predict(parameters["weigh"], parameters["bias"], x_test) # print test errors print( "test accurary:{}".format( 100 - np.mean(np.abs(y_prediction_test - y_test)) * 100 ) ) logistic_regression( x_train, y_train, x_test, y_test, learning_rate=0.01, num_iterations=500 ) # # ## **10.Sklearn with Linear Regression** lr = LogisticRegression() lr.fit(x_train.T, y_train.T) print("test accuracy {}".format(lr.score(x_test.T, y_test.T)))
# Naive Bayes Classifier # **Importing Important Libraries** import pandas as pd # **Reading CSV File** df = pd.read_csv("/kaggle/input/titanic/train.csv") df.head() # **Removing unwanted Column's** df.drop( ["PassengerId", "Name", "SibSp", "Parch", "Ticket", "Cabin", "Embarked"], axis="columns", inplace=True, ) df.head() # **Defining Dependent and Independent Variable** X = df.drop(["Survived"], axis="columns") y = df.Survived # **Get Dummy Values for Sex column** dummies = pd.get_dummies(X.Sex) dummies.head() # **Adding Dummies Column to the Dataframe** X = pd.concat([X, dummies], axis="columns") X # **Dropping Sex Column after getting Dummies Value for Male and Female** X.drop(["Sex"], axis="columns", inplace=True) X.head() # **Looking for Null Values in DataFrame** X.isna().sum() # **Replacing Null Values with Mean of Age** X.Age = X.Age.fillna(X.Age.mean()) X.head() # **Verifying that all Null Values are Gone** X.isna().sum() # ------ # **Train Test Split** from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # **Creating Naive Bayes Model** from sklearn.naive_bayes import GaussianNB model = GaussianNB() # **Fitting the Model with Data** model.fit(X_train, y_train) # **Score of the Model** model.score(X_test, y_test) # **Predicting the Data of First 10 Passengers** model.predict(X_test[:10])
# #### 0) Import the numpy library. The most common name. You could choose not to name it, but you will need to type numpy for everything instead of np. # 0 import numpy as np # 1. ![](http://)1) Create a 1d array, 20 elements, with your favorite number in it. # 1 np.full(20, 3) # 1. #### 2) Create a 2d array, 9 rows, 30 columns (9x30). Every value should be a 0, except the final column should be all 1s. # 2 xs = np.zeros((9, 30)) xs[:, -1] = 1 xs # #### 3) Create a 2d array, 8 rows, 3 columns (8x3). Put a random dice roll in each location. # 3 np.random.randint(1, 7, size=(8, 3)) # #### 4) Create a 15x15 array with all 0s except the diagonal from the top left to the bottom right, which should be all 5s. # 4 xs = np.zeros((15, 15)) xs[:-1, :-1] = 1 xs # #### 5) Create a 10x10 array with random floats from [0, 1). # 5 np.random.rand(10, 10) # 1. #### 5a) Determine the largest value of each column. # 5a np.max(np.random.rand(10, 10), axis=0) # #### 5b) Determine the smallest value of each row. # 5b np.min(np.random.rand(10, 10), axis=1) # #### 5c) Determine the mean of each row. # 5c np.mean(np.random.rand(10, 10), axis=1) # #### 5d) Determine the median of each column. # 5d np.median(np.random.rand(10, 10), axis=0) # #### 5e) Determine the 1st quartile value (25% value) of each column. # 5e np.percentile(np.random.rand(10, 10), 25, axis=0) # #### 6) Create a 20x10 array with random floats from [0, 1). # 6 xs = np.random.rand(20, 10) # #### 6a) Generate an array of all values in the last column which are greater than 0.5. # 6a xs[:, -1][xs[:, -1] > 0.5] # #### 6b) Determine if there are any numbers greater than 0.99 in the entire array. # 6b xs[xs > 0.99] # #### 6c) Determine if there are any numbers less than 0.1 in the first row. # 6c xs[0, :][xs[0, :] < 0.1] # #### 7) Determine the solution to the following systems of equations using matrices with numpy. # 4x + 9y + 0z = 8 # 8x + 0y + 6z = −1 # 0x + 6y + 6z = -1 # #### For those who have never done this, use the coefficients on the left to make one 3x3 matrix, A. Use the right of the equal sign to make a 3x1 matrix, B. This would give Ax = B, where x represents the various values of x/y/z. To solve this for x using matrices, you want to do x = A^1 * B, which would be the inverse of A (a numpy function) times B using real matrix multiplication. # ##### If you did this correctly, the answer should have x as 1/2, y as 2/3, and z as -5/6 (as decimals unless you look up how to convert them to fractions). # 7 xs = [[4, 9, 0], [8, 0, 6], [0, 6, 6]] ans = np.array([8, -1, -1]) ans = ans * np.linalg.inv(xs) ans # #### 8) Create a 1d array with 30 random integers in the set of {0,1,2..100}, then sort the array from smallest to largest. # 8 xs = np.random.randint(0, 101, 30) xs # #### 8a) Determine the median value in the array. # 8a np.median(xs) # #### 8b) Determine the mean value in the array. # 8b np.mean(xs8) # #### 8c) Modify each value in the array less than the mean to become a 0. # 8c xs = np.random.randint(0, 101, 30) xs[xs < np.mean(xs)] = 0 xs
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Import libraries import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression, RidgeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.preprocessing import ( MinMaxScaler, RobustScaler, StandardScaler, Normalizer, MaxAbsScaler, ) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, mean_absolute_error, mean_squared_error from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from scipy.stats import randint df = pd.read_csv("/kaggle/input/diabetes-dataset/diabetes.csv") df.head() df.describe().T df.info() # Create a class for scatter plot visualization. class ScatterPlot: def __init__(self, x_data, y_data, color): self.x_data = x_data self.y_data = y_data self.color = color def create_plot(self, title, x_label, y_label): plt.scatter(x=self.x_data, y=self.y_data, color=self.color) plt.title(title) plt.xlabel(x_label) plt.ylabel(y_label) plt.grid(axis="both", alpha=0.75) plt.show() # Create a class for hist plot visualization class HistPlot: def __init__(self, x_data): self.x_data = x_data def create_plot(self, title, x_label, y_label): plt.figure(figsize=(8, 4)) plt.hist(x=self.x_data, linewidth=2, edgecolor="black") plt.title(title) plt.xlabel(x_label) plt.ylabel(y_label) plt.grid(axis="both", alpha=0.75) plt.show() agerange = HistPlot(df["Age"]) agerange.create_plot("Age range of patients", "Age", "Count") agevsblood = ScatterPlot(df["BloodPressure"], df["Age"], "green") agevsblood.create_plot("Age vs blood pressure", "Blood pressure", "Age") data = df[df["BloodPressure"] > 0] print("Patients with blood pressure\n", data.shape) # Rows x Columns # Separate the dataset diabetic = data[data["Outcome"] == 1] notdiabetic = data[data["Outcome"] == 0] Diabeticagerange = ScatterPlot(diabetic["Age"], diabetic["BloodPressure"], "red") Diabeticagerange.create_plot( "Diabetic: Age range of patients v. Blood Pressure", "Age", "Blood pressure" ) Notdiabeticagerange = ScatterPlot( notdiabetic["Age"], notdiabetic["BloodPressure"], "blue" ) Notdiabeticagerange.create_plot( "Not diabetic: Age range of patients v. Blood Pressure", "Age", "Blood pressure" ) # Visualize correlation matrix corr_matrix = data.corr() sns.heatmap(corr_matrix, annot=True, cmap="coolwarm") plt.show() # Create a StandardScaler object scaler = RobustScaler() # Split into features and target variable X = data.drop("Outcome", axis=1) y = data["Outcome"] # Fit the scaler to your data and transform it X_scaled = scaler.fit_transform(X) # Split into train and test sets X_train, X_test, y_train, y_test = train_test_split( X_scaled, y, test_size=0.2, random_state=42 ) # Set the hyperparameter grid param_gridLR = { "penalty": ["l1", "l2"], "C": [0.001, 0.01, 0.1, 10, 100], } # Create logistic regression model logreg = LogisticRegression(max_iter=50, solver="liblinear") # Create GridSearchCV object grid_searchLR = GridSearchCV(logreg, param_grid=param_gridLR, cv=5) # Fit the GridSearchCV object to the training data grid_searchLR.fit(X_train, y_train) # Evaluate the best model on the test data score = grid_searchLR.score(X_test, y_test) predictions = grid_searchLR.best_estimator_.predict(X_test) print(f"Test accuracy: {score: .3f}") param_grid = {"alpha": [0.001, 0.01, 0.1, 1, 10, 100]} grid_search = GridSearchCV(RidgeClassifier(), param_grid, cv=5) grid_search.fit(X_train, y_train) best_model = grid_search.best_estimator_ score_rc = best_model.score(X_test, y_test) print(f"Test accuracy: {score_rc:.3f}") param_grid = {"n_neighbors": range(1, 101)} grid_search = GridSearchCV(KNeighborsClassifier(), param_grid, cv=5) grid_search.fit(X_train, y_train) best_model = grid_search.best_estimator_ score_kn = best_model.score(X_test, y_test) print(f"Test accuracy: {score_kn:.3f}") param_grid = { "max_depth": [2, 4, 6, 8], "min_samples_split": [2, 4, 8, 16], } treemodel = DecisionTreeClassifier(random_state=42) grid_search = GridSearchCV(treemodel, param_grid, cv=5) grid_search.fit(X_train, y_train) best_model = grid_search.best_estimator_ scoretree = best_model.score(X_test, y_test) print(f"Test accuracy: {scoretree:.3f}") param_distribs = { "n_estimators": randint(low=50, high=200), "max_depth": randint(low=2, high=10), "min_samples_split": randint(low=2, high=10), } rnd_search = RandomizedSearchCV( RandomForestClassifier(random_state=42), param_distributions=param_distribs, n_iter=10, cv=5, random_state=42, ) rnd_search.fit(X_train, y_train) best_model = rnd_search.best_estimator_ score_rf = best_model.score(X_test, y_test) print(f"Test accuracy: {score_rf:.3f}")
# Welcome to this project. This is actually an excel project that I have decided to tackle with both Python and Excel. This part concerns the analysis of bike rides with Python. # # Initializing Python packages import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns # # Importing the data dataframe = pd.read_excel( "/kaggle/input/bike-rides-sale-dataset/Excel Project Dataset.xlsx" ) # # Getting info about data dataframe.head(n=5) dataframe.tail(n=5) # # General Information dataframe.info() dataframe.columns dataframe.size # # Data Wrangling Process # Changing the M and S to Married and Single for better understanding dataframe["Marital Status"] = dataframe["Marital Status"].replace( {"M": "Married", "S": "Single"} ) dataframe["Marital Status"].head(n=5) # Changing the F and M to Female and Male for better understanding dataframe["Gender"] = dataframe["Gender"].replace({"M": "Male", "F": "Female"}) dataframe["Gender"].head(n=5) # Creating Age Groups # create bins and labels for each age group bins = [0, 19, 29, 59, dataframe["Age"].max()] labels = ["Adolescent", "Young adult", "Adult", "Elderly"] # create a new column with age groups dataframe["Age Group"] = pd.cut(dataframe["Age"], bins=bins, labels=labels) # # # Exploratory Data Analysis # * What is the average income of people who purchased bikes/ not purchased by gender category ? data1 = round(dataframe.groupby(["Purchased Bike", "Gender"])["Income"].mean(), 2) data1 # # Visualization # set the Seaborn theme sns.set_style("darkgrid") # create a bar chart using Seaborn sns.barplot( x=data1.index.get_level_values(0) + " " + data1.index.get_level_values(1), y=data1.values, ) # add labels and title plt.title("Average Income by Purchased Bike and Gender") plt.xlabel("Purchased Bike and Gender") plt.ylabel("Average Income") # show the chart plt.show() # * What are the three most common occupations of people who did purchased a bike ? # retrieving only the part of the dataframe that contains the Yes value in the Purchased Bike column data2 = dataframe[dataframe["Purchased Bike"] == "Yes"] data2.head(n=5) result = data2["Occupation"].value_counts() for occupation in result.index[:3]: print(occupation) # * What are the bike purchases amount for each age group ? # initialising dataframe with counts of the values data3 = data2["Age Group"].value_counts() # initialising for loop that will range 4 times, which is the length of the data3 for i in range(len(data3)): # print the result of each group separately print(f"The {data3.index[i]} bought {data3[i]} bikes.") # The vast majority of the bikes sales comes from the adult. The young adults and the elderly ordered exactly the same amount of bikes. No adolescent bought a bike. Maybe this is due to the price of the bike/ or its design that is not well appreciated by the younger ones. # * How does the purchasing behavior is varying based on the commute distance ? # Commute distance refers to the distance that someone travels between their home and their workplace or school on a regular basis. It is the distance that a person typically covers when they are commuting to and from work or school. data4 = dataframe.groupby(["Purchased Bike", "Commute Distance"])[ "Purchased Bike" ].value_counts() data4 # We are only interested here in the people that actually bought bikes # I use the xs method to select a single level of a multi-index DataFrame. data5 = data4.xs("Yes", level=0) data5 # # Visualization # Deleting one level of multi-index levels columns # data5 = data5.droplevel('Purchased Bike') print(data5.values, data5.index) # create a list of values values = [207, 83, 95, 77, 33] # create a list of index labels index = ["0-1 Miles", "1-2 Miles", "2-5 Miles", "5-10 Miles", "10+ Miles"] # create a DataFrame with the given values and index data5 = pd.DataFrame({"Values": values}, index=index) # Plot lineplot sns.lineplot(data=data5) # We can see that the greater the commute distance, the less people is willing to buy bikes. This is maybe due to the fact that people that do buy bikes use them to ride to school/ work. # * What are the percentages of purchased bikes per region ? # The size() method returns a Series with the number of occurrences of each group data6 = data2.groupby("Region").size() data6 # # Visualization # create a pie chart plt.pie(data6, labels=data6.index, autopct="%1.1f%%", startangle=90) # add a white circle to create a donut chart centre_circle = plt.Circle((0, 0), 0.80, fc="white") fig = plt.gcf() fig.gca().add_artist(centre_circle) # add a title plt.title("Donut Chart of Sales per Region") # display the chart plt.show() # There, we can see that the region with the most sales was North America. # # # Deciphering patterns # # Heatmap # select only columns with numeric values num_data = dataframe.select_dtypes(include=[np.number]) num_data.head()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session pd.set_option("display.max_columns", None) # показывать все колонки pd.set_option("display.max_rows", 50) # показывать 50 строк # Визуализация import matplotlib.pyplot as plt import seaborn as sns # Статистика from itertools import combinations from scipy.stats import ttest_ind # регулярные выражения для работы с текстом import re # Модели машинного обучения from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression DATA_DIR = "/kaggle/input/carprice/" train = pd.read_csv(DATA_DIR + "train.csv") test = pd.read_csv(DATA_DIR + "test.csv") # Переведем код цвета в название: def color_name(code): if code == "040001": return "чёрный" if code == "FAFBFB": return "белый" if code == "97948F": return "серый" if code == "CACECB": return "серебристый" if code == "0000CC": return "синий" if code == "200204": return "коричневый" if code == "EE1D19": return "красный" if code == "007F00": return "зелёный" if code == "C49648": return "бежевый" if code == "22A0F8": return "голубой" if code == "DEA522": return "золотистый" # color_group_2 if code == "660099": return "пурпурный" # color_group_1 if code == "4A2197": return "фиолетовый" # color_group_1 if code == "FFD600": return "жёлтый" # color_group_2 if code == "FF8649": return "оранжевый" if code == "FFC0CB": return "розовый" # Фукция для объединения мощности двигателей в группы по среднему значению def change_eng_pow(value, parts, min_value, max_value): step = (max_value + 0.1 - min_value) / parts # 0.1 прибавляем, чтобы в процессе итераций гарантированно достигнуть максимального значения for i in range(parts): # print('part', i+1) # print('mv', min_value) # print('xv', min_value+step) # print('=============') if (int(value) >= min_value) and (int(value) <= (min_value + step)): return round(min_value + (step / 2)) else: min_value += step # Обобщение редких категорий признака fuelType def change_fuelType(value): if (value == "гибрид") or (value == "электро") or (value == "газ"): return "other" else: return value # Логарифмирование колонок: def log_column(value): return np.log(int(value) + 1) def change_pts(x): if x == "ORIGINAL": return "Оригинал" if x == "DUPLICATE": return "Дубликат" else: return x def change_wheel(x): if x == "LEFT": return 1 if x == "RIGHT": return 0 if x == "Левый": return 1 if x == "Правый": return 0 else: return x RANDOM_SEED = 1 train.head() train.info() test.head() test.info() train["sample"] = 1 # помечаем где у нас трейн test["sample"] = 0 # помечаем где у нас тест train.dropna( subset=["price"], inplace=True ) # удалим данные без цены в тренировочном датасете, ввиду их бесполезности # Оставим в тренировочном датасете только марки авто, которые есть в тестовом train = train[train["brand"].isin(test["brand"].unique())] # model_name в тесте и model в трейне имеют одинаковое значение, надо объединить в один столбец train = train.rename(columns={"model": "model_name"}) # Переведем код цвета в название для train train["color"] = train["color"].apply(lambda x: color_name(x)) data = test.append(train, sort=False).reset_index(drop=True) # объединяем датасеты data.info() # complectation_dict, equipment_dict, model_info, model_name, parsing_unixtime, # priceCurrency, sell_id, super_gen, vendor, Состояние - присутствуют только в тесте # start_date - присутствует только в трейне # car_url - просто ссылка на страницу # image - ссылка на изображение. Если сильно заморочиться, то можно обработать нейросетями, что не входит в проект. # Владение - слишком мало данных, которые вряд-ли смогут внести ясность. # Комплектация - Слишком мало уникальных значений (менее 3000). # hidden - вообще нет значений # Целевая переменная price остается, для последующих тестов на тренировочном датасете data.drop( [ "car_url", "complectation_dict", "equipment_dict", "image", "model_info", "parsing_unixtime", "priceCurrency", "sell_id", "super_gen", "vendor", "Владение", "Состояние", "Комплектация", "hidden", "start_date", ], axis=1, inplace=True, ) data.head(1) data.isna().sum() data["bodyType"].isna().sum() data["bodyType"].value_counts() data["bodyType"] = data["bodyType"].apply( lambda x: str(x).lower() ) # переведем все в нижний регистр # Некоторые типы имеют в названии лишь цифры, так что предварительно переводим все в строковый формат data["bodyType"].value_counts() row = data["bodyType"][ data["bodyType"].isin(data["bodyType"].value_counts()[10:].index) ] row = row.apply(lambda x: (re.split(r"[\s, -]", x)[0] + "_oth")) data["bodyType"][row.index] = row data["bodyType"].value_counts() data = data.drop(data[data["bodyType"] == "nan_oth"].index) row = data["bodyType"][ data["bodyType"].isin( (data["bodyType"].value_counts()[data["bodyType"].value_counts() < 100].index) ) ] row = row.apply(lambda x: "other") data["bodyType"][row.index] = row data["bodyType"].value_counts() data["bodyType"].hist(xrot=90) data["brand"].value_counts() data["brand"].hist(xrot=90) data["color"].value_counts() data["color"].hist(xrot=90) data["description"].isna().sum() data.drop(["description"], axis=1, inplace=True) data["engineDisplacement"].value_counts() # Удалим ввиду невозможности извлечения корректной информации. # В качестве альтернативы можно удалить строки трейн датасета. data.drop(["engineDisplacement"], axis=1, inplace=True) data["enginePower"].value_counts() # Оставим лишь основное значение: data["enginePower"] = data["enginePower"].apply( lambda x: (re.split(r"[\s, -, .]", str(x))[0]) ) data["enginePower"].value_counts() data["enginePower"].hist() data["enginePower"] = data["enginePower"].apply(lambda x: log_column(x)) data["enginePower"].hist() data["fuelType"].value_counts() data["fuelType"].hist() data["fuelType"] = data["fuelType"].apply(lambda x: change_fuelType(x)) data["fuelType"].hist() data["mileage"].hist() (data["mileage"] > 200000).sum() data["mileage"] = data["mileage"].apply(lambda x: log_column(x)) data["mileage"].hist() data["modelDate"].hist() data["modelDate"].value_counts() data["modelDate"].min() data["modelDate"].max() data["modelDate"].apply(lambda x: log_column(x)).hist() data["modelDate"] -= data["modelDate"].min() data["modelDate"].hist() data["modelDate"] = data["modelDate"].apply(lambda x: log_column(x)) data["modelDate"].hist(bins=40) data["model_name"].value_counts() row = data["model_name"][ data["model_name"].isin( ( data["model_name"] .value_counts()[data["model_name"].value_counts() < 150] .index ) ) ] row = row.apply(lambda x: "other") data["model_name"][row.index] = row data["model_name"].hist() data["name"].value_counts() data["horse_power"] = data["name"].apply( lambda x: (re.split(r"\D", (re.split(r"[(,)]", x)[1]))[0]) ) data["horse_power"].hist() data["horse_power"] = data["horse_power"].apply(lambda x: log_column(x)) data["horse_power"].hist() data["transmission"] = data["name"].apply( lambda x: re.split( r"\s", x[re.search(r"\s", x).start() :][ : re.search(r"T ", x[re.search(r"\s", x).start() :]).start() + 1 ], )[-1] ) data["transmission"].value_counts() data["transmission"].hist() data.drop(["name"], axis=1, inplace=True) data["numberOfDoors"].value_counts() data[data["numberOfDoors"] == 0] data.loc[data["numberOfDoors"] == 0, "numberOfDoors"] = 2.0 data["numberOfDoors"].value_counts() data["numberOfDoors"].hist() data["productionDate"].value_counts() data["productionDate"].hist() data["productionDate"] -= data["productionDate"].min() data["productionDate"] = data["productionDate"].apply(lambda x: log_column(x)) data["productionDate"].hist(bins=40) data["vehicleConfiguration"].value_counts() data["vehicleConfiguration"].apply(lambda x: re.split(r"\s", x)[0]).value_counts() data.drop(["vehicleConfiguration"], axis=1, inplace=True) data["vehicleTransmission"].value_counts() data.drop(["vehicleTransmission"], axis=1, inplace=True) data["Владельцы"].value_counts() train["Владельцы"].isna().sum() data.loc[data["Владельцы"].isna(), "Владельцы"] = 2 data["Владельцы"].isna().sum() data["Владельцы"] = data["Владельцы"].apply(lambda x: (str(x)[0])) data["Владельцы"].value_counts() data["Владельцы"].hist() data["ПТС"].value_counts() data["ПТС"] = data["ПТС"].apply(lambda x: change_pts(x)) data["ПТС"].isna().sum() data.loc[data["ПТС"].isna(), "ПТС"] = "Оригинал" data["ПТС"].value_counts() data["ПТС"].hist() data["ПТС"] = data["ПТС"].apply(lambda x: 1 if x == "Оригинал" else 0)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames[:10]: pass # print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # /kaggle/input/111-2-uta-dl-hw2/tw_food_101_test_pred.csv # /kaggle/input/taiwanese-food-101/tw_food_101_classes.csv # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/tw_food_101_classes.csv # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/tw_food_101_train.csv # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/tw_food_101_test_list.csv # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/test/1269.jpg # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/test/3863.jpg # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/test/623.jpg # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/test/2193.jpg # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/test/3750.jpg # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/test/2008.jpg # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/test/2081.jpg # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/test/3919.jpg # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/test/3757.jpg # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/test/4489.jpg # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/train/stinky_tofu/15653.jpg # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/train/stinky_tofu/15572.jpg # /kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101/train/stinky_tofu/15578.jpg import tensorflow from tensorflow import keras from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import ReduceLROnPlateau from tensorflow.keras.layers import Dense, Flatten from tensorflow.keras.layers import Dropout, LeakyReLU, ReLU from tensorflow.keras.optimizers import Adam import tensorflow_addons as tfa import matplotlib.pyplot as plt from tensorflow.keras.models import Model import os import csv import numpy as np from tensorflow.keras.models import load_model import glob, tqdm from PIL import Image root_dir = "/kaggle/input/taiwanese-food-101/tw_food_101/tw_food_101" train_dir = root_dir + "/train" test_dir = root_dir + "/test" # ### 只執行一次 # pngs = glob.glob(train_dir + r'/*/*.bmp') # bmp png # print(len(pngs)) # # print(pngs[0]) # for n in pngs[:]: # print(n) # img = Image.open(n) # img = img.convert('RGB') # nn = n[:-3]+'jpg' # # print(nn) # img.save(nn) # pngs = glob.glob(test_dir + r'/*.bmp') # bmp png # print(len(pngs)) # # print(pngs[0]) # for n in pngs[:]: # print(n) # img = Image.open(n) # img = img.convert('RGB') # nn = n[:-3]+'jpg' # # print(nn) # img.save(nn) rows = 17 cols = 6 fig, ax = plt.subplots(rows, cols, frameon=False, figsize=(15, 25)) food_dirs = os.listdir(train_dir) for i in range(rows): for j in range(cols): food_dir = food_dirs[(i * cols + j) % 101] all_files = os.listdir(os.path.join(train_dir, food_dir)) img = plt.imread(os.path.join(train_dir, food_dir, all_files[3])) ax[i][j].imshow(img) ax[i][j].text( 0, -20, food_dir, size=10, rotation=0, ha="left", va="top", bbox=dict(boxstyle="round", ec=(0, 0.6, 0.1), fc=(0, 0.7, 0.2)), ) plt.setp(ax, xticks=[], yticks=[]) plt.tight_layout(rect=[0, 0.03, 1, 0.95]) # train_datagen = ImageDataGenerator( # rotation_range=30, # fill_mode='nearest', # shear_range=0.2, # zoom_range=0.2, # horizontal_flip=True, # rescale=1./255,) train_datagen = ImageDataGenerator( rotation_range=90, width_shift_range=0.2, height_shift_range=0.2, brightness_range=[0.0, 0.5], shear_range=0.2, zoom_range=0.2, channel_shift_range=0.2, fill_mode="nearest", horizontal_flip=True, vertical_flip=True, rescale=1.0 / 255, ) valid_datagen = ImageDataGenerator( # rotation_range=90, # width_shift_range=0.2, # height_shift_range=0.2, # brightness_range=[0.,0.5], # shear_range=0.2, # zoom_range=0.2, # channel_shift_range=0.2, # fill_mode='nearest', # horizontal_flip=True, # vertical_flip=True, rescale=1.0 / 255, ) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(221, 221), color_mode="rgb", batch_size=128, class_mode="categorical", shuffle=True, ) # train_datagen = ImageDataGenerator(rescale=1./255) valid_generator = valid_datagen.flow_from_directory( train_dir, target_size=(221, 221), color_mode="rgb", batch_size=128, class_mode="categorical", shuffle=True, ) base_model = keras.applications.densenet.DenseNet121( include_top=False, weights="imagenet", input_shape=(221, 221, 3) ) # base_model = keras.applications.inception_v3.InceptionV3(include_top=False, weights='imagenet', input_shape=(221, 221, 3)) # base_model = keras.applications.vgg16.VGG16(include_top=False, weights='imagenet', input_shape=(150, 150, 3)) # base_model = keras.applications.resnet.ResNet50(include_top=False, weights='imagenet', input_shape=(150, 150, 3)) # base_model = keras.applications.mobilenet.MobileNet(include_top=False, weights='imagenet', input_shape=(150, 150, 3)) LR_function = ReduceLROnPlateau( monitor="val_accuracy", patience=3, # 3 epochs 內acc沒下降就要調整LR verbose=1, factor=0.5, # LR降為0.5 min_lr=0.000005 # 最小 LR 到0.00001就不再下降 ) adam = Adam(learning_rate=0.0001) estop = tensorflow.keras.callbacks.EarlyStopping(monitor="loss", patience=6) x = base_model.output x = Flatten()(x) x = Dense(2048)(x) # , activation='relu' x = tfa.activations.mish(x) x = Dense(1024)(x) # , activation=mish , activation='relu' x = tfa.activations.mish(x) x = Dropout(0.5)(x) predictions = Dense(101, activation="softmax")(x) model = Model(base_model.input, predictions) model.compile( optimizer=adam, loss="categorical_crossentropy", metrics=["accuracy", "val_accuracy"], ) # model = tensorflow.saved_model.load('model') # model = tensorflow.keras.models.load_model('model_DenseNet121.h5') # model.summary() history = model.fit( train_generator, epochs=10, callbacks=[LR_function, estop], validation_data=valid_generator, validation_steps=None, validation_batch_size=None, validation_freq=1, workers=32, ) model.save("model_DenseNet121.h5") # tensorflow.saved_model.save(model, 'model') # Create {ID, filename} dictionary {'1269': '1269.jpg', '3863': '3863.jpg',.....} test_dict = {} for root, dirs, files in os.walk(root_dir + "/test"): for filename in files: test_id, file_ext = os.path.splitext(filename) test_dict[test_id] = filename from PIL import Image import numpy as np from skimage import transform def load_img(filename, target_w=150, target_h=150): np_image = Image.open(filename) np_image = np.array(np_image).astype("float32") / 255 np_image = transform.resize(np_image, (target_w, target_h, 3)) np_image = np.expand_dims(np_image, axis=0) return np_image # Read images in order and make predictions results = [] for i in tqdm.tqdm(range(len(test_dict))): img = load_img(root_dir + "/test/" + test_dict[str(i)], 221, 221) ret = model.predict(img, verbose=0) results.append(np.argmax(ret)) # Print results in CSV format and upload to Kaggle with open("pred_results.csv", "w") as f: f.write("Id,Category\n") for i in range(len(results)): f.write(str(i) + "," + str(results[i]) + "\n") # Download your results! from IPython.display import FileLink FileLink("pred_results.csv")
# # 1 | Lasso Regression # First of all lets understand what the hell is this `Regression`??? # **What** - `Regression` is just like the lost brother of `classification`. In `classification` we have `discrete` or `particular values`, that we want to `classify`, In `regression` we have `continuous values`, that we want to `predict` # | Classification |Regression | # | --- | --- | # | We have discrete values| We have continuous values | # |Usually we know these values in depth | We usually don't know these values in depth| # |These are comparatively less in number| These are comparatively more in number | # # 2 | What other things we will learn here # * Slope of Function # * Baisc Diffrentiation # * Intercept # **Why** - Regression is a very useful method and is used in many places to predict values. # **How** - There are many different techniques to perform this operation. # **I highly encourage you to find different methods by yourself too, and can even try to build your own models, maybe your brain pushes the boundaries of machine learning** # So now we have a basic idea of what regression is, our next move should be knowing about Lasso Regression # So what is this `LassoRegressor` import numpy as np import matplotlib.pyplot as plt from IPython.display import IFrame import seaborn as sns # Lets assume we have data like this features = np.array([x for x in range(0, 200, 1)]) features target = np.array([x for x in range(0, 400, 2)]) target # Lets assume there is a connection between the `target` , and `features`. By human instacne we know that every element in `target` is just a double of the corresponding element in `features`, or $target = 2XFeatures$. # Lets assume we change the target a little bit... target = np.array([x + 1 for x in range(0, 400, 2)]) target # Now what could be the trend here..., We can see the code above and with the help of that we can say. That `target` value is just the `double + 1` of the corresponding element in `features`. or $target = 2Xfeatures + 1$ # Till now the problem was really easy to solve, and thats why we used the brain only, But these are just examples. As we move closer to the real world. The examples/problems get difficulat and we find it harder to find proper trends in the two `arrays`. Thats we try to teach machine, how to find trend in the data. The formula we had before $target = 2Xfeature + 1$ is subjective to only one problem or a similar problem. But this formula can be generlized by the equation of `straight line`, which is $y = mx + b$ # So what does this line means ??? # Lets first try to plot the data we had on a scatter plot plt.scatter(features, target) # You can see we got a sequence of dots that resembles kind of straight line. # Lets assume we have a line that tries to capture most of the points on this, like this plt.scatter(features, target) plt.plot([0, 200], [0, 400], "yellow") # Again by human intution we found the `best fit line`. But what if we want to generalize the things and kind of do not find the best fit line...? # First of all lets get a little bit more deep into equation $y = mx + b$ # So what does these terms resembles in this eqution. # * `m` is the slope of the line # # 2.1 | Slope of A function # Slope of a function shows how steep a function is, or the direction of a function at a given point on the curve. # Lets assume we have this curve $y = 4x^2$ the slope of this curve will be $y = 8x$ IFrame("https://www.desmos.com/calculator/zluqu5vyuh", 400, 400) # So how do we calculate the `slope` of a line??? # Lets assume we have a function $y = f(x)$,. To find the slope of a function, we simply diffrenctiate the function, thus, the slope of this line will be $y^` = f^`(x)$ # # 2.2 | Diffrentiation # Diffrentaition can be explained as getting a small value of a function. # lets assume we have a function `y = sin(x)` # A small strip at that function will demonstrate taking a derivative of that function `sin(x)` # Taking about the function we had taken before that is $y = 4x^2$ # Taking its derivative we will get $$y = 8x$$ ($x{n^`} = nx^{n-1}$) # So the slope of $y = 4x^2$ can be represnted as IFrame("https://www.desmos.com/calculator/hrguwktg9q", 400, 400) # **If you want to know more aboud diffrentiation, here is [3Blue1Brown](https://www.youtube.com/@3blue1brown/featured) => [Essence Of Calculas](https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr)** # So now you have a basic idea of `slope` # # 2.3 | Intercept # Now what `b` represents in the data. Usually it is called the `intercept`. Consider this graph of the equation $y = x$ or $y = 1x + b$ IFrame("https://www.desmos.com/calculator/gai0veg5fh", 400, 400) # This line passes the axis at $(0 , 0)$. These coordinates are called as the `intercepts` of this line. If we make `b` or `intercept` as $1$. The line will then pass from $(1 , -1)$. Basically the `intercept` moves a line in a plane. With that being said, Lets also undertand how the `slope` changes the line. If we make `m` as $2$. The line will rotate anti-clockwise. So as we increase the value of `m` or `slope`. The line moves anti-clockwise, And so the vice-versa, If we decrease the value of `m`, The slope will move in the clockwise direction. # In short tweeking the values of `m` and `b` or `slope` and `intercept`. We can move the line in any direction and in any way we want `as long as it resembles a straight line`. We still cannot bend the line # So now we have any data, we just need to difine the values of `slope` and `intercpet`. And we can get the best fit line. But still the question arises how do we generalize the values of these tuning parametes. # In simple word we can say, How can we find a relation between the data we have and these tuning parameters. So that we only need to define that relationship and then we can easily predict the values. # Lets think that the value assigned to the line is this plt.scatter(features, target) plt.plot([0, 300], [0, 400], "yellow") # If we test this line on the training data only, we will find that this line is not correct. It is predicting points incorrect, We know that the best fit line we drew first, will predict points wiht lowest incorrect ones. For example the line we just defined if asked the corresponding value of $200$, it will say $250$. But rather it was $400$. There was some `error`, some `loss`, or some `cost` with the `actual` and `predicted` values. # For measuring this loss, what we can do is find the difference between the `actual value` and the `predicted value`. A best fit line will give the lowest value of this difference. # The word difference here is very difficult to say, so we can give this term a new fancy name, which is `The Loss`. # One can deifne loss as $$Loss = actual - predicted$$. # We only took the example of one value. but there are a large group of values. that can show the same trait, For that we can change the formula to # Lets denote $actual$ as $a$ and $predicted$ as $p$ # $$Loss = (a_1 - p_1) + (a_2 - p_2) + (a_3 - p_3) + ... + (a_n - p_n)$$ # or $$Loss = \sum\limits_{i = 1}^{n}a_i - p_i$$ or $$Loss = \sum\limits_{i = 1}^{n}(y_i - \hat y_i)$$ # Whenever you see $\hat y$, think of it as the `predicted value` # Now lets assume we have data like this and a random line is drawn like this # If you look closely, a lot of error terms will tend to cancel out each other. We can also get into a state where the line is `not the best fit`, but still gives $0$ error. With the `Loss` we defined before, we are not chossing a `best fit line`. Rather we are chossing a line that is in the `middle` of those points. One way to counter this is to add a `modulus` function like this $$Loss = \sum\limits_{i = 1}^{n}|y - \hat y|$$ # But what is a modulus function. The function is nothing but converts, any negative numbers to postive. For example # $|-1| = 1$ IFrame("https://www.desmos.com/calculator/kamxotjra2", 400, 400) # But there is a problem with this function. A `modulus` is not diffrentiable. You might be thinking that why are we even seeing that part, like we we care for that. Why would you even diffrentiate a loss function. # We actually diffrentiate loss function in further steps, thats why we will not use the modulus function. # Another way of doing so is to, square the loss function like this $Loss = (y - \hat y)^2$ # Its cool, its good and we can even diffrentiate this... # Now we have a basic idea that we need to compute `m` and `b` for the lowest loss values. Now we should come to know how we can do this # What if we somehow interelate the `losses` and `m and b`. # There are several different methods to determine this. But lets get into more complex problem # Lets say we have target array like this target = [] for i in range(200): if i < 26: target.append(i ** (1 / 2)) else: target.append(i ** (1 / 3)) target = np.array(target) target # If we try to plot this, we get plt.scatter(features, target) # And also we are only given a short amount of data for training, consider to be given only the starting $30$ data only. # So there is a high chance that the model will not be able to predict good predictions. # To counter this, we add a hyperparameter dependent term and wieghts into the loss. So that there is still some loss for the model # So our loss will be $$Loss = (y - \hat y)^2 + \lambda(m)$$ # But what should be the initial weights and biases. # Lets assume we intialize the parameters randomly, like this weights = np.random.randn(1) weights biases = np.random.randn(1) biases pred = weights * 30 + biases pred loss = (pred - 60) + (1 * weights) loss # Our main motive is to reduce this loss as much as possible,. # What if we subtract a small subset of the derivative of this loss from the parameters like this. The derivative of the loss will show us the steepness of the curve, and thus doing so might get us to the valeus of minimum loss. So how do we find the derivative of this function $Loss = (y - \hat y)^2$. What we know is $\hat y = mx + b$. COmputing this value in we get $$Loss = (y - mx - b)^2 + \lambda(m)$$, Now we can diffrentiate the function # ## Diffrentiating wrt `b` # $$\frac {dLoss}{db}= \frac {d}{db}(y - mx - b)^ + \lambda(m)$$ # $$= 2(y - mx - b)(-1)$$ # ## Diffrentiating wrt `m` # $$\frac {dLoss}{dm} = \frac {d}{dm}(y - mx - b)^ + \lambda(m)^22$$ # $$= 2(y - mx - b)(-x) + \lambda$$ # Lets assume $\lambda = 1$ weights -= ((-2 * (60 - weights * 30 - biases)) + 1) * 0.01 biases -= (2 * 30 * (60 - weights * 30 - biases)) * 0.01 print(weights) print(biases) loss = (60 - (weights * 30 + biases)) + 1 loss # Our losses have been decreased, so lets do it again weights -= ((-2 * loss) + 1) * 0.01 biases -= -2 * 30 * loss * 0.01 print(weights) print(biases) loss = (60 - (weights * 30 + biases)) + (weights) loss # So now we know if we do this iteratively, we will minimise the loss, and iteratively we will reach the optimal values of `weights` or `m` and `biases` or `m` # Lets say we have runn this again and again for around 100 times for _ in range(100): weights -= ((-2 * loss) + 1) * 0.01 biases -= -2 * 30 * loss * 0.01 loss = (60 - (weights * 30 + biases)) + (weights) # Lets now see the weights and biases weights biases # Though we have biases as high, but we have almost achived value of `weights` # Lets do this all again, and now we will also try to plot a graph weights = abs(np.random.randn(1)) biases = abs(np.random.randn(1)) losses = [] for _ in range(100): weights -= ((-2 * loss) + 1) * 0.01 biases -= -2 * 30 * loss * 0.01 loss = (60 - (weights * 30 + biases)) + (weights) losses.append(loss) sns.lineplot(np.array(losses)) # As we can see we have greatly decreased our losses # Now we just need to put this all into a function def LassoRegression(): weights = abs(np.random.randn(1)) biases = abs(np.random.randn(1)) predic = [] losses = [] for _ in range(300): pred = weights * features + biases loss = np.sum((60 - (weights * 30 + biases)) + (weights)) losses.append(loss) weights -= ((-2 * loss) + 1) * 0.01 biases -= -2 * 30 * loss * 0.01 return weights, biases # # 3 | Functionalities # We have made out our SGDRegressor, now we need to add some functionalities to it. We can get funcitonalites form **[Scikit-Learn](https://scikit-learn.org/)=>[Stable](https://scikit-learn.org/stable/)=>[Linear Model](https://scikit-learn.org/stable/modules/linear_model.html)=>[Ridge](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html)** # * ✅List Of columns # * ✅`alpha : {float, ndarray of shape (n_targets,)}, default=1.0` - Constant that multiplies the L2 term, controlling regularization strength. `alpha` must be a non-negative float i.e. in `[0, inf)`. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. # # 3.1 | List Of Columns # This function will only work if there are only $2$ columns, one `feature` and the other one `target`. What if the user gives out a list of columns. For this we nee dto take two different arguemnts form the user and work on them differently def RidgeRegression(X, y): weights = np.random.randn(X.shape[0]) biases = np.random.randn(1) predic = [] losses = [] for _ in range(300): pred = weights * features + biases loss = np.sum((60 - (weights * 30 + biases)) + (weights)) losses.append(loss) weights -= ((-2 * loss) + 1) * 0.01 biases -= -2 * 30 * loss * 0.01 return weights, biases # # 3.2 | Alpha # This is the $\lambda$ term we are multiplying with the weights. We had kept it $1$ and by luck it is actually set $1$, so we just need to apply some tweeks here def RidgeRegression(X, y, alpha=0.1): weights = np.random.randn(X.shape[0]) biases = np.random.randn(1) predic = [] losses = [] for _ in range(300): pred = weights * features + biases loss = np.sum((60 - (weights * 30 + biases)) + (alpha * weights)) losses.append(loss) weights -= ((-2 * loss) + alpha) * 0.01 biases -= -2 * 30 * loss * 0.01 return weights, biases # # 4 | Lasso Regression Final Source Code def RidgeRegression(X, y, alpha=0.1): weights = np.random.randn(X.shape[0]) biases = np.random.randn(1) predic = [] losses = [] for _ in range(300): pred = weights * features + biases loss = np.sum((60 - (weights * 30 + biases)) + (alpha * weights)) losses.append(loss) weights -= ((-2 * loss) + alpha) * 0.01 biases -= -2 * 30 * loss * 0.01 return weights, biases
import pandas as pd from sklearn.model_selection import train_test_split df = pd.read_csv("/kaggle/input/cleaned-mentalhealth/dataset.csv") df = df.dropna(subset=["Sentence"]) df.Sentence = [str(text) for text in df.Sentence] df = df.sample(n=300000, random_state=0) df.shape from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder() df["Subreddit"] = label_encoder.fit_transform(df["Subreddit"]) df["Subreddit"].unique() labels = list(label_encoder.classes_) df.sample(2) train_df, test_df = train_test_split(df, test_size=0.2, random_state=42) test_df, val_df = train_test_split(test_df, test_size=0.5, random_state=42) print(train_df.shape) print(val_df.shape) print(test_df.shape) from torch.utils.data import Dataset import numpy as np import re import nltk import string class Dataset(Dataset): def __init__(self, dataframe, tokenizer): texts = dataframe.Sentence.values.tolist() self._print_random_samples(texts) self.texts = [ tokenizer( text, padding="max_length", max_length=256, truncation=True, return_tensors="pt", ) for text in texts ] if "Subreddit" in dataframe: classes = dataframe.Subreddit.values.tolist() self.labels = classes def _print_random_samples(self, texts): np.random.seed(42) random_entries = np.random.randint(0, len(texts), 2) for i in random_entries: print(f"Entry {i}: {texts[i]}") print() def __len__(self): return len(self.texts) def __getitem__(self, idx): text = self.texts[idx] label = -1 if hasattr(self, "labels"): label = self.labels[idx] return text, label from torch import nn class Classifier(nn.Module): def __init__(self, base_model): super(Classifier, self).__init__() self.base_model = base_model self.linear = nn.Linear(base_model.config.hidden_size, 6) def forward(self, input_ids, attention_mask): output = self.base_model(input_ids=input_ids, attention_mask=attention_mask) output = output.last_hidden_state[:, 0, :] output = self.linear(output) return output def train(model, train_dataloader, val_dataloader, learning_rate, epochs): best_val_loss = float("inf") early_stopping_threshold_count = 0 use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") criterion = torch.nn.CrossEntropyLoss() optimizer = Adam(model.parameters(), lr=learning_rate) model = model.to(device) criterion = criterion.to(device) for epoch in range(epochs): total_acc_train = 0 total_loss_train = 0 model.train() for train_input, train_label in tqdm(train_dataloader): attention_mask = train_input["attention_mask"].to(device) input_ids = train_input["input_ids"].squeeze(1).to(device) train_label = train_label.to(device) output = model(input_ids, attention_mask) loss = criterion(output, train_label) total_loss_train += loss.item() acc = (output.argmax(dim=1) == train_label).sum().item() total_acc_train += acc loss.backward() optimizer.step() optimizer.zero_grad() with torch.no_grad(): total_acc_val = 0 total_loss_val = 0 model.eval() for val_input, val_label in tqdm(val_dataloader): attention_mask = val_input["attention_mask"].to(device) input_ids = val_input["input_ids"].squeeze(1).to(device) val_label = val_label.to(device) output = model(input_ids, attention_mask) loss = criterion(output, val_label) total_loss_val += loss.item() acc = (output.argmax(dim=1) == val_label).sum().item() total_acc_val += acc print( f"Epochs: {epoch + 1} " f"| Train Loss: {total_loss_train / len(train_dataloader): .3f} " f"| Train Accuracy: {total_acc_train / (len(train_dataloader.dataset)): .3f} " f"| Val Loss: {total_loss_val / len(val_dataloader): .3f} " f"| Val Accuracy: {total_acc_val / len(val_dataloader.dataset): .3f}" ) if best_val_loss > total_loss_val: best_val_loss = total_loss_val torch.save(model, f"best_model.pt") print("Saved model") early_stopping_threshold_count = 0 else: early_stopping_threshold_count += 1 if early_stopping_threshold_count >= 1: print("Early stopping") break import torch from transformers import AutoTokenizer, AutoModel from torch.utils.data import DataLoader torch.manual_seed(0) np.random.seed(0) MODEL = "roberta-base" tokenizer = AutoTokenizer.from_pretrained(MODEL) base_model = AutoModel.from_pretrained(MODEL) train_dataloader = DataLoader( Dataset(train_df, tokenizer), batch_size=8, shuffle=True, num_workers=2 ) val_dataloader = DataLoader(Dataset(val_df, tokenizer), batch_size=8, num_workers=2) test_dataloader = DataLoader( Dataset(test_df, tokenizer), batch_size=8, shuffle=False, num_workers=2 ) import os os.environ["TOKENIZERS_PARALLELISM"] = "false" from torch.optim import Adam from tqdm import tqdm class Classifier(nn.Module): def __init__(self, base_model): super(Classifier, self).__init__() self.base_model = base_model self.num_labels = 6 self.dropout = nn.Dropout(p=0.3) self.classifier = nn.Linear(self.base_model.config.hidden_size, self.num_labels) def forward(self, input_ids, attention_mask): outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) return logits model = Classifier(base_model) learning_rate = 1e-5 epochs = 5 train(model, train_dataloader, val_dataloader, learning_rate, epochs) def get_text_predictions(model, loader): use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") model = model.to(device) results_predictions = [] with torch.no_grad(): model.eval() for data_input, _ in tqdm(loader): attention_mask = data_input["attention_mask"].to(device) input_ids = data_input["input_ids"].squeeze(1).to(device) output = model(input_ids, attention_mask) predictions = torch.argmax(output, dim=1).cpu().detach().numpy() results_predictions.append(predictions) return np.concatenate(results_predictions) import os os.environ["TOKENIZERS_PARALLELISM"] = "false" from sklearn.metrics import classification_report # Assuming you have loaded your test set and the corresponding ground truth labels true_labels = test_df["Subreddit"].tolist() # Obtain predicted labels using your model and test dataloader # model = torch.load("/kaggle/working/best_model.pt") predictions = get_text_predictions(model, test_dataloader) # Generate classification report print(classification_report(true_labels, predictions, target_names=labels))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.metrics import mean_squared_error, r2_score import matplotlib.pyplot as plt # Load the dataset df = pd.read_csv("/kaggle/input/ny-rental-properties-pricing/NY Realstate Pricing.csv") # Encode categorical features categorical_features = ["neighbourhood", "room_type"] encoder = LabelEncoder() for feature in categorical_features: encoder.fit(df[feature]) df[feature] = encoder.transform(df[feature]) # Split the dataset into training and testing datasets X_train, X_test, y_train, y_test = train_test_split( df.drop("price", axis=1), df["price"], test_size=0.2, random_state=42 ) # Scale numerical features scaler = StandardScaler() numerical_features = [ "latitude", "longitude", "days_occupied_in_2019", "minimum_nights", "number_of_reviews", "reviews_per_month", "availability_2020", ] X_train[numerical_features] = scaler.fit_transform(X_train[numerical_features]) X_test[numerical_features] = scaler.transform(X_test[numerical_features]) # Train the models lr = LinearRegression() lr.fit(X_train, y_train) dt = DecisionTreeRegressor() dt.fit(X_train, y_train) rf = RandomForestRegressor() rf.fit(X_train, y_train) gb = GradientBoostingRegressor() gb.fit(X_train, y_train) # Predict the prices of the testing dataset lr_pred = lr.predict(X_test) dt_pred = dt.predict(X_test) rf_pred = rf.predict(X_test) gb_pred = gb.predict(X_test) # Evaluate the performance of the models lr_mse = mean_squared_error(y_test, lr_pred) lr_r2 = r2_score(y_test, lr_pred) dt_mse = mean_squared_error(y_test, dt_pred) dt_r2 = r2_score(y_test, dt_pred) rf_mse = mean_squared_error(y_test, rf_pred) rf_r2 = r2_score(y_test, rf_pred) gb_mse = mean_squared_error(y_test, gb_pred) gb_r2 = r2_score(y_test, gb_pred) print(f"Linear Regression:\nMSE = {lr_mse:.2f}\nR2 score = {lr_r2:.2f}\n") print(f"Decision Tree Regression:\nMSE = {dt_mse:.2f}\nR2 score = {dt_r2:.2f}\n") print(f"Random Forest Regression:\nMSE = {rf_mse:.2f}\nR2 score = {rf_r2:.2f}\n") print(f"Gradient Boosting Regression:\nMSE = {gb_mse:.2f}\nR2 score = {gb_r2:.2f}\n") # Visualize the Linear Regression model plt.scatter(y_test, lr_pred) plt.plot([0, max(y_test)], [0, max(lr_pred)], "k-", lw=2) plt.xlabel("Actual Price") plt.ylabel("Predicted Price") plt.title("Linear Regression") plt.show()
