Dataset Viewer
Auto-converted to Parquet
content
stringlengths
73
1.12M
license
stringclasses
3 values
path
stringlengths
9
197
repo_name
stringlengths
7
106
chain_length
int64
1
144
<jupyter_start><jupyter_text>___ ___ Note- 1) First make the copy of the project in your drive then start with the solution. 2) Dont run the cell directly, first add a call above it then run the cell so that you dont miss the solution. # Logistic Regression Project In this project we will be working with a fake advertising data set, indicating whether or not a particular internet user clicked on an Advertisement. We will try to create a model that will predict whether or not they will click on an ad based off the features of that user. This data set contains the following features: * 'Daily Time Spent on Site': consumer time on site in minutes * 'Age': cutomer age in years * 'Area Income': Avg. Income of geographical area of consumer * 'Daily Internet Usage': Avg. minutes a day consumer is on the internet * 'Ad Topic Line': Headline of the advertisement * 'City': City of consumer * 'Male': Whether or not consumer was male * 'Country': Country of consumer * 'Timestamp': Time at which consumer clicked on Ad or closed window * 'Clicked on Ad': 0 or 1 indicated clicking on Ad ## Import Libraries **Import a few libraries you think you'll need (Or just import them as you go along!)**<jupyter_code>import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns<jupyter_output><empty_output><jupyter_text>## Get the Data **Read in the advertising.csv file and set it to a data frame called ad_data.**<jupyter_code>df = pd.read_csv('advertising.csv')<jupyter_output><empty_output><jupyter_text>**Check the head of ad_data**<jupyter_code>df.head() df.tail() df['Ad Topic Line'] ad = pd.get_dummies(df['Ad Topic Line']) ad<jupyter_output><empty_output><jupyter_text>** Use info and describe() on ad_data**<jupyter_code>df.info() df.describe() <jupyter_output><empty_output><jupyter_text>## Exploratory Data Analysis Let's use seaborn to explore the data! Try recreating the plots shown below! ** Create a histogram of the Age**<jupyter_code>sns.histplot(df['Age'] , bins= 30) <jupyter_output><empty_output><jupyter_text>**Create a jointplot showing Area Income versus Age.**<jupyter_code>sns.jointplot(x = 'Age' , y = 'Area Income' , data = df) <jupyter_output><empty_output><jupyter_text>** Create a jointplot of 'Daily Time Spent on Site' vs. 'Daily Internet Usage'**<jupyter_code>sns.jointplot(x = 'Daily Time Spent on Site' , y = 'Daily Internet Usage' , data = df , color = 'Green') <jupyter_output><empty_output><jupyter_text>** Finally, create a pairplot with the hue defined by the 'Clicked on Ad' column feature.**<jupyter_code>sns.pairplot(data = df ,palette = 'BuGn_r' , hue = 'Clicked on Ad') <jupyter_output><empty_output><jupyter_text># Logistic Regression Now it's time to do a train test split, and train our model! You'll have the freedom here to choose columns that you want to train on!** Split the data into training set and testing set using train_test_split**<jupyter_code>sns.heatmap(df.corr() , annot = True) from sklearn.model_selection import train_test_split df.info() x1 = df[['Age','Area Income','Daily Time Spent on Site','Daily Internet Usage','Male']] y1 = df['Clicked on Ad'] x1_train , x1_test , y1_train , y1_test = train_test_split(x1,y1,test_size = 0.3)<jupyter_output><empty_output><jupyter_text>** Train and fit a logistic regression model on the training set.**<jupyter_code>from sklearn.linear_model import LogisticRegression log_model = LogisticRegression() log_model.fit(x1_train , y1_train)<jupyter_output><empty_output><jupyter_text>## Predictions and Evaluations ** Now predict values for the testing data.**<jupyter_code>predict1 = log_model.predict(x1_test)<jupyter_output><empty_output><jupyter_text>** Create a classification report for the model.**<jupyter_code>from sklearn.metrics import confusion_matrix , classification_report confusion_matrix( y1_test , predict1) print(classification_report(y1_test, predict1)) <jupyter_output><empty_output>
no_license
/Logistic_Regression_Assignment.ipynb
young-ai-expert/Data-Science-Projects
12
<jupyter_start><jupyter_text># Vehicle detection and tracking project*picture by Udacity*<jupyter_code>import numpy as np import cv2 import glob import matplotlib.pyplot as plt import os import matplotlib.image as mpimg %matplotlib qt %matplotlib inline vehs = [] for image in os.listdir(os.getcwd() + "/vehicles/GTI_Right"): vehs.append(os.getcwd() + "/vehicles/GTI_Right/" + image) for image in os.listdir(os.getcwd() + "/vehicles/GTI_MiddleClose"): vehs.append(os.getcwd() + "/vehicles/GTI_MiddleClose/" + image) for image in os.listdir(os.getcwd() + "/vehicles/GTI_Left"): vehs.append(os.getcwd() + "/vehicles/GTI_Left/" + image) for image in os.listdir(os.getcwd() + "/vehicles/GTI_Far"): vehs.append(os.getcwd() + "/vehicles/GTI_Far/" + image) for image in os.listdir(os.getcwd() + "/vehicles/KITTI_extracted"): vehs.append(os.getcwd() + "/vehicles/KITTI_extracted/" + image) non_vehs = [] for image in os.listdir(os.getcwd() + "/non-vehicles/GTI"): non_vehs.append(os.getcwd() + "/non-vehicles/GTI/" + image) for image in os.listdir(os.getcwd() + "/non-vehicles/Extras"): non_vehs.append(os.getcwd() + "/non-vehicles/Extras/" + image) print(len(vehs)) print(len(non_vehs)) print(non_vehs[0]) testimg1 = mpimg.imread("test_images/test1.jpg") plt.imshow(testimg1) plt.show()<jupyter_output><empty_output><jupyter_text>## 1. Functions to extract the features### 1.1 get color features<jupyter_code>def color_hist(img, nbins=32, bins_range=(0, 256)): # Compute the histogram of the color channels separately channel1_hist = np.histogram(img[:, :, 0], bins=nbins, range=bins_range) channel2_hist = np.histogram(img[:, :, 1], bins=nbins, range=bins_range) channel3_hist = np.histogram(img[:, :, 2], bins=nbins, range=bins_range) # Concatenate the histograms into a single feature vector hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0])) # Return the individual histograms, bin_centers and feature vector return hist_features def bin_spatial(img, size=(32, 32)): features = cv2.resize(img, size).ravel() # Return the feature vector return features<jupyter_output><empty_output><jupyter_text>### 1.2 get hog features<jupyter_code>from skimage.feature import hog def get_hog_features(img, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=True): if vis == True: features, hog_image = hog(img, orientations=orient, pixels_per_cell=(pix_per_cell, pix_per_cell), cells_per_block=(cell_per_block, cell_per_block), transform_sqrt=True, visualise=vis, feature_vector=feature_vec) return features, hog_image else: features = hog(img, orientations=orient, pixels_per_cell=(pix_per_cell, pix_per_cell), cells_per_block=(cell_per_block, cell_per_block), transform_sqrt=True, visualise=vis, feature_vector=feature_vec) return features # example exp_img = cv2.cvtColor(mpimg.imread(vehs[0]), cv2.COLOR_RGB2GRAY) feats, hogImg = get_hog_features(exp_img, 8, 8, 2, vis=True, feature_vec=True) fig1 = plt.figure(figsize = (10,10)) ax1 = fig1.add_subplot(121) ax1.imshow(mpimg.imread(vehs[0]), interpolation='none') ax1.set_title('Initical picture') ax3 = fig1.add_subplot(122) ax3.imshow(hogImg, interpolation='none', cmap="gray") ax3.set_title('Image with HOG features') plt.show()<jupyter_output>C:\Anaconda3\envs\tensorflow-with-gpu-10\lib\site-packages\skimage\feature\_hog.py:119: skimage_deprecation: Default value of `block_norm`==`L1` is deprecated and will be changed to `L2-Hys` in v0.15 'be changed to `L2-Hys` in v0.15', skimage_deprecation) <jupyter_text>### 1.3 combine and normalize<jupyter_code>def extract_features(imgs, color_space='RGB', spatial_size=(32, 32), hist_bins=32, orient=9, pix_per_cell=8, cell_per_block=2, hog_channel=0, spatial_feat=True, hist_feat=True, hog_feat=True): # Create a list to append feature vectors to features = [] # Iterate through the list of images for file in imgs: file_features = [] # Read in each one by one image = mpimg.imread(file) # Apply color conversion if color_space != 'RGB': if color_space == 'HSV': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) elif color_space == 'LUV': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2LUV) elif color_space == 'HLS': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HLS) elif color_space == 'YUV': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV) elif color_space == 'YCrCb': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YCrCb) else: feature_image = np.copy(image) if spatial_feat == True: spatial_features = bin_spatial(feature_image, size=spatial_size) file_features.append(spatial_features) if hist_feat == True: hist_features = color_hist(feature_image, nbins=hist_bins) file_features.append(hist_features) if