from google.colab import drive drive.mount("/content/drive", force_remount=True) # # **Aplicações de Redes complexas: Política** # Neste trabalho, foram utilizados dados de votações da Câmara dos Deputados do Brasil para modelar deputados considerando seus posicionamentos na votação de proposições. # Trabalho publicado disponível [aqui](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229928). # """ bibliotecas necessárias para executar os códigos """ import glob import json import tqdm import leidenalg import numpy as np import igraph as ig import xnetwork as xnet # formato para salvar grafos from scipy import integrate from itertools import combinations from collections import defaultdict path = "drive/MyDrive/BigData/" # esse é o caminho onde estão os arquivos para esse projeto # se for rodar o código localmente, precisa atualizar essa variável conforme onde estão salvos seus arquivos # ## **Criando as redes** # ### Quais os dados e onde baixar: # Os dados são votações de proposições na Câmara dos Deputados do Brasil contendo: o nome dos deputados, partido, voto (sim, não, obstrução, ausência). # Podem ser baixados no portal de dados abertos [aqui](https://dadosabertos.camara.leg.br/swagger/api.html), na seção de *Voto de cada parlamentar*. # ### Como contruímos as redes: # Similaridade entre os votos dos deputados: para cada proposição, quando dois deputados votam igual, soma-se +1, quando divergem soma-se -1. Esse valor é normalizado pelo total de proposições votadas utilizadas para construir a rede. Apenas conexões positivas são consideradas. # Arquivos já disponíveis em *datasets/politica*. def create_net(nodes_names, edges, norm, dinfos): g = ig.Graph() g.add_vertices(len(nodes_names)) g.vs["name"] = [str(name) for name in nodes_names] g.vs["fullname"] = [dinfos[int(idname)][1] for idname in g.vs["name"]] g.vs["pp"] = [dinfos[int(idname)][2] for idname in g.vs["name"]] elist = [] wlist = [] for pair, weight in edges.items(): if weight > 0: a, b = tuple(pair) a = str(a) b = str(b) elist.append((a, b)) wlist.append(weight / norm) g.add_edges(elist) g.es["weight"] = wlist return g def net_year(file): print(file) votes = pd.read_csv(file, sep=";")[ [ "idVotacao", "dataHoraVoto", "voto", "deputado_id", "deputado_nome", "deputado_siglaPartido", ] ] votes["ano"] = votes["dataHoraVoto"].apply(lambda row: row[:4]) del votes["dataHoraVoto"] """ os votos dos parlamentares são consultados por ano """ for yyyy, window in votes.groupby("ano"): dinfos = defaultdict( lambda: (-1, -1, -1) ) # esse dicionário guarda as infos dos vértices (os deputados) pairs = defaultdict( lambda: 0 ) # esse dicionário guarda as arestas (pares de deputados) e o peso das conexões pools = 0 dlist = set() for id_votacao, voto in tqdm.tqdm(window.groupby("idVotacao")): pools += 1 for d1, d1_info in voto.iterrows(): dinfos[d1_info["deputado_id"]] = ( d1_info["deputado_id"], d1_info["deputado_nome"], d1_info["deputado_siglaPartido"], ) dlist.add(d1_info["deputado_id"]) for d2, d2_info in voto.iterrows(): if d1 == d2: break pair = frozenset({d1_info["deputado_id"], d2_info["deputado_id"]}) if d1_info["voto"] == d2_info["voto"]: pairs[pair] += 1 else: pairs[pair] += -1 net = create_net( dlist, pairs, pools, dinfos ) # com os dados preprocessados, então cria-se a rede correspondente xnet.igraph2xnet( net, path + "networks/politica/covote_deps_%s_original.xnet" % yyyy ) # salva a rede files = glob.glob( path + "datasets/politica/votacoesVotos*.csv" ) # esses são os dados obtidos no site da câmara dos deputados print(files) for file in files: nets_year(file) # ## **Filtragem de arestas** # Implementação do método proposto em [Extracting the multiscale backbone of complex weighted networks](https://www.pnas.org/content/106/16/6483.short). # A ideia geral é preservar as conexões mais relevantes da rede. Nessa implementação, encontramos o corte que preserva uma determinada porcentagem do tamanho do componente principal original. from igraph import * # source: https://github.com/aekpalakorn/python-backbone-network/blob/master/backbone.py def disparity_filter(g): total_vtx = g.vcount() g.es["alpha_ij"] = 1 for v in range(total_vtx): edges = g.incident(v) k = len(edges) if k > 1: sum_w = sum([g.es[e]["weight"] for e in edges]) for e in edges: w = g.es[e]["weight"] p_ij = w / sum_w alpha_ij = ( 1 - (k - 1) * integrate.quad(lambda x: (1 - x) ** (k - 2), 0, p_ij)[0] ) g.es[e]["alpha_ij"] = min(alpha_ij, g.es[e]["alpha_ij"]) def alpha_cut(alpha, g): g_copy = g.copy() to_delete = g_copy.es.select(alpha_ij_ge=alpha) g_copy.delete_edges(to_delete) return g_copy def get_largest_component_size(g): components = g.components() giant = components.giant() return giant.vcount() """ essa função implementa uma busca binária para definir qual o alpha que preserva cerca de 80% do componente principal original da rede """ def get_best_cut(net, preserve_percent, a_min, a_max): error = 0.015 largest_size = get_largest_component_size(net) min_erro = 1000 a_min_erro = 0.0 def get_current_percent(a): nonlocal min_erro, a_min_erro, a_min, a_max cuted_net = alpha_cut(a, net) # print('number of edges',cuted_net.ecount()) preserved_size = get_largest_component_size(cuted_net) # print('preserved size',preserved_size) current_percent = preserved_size / largest_size if min_erro > abs(current_percent - preserve_percent): min_erro = abs(current_percent - preserve_percent) a_min_erro = a return cuted_net, current_percent, a i = 0 a_min_perc = get_largest_component_size(alpha_cut(a_min, net)) / largest_size a_max_perc = get_largest_component_size(alpha_cut(a_max, net)) / largest_size a = 0.0 while True: if i > 100: cuted_net = alpha_cut(a_min_erro, net) print("error infinity loop") print( "alpha %.2f; preserved %.2f" % (a_min_erro, min_erro + preserve_percent) ) print() return cuted_net i += 1 a = (a_min + a_max) / 2 cuted_net, current_percent, a = get_current_percent(a) current_erro = current_percent - preserve_percent if abs(current_erro) < error: print("total iterations", i) print("alpha %.2f; preserved %.2f" % (a, current_percent)) print() return cuted_net if (a_min_perc - preserve_percent) * (current_percent - preserve_percent) > 0: a_min = a a_min_perc = current_percent else: a_max = a a_max_perc = current_percent def apply_backbone(net, a_min, a_max, preserve=0.8): disparity_filter(net) best = get_best_cut(net, preserve, a_min, a_max) return best files = glob.glob(path + "networks/politica/covote_deps_*_original.xnet") print(files) for file in files: net = xnet.xnet2igraph(file) net = apply_backbone(net, 0.0001, 1, preserve=0.8) xnet.igraph2xnet(net, file.replace("original", "filtered")) # ## **Identificação de comunidades** # A identificação de comunidades nesse contexto pode nos mostrar quais os deputados que estão mais conectados entre si, sendo interessante comparar com seus partidos políticos. # O método utilizado está disponível no pacote [leidenalg](https://github.com/vtraag/leidenalg). def get_largest_component(g): components = g.components() giant = components.giant() return giant """ aplica o algoritmo leidenalg e salva as comunidades em uma propridade do vértice chamada "community" """ def identify_communities_leidenalg(net): giant = get_largest_component(net) comms = leidenalg.find_partition(giant, leidenalg.ModularityVertexPartition) comm_list = comms.subgraphs() # communities in current level print("Number of communities identified:", len(comm_list)) net_copy = net.copy() net_copy.vs["community"] = "-1" for idx, comm in enumerate(comm_list): for v1 in comm.vs: v2 = net_copy.vs.find(name=v1["name"]) v2["community"] = str(idx + 1) return net_copy files = glob.glob(path + "networks/politica/covote_deps_*filtered.xnet") print(files) for file in files: net = xnet.xnet2igraph(file) net = identify_communities_leidenalg(net) xnet.igraph2xnet(net, file.replace("filtered", "filtered_comm")) # ## **Redes por ano** # Para visualizar os dados vamos utilizar o visualizador [Helios-web](https://filipinascimento.github.io/helios-web/). # ## **Análises globais** # ### Diversidade # \begin{equation} # D = exp(- \sum^R_{i=1}p_i~ln(p_i)) # \end{equation} # A medida de diversidade reflete a quantidade efetiva de classes que existe em um conjunto. Por exemplo, no caso dos deputados distribuídos entre os diversos partidos. O número efetivo de classes reflete o quanto bem os elementos do grupo estão distribuidos. # Neste trabalho, utilizamos a diversidade para comparar o número de partidos que existem com o número efetivo de partidos. # implementação direta da equação definida acima def div_by_param(nets, param): divs = [] totals = [] for net in nets: pps = net.vs[param] unique, count = np.unique(pps, return_counts=True) total = sum(count) probs = count / total entropy = -sum(np.log(probs) * probs) div = np.exp(entropy) divs.append(div) totals.append(len(unique)) return divs, totals files = glob.glob(path + "networks/politica/covote_deps_*filtered_comm.xnet") print(files) nets = [xnet.xnet2igraph(file) for file in files] divs, totals = div_by_param(nets, "pp") print(divs) print(totals) # ### **Diversidade, número de comunidades e número de partidos** # ### Similaridade para distância # \begin{equation} # \Delta(w_{ij}) = [2 \cdot (1 - w_{ij})]^{(1/2)} # \end{equation} import math # calcula a distância e salva como um atributo das arestas def calculate_dist(filenames): for filename in filenames: # print(filename) net = xnet.xnet2igraph(filename) weights = net.es["weight"] weights = [math.sqrt(2 * (1 - w)) for w in weights] if len(weights) > 0: net.es["distance"] = weights xnet.igraph2xnet(net, filename[:-5] + "_dist.xnet") else: print("error", filename) files = glob.glob(path + "networks/politica/covote_deps_*filtered_comm.xnet") calculate_dist(files) # ### **Menores caminhos entre partidos políticos** import matplotlib.pyplot as plt def get_freqs(summaries, dates): ys = defaultdict(lambda: defaultdict(lambda: [])) freq_dict = defaultdict(lambda: []) for d in dates: year_summary = summaries[d] for pp1, summary_pp1 in year_summary.items(): if summary_pp1: for pp2, (mean, std, f) in summary_pp1.items(): ys[pp1][pp2].append((d, mean, std, f)) freq_dict[pp2].append(f) freq = [(np.nanmean(fs), pp) for pp, fs in freq_dict.items()] freq = sorted(freq, reverse=True) i = 0 f_max = freq[i][0] while np.isnan(freq[i][0]): i += 1 f_max = freq[i][0] return ys, freq, f_max # calcula os menores caminhos entre os partidos e salva no dicionario summary def calculate_shortest_paths(net, pps): summary = defaultdict(lambda: defaultdict(lambda: 0)) all_paths = [] for pp1 in pps: sources = net.vs.select(pp_eq=pp1) for pp2 in pps: targets = net.vs.select(pp_eq=pp2) targets = [v.index for v in targets] paths = [] for s in sources: path_lens = net.get_shortest_paths( s, to=targets, weights="distance", output="epath" ) for p in path_lens: x = sum(net.es[idx]["distance"] for idx in p) if x > 0: paths.append(x) all_paths.append(x) if len(paths) == 0: summary[pp1][pp2] = (np.nan, np.nan, np.nan) summary[pp2][pp1] = (np.nan, np.nan, np.nan) else: mean = np.mean(paths) std_dev = np.std(paths) summary[pp1][pp2] = (mean, std_dev, len(targets)) summary[pp2][pp1] = (mean, std_dev, len(sources)) if pp1 == pp2: break all_paths_mean = np.mean( all_paths ) # a média geral de todos os deputados por todos os deputados all_paths_std = np.std(all_paths) return summary, (all_paths_mean, all_paths_std) # prepara os dados para o formato que a função de plot recebe def shortest_path_by_pp(freq, pp2_means, f_max): to_plot = dict() for f, pp2 in freq: means_std = pp2_means[pp2] means_std = np.asarray(means_std) means = means_std[:, 1] std = means_std[:, 2] xs = means_std[:, 0] fraq = f / f_max if not np.isnan(means).all(): to_plot[pp2] = (means, std, fraq, xs) return to_plot # recebe os dados processados para gerar o plot def plot_metric(pp, to_plot, color_map): plt.figure(figsize=(8, 3)) xs2 = [] for pp1, (means, total_std, fraq, xs) in to_plot.items(): if len(xs) > len(xs2): xs2 = xs fraq = max( fraq, 0.45 ) # a espessura da linha muda conforme o tamanho do partido, # se for muito pequeno, então definimos um valor mínimo para ser possivel visualizar plt.errorbar( xs, means, total_std, linestyle="-", label=pp1.upper(), fmt="o", elinewidth=1.5 * fraq, linewidth=2 * fraq, markersize=2 * fraq, alpha=max(0.6, fraq), color=color_map[pp1], ) plt.legend(loc="upper right", bbox_to_anchor=(1.05, 1.0)) plt.title(pp) plt.xlabel("year") plt.ylabel("average shortest path") plt.show() def plot_shortest_paths(dates, nets, valid_pps, color_map): summaries = dict() all_paths_summary = [] for date, net in zip(dates, nets): summaries[date], all_paths = calculate_shortest_paths(net, valid_pps) all_paths_summary.append(all_paths) all_paths_summary = np.asarray(all_paths_summary) ys, _, _ = get_freqs(summaries, dates) # para cada partido que está sendo analisado, é gerado um plot for pp1, pp2_means in ys.items(): if not pp1 in valid_pps: continue freq = [] for pp2, means_std in pp2_means.items(): means_std = np.array(means_std) freq.append((np.nanmean(means_std[:, 3]), pp2)) freq = sorted(freq, reverse=True) f_max = freq[0][0] to_plot = shortest_path_by_pp(freq, pp2_means, f_max) to_plot["all"] = (all_paths_summary[:, 0], all_paths_summary[:, 1], 0.3, dates) plot_metric(pp1, to_plot, color_map) def plot_shortest_paths_all_years(dates, nets, valid_pps, color_map): plot_shortest_paths(dates, nets, valid_pps, color_map) files = glob.glob(path + "networks/politica/covote_deps_*filtered_comm_dist.xnet") nets = [xnet.xnet2igraph(file) for file in files] dates = [2016, 2017, 2018, 2019] valid_pps = ["PSDB", "PP", "PMDB", "PT", "DEM"] color_map = { "PSDB": "blue", "PP": "purple", "PMDB": "green", "PT": "red", "DEM": "orange", "all": "gray", } plot_shortest_paths_all_years(dates, nets, valid_pps, color_map)
import os import glob from collections import namedtuple import functools import csv CandidateInfoTuple = namedtuple( "CandidateInfoTuple", "isNodule_bool, diameter_mm, series_uid, center_xyz", ) # cache the results of func call in the memory @functools.lru_cache() def getCandidateInfoList(requireOnDisk_bool=True): mhd_list = glob.glob("data-unversioned/part2/luna/subset*/*.mhd") presentOnDisk_set = {os.path.split(p)[-1][:-4] for p in mhd_list} diameter_dict = {} with open("data/part2/luna/annotations.csv", "r") as f: for row in list(csv.reader(f))[1:]: series_uid = row[0] annotationCenter_xyz = tuple([float(x) for x in row[1:4]]) annotationDiameter_mm = float(row[4]) diameter_dict.setdefault(series_uid, []).append( (annotationCenter_xyz, annotationDiameter_mm) ) candidatInfo_list = [] with open("data/part2/luna/candidates.csv", "r") as f: for row in list(csv.reader(f))[1:]: series_uid = row[0] # if series_uid isn't present, it's in a subset we don't have on a disk, skip it if series_uid not in presentOnDisk_set and requireOnDisk_bool: continue isNodule_bool = bool(int(row[4])) candidateCenter_xyz = tuple([float(x) for x in row[1:4]]) candidateDiameter_mm = 0.0 for annotation_tup in diameter_dict.get(series_uid, []): annotationCenter_xyz, annotationDiameter_mm = annotation_tup for i in range(3): delta_mm = abs(candidateCenter_xyz[i] - annotationCenter_xyz[i]) # to require that two nodule center ponts not be too far apart relative to the size of the nodule if delta_mm > annotationDiameter_mm / 4: break else: candidateDiameter_mm = annotationDiameter_mm break candidatInfo_list.append( CandidateInfoTuple( isNodule_bool, candidateDiameter_mm, series_uid, candidateCenter_xyz ) ) candidatInfo_list.sort(reverse=True) return candidatInfo_list
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np # helpful character encoding module import chardet # set seed for reproducibility np.random.seed(0) with open("../input/budgetdataset1/FlatTable_1606228231675.csv", "rb") as rawdata: result = chardet.detect(rawdata.read(20000)) # check what the character encoding might be print(result) cols = [3, 4, 5] Spending = pd.read_csv( "../input/budgetdataset1/FlatTable_1606228231675.csv", sep=";", encoding="ISO-8859-1", usecols=cols, ) Spending.head() # save the file Spending.to_csv("FlatTable_1606228231675-utf8.csv") missing_values_count = Spending.isnull().sum() missing_values_count[0:10] # fill with zeros the NA Spending.fillna(0) # I found out that I could just drop the columns and rows with the 0 as they are not relevant Spending.shape df = pd.DataFrame(Spending) print(df) df.drop([430, 432], axis=0, inplace=True) df.drop([433, 434], axis=0, inplace=True) df.drop([426, 427, 428, 429, 431], axis=0, inplace=True) df.drop([424, 425], axis=0, inplace=True) # df.drop(['notas','fuente'], axis=1, inplace=True) df.head() # df.columns.str.match("Unnamed") # df.loc[:,~df.columns.str.match("Unnamed")] # save the file df.to_csv("FlatTable_1606228231675-utf8_2.csv") df.info() df.valor.describe() df.valor.sum() df["year"] = df["Años"].astype(str).str.extract("(\d{4})").astype(int) print(df)
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set() import holidays from datetime import datetime from sklearn.feature_selection import f_regression from sklearn.metrics import mean_squared_error from sklearn.model_selection import KFold, TimeSeriesSplit from xgboost import XGBRegressor from lightgbm import LGBMRegressor from catboost import CatBoostRegressor from colorama import Style, Fore red = Style.BRIGHT + Fore.RED blu = Style.BRIGHT + Fore.BLUE mgt = Style.BRIGHT + Fore.MAGENTA grn = Style.BRIGHT + Fore.GREEN gld = Style.BRIGHT + Fore.YELLOW res = Style.RESET_ALL import os import re import sys from xml.etree import ElementTree from collections import Counter, OrderedDict from tqdm import tqdm import optuna import plotly.express as px train = pd.read_csv("/kaggle/input/kaggle-pog-series-s01e04/train.csv") test = pd.read_csv("/kaggle/input/kaggle-pog-series-s01e04/test.csv") train_detailed = pd.read_csv( "/kaggle/input/kaggle-pog-series-s01e04/train_detailed.csv" ) submission = pd.read_csv("/kaggle/input/kaggle-pog-series-s01e04/sample_submission.csv") __version__ = "1.3" RECORD_FIELDS = OrderedDict( ( ("sourceName", "s"), ("sourceVersion", "s"), ("device", "s"), ("type", "s"), ("unit", "s"), ("creationDate", "d"), ("startDate", "d"), ("endDate", "d"), ("value", "n"), ) ) ACTIVITY_SUMMARY_FIELDS = OrderedDict( ( ("dateComponents", "d"), ("activeEnergyBurned", "n"), ("activeEnergyBurnedGoal", "n"), ("activeEnergyBurnedUnit", "s"), ("appleExerciseTime", "s"), ("appleExerciseTimeGoal", "s"), ("appleStandHours", "n"), ("appleStandHoursGoal", "n"), ) ) WORKOUT_FIELDS = OrderedDict( ( ("sourceName", "s"), ("sourceVersion", "s"), ("device", "s"), ("creationDate", "d"), ("startDate", "d"), ("endDate", "d"), ("workoutActivityType", "s"), ("duration", "n"), ("durationUnit", "s"), ("totalDistance", "n"), ("totalDistanceUnit", "s"), ("totalEnergyBurned", "n"), ("totalEnergyBurnedUnit", "s"), ) ) FIELDS = { "Record": RECORD_FIELDS, "ActivitySummary": ACTIVITY_SUMMARY_FIELDS, "Workout": WORKOUT_FIELDS, } PREFIX_RE = re.compile("^HK.*TypeIdentifier(.+)$") ABBREVIATE = True VERBOSE = True def format_freqs(counter): """ Format a counter object for display. """ return "\n".join("%s: %d" % (tag, counter[tag]) for tag in sorted(counter.keys())) def format_value(value, datatype): """ Format a value for a CSV file, escaping double quotes and backslashes. None maps to empty. datatype should be 's' for string (escaped) 'n' for number 'd' for datetime """ if value is None: return "" elif datatype == "s": # string return '"%s"' % value.replace("\\", "\\\\").replace('"', '\\"') elif datatype in ("n", "d"): # number or date return value else: raise KeyError("Unexpected format value: %s" % datatype) def abbreviate(s, enabled=ABBREVIATE): """ Abbreviate particularly verbose strings based on a regular expression """ m = re.match(PREFIX_RE, s) return m.group(1) if enabled and m else s class HealthDataExtractor(object): """ Extract health data from Apple Health App's XML export, export.xml. Inputs: path: Relative or absolute path to export.xml verbose: Set to False for less verbose output Outputs: Writes a CSV file for each record type found, in the same directory as the input export.xml. Reports each file written unless verbose has been set to False. """ def __init__(self, path, dest_path, verbose=VERBOSE): self.in_path = path self.verbose = verbose self.directory = os.path.abspath(os.path.split(path)[0]) self.dest = dest_path with open(path) as f: self.report("Reading data from %s . . . " % path, end="") self.data = ElementTree.parse(f) self.report("done") self.root = self.data._root self.nodes = list(self.root) self.n_nodes = len(self.nodes) self.abbreviate_types() self.collect_stats() def report(self, msg, end="\n"): if self.verbose: print(msg, end=end) sys.stdout.flush() def count_tags_and_fields(self): self.tags = Counter() self.fields = Counter() for record in self.nodes: self.tags[record.tag] += 1 for k in record.keys(): self.fields[k] += 1 def count_record_types(self): """ Counts occurrences of each type of (conceptual) "record" in the data. In the case of nodes of type 'Record', this counts the number of occurrences of each 'type' or record in self.record_types. In the case of nodes of type 'ActivitySummary' and 'Workout', it just counts those in self.other_types. The slightly different handling reflects the fact that 'Record' nodes come in a variety of different subtypes that we want to write to different data files, whereas (for now) we are going to write all Workout entries to a single file, and all ActivitySummary entries to another single file. """ self.record_types = Counter() self.other_types = Counter() for record in self.nodes: if record.tag == "Record": self.record_types[record.attrib["type"]] += 1 elif record.tag in ("ActivitySummary", "Workout"): self.other_types[record.tag] += 1 elif record.tag in ("Export", "Me"): pass else: self.report("Unexpected node of type %s." % record.tag) def collect_stats(self): self.count_record_types() self.count_tags_and_fields() def open_for_writing(self): self.handles = {} self.paths = [] for kind in list(self.record_types) + list(self.other_types): path = os.path.join(self.dest, "%s.csv" % abbreviate(kind)) f = open(path, "w") headerType = kind if kind in ("Workout", "ActivitySummary") else "Record" f.write(",".join(FIELDS[headerType].keys()) + "\n") self.handles[kind] = f self.report("Opening %s for writing" % path) def abbreviate_types(self): """ Shorten types by removing common boilerplate text. """ for node in self.nodes: if node.tag == "Record": if "type" in node.attrib: node.attrib["type"] = abbreviate(node.attrib["type"]) def write_records(self): kinds = FIELDS.keys() for node in self.nodes: if node.tag in kinds: attributes = node.attrib kind = attributes["type"] if node.tag == "Record" else node.tag values = [ format_value(attributes.get(field), datatype) for (field, datatype) in FIELDS[node.tag].items() ] line = ",".join(values) + "\n" self.handles[kind].write(line) def close_files(self): for kind, f in self.handles.items(): f.close() self.report("Written %s data." % abbreviate(kind)) def extract(self): self.open_for_writing() self.write_records() self.close_files() def report_stats(self): print("\nTags:\n%s\n" % format_freqs(self.tags)) print("Fields:\n%s\n" % format_freqs(self.fields)) print("Record types:\n%s\n" % format_freqs(self.record_types)) data = HealthDataExtractor( path="/kaggle/input/kaggle-pog-series-s01e04/raw_health_export.xml", dest_path="/kaggle/working/", verbose=False, ) data.report_stats() data.extract() # files = os.listdir() # files_to_use = list() # for file in files: # if(file.split('.')[1] == 'csv'): # data = pd.read_csv('/kaggle/working/'+file) # if(data.shape[0]>1000): # files_to_use.append(file) # print(files_to_use) # for file in files_to_use: # # data = pd.read_csv('/kaggle/working/'+file,usecols = ['creationDate','startDate','endDate','value'],, ) # date_columns = ['creationDate','startDate','endDate'] # data = pd.read_csv('/kaggle/working/'+file,parse_dates=date_columns) # data.drop(['sourceName','sourceVersion','device'],axis=1,inplace=True) # for col in date_columns: # data[col] = data[col].dt.tz_convert(None) # data[col] = data[col].apply(lambda x:x.strftime('%Y-%m-%d')) # print(f'File Name: {file} \nShape : {data.shape} \nNull Values :\n ') # print('Min Creation Date:',data['creationDate'].min()) # print('Max Creation Date:',data['creationDate'].max()) # print('Min start Date:',data['startDate'].min()) # print('Max start Date:',data['startDate'].max()) # print('Min end Date:',data['endDate'].min()) # print('Max end Date:',data['endDate'].max()) # useful_files = ['StepCount.csv','HeartRate.csv','DistanceWalkingRunning.csv','BasalEnergyBurned.csv','FlightsClimbed.csv','ActiveEnergyBurned.csv','BodyMassIndex.csv','Workout.csv','BodyMass.csv'] useful_files = [ "FlightsClimbed.csv", "Workout.csv", "DistanceWalkingRunning.csv", "StepCount.csv", "BodyMassIndex.csv", ] df = train.copy() test_data = test.copy() for file in useful_files: # file = pd.read_csv('/kaggle/working/'+file) # date_columns = ['creationDate','startDate','endDate'] date_columns = ["startDate"] if file == "Workout.csv": data = pd.read_csv("/kaggle/working/" + file, usecols=["startDate", "duration"]) else: data = pd.read_csv("/kaggle/working/" + file, usecols=["startDate", "value"]) data = data.sort_values("startDate").reset_index(drop=True) for col in date_columns: # data[col] = pd.to_datetime(data[col]) data[col] = pd.to_datetime(data[col]).dt.tz_convert(None) data[col] = data[col].apply(lambda x: x.strftime("%Y-%m-%d")) trail = pd.merge(train, data, how="inner", left_on="date", right_on="startDate") if file == "Workout.csv": df[file.split(".")[0]] = trail["duration"] test_data[file.split(".")[0]] = trail["duration"] else: df[file.split(".")[0]] = trail["value"] test_data[file.split(".")[0]] = trail["value"] print(f"{gld} {file}") display(data.head(3)) df.head() to_train = df.copy() to_test = test_data.copy() fig = px.line(x=df.date, y=df.sleep_hours) fig.show() df.loc[((df["date"] >= "2017-09-27") & (df["date"] <= "2018-06-12")), "sleep_hours"] = ( df.loc[((df["date"] >= "2017-09-27") & (df["date"] <= "2018-06-12")), "sleep_hours"] / 2 ) # sns.pairplot(df) # df.hist(bins = 50,figsize = (15,15)) # https://www.kaggle.com/code/rolanderdei/predict-my-sleep-patterns-with-simple-ensembling/notebook q1 = df["sleep_hours"].quantile(0.25) q3 = df["sleep_hours"].quantile(0.75) IQR = q3 - q1 lb = q1 - IQR * 1.5 ub = q3 + IQR * 1.5 df = df[(df["sleep_hours"] >= lb) & (df["sleep_hours"] <= ub)] df = df[df["date"] >= "2015-07-20"] fig = px.line(x=df.date, y=df.sleep_hours) fig.show() # #### Note the max value of sleep_hours # # Credits - # #### As noted in this notebook, data at the start is noisy we better remove it # https://www.kaggle.com/code/airqualityanthony/pogchamps4-prophet-arima-xgboost-ensemble # This is my first time using Facebook Prophet # plt.figure(figsize = (10,5)) # sns.lineplot(data = df,x = 'date',y = 'sleep_hours') # plt.axvline('2015-07-20',c='red') # df = df[df['date']>='2015-07-20'] # sns.lineplot(data = df,x = 'date',y = 'sleep_hours') # ## Facebook Prophet years = [2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023] us_holidays = holidays.CountryHoliday(country="US", years=years) df.info() def add_holidays(df): df["holiday"] = df["date"].map(us_holidays) df["is_holiday"] = np.where(df["holiday"].notnull(), 1, 0) df["holiday"] = df["holiday"].fillna("Not a holiday") return df.drop("holiday", axis=1) def fe(df): df["date"] = pd.to_datetime(df["date"]) df["dayofweek"] = df["date"].dt.dayofweek df["quarter"] = df["date"].dt.quarter df["day"] = df["date"].dt.day df["month"] = df["date"].dt.month df["year"] = df["date"].dt.year df["dayofyear"] = df["date"].dt.dayofyear df["weekofyear"] = df["date"].dt.weekofyear df["weekday"] = df["date"].dt.weekday # df['weekday'] = df['date'].apply(lambda x: x.weekday()) # df['day'] = df['date'].apply(lambda x: x.day) # df['month'] = df['date'].apply(lambda x: x.month) # df['year'] = df['date'].apply(lambda x: x.year) return df df = add_holidays(df) test_data = add_holidays(test_data) df = fe(df) test_data = fe(test_data) df.head() # prophet_predictions = predicted[(predicted['ds']>=pd.to_datetime('2022-01-01')) & (predicted['ds']<=pd.to_datetime('2023-03-16'))]['yhat'].values # prophet_predictions = predicted[(predicted['ds']>=pd.to_datetime('2022-01-01')) & (predicted['ds']<=pd.to_datetime('2023-03-16'))]['yhat'].values # prophet_predictions = predicted[(predicted['ds']>=pd.to_datetime('2022-01-01')) & (predicted['ds']<=pd.to_datetime('2023-03-16'))]['yhat'].values # train = train[~((train['date'] >= '2017-09-27')&(train['date']<='2018-06-12'))] to_be_dropped = ["day", "date", "sleep_hours"] x = df.drop(to_be_dropped, axis=1) y = df.sleep_hours features = x.columns x.fillna(method="ffill", inplace=True) result = f_regression(x, y) x.columns p_values = result[1].round(3) print(p_values) # x.drop(,axis = 1,inplace=True) # x.drop(['is_holiday','day'],axis = 1,inplace=True) test_data = test_data.drop(to_be_dropped, axis=1) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() x = pd.DataFrame(scaler.fit_transform(x), columns=features) test_data = pd.DataFrame(scaler.transform(test_data), columns=features) test_data.shape # len(prophet_predictions) print(x.columns, test_data.columns) # def objective(trial): # # Define search space for hyperparameters # param = { # 'objective': 'reg:squarederror', # 'colsample_bytree': trial.suggest_uniform('colsample_bytree', 0.3, 1.0), # 'learning_rate': trial.suggest_loguniform('learning_rate', 0.01, 0.3), # 'max_depth': trial.suggest_int('max_depth', 3, 10), # 'alpha': trial.suggest_loguniform('alpha', 1e-5, 10), # 'n_estimators': trial.suggest_int('n_estimators', 100, 1000, step=100), # 'subsample': trial.suggest_uniform('subsample', 0.6, 1.0), # 'min_child_weight': trial.suggest_int('min_child_weight', 1, 10) # } # tss = TimeSeriesSplit(n_splits=5,test_size=50,gap=0) # rmse=[] # list contains rmse for each fold # n=0 # for trn_idx, test_idx in tss.split(x,y): # X_tr,X_val=x.iloc[trn_idx],x.iloc[test_idx] # y_tr,y_val=y.iloc[trn_idx],y.iloc[test_idx] # model = XGBRegressor(n_estimators = 1000) # model.fit(X_tr,y_tr,eval_set=[(X_val,y_val)],early_stopping_rounds=100,verbose=False) # RMSE = mean_squared_error(y_val, model.predict(X_val)) # rmse.append(np.sqrt(mean_squared_error(y_val, model.predict(X_val)))) # print(f"fold: {n+1} ==> rmse: {rmse[n]}") # n+=1 # study = optuna.create_study(direction = 'minimize') # study.optimize(objective,n_trials=10) # print(f'Number of trials finished: {len(study.trials)}') # print(f'Best Params : {study.best_trial.params}') # study = optuna.create_study(direction = 'minimize') # study.optimize(objective,n_trials=10) # print(f'Number of trials finished: {len(study.trials)}') # print(f'Best Params : {study.best_trial.params}') cat_params = { "subsample": 0.7, "learning_rate": 0.04774587972153831, "early_stopping_rounds": 50, "max_depth": 11, "n_estimators": 999, } xgb_params = { "colsample_bytree": 0.5544110677821752, "learning_rate": 0.01849622913339397, "max_depth": 4, "alpha": 1.2501659176615678, "n_estimators": 800, "subsample": 0.9494317563361678, "min_child_weight": 5, } lgbm_params = { "subsample": 0.8, "learning_rate": 0.08559145786845979, "early_stopping_rounds": 50, "max_depth": 15, "n_estimators": 999, } preds = list() kf = KFold(n_splits=10, random_state=48, shuffle=True) rmse = [] # list contains rmse for each fold n = 0 for trn_idx, test_idx in kf.split(x, y): X_tr, X_val = x.iloc[trn_idx], x.iloc[test_idx] y_tr, y_val = y.iloc[trn_idx], y.iloc[test_idx] model = XGBRegressor(**xgb_params) model.fit( X_tr, y_tr, eval_set=[(X_val, y_val)], early_stopping_rounds=100, verbose=False ) preds.append(model.predict(test_data)) RMSE = mean_squared_error(y_val, model.predict(X_val)) rmse.append(np.sqrt(mean_squared_error(y_val, model.predict(X_val)))) print(f"fold: {n+1} ==> rmse: {rmse[n]}") n += 1 xgb_pred = np.mean(preds, axis=0) preds = list() kf = KFold(n_splits=10, random_state=48, shuffle=True) rmse = [] # list contains rmse for each fold n = 0 for trn_idx, test_idx in kf.split(x, y): X_tr, X_val = x.iloc[trn_idx], x.iloc[test_idx] y_tr, y_val = y.iloc[trn_idx], y.iloc[test_idx] model = LGBMRegressor(**lgbm_params) model.fit( X_tr, y_tr, eval_set=[(X_val, y_val)], early_stopping_rounds=100, verbose=False ) preds.append(model.predict(test_data)) RMSE = mean_squared_error(y_val, model.predict(X_val)) rmse.append(np.sqrt(mean_squared_error(y_val, model.predict(X_val)))) print(f"fold: {n+1} ==> rmse: {rmse[n]}") n += 1 lgbm_pred = np.mean(preds, axis=0) preds = list() kf = KFold(n_splits=10, random_state=48, shuffle=True) rmse = [] # list contains rmse for each fold n = 0 for trn_idx, test_idx in kf.split(x, y): X_tr, X_val = x.iloc[trn_idx], x.iloc[test_idx] y_tr, y_val = y.iloc[trn_idx], y.iloc[test_idx] model = CatBoostRegressor(**cat_params) model.fit( X_tr, y_tr, eval_set=[(X_val, y_val)], early_stopping_rounds=100, verbose=False ) preds.append(model.predict(test_data)) RMSE = mean_squared_error(y_val, model.predict(X_val)) rmse.append(np.sqrt(mean_squared_error(y_val, model.predict(X_val)))) print(f"fold: {n+1} ==> rmse: {rmse[n]}") n += 1 cat_pred = np.mean(preds, axis=0) out = submission.copy() final = (xgb_pred + cat_pred + lgbm_pred) / 3 out["sleep_hours"] = final out.head() out.to_csv("Output", index=False)
# # 1. Introduction # Name: Tomasz Abels and Jack Chen # Username: JackChenXJ # Score: # Leaderbord rank: # # 2. Data # ### 2.1 Dataset # In this section, we load and explore the dataset. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import gc import os print(os.listdir("../input/LANL-Earthquake-Prediction")) train = pd.read_csv( "../input/LANL-Earthquake-Prediction/train.csv", dtype={"acoustic_data": np.int16, "time_to_failure": np.float64}, ) print(train.shape) acoustic_data = train["acoustic_data"].values[::100] time_data = train["time_to_failure"].values[::100] print(acoustic_data.shape) print(time_data.shape) fig, ax1 = plt.subplots(figsize=(16, 4)) plt.title("Trends of acoustic_data and time_to_failure. 2% of data (sampled)") plt.plot(acoustic_data, color="b") ax1.set_ylabel("acoustic_data", color="b") plt.legend(["acoustic_data"]) ax2 = ax1.twinx() plt.plot(time_data, color="g") ax2.set_ylabel("time_to_failure", color="g") plt.legend(["time_to_failure"], loc=(0.875, 0.9)) test1 = pd.read_csv( "/kaggle/input/LANL-Earthquake-Prediction/test/seg_00030f.csv", dtype={"acoustic_data": np.int16, "time_to_failure": np.float64}, ) test2 = pd.read_csv( "/kaggle/input/LANL-Earthquake-Prediction/test/seg_0012b5.csv", dtype={"acoustic_data": np.int16, "time_to_failure": np.float64}, ) test3 = pd.read_csv( "/kaggle/input/LANL-Earthquake-Prediction/test/seg_00184e.csv", dtype={"acoustic_data": np.int16, "time_to_failure": np.float64}, ) # Initialize the subplots fig, ax = plt.subplots(3, 1, figsize=(16, 6)) # Plot the time domain, label the graph and limit the axis ax[0].plot(test1, color="b") ax[0].legend(["acoustic_data"]) ax[0].set_ylabel("acoustic_data") ax[1].plot(test2, color="b") ax[1].legend(["acoustic_data"]) ax[1].set_ylabel("acoustic_data") ax[2].plot(test3, color="b") ax[2].legend(["acoustic_data"]) ax[2].set_ylabel("acoustic_data") # ### 2.1.1 Train-test split # In the above below, we split the train data into a test and a train set. Set a value for the `test_size` yourself. Argue why the test value can not be too small or too large. You can also use k-fold cross validation. # Secondly, we have set the `random_state` to 102. Can you think of a reason why we set a `random_state` at all? # ### 2.2 Data Exploration # Explore the features and target variables of the dataset. Think about making some scatter plots, box plots, histograms or printing the data, but feel free to choose any method that suits you. # What do you think is the right performance # metric to use for this dataset? Clearly explain which performance metric you # choose and why. # Algorithmic bias can be a real problem in Machine Learning. So based on this, # should we use the Race and the Sex features in our machine learning algorithm? Explain what you believe. # Code from Basic Feature Benchmark by INVERSION, https://www.kaggle.com/code/inversion/basic-feature-benchmark # Code from Earthquakes FE. More features and samples by ANDREW LUKYANENKO, https://www.kaggle.com/code/artgor/earthquakes-fe-more-features-and-samples from tqdm import tqdm from scipy.signal import hilbert, convolve, hann from scipy import stats def calc_change_rate(x): change = (np.diff(x) / x[:-1]).values change = change[np.nonzero(change)[0]] change = change[~np.isnan(change)] change = change[change != -np.inf] change = change[change != np.inf] return np.mean(change) rows = 150000 segments = int(np.floor(train.shape[0] / rows)) X_train = pd.DataFrame(index=range(segments), dtype=np.float64) # columns=['ave', 'std', 'max', 'min']) y_train = pd.DataFrame( index=range(segments), dtype=np.float64, columns=["time_to_failure"] ) for segment in tqdm(range(segments)): seg = train.iloc[segment * rows : segment * rows + rows] x = seg["acoustic_data"].values y = seg["time_to_failure"].values[-1] y_train.loc[segment, "time_to_failure"] = y X_train.loc[segment, "ave"] = x.mean() X_train.loc[segment, "std"] = x.std() X_train.loc[segment, "max"] = x.max() X_train.loc[segment, "min"] = x.min() X_train.loc[segment, "mean_change_abs"] = np.mean(np.diff(x)) # X_train.loc[segment, 'mean_change_rate'] = calc_change_rate(x) X_train.loc[segment, "abs_max"] = np.abs(x).max() X_train.loc[segment, "abs_min"] = np.abs(x).min() X_train.loc[segment, "std_first_50000"] = x[:50000].std() X_train.loc[segment, "std_last_50000"] = x[-50000:].std() X_train.loc[segment, "std_first_10000"] = x[:10000].std() X_train.loc[segment, "std_last_10000"] = x[-10000:].std() X_train.loc[segment, "avg_first_50000"] = x[:50000].mean() X_train.loc[segment, "avg_last_50000"] = x[-50000:].mean() X_train.loc[segment, "avg_first_10000"] = x[:10000].mean() X_train.loc[segment, "avg_last_10000"] = x[-10000:].mean() X_train.loc[segment, "min_first_50000"] = x[:50000].min() X_train.loc[segment, "min_last_50000"] = x[-50000:].min() X_train.loc[segment, "min_first_10000"] = x[:10000].min() X_train.loc[segment, "min_last_10000"] = x[-10000:].min() X_train.loc[segment, "max_first_50000"] = x[:50000].max() X_train.loc[segment, "max_last_50000"] = x[-50000:].max() X_train.loc[segment, "max_first_10000"] = x[:10000].max() X_train.loc[segment, "max_last_10000"] = x[-10000:].max() X_train.loc[segment, "max_to_min"] = x.max() / np.abs(x.min()) X_train.loc[segment, "max_to_min_diff"] = x.max() - np.abs(x.min()) X_train.loc[segment, "count_big"] = len(x[np.abs(x) > 500]) X_train.loc[segment, "sum"] = x.sum() # X_train.loc[segment, 'mean_change_rate_first_50000'] = calc_change_rate(x[:50000]) # X_train.loc[segment, 'mean_change_rate_last_50000'] = calc_change_rate(x[-50000:]) # X_train.loc[segment, 'mean_change_rate_first_10000'] = calc_change_rate(x[:10000]) # X_train.loc[segment, 'mean_change_rate_last_10000'] = calc_change_rate(x[-10000:]) X_train.loc[segment, "q95"] = np.quantile(x, 0.95) X_train.loc[segment, "q99"] = np.quantile(x, 0.99) X_train.loc[segment, "q05"] = np.quantile(x, 0.05) X_train.loc[segment, "q01"] = np.quantile(x, 0.01) X_train.loc[segment, "abs_q95"] = np.quantile(np.abs(x), 0.95) X_train.loc[segment, "abs_q99"] = np.quantile(np.abs(x), 0.99) X_train.loc[segment, "abs_q05"] = np.quantile(np.abs(x), 0.05) X_train.loc[segment, "abs_q01"] = np.quantile(np.abs(x), 0.01) print(X_train.shape) print(y_train.shape) print(X_train) # standard normalize the data from sklearn import preprocessing scaler = preprocessing.StandardScaler().fit(X_train) X_train = scaler.transform(X_train) # train pca from sklearn.decomposition import PCA pca = PCA( n_components=20 ) # doing pca and keeping only n_components, shows the first 20 components pca = pca.fit( X_train ) # the correct dimension of X for sklearn is P*N (samples*features) X_pca_skl = pca.transform(X_train) # perform pca on features plt.bar(range(0, 20), pca.explained_variance_ratio_, label="individual var") plt.step( range(0, 20), np.cumsum(pca.explained_variance_ratio_), "r", label="cumulative var" ) plt.xlabel("Principal component index") plt.ylabel("explained variance ratio %") plt.legend() # fig, ax1 = plt.subplots(figsize=(16, 8)) plt.title("Trends of acoustic_data and time_to_failure. 2% of data (sampled)") plt.plot(X_pca_skl[:, 0], color="b") ax1.set_ylabel("acoustic_data", color="b") plt.legend(["acoustic_data"]) fig, ax1 = plt.subplots(figsize=(16, 8)) plt.title("Trends of acoustic_data and time_to_failure. 2% of data (sampled)") plt.plot(X_pca_skl[:, 0], color="b") ax1.set_ylabel("acoustic_data", color="b") plt.legend(["acoustic_data"]) ax2 = ax1.twinx() plt.plot(y_train, color="g") ax2.set_ylabel("time_to_failure", color="g") plt.legend(["time_to_failure"], loc=(0.875, 0.9)) # ### 2.3 Data Preparation # This dataset hasn’t been cleaned yet. Meaning that some attributes (features) are in numerical format and some are in categorial format. Moreover, there are missing values as well. However, all Scikit-learn’s implementations of these algorithms expect numerical features. Check for all features if they are in categorial and use a method to transform them to numerical values. For the numerical data, handle the missing data and normalize the data. # Note that you are only allowed to use training data for preprocessing but you then need to perform similar changes on test data too. # You can use [pipelining](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html) to help with the preprocessing. from sklearn.model_selection import train_test_split X_train = X_pca_skl[:, 0:2] # Randomize the set and split it into a training and test set x_train, x_test, Y_train, Y_test = train_test_split( X_train, y_train, test_size=0.33, shuffle=False, random_state=102 ) # standard normalize the data from sklearn import preprocessing scaler = preprocessing.StandardScaler().fit(x_train) x_train_norm = scaler.transform(x_train) x_test_norm = scaler.transform(x_test) # #convert y values to categorical values # Y_train = np.ravel(Y_train) # Y_test = np.ravel(Y_test) # lab = preprocessing.LabelEncoder() # Y_train_t = lab.fit_transform(Y_train) # Y_test_t = lab.fit_transform(Y_test) # ## 3. Training and Results # Briefly introduce the classification algorithms you choose. # Present your final confusion matrices (2 by 2) and balanced accuracies for both test and training data for all classifiers. Analyse the performance on test and training in terms of bias and variance. Give one advantage and one drawback of the method you use. print(x_train_norm.shape) print(x_test_norm.shape) print(Y_train.shape) print(Y_test.shape) from sklearn.ensemble import RandomForestClassifier from sklearn.svm import NuSVR model = NuSVR() model.fit(x_train_norm, Y_train.values.flatten()) model.fit(x_test_norm, Y_test.values.flatten()) # print(model.score(x_train_norm, Y_train_t)) # Predict Y_test_pred = model.predict(x_test_norm) Y_train_pred = model.predict(x_train_norm) fig, ax1 = plt.subplots(figsize=(20, 4)) plt.title("Trends of acoustic_data and time_to_failure. 2% of data (sampled)") plt.plot(Y_train_pred, color="b") ax1.set_ylabel("time_to_failure", color="g") plt.legend( ["time_to_failure predicted"], ) ax2 = ax1.twinx() plt.plot(Y_train, color="g") ax2.set_ylabel("time_to_failure", color="g") plt.legend(["time_to_failure"], loc=(0.875, 0.9)) fig, ax1 = plt.subplots(figsize=(20, 4)) x = np.linspace(0, 1385, 1385) plt.title("Trends of acoustic_data and time_to_failure. 2% of data (sampled)") plt.plot(Y_test_pred, color="b") ax1.set_ylabel("time_to_failure", color="g") plt.legend( ["time_to_failure predicted"], ) ax2 = ax1.twinx() plt.plot(x, Y_test, color="g") ax2.set_ylabel("time_to_failure", color="g") plt.legend(["time_to_failure"], loc=(0.875, 0.8)) scaler = preprocessing.StandardScaler().fit(X_train) X_train_norm = scaler.transform(X_train) model.fit(X_train_norm, y_train.values.flatten()) y_train_pred = model.predict(X_train_norm) fig, ax1 = plt.subplots(figsize=(20, 4)) plt.title("Trends of acoustic_data and time_to_failure. 2% of data (sampled)") plt.plot(y_train_pred, color="b") ax1.set_ylabel("time_to_failure", color="g") plt.legend( ["time_to_failure predicted"], ) ax2 = ax1.twinx() plt.plot(y_train, color="g") ax2.set_ylabel("time_to_failure", color="g") plt.legend(["time_to_failure"], loc=(0.875, 0.9)) # accuracy score1 = model.score(x_train_norm, Y_train) score2 = model.score(x_test_norm, Y_test) print(score1) print(score2) from sklearn.metrics import mean_squared_error print(mean_squared_error(y_train, y_train_pred)) submission = pd.read_csv( "../input/LANL-Earthquake-Prediction/sample_submission.csv", index_col="seg_id" ) X_test = pd.DataFrame(dtype=np.float64, index=submission.index) for seg_id in X_test.index: seg = pd.read_csv("../input/LANL-Earthquake-Prediction/test/" + seg_id + ".csv") x = seg["acoustic_data"].values X_test.loc[seg_id, "ave"] = x.mean() X_test.loc[seg_id, "std"] = x.std() X_test.loc[seg_id, "max"] = x.max() X_test.loc[seg_id, "min"] = x.min() X_test.loc[seg_id, "mean_change_abs"] = np.mean(np.diff(x)) # X_train.loc[segment, 'mean_change_rate'] = calc_change_rate(x) X_test.loc[seg_id, "abs_max"] = np.abs(x).max() X_test.loc[seg_id, "abs_min"] = np.abs(x).min() X_test.loc[seg_id, "std_first_50000"] = x[:50000].std() X_test.loc[seg_id, "std_last_50000"] = x[-50000:].std() X_test.loc[seg_id, "std_first_10000"] = x[:10000].std() X_test.loc[seg_id, "std_last_10000"] = x[-10000:].std() X_test.loc[seg_id, "avg_first_50000"] = x[:50000].mean() X_test.loc[seg_id, "avg_last_50000"] = x[-50000:].mean() X_test.loc[seg_id, "avg_first_10000"] = x[:10000].mean() X_test.loc[seg_id, "avg_last_10000"] = x[-10000:].mean() X_test.loc[seg_id, "min_first_50000"] = x[:50000].min() X_test.loc[seg_id, "min_last_50000"] = x[-50000:].min() X_test.loc[seg_id, "min_first_10000"] = x[:10000].min() X_test.loc[seg_id, "min_last_10000"] = x[-10000:].min() X_test.loc[seg_id, "max_first_50000"] = x[:50000].max() X_test.loc[seg_id, "max_last_50000"] = x[-50000:].max() X_test.loc[seg_id, "max_first_10000"] = x[:10000].max() X_test.loc[seg_id, "max_last_10000"] = x[-10000:].max() X_test.loc[seg_id, "max_to_min"] = x.max() / np.abs(x.min()) X_test.loc[seg_id, "max_to_min_diff"] = x.max() - np.abs(x.min()) X_test.loc[seg_id, "count_big"] = len(x[np.abs(x) > 500]) X_test.loc[seg_id, "sum"] = x.sum() # X_train.loc[segment, 'mean_change_rate_first_50000'] = calc_change_rate(x[:50000]) # X_train.loc[segment, 'mean_change_rate_last_50000'] = calc_change_rate(x[-50000:]) # X_train.loc[segment, 'mean_change_rate_first_10000'] = calc_change_rate(x[:10000]) # X_train.loc[segment, 'mean_change_rate_last_10000'] = calc_change_rate(x[-10000:]) X_test.loc[seg_id, "q95"] = np.quantile(x, 0.95) X_test.loc[seg_id, "q99"] = np.quantile(x, 0.99) X_test.loc[seg_id, "q05"] = np.quantile(x, 0.05) X_test.loc[seg_id, "q01"] = np.quantile(x, 0.01) X_test.loc[seg_id, "abs_q95"] = np.quantile(np.abs(x), 0.95) X_test.loc[seg_id, "abs_q99"] = np.quantile(np.abs(x), 0.99) X_test.loc[seg_id, "abs_q05"] = np.quantile(np.abs(x), 0.05) X_test.loc[seg_id, "abs_q01"] = np.quantile(np.abs(x), 0.01) # standard normalize the data from sklearn import preprocessing scaler = preprocessing.StandardScaler().fit(X_test) X_test_norm = scaler.transform(X_test) # train pca from sklearn.decomposition import PCA pca = PCA( n_components=20 ) # doing pca and keeping only n_components, shows the first 20 components pca = pca.fit( X_test_norm ) # the correct dimension of X for sklearn is P*N (samples*features) X_pca_skl = pca.transform(X_test_norm) X_test_pca = X_pca_skl[:, 0:2] scaler = preprocessing.StandardScaler().fit(X_test_pca) X_test_pca_norm = scaler.transform(X_test_pca) submission["time_to_failure"] = model.predict(X_test_pca_norm) submission.to_csv("submission.csv") gc.collect() print(submission)
import tensorflow as tf import numpy as np from sklearn.model_selection import train_test_split import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv("../input/diabetes-data/pima-indians-diabetes.csv") df.columns column_name = [ "Pregnancies", "Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI", "DiabetesPedigreeFunction", "Age", "Class", ] df = pd.read_csv( "../input/diabetes-data/pima-indians-diabetes.csv", header=0, names=column_name ) df.head(5) column_norm = [ "Pregnancies", "Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI", "DiabetesPedigreeFunction", ] df_norm = df[column_norm] df_norm.head(3) df1_norm = df[column_norm].apply(lambda x: ((x - x.min()) / (x.max() - x.min()))) df1_norm.head(3) feat_Pregnancies = tf.feature_column.numeric_column("Pregnancies") feat_Glucose = tf.feature_column.numeric_column("Glucose") feat_BloodPressure = tf.feature_column.numeric_column("BloodPressure") feat_SkinThickness = tf.feature_column.numeric_column("SkinThickness") feat_Insulin = tf.feature_column.numeric_column("Insulin") feat_BMI = tf.feature_column.numeric_column("BMI") feat_DiabetesPedigreeFunction = tf.feature_column.numeric_column( "DiabetesPedigreeFunction" ) feature_column = [ feat_Pregnancies, feat_Glucose, feat_BloodPressure, feat_SkinThickness, feat_Insulin, feat_BMI, feat_DiabetesPedigreeFunction, ] # Train and test split