hog_feat == True: if hog_channel == 'ALL': hog_features = [] for channel in range(feature_image.shape[2]): hog_features.append(get_hog_features(feature_image[:, :, channel], orient, pix_per_cell, cell_per_block, vis=False, feature_vec=True)) hog_features = np.ravel(hog_features) else: hog_features = get_hog_features(feature_image[:, :, hog_channel], orient, pix_per_cell, cell_per_block, vis=False, feature_vec=True) # Append the new feature vector to the list of features file_features.append(hog_features) features.append(np.concatenate(file_features)) # Return list of feature vectors return features<jupyter_output><empty_output><jupyter_text>## 2. Search frames and find boxes**The following functions were built to evaluate and test the performance on single images, later on the functions are implemented in a class object with enhanced performance**### 2.1 sliding windows function<jupyter_code>def slide_window(img, x_start_stop=[None, None], y_start_stop=[None, None], xy_window=(64, 64), xy_overlap=(0.5, 0.5)): # If x and/or y start/stop positions not defined, set to image size if x_start_stop[0] == None: x_start_stop[0] = 0 if x_start_stop[1] == None: x_start_stop[1] = img.shape[1] if y_start_stop[0] == None: y_start_stop[0] = 0 if y_start_stop[1] == None: y_start_stop[1] = img.shape[0] # Region to be searched xspan = x_start_stop[1] - x_start_stop[0] yspan = y_start_stop[1] - y_start_stop[0] # Number of pixels per step in x/y nx_pix_per_step = np.int(xy_window[0] * (1 - xy_overlap[0])) ny_pix_per_step = np.int(xy_window[1] * (1 - xy_overlap[1])) # Number of windows in x/y nx_buffer = np.int(xy_window[0] * (xy_overlap[0])) ny_buffer = np.int(xy_window[1] * (xy_overlap[1])) nx_windows = np.int((xspan - nx_buffer) / nx_pix_per_step) ny_windows = np.int((yspan - ny_buffer) / ny_pix_per_step) # Initialize a list to append window parameters to window_list = [] for ys in range(ny_windows): for xs in range(nx_windows): # Calculate window position startx = xs * nx_pix_per_step + x_start_stop[0] endx = startx + xy_window[0] starty = ys * ny_pix_per_step + y_start_stop[0] endy = starty + xy_window[1] # Append window position to list window_list.append(((startx, starty), (endx, endy))) # Return the list of windows return window_list<jupyter_output><empty_output><jupyter_text>### 2.2 draw boxes function<jupyter_code>def draw_boxes(img, bboxes, color=(0, 0, 255), thick=6): # Copy the image imcopy = np.copy(img) # Iterate through the boxes for bbox in bboxes: # Draw a rectangle given bbox coordinates cv2.rectangle(imcopy, bbox[0], bbox[1], color, thick) # Return the image copy with boxes drawn return imcopy<jupyter_output><empty_output><jupyter_text>### 2.3 single image features extraction<jupyter_code>def single_img_features(img, color_space='RGB', spatial_size=(32, 32), hist_bins=32, orient=9, pix_per_cell=8, cell_per_block=2, hog_channel=0, spatial_feat=True, hist_feat=True, hog_feat=True): # Empty list img_features = [] # Apply color conversion if color_space != 'RGB': if color_space == 'HSV': feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) elif color_space == 'LUV': feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2LUV) elif color_space == 'HLS': feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) elif color_space == 'YUV': feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2YUV) elif color_space == 'YCrCb': feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb) else: feature_image = np.copy(img) # Compute spatial features if spatial_feat == True: spatial_features = bin_spatial(feature_image, size=spatial_size) # Append features to list img_features.append(spatial_features) # Compute histogram features if hist_feat == True: hist_features = color_hist(feature_image, nbins=hist_bins) # Append features to list img_features.append(hist_features) # Compute HOG features if hog_feat == True: if hog_channel == 'ALL': hog_features = [] for channel in range(feature_image.shape[2]): hog_features.extend(get_hog_features(feature_image[:,:,channel], orient, pix_per_cell, cell_per_block, vis=False, feature_vec=True)) else: hog_features = get_hog_features(feature_image[:,:,hog_channel], orient, pix_per_cell, cell_per_block, vis=False, feature_vec=True) # Append features to list img_features.append(hog_features) # Return concatenated array of features return np.concatenate(img_features)<jupyter_output><empty_output><jupyter_text>### Search windows function<jupyter_code> def search_windows(img, windows, clf, scaler, color_space='RGB', spatial_size=(32, 32), hist_bins=32, hist_range=(0, 256), orient=9, pix_per_cell=8, cell_per_block=2, hog_channel=0): # Create an empty list for the found windows on_windows = [] # Iterate over all windows in the windows list for window in windows: # Extract the test window from original image test_img = cv2.resize(img[window[0][1]:window[1][1], window[0][0]:window[1][0]], (64, 64)) # Extract features for that window using single_img_features() features = single_img_features(test_img, color_space=color_space, spatial_size=spatial_size, hist_bins=hist_bins, orient=orient, pix_per_cell=pix_per_cell, cell_per_block=cell_per_block, hog_channel=hog_channel, spatial_feat=spatial_feat, hist_feat=hist_feat, hog_feat=hog_feat) test_features = scaler.transform(np.array(features).reshape(1, -1)) # Predict using your classifier prediction = clf.predict(test_features) #If positive (prediction == 1) then save the window if prediction == 1: on_windows.append(window) # Return windows for positive detections return on_windows # RGB, HSV, LUV, HLS, YUV, YCrCb color_space = 'YCrCb' # HOG orientations orient = 9 # Pix per cell pix_per_cell = 8 # Cells per block cell_per_block = 2 # Hog channel (1,2,3 or ALL) hog_channel = "ALL" # Dimension for spatial binning spatial_size = (32, 32) # Number of histogram bins hist_bins = 32 spatial_feat = True hist_feat = True hog_feat = True y_start_stop = [350, None] hist_range = (0, 256)<jupyter_output><empty_output><jupyter_text>## 3. Training the classifier<jupyter_code># Get the features of cars and noncars car_features = extract_features(vehs, color_space, spatial_size, hist_bins, orient, pix_per_cell, cell_per_block, hog_channel) noncar_features = extract_features(non_vehs, color_space, spatial_size, hist_bins, orient, pix_per_cell, cell_per_block, hog_channel) # Check length of extracted image paths print(len(car_features)) print(len(noncar_features)) print(np.shape(car_features)) print(np.shape(noncar_features)) y = np.hstack((np.ones(len(car_features)), np.zeros(len(noncar_features)))) print(y.shape) X = np.vstack((car_features, noncar_features)).astype(np.float64) print(X.shape)<jupyter_output>(17760, 8460) <jupyter_text>#### Data normalization and classifier training<jupyter_code># Normalize training data from sklearn.preprocessing import StandardScaler X_Scaler = StandardScaler().fit(X) X_scaled = X_Scaler.transform(X) from sklearn.model_selection import train_test_split rand_state = np.random.randint(0, 100) # Split data in train/test data and shuffle it X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size = 0.2, random_state = rand_state) from sklearn.svm import LinearSVC # Train support vector machine svc = LinearSVC() svc.fit(X_train, y_train)<jupyter_output><empty_output><jupyter_text>### Get the accuarcy of the classifier<jupyter_code># Check the test accuarcy of the linear support vector machine svc.score(X_test, y_test)<jupyter_output><empty_output><jupyter_text>## 4. Implementation of sliding windows search (exemplary)<jupyter_code>image = mpimg.imread('test_images/test6.jpg') draw_image = np.copy(image) # Scale the image since its a .jpg image = image.astype(np.float32)/255 # Search with three different window sizes windows = slide_window(image, x_start_stop=[None, None], y_start_stop=y_start_stop, xy_window=(100, 100), xy_overlap=(0.5, 0.5)) windows2 = slide_window(image, x_start_stop=[None, None], y_start_stop=y_start_stop, xy_window=(200, 200), xy_overlap=(0.3, 0.3)) windows3 = slide_window(image, x_start_stop=[None, None], y_start_stop=y_start_stop, xy_window=(64, 64), xy_overlap=(0.3, 0.3)) # Get the found windows that match the features as list hot_windows = search_windows(image, windows, svc, X_Scaler, color_space=color_space, spatial_size=spatial_size, hist_bins=hist_bins, orient=orient, pix_per_cell=pix_per_cell, cell_per_block=cell_per_block, hog_channel=hog_channel) hot_windows2 = search_windows(image, windows2, svc, X_Scaler, color_space=color_space, spatial_size=spatial_size, hist_bins=hist_bins, orient=orient, pix_per_cell=pix_per_cell, cell_per_block=cell_per_block, hog_channel=hog_channel) hot_windows3 = search_windows(image, windows3, svc, X_Scaler, color_space=color_space, spatial_size=spatial_size, hist_bins=hist_bins, orient=orient, pix_per_cell=pix_per_cell, cell_per_block=cell_per_block, hog_channel=hog_channel) # Draw the found windows that match the features in boxes window_img = draw_boxes(draw_image, hot_windows, color=(0, 0, 255), thick=6) window_img2 = draw_boxes(window_img, hot_windows2, color=(0, 0, 255), thick=6) window_img3 = draw_boxes(window_img2, hot_windows2, color=(0, 0, 255), thick=6) plt.imshow(window_img3) # helper function for color conversion def convert_color(img, conv='RGB2YCrCb'): if conv == 'RGB2YCrCb': return cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb) if conv == 'BGR2YCrCb': return cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) if conv == 'RGB2LUV': return cv2.cvtColor(img, cv2.COLOR_RGB2LUV) <jupyter_output><empty_output><jupyter_text>### 4.1 find cars function<jupyter_code># find cars function as shown in the lession # function uses a scale-factor to search with different window sizes # function as well replaces the overlapping with cells_per_steps def find_cars(img, ystart, ystop, scale, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins): draw_img = np.copy(img) img = img.astype(np.float32)/255 img_tosearch = img[ystart:ystop,:,:] ctrans_tosearch = convert_color(img_tosearch, conv='RGB2YCrCb') boxes = [] if scale != 1: imshape = ctrans_tosearch.shape ctrans_tosearch = cv2.resize(ctrans_tosearch,(np.int(imshape[1]/scale),(np.int(imshape[0]/scale)))) ch1 = ctrans_tosearch[:,:,0] ch2 = ctrans_tosearch[:,:,1] ch3 = ctrans_tosearch[:,:,2] #Blocks and steps nxblocks = (ch1.shape[1] // pix_per_cell) - cell_per_block + 1 nyblocks = (ch1.shape[0] // pix_per_cell) - cell_per_block + 1 nfeat_per_block = orient * cell_per_block**2 window = 64 nblocks_per_window = (window // pix_per_cell) - cell_per_block + 1 # Replacing overlapping with cells_per_step cells_per_step = 2 nxsteps = (nxblocks - nblocks_per_window) // cells_per_step nysteps = (nyblocks - nblocks_per_window) // cells_per_step #get hog features hog1 = get_hog_features(ch1, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=False) hog2 = get_hog_features(ch2, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=False) hog3 = get_hog_features(ch3, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=False) for xb in range(nxsteps): for yb in range(nysteps): ypos = yb * cells_per_step xpos = xb * cells_per_step # Extract hog features hog_feat1 = hog1[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() hog_feat2 = hog2[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() hog_feat3 = hog3[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3)) x_left = xpos * pix_per_cell y_top = ypos * pix_per_cell # Extract img patch subimg = cv2.resize(ctrans_tosearch[y_top:y_top+window, x_left:x_left+window],(64,64)) spatial_features = bin_spatial(subimg, size=spatial_size) hist_features = color_hist(subimg, nbins=hist_bins) #test_features2 = np.concatenate((spatial_features, hist_features, hog_features)) #test_features = X_scaler.transform(np.array(test_features2)).reshape(1, -1) test_features = X_scaler.transform(np.hstack((spatial_features, hist_features, hog_features)).reshape(1, -1)) test_prediction = svc.predict(test_features) if test_prediction == 1: xbox_left = np.int(x_left * scale) ytop_draw = np.int(y_top * scale) win_draw = np.int(window*scale) cv2.rectangle(draw_img,(xbox_left, ytop_draw+ystart),(xbox_left+win_draw, ytop_draw+ win_draw+ystart),(0,0,255),6) boxes.append(((xbox_left, ytop_draw+ystart),(xbox_left+win_draw, ytop_draw+ win_draw+ystart))) return draw_img, boxes ystart = 400 ystop = 656 scale = 1.5 img_test = mpimg.imread('test_images/test1.jpg') out_img, boxes = find_cars(img_test, ystart, ystop, scale, svc, X_Scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins) plt.imshow(out_img) print(boxes)<jupyter_output>[((48, 424), (144, 520)), ((792, 400), (888, 496)), ((816, 400), (912, 496)), ((840, 400), (936, 496)), ((864, 400), (960, 496)), ((1056, 400), (1152, 496)), ((1128, 400), (1224, 496)), ((1128, 424), (1224, 520)), ((1152, 400), (1248, 496)), ((1152, 424), (1248, 520))] <jupyter_text>### 4.2 Add heatmap to cut out false-positives<jupyter_code># Heatmap functions / False positives threshold = 1 heat = np.zeros_like(img_test[:,:,0]).astype(np.float) def add_heat(heatmap, bbox_list): for box in bbox_list: heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1 return heatmap def apply_threshold(heatmap, threshold): heatmap[heatmap <= threshold] = 0 return heatmap def draw_labeled_boxes(img, labels): for car_number in range(1, labels[1]+1): nonzero = (labels[0] == car_number).nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy))) #print(bbox[0], bbox[1]) #cv2.rectangle(img, bbox[0], bbox[1], (0,0,255), 6) img = draw_boxes(img, [bbox], color=(0, 0, 255), thick=6) return img heat = add_heat(heat, boxes) heat= apply_threshold(heat, threshold) heatmap = np.clip(heat, 0, 255) from scipy.ndimage.measurements import label labels = label(heatmap) print(labels[1], 'vehicles found') plt.imshow(labels[0], cmap='hot') draw_img2 = draw_labeled_boxes(np.copy(img_test), labels) plt.imshow(draw_img2) # pulling everything together threshold = 1 def vehicle_detection(image, ystart, ystop, scale, svc, X_Scaler, orient,pix_per_cell, cell_per_block, spatial_size, hist_bins, threshold): #find cars in image out_img, boxes = find_cars(image, ystart, ystop, scale, svc, X_Scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins) heat = np.zeros_like(img_test[:,:,0]).astype(np.float) box_list = boxes heat = add_heat(heat, box_list) heat= apply_threshold(heat, threshold) heatmap = np.clip(heat, 0, 255) labels = label(heatmap) draw_img = draw_labeled_boxes(np.copy(image), labels) return draw_img draw_img = vehicle_detection(np.copy(img_test), ystart, ystop, scale, svc, X_Scaler, orient,pix_per_cell, cell_per_block, spatial_size, hist_bins, threshold) plt.imshow(draw_img) from moviepy.editor import VideoFileClip from IPython.display import HTML def process_image(image): #image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) processed_img = vehicle_detection(image, ystart, ystop, scale, svc, X_Scaler, orient,pix_per_cell, cell_per_block, spatial_size, hist_bins, threshold) return processed_img #smooth the pipeline outcome def find_cars_multiscale(img, ystart_ystop_scale, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins): draw_img = np.copy(img) img = img.astype(np.float32)/255 for (ystart, ystop, scale) in ystart_ystop_scale: img_tosearch = img[ystart:ystop,:,:] ctrans_tosearch = convert_color(img_tosearch, conv='RGB2YCrCb') boxes = [] if scale != 1: imshape = ctrans_tosearch.shape ctrans_tosearch = cv2.resize(ctrans_tosearch,(np.int(imshape[1]/scale),(np.int(imshape[0]/scale)))) ch1 = ctrans_tosearch[:,:,0] ch2 = ctrans_tosearch[:,:,1] ch3 = ctrans_tosearch[:,:,2] # Blocks and steps nxblocks = (ch1.shape[1] // pix_per_cell) - cell_per_block + 1 nyblocks = (ch1.shape[0] // pix_per_cell) - cell_per_block + 1 nfeat_per_block = orient * cell_per_block**2 window = 64 nblocks_per_window = (window // pix_per_cell) - cell_per_block + 1 cells_per_step = 2 nxsteps = (nxblocks - nblocks_per_window) // cells_per_step nysteps = (nyblocks - nblocks_per_window) // cells_per_step # Extract hog features hog1 = get_hog_features(ch1, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=False) hog2 = get_hog_features(ch2, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=False) hog3 = get_hog_features(ch3, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=False) for xb in range(nxsteps): for yb in range(nysteps): ypos = yb * cells_per_step xpos = xb * cells_per_step # Extract hog features hog_feat1 = hog1[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() hog_feat2 = hog2[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() hog_feat3 = hog3[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3)) x_left = xpos * pix_per_cell y_top = ypos * pix_per_cell #extract img patch subimg = cv2.resize(ctrans_tosearch[y_top:y_top+window, x_left:x_left+window],(64,64)) spatial_features = bin_spatial(subimg, size=spatial_size) hist_features = color_hist(subimg, nbins=hist_bins) #test_features2 = np.concatenate((spatial_features, hist_features, hog_features)) #test_features = X_scaler.transform(np.array(test_features2)).reshape(1, -1) test_features = X_scaler.transform(np.hstack((spatial_features, hist_features, hog_features)).reshape(1, -1)) test_prediction = svc.predict(test_features) if test_prediction == 1: xbox_left = np.int(x_left * scale) ytop_draw = np.int(y_top * scale) win_draw = np.int(window*scale) cv2.rectangle(draw_img,(xbox_left, ytop_draw+ystart),(xbox_left+win_draw, ytop_draw+ win_draw+ystart),(0,0,255),6) boxes.append(((xbox_left, ytop_draw+ystart),(xbox_left+win_draw, ytop_draw+ win_draw+ystart))) return