# <div style="color:#485053; # display:fill; # border-radius:0px; # background-color:#86C2DE; # font-size:200%; # padding-left:40px; # font-family:Verdana; # font-weight:600; # letter-spacing:0.5px; # "> # <p style="padding: 15px; # color:white; # text-align: center;"> # DATA WAREHOUSING AND MINING (CSE5021) # ## Assignment 2: Association Rule Mining # ## Krupa Gajjar: 20MAI0014 # ## Scope: VIT, Vellore # ### The Link of dataset used here: https://www.kaggle.com/c/instacart-market-basket-analysis # ***Introduction to Association rule mining:*** # This notebook represents the working of apriori algorithm. apriori algorithm is used in many applications today for mining frequent itemsets and devising association rules from a transactional database. The parameters “support” and “confidence” are used. Support refers to items' frequency of occurrence; confidence is a conditional probability. Items in a transaction form an item set. # The main aim is to create association rules to identify the relations between products of dataset. here we show implementation, leveraging the apriori algorithm to generate simple {A} -> {B} association rules. # ![](https://miro.medium.com/max/875/1*-4cnnpMhGMrrQPlZY7DuTA.jpeg) # ## Association Rule Mining: # The item sets have been generated using apriori algorithm, we can start mining association rules. Given that we are only looking at item sets of size 2, the association rules we will generate will be of the form {A} -> {B}. One common application of these rules is in the domain of recommender systems like amazon basket, big basket, where customers who purchased item A are recommended item B. # Here are 3 key metrics to consider when evaluating association rules: # ![](https://www.researchgate.net/publication/337999958/figure/fig1/AS:867641866604545@1583873349676/Formulae-for-support-confidence-and-lift-for-the-association-rule-X-Y.ppm) # # Import Library from IPython.display import display import pandas as pd import numpy as np import sys from itertools import combinations, groupby from collections import Counter def size(obj): return "{0:.2f} MB".format(sys.getsizeof(obj) / (1000 * 1000)) # # Load Dataset import pandas as pd orders = pd.read_csv( "../input/instacart-market-basket-analysis/order_products__prior.csv" ) display(orders.head()) # ![](https://www.google.com/url?sa=i&url=https%3A%2F%2Ftowardsdatascience.com%2Fapriori-algorithm-tutorial-2e5eb1d896ab&psig=AOvVaw21hXmXZpHpXgRs2dKvQPck&ust=1614969399245000&source=images&cd=vfe&ved=0CAYQjRxqFwoTCLi4uoOkl-8CFQAAAAAdAAAAABAE) # ## Transform into association rule function format orders = orders.set_index("order_id")["product_id"].rename("item_id") display(orders.head(10)) type(orders) # * Returns number of unique orders # * generator that yields item pairs, one at a time # * Returns name associated with item def freq(iterable): if type(iterable) == pd.core.series.Series: return iterable.value_counts().rename("freq") else: return pd.Series(Counter(iterable)).rename("freq") def order_count(order_item): return len(set(order_item.index)) def get_item_pairs(order_item): order_item = order_item.reset_index().to_numpy() for order_id, order_object in groupby(order_item, lambda x: x[0]): item_list = [item[1] for item in order_object] for item_pair in combinations(item_list, 2): yield item_pair def merge_item_stats(item_pairs, item_stats): return item_pairs.merge( item_stats.rename(columns={"freq": "freqA", "support": "supportA"}), left_on="item_A", right_index=True, ).merge( item_stats.rename(columns={"freq": "freqB", "support": "supportB"}), left_on="item_B", right_index=True, ) def merge_item_name(rules, item_name): columns = [ "itemA", "itemB", "confidenceBtoA", "supportAB", "supportA", "supportB", "freqA", "freqAB", "freqB", "confidenceAtoB", "lift", ] rules = rules.merge( item_name.rename(columns={"item_name": "itemA"}), left_on="item_A", right_on="item_id", ).merge( item_name.rename(columns={"item_name": "itemB"}), left_on="item_B", right_on="item_id", ) return rules[columns] # **This function does the following:** # * It Calculates the item frequency and support # * Filter from order_item items below min support # * Recalculate item frequency and support # * Get item pairs generator def association_rules(order_item, min_support): print("Starting order_item: {:22d}".format(len(order_item))) item_stats = freq(order_item).to_frame("freq") item_stats["support"] = item_stats["freq"] / order_count(order_item) * 100 qualifying_items = item_stats[item_stats["support"] >= min_support].index order_item = order_item[order_item.isin(qualifying_items)] print("Items with support >= {}: {:15d}".format(min_support, len(qualifying_items))) print("Remaining order_item: {:21d}".format(len(order_item))) order_size = freq(order_item.index) qualifying_orders = order_size[order_size >= 2].index order_item = order_item[order_item.index.isin(qualifying_orders)] print("Remaining orders with 2+ items: {:11d}".format(len(qualifying_orders))) print("Remaining order_item: {:21d}".format(len(order_item))) item_stats = freq(order_item).to_frame("freq") item_stats["support"] = item_stats["freq"] / order_count(order_item) * 100 item_pair_gen = get_item_pairs(order_item) # Calculate item pair frequency and support item_pairs = freq(item_pair_gen).to_frame("freqAB") item_pairs["supportAB"] = item_pairs["freqAB"] / len(qualifying_orders) * 100 print("Item pairs: {:31d}".format(len(item_pairs))) item_pairs = item_pairs[item_pairs["supportAB"] >= min_support] print( "Item pairs with support >= {}: {:10d}\n".format(min_support, len(item_pairs)) ) item_pairs = item_pairs.reset_index().rename( columns={"level_0": "item_A", "level_1": "item_B"} ) item_pairs = merge_item_stats(item_pairs, item_stats) item_pairs["confidenceAtoB"] = item_pairs["supportAB"] / item_pairs["supportA"] item_pairs["confidenceBtoA"] = item_pairs["supportAB"] / item_pairs["supportB"] item_pairs["lift"] = item_pairs["supportAB"] / ( item_pairs["supportA"] * item_pairs["supportB"] ) return item_pairs.sort_values("lift", ascending=False) rules = association_rules(orders, 0.01) # * Replace item ID with item name and display association rules item_name = pd.read_csv("../input/instacart-market-basket-analysis/products.csv") item_name = item_name.rename( columns={"product_id": "item_id", "product_name": "item_name"} ) rules_final = merge_item_name(rules, item_name).sort_values("lift", ascending=False) df1 = rules_final df1 = df1.drop(columns=["lift", "freqA", "freqB"]) df1.head(11)
# # Para Ilustração | Utilizado Originalmente Localmente com Jupyter Notebook # import shutil import os # import glob # import cv2 # import matplotlib.pyplot as plt # import matplotlib.image as mpimg # from PIL import Image # import mahotas import numpy as np # import pandas as pd from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array # Gerando Amostra Mínima datagen = ImageDataGenerator( rotation_range=30, width_shift_range=0.2, height_shift_range=0.2, brightness_range=[0.1, 0.9], zoom_range=0.2, horizontal_flip=True, fill_mode="constant", ) def gerar_amostra_minima(dir, min): diretorios = [ filename for filename in os.listdir(dir) if os.path.isdir(os.path.join(dir, filename)) ] for i in range(len(diretorios)): arquivos = os.listdir( dir + "\\" + diretorios[i] ) # lista separando apenas os arquivos do caminho. arquivos = [arq for arq in arquivos if arq.lower().endswith(".jpg")] qtd = len(arquivos) qtd_gerar = min - qtd geradas = 0 if qtd_gerar >= qtd: qtd_amostra = qtd if (qtd_gerar / qtd).is_integer(): qtd_gerar_por_amostra = int(qtd_gerar / qtd) else: qtd_gerar_por_amostra = int(qtd_gerar / qtd) + 1 else: qtd_amostra = qtd_gerar qtd_gerar_por_amostra = 1 if qtd_gerar < 1: print( "A classe", diretorios[i], "já possui a quantidade mínima de imagens." ) continue else: for x in range(qtd_amostra): geradas_nesta_amostra = 0 img_caminho = dir + "\\" + diretorios[i] + "\\" + arquivos[x] # print("Gerando imagens a partir de", img_caminho) img = load_img(img_caminho) ximg = img_to_array(img) ximg = ximg.reshape((1,) + ximg.shape) for batch in datagen.flow( ximg, batch_size=1, save_to_dir=(dir + "\\" + diretorios[i]), save_prefix="DataGen-", save_format="jpg", ): geradas_nesta_amostra += 1 geradas += 1 if ( geradas >= qtd_gerar or geradas_nesta_amostra >= qtd_gerar_por_amostra or (qtd + geradas) == min ): # print(geradas_nesta_amostra, 'imagens geradas para esta amostra.') break # otherwise the generator would loop indefinitely print(geradas, "imagens geradas para a classe", diretorios[i]) dir = "D:\\DataSets\\Simpsons-Kaggle-jfgm2018\\simpsons_enriquecido_manualmente - meansampling" # dir = "D:\\DataSets\\Simpsons-Kaggle-jfgm2018\\teste" gerar_amostra_minima(dir, 522) import random def limitar_amostra_prefixo(dir, inicio, max): diretorios = [ filename for filename in os.listdir(dir) if os.path.isdir(os.path.join(dir, filename)) ] for i in range(len(diretorios)): arquivos = os.listdir( dir + "\\" + diretorios[i] ) # lista separando apenas os arquivos do caminho. total = len(arquivos) arquivos_datagen = [arq for arq in arquivos if arq.lower().startswith(inicio)] qtd_datagen = len(arquivos_datagen) removidos = [] while (total - len(removidos) > max) and (len(removidos) < qtd_datagen): x = random.randint(0, qtd_datagen - 1) if x in removidos: continue else: removidos.append(x) path_remove = dir + "\\" + diretorios[i] + "\\" + arquivos_datagen[x] os.remove(path_remove) print( len(removidos), "arquivos iniciados em '", inicio, "' removidos da classe", diretorios[i], ) dir = "D:\\DataSets\\Simpsons-Kaggle-jfgm2018\\simpsons_enriquecido_manualmente - oversampling" limitar_amostra_prefixo(dir, "datagen", 2297) def limitar_amostra(dir, max): diretorios = [ filename for filename in os.listdir(dir) if os.path.isdir(os.path.join(dir, filename)) ] for i in range(len(diretorios)): arquivos = os.listdir( dir + "\\" + diretorios[i] ) # lista separando apenas os arquivos do caminho. total = len(arquivos) removidos = [] if total <= max: qtd_remover = 0 print("Nenhum arquivo removido da classe", diretorios[i]) else: qtd_remover = total - max while total - len(removidos) > max: x = random.randint(0, total - 1) if x in removidos: continue else: removidos.append(x) path_remove = dir + "\\" + diretorios[i] + "\\" + arquivos[x] os.remove(path_remove) print(len(removidos), "arquivos removidos da classe", diretorios[i]) dir = "D:\\DataSets\\Simpsons-Kaggle-jfgm2018\\simpsons_enriquecido_manualmente - meansampling" limitar_amostra(dir, 522)
# Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Bread and butter import numpy as np import pandas as pd # Graphs import seaborn as sns import matplotlib.pyplot as plt import missingno # Models from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier # Tools & Validation from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from nltk import tokenize # Clean code import warnings warnings.filterwarnings("ignore") # # Titanic: predicting a tragedy # ___ # *The goal of this analysis is to correctly predict if a given passanger did or did not survive the Titanic catastrophe based on the variables provided:* # Variable | meaning # --- | --- # Survival | Survival # PassengerId | Unique Id of a passenger. # Pclass | Ticket class # Sex | Sex # Age | Age in years # Sibsp | Number of siblings / spouses aboard the Titanic # Parch | Number of parents / children aboard the Titanic # Ticket | Ticket number # Fare | Passenger fare # Cabin | Cabin number # Embarked | Port of Embarkation # We'll start by importing our data set and snooping arround it's variables and values. # We'll use Pandas to transform the .csv provided into easlily manipulable data frames. # Data we'll use to train our model df_train = pd.read_csv("/kaggle/input/titanic/train.csv") # Data we'll use to test our model df_test = pd.read_csv("/kaggle/input/titanic/test.csv") # What our final submission dataframe should look like submission_reference = pd.read_csv("/kaggle/input/titanic/gender_submission.csv") # Let's have a taste of what's inside our df df_train.head() # We can observe that most of our variables are categorical with the exceptions being: age and fare. # Knowing this will have an impact in the way me analyze and describe our data. In the next step we'll have a quick look at the main statistical relevant info for both of this types of variables. # df_train.describe() df_train.describe(include=["O"]) # One of the first things we observe is that our count is a little off. In an ideal scenario we'll have a complete dataset without missing data but I don't believe this is the case. df_train.isna().sum() # Plot graphic of missing values for our train set missingno.matrix(df_train, figsize=(30, 10)) # Plot graphic of missing values for our test set missingno.matrix(df_test, figsize=(30, 10)) # We observe some important wholes in our data in both the age and cabin variables. We also have two missing values in Embarked that we should take into account. # In this analysis we'll disregard out cabin variable given its amount of missing vales and it beign not descriptive enough. df_train = df_train.drop(columns=["Cabin"]) df_test = df_test.drop(columns=["Cabin"]) # # 1. Quantitative variables # ___ # We'll proceed to take a look at our quantitative variables: age and fare sns.set(color_codes=True) colors = sns.color_palette("muted") fig, axes = plt.subplots(1, 2, figsize=(14, 7)) sns.distplot(df_train["Age"], color=colors[0], ax=axes[0]) sns.distplot(df_train["Fare"], color=colors[1], ax=axes[1]) plt.suptitle("Distribution of Quantitative Variables", size=14) plt.tight_layout() plt.show() # * Age could've been a normal distribution but there is an important amount of (I'm assuming) babies on board. We should look into that # * The fare graph seems to indicate that most of the passangers rode the Titanic for free. Is this true? # Before moving on, let's look at **possible outliers** fig, axes = plt.subplots(1, 2, figsize=(14, 7)) sns.boxplot(y=df_train["Age"], color=colors[0], ax=axes[0]) sns.boxplot(y=df_train["Fare"], color=colors[1], ax=axes[1]) plt.suptitle("Distribution of Quantitative Variables", size=14) plt.tight_layout() plt.show() # It seems like someone went overboard (pun intended) with the fare price. Let's look into it. df_train[df_train["Fare"] > 500] # Interestingly enough we have three persons, all three aged 35, who paid over $500 for theit tickets. # What's even more interesenting: they all survived # **Is there a correlation between survival and fare price?** print("Number of passangers that survived") print(df_train["Survived"].value_counts()) fig, axes = plt.subplots(1, 2, figsize=(14, 7)) sns.boxplot(x=df_train["Survived"], y=df_train["Age"], color=colors[0], ax=axes[0]) sns.boxplot(x=df_train["Survived"], y=df_train["Fare"], color=colors[1], ax=axes[1]) plt.suptitle("Correlation between age/fare paid and survival", size=14) plt.tight_layout() plt.show() # Maybe by slight marging but, as a general trend, you should be younger and richer to survive... # Nothing new under the sun. # We should finally deal with the **missing values in our test set**. In this case I will just set a mean fare depending on the class to which the passanger belonged to. mean_fare_third = df_train["Fare"][df_train["Pclass"] == 3].mean() df_test["Fare"][df_test["Fare"].isna()] = mean_fare_third # ____ # **We still have a problem regarding missing values though.** # How should we approach filling them? # We can try using the mean or median but it will be interesting to narrow the arbitrarity a little. Maybe we can use sex as a trend indicator for age? # Let's have a look. print(df_train["Age"][df_train["Sex"] == "female"].mean()) print(df_train["Age"][df_train["Sex"] == "male"].mean()) # Is there something else we could use to **narrow this down** a little more? # Is there something in the **name variable** that could help us out? # ## Working with our Name variable # ____ df_train["Name"].describe() # * **Good news is:** we have all the names of our passangers! Hoorray! # * **Bad news is:** we have all the names of our passangers. This means 891 unique values. What can we do with them? # #### If we look for something in common between them, their **preffixes** stand out. tokenizer = tokenize.RegexpTokenizer("\w+[.]") df_train["suffix"] = df_train["Name"].apply( lambda name: "".join(tokenizer.tokenize(name)) ) df_train["suffix"] = df_train["suffix"].str.strip(".") # We do the same process to test so we can maintain uniform datasets df_test["suffix"] = df_test["Name"].apply( lambda name: "".join(tokenizer.tokenize(name)) ) df_test["suffix"] = df_test["suffix"].str.strip(".") df_test["suffix"].value_counts() # #### Extracting suffixes make the name variable much more manegeable. # We can now use this feature to see if we can further narrow down our age filling problem. print("Mr. mean age: ", df_train["Age"][df_train["suffix"] == "Mr"].mean()) print("Mrs. mean age: ", df_train["Age"][df_train["suffix"] == "Mrs"].mean()) print("Miss. mean age: ", df_train["Age"][df_train["suffix"] == "Miss"].mean()) # Let's look at the suffixes of the people without age df_train["suffix"][df_train["Age"].isna()].value_counts() # #### We have four masters and one dr without age. # We can try to mean the ages of this suffixes and see what we find. In the case of "Master" we have fourty entries, this should be enough to give us a broad picture. # On the other hand our "Dr" supositions might not be as strong given that we only have seven entries in our dataset. print("Mr. mean age: ", df_train["Age"][df_train["suffix"] == "Mr"].mean()) print("Mrs. mean age: ", df_train["Age"][df_train["suffix"] == "Mrs"].mean()) print("Miss. mean age: ", df_train["Age"][df_train["suffix"] == "Miss"].mean()) print("Master. mean age: ", df_train["Age"][df_train["suffix"] == "Master"].mean()) print("Dr. mean age: ", df_train["Age"][df_train["suffix"] == "Dr"].mean()) # It seems that "Master" is a suffix used to refer to young people. Who would've though of that?! # If we had used the mean age of male from Masters, we would've been **WAY off**. # Regarding "Dr" we won't use this mean because the number of entries is too low to be sure. # **Let's proceed to fill our missing values.** def apply_mean(df): df.loc[(df["suffix"] == "Mr") & (df["Age"].isna()), "Age"] = 32 df.loc[(df["suffix"] == "Dr") & (df["Age"].isna()), "Age"] = 32 df.loc[(df["suffix"] == "Mrs") & (df["Age"].isna()), "Age"] = 35 df.loc[(df["suffix"] == "Ms") & (df["Age"].isna()), "Age"] = 35 df.loc[(df["suffix"] == "Miss") & (df["Age"].isna()), "Age"] = 21 df.loc[(df["suffix"] == "Master") & (df["Age"].isna()), "Age"] = 4 return df df_train = apply_mean(df_train) df_test = apply_mean(df_test) # ### We manage to fill our missing data! # #### Before finalizing this part of the analysis I would like to get rid of the suffixes that are to scarse to add information. # In order to do so we'll replace the with "Mr" or "Mrs" accordingly. filter1 = ( (df_train["suffix"] != "Master") & (df_train["suffix"] != "Mr") & (df_train["suffix"] != "Mrs") & (df_train["suffix"] != "Miss") ) df_others = df_train[filter1] df_ok = df_train[~filter1] df_others["suffix"][df_others["Sex"] == "male"] = "Mr" df_others["suffix"][df_others["Sex"] == "female"] = "Mrs" df_train = df_ok.merge(df_others, how="outer") # Now again we apply the changes to test filter2 = ( (df_test["suffix"] != "Master") & (df_test["suffix"] != "Mr") & (df_test["suffix"] != "Mrs") & (df_test["suffix"] != "Miss") ) df_others2 = df_test[filter2] df_ok2 = df_test[~filter2] df_others2["suffix"][df_others2["Sex"] == "male"] = "Mr" df_others2["suffix"][df_others2["Sex"] == "female"] = "Mrs" df_test = df_ok2.merge(df_others2, how="outer") # ### We are good to go! It's time to review our qualitative variables # # 2. Qualitative Variables # ___ # First let's refresh our variables. df_train.describe(include=["O"]) # We already worked with "Name" so we are going to drop it. # For the rest of the variables our task at hand is **encoding** them so our model can work with them. # We should also remember that we have some **missing values** in our "Embarked" variable. # Let's take a look to the distribution ok our variables. sns.set(color_codes=True) colors = sns.color_palette("muted") fig, axes = plt.subplots(1, 3, figsize=(14, 7)) sns.countplot(df_train["Sex"], ax=axes[0]) sns.countplot(df_train["Embarked"], ax=axes[1]) sns.countplot(df_train["suffix"], ax=axes[2]) plt.suptitle("Categorical Variables Frequency", size=15) plt.tight_layout() plt.show() df_train["Embarked"][df_train["Embarked"].isna()] = "S" df_train.isna().sum() # Now that we finally got rid of all our null values, let's do the encoding. # We'll create a function to drop and encode variables. # This will allow us to apply the same process to the train and test sets. def dummies( df, drop_col=["Sex", "Embarked", "suffix", "Name", "Ticket", "PassengerId"] ): # Get dummies. df_sex = pd.get_dummies(df["Sex"]) df_embark = pd.get_dummies(df["Embarked"]) df_suffix = pd.get_dummies(df["suffix"]) # We drop all the columns that aren't usefull, including Passanger Id, Ticket and Name. df_encoded = df.drop(columns=drop_col, axis=0) # We add all the encoded df to our new df df_encoded = pd.concat([df_encoded, df_sex, df_embark, df_suffix], axis=1) return df_encoded # Apply fun to our dfs df_train_enc = dummies(df_train) df_test_enc = dummies(df_test) # ## Let's take a look to our final dataframe! df_train_enc.head() # To do our las analysis we'll change sex to 0 for male and 1 for female df_train["Sex_binary"] = np.where(df_train["Sex"] == "female", 1, 0) fig, axes = plt.subplots(1, 3, figsize=(14, 7)) sns.distplot( df_train.loc[df_train["Survived"] == 1]["SibSp"], kde_kws={"label": "Survived"}, ax=axes[0], ) sns.distplot( df_train.loc[df_encoded["Survived"] == 0]["SibSp"], kde_kws={"label": "Did not survive"}, ax=axes[0], ) sns.distplot( df_train.loc[df_train["Survived"] == 1]["Parch"], kde_kws={"label": "Survived"}, ax=axes[1], ) sns.distplot( df_train.loc[df_train["Survived"] == 0]["Parch"], kde_kws={"label": "Did not survive"}, ax=axes[1], ) sns.distplot( df_train.loc[df_train["Survived"] == 1]["Sex_binary"], kde_kws={"label": "Survived"}, ax=axes[2], ) sns.distplot( df_train.loc[df_train["Survived"] == 0]["Sex_binary"], kde_kws={"label": "Did not survive"}, ax=axes[2], ) plt.suptitle("Survival rates for SibSp/Parch/Sex", size=15) plt.legend() plt.tight_layout() plt.show() # Here we can observe the relation between some of our non explored variables and the survival. At first glance we can easily observe that men were more unlikely to survive where woman had an almos 50/50 chance. # It is also interesting to se that those with one or more siblings/spouses and parent/children relation where more likely to survive. # # Model training # ___ # First we should divide our set into train and test set. X_train = df_train_enc.drop(columns=["Survived"], axis=1) y_train = df_train_enc["Survived"] X_test = df_test_enc # Our test set doesn't include a "Survived" variable so there's no need for a split. print(y_train.shape) print(X_train.shape) print(X_test.shape) X_train # Looks like we're good to go. # Now let's look at the models we'll be using. # * Multinomial Naive Bayes # * Logistic Regression # * K-Nearest Neighbors # * Support Vector Machines # * Random Forest Classifier # (It isn't the goal of this notebook to give a full review on the nature of this models, only a way in which they can be used.) features = X_train.copy() targets = y_train.copy() # For this particulary project we'l be comparing this five models. To lea models = [ MultinomialNB(), LogisticRegression(multi_class="multinomial", max_iter=10000), KNeighborsClassifier(), SVC(), RandomForestClassifier(), DecisionTreeClassifier(), ] # Determines the cross-validation splitting strategy. 5 is the default. CV = 5 # Df we'll use to store our results cv_df = pd.DataFrame(index=range(CV * len(models))) entries = [] # Here we loop over the models and fit our cross validation model to find the one that performs the best for model in models: model_name = model.__class__.__name__ accuracies = cross_val_score(model, features, targets, scoring="accuracy", cv=CV) for fold_idx, accuracy in enumerate(accuracies): entries.append((model_name, fold_idx, accuracy)) # We proceed to make a df with all the info we recolected. cv_df = pd.DataFrame(entries, columns=["model_name", "fold_idx", "accuracy"]) # visualizing the results sns.set(color_codes=True) sns.boxplot(x="model_name", y="accuracy", data=cv_df) sns.stripplot( x="model_name", y="accuracy", data=cv_df, size=8, jitter=True, edgecolor="gray", linewidth=2, ) plt.title("Classification Models", fontsize=20) plt.ylabel("Accuracy", fontsize=15) plt.xlabel("") plt.xticks(fontsize=15, rotation=90) plt.yticks(fontsize=15, rotation=0) plt.show() # Looking at avg r squared final_comp = ( cv_df.groupby("model_name") .accuracy.mean() .reset_index() .sort_values(by="accuracy", ascending=False) ) final_comp # ### Not bad! # We should also try finding which were the **most important features** for our model. Let's look into it using the **Random Forest Classifier** as an example. # The following function allow us to get the most important features and plot them def feature_importance(model, data): fea_imp = pd.DataFrame({"imp": model.feature_importances_, "col": data.columns}) fea_imp = fea_imp.sort_values(["imp", "col"], ascending=[True, False]).iloc[-30:] _ = fea_imp.plot(kind="barh", x="col", y="imp", figsize=(20, 10)) model_rfc = RandomForestClassifier() model_rfc.fit(X_train, y_train) # Plot the feature importance scores feature_importance(model_rfc, X_train) # #### It seems **"Fare"** is a very important feature for our model.We had theorized that those with money where more likely to survive. Maybe that has something to do with it. # #### **"Age"** also seem to be an improtant feature, maybe the phrase famous phrase checks out: # ## **"Women and children first"...** # # Fine tunning our model # ___ # Knowing wich models are more effective is great but we always want more. # It's time to apply our tunning and optimization algorithms in order to get the best possible prediction # #### We'll apply this method to our two best performing models: # * Random Forest Classifier # * Logistic Regression # Create first pipeline for base without reducing features. pipe = Pipeline([("classifier", RandomForestClassifier())]) # Create param grid. param_grid = [ { "classifier": [LogisticRegression()], "classifier__penalty": ["l1", "l2"], "classifier__C": np.logspace(-4, 4, 20), "classifier__solver": ["liblinear"], }, { "classifier": [RandomForestClassifier()], "classifier__n_estimators": list(range(10, 101, 10)), "classifier__max_features": list(range(6, 32, 5)), }, ] # Create grid search object model = GridSearchCV(pipe, param_grid=param_grid, cv=5, verbose=2, n_jobs=-1) # Fit on data model.fit(X_train, y_train) best_performer = model.best_score_ best_model = model.best_estimator_ print(f"Best accuracy: {str(best_performer)}") print() print(f"Best model: {str(best_model)}") # ### It looks like **Logistic Regression** is our best bet! # Let's use this model to make our prediction. # # Final Prediction # ___ y_pred = model.predict(X_test) # We'll look into our predicted df and the example to make sure the shape is the same. print(f"Example prediction: {submission_reference.shape}") print(f"My prediction: {y_pred.shape}") # Generate Submission File StackingSubmission = pd.DataFrame({"PassengerId": df_test.index, "Survived": y_pred}) StackingSubmission.to_csv("my_titanic_pred.csv", index=False)
# ![](https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQefQbI71gm8lDGPrJ516zT5S5qtnnGVIdz4A&usqp=CAU)techgabyte.com import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df1 = pd.read_csv( "../input/python-developers-survey-2020/Python Developers Survey questions_outside.csv", encoding="utf8", ) pd.set_option("display.max_columns", None) df1.head() df = pd.read_csv( "../input/python-developers-survey-2020/2020_sharing_data_outside.csv", encoding="utf8", ) pd.set_option("display.max_columns", None) df.head() df.isnull().sum() df["are.you.datascientist"].value_counts() # #Are you Data Scientist? Duh! df["is.python.main"].value_counts() # #Is Python Main? I don't use Python. Python uses Me. df["years.of.coding"].value_counts() df["years.of.coding"].value_counts().plot.barh( color=["blue", "red", "lime", "purple", "teal"], title="Years of Coding" ) # #Years of coding? Zero, Null, Zip, Nulla, None. df["python.years"].value_counts() df["python.years"].value_counts().plot.barh( color=["blue", "red", "lime", "purple", "teal"], title="Python Years" ) # #Python years? I think 2 years Kaggling in Python. df["other.purposes.Data analysis"].value_counts() # #Other purposes than DS? Fun ##Code by Taha07 https://www.kaggle.com/taha07/data-scientists-jobs-analysis-visualization/notebook from wordcloud import WordCloud from wordcloud import STOPWORDS stopwords = set(STOPWORDS) wordcloud = WordCloud(background_color="black", height=2000, width=2000).generate( str(df["main.purposes"]) ) plt.rcParams["figure.figsize"] = (12, 12) plt.axis("off") plt.imshow(wordcloud) plt.title("Python Main Purposes") plt.show() # #Python Purposes: Personal Educational Work Projects. Perfect WordCloud. df["other.purposes.Machine learning"].value_counts() # #Machine Learning? Epochs In MPWolke Out. Maybe in the future with Rapids. # ![](https://blog.4linux.com.br/wp-content/uploads/2019/07/Screenshot-from-2019-07-12-21-01-17.png)blog.4linux.com.br df["how.involved.Educational purposes"].value_counts() df["data.frameworks.Matplotlib"].value_counts() # ![](https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSSNdvgWE2rt3bFzOCuMpKqp6fyg0Tzg9wvaw&usqp=CAU)kdnuggets.com df["data.frameworks.Seaborn"].value_counts() df["data.frameworks.Keras"].value_counts() # ![](https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQmw7LqnuYq8g0f72px2S7SqQGYtRYsKiXHUg&usqp=CAU)deepsense.ai df["age"].value_counts() df["age"].value_counts().plot.barh( color=["blue", "red", "lime", "purple", "teal", "cyan"], title="Age Group", ) df["country.live"].value_counts()
import os import random import numpy as np import pandas as pd import tensorflow as tf from tensorflow import keras data_dir = "/kaggle/input/preprocessed-brain-mri-images/brain-tumor/processed-images" batch_size = 32 img_height = 224 img_width = 224 data = [] labels = [] for subdir in os.listdir(data_dir): subdir_path = os.path.join(data_dir, subdir) if os.path.isdir(subdir_path): for filename in os.listdir(subdir_path): file_path = os.path.join(subdir_path, filename) if file_path.endswith(".jpg") or file_path.endswith(".png"): data.append(file_path) labels.append(subdir) print(len(data)) print(len(labels)) df = pd.DataFrame({"filename": data, "class": labels}) from sklearn.model_selection import train_test_split train_df, test_df = train_test_split(df, test_size=0.2) datagen = keras.preprocessing.image.ImageDataGenerator() def initial_training( img_height, img_width, batch_size, datagen, train_df, test_df, dropout_rate ): train_data = datagen.flow_from_dataframe( train_df, x_col="filename", y_col="class", target_size=(img_height, img_width), batch_size=batch_size, class_mode="categorical", ) test_data = datagen.flow_from_dataframe( test_df, x_col="filename", y_col="class", target_size=(img_height, img_width), batch_size=batch_size, class_mode="categorical", ) base_model = tf.keras.applications.resnet50.ResNet50( include_top=False, weights="imagenet", input_shape=(img_height, img_width, 3) ) base_model.trainable = False image_batch, label_batch = next(iter(train_data)) feature_batch = base_model(image_batch) global_average_layer = tf.keras.layers.GlobalAveragePooling2D() feature_batch_average = global_average_layer(feature_batch) prediction_layer = keras.Sequential( [ tf.keras.layers.Dense(128), tf.keras.layers.Dropout(dropout_rate), tf.keras.layers.Dense(3), ] ) prediction_batch = prediction_layer(feature_batch_average) preprocess_input = tf.keras.applications.resnet50.preprocess_input inputs = tf.keras.Input(shape=(img_height, img_width, 3)) x = preprocess_input(inputs) x = base_model(x, training=False) x = global_average_layer(x) x = tf.keras.layers.Dropout(dropout_rate + 0.1)(x) outputs = prediction_layer(x) model = tf.keras.Model(inputs, outputs) base_learning_rate = 0.0001 model.compile( optimizer=tf.keras.optimizers.experimental.Adam( learning_rate=base_learning_rate ), loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True), metrics=["accuracy"], ) initial_epochs = 7 history = model.fit(train_data, epochs=initial_epochs, validation_data=test_data) return model def create_model(model, fine_tune_start): base_model = model.get_layer(index=3) base_model.trainable = True fine_tune_at = fine_tune_start for layer in base_model.layers[:fine_tune_at]: layer.trainable = False base_learning_rate = 0.0001 model.compile( loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True), optimizer=tf.keras.optimizers.Adam(learning_rate=base_learning_rate / 10), metrics=["accuracy"], ) return model def fine_tuning( img_height, img_width, batch_size, datagen, train_df, test_df, model, fine_tune_start, acc_per_comb, ): fine_tuning_epoch = 12 train_data = datagen.flow_from_dataframe( train_df, x_col="filename", y_col="class", target_size=(img_height, img_width), batch_size=batch_size, class_mode="categorical", ) test_data = datagen.flow_from_dataframe( test_df, x_col="filename", y_col="class", target_size=(img_height, img_width), batch_size=batch_size, class_mode="categorical", ) fine_tuning_model = create_model(model, fine_tune_start) history = fine_tuning_model.fit( train_data, validation_data=test_data, epochs=fine_tuning_epoch ) scores = fine_tuning_model.evaluate(test_data) acc_per_comb.append(scores[1]) return fine_tuning_model fine_tune_start_list = [100, 120, 140] dropout_rate_list = [0.2, 0.3, 0.4] combination = [] acc_per_comb = [] def grid_search(fine_tune_start, dropout_rate, acc_per_comb): model = initial_training( img_height, img_width, batch_size, datagen, train_df, test_df, dropout_rate ) fine_tuned_model = fine_tuning( img_height, img_width, batch_size, datagen, train_df, test_df, model, fine_tune_start, acc_per_comb, ) return for fine_tune_start in fine_tune_start_list: for dropout_rate in dropout_rate_list: combination.append([fine_tune_start, dropout_rate]) grid_search(fine_tune_start, dropout_rate, acc_per_comb) print(combination) print(acc_per_comb) best_comb_index = 0 best_acc = 0 for i in range(len(acc_per_comb)): if i == 0: best_acc = acc_per_comb[i] elif best_acc < acc_per_comb[i]: best_acc = acc_per_comb[i] best_comb_index = i print(combination[best_comb_index])
# * [Introduction](#chapter1) # * [Theory](#chapter2) # * [Importing Data & Libraries](#chapter3) # * [Extracting Tweet Metadata](#chapter4) # * [Cleaning Tweets](#chapter5) # * [EDA](#chapter6) # * [BERT Model](#chapter7) # * [Building Model Architecture](#section_7_1) # * [Defining Pre-Processing and Training Functions](#section_7_2) # * [Training and Validation](#section_7_3) # * [RoBERTa Model](#chapter8) # * [Building Model Architecture](#section_8_1) # * [Training and Validation](#section_8_2) # * [FNN Metadata Model](#chapter9) # * [Building Model Architecture](#section_9_1) # * [Training and Validation](#section_9_2) # * [Model Comparison](#chapter10) # * [Final Prediction](#chapter11) # ## Introduction # The dataset of Disaster Tweets comprises several thousand tweets that have been manually categorized by humans as either being relevant to an actual disaster or not having anything to do with a disaster. For example, someone may colloquially use the word "fire" to describe a song, while other tweets containing the word "fire" may actually be describing a real fire. # In this notebook, I will be building NLP classification models to predict whether tweets in the test dataset are actual disasters or just false alarms. The models will rely mostly on BERT and RoBERTa, two powerful NLP models created by researchers at Google AI Language and at Facebook AI, respectively. I will also be comparing the performance of BERT and RoBERTa against a simple Feed-forward Neural Network (FNN) with metadata features that will be extracted from the text. # To build my models, I will be using the transformers library from HuggingFace with PyTorch. The transformers library from HuggingFace is a widely used open-source library for working with transformer-based models such as BERT, GPT-2, and RoBERTa. It provides a comprehensive set of pre-trained models as well as tools for pre-processing, fine-tuning, and evaluation, making it easy to implement and experiment with these NLP models. # ## Theory # BERT is known for its ability to perform well on a wide range of NLP tasks, including text classification, question answering, and language translation. BERT is particularly notable for its ability to understand the context and meaning of words in a sentence or paragraph, which has led to its use in search engines to more accurately produce the closest results for a given search. # BERT stands for Bidirectional Encoder Representations from Transformers, and was first published in 2018. It is a neural network model that is differentiated among other existing models by its ability to extract context from reading a sentence both forwards and backwards (i.e., bidirectionally). # Take the classic example below: # ![image.png](attachment:33da2b37-e88f-48bd-b99a-723c4a40709b.png) # Previous NLP models would likely correctly predict that the word "bank" in the first sentence relates to a river bank, as it is reading the sentence front to back. However, it would be more likely to misclassify the meaning of "bank" in the second sentence, as the context needed to make the correct prediction (financial institution) comes after the word itself. BERT is differentiated in that it will perform both a forwards and a backwards pass in order to infer the context of the word. # One of the key components of the BERT model is masked language modeling (MLM). MLM is a technique used during pre-training where random words in a sentence are masked, and the model is trained to predict the missing word. By doing so, BERT learns to understand the context of the masked word and its relationship to the rest of the sentence. MLM is particularly useful in handling the problem of polysemy, where a single word can have multiple meanings depending on the context in which it appears, as we saw above. By training on a large corpus of text using MLM, BERT is able to develop a robust understanding of the contextual nuances of language. # Another important aspect of the BERT model is next sentence prediction (NSP). This is a pre-training task where the model is presented with pairs of sentences and is trained to predict whether they are logically connected or not. By training on this task, BERT learns to understand the relationships between sentences, which is important in tasks such as question answering and textual entailment. NSP also helps the model develop a general understanding of the structure of language, which allows it to handle a wide range of natural language processing tasks effectively. # RoBERTa (Robustly Optimized BERT approach) is an extension of the BERT model that was introduced by Facebook AI in 2019. It is essentially an improved version of BERT that addresses some of the weaknesses of the original model. While BERT achieved state-of-the-art results in several NLP tasks, RoBERTa has surpassed it on several benchmarks. # One of the key differences between RoBERTa and BERT is in the way they are pre-trained. BERT was trained on a large corpus of text using MLM and NSP, as described above. RoBERTa, on the other hand, was trained using the same masked language modeling objective but with several modifications. The authors of RoBERTa increased the batch size, training data and training time, and also removed the next sentence prediction objective. RoBERTa also uses a different tokenization method which allows it to better handle rare words and tasks where a large vocabulary is important. These modifications allowed RoBERTa to achieve better performance than BERT on several NLP tasks. # Importing necessary libraries # Data cleaning, EDA, and visualization import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import re from sklearn.feature_extraction.text import CountVectorizer import nltk from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator from PIL import Image from spellchecker import SpellChecker # For building NN with BERT, RoBERTa, and metadata import torch import tensorflow as tf from transformers import BertTokenizerFast, BertForSequenceClassification from transformers import RobertaTokenizerFast, RobertaForSequenceClassification from torch.utils.data import DataLoader, TensorDataset, random_split from tensorflow.keras.losses import BinaryCrossentropy from sklearn.metrics import confusion_matrix import torch.nn as nn import torch.nn.functional as F from torchinfo import summary from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score import torch.optim as optim from sklearn.model_selection import train_test_split import warnings # Ignore warnings warnings.filterwarnings("ignore") from torch.utils.data import Dataset from sklearn.preprocessing import StandardScaler # Set random seed for reproducibility import random random_seed = 42 random.seed(random_seed) np.random.seed(random_seed) torch.manual_seed(random_seed) # Set cuDNN flags for deterministic behavior and disable benchmarking torch.backends.cudnn.deterministic = ( True # Ensure deterministic convolution algorithms are used ) torch.backends.cudnn.benchmark = ( False # Disable automatic tuning of convolution algorithms ) # Checks if GPU is available for use device = "cuda" if torch.cuda.is_available() else "cpu" # ## Importing Data & Libraries # Import datasets train = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") test = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv") train.to_csv("train.csv") test.to_csv("test.csv") # Combine for cleaning and text pre-processing df = pd.concat([train, test], axis=0) # Inspecting data display(df.head()) # ## Extracting Tweet Metadata def add_tweet_metadata(df: pd.DataFrame) -> pd.DataFrame: """ Extracts metadata from a DataFrame of tweets and adds the information as columns to the DataFrame. Parameters: df (pandas.DataFrame): The DataFrame of tweets to add metadata to. Returns: pandas.DataFrame: The original DataFrame with added columns for tweet metadata. """ # Number of words in each tweet (excluding mentions, URLs, and hashtags) df["word_count"] = df["text"].apply( lambda x: len(re.findall(r"\b(?<![#@])\w+\b", x)) ) # Number of unique words in each tweet (excluding mentions, URLs, and hashtags) df["unique_word_count"] = df["text"].apply( lambda x: len(set(re.findall(r"\b(?<![#@])\w+\b", x))) ) # Number of characters df["character_count"] = df["text"].apply(lambda x: len(x)) # Number of hashtags df["hashtag_count"] = df["text"].apply(lambda x: len(re.findall(r"#\w+", x))) # Number of mentions df["mention_count"] = df["text"].apply(lambda x: len(re.findall(r"@\w+", x))) # Number of URLs df["url_count"] = df["text"].apply( lambda x: len( re.findall( r"http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+", x, ) ) ) # Count the number of capitalized words df["capitalized_word_count"] = df["text"].apply( lambda x: len(re.findall(r"\b[A-Z][a-z]*\b", x)) ) # Count the proportion of capitalized words df["capitalized_word_proportion"] = df["capitalized_word_count"] / df["word_count"] return df # Create new columns in dataframe with metadata add_tweet_metadata(df) # ## Cleaning Tweets # Below, I will define a function that will clean the tweets by removing URLs, mentions, and punctuation, as well as splitting up hashtags into individual words. The function will also lowercase all words. # There are many tweets in the dataset containing the word 'amp'. Upon doing some further research, I found that 'amp' is just a stand-in for the ampersand symbol (&), so that will be cleaned from the text as well. # Cleaning data to remove punctuation, URLs, hashtags, mentions, and splitting up words # that are strung together def clean_text(text: str) -> str: """ This function cleans text to remove punctuation, URLs, mentions, and hashtags, occurrence of the word 'amp', and splits up words that are strung together into individual words. The function also lowercases all words. Parameters: text (str): Text to be cleaned. Returns: str: Cleaned text. """ # Remove URLs text = re.sub(r"http\S+", "", text) # Remove mentions text = re.sub(r"@\w+", "", text) # Remove punctuation except for hashtags text = re.sub(r"[^\w\s#]", "", text) # Split up hashtags into individual words and remove # text = re.sub( r"#(\w+)", lambda x: " ".join( re.findall(r"[A-Z]?[a-z]+|[A-Z]+(?=[A-Z][a-z])|[\'\w]+", x.group(1)) ), text, ) # Convert to lowercase text = text.lower() # Remove 'amp' text = re.sub(r"\bamp\b", "", text) return text # Create new column with cleaned text df["text_cleaned"] = df["text"].apply(clean_text) display(df.isna().sum()) # clean keyword column df["keyword"] = df["keyword"].str.replace("%20", " ") display(df["keyword"].unique()) # The 'location' column contains many missing values, and seems to contain information that is not even location-specific, so I will be dropping it as I don't think it will be useful for the metadata model. # The 'keyword' column on the other hand may be helpful as some words may be more likely to refer to disasters than others. For example, it's pretty easy to use "fire" coloquially, but less easy to use "bomber". # Below, I will define a function that should help extract keywords from the cleaned text. def assign_keyword(df, keywords): for index, row in df.iterrows(): if pd.isna(row["keyword"]) or row["keyword"] == "": for keyword in keywords: if keyword in row["text_cleaned"]: df.at[index, "keyword"] = keyword break return df keywords_array = [ "crash", "earthquake", "fire", "disaster", "emergency", "tornado", "flood", "ablaze", "accident", "aftershock", "airplane accident", "ambulance", "annihilated", "annihilation", "apocalypse", "armageddon", "army", "arson", "arsonist", "attack", "attacked", "avalanche", "battle", "bioterror", "bioterrorism", "blaze", "blazing", "bleeding", "blew up", "blight", "blizzard", "blood", "bloody", "blown up", "body bag", "body bagging", "body bags", "bomb", "bombed", "bombing", "bridge collapse", "buildings burning", "buildings on fire", "burned", "burning", "burning buildings", "bush fires", "casualties", "casualty", "catastrophe", "catastrophic", "chemical emergency", "cliff fall", "collapse", "collapsed", "collide", "collided", "collision", "crashed", "crush", "crushed", "curfew", "cyclone", "damage", "danger", "dead", "death", "deaths", "debris", "deluge", "deluged", "demolish", "demolished", "demolition", "derail", "derailed", "derailment", "desolate", "desolation", "destroy", "destroyed", "destruction", "detonate", "detonation", "devastated", "devastation", "displaced", "drought", "drown", "drowned", "drowning", "dust storm", "electrocute", "electrocuted", "emergency plan", "emergency services", "engulfed", "quarantine", "hazard", "storm", "epicentre", "evacuate", "evacuated", "evacuation", "explode", "exploded", "explosion", "eyewitness", "famine", "fatal", "fatalities", "fatality", "fear", "fire truck", "first responders", "flames", "flattened", "flooding", "floods", "forest fire", "forest fires", "hail", "hailstorm", "harm", "hazardous", "heat wave", "hellfire", "hijack", "hijacker", "hijacking", "hostage", "hostages", "hurricane", "injured", "injuries", "injury", "inundated", "inundation", "landslide", "lava", "lightning", "loud bang", "mass murder", "mass murderer", "massacre", "mayhem", "meltdown", "military", "mudslide", "natural disaster", "nuclear disaster", "nuclear reactor", "obliterate", "obliterated", "obliteration", "oil spill", "outbreak", "pandemonium", "panic", "panicking", "police", "quarantined", "radiation emergency", "rainstorm", "razed", "refugees", "rescue", "rescued", "rescuers", "riot", "rioting", "rubble", "ruin", "sandstorm", "screamed", "screaming", "screams", "seismic", "sinkhole", "sinking", "siren", "sirens", "smoke", "snowstorm", "stretcher", "structural failure", "suicide bomb", "suicide bomber", "suicide bombing", "sunk", "survive", "survived", "survivors", "terrorism", "terrorist", "threat", "thunder", "thunderstorm", "tragedy", "trapped", "trauma", "traumatised", "trouble", "tsunami", "twister", "typhoon", "upheaval", "violent storm", "volcano", "war zone", "weapon", "weapons", "whirlwind", "wild fires", "wildfire", "windstorm", "wounded", "wounds", "wreck", "wreckage", "wrecked", ] df = assign_keyword(df, keywords_array) display(df["keyword"].isna().sum()) # There are still 16 tweets with missing keywords. I will visualize them below to see if we can manually extract them. display(df[df["keyword"].isna()]["text_cleaned"].values) display(df[df["keyword"].isna()]["text"].values) df["keyword"] = df["keyword"].fillna("none") # Interestingly, none of the above tweets seem to have keywords in them that could be mistaken for a disaster. They might be in the dataset erroneously. I will group them all into a keyword 'none' that indicates that they don't have any disaster words in them. The neural network should be able to pick up that tweets with this keyword should all belong to the 'Non-Disaster' class. # Below, I will define a function to count spelling errors in the cleaned tweets. Spelling errors could potentially be an indication of class, as news outlets and those reporting real disasters may proof read their tweets more frequently than people just casually tweeting about their daily lives. We will visualize the difference between classes in a bit. # Create an instance of SpellChecker spell = SpellChecker() # Define a function to count spelling errors in a tweet def count_spelling_errors(text: str) -> int: """ Count the number of spelling errors in a tweet. Parameters: text (str): The text of the tweet to check. Returns: int: The number of spelling errors in the tweet. """ # Split the tweet into words words = text.split() # Count the number of spelling errors num_errors = 0 for word in words: # Check if the word is misspelled if not spell.correction(word) == word: num_errors += 1 return num_errors # Apply the function to the 'text' column and store the result in a new column called 'spelling_error_count' df["spelling_error_count"] = df["text_cleaned"].apply(count_spelling_errors) # Binary feature that shows presence of spelling errors df["has_spelling_errors"] = df["spelling_error_count"].apply( lambda x: 1 if x > 0 else 0 ) # ## Exploratory Data Analysis # Distribution of binary classes in training set # Set palette colors = sns.cubehelix_palette() # Pie chart to show distribution fig = plt.figure(figsize=(10, 7)) labels = ["0", "1"] sizes = train["target"].value_counts() plt.pie(sizes, labels=labels, colors=colors, autopct="%1.1f%%") plt.legend() plt.title("Distribution of Classes") plt.show() # Based on the above, the distribution of classes is pretty similar, with 57% of tweets belonging to the 'Non-Disaster' Class and 43% of tweets belonging to the 'Disaster' class. This means that we won't have to worry too much about class imbalance in the dataset, which would require us to resample the dataset or otherwise try to mitigate the effect of one class being a majority. # Below, I will define a function to extract metadata from the tweets in the dataset. Later, we will visualize this metadata for both Disaster and Non-Disaster tweets to see if there are differences between classes in features such as tweet length, number of hashtags, and the presence of spelling errors. # Define a function to plot features by class def distr_by_class(data: pd.DataFrame, column: str, ax: plt.Axes): """ Creates an overlaid histogram/distribution graph for features in a training set given their class. Parameters: - data (pd.DataFrame): The dataframe containing data to plot. - column (str): The column to plot. - ax (plt.Axes): The axes to plot on. """ # Create a histogram with overlaid density plot sns.histplot( data=data, x=column, hue="target", kde=True, stat="density", common_norm=False, ax=ax, ) # Set the title of the plot ax.set_title(f"{column} distribution by class") # Visualizing distribution of pre-cleaned dataset fig, axs = plt.subplots(nrows=5, ncols=2, figsize=(12, 24)) columns = [ "word_count", "unique_word_count", "character_count", "hashtag_count", "mention_count", "url_count", "capitalized_word_count", "capitalized_word_proportion", "spelling_error_count", "has_spelling_errors", ] fig.subplots_adjust(hspace=0.3) for i, column in enumerate(columns): row = i // 2 col = i % 2 distr_by_class(df, column, ax=axs[row, col]) plt.tight_layout() plt.show() # Based on the above, it appears like there are some differences between Disaster and Non-Disaster tweets. Specifically, disaster tweets tend to be longer, contain more URLs, and contain more capitalized words, among other features that can be seen above. # Create metadata dataframe that contains metadata metadata = df[ [ "word_count", "unique_word_count", "character_count", "hashtag_count", "mention_count", "url_count", "capitalized_word_count", "capitalized_word_proportion", "spelling_error_count", "has_spelling_errors", ] ] # We will also visualize the most common n-grams in tweets by using the function defined below. n-grams are strings containing n sequential words. A unigram is just one word, whereas bigrams and trigrams are 2 or 3 words that frequently appear near to each other, respectively. # Define function that counts occurrence of n-grams def ngram_occurrence(df: pd.DataFrame, n: int = 1) -> pd.DataFrame: """ This function counts the occurrence of n-grams in the 'text_cleaned' column of a given pandas DataFrame, and returns a DataFrame with two columns: 'ngram' and 'count'. Parameters: - df: pandas DataFrame with a 'text_cleaned' column - n: integer specifying the number of words in each n-gram Returns: - counts_df: pandas DataFrame with two columns: 'ngram' (containing the n-grams) and 'count' (containing the number of occurrences of each n-gram) """ # Initialize a CountVectorizer with stop words and n-gram range vectorizer = CountVectorizer(stop_words="english", ngram_range=(n, n)) # Convert cleaned text data to a matrix of n-gram counts matrix = vectorizer.fit_transform(df["text_cleaned"]) # Sum the counts of each n-gram across all tweets counts = matrix.sum(axis=0).tolist()[0] # Get the feature names (i.e., the n-grams) from the vectorizer feature_names = vectorizer.get_feature_names_out() # Create a DataFrame with the n-grams and their counts counts_df = pd.DataFrame({"ngram": feature_names, "count": counts}) # Reset the index of the DataFrame to start at 0 counts_df = counts_df.reset_index(drop=True) # Return the DataFrame with n-grams and their counts return counts_df # Creating dataframes with n-grams and their counts for n=1, 2, and 3 disaster_counts_df = ngram_occurrence(df[df["target"] == 1], n=1) non_disaster_counts_df = ngram_occurrence(df[df["target"] == 0], n=1) disaster_bigram_counts_df = ngram_occurrence(df[df["target"] == 1], n=2) non_disaster_bigram_counts_df = ngram_occurrence(df[df["target"] == 0], n=2) disaster_trigram_counts_df = ngram_occurrence(df[df["target"] == 1], n=3) non_disaster_trigram_counts_df = ngram_occurrence(df[df["target"] == 0], n=3) # Below, I will define a function to plot the 10 most common n-grams for Disaster and Non-Disaster tweets. def plot_top_ngrams(data: pd.DataFrame, column: str, ngram: str, disaster_class: str): """ Given a DataFrame of ngram counts, plot the top 10 most common ngrams for a given class (e.g., disaster or non-disaster) and ngram type (e.g., unigrams, bigrams, or trigrams). Parameters: data (pd.DataFrame): DataFrame of ngram counts, with columns for 'ngram' and 'count'. column (str): Name of column in `data` that contains the ngrams. ngram (str): Type of ngram to plot (e.g., 'unigram', 'bigram', or 'trigram'). disaster_class (str): Name of class to plot (e.g., 'Disaster' or 'Non-Disaster'). """ top_ngrams = data.sort_values(ascending=False, by="count").head(10) fig, ax = plt.subplots(figsize=(10, 6)) colors = sns.cubehelix_palette(n_colors=10, reverse=True) ax.barh(top_ngrams["ngram"], top_ngrams["count"], color=colors) ax.set_title(f"Top 10 Most Common {ngram}s in {disaster_class} Tweets") ax.set_ylabel(f"{ngram}") ax.set_xlabel("Count") plt.show() plot_top_ngrams(disaster_counts_df, "ngram", "Word", "Disaster") plot_top_ngrams(non_disaster_counts_df, "ngram", "Word", "Non-Disaster") plot_top_ngrams(disaster_bigram_counts_df, "ngram", "Bigram", "Disaster") plot_top_ngrams(non_disaster_bigram_counts_df, "ngram", "Bigram", "Non-Disaster") plot_top_ngrams(disaster_trigram_counts_df, "ngram", "Trigram", "Disaster") plot_top_ngrams(non_disaster_trigram_counts_df, "ngram", "Trigram", "Non-Disaster") # Most of the common n-grams shown above make sense. For Disaster tweets, the n-grams tend to be related to actual disasters, such as "hiroshima", "california wildfire", and "bomber detonated bomb". On the other hand, Non-Disaster tweets seem to be common language used by everyday tweeters or common words that appear in non-disaster headlines, such as "like", "looks like", and "stock market crash". # I did find the presence of "body bag" in all its forms in Non-Disaster tweets to be quite shocking. Once inspecting the tweets containing these words, I realized that "body bag" most commonly referred to the accessory (like a cross-body bag). In rare cases, the bigram "body bagging" is used as a slang term to describe when a person is overwhelmingly defeating another in a competition, argument, or conflict. These tweets are not referring to actual body bags! # Just because it's fun to visualize the most common words in a word cloud shaped like a twitter logo, I will do so below :) import matplotlib.colors as mcolors # Create list of all tweets by class disaster_text = df[df["target"] == 1]["text_cleaned"].tolist() non_disaster_text = df[df["target"] == 0]["text_cleaned"].tolist() # Join words and lowercase disaster_text = " ".join(disaster_text).lower() non_disaster_text = " ".join(non_disaster_text).lower() # Create mask for word cloud mask = np.array(Image.open("/kaggle/input/twitter-mask/twitter_mask.png")) # Convert cubehelix_palette colors to hexadecimal color codes hex_codes = [mcolors.rgb2hex(color) for color in colors] # Define color function for word cloud def color_func(word, font_size, position, orientation, random_state=None, **kwargs): return hex_codes[np.random.randint(len(hex_codes))] # Create wordclouds in shape of twitter logo wordcloud = WordCloud( stopwords=STOPWORDS, collocations=True, background_color="white", mask=mask, color_func=color_func, ).generate(disaster_text) # Plot wordcloud plt.figure(figsize=(10, 6)) plt.imshow(wordcloud) plt.title("Most Common Words in Disaster Tweets") plt.axis("off") plt.show() # Create wordclouds in shape of twitter logo wordcloud = WordCloud( stopwords=STOPWORDS, collocations=True, background_color="white", mask=mask, color_func=color_func, ).generate(non_disaster_text) # Plot wordcloud plt.figure(figsize=(10, 6)) plt.imshow(wordcloud) plt.title("Most Common Words in Non-Disaster Tweets") plt.axis("off") plt.show() # ## BERT Model # ### Building BERT Model Architecture # For my BERT model, I will use the pre-trained model BertForSequenceClassification. The BertForSequenceClassification model comes default with one output layer to predict the sequence classification task, but I have added additional layers on top of it to optimize its performance. # The 'bert-base-uncased' is used as the base pre-trained model. It is a smaller version of BERT that has 110 parameters in total, while 'bert-large' contains 340 million parameters. 'bert-large' is more powerful and would likely be more accurate, but it is also computationally expensive, and the smaller BERT model seems to work fine here. # The additional layers in the model can help in fine-tuning the pretrained model to better adapt to our dataset and the classification task at hand. The additional layers are as follows: # - Linear layer: Fully connected layer that takes input features from the BERT model, and applies a linear transformation to produce new feature representations # - ReLU activation layer: Introduces non-linearity to the model, useful in capturing complex patterns and improving model's ability to generalize # - Dropout layer: Regularization layer that randomly sets a fraction of input units to zero during training, helps prevent overfitting by reducing reliance of model on any particular input feature and promoting the learning of more robust representations # - Linear layer: Final layer that takes feature representations from the previous layers and applies a linear transformation to produce the final output logits, then we will use argmax() to convert predicted probabilities into one of two discrete class labels (1 or 0 for 'Disaster' or 'Non-Disaster' tweets, respectively). # Split cleaned combined dataframe back into train and test sets train_cleaned = df[df["target"].notna()] test_cleaned = df[df["target"].isna()] # Set device to use GPU in case it isn't already device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Check the maximumum tweet length in both cleaned and uncleaned texts print( "Max length of tweets", max([len(x.split()) for x in train_cleaned["text_cleaned"]]) ) model_name = "bert-base-uncased" max_length = 50 def create_bert(): # Load the BERT model for sequence classification model = BertForSequenceClassification.from_pretrained( "bert-base-uncased", num_labels=2, output_attentions=False, output_hidden_states=False, force_download=True, ) model.to(device) # Add activation layer to pre-trained transformer model # Creates linear layer, ReLU activation function, dropout layer, and another linear layer model.classifier = nn.Sequential( nn.Linear(model.config.hidden_size, model.config.hidden_size), nn.ReLU(), nn.Dropout(model.config.hidden_dropout_prob), nn.Linear(model.config.hidden_size, model.config.num_labels), ) # Move model to GPU model.cuda() return model model = create_bert() # Visualize model architecture batch_size = 16 input_data = torch.zeros(batch_size, max_length).long() summary(model, input_data=input_data, device="cuda") # ### Defining Pre-Processing and Training Functions # Below, I will define two functions, one that can be used to tokenize and preprocess the data and returns tensor datasets, and another which trains and validates the tensor datasets. # Based on the original BERT publication by Google AI in 2018, the authors recommended that the following range of hyperparameters works well for most tasks: # * Batch size: 16, 32 # * Learning rate (Adam): 5e-5, 3e-5, 2e-5 # * Number of epochs: 2, 3, 4 # I will be training over 4 epochs, but implementing early stopping in case the accuracy of the model does not improve for a certain number of epochs. I will also be using a learning rate of 5e-5 and batch size of 16. def preprocess_train_data( df, text_col, target_col, model_name="bert-base-uncased", tokenizer="BERT", max_length=50, train_ratio=0.8, device="cuda", ): """ Preprocesses data for BERT model training and validation. Args: df (pd.DataFrame): DataFrame containing the text and target columns. text_col (str): Name of the text column in the DataFrame. target_col (str): Name of the target column in the DataFrame. model_name (str): Name of the BERT model to use (default: 'bert-base-uncased'). tokenizer (str): Name of model, will specify which Tokenizer to instantiate (default: 'BERT') max_length (int): Maximum length of input texts after tokenization (default: 50). train_ratio (float): Ratio of training set size to total dataset size (default: 0.8). device (str): Device to use for tensor computations (default: 'cuda'). Returns: train_dataset (torch.utils.data.TensorDataset): Training dataset. val_dataset (torch.utils.data.TensorDataset): Validation dataset. tokenizer (transformers.BertTokenizerFast): BERT tokenizer. """ # Split training set into text and labels dataset = df[[text_col, target_col]] text = dataset[text_col].values labels = dataset[target_col].values # Load the BERT tokenizer if tokenizer == "BERT": tokenizer = BertTokenizerFast.from_pretrained(model_name, do_lower_case=True) else: tokenizer = RobertaTokenizerFast.from_pretrained(model_name, do_lower_case=True) # Tokenize the texts encoded_dict = tokenizer( text=text.tolist(), add_special_tokens=True, max_length=max_length, truncation=True, padding=True, return_token_type_ids=False, return_attention_mask=True, verbose=True, ) # Convert the encoded text to PyTorch tensors input_ids = torch.tensor(encoded_dict["input_ids"], device=device) attention_mask = torch.tensor(encoded_dict["attention_mask"], device=device) labels = torch.tensor(labels, device=device) labels = labels.to(torch.int64) # Combine the inputs and labels into a TensorDataset dataset = TensorDataset(input_ids, attention_mask, labels) # Define the sizes of the training and validation sets train_size = int(train_ratio * len(dataset)) val_size = len(dataset) - train_size # Split training set into training and validation set train_dataset, val_dataset = random_split(dataset, [train_size, val_size]) print("{} training samples".format(train_size)) print("{} validation samples".format(val_size)) return train_dataset, val_dataset, tokenizer def train_validate_test( model_name, train_dataset, val_dataset, batch_size=16, lr=5.9e-6, weight_decay=0.01, epochs=4, patience=2, device="cuda", validation=True, ): """ Train, validate, and test a PyTorch model, compute accuracy, precision, recall, F1 score. Args: model name (str): Name of model from Huggingface library. train_dataset (pd.DataFrame): The training dataset. val_dataset (pd.DataFrame): The validation dataset. batch_size (int): The batch size for training and validation (default: 16). lr (float): The learning rate for the optimizer (default 5.9e-6). weight_decay (float): The weight decay for the optimizer (default: 0.01). epochs (int): The number of epochs for training (default: 4). patience (int): The number of epochs to wait for early stopping during validation (default: 2). device (str): The device to be used for training and inference ('cuda' or 'cpu') (default: 'cuda'). validation (bool): Whether to perform validation during training or not, if False, will predict labels of test set (default: True). Returns: predictions(pd.DataFrame): DataFrame of predictions on test set. """ # Create a new instance of the model if model_name == "bert-base-uncased": model = create_bert() else: model = create_roberta() # Define the dataloaders for the training and validation sets train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_dataloader = DataLoader(val_dataset, batch_size=batch_size) # Define the optimizer and loss function optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay) loss = BinaryCrossentropy(from_logits=False) # Training loop best_val_loss = float("inf") early_stop_count = 0 # Lists to store training and validation loss train_losses = [] val_losses = [] for epoch in range(epochs): # Training train_loss = 0 train_steps = 0 model.train() # Set to training mode for batch in train_dataloader: # Load the batch onto the device batch = [item.to(device) for item in batch] input_ids, attention_mask, labels = batch # Zero the gradients from previous batch optimizer.zero_grad() model.zero_grad() # Forward pass outputs = model( input_ids=input_ids, attention_mask=attention_mask, labels=labels ) # Compute the loss batch_loss = outputs.loss logits = outputs.logits train_loss += batch_loss.item() # Move logits and labels to CPU logits = logits.detach().cpu().numpy() label_ids = labels.to("cpu").numpy() # Backward pass batch_loss.backward() # Update the parameters optimizer.step() # Increment the training steps train_steps += 1 # Compute the average training loss for the epoch avg_train_loss = train_loss / train_steps train_losses.append(avg_train_loss) if validation: # Validation val_true_labels = [] val_pred_labels = [] total_f1 = 0 total_precision = 0 total_recall = 0 val_loss = 0 val_steps = 0 model.eval() # Set to evaluation mode with torch.no_grad(): # Disable gradient calculation for batch in val_dataloader: # Load the batch onto the device batch = [item.to(device) for item in batch] input_ids, attention_mask, labels = batch # Forward pass outputs = model( input_ids=input_ids, attention_mask=attention_mask, labels=labels, ) # Compute the loss batch_loss = outputs.loss logits = outputs.logits val_loss += batch_loss.item() # Move logits and labels to CPU logits = logits.detach().cpu().numpy() label_ids = labels.to("cpu").numpy() # Calculate F1 score, precision, and recall f1 = f1_score(label_ids, np.argmax(logits, axis=1), zero_division=1) precision = precision_score( label_ids, np.argmax(logits, axis=1), zero_division=1 ) recall = recall_score( label_ids, np.argmax(logits, axis=1), zero_division=1 ) total_f1 += f1 total_precision += precision total_recall += recall # Compute the predictions and append to lists pred_labels = np.argmax(logits, axis=1) val_pred_labels.extend(pred_labels) val_true_labels.extend(label_ids) # Increment the validation steps val_steps += 1 # Compute the average validation loss and metrics for the epoch val_accuracy = accuracy_score(val_true_labels, val_pred_labels) avg_val_loss = val_loss / val_steps val_losses.append(avg_val_loss) avg_val_accuracy = val_accuracy / len(val_dataloader) avg_f1 = total_f1 / val_steps avg_precision = total_precision / val_steps avg_recall = total_recall / val_steps print( f"Epoch {epoch+1} - Avg Train Loss: {avg_train_loss:.4f} | Avg Val Loss: {avg_val_loss:.4f}" ) print(" Accuracy: {0:.2f}".format(val_accuracy)) print(" F1 Score: {0:.2f}".format(avg_f1)) print(" Precision: {0:.2f}".format(avg_precision)) print(" Recall: {0:.2f}".format(avg_recall)) # Check if validation loss improved if avg_val_loss < best_val_loss: best_val_loss = avg_val_loss early_stop_count = 0 else: early_stop_count += 1 # Check if we should early stop if early_stop_count >= patience: print( f"No improvement in validation loss for {patience} epochs. Stopping early." ) break else: # Create an empty list to store the predictions predictions = [] # Set the model to evaluation mode model.eval() # Disable gradient calculation with torch.no_grad(): # Loop through the test dataloader for batch in test_dataloader: # Load the batch onto the device batch = [item.to(device) for item in batch] input_ids, attention_mask = batch # Make predictions on the batch outputs = model(input_ids=input_ids, attention_mask=attention_mask) logits = outputs.logits # Get the index of the class with the highest probability preds = torch.argmax(logits, dim=1) # Move predictions to CPU and append to the list preds = preds.detach().cpu().numpy() predictions.append(preds) return predictions print(f"Epoch {epoch+1} - Avg Train Loss: {avg_train_loss:.4f}") if validation: # Plot the training and validation losses plt.figure() plt.plot( range(1, len(train_losses) + 1), train_losses, label="Train Loss", color=colors[1], ) plt.plot( range(1, len(val_losses) + 1), val_losses, label="Validation Loss", color=colors[4], ) plt.xlabel("Epoch") plt.ylabel("Loss") plt.xticks(range(1, len(train_losses) + 1), range(1, len(train_losses) + 1)) plt.legend() plt.show() cm = confusion_matrix(val_true_labels, val_pred_labels) sns.heatmap(cm, annot=True, fmt="d", cmap=colors) plt.title("Confusion Matrix") plt.xlabel("Predicted Class") plt.ylabel("True Class") plt.show() # ### Training and Validation text_col = "text" target_col = "target" train_dataset, val_dataset, tokenizer = preprocess_train_data( train_cleaned, text_col, target_col, model_name="bert-base-uncased", tokenizer="BERT", ) train_validate_test("bert-base-uncased", train_dataset, val_dataset, validation=True) text_col = "text_cleaned" target_col = "target" train_dataset, val_dataset, tokenizer = preprocess_train_data( train_cleaned, text_col, target_col, model_name="bert-base-uncased", tokenizer="BERT", ) train_validate_test("bert-base-uncased", train_dataset, val_dataset, validation=True) # ## RoBERTa Model # ### Building RoBERTa Model Architecture # In the BERT model, I added some additional layers on top of the pre-trained model to improve its performance for the text classification task. RoBERTa's classification model already comes with a more robust classification head containing two fully connected linear layers, so I will not be adding any additional layers below. # Set device to use GPU in case it isn't already device = torch.device("cuda" if torch.cuda.is_available() else "cpu") max_length = 50 def create_roberta(): # Load the BERT model for sequence classification model = RobertaForSequenceClassification.from_pretrained( "roberta-base", num_labels=2, output_attentions=False, output_hidden_states=False, force_download=True, ) # Move the model to the desired device (e.g. GPU) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) return model model = create_roberta() # Visualize model architecture batch_size = 16 # Define an example input size that matches your input data input_data = torch.zeros(batch_size, max_length).long() # Print the summary of the model architecture summary(model, input_data=input_data, device="cuda") # ### Training and Validation text_col = "text" target_col = "target" train_dataset, val_dataset, tokenizer = preprocess_train_data( train_cleaned, text_col, target_col, model_name="roberta-base", tokenizer="ROBERTA" ) train_validate_test("roberta-base", train_dataset, val_dataset, validation=True) text_col = "text_cleaned" target_col = "target" train_dataset, val_dataset, tokenizer = preprocess_train_data( train_cleaned, text_col, target_col, model_name="roberta-base", tokenizer="ROBERTA" ) train_validate_test("roberta-base", train_dataset, val_dataset, validation=True) # ## FNN Metadata Model # ### Building FNN Model Architecture # Define the neural network model class TextClassifier(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(TextClassifier, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(hidden_size, hidden_size) # Add an additional linear layer self.relu2 = nn.ReLU() # Add an additional ReLU activation self.fc3 = nn.Linear( hidden_size, output_size ) # Adjust the input size of the last linear layer def forward(self, x): x = self.fc1(x) x = self.relu1(x) x = self.fc2(x) # Pass through the additional linear layer x = self.relu2(x) # Pass through the additional ReLU activation x = self.fc3(x) # Pass through the adjusted last linear layer return x # Define the custom dataset for text classification class TextDataset(Dataset): def __init__(self, features, labels): self.features = torch.tensor(features, dtype=torch.float32) self.labels = torch.tensor(labels, dtype=torch.long) def __len__(self): return len(self.features) def __getitem__(self, idx): return self.features[idx], self.labels[idx] # Split the data into train and validation sets train_features, val_features, train_labels, val_labels = train_test_split( train_cleaned[ [ "word_count", "unique_word_count", "character_count", "hashtag_count", "mention_count", "url_count", "capitalized_word_count", "capitalized_word_proportion", "spelling_error_count", "has_spelling_errors", ] ].values, train_cleaned["target"].values, test_size=0.2, random_state=42, ) # Scale the features using StandardScaler scaler = StandardScaler() scaler.fit(train_features) train_features_scaled = scaler.transform(train_features) val_features_scaled = scaler.transform(val_features) # Create custom datasets for train and validation sets with scaled features train_dataset = TextDataset(train_features_scaled, train_labels) val_dataset = TextDataset(val_features_scaled, val_labels) batch_size = 16 # Define hyperparameters input_size = train_features.shape[ 1 ] # Update input_size to match number of features after scaling hidden_size = 256 output_size = 2 # Set output_size to 2 for binary classification with 2 classes # Create an instance of the text classifier model model = TextClassifier(input_size, hidden_size, output_size) # Move the model to the desired device (e.g. GPU) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Use torchinfo to visualize model architecture and output shapes from torchinfo import summary summary(model, input_size=(batch_size, input_size), device="cuda") # ### Training and Validation # Define loss function and optimizer loss = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_dataloader = DataLoader(val_dataset, batch_size=batch_size) # Lists to store training and validation loss train_losses = [] val_losses = [] epochs = 20 best_val_loss = float("inf") # Store the best validation loss early_stop_count = 0 # Counter for early stopping patience = 3 # Number of epochs with no improvement in validation loss to trigger early stopping for epoch in range(epochs): # Training train_loss = 0 train_steps = 0 model.train() # Set to training mode for i, (inputs, labels) in enumerate(train_dataloader): # Load the batch onto the device inputs = inputs.to(device) labels = labels.to(device) # Zero the gradients from previous batch optimizer.zero_grad() # Forward pass outputs = model(inputs) # Compute the loss batch_loss = loss(outputs, labels) train_loss += batch_loss.item() # Backward pass batch_loss.backward() # Update the parameters optimizer.step() # Increment the training steps train_steps += 1 # Compute the average training loss for the epoch avg_train_loss = train_loss / train_steps train_losses.append(avg_train_loss) # Validation val_true_labels = [] val_pred_labels = [] total_f1 = 0 total_precision = 0 total_recall = 0 val_loss = 0 val_steps = 0 model.eval() # Set to evaluation mode with torch.no_grad(): # Disable gradient calculation for i, (inputs, labels) in enumerate(val_dataloader): # Load the batch onto the device inputs = inputs.to(device) labels = labels.to(device) # Forward pass outputs = model(inputs) # Compute the loss batch_loss = loss(outputs, labels) val_loss += batch_loss.item() # Move logits and labels to CPU logits = outputs.detach().cpu().numpy() label_ids = labels.to("cpu").numpy() # Calculate F1 score, precision, and recall f1 = f1_score(label_ids, np.argmax(logits, axis=1), zero_division=1) precision = precision_score( label_ids, np.argmax(logits, axis=1), zero_division=1 ) recall = recall_score(label_ids, np.argmax(logits, axis=1), zero_division=1) total_f1 += f1 total_precision += precision total_recall += recall # Compute the predictions and append to lists pred_labels = np.argmax(logits, axis=1) val_pred_labels.extend(pred_labels) val_true_labels.extend(label_ids) # Increment the validation steps val_steps += 1 # Compute the average validation loss and metrics for the epoch val_accuracy = accuracy_score(val_true_labels, val_pred_labels) avg_val_loss = val_loss / val_steps val_losses.append(avg_val_loss) avg_val_accuracy = accuracy_score(val_true_labels, val_pred_labels) avg_f1 = total_f1 / val_steps avg_precision = total_precision / val_steps avg_recall = total_recall / val_steps print( f"Epoch {epoch+1} - Avg Train Loss: {avg_train_loss:.4f} | Avg Val Loss: {avg_val_loss:.4f}" ) print(" Accuracy: {0:.2f}".format(val_accuracy)) print(" F1 Score: {0:.2f}".format(avg_f1)) print(" Precision: {0:.2f}".format(avg_precision)) print(" Recall: {0:.2f}".format(avg_recall)) # Check if validation loss improved if avg_val_loss < best_val_loss: best_val_loss = avg_val_loss early_stop_count = 0 else: early_stop_count += 1 # Check if we should early stop if early_stop_count >= patience: print( f"No improvement in validation loss for {patience} epochs. Stopping early." ) break # Plot the training and validation losses plt.figure() plt.plot( range(1, len(train_losses) + 1), train_losses, label="Train Loss", color=colors[1] ) plt.plot( range(1, len(val_losses) + 1), val_losses, label="Validation Loss", color=colors[4] ) plt.xlabel("Epoch") plt.ylabel("Loss") plt.xticks(range(1, len(train_losses) + 1), range(1, len(train_losses) + 1)) plt.legend() plt.show() cm = confusion_matrix(val_true_labels, val_pred_labels) sns.heatmap(cm, annot=True, fmt="d", cmap=colors) plt.title("Confusion Matrix") plt.xlabel("Predicted Class") plt.ylabel("True Class") plt.show() # ## Model Comparison # I have now trained five neural networks to predict Disaster/Non-Disaster tweets: # * BERT with uncleaned data # * BERT with cleaned data # * RoBERTa with uncleaned data # * RoBERTa with cleaned data # * Simple FNN with metadata # Among the models evaluated, the two that consistently have the highest accuracy, F1 score, precision, and recall, are BERT trained on uncleaned text, and RoBERTa trained on cleaned text. It's noteworthy that BERT seems to perform better on uncleaned text while RoBERTa performs better on cleaned text, although the effect is pretty minimal. All four of the BERT and RoBERTa models perform at or above 80% consistently. # It's possible that BERT performs better on uncleaned data because it is better able to capture patterns from metadata such as punctuation, hashtags, and mentions that were removed during data cleaning. The predictive power of metadata is further evident in the FNN metadata model, which includes features such as tweet word count, number of hashtags, number of mentions, and number of spelling errors, but does not include the text of the tweets itself. Despite this limitation, the FNN model achieves an accuracy of up to 70% on some epochs, which is not as high as the BERT and RoBERTa models' accuracies of around 85%, but still notable considering it only relies on metadata. # RoBERTa performs slighlty better on cleaned versus uncleaned text. Based on my research, RoBERTa, which stands for "Robustly Optimized BERT," is specifically designed to improve the pre-training process of BERT by using additional data and training techniques. However, it's possible that this increased robustness actually makes RoBERTa more sensitive to noise in the data, resulting in decreased performance compared to the cleaned data. I would be interested to explore more of what makes BERT and RoBERTa perform different on cleaned and uncleaned text! # ## Final Prediction # I will use the BERT model with uncleaned data to predict the test set and submit my final prediction. Its performance is very similar to the RoBERTa model with cleaned data. def preprocess_final( df, text_column, target_column, model_name, max_length=50, device="cuda" ): train_cleaned = df[df[target_column].notna()] test_cleaned = df[df[target_column].isna()] train_dataset = train_cleaned[[text_column, target_column]] text = train_dataset[text_column].values labels = train_dataset[target_column].values test_dataset = test_cleaned[text_column].values # Set the device device = torch.device(device) # Load the BERT tokenizer tokenizer = BertTokenizerFast.from_pretrained(model_name, do_lower_case=True) # Tokenize the training texts encoded_dict = tokenizer( text=text.tolist(), add_special_tokens=True, max_length=max_length, truncation=True, padding=True, return_token_type_ids=False, return_attention_mask=True, verbose=True, ) # Tokenize the test texts encoded_test = tokenizer( text=test_dataset.tolist(), add_special_tokens=True, max_length=max_length, truncation=True, padding=True, return_token_type_ids=False, return_attention_mask=True, verbose=True, ) # Convert the TensorFlow tensors to PyTorch tensors input_ids_train = torch.tensor(encoded_dict["input_ids"]) attention_mask_train = torch.tensor(encoded_dict["attention_mask"]) labels = torch.tensor(labels) labels = labels.to(torch.int64) # Test set input_ids_test = torch.tensor(encoded_test["input_ids"]) attention_mask_test = torch.tensor(encoded_test["attention_mask"]) # Combine the inputs and labels into a TensorDataset train_dataset = TensorDataset(input_ids_train, attention_mask_train, labels) test_dataset = TensorDataset(input_ids_test, attention_mask_test) # Define the dataloaders for the training and test sets batch_size = 16 train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataloader = DataLoader(test_dataset, batch_size=batch_size) return train_dataloader, test_dataloader, train_dataset, test_dataset train_dataloader, test_dataloader, train_dataset, test_dataset = preprocess_final( df, "text", "target", "bert-base-uncased" ) predictions = train_validate_test( "bert-base-uncased", train_dataset, test_dataset, epochs=2, validation=False ) # Convert the list of predictions to a numpy array and flatten it predictions = np.concatenate(predictions).flatten() # Create a pandas dataframe with the test ids and the predicted targets submission_df = pd.DataFrame({"id": test_cleaned["id"], "target": predictions}) # Output the dataframe submission_df.head() submission_df.to_csv("submission.csv", index=False)
# - author : Sitanan Damrongkaviriyapan # - studentID : 6341223226 import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns print(f"pandas version = {pd.__version__}") print(f"numpy version = {np.__version__}") print(f"seaborn version = {sns.__version__}") pd.Timestamp.now() url = "/kaggle/input/the-best-cities-for-a-workation/best cities for a workation.csv" df = pd.read_csv(url) df df.columns # # cols = [ "Remote connection: Average WiFi speed (Mbps per second)", "Co-working spaces: Number of co-working spaces", "Caffeine: Average price of buying a coffee", "Travel: Average price of taxi (per km)", "After-work drinks: Average price for 2 beers in a bar", "Accommodation: Average price of 1 bedroom apartment per month", "Food: Average cost of a meal at a local, mid-level restaurant", "Climate: Average number of sunshine hours", "Tourist attractions: Number of ‘Things to do’ on Tripadvisor", "Instagramability: Number of photos with #", ] df[cols].hist(layout=(2, 5), figsize=(35, 10), alpha=0.5) # # Scikit-learn: KMeans Clustering # ## 1. scale data # ### - yeo_johnson # - เลือกใช้ yeo_johnson ในการแปลงข้อมูลให้เป็น normalize data เนื่องจากเป็นวิธีที่สามารถจัดการได้ทั้งค่าบวกและค่าลบ # --- from sklearn import preprocessing pre = preprocessing.PowerTransformer(method="yeo-johnson", standardize=False) tran = pre.fit_transform(df[cols]) tran[:5] yeo_cols = [f"yeo_{i}" for i in cols] yeo_cols ds = pd.concat([df, pd.DataFrame(tran, columns=yeo_cols)], axis="columns") ds.head() # ## กราฟ data ก่อน clean # --- ds[cols].hist(layout=(2, 5), figsize=(35, 10), alpha=0.5) # ## กราฟ data หลัง clean --> โดยใช้ yeo_johnson method # - เลือกใช้ yeo_johnson ในการแปลงข้อมูลให้เป็น normalize data เนื่องจากเป็นวิธีที่สามารถจัดการได้ทั้งค่าบวกและค่าลบ # --- ds[yeo_cols].hist(layout=(2, 5), figsize=(35, 10), color="orange", alpha=0.5) # ## 2. Optimal number of clusters # ### - Elbow method # - เลือกวิธีนี้เนื่องจากเป็นวิธีที่ง่ายและใช้งานง่ายเห็นภาพชัดเจนในการกําหนดจํานวนการจัดกลุ่มที่ดีที่สุดในชุดข้อมูล # --- from sklearn.cluster import KMeans X = ds[yeo_cols] X.head() ssd = [] for k in range(2, 10): m = KMeans(n_clusters=k) m.fit(X) ssd.append([k, m.inertia_]) ssd dm = pd.DataFrame(ssd, columns=["k", "ssd"]) dm["percent_change"] = dm["ssd"].pct_change() * 100 dm xy = np.array(ssd) print(xy) plt.plot(xy[:, 0], xy[:, 1], "--o") for index, row in dm.iterrows(): plt.text( row["k"] + 0.02, row["ssd"] + 0.02, f'{row["percent_change"]:.2f}', fontsize=10 ) # ## 3. Compute and name clusters # - เลือกใช้ค่า k = 5 # --- model = KMeans(n_clusters=5) model model.fit(X) model.cluster_centers_.round(4) model.transform(X) model.labels_ df["cluster"] = model.labels_ df X = ds[yeo_cols].copy() X.loc[:, "cluster"] = model.labels_ X sns.countplot(x="cluster", data=df) df.groupby("cluster").head(3).sort_values("cluster") X.groupby("cluster").median() # ### Heatmap # - ใช้ heatmap เนื่องจาก heatmap สามารถสร้างภาพข้อมูลจำนวนมากให้ออกมาในลักษณะที่เข้าใจได้ง่าย อีกทั้งยังมีการใช้สีเพื่อแสดงข้อมูลเพื่อให้สามารถระบุพื้นที่ที่มีค่าสูงหรือต่ำได้ง่ายขึ้นและรวดเร็ว ซึ่งสามารถช่วยระบุแนวโน้ม ค่าผิดปกติ และรูปแบบได้ # --- fig, ax = plt.subplots(ncols=2, figsize=(35, 6)) ax = ax.ravel() sns.heatmap( X.groupby("cluster").median(), cmap="Oranges", linewidths=1, square=True, annot=True, fmt=".2f", ax=ax[0], ) sns.heatmap( df.groupby("cluster").median(), cmap="Blues", linewidths=1, square=True, annot=True, fmt=".2f", ax=ax[1], )
# # Prediction of Sales ( Based on advertisement cost ) EDA & ML modeling # ## 1) Importing Dataset and Libraries # ### 1- 1) Importing Libraries import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # data processing from sklearn.preprocessing import Normalizer, StandardScaler # data splitting from sklearn.model_selection import train_test_split, KFold, cross_validate # data evaluation from sklearn.metrics import r2_score, mean_squared_error # data modeling from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from xgboost import XGBRegressor from lightgbm import LGBMRegressor from catboost import CatBoostRegressor from sklearn.preprocessing import PolynomialFeatures # set seed SEED = 123 # ### 1-2) Download and Loading Dataset as DataFrame # #### To download and import data into notebook, we using 2 method # 1. Direct method: we using pandas commands. # 2. Indirect method: we using the "wget" # First method df = pd.read_csv( "https://raw.githubusercontent.com/HadiTajari/Sales-Prediction/master/advertising.csv" ) # Second method # !wget https://raw.githubusercontent.com/HadiTajari/Sales-Prediction/master/advertising.csv # df = pd.read_csv("advertising.csv") df.head() # Looking top 5 row # ## 2) Exploratory Data Analysis # ### 2-1) Analyzing Individual Feature Patterns Using Visualization¶ # #### How to choose the right visualization method? # When visualizing individual variables, it is important to first understand what type of variable you are dealing with. This will help us find the right visualization method for that variable. df.dtypes # #### we can calculate the correlation between variables of type "int64" or "float64" using the method "corr": df.corr() # ##### A great way to visualize these variables is by using scatterplots sns.scatterplot(x="Radio", y="Sales", data=df) sns.scatterplot(x="TV", y="Sales", data=df) sns.scatterplot(x="Newspaper", y="Sales", data=df) plt.legend(labels=["Radio", "TV", "Newspaper"]) plt.xlabel("Advertising Costs") plt.ylabel("Mount of Sales") # In order to start understanding the (linear) relationship between an individual variable and the price, we can use "regplot" which plots the scatterplot plus the fitted regression line for the data. This will be useful later on for visualizing the fit of the simple linear regression model as well # Radio advs cost and sales plt.figure(figsize=(6, 3)) sns.regplot(x="Radio", y="Sales", data=df, color="red") plt.title("Radio advs") # TV advs cost and sales plt.figure(figsize=(6, 3)) sns.regplot(x="TV", y="Sales", data=df, color="orange") plt.title("TV advs") df[["TV", "Sales"]].corr() # Newspaper advs cost and sales plt.figure(figsize=(6, 3)) sns.regplot( x="Newspaper", y="Sales", data=df, color="green", ) plt.title("Newspaper advs") # ### 2-2) Descriptive Statistical Analysis df.describe() # describtion of numeric features df.info() # A summary of the dataset and columns # Observaions: # 1) All of features are numeric # 2) The target variable is a numerical continuous type # 3) So we must Use Regression Models # The main question we want to answer in this section is, "What are the main characteristics which have the most impact on the `sales`? # To get a better measure of the important characteristics, we look at the correlation of the features with the sales. In other words: how is the sales dependent on features? # ### 2-3) Correlation and Causation # Correlation a measure of the extent of interdependence between variables. # Causation: the relationship between cause and effect between two variables. # df.corr() # ##### we using p-value to know the significante of correlation estimate # if : # 1. p-value is $<$ 0.001: we say there is strong evidence that the correlation is significant. # 2. the p-value is $<$ 0.05: there is moderate evidence that the correlation is significant. # 3. the p-value is $<$ 0.1: there is weak evidence that the correlation is significant. # 4. the p-value is $>$ 0.1: there is no evidence that the correlation is significant. # We can obtain this information using "stats" module in the "scipy" library. from scipy import stats pearson_coef, P_value = stats.pearsonr(df["Radio"], df["Sales"]) print( "The pearson correlation coefficient is: " f"{pearson_coef:0.4}", "P_vlaue: " f"{P_value:0.3%}", ) pearson_coef, P_value = stats.pearsonr(df["TV"], df["Sales"]) print( "The pearson correlation coefficient is: " f"{pearson_coef:0.4}", "P_vlaue: " f"{P_value:0.3%}", ) pearson_coef, P_value = stats.pearsonr(df["Newspaper"], df["Sales"]) print( "The pearson correlation coefficient is: " f"{pearson_coef:0.4}", "P_vlaue: " f"{P_value:0.5}", ) # ## 3) Modeling # ### Spliting data to features and target variable X = df.drop("Sales", axis=1) # The Features y = df["Sales"] # The Target # ### Splitting Data and making KFOLD X_train, X_val, y_train, y_val = train_test_split( X, y, test_size=0.2, random_state=SEED, shuffle=True ) # The shape of train and validation data y_train.shape, y_val.shape kf = KFold(n_splits=5, shuffle=True, random_state=SEED) # ### Linear Regression lin_reg = LinearRegression() cv = cross_validate( lin_reg, X_train, y_train, cv=kf, scoring=("r2", "neg_mean_squared_error"), return_estimator=True, ) # detect more metrics https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter model_lin = cv["estimator"] y_hats = [model.predict(X_val) for model in model_lin] r2_lin = np.mean([r2_score(y_val, y_hat) for y_hat in y_hats]) print("R2 of linearregression: " f"{r2_lin:0.2%}") # ### DecisionTree dec = DecisionTreeRegressor() cv = cross_validate( dec, X_train, y_train, cv=kf, scoring=("r2", "neg_mean_squared_error"), return_estimator=True, ) model_dec = cv["estimator"] y_hats = [model.predict(X_val) for model in model_dec] r2_dec = np.mean([r2_score(y_val, y_hat) for y_hat in y_hats]) print("R2 of DecisionTree: " f"{r2_dec:0.2%}") # ## RandomForest rf = RandomForestRegressor() cv = cross_validate( rf, X_train, y_train, cv=kf, scoring=("r2", "neg_mean_squared_error"), return_estimator=True, ) model_rf = cv["estimator"] y_hats = [model.predict(X_val) for model in model_rf] r2_rf = np.mean([r2_score(y_val, y_hat) for y_hat in y_hats]) print("R2 of Randomforest: " f"{r2_rf:0.2%}") # ### Light Gradiant Boosting Model lgb = LGBMRegressor() cv = cross_validate( lgb, X_train, y_train, cv=kf, scoring=("r2", "neg_mean_squared_error"), return_estimator=True, ) model_lgb = cv["estimator"] y_hats = [model.predict(X_val) for model in model_lgb] r2_lgb = np.mean([r2_score(y_val, y_hat) for y_hat in y_hats]) print("R2 of LightGBM: " f"{r2_lgb:0.2%}") # ### Extra Gradiant Boosting xgb = XGBRegressor() cv = cross_validate( xgb, X_train, y_train, cv=kf, scoring=("r2", "neg_mean_squared_error"), return_estimator=True, ) model_xgb = cv["estimator"] y_hats = [model.predict(X_val) for model in model_xgb] r2_xgb = np.mean([r2_score(y_val, y_hat) for y_hat in y_hats]) print("R2 of XGB: " f"{r2_xgb:0.2%}") # ### PolyNomial Regression poly = PolynomialFeatures(degree=2) X_poly = poly.fit_transform(X) X_train, X_val, y_train, y_val = train_test_split( X_poly, y, test_size=0.2, random_state=SEED, shuffle=True ) model = LinearRegression() poly_model = model.fit(X_train, y_train) pred = poly_model.predict(X_val) r2_poly = r2_score(pred, y_val) print("R2 of Polynomial Regression: " f"{r2_poly:0.2%}") # Table of Results print("R2 of linearregression: " f"{r2_lin:0.2%}") print("R2 of DecisionTree: " f"{r2_dec:0.2%}") print("R2 of Randomforest: " f"{r2_rf:0.2%}") print("R2 of LightGBM: " f"{r2_lgb:0.2%}") print("R2 of XGB: " f"{r2_xgb:0.2%}") print("R2 of Polynomial Regression: " f"{r2_poly:0.2%}")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # **Before we start, thank you for your time walking through this analysis with me!