draw_img, boxes from collections import deque heatmaps = deque(maxlen=3) threshold = 2 ystart_ystop_scale = [(400, 560, 1.5), (450, 650, 1.8), (500, 700, 2.5)] def vehicle_detection_smooth(image, ystart_ystop_scale, svc, X_Scaler, orient,pix_per_cell, cell_per_block, spatial_size, hist_bins, threshold): # find cars in image out_img, boxes = find_cars_multiscale(image, ystart_ystop_scale, svc, X_Scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins) heat = np.zeros_like(img_test[:,:,0]).astype(np.float) box_list = boxes current_heatmap = add_heat(image, box_list) heatmaps.append(current_heatmap) heatmap_sum = sum(heatmaps) heat = apply_threshold(heatmap_sum, threshold) heatmap = np.clip(heat, 0, 255) labels = label(heatmap) draw_img = draw_labeled_boxes(np.copy(image), labels) return draw_img draw_img = vehicle_detection_smooth(np.copy(img_test), ystart_ystop_scale, svc, X_Scaler, orient,pix_per_cell, cell_per_block, spatial_size, hist_bins, threshold) plt.imshow(draw_img)<jupyter_output><empty_output><jupyter_text>## 5. VehicleDetector Class Object**This class object combines the prework described above in one class object**<jupyter_code># To make thing easier the following class object, comprising the relevant functions to detect vehicles, is created. class VehicleDetector: def __init__(self): # Init the class using the parameters as for the single functions before self.color_space = 'YCrCb' self.orient = 9 self.pix_per_cell = 8 self.cell_per_block = 2 self.hog_channel = "ALL" self.spatial_size = (32, 32) self.hist_bins = 32 self.spatial_feat = True self.hist_feat = True self.hog_feat = True # Current heatmap self.heatmap = None # Heatmaps of last 3 frames self.heat_images = deque(maxlen=3) self.frame_count = 0 self.full_frame_processing_interval = 10 # Xstart self.xstart = 600 # Various Scales self.ystart_ystop_scale = None # Kernal For Dilation self.kernel = np.ones((50, 50)) # Threshold for Heatmap self.threshold = None self.X_scaler = X_Scaler self.svc = svc def find_cars_smooth(self, img): X_scaler = self.X_scaler orient = self.orient pix_per_cell = self.pix_per_cell cell_per_block = self.cell_per_block spatial_size = self.spatial_size hist_bins = self.hist_bins svc = self.svc box_list = [] draw_img = np.copy(img) img = img.astype(np.float32) / 255 if self.frame_count % self.full_frame_processing_interval == 0: mask = np.ones_like(img[:, :, 0]) else: mask = np.sum(np.array(self.heat_images), axis=0) mask[(mask > 0)] = 1 mask = cv2.dilate(mask, self.kernel, iterations=1) self.frame_count += 1 for (ystart, ystop, scale) in self.ystart_ystop_scale: nonzero = mask.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) if len(nonzeroy) != 0: ystart = max(np.min(nonzeroy), ystart) ystop = min(np.max(nonzeroy), ystop) if len(nonzeroy) != 0: xstart = max(np.min(nonzerox), self.xstart) xstop = np.max(nonzerox) else: continue if xstop <= xstart or ystop <= ystart: continue img_tosearch = img[ystart:ystop, xstart:xstop, :] ctrans_tosearch = convert_color(img_tosearch, conv='RGB2YCrCb') if scale != 1: imshape = ctrans_tosearch.shape ys = np.int(imshape[1] / scale) xs = np.int(imshape[0] / scale) if (ys < 1 or xs < 1): continue ctrans_tosearch = cv2.resize(ctrans_tosearch, (np.int(imshape[1] / scale), np.int(imshape[0] / scale))) if ctrans_tosearch.shape[0] < 64 or ctrans_tosearch.shape[1] < 64: continue ch1 = ctrans_tosearch[:, :, 0] ch2 = ctrans_tosearch[:, :, 1] ch3 = ctrans_tosearch[:, :, 2] nxblocks = (ch1.shape[1] // pix_per_cell) - 1 nyblocks = (ch1.shape[0] // pix_per_cell) - 1 nfeat_per_block = orient * cell_per_block ** 2 window = 64 nblocks_per_window = (window // pix_per_cell) - 1 cells_per_step = 2 nxsteps = (nxblocks - nblocks_per_window) // cells_per_step nysteps = (nyblocks - nblocks_per_window) // cells_per_step # Compute individual channel HOG features for the entire image hog1 = get_hog_features(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False) hog2 = get_hog_features(ch2, orient, pix_per_cell, cell_per_block, feature_vec=False) hog3 = get_hog_features(ch3, orient, pix_per_cell, cell_per_block, feature_vec=False) for xb in range(nxsteps + 1): for yb in range(nysteps + 1): ypos = yb * cells_per_step xpos = xb * cells_per_step # Extract HOG for this patch hog_feat1 = hog1[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel() hog_feat2 = hog2[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel() hog_feat3 = hog3[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel() hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3)) xleft = xpos * pix_per_cell ytop = ypos * pix_per_cell # Extract the image patch subimg = ctrans_tosearch[ytop:ytop + window, xleft:xleft + window] # Get color features spatial_features = bin_spatial(subimg, size=spatial_size) hist_features = color_hist(subimg, nbins=hist_bins) # Scale features and make a prediction test_features = X_scaler.transform( np.hstack((spatial_features, hist_features, hog_features)).reshape(1, -1)) # test_features = X_scaler.transform(np.hstack((shape_feat, hist_feat)).reshape(1, -1)) test_prediction = svc.predict(test_features) if test_prediction == 1: xbox_left = xstart + np.int(xleft * scale) ytop_draw = np.int(ytop * scale) win_draw = np.int(window * scale) box_list.append( ((xbox_left, ytop_draw + ystart), (xbox_left + win_draw, ytop_draw + win_draw + ystart))) # Add heat to each box in box list self.add_heatmap_and_threshold(draw_img, box_list, self.threshold) # Find final boxes from heatmap using label function labels = label(self.heatmap) VehicleDetector.draw_labeled_bboxes_smooth(draw_img, labels) return draw_img def add_heatmap_and_threshold(self, draw_img, bbox_list, threshold): heatmap = np.zeros_like(draw_img[:, :, 0]).astype(np.float) for box in bbox_list: # Add += 1 for all pixels inside each bbox heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1 self.heat_images.append(heatmap) self.heatmap = np.sum(np.array(self.heat_images), axis=0) self.heatmap[self.heatmap <= threshold] = 0 @staticmethod def draw_labeled_bboxes_smooth(img, labels): # Iterate through all detected cars for car_number in range(1, labels[1] + 1): # Find pixels with each car_number label value nonzero = (labels[0] == car_number).nonzero() # Identify x and y values nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Box based on min/max x and y bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy))) # Draw the box on the image cv2.rectangle(img, bbox[0], bbox[1], (0, 0, 255), 6)<jupyter_output><empty_output><jupyter_text>## 6. Combining it with my last project submission<jupyter_code>import pickle with open('objs.pkl', 'rb') as f: mtx, dist = pickle.load(f) def undistort_img(img, mtx, dist): img_undist = cv2.undistort(img, mtx, dist, None, mtx) return img_undist def grayscale(img): img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return img_gray def SobelOp(img, kernelSize, thresh_min, thresh_max): sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize = kernelSize) sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize = kernelSize) abs_sobelx = np.absolute(sobelx) scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx)) sxbinary = np.zeros_like(scaled_sobel) sxbinary[(scaled_sobel > thresh_min) & (scaled_sobel <= thresh_max)] = 1 return scaled_sobel, sxbinary def HLSconv(img, s_thresh_min, s_thresh_max): # convert to hls hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) s_chan = hls[:,:,2] s_binary = np.zeros_like(s_chan) s_binary[(s_chan > s_thresh_min) & (s_chan <= s_thresh_max)] = 1 return s_binary def StackFilters(sxbinary, s_binary): color_binary = np.dstack((np.zeros_like(sxbinary), sxbinary, s_binary))*255 comb_binary = np.zeros_like(sxbinary) comb_binary[(s_binary == 1) | (sxbinary == 1)] = 1 return comb_binary def IMGwarp(img): src = np.float32([[740, 460], [1050, 680], [280, 680], [580, 460]]) dst = np.float32([[950, 0], [950, 720], [370, 720], [370, 0]]) img_size = (img.shape[1], img.shape[0]) M = cv2.getPerspectiveTransform(src, dst) Minv = cv2.getPerspectiveTransform(dst, src) img_warped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_LINEAR) return M, Minv, img_warped def maskImage(img_w): mask = np.zeros_like(img_w) ignore_mask_color = 255 ignore_mask_color2 = 0 vertices = np.array([[(200, 720),(300, 200), (1100, 200), (1250,720)]], dtype=np.int32) vertices2 = np.array([[(600, 720),(675, 450), (725, 450), (800,720)]], dtype=np.int32) cv2.fillPoly(mask, vertices, ignore_mask_color) cv2.fillPoly(mask, vertices2, ignore_mask_color2) img_masked = cv2.bitwise_and(img_w, mask) return img_masked def FindLanes(img_warped): histogram = np.sum(img_warped[img_warped.shape[0]//2:,:], axis=0) out_img = np.dstack((img_warped, img_warped, img_warped))*255 midpoint = np.int(histogram.shape[0]/2) leftx_base = np.argmax(histogram[:midpoint]) rightx_base = np.argmax(histogram[midpoint:])+midpoint offset_shadow = 100 detected_left = False detected_right = False if (leftx_base > 300) & (leftx_base < 500): detected_left = True if (rightx_base > 800) & (rightx_base < 1000): detected_right = True if detected_left == False: leftx_base = np.argmax(histogram[:midpoint-offset_shadow]) if detected_right == False: rightx_base = np.argmax(histogram[midpoint+offset_shadow:])+midpoint return midpoint, leftx_base, rightx_base, detected_left, out_img def distanceMid(img2, right_fitx, left_fitx): camera_position = img2.shape[1]/2 lane_center = (right_fitx[719] + left_fitx[719])/2 center_offset_pixels = abs(camera_position - lane_center) center_offset = center_offset_pixels*xm_per_pix return center_offset def WindowSearch(img_warped, n_win, marg, minpix, leftx_base, rightx_base, out_img): nwindows = n_win #9 window_height = np.int(img_warped.shape[0]/nwindows) nonzero = img_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) leftx_current = leftx_base rightx_current = rightx_base margin = marg minpix = minpix left_lane_inds = [] right_lane_inds = [] for window in range(nwindows): win_y_low = img_warped.shape[0] - (window + 1) * window_height win_y_high = img_warped.shape[0] - window * window_height win_x_left_low = leftx_current - margin win_x_left_high = leftx_current + margin win_x_right_low = rightx_current - margin win_x_right_high = rightx_current + margin cv2.rectangle(out_img, (win_x_left_low, win_y_low),(win_x_left_high, win_y_high), (0, 255, 0), 2) cv2.rectangle(out_img, (win_x_right_low, win_y_low),(win_x_right_high, win_y_high), (0, 255, 0), 2) good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_x_left_low) & (nonzerox < win_x_left_high)).nonzero()[0] good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_x_right_low) & (nonzerox < win_x_right_high)).nonzero()[0] left_lane_inds.append(good_left_inds) right_lane_inds.append(good_right_inds) if (len(good_left_inds) > minpix) & (len(good_right_inds) > minpix): leftx_current = np.int(np.mean(nonzerox[good_left_inds])) rightx_current = np.int(np.mean(nonzerox[good_right_inds])) # concatenate found lane indices left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) # extract the pixel positions left_x = nonzerox[left_lane_inds] left_y = nonzeroy[left_lane_inds] right_x = nonzerox[right_lane_inds] right_y = nonzeroy[right_lane_inds] # fit second order polynomial left_fit = np.polyfit(left_y, left_x, 2) right_fit = np.polyfit(right_y, right_x, 2) # Visualize sliding windows ploty = np.linspace(0, img_warped.shape[0]-1, img_warped.shape[0]) left_fitx = left_fit[0]*ploty**2 + left_fit[1] * ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1] * ploty + right_fit[2] return left_lane_inds, right_lane_inds, left_fitx, right_fitx, ploty, left_x, left_y, right_x, right_y def curvature(left_x, left_y, right_x, right_y, ploty): lane_length = 30 lane_width = 3.7 y_eval = np.max(ploty) ym_per_pix = lane_length/720 xm_per_pix = lane_width/580 left_fit_cr = np.polyfit(left_y * ym_per_pix, left_x * xm_per_pix, 2) right_fit_cr = np.polyfit(right_y * ym_per_pix, right_x * xm_per_pix, 2) left_curverad_cr = ((1 + (2 * left_fit_cr[0] * y_eval*ym_per_pix + left_fit_cr[1]) ** 2) ** 1.5) / np.absolute(2 * left_fit_cr[0]) right_curverad_cr = ((1 + (2 * right_fit_cr[0] * y_eval*ym_per_pix + right_fit_cr[1]) ** 2) ** 1.5) / np.absolute(2 * right_fit_cr[0]) return left_curverad_cr, right_curverad_cr def lanePosition(): left_pos = (midpoint - leftx_base) * xm_per_pix right_pos = (rightx_base - midpoint) * xm_per_pix line_base_pos = np.min([left_pos, right_pos]) return left_pos, right_pos, line_base_pos def warpBack(img_warped, left_fitx, right_fitx, ploty, Minv, image_undist): warp_zero = np.zeros_like(img_warped).astype(np.uint8) color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) # Recast the points pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))]) pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))]) pts = np.hstack((pts_left, pts_right)) # Draw the lane cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0)) # Warp back to original image newwarp = cv2.warpPerspective(color_warp, Minv, (image_undist.shape[1], image_undist.shape[0])) result = cv2.addWeighted(image_undist, 1, newwarp, 0.3, 0) return result def select_yellow(image_in): image_in2 = cv2.cvtColor(image_in, cv2.COLOR_BGR2RGB) hsv = cv2.cvtColor(image_in2, cv2.COLOR_RGB2HSV) lower = np.array([20,60,60]) upper = np.array([38,174, 250]) mask = cv2.inRange(hsv, lower, upper) return mask def select_white(image_in): lower = np.array([202,202,202]) upper = np.array([255,255,255]) mask = cv2.inRange(image_in, lower, upper) return mask def comb_thresh(image_in): yellow = select_yellow(image_in) white = select_white(image_in) combined_binary = np.zeros_like(yellow) combined_binary[(yellow >= 1) | (white >= 1)] = 1 return combined_binary def pipeline3(image, mtx, dist, kernelSize): out1 = undistort_img(image, mtx, dist) out2 = comb_thresh(out1) M, Minv, out3 = IMGwarp(out2) mid, leftxbase, rightxbase, detected, out_img = FindLanes(out3) left_inds, right_inds, leftfit, rightfit, plotyy, leftx, lefty, rightx, righty = WindowSearch(out3, 9, 100, 10, leftxbase, rightxbase, out_img) left_curverad_cr, right_curverad_cr = curvature(leftx, lefty, rightx, righty, plotyy) left_fitx = leftfit right_fitx = rightfit global l_fit_buffer global r_fit_buffer global old_img_lines if old_img_lines is None: old_img_lines = out2 # Compare new frame to previous frame ret = cv2.matchShapes(old_img_lines, out2, 1, 0.0) if ret < 50: old_img_lines = out2 if l_fit_buffer is None: l_fit_buffer = np.array([left_fitx]) if r_fit_buffer is None: r_fit_buffer = np.array([right_fitx]) l_fit_buffer = np.append(l_fit_buffer, [left_fitx], axis=0)[-filter_size:] r_fit_buffer = np.append(r_fit_buffer, [right_fitx], axis=0)[-filter_size:] # Compute the mean l_fit_mean = np.mean(l_fit_buffer, axis=0) r_fit_mean = np.mean(r_fit_buffer, axis=0) result2 = warpBack(out3, leftfit, rightfit, plotyy, Minv, out1) return result2 vehicleDetector = VehicleDetector() vehicleDetector.ystart_ystop_scale = [(380, 480, 1), (400, 600, 1.5), (500, 700, 2.5)] vehicleDetector.threshold = 2 image3 = mpimg.imread('test_images/test1.jpg') output3 = vehicleDetector.find_cars_smooth(image3) plt.figure() plt.imshow(output3) plt.title('Car Positions') filter_size = 10 old_img_lines = None l_fit_buffer = None r_fit_buffer = None def process_image_lanes(image): image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) processed_img = pipeline3(image, mtx, dist, 5) return processed_img #combine both vehicleDetector = VehicleDetector() vehicleDetector.ystart_ystop_scale = [(380, 480, 1), (400, 600, 1.5), (500, 700, 2.5)] vehicleDetector.threshold = 2 filter_size = 10 old_img_lines = None l_fit_buffer = None r_fit_buffer = None def process_image_comb(image): image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) processed_img = pipeline3(image, mtx, dist, 5) processed_img = cv2.cvtColor(processed_img, cv2.COLOR_RGB2BGR) processed_img2 = vehicleDetector.find_cars_smooth(processed_img) return processed_img2 project_video_output = './output_videos/project_video_output_comb.mp4' clip9000 = VideoFileClip("./project_video.mp4") white_clip9000 = clip9000.fl_image(process_image_comb) %time white_clip9000.write_videofile(project_video_output, audio=False)<jupyter_output>[MoviePy] >>>> Building video ./output_videos/project_video_output_comb.mp4 [MoviePy] Writing video ./output_videos/project_video_output_comb.mp4
no_license
/CarND-Vehicle-Detection-master-P5.ipynb
azumf/CarND-Vehicle-Detection-P5
16