** # **Here is a brief intro of this analysis:** # This directory contains data on over **4.5 million Uber pickups in New York City from April to September 2014**. # There are six files of raw data on Uber pickups in New York City from April to September 2014. The files are separated by month and each has the following columns: # Date/Time : The date and time of the Uber pickup # Lat : The latitude of the Uber pickup # Lon : The longitude of the Uber pickup # Base : The TLC base company code affiliated with the Uber pickup # **In this analysis, we will first examine the data for the month of April 2014 to identify any patterns in the Uber rides. # We will then import and concatenate data from multiple files into a master file for a comprehensive assessment of the overall trends and insights.** import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns data_apr = pd.read_csv( "/kaggle/input/uber-pickups-in-new-york-city/uber-raw-data-apr14.csv" ) data_may = pd.read_csv( "/kaggle/input/uber-pickups-in-new-york-city/uber-raw-data-may14.csv" ) data_jun = pd.read_csv( "/kaggle/input/uber-pickups-in-new-york-city/uber-raw-data-jun14.csv" ) data_jul = pd.read_csv( "/kaggle/input/uber-pickups-in-new-york-city/uber-raw-data-jul14.csv" ) data_aug = pd.read_csv( "/kaggle/input/uber-pickups-in-new-york-city/uber-raw-data-aug14.csv" ) data_sep = pd.read_csv( "/kaggle/input/uber-pickups-in-new-york-city/uber-raw-data-sep14.csv" ) data_concat = pd.concat([data_apr, data_may, data_jun, data_jul, data_aug, data_sep]) # # Examining data for April 2014 # Let's start by examining the data for April 2014 in order to visualize the pattern of Uber rides in NYC. # Before creating plots, we need to create some new columns in the original dataset 'data_apr'. # Convert Date/Time column to datetime type: data_apr["Date/Time"] = pd.to_datetime(data_apr["Date/Time"]) # Add two new columns of Date and Hours: data_apr["Date"] = data_apr["Date/Time"].dt.date data_apr["Hour"] = data_apr["Date/Time"].dt.hour data_apr["Day_of_Week"] = data_apr["Date/Time"].dt.strftime("a%A") # Calculate counts of occurance of Dates and Hours: date_counts = data_apr["Date"].value_counts().sort_index() hour_counts = data_apr["Hour"].value_counts().sort_index() day_counts = data_apr["Day_of_Week"].value_counts() date_counts # # Plot ride volumn by Date # We will start by creating a bar plot to visualize the volume of rides throughout the dates of the month. # From the plot, it is evident that the daily ride volumes follow a cyclical pattern. # Create a bar plot of Dates: plt.bar(date_counts.index, date_counts.values) plt.xlabel("Date") plt.xticks( date_counts.index, [i.strftime("%d") for i in date_counts.index], rotation=60 ) plt.ylabel("Counts of Dates") # Add annotation on y-axis: for i in range(len(date_counts)): plt.text( date_counts.index[i], date_counts.values[i], f"{date_counts.values[i]/1000:.1f}K", rotation=90, ha="center", va="bottom", ) plt.title("Counts of Uber Rides in April by Date") plt.show() # # Plot ride volumn by Days in Week # Based on the previous plot, it seems like there might also be a pattern throughout the weeks. # To confirm this, we can create another plot based on the days of the week. # Please note that we will need to reindex the x-ticks to display the days of the week from Monday to Sunday. # Sort the counts of Days from Monday to Friday: days_in_order = [ "aMonday", "aTuesday", "aWednesday", "aThursday", "aFriday", "aSaturday", "aSunday", ] days_label = [ "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday", ] day_counts = day_counts.reindex(days_in_order) # Make a bar plot: plt.bar(day_counts.index, day_counts.values) # Reset the x-axis label: plt.xlabel("Day of the Week") plt.xticks(ticks=day_counts.index, labels=days_label, rotation=45) plt.ylabel("Count") # Add annotation on y-axis: for i in range(len(day_counts)): plt.text( day_counts.index[i], day_counts.values[i], str(day_counts.values[i]), ha="center", va="bottom", ) plt.title("Count of Occurrences by Day of the Week") plt.show() # # Plot ride volumn by Hours: # To dive depper into our data, we can also plot the ride occurance by hours of a day # Create a bar plot for Hours: plt.bar(hour_counts.index, hour_counts.values) plt.xlabel("Hours") plt.xticks(hour_counts.index, rotation=60) plt.ylabel("Counts of Hours") # Add annotation on y-axis: for i in range(len(hour_counts)): plt.text( hour_counts.index[i], hour_counts.values[i], f"{hour_counts.values[i]/1000:.1f}K", rotation=90, ha="center", va="bottom", ) plt.title("Counts of Uber Rides by Hours") plt.show() # # Observations and Proposals # Based on the plot of count of Uber rides by day of the week in April 2014 in NYC, # it appears that Monday and Sunday have the least counts, while Tuesday and Wednesday have the most rides. # Additionally, the plot indicates that approximately 60% of rides occurred between 14:00 - 21:00. # **Based on this observation, some possible proposals for the reasons behind this pattern could be:** # **1. Commuting patterns**: Tuesdays and Wednesdays are typically busy weekdays when people commute to work and go about their regular activities. This could explain the higher ride counts on these days. In contrast, Mondays and Sundays may see fewer rides as people may be off work or have more flexible schedules. # **2. Business travel:** Tuesdays and Wednesdays are often popular days for business travel, as professionals may travel to different locations for meetings, conferences, or other work-related events. This could contribute to the higher ride counts on these days compared to Mondays and Sundays. # **3. Weekend leisure activities:** Mondays and Sundays may see fewer rides as people may prefer to stay at home or engage in leisure activities closer to their residences during weekends, resulting in lower ride counts. # # Examing Data from April to September # And create a **line plot** to show pattern! data_concat["Date/Time"] = pd.to_datetime(data_concat["Date/Time"]) # Add two new columns of Date and Hours: data_concat["Date"] = data_concat["Date/Time"].dt.date data_concat["Hour"] = data_concat["Date/Time"].dt.hour data_concat["Day_of_Week"] = data_concat["Date/Time"].dt.strftime("a%A") # Calculate counts of occurance of Dates and Hours: date_counts_concat = data_concat["Date"].value_counts().sort_index() hour_counts_concat = data_concat["Hour"].value_counts().sort_index() day_counts_concat = data_concat["Day_of_Week"].value_counts() # Create a line plot of Dates: fig, ax = plt.subplots(figsize=(8, 4)) ax.plot(date_counts_concat.index, date_counts_concat.values) ax.set_xlabel("Date") ax.set_ylabel("Counts of Dates") ax.set_title("Counts of Uber Rides from April to September by Date") plt.tight_layout() plt.show() # # Peaks and Pits # By creating a line plot, it appears that Uber ride volumes follow **cyclical patterns**, with **peaks and pits**. # Let's add **annotations** to highlight these peaks and pits. # Create a line plot of Dates: fig, ax = plt.subplots(figsize=(12, 6)) ax.plot(date_counts_concat.index, date_counts_concat.values) ax.set_xlabel("Date") ax.set_ylabel("Counts of Dates") ax.set_title("Counts of Uber Rides from April to September by Date") # Get the indices of peaks and pits in the data: from scipy.signal import find_peaks peaks, _ = find_peaks(date_counts_concat.values) pits, _ = find_peaks(-date_counts_concat.values) peaks_and_pits = np.sort(np.concatenate([peaks, pits])) # Add markers at the peaks and pits: ax.plot( date_counts_concat.index[peaks], date_counts_concat.values[peaks], "o", markersize=10, label="Peaks", ) ax.plot( date_counts_concat.index[pits], date_counts_concat.values[pits], "<", markersize=10, label="Pits", ) # Add annotations with the corresponding dates at the peaks and pits: for i in range(len(peaks_and_pits)): ax.annotate( date_counts_concat.index[peaks_and_pits[i]].strftime("%m%d"), xy=( date_counts_concat.index[peaks_and_pits[i]], date_counts_concat.values[peaks_and_pits[i]], ), xytext=(10, 6), textcoords="offset points", ha="center", va="bottom", fontsize=8, ) ax.set_xticks([]) plt.tight_layout() plt.show() peaks_and_pits peaks peak_days_of_week = [] for i in peaks: peak_date = date_counts_concat.index[i] peak_day_of_week = peak_date.strftime("%A") peak_days_of_week.append(peak_day_of_week) peak_days, counts = np.unique(peak_days_of_week, return_counts=True) plt.bar(peak_days, counts) plt.xlabel("Peak Days of the Week") plt.show()
# # I had reached 96% accuracy with binary_classification using SVC algorithm # # Gathering Data # import liabraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler from imblearn.over_sampling import SMOTE from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression, SGDClassifier from sklearn.svm import SVC from sklearn.metrics import ( classification_report, accuracy_score, zero_one_loss, roc_auc_score, confusion_matrix, ConfusionMatrixDisplay, ) # get data Data = pd.read_csv( "/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv" ) # represent data first 5 rows Data.head() # last 5 rows Data.tail() # # Exploring Data # data columns Data.columns # explain each column data_agenda = { "fixed acidity": "most acids involved with wine or fixed or nonvolatile (do not evaporate readily)", "volatile acidity": "the amount of acetic acid in wine, which at too high of levels can lead to an unpleasant, vinegar taste", "citric acid": "found in small quantities, citric acid can add 'freshness' and flavor to wines", "residual sugar": "the amount of sugar remaining after fermentation stops, it's rare to find wines with less than 1 gram/liter ", "chlorides": "the amount of salt in the wine", "free sulfur dioxide": "the free form of SO2 exists in equilibrium between molecular SO2 (as a dissolved gas) and bisulfite ion; it prevents", "total sulfur dioxide": "amount of free and bound forms of S02; in low concentrations, SO2 is mostly undetectable in wine, but at free SO2", "density": "the density of water is close to that of water depending on the percent alcohol and sugar content", "pH": "describes how acidic or basic a wine is on a scale from 0 (very acidic) to 14 (very basic); most wines are between 3-4", "sulphates": "a wine additive which can contribute to sulfur dioxide gas (S02) levels, wich acts as an antimicrobial", "alcohol": "the percent alcohol content of the wine", "quality": "output variable (based on sensory data, score between 0 and 8)", } print("The PH is : {0}".format(data_agenda["pH"])) # describe data Data.describe() # shape of data Data.shape # represent data null values Data.isnull().sum().sum() # represent Class output Data.quality.value_counts() # visualize class percentage explode = (0, 0, 0, 0, 0, 0.9) plt.pie( list(Data.quality.value_counts()), labels=[5, 6, 7, 4, 8, 3], autopct="%1.f%%", pctdistance=0.8, startangle=180, explode=explode, ) # visualize data range Data.hist(figsize=(30, 30), bins=30) # visualize each data of the columns Data.plot() # data correlation Data.corr() # visualize correlation of data sns.heatmap(Data.corr()) # visualize quartile an mean of data`s feature plt.boxplot(Data.iloc[:, :-1], showmeans=True, meanline=True) # relation between each feature and output data_feature = Data.columns[:-1] plt.figure(figsize=(30, 30)) for i in range(len(data_feature)): plt.subplot(6, 3, i + 1) sns.lineplot(x=Data[str(data_feature[i])], y=Data["quality"], c="g") # # Data Preparation # Data already cleaned # scaling Data Data.iloc[:, :-1] = MinMaxScaler(copy=False).fit_transform(Data.iloc[:, :-1]) # describe data to see scaling Data.describe() Data["quality"].value_counts() # determine X and y x = Data.iloc[:, :-1] y = Data["quality"] # first smote x, y = SMOTE().fit_resample(x, y) y.value_counts() # classifiy that if output >=6 then 1 and if it < then 0 for i in range(y.shape[0]): if y.loc[i] >= 6.5: y.loc[i] = 1 else: y.loc[i] = 0 y.value_counts() # second smote x, y = SMOTE().fit_resample(x, y) y.value_counts() # split data x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25) x_train.shape x_test.shape # # Build Model LR = LogisticRegression() SGDC = SGDClassifier() svc = SVC(C=120) # # Train Model LR.fit(x_train, y_train) SGDC.fit(x_train, y_train) svc.fit(x_train, y_train) # # Test Model LR.predict(x_test) SGDC.predict(x_test) svc.predict(x_test) # # Evaluation LR.score(x_train, y_train) accuracy_score(y_test, LR.predict(x_test)) """ precision recall f1-score support 0 0.92 0.87 0.89 727 1 0.86 0.91 0.88 635 accuracy 0.89 1362 macro avg 0.89 0.89 0.89 1362 weighted avg 0.89 0.89 0.89 1362 """ classification_report(y_test, LR.predict(x_test)) confusion_matrix(y_test, LR.predict(x_test)) # visualize confusion Matrix ConfusionMatrixDisplay( confusion_matrix(y_test, LR.predict(x_test)), display_labels=["Bad_Wine", "Good_Wine"], ).plot() zero_one_loss(y_test, LR.predict(x_test)) SGDC.score(x_train, y_train) accuracy_score(y_test, SGDC.predict(x_test)) """ precision recall f1-score support 0 0.92 0.86 0.89 727 1 0.85 0.92 0.88 635 accuracy 0.89 1362 macro avg 0.89 0.89 0.89 1362 weighted avg 0.89 0.89 0.89 1362 """ classification_report(y_test, SGDC.predict(x_test)) confusion_matrix(y_test, SGDC.predict(x_test)) # visualize confusion Matrix ConfusionMatrixDisplay( confusion_matrix(y_test, SGDC.predict(x_test)), display_labels=["Bad_Wine", "Good_Wine"], ).plot() zero_one_loss(y_test, SGDC.predict(x_test)) svc.score(x_train, y_train) accuracy_score(y_test, svc.predict(x_test)) """ precision recall f1-score support 0 0.95 0.89 0.92 727 1 0.88 0.94 0.91 635 accuracy 0.91 1362 macro avg 0.91 0.92 0.91 1362 weighted avg 0.92 0.91 0.91 1362 """ classification_report(y_test, svc.predict(x_test)) confusion_matrix(y_test, svc.predict(x_test)) # visualize confusion Matrix ConfusionMatrixDisplay( confusion_matrix(y_test, svc.predict(x_test)), display_labels=["Bad_Wine", "Good_Wine"], ).plot() zero_one_loss(y_test, svc.predict(x_test))
# Let's make all the csv files in our folder into a single dataframe. import pandas as pd import os from os import listdir from os.path import isfile, join import glob df = pd.concat( map( pd.read_csv, glob.glob( os.path.join( "", "../input/borsa-istanbul-bist100-index-20102020/BİST100-2010.01.01-2020.07.01/*.csv", ) ), ) ) df # Let's get the ticker names from our folder. And remove .csv from ticker names ticker_names = [ f for f in listdir( "../input/borsa-istanbul-bist100-index-20102020/BİST100-2010.01.01-2020.07.01/" ) if isfile( join( "../input/borsa-istanbul-bist100-index-20102020/BİST100-2010.01.01-2020.07.01/", f, ) ) ] ticker_names # remove .csv from ticker names ticker_names = [y.strip(".csv") for y in ticker_names] ticker_names # Let's take the 'Close' column of each stock in the folder, match the filenames of the stocks with the columns. all_files = glob.glob( os.path.join( "../input/borsa-istanbul-bist100-index-20102020/BİST100-2010.01.01-2020.07.01/", "*.csv", ) ) # advisable to use os.path.join as this makes concatenation OS independent df_from_each_file = ( pd.read_csv(f, parse_dates=True, index_col="Date").assign(filename=f) for f in all_files ) concat = pd.concat(df_from_each_file, axis=1) df = concat["Close"] df.columns = all_files df # Let's replace column names with our ticker list instead of folder paths. bist_100 = df bist_100.columns = ticker_names bist_100
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv("/kaggle/input/breast-cancer-wisconsin-data/data.csv") df.head() # LEITURA DA BASE df.columns[-1] df.drop( labels=df.columns[-1], axis=1, inplace=True ) # REMOÇÃO DE ÚLTIMA COLUNA COM VALORES FALTOSOS df.shape # 569 instâncias e 33 atributos print("{} registros e {} atributos".format(df.shape[0], df.shape[1])) df.info() # INFORMAÇÕES DO ARQUIVO - SABER SE HÁ VALORES NULOS df.dtypes.value_counts() # ATRIBUTOS CATEGÓRICOS = 1 E NUMÉRICOS = 31 df["diagnosis"].value_counts() # PARA SABER OS VALORES DOS DIAGNOSTICOS df.describe().T # NÃO SÃO ESCALARES df.isnull().sum() # VERIFICANDO SE HÁ VALORES NULOS NAS CLASSES DOS ATRIBUTOS # QUESTÃO 2: Sim. Para organizar primeiramente a base foi excluído o atributo (Unnamed: 32) # que possui valores faltosos e não influenciará no resultado. # https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html Q 2 # https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler from sklearn.preprocessing import MinMaxScaler scale = MinMaxScaler() import matplotlib.pyplot as plt import numpy as np # Criando o boxplot fig, ax = plt.subplots() ax.boxplot(df) # Adicionando título e rótulo aos eixos ax.set_title("Boxplot") ax.set_ylabel("Values") np.random.normal() plt.show() plt.boxplot(data=df, x="radius_se") plt.show() cols = ["compactness_se", "concavity_se", "concave points_se"] df.boxplot(column=[]) # VERIFICANDO OS BOXPLOTS DE MÚLTIPLOS ATRIBUTOS plt.subplot(131) plt.boxplot(x=df["compactness_se"]) plt.subplot(132) plt.boxplot(x=df["concavity_se"]) plt.subplot(133) plt.boxplot(x=df["concave points_se"])
# # The Relationship Between GDP and Life Expectancy # ### Table of Contents # * [Goals](#goals) # * [Scoping](#scoping) # * [Data](#data) # * [Time Series Analysis](#tsa) # - [Life Expectancy](#le) # - [GDP](#gdp) # - [Average GDP vs Life Expectancy](#gdp-le) # * [Time Series Multivariate Analysis](#ts-ma) # - [Zimbabwe](#zimbabwe) # - [Medium GDP Countries](#mediumgdp) # - [High GDP Countries](#highgdp) # * [Exploratory Data Analysis: Correlation](#eda:corr) # * [Discussion](#discussion) # ## Project Goals # The main goal of the current project will be to analyze data on GDP and life expectancy from the World Health Organization and the World Bank, in order to identify the **relationship between GDP and Life Expectancy** of six countries. # To this end, the data will be analysed, prepared, and visualised in order to answer this question in a meaningful way. import pandas as pd import matplotlib.pyplot as plt from scipy import stats import seaborn as sns import numpy as np import csv import statsmodels.api as sm import math import statsmodels # # ## Project Scoping # With the goal of identifying the relationship between a country's GDP and its population's life expectancy, the following analytical sets will be required, in order: # 1. Univariate Analysis of each countries life expectancy (different parts of the population will have different expectancies) and GDP - in order to observe how they evolved accross the time span seen in the data (time series analysis) # 2. Bivariate Analysis between the average GDP and Life Expectancy for each year of the dataset - What tipe of relationship (if any) is there between the two overall? # 3. Bivariate Analysis of the relationship between each country's GDP and Life Expectancy - How do the two change, comparatively to each other? Does there seem to be a relationship between the two, in each country specifically? # 4. Multivariate Analysis of the 6 country's GDP and life expectancy. Observing the relationship between these two measures for each country, is there any other insight revealed? # 5. Pearson's Correlation. This will allow us to gain a deeper understanding of the relationship between the two variables. # ### Hypothesis for the EDA: # 1. Countries with a higher GDP will tend to have a higher life expectancy. # 2. Life expectancy will tend to grow over time in all countries # 3. GDP will tend to grow over time for all countries. No reduction in GDP is expected for any of the countries present in the dataset. # Finally, with relation to the relationship between the two measures (GDP and Life Expectancy), a significant positive relationship is expected, although, it might be more difficult to understand the direction of said relationship. Not only this, but, although significant and positive, it might well be the case that there isn't a strong correlation between the two, due to the complexity of each specific country's economic, health and societal situations rarely allowing for this sort of relationship between two single measures. # # Data # Before analysing the data, an examination of its structure, columns, number of datapoints, missing data and summary statistics will be run, to give us a better insight into the dataset. data = pd.read_csv("/kaggle/input/codecademy-portfolio-2-data/all_data.csv") print(data.head(-20)) print(data.info()) print(data.Country.unique()) print(data.describe()) # The column "Country" seems to be comprised of the countries: # 'Chile' 'China' 'Germany' 'Mexico' 'United States of America' 'Zimbabwe'. # As such, these will be the countries examined in the report. # There are no Null values in the data and we have a total of 96 entries. Furthermore, the data was collected between the year 2000 and 2015. # Across this life span, the minimum Life Expectancy for a country was 44 years, and the maximum was 81. In terms of GDP, the lowest amount was that of 441 Million Dollars, whereas the maximum is equal to 1.81 Trillion. From this, one can expect to find a very wide range of variation between these 6 countries, in both measures. # For the next step in the current report, a Time Series analysis will be conducted to explore the evolution of the two measures accross the time-span in the dataset. # ## Exploratory Data Analysis: Time Series Analysis # ### Life Expectancy data_copy = data.rename(columns={"Life expectancy at birth (years)": "Life_expectancy"}) data_copy.replace("United States of America", "USA", inplace=True) years = data_copy.Year[0:16] for i, country in enumerate(data_copy.Country.unique()): # Life Expectancy in Chile ax = plt.subplot(3, 2, i + 1) plt.plot(years, data_copy.Life_expectancy[data_copy.Country == country], marker="s") plt.title("Life Expectancy in " + country) plt.xlabel("Years (2000 - 2015)") plt.ylabel("Expected Age") plt.show() # It seems that, although with some variation accross time, all 6 countries have seen a positive growth in their population's Life Expectancy. This wasn't true through all the years in the dataset however, as every country - except perhaps China - saw a period of either a decrease or stagnation. However, overall, there seems to be a trend towards growth. # ### GDP for i, country in enumerate(data_copy.Country.unique()): # Life Expectancy in Chile ax = plt.subplot(3, 2, i + 1) plt.plot(years, data_copy.GDP[data_copy.Country == country], marker="s") plt.title(country + "'s GDP") plt.xlabel("Years (2000 - 2016)") if country == "Zimbabwe": plt.ylabel("Billions") elif (country == "USA") or (country == "China"): plt.ylabel("Trilions") elif country == "Chile": plt.ylabel("(10s of) Billions") else: plt.ylabel("(100s of) Billions") plt.show() # Through the above visualisations, one can observe how, although the trend is once again growth, this isn't as clear as with Life Expectancy. Specifically, Germany, Chile and Mexico have seen their GDP stagnate or reduce in the final years of the dataset, whereas USA, China and Zimbabwe have seen growth in recent years, although Zimbabwe's was reducing accross time until around 2008. # **From both of these visualisations, a positive trend can be identified on the two measures. As such, the next step in the analysis would be to explore how the two match up to each other year-on-year, in an effort to explore their relationship.** # ### Time Series Analysis: Average Life Span & GDP # obtaining Series of the average of two measures accross all years average_GDP = data_copy.GDP.groupby(data_copy.Year).mean() average_life_span = data_copy.Life_expectancy.groupby(data_copy.Year).mean() # plotting both in a scatter plot sns.scatterplot(x=average_life_span, y=average_GDP) plt.title("GDP vs Life Expectancy (Average)") plt.show() # As can be seen, the relationship between these two measures seems to be linear, with the two measures growing together. Of course, finding the direction of this relationship might be outside the scope of the current project, but it seems that, as one grows, so does the other. # **In order to better visualise this relationship, the current project will explore how the two measures map onto each other, for each country individually. This might provide us with some more insight, not only in the relationship between the two measures overall, but also in the relationship that exist between countries.** # ### Time Series - Multivariate Analysis sns.scatterplot(data=data_copy, x="Life_expectancy", y="GDP", hue="Country") plt.ylim() plt.show() # The disparity between countriies' GDP and Life Expectancy does not allow us to correctly observe how their individual cases. For example Zimbabwe, due to having a GDP much lower than the USA and China, and a much lower life expectancy than the rest of the countries, does not map well onto the scatter plot. # Simillarly, Germany, Chile and Mexico, due to having a lower GDP than the other two countries, are hard to visualise, despite having some of the highest Life Expectancies in the dataset. # **As such, I am gonna plot Zimbabwe by itself, Germany, Chile and Mexico together and the USA and China in a separate plot, as their GDP numbers aren't allowing for a good examination.** # #### Zimbabwe sns.scatterplot( x=data_copy.Life_expectancy[data_copy.Country == "Zimbabwe"], y=data_copy.GDP[data_copy.Country == "Zimbabwe"], ) plt.title("Zimbabwe's GDP vs Life Expectancy") plt.show() # Here, we can see that, although it is not linear in the earlier years of the dataset (Zimbabwe's Life Expectancy actually went down in the early to mid 2000s, whilst their GDP was somewhat stable), it becomes very linear in late 2000s and early/mid 2010s when both measures start to increase consistently. # **Moving on, this relationship will be examined for the three "middle" countries of the dataset.** # #### Medium GDP countries # plotting Germany, Chile and Mexico sns.scatterplot( x=data_copy.Life_expectancy[data_copy.Country == "Germany"], y=data_copy.GDP[data_copy.Country == "Germany"], label="Germany", ) sns.scatterplot( x=data_copy.Life_expectancy[data_copy.Country == "Chile"], y=data_copy.GDP[data_copy.Country == "Chile"], label="Chile", ) sns.scatterplot( x=data_copy.Life_expectancy[data_copy.Country == "Mexico"], y=data_copy.GDP[data_copy.Country == "Mexico"], label="Mexico", ) plt.legend() plt.title("Medium GDP Countries") plt.show() # By plotting it this way, we can now see that each of these relationships is somewhat linear in nature for these three countries as well. Grouping the three countries seems to not be perfect, as Chile seems quite flat, indicating that, due to Germany's GDP being significantly higher, this plot isn't allowing for a full visualisation of the relationship in its case. # However, this is good enough to reach a good understanding of what this relationship looks like in each of these case-studies. # Finally, let's explore this relationship in High-GDP countries. # #### High GDP countries sns.scatterplot( x=data_copy.Life_expectancy[data_copy.Country == "China"], y=data_copy.GDP[data_copy.Country == "China"], label="China", ) sns.scatterplot( x=data_copy.Life_expectancy[data_copy.Country == "USA"], y=data_copy.GDP[data_copy.Country == "USA"], label="USA", ) plt.legend() plt.title("High GDP Countries") plt.show() # The USA's Life Expectancy and GDP match almost perfectly in a linear relationship, whereas China's looks more like an exponential relationship rather than linear. # To finalise this exploration of the data, however, a Pearson's correlation between the two will be run, in order to obtain a single measure. # ### EDA: Correlation from scipy.stats import pearsonr corr, p = pearsonr(data_copy.GDP, data_copy.Life_expectancy) print(corr, p)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # #### 💖 **Introduction** # *** # According to the CDC, heart disease is one of the leading causes of death for people of most races in the US (African Americans, American Indians and Alaska Natives, and white people). About half of all Americans (47%) have at least 1 of 3 key risk factors for heart disease: high blood pressure, high cholesterol, and smoking. Other key indicator include diabetic status, obesity (high BMI), not getting enough physical activity or drinking too much alcohol. Detecting and preventing the factors that have the greatest impact on heart disease is very important in healthcare. Computational developments, in turn, allow the application of machine learning methods to detect "patterns" from the data that can predict a patient's condition. # Coronary heart disease (CHD) is a major public health concern that affects millions of individuals worldwide. The prevalence of CHD is influenced by multiple lifestyles and behavioral factors, such as sleep cycle, gender, race, age, physical health, BMI, diseases such as diabetes, asthma, and skin cancer, and addictive habits like alcohol addiction, and smoking habits. Several such lifestyle-related factors are known to influence the risk of developing CHD; however, the extent to which these factors contribute is not well understood. Therefore, it is essential to investigate the association of various lifestyle factors. Many factors such as hyperlipidemia, type 2 diabetes, and hypertension are known to be associated with CHD. # Smoking and high alcohol consumption are important modifiable lifestyle-related factors linked to increased CHD risk. Smoking cessation has been shown to have a long-term impact on CHD prevention. Chronic alcohol use can increase CHD risk by promoting high blood pressure and increasing harmful lipid levels. Sleep disturbances, such as sleep apnea, have also been linked to increased CHD risk. Sleep apnea can lead to hypertension, inflammation, and changes in the autonomic nervous system that may increase the incidence of arrhythmias, heart failure, and CHD. Obesity, diabetes, hypertension, and high cholesterol levels are metabolic risk factors that have been identified as potent contributors to CHD. These factors increase CHD risk by promoting inflammation, insulin resistance, and endothelial dysfunction, which can lead to atherosclerosis. In conclusion, the lifestyle-related factors discussed above have been shown to increase the risk of CHD through different mechanisms. Adopting a healthy lifestyle and modifying these factors can help to reduce the incidence of CHD. # A cross-sectional, observational study on a larger population would provide insight into the correlation of these factors to CHD. Patients’ medical histories will be utilized to carry out this study and various statistical analyses would reveal the significance of the association. Broadly, patients’ data will be categorized according to their lifestyle habits, community, and environment (habitat), underlying diseases and addictive habits. # Originally, the dataset come from the CDC and is a major part of the Behavioral Risk Factor Surveillance System (BRFSS), which conducts annual telephone surveys to gather data on the health status of U.S. residents. As the CDC describes: "Established in 1984 with 15 states, BRFSS now collects data in all 50 states as well as the District of Columbia and three U.S. territories. BRFSS completes more than 400,000 adult interviews each year, making it the largest continuously conducted health survey system in the world.". The most recent dataset (as of February 15, 2022) includes data from 2022. It consists of 401,958 rows and 279 columns. The vast majority of columns are questions asked to respondents about their health status, such as "Do you have serious difficulty walking or climbing stairs?" or "Have you smoked at least 100 cigarettes in your entire life?". # Note that the original dataset has 300 variables and has been reduced to just about 20 variables. # 📌 Description of variables # - Heart Disease: Respondents that have ever reported having coronary heart disease (CHD) or myocardial infarction (MI). # - BMI : Body Mass Index (BMI). # - Smoking : Have you smoked at least 100 cigarettes in your entire life? ( The answer Yes or No ) # - AlcoholDrinking : Heavy drinkers (adult men having more than 14 drinks per week and adult women having more than 7 drinks per week) # - Stroke : (Ever told) (you had) a stroke? # - PhysicalHealth : Now thinking about your physical health, which includes physical illness and injury, for how many days during the past 30 days was your physical health not good? (0-30 days). # - MentalHealth : Thinking about your mental health, for how many days during the past 30 days was your mental health not good? (0-30 days). # - DiffWalking : Do you have serious difficulty walking or climbing stairs? # - Sex : Are you male or female? # - AgeCategory: Fourteen-level age category. # - Race : Imputed race/ethnicity value. # - Diabetic : (Ever told) (you had) diabetes? # - PhysicalActivity : Adults who reported doing physical activity or exercise during the past 30 days other than their regular job. # - GenHealth : Would you say that in general your health is… # - SleepTime : On average, how many hours of sleep do you get in a 24-hour period? # - Asthma : (Ever told) (you had) asthma? # - KidneyDisease : Not including kidney stones, bladder infection or incontinence, were you ever told you had kidney disease? # - SkinCancer : (Ever told) (you had) skin cancer? # #### 💖 **Import dataset and libraries** # *** from IPython.core.display import HTML with open("./CSS.css", "r") as file: custom_css = file.read() HTML(custom_css) import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import scipy.stats as stats import statsmodels.api as sm from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedKFold from imblearn.over_sampling import SMOTE from sklearn.linear_model import LogisticRegression from xgboost import XGBClassifier from sklearn.metrics import ( classification_report, confusion_matrix, roc_curve, roc_auc_score, ConfusionMatrixDisplay, RocCurveDisplay, ) import warnings warnings.filterwarnings("ignore") rc = { "axes.facecolor": "#FFF9ED", "figure.facecolor": "#FFF9ED", "axes.edgecolor": "#000000", "grid.color": "#EBEBE7", "font.family": "serif", "axes.labelcolor": "#000000", "xtick.color": "#000000", "ytick.color": "#000000", "grid.alpha": 0.4, } sns.set(rc=rc) from colorama import Style, Fore red = Style.BRIGHT + Fore.RED blu = Style.BRIGHT + Fore.BLUE mgt = Style.BRIGHT + Fore.MAGENTA gld = Style.BRIGHT + Fore.YELLOW res = Style.RESET_ALL df = pd.read_csv( "/kaggle/input/key-indicators-of-heart-disease/heart_2022_Key_indicators.csv" ) df.head() df["AgeCategory"].value_counts() print(df.info()) # #### 💖 **Basic EDA** # *** # 🔎 Basic information of data # - There are 17 predictor variables and 1 target variable. # - Out of the 17 predictor variables, 4 are numeric. # - There are 319795 observations. # - No variables have missing values. # - The numeric variables are all right skewed. # 📈 Summary table # * Summary table shows number of missing values for each variable as well as the minimum and maximum value for each variable. desc = pd.DataFrame(df.describe(include="all").transpose()) def summary_stats(df): print(f"The shape of the data is: {df.shape}") summary = pd.DataFrame(df.dtypes, columns=["data type"]) summary["Number of missing values"] = df.isnull().sum().values summary["% of missing values"] = df.isnull().sum().values / len(df) * 100 summary["min value"] = desc["min"].values summary["mean value"] = desc["mean"].values summary["max value"] = desc["max"].values return summary summary_stats(df) # # - There are no null values. # - The numeric variables seem to be right skewed. # skewness = df.skew() skew_df = pd.DataFrame({"Variable": skewness.index, "Skewness": skewness.values}) skew_df # * Since the values are all positive, the numeric variables are all right skewed. # #### 💖 **Exploratory data analysis** # *** def plot_count(df: pd.core.frame.DataFrame, col_list: list) -> None: """Draws the pie and count plots for categorical variables. Args: df: train or test dataframes col_list: a list of the selected categorical variables. title_name: 'Train' or 'Test' (default 'Train') Returns: subplots of size (len(col_list), 2) """ f, ax = plt.subplots(len(col_list), 2, figsize=(10, 4)) plt.subplots_adjust(wspace=0) s1 = df[col_list].value_counts() N = len(s1) outer_sizes = s1 inner_sizes = s1 / N outer_colors = ["#9E3F00", "#eb5e00", "#ff781f", "#ff9752", "#ff9752"] inner_colors = ["#ff6905", "#ff8838", "#ffa66b"] ax[0].pie( outer_sizes, colors=outer_colors, labels=s1.index.tolist(), startangle=90, frame=True, radius=1.3, explode=([0.05] * (N - 1) + [0.3]), wedgeprops={"linewidth": 1, "edgecolor": "white"}, textprops={"fontsize": 12, "weight": "bold"}, ) textprops = {"size": 13, "weight": "bold", "color": "white"} ax[0].pie( inner_sizes, colors=inner_colors, radius=1, startangle=90, autopct="%1.f%%", explode=([0.1] * (N - 1) + [0.3]), pctdistance=0.8, textprops=textprops, ) center_circle = plt.Circle((0, 0), 0.68, color="black", fc="white", linewidth=0) ax[0].add_artist(center_circle) x = s1 y = [0, 1] sns.barplot(x=x, y=y, ax=ax[1], palette="YlOrBr_r", orient="horizontal") ax[1].spines["top"].set_visible(False) ax[1].spines["right"].set_visible(False) ax[1].tick_params(axis="x", which="both", bottom=False, labelbottom=False) for i, v in enumerate(s1): ax[1].text(v, i + 0.1, str(v), color="black", fontweight="bold", fontsize=12) # plt.title(col_list) plt.setp(ax[1].get_yticklabels(), fontweight="bold") plt.setp(ax[1].get_xticklabels(), fontweight="bold") ax[1].set_xlabel(col_list, fontweight="bold", color="black") ax[1].set_ylabel("count", fontweight="bold", color="black") plt.tight_layout() plt.show() plot_count(df, ["HeartDisease"]) len(df[df["HeartDisease"] == "No"]) / len(df[df["HeartDisease"] == "Yes"]) # # - The dataset is imbalanced. There are 10 times more negative cases than positive cases. # - We can apply techniques such as SMOTE and over random sampling to deal with this imbalance. # fig, axs = plt.subplots(1, 2, figsize=(12, 6)) sns.countplot(x="Sex", data=df, ax=axs[0]) ax1 = sns.countplot(x="HeartDisease", hue="Sex", data=df, ax=axs[1]) for container in ax1.containers: ax1.bar_label(container) ax1.set_ylabel("") plt.show() # # - Equal number of males and females. # - There are around 5000 more males than females with heart disease. # - According to (1), men have a higher risk of coronary heart disease than women. # fig, axs = plt.subplots(2, 2, figsize=(12, 10)) sns.histplot(x="BMI", data=df, kde=True, ax=axs[0, 0]) sns.histplot(x="PhysicalHealth", data=df, kde=True, ax=axs[0, 1]) sns.histplot(x="MentalHealth", data=df, kde=True, ax=axs[1, 0]) sns.histplot(x="SleepTime", data=df, kde=True, ax=axs[1, 1]) axs[0, 0].set(ylabel="") axs[0, 1].set(ylabel="") axs[1, 0].set(ylabel="") axs[1, 1].set(ylabel="") fig.suptitle("Histogram for all numeric variables") plt.show() len(df[df["BMI"] >= 25]) / len(df[df["BMI"] < 25]) # # - The distribution of BMI resembles a right skewed normal distribution. # - The BMI of most respondents lie in the overweight and obese range of 25.0 and higher. There are twice as many overweight and obese individuals as underweight and healthy individuals. # - Most people reported that their physical and mental health were good every day for the past 30 days. # - Most people sleep between 6 to 9 hours. # num_cols = df.select_dtypes(include=["float64", "int64"]).columns.tolist() figsize = (16, 10) fig = plt.figure(figsize=figsize) for idx, col in enumerate(num_cols): ax = plt.subplot(2, 2, idx + 1) sns.kdeplot( data=df, hue="HeartDisease", fill=True, x=col, palette=["#9E3F00", "red"], legend=False, ) ax.set_ylabel("") ax.spines["top"].set_visible(False), ax.set_xlabel("") ax.spines["right"].set_visible(False) ax.set_title(f"{col}", loc="right", weight="bold", fontsize=20) fig.suptitle(f"Features vs Target\n\n\n", ha="center", fontweight="bold", fontsize=25) fig.legend([1, 0], loc="upper center", bbox_to_anchor=(0.5, 0.96), fontsize=25, ncol=3) plt.tight_layout() plt.show() # # - Distribution between presence and absence of heart dieases is different in each variable. # - These variables have predictive power. # def plot_correlation_heatmap( df: pd.core.frame.DataFrame, title_name: str = "Correlation" ) -> None: corr = df.corr() fig, axes = plt.subplots(figsize=(10, 6)) mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True sns.heatmap(corr, mask=mask, linewidths=0.5, cmap="YlOrRd", annot=True) plt.title(title_name) plt.show() plot_correlation_heatmap(df) # # - There is no strong correlation between the four numeric variables. # cat_cols = df.select_dtypes(include=["object"]).columns.tolist() plt.figure(figsize=(30, 20)) for idx, column in enumerate(cat_cols): plt.subplot(3, 5, idx + 1) sns.countplot(x=column, hue="HeartDisease", data=df, palette="YlOrRd") plt.title(f"{column} Distribution") plt.tight_layout() # # - Smoking increases the chance of getting heart disease. # - Surprisingly, there are more people who are not heavy drinkers who got heart disease. # - White people have a higher chance of getting heart disease. # #### 💖 **Statistical analysis (ANOVA)** # *** # * ANOVA can be used to determine if there is any association between a numeric and a categorical variable. # - $H_0$: There is no association between the two variables. # - $H_1$: There is association between the two variables. # Assumptions for ANOVA model # - Independence of observations # - Normal distribution # - Equal variances # - Shapiro wilk test can be used to test for normality. stats.shapiro(df["BMI"]) # # - Under a significance level of 0.05, BMI is not normally distributed and hence, ANOVA cannot be used. # #### 💖 **Statistical analysis (Wilcoxon rank sum test)** # *** # - A non-parametric statistical test used to compare the medians of two groups. # - An alternative to the t-test or ANOVA when the assumptions of normality or equal variances are not met. statistic, p_value = stats.mannwhitneyu( df[df["HeartDisease"] == "Yes"]["SleepTime"], df[df["HeartDisease"] == "No"]["SleepTime"], ) print("p-value:", p_value) statistic, p_value = stats.mannwhitneyu( df[df["HeartDisease"] == "Yes"]["BMI"], df[df["HeartDisease"] == "No"]["BMI"] ) print("p-value:", p_value) statistic, p_value = stats.mannwhitneyu( df[df["HeartDisease"] == "Yes"]["PhysicalHealth"], df[df["HeartDisease"] == "No"]["PhysicalHealth"], ) print("p-value:", p_value) statistic, p_value = stats.mannwhitneyu( df[df["HeartDisease"] == "Yes"]["MentalHealth"], df[df["HeartDisease"] == "No"]["MentalHealth"], ) print("p-value:", p_value) # # - Under a significance level of 0.1, there exists an association between each numeric variable and the variable "HeartDisease". # - We will use all the numeric variables in our modelling. # #### 💖 **Statistical analysis (Two way contigency table)** # *** # - Contigency table employs Pearson chi-squared test to determine any association between two categorical variables. # - $H_0$: There is no association between the two variables. # - $H_1$: There is association between the two variables. # - Under a significance level of 0.05, there exists an association between each categorical variable and the variable "HeartDisease". # - We will use all the categorical variables in our modelling. # for cols in cat_cols: tabs = pd.crosstab(df[cols], df["HeartDisease"]) chi2, p, dof, con_table = stats.chi2_contingency(tabs) print(f"Analysis for", cols) print(f"chi-squared = {chi2}\np value= {p}\ndegrees of freedom = {dof}") print(" ") # #### 💖 **Feature engineering** # *** le = LabelEncoder() for cols in cat_cols: df[cols] = le.fit_transform(df[cols]) df.head() X = df.drop(["HeartDisease"], axis=1) y = df["HeartDisease"] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # #### 💖 **SMOTE** # *** # - SMOTE (Synthetic Minority Oversampling Technique) is an over sampling technique that works by utilizing a k-nearest neighbor algorithm to create synthetic data. # Simply speaking, it # - Identify the feature vector and its nearest neighbor # - Compute the distance between the two sample points # - Multiply the distance with a random number between 0 and 1 # - Identify a new point on the line segment at the computed distance. # - Repeat the process for identified feature vectors. sm = SMOTE( sampling_strategy=y_train.mean() / (1 - y_train.mean()) * 10, random_state=1004, k_neighbors=5, n_jobs=-1, ) X_train, y_train = sm.fit_resample(X_train, y_train.ravel()) print("After OverSampling, the shape of train_X: {}".format(X_train_res.shape)) print("After OverSampling, the shape of train_y: {} \n".format(y_train_res.shape)) print("After OverSampling, counts of label '1': {}".format(sum(y_train == 1))) print("After OverSampling, counts of label '0': {}".format(sum(y_train == 0))) # #### 💖 **Modelling (Logistic regression)** # *** lr = LogisticRegression() lr.fit(X_train, y_train) y_pred = lr.predict(X_test) # #### 💖 **Evaluation metrics (Logistic regression)** # *** # - Recall calculates how many of the actual positives our model capture through labeling it as Positive (True Positive). # - Recall shall be the model metric we use to select our best model since there is a high cost associated with false negative. # - The macro-averaged metric is computed using the arithmetic mean of all the per-class metric. # - The weighted-averaged metric is calculated by taking the mean of all per-class metric while considering each class’s support.Support refers to the number of actual occurrences of the class in the dataset. print(classification_report(y_test, y_pred)) # # - The macro average recall is 0.56, which is quite low. # confusion_lr = confusion_matrix(y_pred, y_test) sns.heatmap(confusion_lr, annot=True) plt.xlabel("Predicted") plt.ylabel("Actual") # # - Many positive cases are classified as negative. # roc_auc_score(y_pred, y_test) # # - The higher the AUC, the better the model's performance at distinguishing between the positive and negative classes. # - Logistic regression is not a good model. # #### 💖 **Modelling (XGBoost)** # *** def get_mean_auc(oof: np.array): """oof: ['val_idx', 'preds', 'target']""" oof = pd.DataFrame( np.concatenate(oof), columns=["id", "preds", "target"] ).set_index("id") oof.index = oof.index.astype(int) mean_val_auc = roc_auc_score(oof.target, oof.preds) return mean_val_auc FOLDS = 5 SEED = 1004 xgb_models = [] xgb_oof = [] predictions = np.zeros(len(X_test)) f_imp = [] counter = 1 skf = StratifiedKFold(n_splits=FOLDS, shuffle=True, random_state=SEED) for fold, (train_idx, val_idx) in enumerate(skf.split(X, y)): if (fold + 1) % 5 == 0 or (fold + 1) == 1: print(f'{"#"*24} Training FOLD {fold+1} {"#"*24}') X_train, y_train = X.iloc[train_idx], y.iloc[train_idx] X_valid, y_valid = X.iloc[val_idx], y.iloc[val_idx] watchlist = [(X_train, y_train), (X_valid, y_valid)] # XGboost model and fit model = XGBClassifier( n_estimators=1000, n_jobs=-1, max_depth=4, eta=0.2, colsample_bytree=0.67 ) model.fit( X_train, y_train, eval_set=watchlist, early_stopping_rounds=300, verbose=0 ) val_preds = model.predict_proba(X_valid)[:, 1] val_score = roc_auc_score(y_valid, val_preds) best_iter = model.best_iteration idx_pred_target = np.vstack( [val_idx, val_preds, y_valid] ).T # shape(len(val_idx), 3) f_imp.append( {i: j for i in model.feature_names_in_ for j in model.feature_importances_} ) print( f'{" "*20} auc:{blu}{val_score:.5f}{res} {" "*6} best iteration :{blu}{best_iter}{res}' ) xgb_oof.append(idx_pred_target) xgb_models.append(model) if val_score > 0.80: test_preds = model.predict_proba(X_test)[:, 1] predictions += test_preds counter += 1 predictions /= counter mean_val_auc = get_mean_auc(xgb_oof) print("*" * 45) print(f"{red}Mean{res} AUC: {red}{mean_val_auc:.5f}{res}")
from glob import glob from sklearn.model_selection import GroupKFold, StratifiedKFold import cv2 from skimage import io import torch from torch import nn import os from datetime import datetime import time import random import cv2 import torchvision from torchvision import transforms import pandas as pd import numpy as np from tqdm import tqdm from IPython.display import display import matplotlib.pyplot as plt from torch.utils.data import Dataset, DataLoader from torch.utils.data.sampler import SequentialSampler, RandomSampler from torch.cuda.amp import autocast, GradScaler from torch.nn.modules.loss import _WeightedLoss import torch.nn.functional as F import sklearn import warnings import joblib from sklearn.metrics import roc_auc_score, log_loss from sklearn import metrics from sklearn.preprocessing import LabelEncoder, MinMaxScaler import warnings warnings.filterwarnings("ignore") import cv2 import pydicom # from efficientnet_pytorch import EfficientNet from scipy.ndimage.interpolation import zoom import matplotlib.pyplot as plt from sklearn.metrics import f1_score, confusion_matrix from pylab import rcParams rcParams["figure.figsize"] = 20, 5 train_df = pd.read_csv( "../input/ptb-xl-dataset-reformatted/train_table.csv", index_col=0 ) train_signal = pd.read_pickle( "../input/ptb-xl-dataset-reformatted/train_12_lead_ecgs.pkl" ) valid_df = pd.read_csv( "../input/ptb-xl-dataset-reformatted/valid_table.csv", index_col=0 ) valid_signal = pd.read_pickle( "../input/ptb-xl-dataset-reformatted/valid_12_lead_ecgs.pkl" ) test_df = pd.read_csv("../input/ptb-xl-dataset-reformatted/test_table.csv", index_col=0) test_signal = pd.read_pickle( "../input/ptb-xl-dataset-reformatted/test_12_lead_ecgs.pkl" ) print(train_df.shape) train_df train_df.shape class PTBXLDatasetPreprocesser: def __init__(self): pass def fit(self, x, y): self.superclass_cols = ["NORM", "MI", "STTC", "CD", "HYP"] self.subclass_cols = [col for col in y.columns if "sub_" in col] self.meta_num_cols = ["age", "height", "weight"] self.min_max_scaler = MinMaxScaler().fit(y[self.meta_num_cols]) self.meta_cat_cols = ["sex", "nurse", "device"] self.cat_lablers = [ LabelEncoder().fit(y[col].fillna("none").astype(str)) for col in self.meta_cat_cols ] def transform(self, x, y): ret = [] ret += [x] # signal y_ = y.copy() y_[self.meta_num_cols] = self.min_max_scaler.transform(y_[self.meta_num_cols]) ret += [y_[self.meta_num_cols].fillna(-1.0)] # meta num features for i, col in enumerate(self.meta_cat_cols): y_[col] = y_[col].fillna("none").astype(str) y_[col] = self.cat_lablers[i].transform(y_[col]) ret += [y_[self.meta_cat_cols]] # meta cat features ret += [y[self.superclass_cols].fillna(0).astype(int)] # superclass targets ret += [y[self.subclass_cols].fillna(0).astype(int)] # subclass targets return ret data_preprocessor = PTBXLDatasetPreprocesser() data_preprocessor.fit(train_signal, train_df) ( train_signal, train_meta_num_feats, train_meta_cat_feats, train_superclass, train_subclass, ) = data_preprocessor.transform(train_signal, train_df) train_signal.shape display(train_meta_num_feats) display(train_meta_cat_feats) display(train_superclass) display(train_subclass) ( valid_signal, valid_meta_num_feats, valid_meta_cat_feats, valid_superclass, valid_subclass, ) = data_preprocessor.transform(valid_signal, valid_df) ( test_signal, test_meta_num_feats, test_meta_cat_feats, test_superclass, test_subclass, ) = data_preprocessor.transform(test_signal, test_df) # ### Train a Pytorch RNN Model def seed_everything(seed): random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True class ECGDataset(Dataset): def __init__(self, signals, labels=None): self.signals = signals self.labels = labels def __len__(self): return len(self.signals[:, 0]) def __getitem__(self, idx): if self.labels is not None: return self.signals[idx, :], self.labels[idx] else: return self.signals[idx, :] class ECGClassifier(nn.Module): def __init__(self, hidden_size, n_class): super().__init__() self.gru = nn.GRU(1, hidden_size, batch_first=True, bidirectional=True) self.out = nn.Linear(hidden_size * 4, n_class) def forward(self, x): x, _ = self.gru(x.view(x.shape[0], x.shape[1], 1)) avg_pool = torch.mean(x, 1) max_pool, _ = torch.max(x, 1) x = torch.cat([avg_pool, max_pool], 1) x = self.out(x) return x def prepare_dataloader(df, trn_idx, val_idx): from catalyst.data.sampler import BalanceClassSampler x_train, y_train = ( df.loc[trn_idx].values[:, :187], df.loc[trn_idx].astype(int).values[:, 187], ) x_valid, y_valid = ( df.loc[val_idx].values[:, :187], df.loc[val_idx].astype(int).values[:, 187], ) print(x_train.shape) train_ds = ECGDataset(x_train, y_train) valid_ds = ECGDataset(x_valid, y_valid) train_loader = torch.utils.data.DataLoader( train_ds, batch_size=128, pin_memory=False, drop_last=False, shuffle=True, num_workers=4, # sampler=BalanceClassSampler(labels=y_train, mode='downsampling'), ) val_loader = torch.utils.data.DataLoader( valid_ds, batch_size=128, num_workers=0, shuffle=False, pin_memory=False, ) return train_loader, val_loader def train_one_epoch( epoch, model, loss_fn, optimizer, train_loader, device, scheduler=None, schd_batch_update=False, ): model.train() t = time.time() running_loss = None pbar = tqdm(enumerate(train_loader), total=len(train_loader)) for step, (signal, labels) in pbar: signal = signal.to(device).float() labels = labels.to(device).long() # print(image_labels.shape, exam_label.shape) with autocast(): preds = model(signal) # output = model(input) # print(image_preds.shape, exam_pred.shape) loss = loss_fn(preds, labels) scaler.scale(loss).backward() if running_loss is None: running_loss = loss.item() else: running_loss = running_loss * 0.99 + loss.item() * 0.01 scaler.step(optimizer) scaler.update() optimizer.zero_grad() if scheduler is not None and schd_batch_update: scheduler.step() description = f"epoch {epoch} loss: {running_loss:.4f}" pbar.set_description(description) if scheduler is not None and not schd_batch_update: scheduler.step() def valid_one_epoch( epoch, model, loss_fn, val_loader, device, scheduler=None, schd_loss_update=False ): model.eval() t = time.time() loss_sum = 0 sample_num = 0 preds_all = [] targets_all = [] pbar = tqdm(enumerate(val_loader), total=len(val_loader)) for step, (signal, labels) in pbar: signal = signal.to(device).float() labels = labels.to(device).long() preds = model(signal) # output = model(input) # print(image_preds.shape, exam_pred.shape) preds_all += [torch.argmax(preds, 1).detach().cpu().numpy()] targets_all += [labels.detach().cpu().numpy()] loss = loss_fn(preds, labels) loss_sum += loss.item() * labels.shape[0] sample_num += labels.shape[0] description = f"epoch {epoch} loss: {loss_sum/sample_num:.4f}" pbar.set_description(description) preds_all = np.concatenate(preds_all) targets_all = np.concatenate(targets_all) print( "validation multi-class accuracy = {:.4f}".format( (targets_all == preds_all).mean() ) ) print("validation F1_score = ", f1_score(targets_all, preds_all, average="micro")) if scheduler is not None: if schd_loss_update: scheduler.step(loss_sum / sample_num) else: scheduler.step() return targets_all, preds_all if __name__ == "__main__": # for training only, need nightly build pytorch seed = 719 epochs = 6 stepsize = 2 hidden_sie = 64 nclass = labels.nunique() seed_everything(719) folds = StratifiedKFold(n_splits=5, shuffle=True, random_state=seed).split( np.arange(train_df.shape[0]), labels.values ) for fold, (trn_idx, val_idx) in enumerate(folds): # we'll train fold 0 first if fold > 0: break print("Training with {} started".format(fold)) print(len(trn_idx), len(val_idx)) train_loader, val_loader = prepare_dataloader(train_df, trn_idx, val_idx) device = torch.device("cuda:0") model = ECGClassifier(hidden_sie, nclass).to(device) scaler = GradScaler() optimizer = torch.optim.Adam(model.parameters(), lr=1e-2) scheduler = torch.optim.lr_scheduler.StepLR( optimizer, gamma=0.1, step_size=stepsize ) loss_tr = nn.CrossEntropyLoss().to(device) loss_fn = nn.CrossEntropyLoss().to(device) for epoch in range(epochs): train_one_epoch( epoch, model, loss_tr, optimizer, train_loader, device, scheduler=scheduler, schd_batch_update=False, ) with torch.no_grad(): val_targets, val_preds = valid_one_epoch( epoch, model, loss_fn, val_loader, device, scheduler=None, schd_loss_update=False, ) torch.save(model.state_dict(), "pytorch_ecg_rnn.pth") # torch.save(model.cnn_model.state_dict(),'{}/cnn_model_fold_{}_{}'.format(CFG['model_path'], fold, CFG['tag'])) del model, optimizer, train_loader, val_loader, scaler, scheduler torch.cuda.empty_cache() pd.Series(val_targets).value_counts(), pd.Series(val_preds).value_counts(), # ### Predict on Test Set def predict(df): x_test = df.values[:, :187] test_ds = ECGDataset(x_test) tst_loader = torch.utils.data.DataLoader( test_ds, batch_size=128, num_workers=0, shuffle=False, pin_memory=False, ) device = torch.device("cpu") model = ECGClassifier(hidden_sie, nclass).to(device) model.load_state_dict(torch.load("pytorch_ecg_rnn.pth", map_location="cpu")) preds_all = [] pbar = tqdm(enumerate(tst_loader), total=len(tst_loader)) for step, (signal) in pbar: signal = signal.to(device).float() preds = model(signal) preds_all += [torch.softmax(preds, 1).detach().cpu().numpy()] return np.concatenate(preds_all, axis=0) test_df = pd.read_csv("../input/heartbeat/mitbih_test.csv", header=None) test_labels = test_df[187].astype(int) test_prob_preds = predict(test_df) test_pred = np.argmax(test_prob_preds, axis=1) cm = confusion_matrix(test_labels, test_pred) cm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] for i in range(cm.shape[1]): for j in range(cm.shape[0]): plt.text( j, i, format(cm[i, j], ".2f"), horizontalalignment="center", color="black" ) plt.imshow(cm, cmap=plt.cm.Blues) plt.ylabel("True label") plt.xlabel("Predicted label") plt.colorbar() print("F1_score = ", f1_score(test_labels, test_pred, average="micro")) # ### Export to onnx x_test = test_df.values[:, :187] test_ds = ECGDataset(x_test) tst_loader = torch.utils.data.DataLoader( test_ds, batch_size=1, num_workers=0, shuffle=False, pin_memory=False, ) device = torch.device("cpu") model = ECGClassifier(hidden_sie, nclass).to(device) model.load_state_dict(torch.load("pytorch_ecg_rnn.pth", map_location="cpu")) pbar = tqdm(enumerate(tst_loader), total=len(tst_loader)) for step, (signal) in pbar: signal = signal.to(device).float() preds = model(signal) break torch.onnx.export( model, # model being run signal, # model input (or a tuple for multiple inputs) "torch_rnn_ecg_classifier.onnx", # where to save the model (can be a file or file-like object) export_params=True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=["input"], # the model's input names output_names=["output"], # the model's output names dynamic_axes={ "input": {0: "batch_size"}, # variable lenght axes "output": {0: "batch_size"}, }, ) # ### Test runtime with onnx model import onnxruntime ort_session = onnxruntime.InferenceSession("torch_rnn_ecg_classifier.onnx") def to_numpy(tensor): return ( tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy() ) # compute ONNX Runtime output prediction ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(signal)} ort_outs = ort_session.run(None, ort_inputs) # compare ONNX Runtime and PyTorch results np.testing.assert_allclose(to_numpy(preds), ort_outs[0], rtol=1e-03, atol=1e-05) preds, ort_outs
# ## Read Data import numpy as np import pandas as pd train = pd.read_csv( r"/kaggle/input/test-competition-2783456756923/airline_tweets_train.csv" ) test = pd.read_csv( r"/kaggle/input/test-competition-2783456756923/airline_tweets_test.csv" ) # ## Feature Engineering # * Feature Extraction # * Data Cleaning & Preprocessing # * Feature Selection # * Feature Encoding # # Feature Extraction train["tweet_length"] = train.text.apply(lambda x: len(x)) train["has_retweets"] = np.where(train.retweet_count > 0, 1, 0) train["user_timezone"] = np.where( train.user_timezone.isnull(), "unknown", train.user_timezone ) # **TASK:** # 1. Think of an example of a new variable that may help identifying the sentiment, for example: # * 'Does the text contain numbers?' # * 'How many words are there?' # * 'How many twitter accounts are there, e.g. @ignacio?' # 2. Code this new variable (with the help of GPT if needed) import re def contains_numbers(string): match = re.search(r"\d", string) if match: return 1 else: return 0 contains_numbers("My flight was delayed 5 hours") train["has_numbers"] = train["text"].apply(contains_numbers) train.head() # ## Models # test["Category"][:1000] = "neutral" test["Category"][1000:2000] = "positive" test["Category"][2000:] = "negative" test = test.rename(columns={"airline_sentiment": "Category"}) test.to_csv(r"test_submission.csv")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv( "../input/edgeiiotset-cyber-security-dataset-of-iot-iiot/Edge-IIoTset dataset/Selected dataset for ML and DL/DNN-EdgeIIoT-dataset.csv", low_memory=False, ) from sklearn.utils import shuffle drop_columns = [ "frame.time", "ip.src_host", "ip.dst_host", "arp.src.proto_ipv4", "arp.dst.proto_ipv4", "http.file_data", "http.request.full_uri", "icmp.transmit_timestamp", "http.request.uri.query", "tcp.options", "tcp.payload", "tcp.srcport", "tcp.dstport", "udp.port", "mqtt.msg", ] df.drop(drop_columns, axis=1, inplace=True) df.dropna(axis=0, how="any", inplace=True) df.drop_duplicates(subset=None, keep="first", inplace=True) df = shuffle(df) df.isna().sum() print(df["Attack_type"].value_counts()) print(len(df)) import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn import preprocessing def encode_text_dummy(df, name): dummies = pd.get_dummies(df[name]) for x in dummies.columns: dummy_name = f"{name}-{x}" df[dummy_name] = dummies[x] df.drop(name, axis=1, inplace=True) encode_text_dummy(df, "http.request.method") encode_text_dummy(df, "http.referer") encode_text_dummy(df, "http.request.version") encode_text_dummy(df, "dns.qry.name.len") encode_text_dummy(df, "mqtt.conack.flags") encode_text_dummy(df, "mqtt.protoname") encode_text_dummy(df, "mqtt.topic") df.to_csv("preprocessed_DNN.csv", encoding="utf-8", index=False) import pandas as pd import numpy as np from matplotlib import pyplot as plt import seaborn as sns df = pd.read_csv("./preprocessed_DNN.csv", low_memory=False) # df feat_cols = list(df.columns) label_col = "Attack_type" feat_cols.remove(label_col) # feat_cols empty_cols = [col for col in df.columns if df[col].isnull().all()] empty_cols skip_list = ["icmp.unused", "http.tls_port", "dns.qry.type", "mqtt.msg_decoded_as"] df[skip_list[3]].value_counts() X = df.drop([label_col], axis=1) y = df[label_col] y.value_counts() print("Number of samples in X:", X.shape[0]) print("Number of samples in y:", y.shape[0]) from imblearn.over_sampling import RandomOverSampler import warnings warnings.filterwarnings("ignore") minority_classes = ["Port_Scanning", "XSS", "Ransomware", "Fingerprinting", "MITM"] desired_samples = { "Port_Scanning": 20000, "XSS": 20000, "Ransomware": 20000, "Fingerprinting": 20000, "MITM": 20000, } mask = df[label_col].isin(minority_classes) minority_mask = df[label_col].isin(minority_classes) X_minority = X[minority_mask] y_minority = y[minority_mask] oversample = RandomOverSampler( sampling_strategy={ k: desired_samples[k] if k in desired_samples else "auto" for k in minority_classes }, random_state=42, ) X_oversampled, y_oversampled = oversample.fit_resample(X[mask], y[mask]) # Concatenate the oversampled data with the original data X_balanced = pd.concat([X, X_oversampled]) y_balanced = pd.concat([y, y_oversampled]) y.value_counts() y_balanced.value_counts() # under sampling didn't work as the number of smaples in the minoity class is too low # from sklearn.utils import resample # import numpy as np # X_resampled, y_resampled = resample(X[y == 0], y[y == 0], # replace=False, n_samples=X[y == 1].shape[0], # random_state=42) # # Combine majority class with downsampled minority class # X_balanced = pd.concat([X_resampled, X[y == 1]]) # y_balanced = pd.concat([y_resampled, y[y == 1]]) # print("Number of samples in X_balanced:", X_balanced.shape[0]) # print("Number of samples in y_balanced:", y_balanced.shape[0]) ######## working only on MITM ##########################3333 # from imblearn.over_sampling import RandomOverSampler # oversample = RandomOverSampler(sampling_strategy='minority') # X_oversample,Y_oversample=oversample.fit_resample(X,y) # # Combine majority class with downsampled minority class # X_balanced = pd.concat([X_resampled, X[y == 1]]) # y_balanced = pd.concat([y_resampled, y[y == 1]]) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X_balanced, y_balanced, test_size=0.2, random_state=1, stratify=y_balanced ) # del X # del y df.shape[0] odf = df_balanced = pd.concat([X_balanced, y_balanced], axis=1) odf.shape[0] print("X_train", X_train) print("X_test", X_test) print("y_train", y_train) print("y_test", y_test) from sklearn.preprocessing import LabelEncoder label_encoder = LabelEncoder() y_train = label_encoder.fit_transform(y_train) y_test = label_encoder.transform(y_test) label_encoder.classes_ # X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1) # X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1) import numpy as np # assuming X_train and X_test are DataFrames X_train = X_train.values.reshape(X_train.shape[0], X_train.shape[1], 1) X_test = X_test.values.reshape(X_test.shape[0], X_test.shape[1], 1) input_shape = X_train.shape[1:] print(X_train.shape) print(X_test.shape) num_classes = len(np.unique(y_train)) num_classes from tensorflow.keras.utils import to_categorical y_train = to_categorical(y_train, num_classes=num_classes) y_test = to_categorical(y_test, num_classes=num_classes) print(y_train.shape, y_test.shape) from tensorflow.keras.datasets import mnist from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, Input, ZeroPadding1D from tensorflow.keras.layers import MaxPooling1D, Add, AveragePooling1D from tensorflow.keras.layers import Dense, BatchNormalization, Activation from tensorflow.keras.layers import Flatten from tensorflow.keras.models import Model from keras.initializers import glorot_uniform import keras.backend as K import tensorflow as tf from tensorflow.keras.optimizers import Adam # input_shape = (96) print(input_shape) from keras.layers import Input, Conv1D, MaxPooling1D, UpSampling1D from keras.models import Model from keras.layers import concatenate from keras.layers import Reshape from keras.layers import Dropout from keras.models import Model from keras.layers import ( Input, Conv1D, MaxPooling1D, Flatten, Dense, Dropout, UpSampling1D, concatenate, ) from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Input, Reshape from keras.models import Model # Define input shape # input_shape = (96, 1) # Define the encoder model encoder = Sequential() encoder.add(Conv1D(32, 3, activation="relu", input_shape=input_shape, padding="same")) encoder.add(MaxPooling1D(2, padding="same")) encoder.add(Conv1D(64, 3, activation="relu", padding="same")) encoder.add(MaxPooling1D(2, padding="same")) encoder.add(Conv1D(128, 3, activation="relu", padding="same")) encoder.add(MaxPooling1D(2, padding="same")) encoder.add(Flatten()) # Define the decoder model decoder = Sequential() decoder.add(Reshape((12, 128), input_shape=(1536,))) decoder.add(Conv1D(128, 3, activation="relu", padding="same")) decoder.add(UpSampling1D(2)) decoder.add(Conv1D(64, 3, activation="relu", padding="same")) decoder.add(UpSampling1D(2)) decoder.add(Conv1D(32, 3, activation="relu", padding="same")) decoder.add(UpSampling1D(2)) decoder.add(Conv1D(1, 3, activation="sigmoid", padding="same")) # Combine the encoder and decoder models to form the autoencoder autoencoder = Sequential() autoencoder.add(encoder) autoencoder.add(decoder) # Define the CNN model using the encoder layers # cnn_model = Sequential() # cnn_model.add(encoder) # cnn_model.add(Dense(64, activation='relu')) # cnn_model.add(Dense(num_classes, activation='softmax')) # cnn_model.add(Conv1D(32, 3, activation='relu', input_shape=(input_shape))) cnn_model = Sequential() cnn_model.add(Conv1D(32, 3, activation="relu", input_shape=input_shape)) cnn_model.add(MaxPooling1D(2)) # cnn_model.add(Conv1D(64, 3, activation='relu', padding='same')) # cnn_model.add(MaxPooling1D(2, padding='same')) # cnn_model.add(Conv1D(128, 3, activation='relu', padding='same')) # cnn_model.add(MaxPooling1D(2, padding='same')) cnn_model.add(Conv1D(256, 3, activation="relu")) cnn_model.add(MaxPooling1D(2)) cnn_model.add(Flatten()) cnn_model.add(Dense(64, activation="relu")) cnn_model.add(Dense(num_classes, activation="softmax")) # Combine the autoencoder and CNN models model = Sequential() model.add(autoencoder) model.add(cnn_model) # cnn_input = Input(shape=input_shape) # #print(cnn_input) # cnn_layer = Reshape(input_shape)(cnn_input) # cnn_layer = Conv1D(32, kernel_size=3, activation='relu')(cnn_layer) # cnn_layer = MaxPooling1D(pool_size=2)(cnn_layer) # cnn_layer = Flatten()(cnn_layer) # autoencoder_input = Input(shape=input_shape) # autoencoder_layer = autoencoder(autoencoder_input) # autoencoder_layer = Flatten()(autoencoder_layer) # combined_layer = concatenate([cnn_layer, autoencoder_layer]) # combined_layer = Dense(64, activation='relu')(combined_layer) # combined_layer = Dropout(0.5)(combined_layer) # combined_layer = Dense(num_classes, activation='softmax')(combined_layer) # model = Model(inputs=[cnn_input, autoencoder_input], outputs=combined_layer) opt = Adam(learning_rate=0.001) model.compile( optimizer=opt, loss=tf.keras.metrics.categorical_crossentropy, metrics=["accuracy"] ) from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau early_stopping = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10) lr_reduce = ReduceLROnPlateau( monitor="val_loss", factor=0.5, patience=5, mode="min", verbose=1, min_lr=0 ) # X_train.shape EPOCHS = 15 BATCH_SIZE = 256 call_backs = [early_stopping, lr_reduce] history = model.fit( X_train, y_train, validation_data=(X_test, y_test), validation_split=0.1, epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks=call_backs, # class_weight=class_weights, verbose=1, ) history_df = pd.DataFrame(history.history) history_df.loc[:, ["loss", "val_loss"]].plot() print("Minimum validation loss: {}".format(history_df["val_loss"].min())) # #w,b = model.weights # print("Weights\n{}\n\nBias\n{}".format(model.weights))
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") df = pd.read_csv("Bengaluru_House_Data.csv") df.head() df.info() df.shape df.isnull().sum() df.isnull().sum() / df.isnull().sum().sum() * 100 df.describe().T # Dropping Society column as it has 88% of null values which wont add any value to the analysis df.drop(columns=["society"], axis=1, inplace=True) df.head(5) df.groupby("area_type")["area_type"].agg("count").sort_values() df.groupby("availability")["availability"].agg("count").sort_values() df.groupby("location")["location"].agg("count").sort_values() df.groupby("size")["size"].agg("count").sort_values() df.groupby("balcony")["balcony"].agg("count").sort_values() df.groupby("bath")["bath"].agg("count").sort_values() # Univariate Analysis df.boxplot() plt.show() sns.boxplot(data=df, x="bath") df.info() sns.pairplot(df) sns.heatmap(df.corr(), annot=True) df.duplicated().sum() df[df.duplicated()] # dataframe[dataframe['Percentage'] > 80] df[ (df["area_type"] == "Super built-up Area") & (df["location"] == "Haralur Road") & (df["size"] == "3 BHK") & (df["total_sqft"] == "1464") ] df.drop_duplicates(inplace=True) df.duplicated().sum() # Treating outliers q1 = df.quantile(0.25) q3 = df.quantile(0.75) iqr = q3 - q1 ul = q3 + 1.5 * (iqr) ll = q1 - 1.5 * (iqr) print(((df < ll) | (df > ul)).sum()) df.isnull().sum() # Converting all outliers to null values df[(df < ll) | (df > ul)] = np.nan df.isnull().sum() # Featuring engineering and then outlier treatment df.head() df1 = df.copy() df1 = pd.get_dummies(df1, columns=["area_type"], drop_first=True) df1.head(5) df1.availability.unique() df1["availability"] = np.where( df1["availability"] == "Immediate Possession", "Ready To Move", df1["availability"] ) df1.availability.unique() df1["availability"] = np.where( df1["availability"] != "Ready To Move", "Not Ready To Move", df1["availability"] ) df1.availability.unique() df1.head(5) df1 = pd.get_dummies(df1, columns=["availability"], drop_first=True) df1.head(5) df1["bhk"] = df1["size"].apply(lambda x: str(x).split(" ")[0]) df1.head(5) df1["total_sqft"].unique() # find any metrics change inthe total sqft def is_float(x): try: float(x) except: return False return True df1[~df1["total_sqft"].apply(is_float)] def fix_range(x): num = x.split("-") if len(num) == 2: return float((float(num[0]) + float(num[1])) / 2) else: return x df1["total_sqft"] = df1["total_sqft"].apply(fix_range) df1[~df1["total_sqft"].apply(is_float)] import re def metrics_conversion(x): try: float(x) except: num = "".join(re.split(r"[^a-zA-Z]*", x)) if num == "SqMeter": return float(str("".join(re.split(r"[^0-9_.]*", x))).strip(".")) * 10.7639 elif num == "Perch": return float(str("".join(re.split(r"[^0-9_.]*", x))).strip(".")) * 272.25 elif num == "SqYards": return float(str("".join(re.split(r"[^0-9_.]*", x))).strip(".")) * 9 elif num == "Acres": return float(str("".join(re.split(r"[^0-9_.]*", x))).strip(".")) * 43560 elif num == "Cents": return float(str("".join(re.split(r"[^0-9_.]*", x))).strip(".")) * 435.6 elif num == "Guntha": return float(str("".join(re.split(r"[^0-9_.]*", x))).strip(".")) * 1089 elif num == "Grounds": return float(str("".join(re.split(r"[^0-9_.]*", x))).strip(".")) * 2400.3500 else: return x return x df1["total_sqft"] = df1["total_sqft"].apply(metrics_conversion) df1[~df1["total_sqft"].apply(is_float)] df1.head(5) df2 = df1.copy() df2.head(5) df2.drop(columns=["size"], axis=1, inplace=True) df2.head(5) df2["location"].value_counts().sort_values() df2["location"] = df["location"].apply(lambda x: str(x).strip(" ")) df2.head(5) location_below_10 = df2["location"].value_counts() location_below_10 location_below_10_list = location_below_10[location_below_10 < 10] location_below_10_list df2["location"] = df2["location"].apply( lambda x: "others" if x in location_below_10_list else x ) df2["location"].value_counts() df3 = df2.copy() df3.head(5) df3 = pd.get_dummies(df3, columns=["location"], drop_first=True) df3.head(5) df3.isnull().sum() df3.head() sns.countplot(df["area_type"]) sns.countplot(df["availability"]) sns.countplot(df["bath"]) sns.countplot(df3["bhk"]) sns.countplot(df["balcony"]) # Treating Null values + outliers using imputation method # Scaling the variables from sklearn.preprocessing import StandardScaler Comp_df = df3.copy() Comp_df.head(5) Company_X = df3.drop("price", axis=1) Company_Y = df3["price"] Company_X.head(5) df3.isnull().sum().sort_values(ascending=False) / df3.shape[0] * 100 std = StandardScaler() df3[["total_sqft", "bath", "balcony", "bhk", "price"]] = pd.DataFrame( std.fit_transform(df3[["total_sqft", "bath", "balcony", "bhk", "price"]]) ) # Scaled_X = pd.DataFrame(scaler.fit_transform(Company_X), columns = Company_X.columns) df3.head(5) from sklearn.model_selection import train_test_split train, test = train_test_split(df3, test_size=0.30, random_state=123) train.head() from sklearn.impute import KNNImputer imput = KNNImputer(n_neighbors=5) Company_imputed_train = pd.DataFrame(imput.fit_transform(train), columns=train.columns) Company_imputed_test = pd.DataFrame(imput.transform(test), columns=test.columns) print(Company_imputed_train.isnull().sum().sum()) print(Company_imputed_test.isnull().sum().sum()) Company_imputed_train.head() # Data is ready for model development Company_imputed_train_x = Company_imputed_train.drop(columns=["price"], axis=1) Company_imputed_train_y = Company_imputed_train["price"] Company_imputed_test_x = Company_imputed_test.drop(columns=["price"], axis=1) Company_imputed_test_y = Company_imputed_test["price"] Company_imputed_train_x.shape Company_imputed_test_x.shape Company_imputed_train_y.shape Company_imputed_test_y.shape from sklearn.linear_model import LinearRegression, Lasso, Ridge from sklearn import tree # DecisionTreeRegressor from sklearn.tree from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestRegressor from sklearn.neural_network import MLPRegressor from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score lr = LinearRegression() rf = RandomForestRegressor(random_state=42) ann = MLPRegressor() dt = tree.DecisionTreeRegressor(random_state=42) llr = Lasso() rdg = Ridge() models = [lr, rf, ann, dt, llr, rdg] rmse_train = [] rmse_test = [] scores_train = [] scores_test = [] for i in models: model = i.fit(Company_imputed_train_x, Company_imputed_train_y) scores_train.append(model.score(Company_imputed_train_x, Company_imputed_train_y)) scores_test.append(model.score(Company_imputed_test_x, Company_imputed_test_y)) y_train_predict = model.predict(Company_imputed_train_x) y_test_predict = model.predict(Company_imputed_test_x) rmse_train.append( np.sqrt( mean_squared_error( Company_imputed_train_y, i.predict(Company_imputed_train_x) ) ) ) rmse_test.append( np.sqrt( mean_squared_error( Company_imputed_test_y, i.predict(Company_imputed_test_x) ) ) ) results_dataframe = pd.DataFrame( { "Train RMSE": rmse_train, "Test RMSE": rmse_test, "Train Scores": scores_train, "Test Scores": scores_test, }, index=[ "Linear Regression", "Random Forest Regressor", "MLP Regressor", "Decision Tree Regressor", "Lasso Regressor", "Ridge Regressor", ], ) results_dataframe # ## Hyper tuning parameters grid_lr = {"normalize": [True, False]} lr = LinearRegression() grid_search = GridSearchCV(estimator=lr, param_grid=grid_lr, cv=3) model = grid_search.fit(Company_imputed_train_x, Company_imputed_train_y) model.best_params_ rmse_train_t = [] rmse_test_t = [] scores_train_t = [] scores_test_t = [] scores_train_t.append(model.score(Company_imputed_train_x, Company_imputed_train_y)) scores_test_t.append(model.score(Company_imputed_test_x, Company_imputed_test_y)) rmse_train_t.append( np.sqrt( mean_squared_error( Company_imputed_train_y, model.predict(Company_imputed_train_x) ) ) ) rmse_test_t.append( np.sqrt( mean_squared_error( Company_imputed_test_y, model.predict(Company_imputed_test_x) ) ) ) rf = RandomForestRegressor(random_state=42) grid_rf = { #'criterion':['squared_error', 'absolute_error', 'friedman_mse', 'poisson'], "n_estimators": [50, 100, 150], # 'max_features': ['sqrt', 'log2', None], # 'max_depth': [3, 6, 9], "max_leaf_nodes": [3, 6, 9], } grid_search = GridSearchCV(estimator=rf, param_grid=grid_rf, cv=3) modelrf = grid_search.fit(Company_imputed_train_x, Company_imputed_train_y) modelrf.best_params_ rf = RandomForestRegressor(random_state=42, max_leaf_nodes=9, n_estimators=100) grid_rf = { # 'criterion':['squared_error', 'absolute_error', 'friedman_mse', 'poisson'], # 'n_estimators':[50,100,150], "max_features": ["sqrt", "log2", None], # 'max_depth': [3, 6, 9], # 'max_leaf_nodes': [3, 6, 9], } grid_search = GridSearchCV(estimator=rf, param_grid=grid_rf, cv=3) modelrf = grid_search.fit(Company_imputed_train_x, Company_imputed_train_y) modelrf.best_params_ rf = RandomForestRegressor( random_state=42, max_leaf_nodes=9, n_estimators=100, max_features=None ) grid_rf = { # 'criterion':['squared_error', 'absolute_error', 'friedman_mse', 'poisson'], # 'n_estimators':[50,100,150], # 'max_features': ['sqrt', 'log2', None], "max_depth": [3, 6, 9], # 'max_leaf_nodes': [3, 6, 9], } grid_search = GridSearchCV(estimator=rf, param_grid=grid_rf, cv=3) modelrf = grid_search.fit(Company_imputed_train_x, Company_imputed_train_y) modelrf.best_params_ rf = RandomForestRegressor( random_state=42, max_leaf_nodes=9, n_estimators=100, max_features=None, max_depth=6 ) grid_rf = { "criterion": ["squared_error"], # 'n_estimators':[50,100,150], # 'max_features': ['sqrt', 'log2', None], # 'max_depth': [3, 6, 9], # 'max_leaf_nodes': [3, 6, 9], } grid_search = GridSearchCV(estimator=rf, param_grid=grid_rf, cv=3) modelrf = grid_search.fit(Company_imputed_train_x, Company_imputed_train_y) modelrf.best_params_ modelrf.score(Company_imputed_train_x, Company_imputed_train_y) scores_train_t.append(modelrf.score(Company_imputed_train_x, Company_imputed_train_y)) scores_test_t.append(modelrf.score(Company_imputed_test_x, Company_imputed_test_y)) rmse_train_t.append( np.sqrt( mean_squared_error( Company_imputed_train_y, modelrf.predict(Company_imputed_train_x) ) ) ) rmse_test_t.append( np.sqrt( mean_squared_error( Company_imputed_test_y, modelrf.predict(Company_imputed_test_x) ) ) ) param_grid = { "hidden_layer_sizes": [100, 200, 300, 500], #'max_iter': [5000,2500,7000,6000], #'solver': ['sgd','adam'], #'tol': [0.01] } annr = MLPRegressor( random_state=123, ) grid_search_mlp = GridSearchCV(estimator=annr, param_grid=param_grid, cv=3) model_mlp = grid_search_mlp.fit(Company_imputed_train_x, Company_imputed_train_y) print(grid_search_mlp.best_params_) param_grid = { #'hidden_layer_sizes': [100,200,300,500], #'max_iter': [5000,2500,7000,6000], "solver": ["sgd", "adam"], #'tol': [0.01] } annr = MLPRegressor(random_state=123, hidden_layer_sizes=100) grid_search_mlp = GridSearchCV(estimator=annr, param_grid=param_grid, cv=3) model_mlp = grid_search_mlp.fit(Company_imputed_train_x, Company_imputed_train_y) print(grid_search_mlp.best_params_) param_grid = { #'hidden_layer_sizes': [100,200,300,500], "max_iter": [5000, 2500, 7000, 6000], # 'solver': ['sgd','adam'], #'tol': [0.01] } annr = MLPRegressor(random_state=123, hidden_layer_sizes=100, solver="sgd", tol=0.01) grid_search_mlp = GridSearchCV(estimator=annr, param_grid=param_grid, cv=3) model_mlp = grid_search_mlp.fit(Company_imputed_train_x, Company_imputed_train_y) print(grid_search_mlp.best_params_) scores_train_t.append(model_mlp.score(Company_imputed_train_x, Company_imputed_train_y)) scores_test_t.append(model_mlp.score(Company_imputed_test_x, Company_imputed_test_y)) rmse_train_t.append( np.sqrt( mean_squared_error( Company_imputed_train_y, model_mlp.predict(Company_imputed_train_x) ) ) ) rmse_test_t.append( np.sqrt( mean_squared_error( Company_imputed_test_y, model_mlp.predict(Company_imputed_test_x) ) ) ) param_grid = { "max_depth": [10, 15, 20, 25, 30], "min_samples_leaf": [3, 15, 30], "min_samples_split": [15, 30, 35, 40, 50], } dtr = tree.DecisionTreeRegressor(random_state=123) grid_search_dt = GridSearchCV(estimator=dtr, param_grid=param_grid, cv=3) model_dt = grid_search_dt.fit(Company_imputed_train_x, Company_imputed_train_y) print(model_dt.best_params_) scores_train_t.append(model_dt.score(Company_imputed_train_x, Company_imputed_train_y)) scores_test_t.append(model_dt.score(Company_imputed_test_x, Company_imputed_test_y)) rmse_train_t.append( np.sqrt( mean_squared_error( Company_imputed_train_y, model_dt.predict(Company_imputed_train_x) ) ) ) rmse_test_t.append( np.sqrt( mean_squared_error( Company_imputed_test_y, model_dt.predict(Company_imputed_test_x) ) ) ) param_grid = {"alpha": [0.00001, 0.0001, 0.001, 0.01, 0.1, 1]} lasso = Lasso() gridsearch_ll = GridSearchCV(estimator=lasso, param_grid=param_grid, cv=3) model_ll = gridsearch_ll.fit(Company_imputed_train_x, Company_imputed_train_y) print(model_ll.best_params_) scores_train_t.append(model_ll.score(Company_imputed_train_x, Company_imputed_train_y)) scores_test_t.append(model_ll.score(Company_imputed_test_x, Company_imputed_test_y)) rmse_train_t.append( np.sqrt( mean_squared_error( Company_imputed_train_y, model_ll.predict(Company_imputed_train_x) ) ) ) rmse_test_t.append( np.sqrt( mean_squared_error( Company_imputed_test_y, model_ll.predict(Company_imputed_test_x) ) ) ) param_grid = {"alpha": [0.00001, 0.0001, 0.001, 0.01, 0.1, 1]} Ridge = Ridge(random_state=42) gridsearch_rd = GridSearchCV(estimator=Ridge, param_grid=param_grid, cv=3) model_rd = gridsearch_ll.fit(Company_imputed_train_x, Company_imputed_train_y) print(model_rd.best_params_) scores_train_t.append(model_rd.score(Company_imputed_train_x, Company_imputed_train_y)) scores_test_t.append(model_rd.score(Company_imputed_test_x, Company_imputed_test_y)) rmse_train_t.append( np.sqrt( mean_squared_error( Company_imputed_train_y, model_rd.predict(Company_imputed_train_x) ) ) ) rmse_test_t.append( np.sqrt( mean_squared_error( Company_imputed_test_y, model_rd.predict(Company_imputed_test_x) ) ) ) results_dataframe_Tuned = pd.DataFrame( { "Train RMSE": rmse_train_t, "Test RMSE": rmse_test_t, "Train Scores": scores_train_t, "Test Scores": scores_test_t, }, index=[ "Linear Regression-Tuned", "Random Forest Regressor-Tuned", "MLP Regressor-Tuned", "Decision Tree Regressor-Tuned", "Lasso Regressor-Tuned", "Ridge Regressor-Tuned", ], ) results_dataframe_Tuned.sort_values(by="Train RMSE") model_dt.score dtr = tree.DecisionTreeRegressor( max_depth=10, min_samples_leaf=30, min_samples_split=15, random_state=123 ) model_dt = dtr.fit(Company_imputed_train_x, Company_imputed_train_y) Feature_Imp = pd.DataFrame( model_dt.feature_importances_, columns=["Imp"], index=Company_imputed_train_x.columns, ).sort_values("Imp", ascending=False) Feature_Imp[Feature_Imp["Imp"] > 0].sort_values(by="Imp", ascending=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: # print(os.path.join(dirname, filename)) pass # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # from .cycle_gan_model import CycleGANModel # https://youtu.be/VzIO5_R9XEM # https://youtu.be/2MSGnkir9ew """ cycleGAN model Based on the code by Jason Brownlee from his blogs on https://machinelearningmastery.com/ I am adapting his code to various applications but original credit goes to Jason. The model uses instance normalization layer: Normalize the activations of the previous layer at each step, i.e. applies a transformation that maintains the mean activation close to 0 and the activation standard deviation close to 1. Standardizes values on each output feature map rather than across features in a batch. ​ Download instance normalization code from here: https://github.com/keras-team/keras-contrib/blob/master/keras_contrib/layers/normalization/instancenormalization.py Or install keras_contrib using guidelines here: https://github.com/keras-team/keras-contrib """ # from IPython.display import FileLink from random import random from numpy import load from numpy import zeros from numpy import ones from numpy import asarray from numpy.random import randint from keras.optimizers import Adam from keras.initializers import RandomNormal from keras.models import Model from tensorflow.keras.layers import Input from keras.layers import Conv2D from keras.layers import Conv2DTranspose from keras.layers import LeakyReLU from keras.layers import Activation from keras.layers import Concatenate # from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization # Download instance norm. code from the link above. # Or install keras_contrib using guidelines here: https://github.com/keras-team/keras-contrib # from instancenormalization import InstanceNormalization from keras_contrib.layers.normalization.instancenormalization import ( InstanceNormalization, ) from matplotlib import pyplot # discriminator model (70x70 patchGAN) # C64-C128-C256-C512 # After the last layer, conv to 1-dimensional output, followed by a Sigmoid function. # The “axis” argument is set to -1 for instance norm. to ensure that features are normalized per feature map. def define_discriminator(image_shape): # weight initialization init = RandomNormal(stddev=0.02) # source image input in_image = Input(shape=image_shape) # C64: 4x4 kernel Stride 2x2 d = Conv2D(64, (4, 4), strides=(2, 2), padding="same", kernel_initializer=init)( in_image ) d = LeakyReLU(alpha=0.2)(d) # C128: 4x4 kernel Stride 2x2 d = Conv2D(128, (4, 4), strides=(2, 2), padding="same", kernel_initializer=init)(d) d = InstanceNormalization(axis=-1)(d) d = LeakyReLU(alpha=0.2)(d) # C256: 4x4 kernel Stride 2x2 d = Conv2D(256, (4, 4), strides=(2, 2), padding="same", kernel_initializer=init)(d) d = InstanceNormalization(axis=-1)(d) d = LeakyReLU(alpha=0.2)(d) # C512: 4x4 kernel Stride 2x2 # Not in the original paper. Comment this block if you want. d = Conv2D(512, (4, 4), strides=(2, 2), padding="same", kernel_initializer=init)(d) d = InstanceNormalization(axis=-1)(d) d = LeakyReLU(alpha=0.2)(d) # second last output layer : 4x4 kernel but Stride 1x1 d = Conv2D(512, (4, 4), padding="same", kernel_initializer=init)(d) d = InstanceNormalization(axis=-1)(d) d = LeakyReLU(alpha=0.2)(d) # patch output patch_out = Conv2D(1, (4, 4), padding="same", kernel_initializer=init)(d) # define model model = Model(in_image, patch_out) # compile model # The model is trained with a batch size of one image and Adam opt. # with a small learning rate and 0.5 beta. # The loss for the discriminator is weighted by 50% for each model update. # This slows down changes to the discriminator relative to the generator model during training. model.compile(loss="mse", optimizer=Adam(lr=0.0002, beta_1=0.5), loss_weights=[0.5]) return model # generator a resnet block to be used in the generator # residual block that contains two 3 × 3 convolutional layers with the same number of filters on both layers. def resnet_block(n_filters, input_layer): # weight initialization init = RandomNormal(stddev=0.02) # first convolutional layer g = Conv2D(n_filters, (3, 3), padding="same", kernel_initializer=init)(input_layer) g = InstanceNormalization(axis=-1)(g) g = Activation("relu")(g) # second convolutional layer g = Conv2D(n_filters, (3, 3), padding="same", kernel_initializer=init)(g) g = InstanceNormalization(axis=-1)(g) # concatenate merge channel-wise with input layer g = Concatenate()([g, input_layer]) return g # define the generator model - encoder-decoder type architecture # c7s1-k denote a 7×7 Convolution-InstanceNorm-ReLU layer with k filters and stride 1. # dk denotes a 3 × 3 Convolution-InstanceNorm-ReLU layer with k filters and stride 2. # Rk denotes a residual block that contains two 3 × 3 convolutional layers # uk denotes a 3 × 3 fractional-strided-Convolution InstanceNorm-ReLU layer with k filters and stride 1/2 # The network with 6 residual blocks consists of: # c7s1-64,d128,d256,R256,R256,R256,R256,R256,R256,u128,u64,c7s1-3 # The network with 9 residual blocks consists of: # c7s1-64,d128,d256,R256,R256,R256,R256,R256,R256,R256,R256,R256,u128, u64,c7s1-3 def define_generator(image_shape, n_resnet=9): # weight initialization init = RandomNormal(stddev=0.02) # image input in_image = Input(shape=image_shape) # c7s1-64 g = Conv2D(64, (7, 7), padding="same", kernel_initializer=init)(in_image) g = InstanceNormalization(axis=-1)(g) g = Activation("relu")(g) # d128 g = Conv2D(128, (3, 3), strides=(2, 2), padding="same", kernel_initializer=init)(g) g = InstanceNormalization(axis=-1)(g) g = Activation("relu")(g) # d256 g = Conv2D(256, (3, 3), strides=(2, 2), padding="same", kernel_initializer=init)(g) g = InstanceNormalization(axis=-1)(g) g = Activation("relu")(g) # R256 for _ in range(n_resnet): g = resnet_block(256, g) # u128 g = Conv2DTranspose( 128, (3, 3), strides=(2, 2), padding="same", kernel_initializer=init )(g) g = InstanceNormalization(axis=-1)(g) g = Activation("relu")(g) # u64 g = Conv2DTranspose( 64, (3, 3), strides=(2, 2), padding="same", kernel_initializer=init )(g) g = InstanceNormalization(axis=-1)(g) g = Activation("relu")(g) # c7s1-3 g = Conv2D(3, (7, 7), padding="same", kernel_initializer=init)(g) g = InstanceNormalization(axis=-1)(g) out_image = Activation("tanh")(g) # define model model = Model(in_image, out_image) return model # define a composite model for updating generators by adversarial and cycle loss # We define a composite model that will be used to train each generator separately. def define_composite_model(g_model_1, d_model, g_model_2, image_shape): # Make the generator of interest trainable as we will be updating these weights. # by keeping other models constant. # Remember that we use this same function to train both generators, # one generator at a time. g_model_1.trainable = True # mark discriminator and second generator as non-trainable d_model.trainable = False g_model_2.trainable = False # adversarial loss input_gen = Input(shape=image_shape) gen1_out = g_model_1(input_gen) output_d = d_model(gen1_out) # identity loss input_id = Input(shape=image_shape) output_id = g_model_1(input_id) # cycle loss - forward output_f = g_model_2(gen1_out) # cycle loss - backward gen2_out = g_model_2(input_id) output_b = g_model_1(gen2_out) # define model graph model = Model([input_gen, input_id], [output_d, output_id, output_f, output_b]) # define the optimizer opt = Adam(lr=0.0002, beta_1=0.5) # compile model with weighting of least squares loss and L1 loss model.compile( loss=["mse", "mae", "mae", "mae"], loss_weights=[1, 5, 10, 10], optimizer=opt ) return model # load and prepare training images def load_real_samples(filename): # load the dataset data = load(filename) # unpack arrays X1, X2 = data["arr_0"], data["arr_1"] # scale from [0,255] to [-1,1] X1 = (X1 - 127.5) / 127.5 X2 = (X2 - 127.5) / 127.5 return [X1, X2] # select a batch of random samples, returns images and target # Remember that for real images the label (y) is 1. def generate_real_samples(dataset, n_samples, patch_shape): # choose random instances ix = randint(0, dataset.shape[0], n_samples) # retrieve selected images X = dataset[ix] # generate 'real' class labels (1) y = ones((n_samples, patch_shape, patch_shape, 1)) return X, y # generate a batch of images, returns images and targets # Remember that for fake images the label (y) is 0. def generate_fake_samples(g_model, dataset, patch_shape): # generate fake images X = g_model.predict(dataset) # create 'fake' class labels (0) y = zeros((len(X), patch_shape, patch_shape, 1)) return X, y # periodically save the generator models to file def save_models(step, g_model_AtoB, g_model_BtoA): # save the first generator model filename1 = "g_model_AtoB_%06d.h5" % (step + 1) g_model_AtoB.save(filename1) # save the second generator model filename2 = "g_model_BtoA_%06d.h5" % (step + 1) g_model_BtoA.save(filename2) print(">Saved: %s and %s" % (filename1, filename2)) # periodically generate images using the save model and plot input and output images def summarize_performance(step, g_model, trainX, name, n_samples=5): # select a sample of input images X_in, _ = generate_real_samples(trainX, n_samples, 0) # generate translated images X_out, _ = generate_fake_samples(g_model, X_in, 0) # scale all pixels from [-1,1] to [0,1] X_in = (X_in + 1) / 2.0 X_out = (X_out + 1) / 2.0 # plot real images for i in range(n_samples): pyplot.subplot(2, n_samples, 1 + i) pyplot.axis("off") pyplot.imshow(X_in[i]) # plot translated image for i in range(n_samples): pyplot.subplot(2, n_samples, 1 + n_samples + i) pyplot.axis("off") pyplot.imshow(X_out[i]) # save plot to file filename1 = "%s_generated_plot_%06d.png" % (name, (step + 1)) pyplot.savefig(filename1) pyplot.close() # update image pool for fake images to reduce model oscillation # update discriminators using a history of generated images # rather than the ones produced by the latest generators. # Original paper recommended keeping an image buffer that stores # the 50 previously created images. def update_image_pool(pool, images, max_size=50): selected = list() for image in images: if len(pool) < max_size: # stock the pool pool.append(image) selected.append(image) elif random() < 0.5: # use image, but don't add it to the pool selected.append(image) else: # replace an existing image and use replaced image ix = randint(0, len(pool)) selected.append(pool[ix]) pool[ix] = image return asarray(selected) # train cyclegan models def train( d_model_A, d_model_B, g_model_AtoB, g_model_BtoA, c_model_AtoB, c_model_BtoA, dataset, epochs=1, ): # define properties of the training run ( n_epochs, n_batch, ) = ( epochs, 1, ) # batch size fixed to 1 as suggested in the paper # determine the output square shape of the discriminator n_patch = d_model_A.output_shape[1] # unpack dataset trainA, trainB = dataset # prepare image pool for fake images poolA, poolB = list(), list() # calculate the number of batches per training epoch bat_per_epo = int(len(trainA) / n_batch) # calculate the number of training iterations n_steps = bat_per_epo * n_epochs # manually enumerate epochs for i in range(n_steps): # select a batch of real samples from each domain (A and B) X_realA, y_realA = generate_real_samples(trainA, n_batch, n_patch) X_realB, y_realB = generate_real_samples(trainB, n_batch, n_patch) # generate a batch of fake samples using both B to A and A to B generators. X_fakeA, y_fakeA = generate_fake_samples(g_model_BtoA, X_realB, n_patch) X_fakeB, y_fakeB = generate_fake_samples(g_model_AtoB, X_realA, n_patch) # update fake images in the pool. Remember that the paper suggstes a buffer of 50 images X_fakeA = update_image_pool(poolA, X_fakeA) X_fakeB = update_image_pool(poolB, X_fakeB) # update generator B->A via the composite model g_loss2, _, _, _, _ = c_model_BtoA.train_on_batch( [X_realB, X_realA], [y_realA, X_realA, X_realB, X_realA] ) # update discriminator for A -> [real/fake] dA_loss1 = d_model_A.train_on_batch(X_realA, y_realA) dA_loss2 = d_model_A.train_on_batch(X_fakeA, y_fakeA) # update generator A->B via the composite model g_loss1, _, _, _, _ = c_model_AtoB.train_on_batch( [X_realA, X_realB], [y_realB, X_realB, X_realA, X_realB] ) # update discriminator for B -> [real/fake] dB_loss1 = d_model_B.train_on_batch(X_realB, y_realB) dB_loss2 = d_model_B.train_on_batch(X_fakeB, y_fakeB) # summarize performance # Since our batch size =1, the number of iterations would be same as the size of our dataset. # In one epoch you'd have iterations equal to the number of images. # If you have 100 images then 1 epoch would be 100 iterations print( "Iteration>%d, dA[%.3f,%.3f] dB[%.3f,%.3f] g[%.3f,%.3f]" % (i + 1, dA_loss1, dA_loss2, dB_loss1, dB_loss2, g_loss1, g_loss2) ) # evaluate the model performance periodically # If batch size (total images)=100, performance will be summarized after every 75th iteration. if (i + 1) % (bat_per_epo * 1) == 0: # plot A->B translation summarize_performance(i, g_model_AtoB, trainA, "AtoB") # plot B->A translation summarize_performance(i, g_model_BtoA, trainB, "BtoA") if (i + 1) % (bat_per_epo * 5) == 0: # save the models # #If batch size (total images)=100, model will be saved after # every 75th iteration x 5 = 375 iterations. save_models(i, g_model_AtoB, g_model_BtoA) # https://youtu.be/VzIO5_R9XEM # https://youtu.be/2MSGnkir9ew """ Cycle GAN: Sreeni2Zombie Based on the code by Jason Brownlee from his blogs on https://machinelearningmastery.com/ I am adapting his code to various applications but original credit goes to Jason. Dataset from https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/ """ # monet2photo from os import listdir from numpy import asarray from numpy import vstack from tensorflow.keras.utils import img_to_array from tensorflow.keras.preprocessing.image import load_img from matplotlib import pyplot as plt # load all images in a directory into memory def load_images(path, size=(256, 256)): data_list = list() # enumerate filenames in directory, assume all are images for filename in listdir(path): # load and resize the image pixels = load_img(path + filename, target_size=size) # convert to numpy array pixels = img_to_array(pixels) # store data_list.append(pixels) return asarray(data_list) # dataset path path = "/kaggle/input/plant-village/PlantVillage" # load dataset A - Monet paintings dataA_all = load_images(path + "/Potato___healthy/") print("Loaded dataA: ", dataA_all.shape) from sklearn.utils import resample # To get a subset of all images, for faster training during demonstration dataA = resample(dataA_all, replace=True, n_samples=75, random_state=42) # load dataset B - Photos dataB_all = load_images(path + "/Potato___Late_blight/") print("Loaded dataB: ", dataB_all.shape) # Get a subset of all images, for faster training during demonstration # We could have just read the list of files and only load a subset, better memory management. dataB = resample(dataB_all, replace=True, n_samples=75, random_state=42) # plot source images n_samples = 3 for i in range(n_samples): plt.subplot(2, n_samples, 1 + i) plt.axis("off") plt.imshow(dataA[i].astype("uint8")) # plot target image for i in range(n_samples): plt.subplot(2, n_samples, 1 + n_samples + i) plt.axis("off") plt.imshow(dataB[i].astype("uint8")) plt.show() # load image data data = [dataA, dataB] print("Loaded", data[0].shape, data[1].shape) # Preprocess data to change input range to values between -1 and 1 # This is because the generator uses tanh activation in the output layer # And tanh ranges between -1 and 1 def preprocess_data(data): # load compressed arrays # unpack arrays X1, X2 = data[0], data[1] # scale from [0,255] to [-1,1] X1 = (X1 - 127.5) / 127.5 X2 = (X2 - 127.5) / 127.5 return [X1, X2] dataset = preprocess_data(data) # from cycleGAN_model import define_generator, define_discriminator, define_composite_model, train # define input shape based on the loaded dataset image_shape = dataset[0].shape[1:] # generator: A -> B g_model_AtoB = define_generator(image_shape) # generator: B -> A g_model_BtoA = define_generator(image_shape) # discriminator: A -> [real/fake] d_model_A = define_discriminator(image_shape) # discriminator: B -> [real/fake] d_model_B = define_discriminator(image_shape) # composite: A -> B -> [real/fake, A] c_model_AtoB = define_composite_model( g_model_AtoB, d_model_B, g_model_BtoA, image_shape ) # composite: B -> A -> [real/fake, B] c_model_BtoA = define_composite_model( g_model_BtoA, d_model_A, g_model_AtoB, image_shape ) from datetime import datetime start1 = datetime.now() # train models train( d_model_A, d_model_B, g_model_AtoB, g_model_BtoA, c_model_AtoB, c_model_BtoA, dataset, epochs=50, ) stop1 = datetime.now() # Execution time of the model execution_time = stop1 - start1 print("Execution time is: ", execution_time) # FileLink(r'/kaggle/working/g_model_AtoB_000002.h5') ############################################ from keras_contrib.layers.normalization.instancenormalization import ( InstanceNormalization, ) # Use the saved cyclegan models for image translation from keras.models import load_model from matplotlib import pyplot from numpy.random import randint # select a random sample of images from the dataset def select_sample(dataset, n_samples): # choose random instances ix = randint(0, dataset.shape[0], n_samples) # retrieve selected images X = dataset[ix] return X # plot the image, its translation, and the reconstruction def show_plot(imagesX, imagesY1, imagesY2): images = vstack((imagesX, imagesY1, imagesY2)) titles = ["Real", "Generated", "Reconstructed"] # scale from [-1,1] to [0,1] images = (images + 1) / 2.0 # plot images row by row for i in range(len(images)): # define subplot pyplot.subplot(1, len(images), 1 + i) # turn off axis pyplot.axis("off") # plot raw pixel data pyplot.imshow(images[i]) # title pyplot.title(titles[i]) pyplot.show() # load dataset A_data = resample( dataA_all, replace=True, n_samples=50, random_state=42 ) # reproducible results B_data = resample( dataB_all, replace=True, n_samples=50, random_state=42 ) # reproducible results A_data = (A_data - 127.5) / 127.5 B_data = (B_data - 127.5) / 127.5 # load the models cust = {"InstanceNormalization": InstanceNormalization} model_AtoB = load_model("/kaggle/working/g_model_AtoB_003375.h5", cust) model_BtoA = load_model("/kaggle/working/g_model_BtoA_003375.h5", cust) # plot A->B->A (Monet to photo to Monet) A_real = select_sample(A_data, 1) B_generated = model_AtoB.predict(A_real) A_reconstructed = model_BtoA.predict(B_generated) show_plot(A_real, B_generated, A_reconstructed) # plot B->A->B (Photo to Monet to Photo) B_real = select_sample(B_data, 1) A_generated = model_BtoA.predict(B_real) B_reconstructed = model_AtoB.predict(A_generated) show_plot(B_real, A_generated, B_reconstructed)
import numpy as np import pandas as pd from time import time # import pytorch and set dgl backend to pytorch import os os.environ["DGLBACKEND"] = "pytorch" import torch import torch.nn as nn import torch.nn.functional as F try: import dgl except ModuleNotFoundError: import dgl import networkx as nx import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix # try: # from torchsummary import summary # except ModuleNotFoundError: # !pip install torchsummary # from torchsummary import summary transactions_df = pd.read_csv( "/kaggle/input/ieee-fraud-detection/train_transaction.csv" ) num_transactions = transactions_df.shape[0] print(num_transactions) transactions_df.head() transactions_df.isFraud.value_counts(normalize=True) identity_df = pd.read_csv("/kaggle/input/ieee-fraud-detection/train_identity.csv") # create validation set # user set the ratio TRAIN_VAL_RATIO = 0.75 # determine number of training records n_train = int(transactions_df.shape[0] * TRAIN_VAL_RATIO) # train/val split : split by time, training set preceeds val set. train_ids = transactions_df.TransactionID[:n_train] val_ids = transactions_df.TransactionID[n_train:] id_cols = [ "card1", "card2", "card3", "card4", "card5", "card6", "ProductCD", "addr1", "addr2", "P_emaildomain", "R_emaildomain", ] cat_cols = ["M1", "M2", "M3", "M4", "M5", "M6", "M7", "M8", "M9"] # get features and labels transactions_non_features = ["isFraud", "TransactionDT"] + id_cols features_cols = [ col for col in transactions_df.columns if col not in transactions_non_features ] features_df = pd.get_dummies(transactions_df[features_cols], columns=cat_cols).fillna(0) # take log of transaction amount features_df["TransactionAmt"] = features_df["TransactionAmt"].apply(np.log10) features_df["TransactionAmt"].plot( kind="hist", bins=[0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4] ) plt.show() labels_df = transactions_df[["TransactionID", "isFraud"]] node_types = id_cols + list(identity_df.columns) node_types.remove("TransactionID") full_identity_df = identity_df.merge( transactions_df[id_cols + ["TransactionID"]], on="TransactionID", how="right" ) edge_dfs = {} for ntype in node_types: edge_dfs[ntype] = full_identity_df[["TransactionID", ntype]].dropna() edge_dfs["card4"]["card4"].unique() # # General idea # Our graph will have nodes of several types. The 'target' nodes will store the `TransactionID`, while the remaining node types will be the other columns of `full_identity_df`, or equvalently, the entries in the list `node_types`. # We add edges (bidirectional) linking a TransactionID with a corresponding ID feature. # The target nodes will have associated features, coming from `features_df`. # ## Build dictionary of ID to dgl node index. # Will build a dictionary of dicts, one dict for each node type. # initialize the dictionary to store each ID to dgl node index dictionary id_to_node = {} # First get dgl indices for TransactionID nodes id_to_node["target"] = dict( [(v, k) for k, v in dict(transactions_df["TransactionID"]).items()] ) # current_max = max(id_to_node['target'].values()) # Then cycle through the other ID types and add those to the list (dict) for ntype in node_types: new_nodes_ids = edge_dfs[ntype][ntype].unique() new_nodes_dgl = np.arange(len(new_nodes_ids) + 1) id_to_node[ntype] = {a: b for a, b in zip(new_nodes_ids, new_nodes_dgl)} # current_max = max(id_to_node[ntype].values()) id_to_node["card4"] # ## Build edge lists for each pair of node types # These will come from the `edge_dfs`. Whenever a transaction is linked to a particular value in a given id column, we connect the corresponding nodes by an edge. # For DGL, we need to express the edge type as triples: # * (source type, relation type, destination type). # To list the edges this applies to, we have two options. One is to provide two lists, one of initial nodes, and a second list of the same length of the corresponding terminal nodes: # * [(source nodes, destination nodes)] # # ??? do we want to add self-loops ??? # instantiate the edge list dictionary edgelists = {} num_nodes_dict = {} for ntype in node_types: # prepare each edge type triple and its reverse edge_type = ("target", "target<>" + ntype, ntype) rev_edge_type = (ntype, ntype + "<>target", "target") # get list of initial nodes and destination nodes source_nodes = ( edge_dfs[ntype]["TransactionID"] .apply(lambda a: id_to_node["target"][a]) .to_numpy() ) destination_nodes = ( edge_dfs[ntype][ntype].apply(lambda a: id_to_node[ntype][a]).to_numpy() ) # add to dict edgelists[edge_type] = (source_nodes, destination_nodes) edgelists[rev_edge_type] = (destination_nodes, source_nodes) # get number of nodes of this type num_nodes_dict[ntype] = len(np.unique(destination_nodes)) num_nodes_dict["target"] = num_transactions # create the graph g = dgl.heterograph(edgelists, num_nodes_dict) # Visualizing the metagraph (sanity check: it should be star-shaped, with the target node in the center and a node for each id feature) meta = g.metagraph() nx.draw(meta) # ## Adding features # The graph currently has no features associated to nodes. We will use `features_df` created above to add a feature vector to each target node. features_df.head() # create pytorch tensor consisting of features for each node feature_tensor = torch.from_numpy(features_df.drop("TransactionID", axis=1).to_numpy()) # add feature data to graph g.nodes["target"].data["features"] = feature_tensor # sanity check # for random target node, compare expected features with the feature of the node trial = 1515 # data from the table orig_feat = torch.from_numpy(features_df.iloc[trial, 1:].to_numpy()) # data from the graph graph_feat = g.ndata["features"]["target"][trial] assert max(orig_feat - graph_feat) == 0 print("Feature vectors match. Check is good!") # ## Get the masks and labels ready # * Convert the training and validation id lists to lists of dgl node indices. # * Convert the label df to a list. train_mask = [id_to_node["target"][x] for x in train_ids] val_mask = [id_to_node["target"][x] for x in val_ids] labels = torch.tensor(labels_df["isFraud"].to_numpy()).float() # ## Feature normalization mean = torch.mean(g.ndata["features"]["target"], axis=0) std = torch.sqrt( torch.sum((g.ndata["features"]["target"] - mean) ** 2, axis=0) / g.ndata["features"]["target"].shape[0] ) g.ndata["features"]["target"] = (g.ndata["features"]["target"] - mean) / std # # Build the model # For now, keep it as simple as possible. from dgl.nn.pytorch import HeteroGraphConv, HeteroEmbedding, GraphConv from torch.nn import Linear target_feature_dim = g.ndata["features"]["target"].shape[1] # create linear embeddings for the non-target nodes into R^in_dim space num_embeddings_dict = { src: g.num_nodes(src) for (src, etype, dst) in g.canonical_etypes if (dst == "target" and src != "target") } # define a NN for preprocessing the target data class target_preprocessing(nn.Module): def __init__(self, in_dim, hidden_dim, out_dim, n_layers): super().__init__() self.input_layer = Linear(in_dim, hidden_dim) self.hidden_layer = Linear(hidden_dim, hidden_dim) self.output_layer = Linear(hidden_dim, out_dim) self.n_layers = n_layers def forward(self, in_feats): h = self.input_layer(in_feats) h = nn.ReLU()(h) for i in range(1, self.n_layers): h = self.hidden_layer(h) h = nn.ReLU()(h) h = self.output_layer(h) return h # define the model class class RGCN(nn.Module): def __init__( self, target_feature_dim, in_dim, hidden_dim, out_dim, num_conv_layers, num_embeddings, target_h_dim, target_pp_layers, ): super().__init__() # create dictionaries for HeteroGraphConv entry_module_dict = { etype: GraphConv(in_feats=in_dim, out_feats=hidden_dim) for etype in g.etypes } hidden_model_dict = { etype: GraphConv(in_feats=hidden_dim, out_feats=hidden_dim) for etype in g.etypes } final_model_dict1 = { etype: GraphConv(in_feats=hidden_dim, out_feats=out_dim) for src, etype, dst in g.canonical_etypes if dst == "target" } final_model_dict2 = { etype: GraphConv(in_feats=hidden_dim, out_feats=1) for src, etype, dst in g.canonical_etypes if dst != "target" } final_model_dict = {**final_model_dict1, **final_model_dict2} self.embed_layer = HeteroEmbedding(num_embeddings, in_dim) self.target_preprocessing = target_preprocessing( target_feature_dim, target_h_dim, in_dim, target_pp_layers ) self.conv1 = HeteroGraphConv(entry_module_dict, aggregate="sum") self.conv2s = nn.ModuleList( [ HeteroGraphConv(hidden_model_dict, aggregate="sum") for i in range(num_conv_layers - 2) ] ) self.conv3 = HeteroGraphConv(final_model_dict, aggregate="sum") def forward(self, graph, input_features): embeds = self.embed_layer({ntype: graph.nodes(ntype) for ntype in node_types}) input_features = input_features.to(dtype=torch.float32) target_features = self.target_preprocessing(input_features) embeds["target"] = target_features h = self.conv1(graph, embeds) h = {k: F.relu(v) for k, v in h.items()} for layer in self.conv2s: h = layer(graph, h) h = {k: F.relu(v) for k, v in h.items()} h = self.conv3(graph, h) return h model = RGCN( target_feature_dim=target_feature_dim, in_dim=8, hidden_dim=32, out_dim=1, num_conv_layers=4, num_embeddings=num_embeddings_dict, target_h_dim=64, target_pp_layers=3, ) print("Number of parameters in the model: ") print(" " * 33, sum(param.numel() for param in model.parameters())) # prepare weight vector for loss fn weight_vector = ( torch.ones(labels[train_mask].shape) + labels[train_mask] * 11 ).reshape((labels[train_mask].shape[0], 1)) # Set optimizer and loss function optimizer = torch.optim.Adam(model.parameters(), lr=0.01) loss_fn = torch.nn.BCELoss(weight_vector) def train_one_epoch( epoch_no, model, g, features, labels, train_mask, val_mask, threshold, return_probs=False, ): t0 = time() # Forward pass logits_dict = model(g, features) logits = logits_dict["target"] del logits_dict probs = torch.sigmoid(logits) preds = (probs > threshold).float() labels = labels.reshape_as(preds) # compute training loss loss = loss_fn(probs[train_mask], labels[train_mask]) # compute accuracies train_acc = (preds[train_mask] == labels[train_mask]).float().mean() val_acc = (preds[val_mask] == labels[val_mask]).float().mean() # backprop optimizer.zero_grad() loss.backward() optimizer.step() if return_probs: return loss, train_acc, val_acc, time() - t0, probs, preds else: return loss, train_acc, val_acc, time() - t0 def loss_history_plot(history, small=False): if small: size = (5, 2) else: size = (7, 4) fig, ax = plt.subplots(1, 1, figsize=size) ax.plot(history) plt.show() def train(model, g, num_epochs, labels, train_mask, val_mask, threshold): best_val_acc = 0 epoch_times = [] loss_history = [] features = g.nodes["target"].data["features"] for epoch in range(num_epochs): if epoch < num_epochs - 1: loss, train_acc, val_acc, epoch_time = train_one_epoch( epoch, model, g, features, labels, train_mask, val_mask, threshold ) else: ( loss, train_acc, val_acc, epoch_time, final_probs, final_preds, ) = train_one_epoch( epoch, model, g, features, labels, train_mask, val_mask, threshold, return_probs=True, ) loss_history.append(loss.detach().numpy()) epoch_times.append(epoch_time) if best_val_acc < val_acc: best_val_acc = val_acc if epoch % 10 == 10 - 1: loss_rate_of_change = (loss_history[-1] - loss_history[-5]) / 5 print( f"Epoch {epoch+1} loss: {loss:.3f}, (rate of change: {loss_rate_of_change:.4f}), val accuracy: {val_acc:.3f} (best: {best_val_acc:.3f})\n\ -- Average time per epoch: {np.mean(epoch_times):.1f}sec (last 5: {np.mean(epoch_times[-5:]):.1f}sec).\ Estimated time to end: {(num_epochs-epoch-1)*np.mean(epoch_times[-5:])/60:.0f} mins" ) if epoch % 25 == 25 - 1: loss_history_plot(loss_history, small=True) print("-" * 60) print( f"Training complete. \ Final loss: {loss:.3f}, \ final val accuracy: {val_acc:.3f}, (best: {best_val_acc:.3f})." ) return final_probs, final_preds, loss_history probs, preds, history = train(model, g, 200, labels, train_mask, val_mask, 0.5) print(probs.mean()) print(preds.mean()) print(labels.mean()) print(f"Proportion of transactions predicted as fraud: {torch.mean(preds)*100:.2f} %.") cm = confusion_matrix(preds, labels) print(cm) fp_rate = cm[1, 0] / (cm[1, 0] + cm[1, 1]) print(f"False positive rate: {fp_rate*100:.1f} %.") fn_rate = cm[0, 1] / (cm[0, 1] + cm[0, 0]) print(f"False negative rate: {fn_rate*100:.2f} %.") tn_rate = 1 - fp_rate print(f"True negative rate: {tn_rate*100:.2f} % (specificity).") tp_rate = 1 - fn_rate print(f"True positive rate: {tp_rate*100:.1f} % (sensitivity).") loss_history_plot(history)
# # Introduction # The current data set includes details of the 500 people who have opted for loan. Also, the data mentions whether the person has paid back the loan or not and if paid, in how many days they have paid. In this project, we will try to draw few insights on sample Loan data. # Please find the details of dataset below which can help to understand the features in it # 1. Loan_id : A unique loan (ID) assigned to each loan customers- system generated # 2. Loan_status : Tell us if a loan is paid off, in collection process - customer is yet to payoff, or paid off after the collection efforts # 3. Principal : Principal loan amount at the case origination OR Amount of Loan Applied # 4. Terms : Schedule(time period to repay) # 5. Effective_date : When the loan got originated (started) # 6. Due_date : Due date by which loan should be paid off # 7. Paidoff_time : Actual time when loan was paid off , null means yet to be paid # 8. Past_due_days : How many days a loan has past due date # 9. Age : Age of customer # 10. Education : Education level of customer applied for loan # 11. Gender : Customer Gender (Male/Female) # Loading the initial libraries import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") # Let us load the data set loan = pd.read_csv("../input/loandata/Loan payments data.csv") # ### **Data Analysis On Loan Data Set** # **Checking first 5 and last 5 records from the datasets** loan.head(5) loan.tail(5) # Let's check the duplicate data in data set loan.duplicated().sum() loan.shape loan.info() loan.isnull().sum() # From Analysis: # 1. There are no duplicated values. # 2. Loan data set have 500 records in 11 columns/features. # 3. There are 100 null values in "paid_off_time" feature and 300 null values in "past_due_days" # 4. Also we will need to convert some columns to respective datetime datatype # Let's convert following columns to the Datetime format loan["effective_date"] = pd.to_datetime(loan["effective_date"]) loan["due_date"] = pd.to_datetime(loan["due_date"]) loan["paid_off_time"] = pd.to_datetime(loan["paid_off_time"]).dt.date loan["paid_off_time"] = pd.to_datetime(loan["paid_off_time"]) loan.info() # **Let's aim to replace NaN values for the columns in accordance with their distribution** loan.hist(figsize=(15, 11), color="#008080") loan["past_due_days"].fillna(loan["past_due_days"].mean(), inplace=True) loan["paid_off_time"] = loan["paid_off_time"].fillna(-1) loan.isnull().sum() # Also, there is one Spelling Correction loan["education"] = loan["education"].replace("Bechalor", "Bachelor") # Now, it seems we are good to go ahead # ### **Exploratory Data Analysis** # ### **Loan Status Analysis** loan_stat = loan["loan_status"].value_counts() pd.DataFrame(loan_stat) plt.figure(figsize=[10, 5]) plt.pie( loan["loan_status"].value_counts(), labels=loan["loan_status"].unique(), explode=[0, 0.1, 0], startangle=145, autopct="%1.f%%", colors=["#1e847f", "#ecc19c", "#000000"], ) plt.title("Loan Status Distribution", fontsize=15) plt.show() # We can see here, # * Out of 500 peoples 300 people repaid the full amount on time. # * Collection paid off shows 100 peoples repaid the loan but lately after due date. # * Collection shows 100 people not repaid the loan. # ### **Gender v/s Loan Status Analysis** loan["Gender"].value_counts().sort_index() # **Out of 500 their are 423 males and 77 females present** loan.groupby(["Gender"])["loan_status"].value_counts().to_frame() plt.figure(figsize=[10, 5]) sns.countplot( loan["Gender"], hue=loan["loan_status"], palette=("#1e847f", "#ecc19c", "#000000") ) plt.legend(loc="upper right") plt.title("Gender vs Loan Status", fontsize=20) plt.xlabel("Gender", fontsize=16) plt.ylabel("Count", fontsize=16) plt.show() # From above analysis: # * Out of 500 their are 423 males and 77 females present # * Around 40% of male population have repaid their loan lately (or yet to pay) # * Around 30% of female population have repaid their loan lately (or yet to pay) # * Irrespective of gender, most of the population tend to pay the loan on time # ### **Education v/s Loan Status Analysis** loan["education"].value_counts().to_frame() loan.groupby(["education"])["loan_status"].value_counts().to_frame() plt.figure(figsize=[10, 5]) sns.countplot( loan["education"], hue=loan["loan_status"], palette=("#1e847f", "#ecc19c", "#000000"), ) plt.legend(loc="upper right") plt.title("Education vs Loan Status", fontsize=20) plt.xlabel("Education", fontsize=16) plt.ylabel("Count", fontsize=16) plt.show() # From above analysis: # * Majority of the loan takers are from High School or College background # * Very few people from Masters or Above background took loan. # * Irrespective of education category, most of them repaid their loan # ### **Age v/s Loan Status Analysis** loan["age"].value_counts().to_frame() plt.figure(figsize=[18, 7]) sns.countplot( loan["age"], hue=loan["loan_status"], palette=("#1e847f", "#ecc19c", "#000000") ) plt.legend(loc="upper left") plt.title("Age vs Loan Status", fontsize=20) plt.xlabel("Age", fontsize=16) plt.ylabel("Count", fontsize=16) plt.show() # From above analysis: # * Majority of the people who took loan have age ranging from 24 years to 38 years # * Majority of people repaid their loan # ### **Principal v/s Loan Status Analysis** loan["Principal"].value_counts().to_frame() loan.groupby(["Principal"])["loan_status"].value_counts().to_frame() plt.figure(figsize=[10, 5]) sns.countplot( loan["Principal"], hue=loan["loan_status"], palette=("#1e847f", "#ecc19c", "#000000"), ) plt.legend(loc="upper left") plt.title("Principal vs Loan Status", fontsize=20) plt.xlabel("Principal", fontsize=16) plt.ylabel("Count", fontsize=16) plt.show() # From above analysis: # * Majority of the people have opted for Principal of 800 and 1000 # * And out of those 1800 people, majority of them repaid their loan # ### **Term v/s Loan Status Analysis** loan["terms"].value_counts().to_frame() loan.groupby(["terms"])["loan_status"].value_counts().to_frame() plt.figure(figsize=[10, 5]) sns.countplot( loan["terms"], hue=loan["loan_status"], palette=("#1e847f", "#ecc19c", "#000000") ) plt.legend(loc="upper left") plt.title("Terms vs Loan Status", fontsize=20) plt.xlabel("Terms", fontsize=16) plt.ylabel("Count", fontsize=16) plt.show() # From above analysis: # * Only few people have opted loan for 7 days term # * Majority of the late payments are from people who have their loan terms as 15 days and 30 days # ### **Effective Date v/s Loan Status Analysis** loan.groupby(["effective_date"])["loan_status"].value_counts().to_frame() plt.figure(figsize=[10, 5]) dates = loan["effective_date"].dt.date sns.countplot( x=dates, hue=loan["loan_status"], palette=("#1e847f", "#ecc19c", "#000000") ) plt.legend(loc="upper right") plt.title("Effective Date vs Loan Status", fontsize=20) plt.xlabel("Effective Date", fontsize=16) plt.ylabel("Count", fontsize=16) plt.show() # From above analysis: # * On 11th and 12th September, loan was given to many people # * It looks like maybe as part of a some loan event drive # Let's see correlation between the features correlation = loan[loan.columns].corr() plt.figure(figsize=(10, 7)) plot = sns.heatmap(correlation, vmin=-1, vmax=1, annot=True, annot_kws={"size": 10}) plot.set_xticklabels(plot.get_xticklabels(), rotation=30)
import pandas as pd import numpy as np from collections import Counter import nltk from nltk.corpus import stopwords nltk.download("stopwords") from nltk.tokenize import word_tokenize import re import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS def plot_words(date="today"): df = pd.read_csv("../input/reddit-wallstreetsbets-posts/reddit_wsb.csv") stock = pd.read_csv("../input/stock-market-dataset/symbols_valid_meta.csv") stock = stock["Symbol"].tolist() df = df.drop(columns=["created", "id", "url", "comms_num"]) df["body"] = df["body"].fillna("") df["text"] = df["title"] + " " + df["body"] df = df.drop(columns=["body", "title"]) df["timestamp"] = df["timestamp"].apply(lambda x: x[0:10]) sorted_values = np.sort(df["timestamp"].unique()) lista_valori = [] if date == "today": df = df[df["timestamp"] == sorted_values[-1]] elif date == "all": pass else: df = df[df["timestamp"] == date] jx = [] ix = [] for j in range(0, len(df["text"])): for i in (df["text"].iloc[j]).split(): if i in stock: jx.append(j) ix.append(i) df_termini = pd.DataFrame({"indici": jx, "valori": ix}) lista_termini = [] for i in range(0, df_termini["indici"].max() + 1): lista_termini.append(df_termini["valori"][df_termini["indici"] == i].tolist()) df["terms"] = lista_termini df["terms"] = df["terms"].apply(lambda x: list(set(x))) df["terms"] = df["terms"].apply(lambda x: " ".join(map(str, x))) df["terms"] = df["terms"].apply( lambda x: " ".join([word for word in x.split() if word not in ("I")]) ) df["text"] = df["text"].apply(lambda x: x.lower()) stop = stopwords.words("english") df["text"] = df["text"].apply( lambda x: " ".join([word for word in x.split() if word not in (stop)]) ) df["text"] = df["text"].apply(lambda x: re.sub(r"http\S+", "", x)) df["text"] = df["text"].apply( lambda x: " ".join( [ word for word in x.split() if word not in ( "[", "]", "array", "will", "######(**[click", "–", "i'm", "&#x200b;", "&nbsp;", "-", "FOR", "To", "it.", "/", "would", "for", "HERE", "&#x200B;", "Array", "*****", "-", "So", "If", "since", "In", "######(**[CLICK", "It", "You", "What", "And", "lot", "Some", "got", "it’s", "#", "This", ">", "*", "Is", "They", "My", "Why", "How", "THIS", "going", "I'm", "I’m", "get", "IS", "We", "WE", "-", "I", "THE", "The", "TO", "A", "AND", "NOT", "🚀🚀🚀", "🚀", "🚀🚀", ) ] ) ) return df # counter = Counter(" ".join(text_clean).split()).most_common(100) # wordcloud = WordCloud(collocations=True).generate(' '.join(text_clean)) # #plot the wordcloud object # plt.figure(figsize=(14,14)) # plt.imshow(wordcloud) # plt.axis('off') # plt.show() # return(counter) df = plot_words() for i in df["terms"]: print(i)
# # Welcome to my first Model and my graduation project too. # # This model is about classify child if he/she is normal child or he/she has any facial symptoms of any diseases. # # Special Thanks to my friend Omar Salah for helping me in this model. # # Let's Start with Importing classes. # import modules import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set(style="whitegrid") import os, shutil, stat import glob as gb import cv2 import tensorflow as tf import keras from tqdm import tqdm # # Now we get the dataset (my first dataset too) path = "../input/child-binary-class/" # to get the path of folders Normalimages = os.listdir(path + "/normal") AbnormalImages = os.listdir(path + "/abnormal") # # Now we get to the 2 folders for folder in os.listdir(path): files = os.listdir(os.path.join(path, folder)) print( f"For data , found {len(files)} in folder {folder}" ) # to get the numbers of images in each folder # # We must make our dictionary for labeling the data code = {"normal": 0, "abnormal": 1} # Dictionary for labeling data def getcode(n): return code[n] # get the code of data from dictionary # def getLabel(n): # for x,c in new_labels.items(): # if n==c: # return x # # Now we read the images from 2 folders size = [] images = [] # to store images labels = [] # to store label for each image for folder in os.listdir(path): files = os.listdir(os.path.join(path, folder)) for file in tqdm(files): image = plt.imread(os.path.join(path, folder + "/" + file)) images.append(image) # add image into list labels.append(folder) # to add label into list # size.append(image.shape) len(images), len(labels), labels # Now we plot to know the number of images in each flder and mak a simple comparison # show sns.countplot(labels) # # Now we show a sample of images. # # Note 1 for abnormal and 0 for normal plt.figure(figsize=(20, 20)) for n, i in enumerate(list(np.random.randint(0, len(images), 36))): plt.subplot(6, 6, n + 1) plt.imshow(images[i]) plt.axis("off") plt.title(getcode(labels[i])) # # Let's make the list of images into arrays images = np.array(images) labels = np.array(labels) plt.figure(figsize=(20, 20)) for n, i in enumerate(list(np.random.randint(0, len(images), 36))): plt.subplot(6, 6, n + 1) plt.imshow(images[i]) plt.axis("off") plt.title(getcode(labels[i])) # # The shape of images isn't the same so i resize them to make them having same size # resize images into 224 ,224, 3 image_size = 224 new_images = [] new_labels = [] for i in range(len(images)): if ( images[i].shape[-1] != image_size ): # to exclude it image that has 1 channel (grey scale) if ( images[i].shape[-1] == 3 ): # to select the image that has 3 channel (some of them have 4) new_images.append(cv2.resize(images[i], (image_size, image_size))) new_labels.append(labels[i]) plt.figure(figsize=(20, 20)) for n, i in enumerate(list(np.random.randint(0, len(new_images), 36))): plt.subplot(6, 6, n + 1) plt.imshow(new_images[i]) plt.axis("off") plt.title(getcode(new_labels[i])) # # convert labels to one hot encoder # convert labels to one hot encoder new_labels = [code[item] for item in new_labels] # # In this section i make the resized images into array # convert data to array , and rescale images new_labels = np.array(new_labels) new_images = np.array(new_images) / 255.0 plt.figure(figsize=(20, 20)) for n, i in enumerate(list(np.random.randint(0, len(new_images), 36))): plt.subplot(6, 6, n + 1) plt.imshow(new_images[i]) plt.axis("off") plt.title(new_labels[i]) # # Now we finish the data preparation and scaling. # # Let's split it into train, validate and test from sklearn.model_selection import train_test_split # split entire data to x_train , x_test , y_train , y_test x_train, x_test, y_train, y_test = train_test_split( new_images, new_labels, test_size=0.2, shuffle=True, stratify=new_labels ) # split entire train to x_train , x_val , y_train , y_val x_train, x_val, y_train, y_val = train_test_split( x_train, y_train, test_size=0.05, shuffle=True, stratify=y_train ) # # plt.figure(figsize=(20, 20)) for n, i in enumerate(list(np.random.randint(0, len(y_train), 36))): plt.subplot(6, 6, n + 1) plt.imshow(x_train[i]) plt.axis("off") plt.title(y_train[i]) # from tensorflow.keras.preprocessing.image import ImageDataGenerator # generator=ImageDataGenerator( # rotation_range=90, # width_shift_range=0.1, # height_shift_range=0.1, # vertical_flip=True, # zoom_range=0.2, # shear_range=0.2, # horizontal_flip=True, # fill_mode='nearest' # ) # batch_size=50 # train_generator=generator.flow(x_train,y_train ,batch_size=batch_size) # val_generator=generator.flow(x_val,y_val) # #get data for generator # train_data=train_generator.__getitem__(0)[0] # train_labels=train_generator.__getitem__(0)[1] # plt.figure(figsize=(20,20)) # for n , i in enumerate(list(np.random.randint(0,32,36))) : # plt.subplot(6,6,n+1) # plt.imshow(train_data[i]) # plt.axis('off') # plt.title(train_labels[i]) # # build models # model = tf.keras.models.Sequential([ # # YOUR CODE HERE # tf.keras.layers.Conv2D(1024,kernel_size=(3,3),activation='relu',input_shape=(image_size,image_size,3)), # tf.keras.layers.Conv2D(512,kernel_size=(3,3),activation='relu'), # tf.keras.layers.AvgPool2D(4,4), # tf.keras.layers.Conv2D(128,kernel_size=(3,3),activation='relu'), # tf.keras.layers.Conv2D(80,kernel_size=(3,3),activation='relu'), # tf.keras.layers.Conv2D(64,kernel_size=(3,3),activation='relu'), # tf.keras.layers.MaxPool2D(4,4), # tf.keras.layers.Flatten(), # #Full Connected Layers # tf.keras.layers.Dense(512, activation='relu'), # #Add dropout to avoid Overfit # tf.keras.layers.Dropout(0.25), # tf.keras.layers.Dense(256, activation='relu'), # tf.keras.layers.Dense(128, activation='relu'), # #Add dropout to avoid Overfit # tf.keras.layers.Dropout(0.4), # tf.keras.layers.Dense(64, activation='relu'), # tf.keras.layers.Dense(1 , activation='sigmoid'), # ]) # print(model.summary()) # model.compile(optimizer='adam', loss="binary_crossentropy",metrics=['accuracy']) # epochs = 64 # history = model.fit(x_train , y_train ,batch_size=32,epochs=epochs , validation_data=(x_val , y_val)) # from keras.applications import VGG16 # pretrain_model = VGG16(input_shape = (image_size, image_size, 3), weights = 'imagenet', include_top = False) # for layer in pretrain_model.layers: # layer.trainable = False # pretrain_model.summary() # from keras.applications import ResNet50 # # resnet_weights_path = '../input/resnet50/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5' # pretrain_model=ResNet50(include_top=False,input_shape=(image_size,image_size,3),pooling='max',classes=2, weights = 'imagenet') # for layer in pretrain_model.layers: # layer.trainable = False # pretrain_model.summary() import efficientnet.keras as efn pretrain_model = efn.EfficientNetB3( weights="imagenet", input_shape=(image_size, image_size, 3), include_top=False, pooling="avg", ) pretrain_model.summary() from tensorflow.keras import Model x = tf.keras.layers.Flatten()(pretrain_model.output) # Full Connected Layers x = tf.keras.layers.Dense(512, activation="relu")(x) # Add dropout to avoid Overfit x = tf.keras.layers.Dropout(0.25)(x) x = tf.keras.layers.Dense(256, activation="relu")(x) x = tf.keras.layers.Dense(128, activation="relu")(x) # Add dropout to avoid Overfit x = tf.keras.layers.Dropout(0.4)(x) x = tf.keras.layers.Dense(64, activation="relu")(x) x = tf.keras.layers.Dense(1, activation="sigmoid")(x) model = Model(pretrain_model.input, x) print(model.summary()) model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) epochs = 20 history = model.fit( x_train, y_train, batch_size=20, epochs=epochs, validation_data=(x_val, y_val) ) model.evaluate(x_test, y_test) model.save("./saveModel.h5") from tensorflow.keras import Model from keras.models import load_model loadedModel = load_model("./saveModel.h5") loadedModel.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) model.evaluate(x_test, y_test) pred = model.predict(x_test) new_pred = [] for p in pred: if p >= 0.5: new_pred.append(1) else: new_pred.append(0) print(new_pred) from sklearn.metrics import classification_report target_names = ["normal", "abnormal"] print(classification_report(new_pred, y_test, target_names=target_names)) from sklearn.metrics import confusion_matrix cm = confusion_matrix(new_pred, y_test) print(cm) import matplotlib.pyplot as plt plt.plot(history.history["accuracy"]) plt.title("model accuracy") plt.ylabel("accuracy") plt.xlabel("epoch") plt.legend(["train"], loc="upper left") plt.show() # summarize history for loss plt.plot(history.history["loss"]) plt.title("model loss") plt.ylabel("loss") plt.xlabel("epoch") plt.legend(["train"], loc="upper left") plt.show() import matplotlib.pyplot as plt plt.plot(history.history["val_accuracy"]) plt.title("model accuracy") plt.ylabel("accuracy") plt.xlabel("epoch") plt.legend(["val"], loc="upper left") plt.show() # summarize history for loss plt.plot(history.history["val_loss"]) plt.title("model loss") plt.ylabel("loss") plt.xlabel("epoch") plt.legend(["val"], loc="upper left") plt.show() def gellabel(arr): new_arr = [] for p in arr: if p == 0: new_arr.append("normal") else: new_arr.append("abnormal") return new_arr new_y_test = gellabel(y_test) new_new_pred = gellabel(new_pred) plt.figure(figsize=(30, 30)) for n, i in enumerate(list(np.random.randint(0, 32, 36))): plt.subplot(6, 6, n + 1) plt.imshow(x_test[i]) plt.axis("off") plt.title(f" Real: {(new_y_test[i]) } Vs Predict: {(new_new_pred[i])}")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Python Booleans - Mantıksal Operatörler # Mantıksal operatörler iki değerden oluşur. True - False True: doğru False: Yanlış # # Boolean Values # Programlamada genellikle bir ifadenin Doğru mu yoksa Yanlış mı olduğunu bilmeniz gerekir. # Python'da herhangi bir ifadeyi değerlendirebilir ve True veya False olmak üzere iki yanıttan birini alabilirsiniz. # İki değeri karşılaştırdığınızda, ifade değerlendirilir ve Python, Boole yanıtını döndürür: print(5000000 > 5426) print(185555 == 779) print(1044444 < 9333333333333) # if ifadesinde bir koşul çalıştırdığınızda, Python True veya False değerini döndürür: # Koşulun Doğru veya Yanlış olmasına bağlı olarak bir mesaj yazdıralım. z = 8044 k = 7583 if k > z: print("k büyük z") else: print("k büyük degil z") # # Değerleri ve Değişkenleri Değerlendirme # bool() işlevi, herhangi bir değeri değerlendirmenize ve karşılığında True veya False vermenize izin verir, # Örneğin: Bir diziyi ve bir sayıyı değerlendirin: print(bool("100 alırım inş")) print(bool(100)) # iki değişkeni değerlendirme x = "yüz" y = 100 print(bool(x)) print(bool(y)) # # Çoğu Değer Doğrudur # Bir tür içeriğe sahipse, hemen hemen her değer True olarak değerlendirilir. # Boş diziler dışında tüm diziler True'dur. # 0 dışında herhangi bir sayı True'dur. # Boş olanlar dışında tüm liste, demet, küme ve sözlük True'dur. # Aşağıdakiler True olarak çıktı verir bool("sedasayan") bool(["domates", "biber", "patlıcan"]) # # Bazı Değerler Yanlış # Aslında, (), [], {}, "", 0 sayısı ve Yok değeri gibi boş değerler dışında False olarak değerlendirilen çok fazla değer yoktur. Ve elbette False değeri False olarak değerlendirilir. # Aşağıdaki örnekler False olarak çıktı verecektir bool(False) bool(False) bool(0) bool("") bool(()) bool([]) bool({}) # # Fonksiyonlar bir Boole Döndürebilir # Bir Boole Değeri döndüren fonksiyonlar oluşturabilirsiniz: def myFunction(): return True print(myFunction()) # Bir işlevin Boole yanıtına göre kod çalıştırabilirsiniz: # Örnek "EVET!" Yazdır işlev True döndürürse, aksi takdirde "NO!" yazdırın: def myFunction(): return True if myFunction(): print("YES!") else: print("NO!") # Python ayrıca, bir nesnenin belirli bir veri türünde olup olmadığını belirlemek için kullanılabilen isinstance() fonksiyonu gibi bir boolean değeri döndüren birçok yerleşik işleve sahiptir: # Örnek Bir nesnenin tamsayı olup olmadığını kontrol edin x = 8547.55 print(isinstance(x, int)) y = "8888888888888" print(isinstance(y, str)) # Aşağıdaki boolean hangi değeri çıktı verir. # print(10725 > 98884) print(43254 == 7) print(8 < 8) print(bool("sysyssy")) print(bool(7772)) # # Python Operatörleri # Operatörler, değişkenler ve değerler üzerinde işlem yapmak için kullanılır. # Aşağıdaki örnekte, iki değeri bir araya getirmek için + operatörünü kullanıyoruz: print(456 + 5) # Python, operatörleri aşağıdaki gruplara ayırır: # Arithmetic operators Assignment operators Comparison operators Logical operators Identity operators Membership operators Bitwise operators # # Python Arithmetic Operators # Aritmetik opetaörler, yaygın matematiksel işlemleri gerçekleştirmek için sayısal değerlerle birlikte kullanılır: # Name Example Try it # + Addition x + y # - Subtraction x - y # * Multiplication x * y # / Division x / y # % Modulus x % y # ** Exponentiation x ** y # // Floor division x // y # addition - toplama x = 71 y = 377 print(x + y) # Subtraction - çıkarma x = 57444444445565 y = 752588444 print(x - y) # Multiplication x = 77774 y = 7569547 print(x * y) # Division - bölme x = 78 y = 5 print(x / y) # modulus - modüller x = 75444 y = 2 print(x % y) # Exponentiation - üst alma x = 7 y = 9 print(x**y) # same as 2*2*2*2*2 # Floor division - taban fonksiyonu x = 174 y = 8 print(x // y) # kat bölümü // sonucu en yakın tam sayıya yuvarlar # # Python Atama Operatörleri # Atama işleçleri, değişkenlere değer atamak için kullanılır: # = EŞİTTİR x = 8 x # += ARTI EŞİTTİR x = 85 x += 75 print(x) # *= ÇARPI EŞİTTİR x = 75 x *= 77 print(x) # /= x = 85 x /= 745 print(x) # %= bölümden kalan sayıyı verir x = 758 x %= 758 print(x) # **= sayının üssünü alır x = 758 x **= 784 print(x) # # Python Karşılaştırma Operatörleri # Karşılaştırma işleçleri iki değeri karşılaştırmak için kullanılır: # == Equal - Eşit mi x = 555 y = 85 print(x == y) # 5, 3'e eşit olmadığı için False döndürür # > Greater than , büyüktür x = 7 y = 5 print(x > y) # 7, 5'ten büyük olduğu için True döndürür # >= Greater than or equal to , Büyük eşittir x = 4 y = 2 print(x >= y) # returns True because five is greater, or equal, to 2 # Less than or equal to , küçük eşittir x = 9 y = 2 print(x <= y) # returns False because 5 is neither less than or equal to 2 # # Python Mantıksal Operatörler # Mantıksal işleçler, koşullu ifadeleri birleştirmek için kullanılır: "and, or, not" # and, Her iki ifade de doğruysa True döndürür x = 6 print(x > 4 and x < 9) # returns True because 5 is greater than 3 AND 4 is less than 9 # or İfadelerden biri doğruysa True döndürür x = 55 print(x > 44 or x < 4) # #, koşullardan biri doğru olduğu için True döndürür # not Sonucu tersine çevirin, sonuç doğruysa False döndürür x = 7 print(not (x > 4 and x < 100)) # sonucu tersine çevirmek için kullanılır. Norlamde true çıktısı verecekti # # Python Kimlik Operatörleri # Kimlik fonksiyonları, nesneleri eşit olup olmadıklarını değil, aslında aynı nesne olup olmadıklarını ve aynı bellek konumuna sahip olup olmadıklarını karşılaştırmak için kullanılır: # is # Her iki değişken de aynı nesneyse True döndürür a = ["el", "ayak"] b = ["el", "ayak"] c = a print(a is c) # True değerini döndürür çünkü z, x ile aynı nesnedir print(a is b) # aynı içeriğe sahip olsalar bile x, y ile aynı nesne olmadığı için False döndürür print(a == b) # "is" ve "==" arasındaki farkı göstermek için: x eşittir y olduğu için bu karşılaştırma True değerini döndürür # is not Her iki değişken de aynı nesne değilse True döndürür # is not # Her iki değişken de aynı nesne değilse True döndürür a = ["oje", "tırnak"] s = ["oje", "tırnak"] d = a print(a is not d) # d, x ile aynı nesne olduğu için False döndürür print(a is not s) # True döndürür çünkü x, aynı içeriğe sahip olsalar bile y ile aynı nesne değildir print(a != s) # "is not" ve "!