<jupyter_start><jupyter_text># 교차검증 그리드 서치 (cross_val_score) p324~<jupyter_code>from sklearn.model_selection import cross_val_score import numpy as np best_score = 0 for gamma in [0.001, 0.01, 0.1, 1, 10, 100]: for C in [0.001, 0.01, 0.1, 1, 10, 100]: # 매개변수의 각 조합에 대해 SVC를 훈련시킵니다 svm = SVC(gamma=gamma, C=C) scores = cross_val_score(svm, X_trainval, y_trainval, cv=5) # print(scores) score=np.mean(scores) if score > best_score: # 점수가 더 높으면 매개변수와 함께 기록합니다 best_score = score best_parameters = {'C': C, 'gamma': gamma} # 훈련 세트와 검증 세트를 합쳐 모델을 다시 만든 후 테스트 세트를 사용해 평가 svm = SVC(**best_parameters) # **best_parameters : SVC(C=C, gamma=gamma) -> SVC(C=10, gamma=0.001) svm.fit(X_trainval, y_trainval) test_score = svm.score(X_test, y_test) print("검증 세트에서 최고 점수: {:.2f}".format(best_score)) print("최적 파라미터: ", best_parameters) print("최적 파라미터에서 테스트 세트 점수: {:.2f}".format(test_score)) from sklearn.model_selection import GridSearchCV param_grid = {'C':[0.001, 0.01, 0.1, 1, 10, 100],'gamma':[0.001, 0.01, 0.1, 1, 10, 100]} # 반복문 돌려 최적값 찾기 gsc = GridSearchCV(SVC(), param_grid, cv=5, return_train_score=True) gsc.fit(X_trainval, y_trainval) #(6개 * 6개 * 5번 반복) print(gsc.best_score_) print(gsc.best_params_) print(gsc.score(X_test, y_test)) import pandas as pd results = pd.DataFrame(gsc.cv_results_) # results.head() results.iloc[:, 4:].head() import mglearn # results['mean_test_score'] # 36개 값, scores = results['mean_test_score'].values.reshape(6,6) # print(scores) mglearn.tools.heatmap(scores, xlabel='gamma', ylabel='C', yticklabels=param_grid['C'], xticklabels=['gamma']) param_grid = [{'kernel': ['rbf'], 'C': [0.001, 0.01, 0.1, 1, 10, 100], 'gamma': [0.001, 0.01, 0.1, 1, 10, 100]}, {'kernel': ['linear'], 'C': [0.001, 0.01, 0.1, 1, 10, 100]}] grid_search = GridSearchCV(SVC(), param_grid, cv=5, return_train_score=True) grid_search.fit(X_train, y_train) print("최적 파라미터: {}".format(grid_search.best_params_)) print("최고 교차 검증 점수: {:.2f}".format(grid_search.best_score_)) # grid_search.cv_results_ pd.DataFrame(grid_search.cv_results_).iloc[:, 4:].T.head() param_grid = {'C':[0.001, 0.01, 0.1, 1, 10, 100],'gamma':[0.001, 0.01, 0.1, 1, 10, 100]} gsc = GridSearchCV(SVC(), param_grid, cv=5, return_train_score=True) scores = cross_val_score(gsc, iris.data, iris.target, cv=5) print(scores, scores.mean())<jupyter_output>[0.96666667 1. 0.96666667 0.96666667 1. ] 0.9800000000000001
no_license
/머신러닝/l.evalueation(모델평가, 성능 향상).ipynb
chayoonjung/yun-python
1
<jupyter_start><jupyter_text>Create a array<jupyter_code>data = np.arange(10) print (data.shape) data data = data.reshape(2,5) print (data.shape) data data_1 = np.ones([3,3]) print (type(data_1)) print (data_1) data_1 = np.zeros([3,3]) print (data_1) data = np.eye(3,3) data data =np.diag((1,2,3)) data data = np.empty([3,3]) data data = np.random.rand(3,3) print (data) data = np.array([[1,2,3],[2,3,4],[3,4,5]]) data data_list = list(range(9)) data = np.array(data_list).reshape(3,3) data<jupyter_output><empty_output><jupyter_text>Matrix Operation<jupyter_code>a = np.arange(3) print (a) a.shape b = a.T print (b) b.shape a = a.reshape(1,3) # row first, column second print (a) a.shape b = a.T print (b) b.shape c = np.dot(b,a) c c = b @ a c c = c + np.ones([3,3]) c c ** 2 d = c * c d a = np.random.rand(3,3) a all_max = a.max() x_max = a.max(axis = 0) # axis means along which axis y_max = a.max(axis = 1) print (all_max,x_max,y_max) all_max_arg = a.argmax() x_max_arg = a.argmax(axis = 0) print (all_max_arg, x_max_arg) a = np.random.rand(12) a ind = a.argsort() ind a.sort() a<jupyter_output><empty_output><jupyter_text>Indexing, Slicing and Iterating<jupyter_code>b= a[:,2] b for row in a: print (row) for element in a.flat: print (element) a = np.random.rand(4,4) a b = a.reshape(8,-1) b<jupyter_output><empty_output><jupyter_text>Stacking together different arrays<jupyter_code>a = np.random.rand(2,2) b = np.random.rand(2,2) print (a,b) np.vstack((a,b)) # vertical stack np.hstack((a,b)) # horizontal stack<jupyter_output><empty_output><jupyter_text>Copies and Views<jupyter_code>a = np.arange(12) # No copy at all, different names, but share same memory address # shape of a and data are changable via b b= a # Shallow copy: shape of a doesn't change and data of a changes c = a.view() # Deep copy: a's shape and data don't change d= a.copy()<jupyter_output><empty_output><jupyter_text>Indexing with Boolean Arrays<jupyter_code>a = np.random.rand(3,3) a a[[0,2],[1,2]] a[a>0.5]<jupyter_output><empty_output><jupyter_text>Linear Algebra<jupyter_code>a = np.array([[1.0, 2.0], [3.0, 4.0]]) np.linalg.inv(a) np.linalg.eig(a) <jupyter_output><empty_output><jupyter_text>Questions<jupyter_code>data = np.eye(3,3) data np.nonzero(data) np.any(data)<jupyter_output><empty_output>
permissive
/Numpy.ipynb
yuzhipeter/Data_Structure_Numpy_Pandas
8
<jupyter_start><jupyter_text># Read in the data<jupyter_code>import pandas as pd import numpy import re data_files = [ "ap_2010.csv", "class_size.csv", "demographics.csv", "graduation.csv", "hs_directory.csv", "sat_results.csv" ] data = {} for f in data_files: d = pd.read_csv("schools/{0}".format(f)) data[f.replace(".csv", "")] = d<jupyter_output><empty_output><jupyter_text># Read in the surveys<jupyter_code>all_survey = pd.read_csv("schools/survey_all.txt", delimiter="\t", encoding='windows-1252') d75_survey = pd.read_csv("schools/survey_d75.txt", delimiter="\t", encoding='windows-1252') survey = pd.concat([all_survey, d75_survey], axis=0) survey["DBN"] = survey["dbn"] survey_fields = [ "DBN", "rr_s", "rr_t", "rr_p", "N_s", "N_t", "N_p", "saf_p_11", "com_p_11", "eng_p_11", "aca_p_11", "saf_t_11", "com_t_11", "eng_t_11", "aca_t_11", "saf_s_11", "com_s_11", "eng_s_11", "aca_s_11", "saf_tot_11", "com_tot_11", "eng_tot_11", "aca_tot_11", ] survey = survey.loc[:,survey_fields] data["survey"] = survey<jupyter_output><empty_output><jupyter_text># Add DBN columns<jupyter_code>data["hs_directory"]["DBN"] = data["hs_directory"]["dbn"] def pad_csd(num): string_representation = str(num) if len(string_representation) > 1: return string_representation else: return "0" + string_representation data["class_size"]["padded_csd"] = data["class_size"]["CSD"].apply(pad_csd) data["class_size"]["DBN"] = data["class_size"]["padded_csd"] + data["class_size"]["SCHOOL CODE"]<jupyter_output><empty_output><jupyter_text># Convert columns to numeric<jupyter_code>cols = ['SAT Math Avg. Score', 'SAT Critical Reading Avg. Score', 'SAT Writing Avg. Score'] for c in cols: data["sat_results"][c] = pd.to_numeric(data["sat_results"][c], errors="coerce") data['sat_results']['sat_score'] = data['sat_results'][cols[0]] + data['sat_results'][cols[1]] + data['sat_results'][cols[2]] def find_lat(loc): coords = re.findall("\(.+, .+\)", loc) lat = coords[0].split(",")[0].replace("(", "") return lat def find_lon(loc): coords = re.findall("\(.+, .+\)", loc) lon = coords[0].split(",")[1].replace(")", "").strip() return lon data["hs_directory"]["lat"] = data["hs_directory"]["Location 1"].apply(find_lat) data["hs_directory"]["lon"] = data["hs_directory"]["Location 1"].apply(find_lon) data["hs_directory"]["lat"] = pd.to_numeric(data["hs_directory"]["lat"], errors="coerce") data["hs_directory"]["lon"] = pd.to_numeric(data["hs_directory"]["lon"], errors="coerce")<jupyter_output><empty_output><jupyter_text># Condense datasets<jupyter_code>class_size = data["class_size"] class_size = class_size[class_size["GRADE "] == "09-12"] class_size = class_size[class_size["PROGRAM TYPE"] == "GEN ED"] class_size = class_size.groupby("DBN").agg(numpy.mean) class_size.reset_index(inplace=True) data["class_size"] = class_size data["demographics"] = data["demographics"][data["demographics"]["schoolyear"] == 20112012] data["graduation"] = data["graduation"][data["graduation"]["Cohort"] == "2006"] data["graduation"] = data["graduation"][data["graduation"]["Demographic"] == "Total Cohort"]<jupyter_output><empty_output><jupyter_text># Convert AP scores to numeric<jupyter_code>cols = ['AP Test Takers ', 'Total Exams Taken', 'Number of Exams with scores 3 4 or 5'] for col in cols: data["ap_2010"][col] = pd.to_numeric(data["ap_2010"][col], errors="coerce")<jupyter_output><empty_output><jupyter_text># Combine the datasets<jupyter_code>combined = data["sat_results"] combined = combined.merge(data["ap_2010"], on="DBN", how="left") combined = combined.merge(data["graduation"], on="DBN", how="left") to_merge = ["class_size", "demographics", "survey", "hs_directory"] for m in to_merge: combined = combined.merge(data[m], on="DBN", how="inner") combined = combined.fillna(combined.mean()) combined = combined.fillna(0)<jupyter_output><empty_output><jupyter_text># Add a school district column for mapping<jupyter_code>def get_first_two_chars(dbn): return dbn[0:2] combined["school_dist"] = combined["DBN"].apply(get_first_two_chars)<jupyter_output><empty_output><jupyter_text># Find correlations<jupyter_code>correlations = combined.corr() correlations = correlations["sat_score"] print(correlations)<jupyter_output>SAT Critical Reading Avg. Score 0.986820 SAT Math Avg. Score 0.972643 SAT Writing Avg. Score 0.987771 sat_score 1.000000 AP Test Takers 0.523140 Total Exams Taken 0.514333 Number of Exams with scores 3 4 or 5 0.463245 Total Cohort 0.325144 CSD 0.042948 NUMBER OF STUDENTS / SEATS FILLED 0.394626 NUMBER OF SECTIONS 0.362673 AVERAGE CLASS SIZE 0.381014 SIZE OF SMALLEST CLASS 0.249949 SIZE OF LARGEST CLASS 0.314434 SCHOOLWIDE PUPIL-TEACHER RATIO NaN schoolyear NaN fl_percent NaN frl_percent -0.722225 total_enrollment 0.367857 ell_num -0.153778 ell_percent [...]