=" arasındaki farkı göstermek için: x eşittir y olduğu için bu karşılaştırma False döndürür
# # 1. Introduction # Name: Tomasz Abels and Jack Chen # Username: JackChenXJ # Score: # Leaderbord rank: # # 2. Data # ### 2.1 Dataset # In this section, we load and explore the dataset. # import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import os print(os.listdir("../input/LANL-Earthquake-Prediction")) train = pd.read_csv( "../input/LANL-Earthquake-Prediction/train.csv", dtype={"acoustic_data": np.int16, "time_to_failure": np.float64}, ) print(train.shape) acoustic_data = train["acoustic_data"].values[:200000000:100] time_data = train["time_to_failure"].values[:200000000:100] print(acoustic_data.shape) print(time_data.shape) fig, ax1 = plt.subplots(figsize=(16, 8)) plt.title("Trends of acoustic_data and time_to_failure. 2% of data (sampled)") plt.plot(acoustic_data, color="b") ax1.set_ylabel("acoustic_data", color="b") plt.legend(["acoustic_data"]) ax2 = ax1.twinx() plt.plot(time_data, color="g") ax2.set_ylabel("time_to_failure", color="g") plt.legend(["time_to_failure"], loc=(0.875, 0.9)) # ### 2.1.1 Train-test split # In the above below, we split the train data into a test and a train set. Set a value for the `test_size` yourself. Argue why the test value can not be too small or too large. You can also use k-fold cross validation. # Secondly, we have set the `random_state` to 102. Can you think of a reason why we set a `random_state` at all? # ### 2.2 Data Exploration # Explore the features and target variables of the dataset. Think about making some scatter plots, box plots, histograms or printing the data, but feel free to choose any method that suits you. # What do you think is the right performance # metric to use for this dataset? Clearly explain which performance metric you # choose and why. # Algorithmic bias can be a real problem in Machine Learning. So based on this, # should we use the Race and the Sex features in our machine learning algorithm? Explain what you believe. from tqdm import tqdm rows = 1000000 segments = int(np.floor(train.shape[0] / rows)) X_train = pd.DataFrame( index=range(segments), dtype=np.float64, columns=["ave", "std", "max", "min"] ) y_train = pd.DataFrame( index=range(segments), dtype=np.float64, columns=["time_to_failure"] ) for segment in tqdm(range(segments)): seg = train.iloc[segment * rows : segment * rows + rows] x = seg["acoustic_data"].values y = seg["time_to_failure"].values[-1] y_train.loc[segment, "time_to_failure"] = y X_train.loc[segment, "ave"] = x.mean() X_train.loc[segment, "std"] = x.std() X_train.loc[segment, "max"] = x.max() X_train.loc[segment, "min"] = x.min() print(X_train.shape) print(X_train) from sklearn.model_selection import train_test_split # Randomize the set and split it into a training and test set x_train, x_test, y_train, y_test = train_test_split( X_train, y_train, test_size=0.3, shuffle=True, random_state=102 ) # ### 2.3 Data Preparation # This dataset hasn’t been cleaned yet. Meaning that some attributes (features) are in numerical format and some are in categorial format. Moreover, there are missing values as well. However, all Scikit-learn’s implementations of these algorithms expect numerical features. Check for all features if they are in categorial and use a method to transform them to numerical values. For the numerical data, handle the missing data and normalize the data. # Note that you are only allowed to use training data for preprocessing but you then need to perform similar changes on test data too. # You can use [pipelining](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html) to help with the preprocessing. # # standard normalize the data from sklearn import preprocessing scaler = preprocessing.StandardScaler().fit(x_train) x_train_norm = scaler.transform(x_train) x_test_norm = scaler.transform(x_test) # convert y values to categorical values y_train = np.ravel(y_train) y_test = np.ravel(y_test) lab = preprocessing.LabelEncoder() y_train_t = lab.fit_transform(y_train) y_test_t = lab.fit_transform(y_test) # ## 3. Training and Results # Briefly introduce the classification algorithms you choose. # Present your final confusion matrices (2 by 2) and balanced accuracies for both test and training data for all classifiers. Analyse the performance on test and training in terms of bias and variance. Give one advantage and one drawback of the method you use. # print(x_train_norm.shape) print(x_test_norm.shape) print(y_train_t.shape) print(y_test_t.shape) # from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier from sklearn import datasets, svm from sklearn.linear_model import LogisticRegression from matplotlib import pyplot # define the model model = svm.SVC() # fit/train the model on all features model.fit(x_train_norm, y_train_t) print(model.score(x_test_norm, y_test_t)) # get feature importance # importance = model.feature_importances_ # plot feature importance # pyplot.bar([x for x in range(len(importance))], importance) # pyplot.show() # Predict y_test_pred = model.predict(x_test_norm) y_train_pred = model.predict(x_train_norm) # Accuracy for training and test set score1 = model.score(x_train_norm, y_train_t) score2 = model.score(x_test_norm, y_test_t) print(score1) print(score2) import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from sklearn.linear_model import LogisticRegression # creates a confusion matrix for the training set cm = metrics.confusion_matrix(y_train_t, y_train_pred) plt.figure(figsize=(4, 4)) sns.heatmap(cm, annot=True, fmt=".0f", linewidths=0.5, square=True, cmap="Blues_r") plt.ylabel("Actual label") plt.xlabel("Predicted label") all_sample_title = "Accuracy Train Score: {0}".format(score1) # accuracy score plt.title(all_sample_title, size=10) # creates a confusion matrix for the test set cm2 = metrics.confusion_matrix(y_test_t, y_test_pred) plt.figure(figsize=(4, 4)) sns.heatmap(cm2, annot=True, fmt=".0f", linewidths=0.5, square=True, cmap="Blues_r") plt.ylabel("Actual label") plt.xlabel("Predicted label") all_sample_title = "Accuracy Test Score: {0}".format(score2) # accuracy score plt.title(all_sample_title, size=10) # ## 4. Discussion and Conclusion # Discuss all the choices you made during the process and your final conclusions. Highlight the strong points of your approach, discuss its shortcomings and suggest some future approaches that may improve it. Please be self critical here. The assignment is not about achieving a state of the art performance, but about showing what you have learned the concepts during the course. # my_submission = pd.DataFrame({'Id': test.Id, 'SalePrice': predicted_data}) # you could use any filename. We choose submission here # my_submission.to_csv('submission.csv', index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.linear_model import LinearRegression df = pd.read_csv("/kaggle/input/crop-recommendation/Crop_recommendation.csv") df.head() df.info() df.isnull().sum() df.columns.tolist() df.drop(["Unnamed: 8", "Unnamed: 9"], axis=1, inplace=True) df.head() df.tail() # let's some focus on crop types df.groupby(["label"]).head() # checking every label values # first i've checked unique label values; i will use lowercase method to fix possible matching issues df["label"] = df["label"].str.lower() rice_df = df[df["label"] == "rice"] print(rice_df) rice_df.head() rice_df.tail() rice_df.describe() # writing a list and a function for every label values. crops = pd.DataFrame(df["label"].unique(), columns=["crop"]) crop_list = df["label"].unique().tolist() def create_crop_df(df): crop_list = df["label"].unique().tolist() crop_df_dict = {} for crop in crop_list: crop_df_dict[crop] = df[df["label"] == crop] return crop_df_dict crop_df_dict = create_crop_df(df) rice_df = crop_df_dict["rice"] rice_df.head() print(crop_list) def create_crop_df(df): crop_list = df["label"].unique().tolist() crop_df_dict = {} for crop in crop_list: crop_df_dict[crop] = df[df["label"] == crop] return crop_df_dict crop_df_dict = create_crop_df(df) maize_df = crop_df_dict["maize"] maize_df.describe() apple_df = crop_df_dict["apple"] apple_df.describe() # if i want to organize all of them with one code for crop in crop_df_dict: print(f"DataFrame for {crop}:") print(crop_df_dict[crop].describe()) # checking some details by groupby function df.groupby("label")["Nitrogen"].agg(["mean", "sum", "max"]).sort_values( by="mean", ascending=True ) # df.groupby('label')['phosphorus'].agg(['mean', 'sum', 'max']).sort_values(by='mean', ascending=True) # df.groupby('label')['potassium'].agg(['mean', 'sum', 'max']).sort_values(by='mean', ascending=True) # df.groupby('label')['temperature'].agg(['mean', 'sum', 'max']).sort_values(by='mean', ascending=True) # df.groupby('label')['humidity'].agg(['mean', 'sum', 'max']).sort_values(by='mean', ascending=True) # df.groupby('label')['ph'].agg(['mean', 'sum', 'max']).sort_values(by='mean', ascending=True) # df.groupby('label')['rainfall'].agg(['mean', 'sum', 'max']).sort_values(by='mean', ascending=True)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # ## Installation # pip install -q tensorflow tensorflow-datasets # ## Import Necessary Libraries import matplotlib.pyplot as plt import numpy as np import pandas as pd from PIL import Image import tensorflow as tf import tensorflow_datasets as tfds from tensorflow import keras tfds.disable_progress_bar() from keras.preprocessing import image # ## Dataset train_labels = pd.read_csv("/kaggle/input/dog-breed-identification/labels.csv") train_labels.columns unique_breeds = train_labels["breed"].unique() len(unique_breeds) # from sklearn import preprocessing # import glob # def load_labels(data_path): # files = glob.glob(data_path + '/*.jpg') # labels = pd.read_csv('/kaggle/input/dog-breed-identification/labels.csv') # y = [] # for file in files: # file_name = file.split('/')[1].split('.')[0] # for id, breed in labels.itertuples(index=False): # if id == file_name: # y.append(breed) # break # y = np.array(y) # le = preprocessing.LabelEncoder() # y = le.fit_transform(y) # return y # y = load_labels('train') # img_dir = '../input/dog-breed-identification/train/' # train_labels = train_labels.assign(img_path=lambda x: img_dir + x['id'] + '.jpg') # train_labels.head() import cv2 def get_images(imgid): pic = plt.imread(f"../input/dog-breed-identification/train/{imgid}.jpg") pic = cv2.resize(pic, (300, 300)) return pic train_labels["img"] = train_labels["id"].apply(get_images) train_labels.head() # ## Examples labrador_retriever_id = train_labels.loc[ train_labels.breed == "labrador_retriever" ].iloc[1, 0] Image.open("../input/dog-breed-identification/train/" + labrador_retriever_id + ".jpg") # ## Data Preparation Y = pd.get_dummies(train_labels["breed"]) labels = Y.values print(labels.shape) X = train_labels["img"] x = np.zeros((10222, 300, 300, 3)) for i in range(len(X)): img = train_labels["img"][i] x[i] = img from sklearn.model_selection import train_test_split train_images, test_images, train_labels, test_labels = train_test_split( images, labels, test_size=0.2 ) # ### Looking at train and test data print(X_train.shape) print(y_train.shape) print(X_test.shape) print(y_test.shape) print(type(X_train)) print(type(y_train)) # X_train = X_train.reshape(3912, 300, 300, 1) # X_test = X_test.reshape(978, 300, 300, 1) y_train = y_train.astype("float32") t_test = y_test.astype("float32") # Normalise X_train /= 255 X_test /= 255 # ## Training the CNN model = keras.Sequential( [ # keras.layers.AveragePooling2D(6, 3, input_shape=(200, 200, 3)), # keras.layers.Conv2D(64, 3, activation='relu'), keras.layers.Conv2D( 32, kernel_size=(3, 3), input_shape=(200, 200, 3), activation="relu", padding="same", ), keras.layers.MaxPool2D(2, 2), # keras.layers.Dropout(0.5), keras.layers.Flatten(), keras.layers.Dense(64, activation="relu"), keras.layers.Dropout(0.5), keras.layers.Dense(30, activation="softmax"), ] ) model.compile( optimizer="adam", loss=keras.losses.CategoricalCrossentropy(), metrics=["accuracy"] ) model.summary() # model.fit(X_train, y_train, epochs=2, batch_size=32) model.fit(X_train, y_train, epochs=5, batch_size=32) model.evaluate(X_test, y_test) # ## Hyperparameter Tuning from kerastuner.tuners import RandomSearch def build_model(hp): model = keras.Sequential() model.add(keras.layers.AveragePooling2D(6, 3, input_shape=(200, 200, 3))) # Trail with the number of Convo layers to use for i in range(hp.Int("Conv Layers", min_value=0, max_value=3)): model.add( keras.layers.Conv2D( hp.Choice(f"layer_{i}_filters", [16, 32, 64]), 3, activation="relu" ) ) model.add(keras.layers.MaxPool2D(2, 2)) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Flatten()) # hp.Choice allows the model to try out the different hyperparams to pick out the best performing one model.add( keras.layers.Dense( hp.Choice("Dense layer", [64, 128, 256, 512, 1024]), activation="relu" ) ) model.add(keras.layers.Dense(30, activation="softmax")) model.compile( optimizer="adam", loss=keras.losses.CategoricalCrossentropy(), metrics=["accuracy"], ) return model tuner = RandomSearch( build_model, objective="val_accuracy", max_trials=32, directory="./multi_conv" ) tuner.search( X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=32 ) best_model = tuner.get_best_models()[0] best_model.evaluate(X_test, y_test) best_model.summary() tuner.results_summary() # ## Save & Load Models best_model.save("./best_model") loaded_model = keras.models.load_model("./best_model") loaded_model.evaluate(X_test, y_test) # ## Plot Image from Numpy Array # RGB image rgb_images = np.array([example["image"].numpy() for example in ds_train.take(1)]) rgb_image = rgb_images[0] image = train_images[0].reshape(300, 300) plt.imshow(rgb_image) rgb_image.shape # Greyscale image # image = train_images[0].reshape(300, 300) # plt.imshow(train_images[0], cmap='Greys_r') # ## Convert PNG/JPG Imgaes to Numpy Format import imageio im = imageio.imread("") print(type(im)) im_np = np.asarray(im) print(im_np.shape) # import glob # # First of all we will extract the detail of all the data and save all of them in terms of dataframe with foldername, imagename, objectname and labels # detail = sorted(glob.glob("../input/dog-breed-identification/train/*")) # Folder_Name = [str(i.split("in/")[0]) + "in" for i in detail] # Image_Name = [str(i.split("/")[4]) for i in detail] # Train_Labels = np.array((pd.read_csv('../input/dog-breed-identification/labels.csv'))["breed"]) # # Defining dataframe and saving all the extracted information in that dataframe # train_detail = pd.DataFrame() # train_detail["Folder Name"] = Folder_Name # train_detail["Image Name"] = Image_Name # train_detail["Train Labels"] = Train_Labels # # Analying the train data detail # print("\nNumber of images in training set = "+str(len(detail))) # print(train_detail.columns) # train_detail.head()
python_version = "3.9" env_name = "name" import os old_path = os.environ["PATH"] new_path = f"/opt/conda/envs/{env_name}/bin:{old_path}" import sys if __name__ == "__main__": print(sys.path)
from numpy.random import randint from numpy.random import rand def objective(x): return x[0] ** 2.0 + x[1] ** 2.0 def decode(bounds, n_bits, bitstring): decoded = list() largest = 2**n_bits for i in range(len(bounds)): # extract the substring start, end = i * n_bits, (i * n_bits) + n_bits substring = bitstring[start:end] # convert bitstring to a string of chars chars = "".join([str(s) for s in substring]) # convert string to integer integer = int(chars, 2) # scale integer to desired range value = bounds[i][0] + (integer / largest) * (bounds[i][1] - bounds[i][0]) # store decoded.append(value) return decoded def selection(pop, scores, k=3): # first random selection selection_ix = randint(len(pop)) for ix in randint(0, len(pop), k - 1): # check if better (e.g. perform a tournament) if scores[ix] < scores[selection_ix]: selection_ix = ix return pop[selection_ix] def crossover(p1, p2, r_cross): # children are copies of parents by default c1, c2 = p1.copy(), p2.copy() # check for recombination if rand() < r_cross: # select crossover point that is not on the end of the string pt = randint(1, len(p1) - 2) # perform crossover c1 = p1[:pt] + p2[pt:] c2 = p2[:pt] + p1[pt:] return [c1, c2] def mutation(bitstring, r_mut): for i in range(len(bitstring)): # check for a mutation if rand() < r_mut: # flip the bit bitstring[i] = 1 - bitstring[i] def genetic_algorithm(objective, bounds, n_bits, n_iter, n_pop, r_cross, r_mut): # initial population of random bitstring pop = [randint(0, 2, n_bits * len(bounds)).tolist() for _ in range(n_pop)] # keep track of best solution best, best_eval = 0, objective(pop[0]) # enumerate generations for gen in range(n_iter): # decode population decoded = [decode(bounds, n_bits, p) for p in pop] # evaluate all candidates in the population scores = [objective(d) for d in decoded] # check for new best solution for i in range(n_pop): if scores[i] < best_eval: best, best_eval = pop[i], scores[i] print("%d, new best f(%s) = %f" % (gen, decoded[i], scores[i])) # select parents selected = [selection(pop, scores) for _ in range(n_pop)] # create the next generation children = list() for i in range(0, n_pop, 2): # get selected parents in pairs p1, p2 = selected[i], selected[i + 1] # crossover and mutation for c in crossover(p1, p2, r_cross): # mutation mutation(c, r_mut) # store for next generation children.append(c) # replace population pop = children return [best, best_eval] # define range for input bounds = [[-5.0, 5.0], [-5.0, 5.0]] # define the total iterations n_iter = 100 # bits per variable n_bits = 16 # define the population size n_pop = 100 # crossover rate r_cross = 0.9 # mutation rate r_mut = 1.0 / (float(n_bits) * len(bounds)) # perform the genetic algorithm search best, score = genetic_algorithm( objective, bounds, n_bits, n_iter, n_pop, r_cross, r_mut ) print("Done!") decoded = decode(bounds, n_bits, best) print("f(%s) = %f" % (decoded, score))
# Python Libraries import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Libraries for Visualization import plotly.express as px import matplotlib.pyplot as plt # Library for splitting the data in Train and Test from sklearn.model_selection import train_test_split # Library required for the Linear Regression Algorithm from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB # Library for the metric required to evaluate the model from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC # allow to plot the charts inline import seaborn as sns import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session iris_d = pd.read_csv("/kaggle/input/iris-dataset/Iris.csv") # ### Step 3: Understanding the Data iris_d.head() # Fetching 10 records at random from the dataset iris_d.sample(10) # Data type of columns iris_d.info() # Shape of Data iris_d.shape # Identifying Null values iris_d.isnull().sum() iris_d.describe() iris_d["Species"].value_counts() # ### Step 4: Exploring the data through Visualization # Box plot of price plt.figure(figsize=(10, 10)) # sns.boxplot(data= iris_d) sns.boxplot(data=iris_d, width=0.8, fliersize=5) plt.show() # plt.figure(figsize=(10,10)) # sns.set(rc={'figure.figsize':(5,20)}) # To plot the species data using a box plot: sns.boxplot(x="Species", y="SepalLengthCm", data=iris_d) plt.show() sns.boxplot(x="Species", y="SepalWidthCm", data=iris_d) plt.show() sns.boxplot(x="Species", y="PetalLengthCm", data=iris_d) plt.show() sns.boxplot(x="Species", y="PetalWidthCm", data=iris_d) plt.show() # Let see how the classes are separated sns.FacetGrid(iris_d, hue="Species", height=5).map( plt.scatter, "PetalLengthCm", "PetalWidthCm" ).add_legend() plt.show() # Let see how the classes are separated sns.FacetGrid(iris_d, hue="Species", height=5).map( plt.scatter, "SepalLengthCm", "SepalWidthCm" ).add_legend() plt.show() # Use pairplot to analyze the relationship between species for all characteristic combinations. # An observable trend shows a close relationship between two of the species sns.pairplot(iris_d.drop("Id", axis=1), hue="Species", height=4) plt.show() # Correlation iris_d.corr() # Vizually appealing corr matrix cor_iris = iris_d.corr() # cor1.style.background_gradient(cmap = 'coolwarm') cor_iris.style.background_gradient(cmap="viridis") # import correlation matrix to see parametrs which best correlate each other # According to the correlation matrix results PetalLengthCm and # PetalWidthCm have possitive correlation which is proved by the plot above sns.heatmap( cor_iris, xticklabels=cor_iris.columns.values, yticklabels=cor_iris.columns.values ) plt.show() # In order to rus Naive_Bayes classifier we have to replace the "Species" values iris_d["Species"].replace("Iris-setosa", 1, inplace=True) iris_d["Species"].replace("Iris-virginica", 2, inplace=True) iris_d["Species"].replace("Iris-versicolor", 3, inplace=True) # Now check if everything was changed properly iris_d["Species"].unique() # ### Step 5 Splitting the data into Train Data and Test Data # #### For this step, we will first separate the 'Feature' and 'Target' from the data feature = iris_d.iloc[:, 0:4] target = iris_d["Species"] # X = dataframe.iloc[:, 0:4] # Y = dataframe['Species'] # Splitting the data into Train and Test data X_train, X_test, y_train, y_test = train_test_split( feature, target, test_size=0.4, random_state=40 ) print("X-Train :", X_train.shape) print("X-Test :", X_test.shape) print("Y-Train :", y_test.shape) print("Y-Test :", y_test.shape) # ## Training the model # ### 1. K – Nearest Neighbour (KNN) KN_model = KNeighborsClassifier() KN_model.fit(X_train, y_train) pred_vals = model.predict(X_test) print(accuracy_score(y_test, pred_vals)) pred_vals # ### 2. Support Vector Machine (SVM) Support_vm = SVC() Support_vm.fit(X_train, y_train) pred_vals = model.predict(X_test) print(accuracy_score(y_test, pred_vals)) pred_vals # ### 3. RandomForest RF_model = RandomForestClassifier() RF_model.fit(X_train, y_train) pred_vals = model.predict(X_test) print(accuracy_score(y_test, pred_vals)) pred_vals # ### 4. Logistic Regression LR_Model = LogisticRegression() LR_Model.fit(X_train, y_train) pred_vals = model.predict(X_test) print(accuracy_score(y_test, pred_vals)) pred_vals # ### 5. Linear Regression Linear_model = LinearRegression() Linear_model.fit(X_train, y_train) pred_vals = model.predict(X_test) print(accuracy_score(y_test, pred_vals)) pred_vals # ### 6. Gaussian Naive Bayes # Train and test model GNB_model = GaussianNB() GNB_model.fit(X_train, y_train) pred_vals = model.predict(X_test) print(accuracy_score(y_test, pred_vals)) pred_vals dfIris_d = pd.DataFrame( pred_vals, index=range( 60, ), columns=["Predicted"], ) dfIris_d["Actual"] = y_test dfIris_d # This dataframe gives the Actual vs Predicted values # ### Step 9: Evaluating the Performance of the Model print("Mean Absolute Error =", mean_absolute_error(y_test, pred_vals)) print("Mean Squared Error= ", mean_squared_error(y_test, pred_vals)) print("Root Mean Squared Error= ", np.sqrt(mean_squared_error(y_test, pred_vals)))
from mpl_toolkits.mplot3d import Axes3D from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import os # accessing directory structure import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch import torch.nn as nn def normalize(x): x_normed = x / x.max(0, keepdim=True)[0] return x_normed nRowsRead = 10 # specify 'None' if want to read whole file # grade1.csv may have more rows in reality, but we are only loading/previewing the first 1000 rows df1 = pd.read_csv("/kaggle/input/grade6.csv", delimiter=",") df1.dataframeName = "grade1.csv" nRow, nCol = df1.shape print("shape:", df1.shape) print("df1.head\n", df1.head()) print(f"There are {nRow} rows and {nCol} columns") # print("df1:\n", df1) print("df1.head(7)\n", df1.head(7)) print("df1.tail(3)\n", df1.tail(3)) print("value clounts of admission:\n", df1["admission"].value_counts()) # df1.plot(kind="scatter", x="toefl ", y="gpa") cols = ["toefl", "gre", "gpa"] # torch_tensor = torch.tensor(targets_df['targets'].values) X = torch.tensor(df1[cols].values, dtype=torch.float32) print("X", X) print("X.size", X.size()) X = normalize(X) print("normalized X", X) print("X.size", X.size()) Y = torch.tensor(df1["admission"].values, dtype=torch.float32) print("Y.size:", Y.size()) Y = torch.reshape(Y, (26, -1)) print("Y", Y) print(Y.size()) class myregressionmodel(nn.Module): def __init__(self, n_input_features): super(myregressionmodel, self).__init__() self.layer1 = nn.Linear(n_input_features, 1) def forward(self, XX): Y_pred = torch.sigmoid(self.layer1(XX)) return Y_pred model = myregressionmodel(3) loss = nn.BCELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) for epoch in range(100000): Y_hat = model(X) l = loss(Y_hat, Y) if epoch % 1000 == 0: print("loss", l.item()) l.backward() optimizer.step() optimizer.zero_grad() with torch.no_grad(): testX = torch.tensor([[95, 350, 3.5], [60, 230, 2.8]]) Y_hat = model(testX) result = Y_hat.round() print("Predicted result: ", result) # There is 1 csv file in the current version of the dataset: # for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # The next hidden code cells define functions for plotting data. Click on the "Code" button in the published kernel to reveal the hidden code. # Distribution graphs (histogram/bar graph) of column data def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow): nunique = df.nunique() df = df[ [col for col in df if nunique[col] > 1 and nunique[col] < 50] ] # For displaying purposes, pick columns that have between 1 and 50 unique values nRow, nCol = df.shape columnNames = list(df) nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow plt.figure( num=None, figsize=(6 * nGraphPerRow, 8 * nGraphRow), dpi=80, facecolor="w", edgecolor="k", ) for i in range(min(nCol, nGraphShown)): plt.subplot(nGraphRow, nGraphPerRow, i + 1) columnDf = df.iloc[:, i] if not np.issubdtype(type(columnDf.iloc[0]), np.number): valueCounts = columnDf.value_counts() valueCounts.plot.bar() else: columnDf.hist() plt.ylabel("counts") plt.xticks(rotation=90) plt.title(f"{columnNames[i]} (column {i})") plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0) plt.show() # Correlation matrix def plotCorrelationMatrix(df, graphWidth): filename = df.dataframeName df = df.dropna("columns") # drop columns with NaN df = df[ [col for col in df if df[col].nunique() > 1] ] # keep columns where there are more than 1 unique values if df.shape[1] < 2: print( f"No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2" ) return corr = df.corr() plt.figure( num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor="w", edgecolor="k" ) corrMat = plt.matshow(corr, fignum=1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title(f"Correlation Matrix for {filename}", fontsize=15) plt.show() # Scatter and density plots def plotScatterMatrix(df, plotSize, textSize): df = df.select_dtypes(include=[np.number]) # keep only numerical columns # Remove rows and columns that would lead to df being singular df = df.dropna("columns") df = df[ [col for col in df if df[col].nunique() > 1] ] # keep columns where there are more than 1 unique values columnNames = list(df) if ( len(columnNames) > 10 ): # reduce the number of columns for matrix inversion of kernel density plots columnNames = columnNames[:10] df = df[columnNames] ax = pd.plotting.scatter_matrix( df, alpha=0.75, figsize=[plotSize, plotSize], diagonal="kde" ) corrs = df.corr().values for i, j in zip(*plt.np.triu_indices_from(ax, k=1)): ax[i, j].annotate( "Corr. coef = %.3f" % corrs[i, j], (0.8, 0.2), xycoords="axes fraction", ha="center", va="center", size=textSize, ) plt.suptitle("Scatter and Density Plot") plt.show() # Now you're ready to read in the data and use the plotting functions to visualize the data. # ### Let's check 1st file: /kaggle/input/grade6.csv nRowsRead = 1000 # specify 'None' if want to read whole file # grade6.csv may have more rows in reality, but we are only loading/previewing the first 1000 rows df1 = pd.read_csv("/kaggle/input/grade6.csv", delimiter=",", nrows=nRowsRead) df1.dataframeName = "grade6.csv" nRow, nCol = df1.shape print(f"There are {nRow} rows and {nCol} columns") # Let's take a quick look at what the data looks like: df1.head(5) columnNames = list(df1) print("columnNames: ", columnNames) # Distribution graphs (histogram/bar graph) of sampled columns: plotPerColumnDistribution(df1, 10, 5) # Correlation matrix: plotCorrelationMatrix(df1, 8) # Scatter and density plots: plotScatterMatrix(df1, 12, 10)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import matplotlib.pyplot as plt import seaborn as sns plt.style.use("seaborn") import nltk from nltk.corpus import stopwords from collections import Counter, defaultdict from sklearn.feature_extraction.text import CountVectorizer from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator from PIL import Image from nltk.tokenize import word_tokenize from nltk.util import ngrams import string nltk.download("stopwords") stop = set(stopwords.words("english")) SEED = 13 data = pd.read_csv( "/kaggle/input/disneyland-reviews/DisneylandReviews.csv", encoding="iso-8859-1", na_values="missing", ) data.shape data.info() # checking duplicated data[ data["Review_ID"].isin(data["Review_ID"][data["Review_ID"].duplicated()]) ].sort_values("Review_ID") data.drop_duplicates("Review_ID", inplace=True, keep="first") data.shape data.Rating.value_counts() def remap_rating(rating): if rating < 3: return "negative" elif rating > 3: return "positive" else: return "neutral" data["Rating"] = data["Rating"].apply(lambda rating: remap_rating(rating)) data.Rating.value_counts() data["Review_Text"] = data["Review_Text"].astype(str) class_data = ( data.groupby("Rating") .count()["Review_Text"] .reset_index() .sort_values("Review_Text", ascending=False) ) percent_rating = class_data.Review_Text labels = class_data.Rating colors = ["#00ff00", "#0000ff", "#ff0000"] chart, _, _ = plt.pie( percent_rating, colors=colors, radius=1.0, labels=labels, autopct="%.1f%%" ) plt.setp(chart, width=0.5) plt.show() fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 5)) review_len = data[data["Rating"] == "negative"]["Review_Text"].str.len() ax1.hist(review_len, color="#ff0000") review_len = data[data["Rating"] == "neutral"]["Review_Text"].str.len() ax2.hist(review_len, color="#0000ff") review_len = data[data["Rating"] == "positive"]["Review_Text"].str.len() ax3.hist(review_len, color="#00ff00") fig.suptitle("Number of characters in reviews") plt.show() fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 5)) review_len = ( data[data["Rating"] == "negative"]["Review_Text"] .str.split() .map(lambda review: len(review)) ) ax1.hist(review_len, color="#ff0000") review_len = ( data[data["Rating"] == "neutral"]["Review_Text"] .str.split() .map(lambda review: len(review)) ) ax2.hist(review_len, color="#0000ff") review_len = ( data[data["Rating"] == "positive"]["Review_Text"] .str.split() .map(lambda review: len(review)) ) ax3.hist(review_len, color="#00ff00") fig.suptitle("Total words in a review") plt.show() def create_corpus(target): corpus = [] for x in data[data["Rating"] == target]["Review_Text"].str.split(): for i in x: corpus.append(i) return corpus stop = set(stopwords.words("english")) pos_common_words = create_corpus("positive") pos_counter = Counter(pos_common_words) pos_most = pos_counter.most_common() x = [] y = [] for word, count in pos_most[:40]: if word not in stop: x.append(word) y.append(count) sns.barplot(x=y, y=x) plt.title("Most common words in positive reviews") plt.show() neu_common_words = create_corpus("neutral") neu_counter = Counter(neu_common_words) neu_most = neu_counter.most_common() x = [] y = [] for word, count in neu_most[:40]: if word not in stop: x.append(word) y.append(count) sns.barplot(x=y, y=x) plt.title("Most common words in neutral reviews") plt.show() neg_common_words = create_corpus("negative") neg_counter = Counter(neg_common_words) neg_most = neg_counter.most_common() x = [] y = [] for word, count in neg_most[:40]: if word not in stop: x.append(word) y.append(count) sns.barplot(x=y, y=x) plt.title("Most common words in negative reviews") plt.show() import re import random def remove_punctuations(review): return re.sub( r"(@[A-Za-z0-9]+)|(#[A-Za-z0-9]+)|([^\x00-\x7F]+)|([0-9])|(\w+:\/\/\S+)|([^\w\s])|(\s+)", " ", review, ) def rep(review): return review.replace("_", " ") def whitespace_LT(review): return review.strip() def multispace(review): return re.sub(r"\s+", " ", review) data["Review_Text"] = data["Review_Text"].str.lower() data["Review_Text"] = data["Review_Text"].apply( lambda review: remove_punctuations(review) ) data["Review_Text"] = data["Review_Text"].apply(lambda review: rep(review)) data["Review_Text"] = data["Review_Text"].apply(lambda review: whitespace_LT(review)) data["Review_Text"] = data["Review_Text"].apply(lambda review: multispace(review)) data["Review_Text"][random.randint(0, len(data["Review_Text"]))] from nltk.tokenize import word_tokenize from nltk.probability import FreqDist def word_tokenize_wrapper(review): return word_tokenize(review) def freqDist_wrapper(review): return FreqDist(review) data["Review_Text_Token"] = data["Review_Text"].apply( lambda review: word_tokenize_wrapper(review) ) data["Review_Text_Token_FreqDist"] = data["Review_Text_Token"].apply( lambda token: freqDist_wrapper(token) ) from nltk.corpus import stopwords list_stopwords = stopwords.words("english") list_stopwords = set(list_stopwords) def stopwords_removal(words): return [word for word in words if word not in list_stopwords] data["Review_Text_Token_WSW"] = data["Review_Text_Token"].apply( lambda word: stopwords_removal(word) ) data["Review_Text_Token_WSW"].head() from nltk.stem import PorterStemmer import swifter stemmer = PorterStemmer() def stemmer_wrapper(term): return stemmer.stem(term) term_dict = {} for document in data["Review_Text_Token_WSW"]: for term in document: if term not in term_dict: term_dict[term] = " " print(len(term_dict)) for term in term_dict: term_dict[term] = stemmer_wrapper(term) print(term, ":", term_dict[term]) print(term_dict) def get_stemmed_term(document): return [term_dict[term] for term in document] data["Review_Stemmed"] = data["Review_Text_Token_WSW"].swifter.apply( lambda doc: get_stemmed_term(doc) ) print(data["Review_Stemmed"]) data.head() cols = ["Rating", "Review_Stemmed"] data = data[cols] data.columns = ["label", "review"] import ast def join(reviews): return " ".join([review for review in reviews]) data["review"] = data["review"].apply(lambda review: join(review)) data.label.value_counts(normalize=True) data.info() def remap_label(label): if label == "positive": return 1 elif label == "negative": return -1 else: return 0 data["label"] = data["label"].apply(lambda label: remap_label(label)) from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(analyzer="word") features = tfidf.fit_transform(data["review"]) features_array = features.toarray() features = features.astype(np.float32) features_array = features_array.astype(np.float32) labels = data["label"] print("%d reviews, %d feature" % (features.shape)) X = features y = labels X = X.astype(np.float32) y = y.astype(np.int8) from sklearn.model_selection import StratifiedKFold from sklearn.metrics import accuracy_score, f1_score, roc_auc_score from sklearn.ensemble import RandomForestClassifier skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=SEED) acc_score = [] f1s_score = [] for train_idx, val_idx in skf.split(X, y): Xt, Xv = X[train_idx, :], X[val_idx, :] yt, yv = y.iloc[train_idx], y.iloc[val_idx] model = RandomForestClassifier( criterion="entropy", random_state=SEED, n_estimators=500, max_features="sqrt", n_jobs=-1, ) model.fit(Xt, yt) y_pred = model.predict(Xv) y_prob = model.predict_proba(Xv)[:, 1] acc_score.append(accuracy_score(yv, y_pred)) f1s_score.append(f1_score(yv, y_pred, average="macro")) acc_mean = np.mean(acc_score) f1s_mean = np.mean(f1s_score) df_result = pd.DataFrame( { "Accuracy": [acc_mean], "F1 Score": [f1s_mean], } ) df_result
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm import wordcloud import re sns.set_style("whitegrid") data = pd.read_csv( "/kaggle/input/protocols-texts/data_with_price_text_preprocessed.csv" ) data = data.dropna(subset=["text"]) data.head() # # Data Prep from sklearn.model_selection import train_test_split def get_price_class(price): if price < 250000: return 0 elif price < 500000: return 1 elif price < 1000000: return 2 elif price < 3000000: return 3 elif price < 10000000: return 4 elif price < 50000000: return 5 elif price < 200000000: return 6 else: return 7 data["price_class"] = data["price"].apply(get_price_class) X, y = data["text"], data["price_class"] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42, stratify=y ) X_train, X_val, y_train, y_val = train_test_split( X_train, y_train, test_size=0.2, random_state=42, stratify=y_train ) from sklearn.metrics import f1_score, roc_auc_score, accuracy_score from sklearn.preprocessing import OneHotEncoder def metrics_for_model(model, X_test, y_test): y_pred = model.predict(X_test) f1_macro = f1_score(y_test, y_pred, average="macro") accuracy = accuracy_score(y_test, y_pred) ohe = OneHotEncoder() y_test_ohe = ohe.fit_transform(y_test.values.reshape(-1, 1)).toarray() y_pred_ohe = ohe.transform(y_pred.reshape(-1, 1)).toarray() auc_score = roc_auc_score(y_test_ohe, y_pred_ohe, multi_class="ovr") print(f"F1-macro: {f1_macro}") print(f"ROC AUC: {auc_score}") print(f"Accuracy: {accuracy}") import torch import torch.nn as nn from torch.utils.data import DataLoader, Dataset, TensorDataset from transformers import AutoTokenizer, AutoModel from sklearn.model_selection import train_test_split from tqdm import tqdm class TextDataset(Dataset): def __init__(self, texts, labels): self.texts = texts self.labels = labels self.tokenizer = AutoTokenizer.from_pretrained("DeepPavlov/rubert-base-cased") self.model = AutoModel.from_pretrained("DeepPavlov/rubert-base-cased") def __len__(self): return len(self.texts) def __getitem__(self, idx): text = self.texts[idx] label = self.labels[idx] encoding = self.tokenizer( text, padding="max_length", truncation=True, max_length=256, return_tensors="pt", ) input_ids = encoding["input_ids"] attention_mask = encoding["attention_mask"] with torch.no_grad(): embeddings = self.model( input_ids=input_ids.to(self.model.device), attention_mask=attention_mask.to(self.model.device), )[0][:, 0, :] return embeddings, label def collate_fn(self, batch): embeddings = torch.stack([item[0] for item in batch], dim=0) labels = torch.tensor([item[1] for item in batch]) return embeddings, labels class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(LSTM, self).__init__() self.hidden_size = hidden_size self.lstm = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=2, batch_first=True, ) self.fc1 = nn.Linear(hidden_size, 64) self.relu = nn.ReLU() self.fc2 = nn.Linear(64, num_classes) def forward(self, x): h0 = torch.zeros(2, x.size(0), self.hidden_size).to(x.device) c0 = torch.zeros(2, x.size(0), self.hidden_size).to(x.device) out, _ = self.lstm(x, (h0, c0)) out = self.fc1(out[:, -1, :]) out = self.relu(out) out = self.fc2(out) return out def train(model, train_loader, criterion, optimizer): model.train() train_loss = 0.0 for batch_idx, (embeddings, labels) in enumerate(train_loader): embeddings, labels = embeddings.to(device), labels.to(device) optimizer.zero_grad() outputs = model(embeddings) loss = criterion(outputs, labels) # labels loss.backward() optimizer.step() train_loss += loss.item() train_loss /= len(train_loader) return train_loss def validate(model, val_loader, criterion): model.eval() val_loss = 0.0 with torch.no_grad(): for batch_idx, (embeddings, labels) in enumerate(val_loader): embeddings, labels = embeddings.to(device), labels.to(device) outputs = model(embeddings) loss = criterion(outputs, labels) val_loss += loss.item() val_loss /= len(val_loader) return val_loss batch_size = 512 # train_dataset = TextDataset(X_train.values, y_train.values) # val_dataset = TextDataset(X_val.values, y_val.values) # train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=train_dataset.collate_fn) # val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, collate_fn=val_dataset.collate_fn) # embeddings_train = [] # for batch in tqdm(train_loader, desc='Getting Embeddings'): # batch_embeddings = batch[0] # embeddings_train.append(batch_embeddings) # embeddings_train = torch.cat(embeddings_train, dim=0) # embeddings_val = [] # for batch in tqdm(val_loader, desc='Getting Embeddings'): # batch_embeddings = batch[0] # embeddings_val.append(batch_embeddings) # embeddings_val = torch.cat(embeddings_val, dim=0) # embeddings_train = torch.load('/kaggle/input/tensor-rubert/embeddings_train.pt') # embeddings_val = torch.load('/kaggle/input/tensor-rubert/embeddings_val.pt') # train_dataset = TensorDataset(embeddings_train, torch.from_numpy(y_train_ohe)) # train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # val_dataset = TensorDataset(embeddings_val, torch.from_numpy(y_val_ohe)) # val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True) # from sklearn.preprocessing import OneHotEncoder # ohe = OneHotEncoder(sparse=False) # y_train_ohe = ohe.fit_transform(y_train.values.reshape(-1, 1)) # y_val_ohe = ohe.transform(y_val.values.reshape(-1, 1)) # y_test_ohe = ohe.transform(y_test.values.reshape(-1, 1)) from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer() cv.fit(X_train) X_train_cv = cv.transform(X_train).toarray() X_val_cv = cv.transform(X_val).toarray() X_test_cv = cv.transform(X_test).toarray() train_dataset = TensorDataset( torch.from_numpy(X_train_cv.astype(np.float32))[:, None, :], torch.from_numpy(y_train.values), ) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_dataset = TensorDataset( torch.from_numpy(X_val_cv.astype(np.float32))[:, None, :], torch.from_numpy(y_val.values), ) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True) test_dataset = TensorDataset( torch.from_numpy(X_test_cv.astype(np.float32))[:, None, :], torch.from_numpy(y_test.values), ) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") learning_rate = 0.01 num_epochs = 739 early_stopping_patience = 5000 model = LSTM( # input_size=768, input_size=22973, hidden_size=128, num_classes=8, ).to(device) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, mode="min", factor=0.1, patience=2 ) # Train loop best_val_loss = float("inf") early_stopping_counter = 0 train_losses, val_losses = [], [] for epoch in range(num_epochs): # Train train_loss = train(model, train_loader, criterion, optimizer) train_losses.append(train_loss) # Validation val_loss = validate(model, val_loader, criterion) val_losses.append(val_loss) # Learning rate scheduler # scheduler.step(val_loss) # scheduler.step(train_loss) if epoch % 30 == 0: print(f"Epoch {epoch + 1} of {num_epochs}") print(f"Train loss: {train_loss:.4f} Val loss: {val_loss:.4f}") print("-----------------------------------") # Early stopping if val_loss < best_val_loss: best_val_loss = val_loss early_stopping_counter = 0 else: early_stopping_counter += 1 if early_stopping_counter == early_stopping_patience: print("Early stopping") break import matplotlib.pyplot as plt # plot losses plt.plot(train_losses, label="Train Loss") plt.plot(val_losses, label="Validation Loss") plt.xlabel("Epoch") plt.ylabel("Loss") plt.legend() plt.show() import torch from sklearn.metrics import roc_auc_score, f1_score, accuracy_score def evaluate(model, dataloader): model.eval() preds = [] targets = [] with torch.no_grad(): for embeddings, labels in dataloader: embeddings, labels = embeddings.to(device), labels.to(device) outputs = model(embeddings) preds.extend(torch.argmax(outputs, dim=1).cpu().numpy()) targets.extend(labels.cpu().numpy()) roc_auc = roc_auc_score(np.eye(8)[targets], np.eye(8)[preds]) f1_macro = f1_score(targets, preds, average="macro") accuracy = accuracy_score(targets, preds) return roc_auc, f1_macro, accuracy roc_auc, f1_macro, accuracy = evaluate(model, train_loader) print("ROC AUC score:", roc_auc) print("F1 macro score:", f1_macro) print("Accuracy:", accuracy) roc_auc, f1_macro, accuracy = evaluate(model, val_loader) print("ROC AUC score:", roc_auc) print("F1 macro score:", f1_macro) print("Accuracy:", accuracy) roc_auc, f1_macro, accuracy = evaluate(model, test_loader) print("ROC AUC score:", roc_auc) print("F1 macro score:", f1_macro) print("Accuracy:", accuracy) # ---- # from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModel # # tokenizer_roberta = AutoTokenizer.from_pretrained('xlm-roberta-base') # # model_roberta = AutoModelForMaskedLM.from_pretrained("xlm-roberta-base") # tokenizer_rubert = AutoTokenizer.from_pretrained("DeepPavlov/rubert-base-cased") # model_rubert = AutoModel.from_pretrained("DeepPavlov/rubert-base-cased") # import torch # def get_embeddings(texts, model, tokenizer): # """ # Get embeddings from text # :param texts: list # :param model: model # :return: embeddings: list # """ # embeddings = [] # for text in tqdm(texts): # # if len(text) > 510: # # text = text[len(text)-510:] # tokens = tokenizer.tokenize(text) # if len(tokens) > 510: # tokens = tokens[:510] # tokens = ['[CLS]'] + tokens + ['[SEP]'] # input_ids = tokenizer.convert_tokens_to_ids(tokens) # input_ids = torch.tensor([input_ids]) # with torch.no_grad(): # last_hidden_states = model(input_ids)[0] # embeddings.append(last_hidden_states[0][0].numpy()) # return embeddings # from torch.utils.data import DataLoader # import torch # def get_embeddings_2_0(texts, model, tokenizer, batch_size=8): # """ # Get embeddings from text # :param texts: list # :param model: model # :return: embeddings: list # """ # tokens = tokenizer(list(texts), padding=True, truncation=True, return_tensors='pt') # dataloader = DataLoader(tokens['input_ids'], batch_size=batch_size) # pbar = tqdm(total=len(dataloader), desc='Getting RoBERTa embeddings') # embeddings_list = [] # with torch.no_grad(): # for batch_input_ids in dataloader: # outputs = model(batch_input_ids) # embeddings = outputs[0][:, 0, :] # embeddings_list.append(embeddings) # pbar.update(1) # pbar.close() # concatenated_embeddings = torch.cat(embeddings_list, dim=1) # numpy_embeddings = concatenated_embeddings.numpy() # return numpy_embeddings # import torch # from torch.utils.data import DataLoader # from transformers import AutoTokenizer, AutoModel # from tqdm import tqdm # def get_rubert_embeddings(texts): # tokenizer = AutoTokenizer.from_pretrained('DeepPavlov/rubert-base-cased') # model = AutoModel.from_pretrained('DeepPavlov/rubert-base-cased') # batch_size = 8 # max_length = 512 # tokenized_texts = [] # for text in texts: # tokenized_text = tokenizer.encode(text, truncation=True, max_length=max_length) # tokenized_texts.append(tokenized_text) # padded_texts = torch.nn.utils.rnn.pad_sequence([torch.tensor(t) for t in tokenized_texts], batch_first=True) # dataloader = DataLoader(padded_texts, batch_size=batch_size) # pbar = tqdm(total=len(dataloader), desc='Getting RuBERT embeddings') # embeddings_list = [] # with torch.no_grad(): # for i, batch_input_ids in enumerate(dataloader): # outputs = model(batch_input_ids) # embeddings = outputs[0][:, 0, :] # embeddings_list.append(embeddings) # pbar.update(1) # if i % 10 == 0: # pbar.clear() # pbar.write(f'Processed {i} batches out of {len(dataloader)}') # pbar.close() # concatenated_embeddings = torch.cat(embeddings_list, dim=0) # embeddings = concatenated_embeddings.numpy() # return embeddings # X_train_embeddings = get_rubert_embeddings(X_train) # X_val_embeddings = get_rubert_embeddings(X_val) # X_test_embeddings = get_rubert_embeddings(X_test) # X_train_embeddings = get_embeddings(X_train, model_rubert, tokenizer_rubert) # X_val_embeddings = get_embeddings(X_val, model_rubert, tokenizer_rubert) # X_test_embeddings = get_embeddings(X_test, model_rubert, tokenizer_rubert) # np.save('X_train', X_train_embeddings) # np.save('X_val', X_val_embeddings) # np.save('X_test', X_test_embeddings) # train_pool_rubert = Pool(X_train_embeddings, # label=y_train.astype(int)) # val_pool_rubert = Pool(X_val_embeddings, # label=y_val.astype(int)) # test_pool_rubert = Pool(X_test_embeddings, # label=y_test.astype(int)) # model = CatBoostClassifier( # task_type='GPU', # iterations=2000, # eval_metric='TotalF1:average=Macro', # early_stopping_rounds=500, # bootstrap_type='Bernoulli', # subsample=0.7 # ) # model.fit( # train_pool_rubert, # plot=True, # verbose=100, # eval_set=(val_pool_rubert) # ) # metrics_for_model(model, test_pool_rubert, y_test)