<jupyter_text># Plotting survey correlations<jupyter_code># Remove DBN since it's a unique identifier, not a useful numerical value for correlation. survey_fields.remove("DBN") %matplotlib inline combined.corr()["sat_score"][survey_fields].plot.bar() combined.plot.scatter(x="saf_s_11", y="sat_score") import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap districts = combined.groupby("school_dist").agg(numpy.mean) districts.reset_index(inplace=True) m = Basemap( projection='merc', llcrnrlat=40.496044, urcrnrlat=40.915256, llcrnrlon=-74.255735, urcrnrlon=-73.700272, resolution='i' ) m.drawmapboundary(fill_color='#85A6D9') m.drawcoastlines(color='#6D5F47', linewidth=.4) m.drawrivers(color='#6D5F47', linewidth=.4) longitudes = districts["lon"].tolist() latitudes = districts["lat"].tolist() m.scatter(longitudes, latitudes, s=50, zorder=2, latlon=True, c=districts["saf_s_11"], cmap="summer") plt.show() race_fields = ["white_per", "asian_per", "black_per", "hispanic_per"] combined.corr()["sat_score"][race_fields].plot.bar() combined.plot.scatter(x="hispanic_per", y="sat_score") print(combined[combined["hispanic_per"] > 95]["SCHOOL NAME"]) low_hispanic = combined[combined["hispanic_per"] < 10] print(low_hispanic[low_hispanic["sat_score"] > 1800]["SCHOOL NAME"]) print(combined[(combined["hispanic_per"] < 10) & (combined["sat_score"] > 1800)]["SCHOOL NAME"]) gender = ["male_per", "female_per"] print(combined.corr()["sat_score"][gender].plot.bar()) print(combined.plot.scatter(x="female_per", y="sat_score")) print(combined[(combined["female_per"] > 60) & (combined["sat_score"] > 170)]["SCHOOL NAME"]) combined["ap_per"] = combined["AP Test Takers "]/combined["total_enrollment"] print(combined.plot.scatter(x="ap_per", y="sat_score"))<jupyter_output>Axes(0.125,0.125;0.775x0.775)
no_license
/Guided Project: Analyzing NYC High School Data/Schools.ipynb
isabellechiu/Self-Project-Dataquest
10
<jupyter_start><jupyter_text># Mô tả dữ liệu bằng Arviz ### Bs. Lê Ngọc Khả Nhi Bài thực hành nảy nhằm hướng dẫn dùng package Arviz để thực hiện các biểu đồ mô tả đữ liệu đơn giản. Arviz (https://arviz-devs.github.io/arviz/index.html) là một thư viện đồ họa chuyên dụng cho Thống kê Bayes, cho phép vẽ các biểu đồ để diễn giải posterior distribution từ các mô hình Bayes. Tuy nhiên, ta có thể lợi dụng các hàm của Arviz cho mục tiêu thống kê mô tả đơn giản, vì sẽ tiện lợi hơn nhiều so với vẽ thủ công bằng matplotlib.<jupyter_code>import arviz as az import numpy as np import pandas as pd print('Arviz', az.__version__)<jupyter_output>Arviz 0.6.1 <jupyter_text>Trước khi dùng arviz, dữ liệu đầu vào cần được chuyển đổi thành cấu trúc "inference_data" bằng hàm convert_to_inference_data; hàm này chấp nhận những output từ mô hình Bayes (pymc3, pystan, pyro, ...); tuy nhiên nó cũng dung nạp 2 kiểu đữ liệu không phải là mô hình Bayes, gồm numpy array và dictionary## Từ 1D numpy array<jupyter_code>n = 1000 np_1D_dat = az.convert_to_inference_data(np.random.normal(2,2,size = n)) print(np_1D_dat) np_1D_dat.posterior<jupyter_output>Inference data with groups: > posterior <jupyter_text>## Từ pandas Series<jupyter_code>pd_S = pd.Series(np.random.gamma(0.5, size = n)) pd_S_dat = az.convert_to_inference_data(pd_S.values) print(pd_S_dat) pd_S_dat.posterior<jupyter_output>Inference data with groups: > posterior <jupyter_text>## Từ nD numpy array (ma trận 2D, tensor, array đa chiều)<jupyter_code>k = (1,1000,3) np_3D_dat = az.convert_to_inference_data(np.random.randn(*k)) print(np_3D_dat) np_3D_dat.posterior<jupyter_output>Inference data with groups: > posterior <jupyter_text>## Từ Dictionary<jupyter_code>datadict = { 'X': np.random.normal(1,2,size = n), 'Y': np.random.normal(1,2,size = n)*2 + np.random.rand(1000), 'Z': np.random.normal(1,2,size = n)*(-2) + np.random.rand(1000), } data_dict = az.convert_to_inference_data(datadict) data_dict.posterior<jupyter_output><empty_output><jupyter_text>## Từ pandas dataframe<jupyter_code>pd_df = pd.DataFrame(datadict) pd_df.head() data_df= az.convert_to_inference_data(pd_df.to_numpy()) data_df.posterior data_df= az.convert_to_inference_data(pd_df.values) data_df.posterior<jupyter_output><empty_output><jupyter_text>Có nhiều phong cách mỹ thuật khác nhau để chọn:<jupyter_code>az.style.available az.style.use('arviz-whitegrid')<jupyter_output><empty_output><jupyter_text># Hàm plot_dist Hàm này cho phép biểu diễn hàm mật độ phân phối (PDF, CDF), biểu đồ 1D KDE, 1D Histogram và 2D KDE Ưu điểm : arviz tự động nhận ra biến liên tục và dùng KDE, biến rời rạc để dùng histogram. Nó cho phép kết hợp thêm Rugs layer, hỗ trợ hàm CDF lẫn PDF<jupyter_code>az.plot_dist(np_1D_dat.posterior.x, rug = True, color ="red", fill_kwargs={'alpha': 0.3, 'color':'#eb3483'},) az.plot_dist(np_1D_dat.posterior.x, rug = True, cumulative =True, color ="red", fill_kwargs={'alpha': 0.3, 'color':'#eb3483'},) az.plot_dist(np.random.poisson(5, 1000), color ="#eb3483",) az.plot_dist(np.random.poisson(5, 1000), color ="#eb3483", fill_kwargs={'alpha': 0.3, 'color':'#eb3483'}, kind = 'kde')<jupyter_output><empty_output><jupyter_text>Hơn thế nữa, hàm plot_dist vẽ được 2D KDE rất đẹp:<jupyter_code>az.plot_dist(np_1D_dat.posterior.x, np_1D_dat.posterior.x * 2 + np.random.normal(0,5,1000), contour = True, contour_kwargs={'colors': 'white','alpha':0.8,} ) az.plot_dist(np_1D_dat.posterior.x, np_1D_dat.posterior.x * 2 + np.random.normal(0,5,1000), contour = False, contour_kwargs={'colors': 'white','alpha':0.8,} )<jupyter_output><empty_output><jupyter_text>## Hàm plot_posterior: Suy diễn thống kê Hàm này dùng để suy diễn phân phối hậu nghiệm của các mô hình Bayes, tuy nhiên không gì ngăn cản chúng ta dùng nó cho dữ liệu 1D bất kì. Hàm này dùng làm thống kê mô tả cực kì hiệu quả, vì nó cho phép kết hợp 1D KDE plot và các trị số thống kê median, mean, mode, khoảng tin cậy, và suy diễn thống kê dựa vào các method Bayes như HDP (tương tự như CI), Khoảng vô nghĩa thực dụng (ROPE), ngưỡng vô hiệu (ref_val):<jupyter_code>az.plot_posterior(np_1D_dat, var_names = ['x'], credible_interval = 0.95, point_estimate = 'median', rope = (-1.5,7), ref_val = 0, **{'alpha': 0.8, 'color':'blue'}) az.plot_posterior(np_1D_dat, var_names = ['x'], credible_interval = 0.95, point_estimate = 'median', rope = (-1.5,7), ref_val = 0, kind = 'hist',)<jupyter_output><empty_output><jupyter_text>Hàm này dùng tốt cho dữ liệu đa biến:<jupyter_code>az.plot_posterior(np_3D_dat)<jupyter_output><empty_output><jupyter_text>## Hàm plot_density Hàm plot_density có công dụng đơn giản hơn plot_posterior, nó trình bày thêm 1 điểm giá trị Median hoặc mean, mode; Ưu thế của hàm này đó là cho phép so sánh 2 hay nhiều phân nhóm:<jupyter_code>np_3D_dat2 = az.convert_to_inference_data(np.random.randn(*k)-1) az.plot_density(np_3D_dat, figsize = (12,3), shade = 0.3, point_estimate = "median", credible_interval =1, colors = "red") az.plot_density([np_3D_dat, np_3D_dat2], figsize = (12,3), shade = 0.3, credible_interval =0.95, point_estimate = "median")<jupyter_output><empty_output><jupyter_text>## Hàm plot_joint Hàm plot_joint cho phép biểu diễn hình ảnh Xác suất kết hợp (Joint pribability) và Xác suất biên (Marginal prob) trên cùng 1 biểu đồ. Xác suất kết hợp có thể biểu diễn bằng 3 kiểu hình họa: tán xạ, hex_bin và 2D KDE Xác suất biên có 2 kiểu hình họa: 1D KDE và Histogram<jupyter_code>datadict = { 'X': np.random.normal(2,2,size = n), 'Y': np.random.normal(2,2,size = n)* 2 + np.random.normal(0,5,1000), } az.plot_joint(datadict) az.plot_joint(datadict, joint_kwargs = {'color':"red", 'alpha': 0.3}, marginal_kwargs = {'color':'red', 'fill_kwargs':{'alpha': 0.3, 'color':'#eb3483'}} ) az.plot_joint(datadict, figsize=(5.7,5), kind = 'hexbin', marginal_kwargs = {'color':'black', 'fill_kwargs':{'alpha': 0.9, 'color':'#ebbd34'}} ) az.plot_joint(datadict, figsize=(5.7,5), kind = 'kde', marginal_kwargs = {'color':'black', 'fill_kwargs':{'alpha': 0.9, 'color':'#ebbd34'}} )<jupyter_output><empty_output><jupyter_text>## Hàm plot_pair Hàm này là sự mở rộng của hàm plot_join, vì nó cho phép khảo sát bắt cặp tuần tự dữ liệu có từ 3 biến trở lên (ma trận tương quan).<jupyter_code>datadict = { 'X': np.random.normal(1,2,size = n), 'Y': np.random.normal(1,2,size = n)*2 + np.random.rand(1000), 'Z': np.random.normal(1,2,size = n)*(-2) + np.random.rand(1000), } az.plot_pair(datadict) az.plot_pair(np_3D_dat, figsize=(5.7,5), coords = {'x_dim_0': [0, 1, 2]}, var_names = ['x'], kind = 'kde', divergences = True, ) az.plot_pair(datadict, figsize=(5.7,5), colorbar=True, kind ='hexbin')<jupyter_output><empty_output><jupyter_text>## Hàm plot_forest Hàm plot_forest cho phép biểu diễn nội dung các posterior distribution của coeficients các mô hình Bayes; tuy nhiên ta có thể dùng nó để so sánh trực quan giữa nhiều phân nhóm hay nhiều biến có cùng thang đo (tương đương ridge_plot, forest_plot)<jupyter_code>datadict = { 'X': np.random.normal(1,2,size = n), 'Y': np.random.normal(1,2,size = n)*2 + np.random.rand(1000), 'Z': np.random.normal(1,2,size = n)*(-2) + np.random.rand(1000), } az.plot_forest(datadict, kind="forestplot", rope = (-5,5), credible_interval = 0.95, colors = "red") az.plot_forest(datadict, kind="ridgeplot", credible_interval = 0.95, ridgeplot_alpha = 0.5, ridgeplot_overlap = 3, colors = "red")<jupyter_output><empty_output>
no_license
/Arviz demo 1.ipynb
kinokoberuji/Statistics-Python-Tutorials
15
<jupyter_start><jupyter_text># Programming and Data Analysis > Homework 0 Kuo, Yao-Jen from [DATAINPOINT](https://www.datainpoint.com)## Instructions - We've imported necessary modules at the beginning of each exercise. - We've put necessary files(if any) in the working directory of each exercise. - We've defined the names of functions/inputs/parameters for you. - Write down your solution between the comments `### BEGIN SOLUTION` and `### END SOLUTION`. - It is NECESSARY to `return` the answer, tests will fail by just printing out the answer. - Do not use `input()` function, it will halt the notebook while running tests. - Running tests to see if your solutions are right: Kernel -> Restart & Run All -> Restart and Run All Cells. - You can run tests after each question or after finishing all questions.<jupyter_code>import unittest<jupyter_output><empty_output><jupyter_text>## 01. Define a function named `convert_fahrenheit_to_celsius(x)` which converts Fahrenheit degrees to Celsius degrees. \begin{equation} Celsius^{\circ} C = (Fahrenheit^{\circ} F - 32) \times \frac{5}{9} \end{equation} - Expected inputs:a numeric `x`. - Expected outputs:a numeric.<jupyter_code>def convert_fahrenheit_to_celsius(x): """ >>> convert_fahrenheit_to_celsius(212) 100.0 >>> convert_fahrenheit_to_celsius(32) 0.0 """ ### BEGIN SOLUTION y = (x - 32) * 5/9 return y ### END SOLUTION<jupyter_output><empty_output><jupyter_text>## 02. Define a function named `calculate_bmi(height, weight)` which calculates BMI according to heights in meters and weights in kilograms. \begin{equation} BMI = \frac{weight_{kg}}{height_{m}^2} \end{equation} Source: - Expected inputs:2 numerics `height` and `weight`. - Expected outputs:a numeric.<jupyter_code>def calculate_bmi(height, weight): """ >>> calculate_bmi(216, 147) # Shaquille O'Neal in his prime 31.507201646090532 >>> calculate_bmi(206, 113) # LeBron James 26.628334433028563 >>> calculate_bmi(211, 110) # Giannis Antetokounmpo 24.70744143213315 """ ### BEGIN SOLUTION BMI = weight / ((0.01 * height) * (0.01 * height)) return BMI ### END SOLUTION<jupyter_output><empty_output><jupyter_text>## 03. Define a function named `show_big_mac_index(country, currency, price)` which returns the Big Mac Index given a country, its currency, and the price of a Big Mac. - Expected inputs:2 strings and a numeric. - Expected outputs:a string.<jupyter_code>def show_big_mac_index(country, currency, price): """ >>> show_big_mac_index('US', 'USD', 5.65) A Big Mac costs 5.65 USD in US. >>> show_big_mac_index('South Korea', 'Won', 6520) A Big Mac costs 6,520.00 Won in South Korea. >>> show_big_mac_index('Taiwan', 'NTD', 72) A Big Mac costs 72.00 NTD in Taiwan. """ ### BEGIN SOLUTION ans = 'A Big Mac costs ' + str('{:0,.2f}'.format(price)) + ' ' + currency + ' in ' + country + '.' return ans ### END SOLUTION<jupyter_output><empty_output><jupyter_text>## 04. Define a function named `is_a_divisor(x, y)` which returns whether `x` is a is_a_divisor of `y` or not. - Expected inputs:2 integers. - Expected outputs:a boolean.<jupyter_code>def is_a_divisor(x, y): """ >>> is_a_divisor(1, 3) True >>> is_a_divisor(2, 3) False >>> is_a_divisor(3, 3) True >>> is_a_divisor(1, 4) True >>> is_a_divisor(2, 4) True >>> is_a_divisor(3, 4) False >>> is_a_divisor(4, 4) True """ ### BEGIN SOLUTION if y % x == 0: return True else: return False ### END SOLUTION<jupyter_output><empty_output><jupyter_text>## 05. Define a function named `contains_vowels(x)` which returns whether x contains one of the vowels: a, e, i, o, u or not. - Expected inputs:a string. - Expected outputs:a boolean.<jupyter_code>def contains_vowels(x): """ >>> contains_vowels('pythn') False >>> contains_vowels('ncnd') False >>> contains_vowels('rtclt') False >>> contains_vowels('python') True >>> contains_vowels('anaconda') True >>> contains_vowels('reticulate') True """ ### BEGIN SOLUTION if ('a' in x) or ('e' in x) or ('i' in x) or ('o' in x) or ('u' in x): return True else: return False ### END SOLUTION<jupyter_output><empty_output><jupyter_text>## Run tests! Kernel -> Restart & Run All. -> Restart And Run All Cells.<jupyter_code>class TestHomeworkZero(unittest.TestCase): def test_01_convert_fahrenheit_to_celsius(self): self.assertAlmostEqual(convert_fahrenheit_to_celsius(212), 100.0) self.assertAlmostEqual(convert_fahrenheit_to_celsius(32), 0.0) def test_02_calculate_bmi(self): self.assertTrue(calculate_bmi(216, 147) > 31) self.assertTrue(calculate_bmi(216, 147) < 32) self.assertTrue(calculate_bmi(206, 113) > 26) self.assertTrue(calculate_bmi(206, 113) < 27) self.assertTrue(calculate_bmi(211, 110) > 24) self.assertTrue(calculate_bmi(211, 110) < 25) def test_03_show_big_mac_index(self): self.assertEqual(show_big_mac_index('US', 'USD', 5.65), 'A Big Mac costs 5.65 USD in US.') self.assertEqual(show_big_mac_index('South Korea', 'Won', 6520), 'A Big Mac costs 6,520.00 Won in South Korea.') self.assertEqual(show_big_mac_index('Taiwan', 'NTD', 72), 'A Big Mac costs 72.00 NTD in Taiwan.') def test_04_is_a_divisor(self): self.assertTrue(is_a_divisor(1, 2)) self.assertTrue(is_a_divisor(2, 2)) self.assertTrue(is_a_divisor(1, 3)) self.assertFalse(is_a_divisor(2, 3)) self.assertTrue(is_a_divisor(1, 4)) self.assertTrue(is_a_divisor(2, 4)) self.assertFalse(is_a_divisor(3, 4)) self.assertTrue(is_a_divisor(4, 4)) def test_05_contains_vowels(self): self.assertFalse(contains_vowels('pythn')) self.assertFalse(contains_vowels('ncnd')) self.assertFalse(contains_vowels('rtclt')) self.assertTrue(contains_vowels('python')) self.assertTrue(contains_vowels('anaconda')) self.assertTrue(contains_vowels('reticulate')) suite = unittest.TestLoader().loadTestsFromTestCase(TestHomeworkZero) runner = unittest.TextTestRunner(verbosity=2) test_results = runner.run(suite) number_of_failures = len(test_results.failures) number_of_errors = len(test_results.errors) number_of_test_runs = test_results.testsRun number_of_successes = number_of_test_runs - (number_of_failures + number_of_errors) print("You've got {} successes among {} questions.".format(number_of_successes, number_of_test_runs))<jupyter_output>You've got 5 successes among 5 questions.
no_license
/exercises.ipynb
rose020/homework0
7
<jupyter_start><jupyter_text>#### Plotting of gesture data<jupyter_code>print("Shape of X_train: ", X_train.shape) print("shape of y_train/labels: ", y_train.shape) print("Shape of X_test: ", X_test.shape) print("shape of y_test/labels: ", y_test.shape) samples = np.random.choice(len(X_train), 8) def show_images(images, cols = 1, titles = None): """Display a list of images in a single figure with matplotlib. Parameters --------- images: List of np.arrays compatible with plt.imshow. cols (Default = 1): Number of columns in figure (number of rows is set to np.ceil(n_images/float(cols))). titles: List of titles corresponding to each image. Must have the same length as titles. """ assert((titles is None)or (len(images) == len(titles))) n_images = len(images) if titles is None: titles = ['Image (%d)' % i for i in range(1,n_images + 1)] fig = plt.figure() for n, (image, title) in enumerate(zip(images, titles)): a = fig.add_subplot(cols, np.ceil(n_images/float(cols)), n + 1) if image.ndim == 2: plt.gray() plt.imshow(image) a.set_title(title, fontsize=50) a.grid(False) a.axis("off") fig.set_size_inches(np.array(fig.get_size_inches()) * n_images) plt.show() sample_images = [] sample_labels = [] for sample in samples: sample_images.append(X_train[sample]) for key, val in label_dict.items(): if np.argmax(y_train[sample]) == val: sample_labels.append(key) show_images(sample_images, 2, titles=sample_labels)<jupyter_output><empty_output><jupyter_text>### Model<jupyter_code>def create_model(): model = Sequential() model.add(Conv2D(64, kernel_size = [3,3], padding = 'same', activation = 'relu', input_shape = (200,200,3))) model.add(Conv2D(64, kernel_size = [3,3], padding = 'same', activation = 'relu')) model.add(MaxPool2D(pool_size = [3,3])) model.add(Conv2D(128, kernel_size = [5,5], padding = 'same', activation = 'relu')) model.add(Conv2D(128, kernel_size = [5,5], padding = 'same', activation = 'relu')) model.add(MaxPool2D(pool_size = [3,3])) model.add(Conv2D(256, kernel_size = [3,3], padding = 'same', activation = 'relu')) model.add(Conv2D(256, kernel_size = [3,3], padding = 'same', activation = 'relu')) model.add(Conv2D(256, kernel_size = [3,3], padding = 'same', activation = 'relu')) model.add(MaxPool2D(pool_size = [3,3])) model.add(Conv2D(512, kernel_size = [3,3], padding = 'same', activation = 'relu')) model.add(Conv2D(512, kernel_size = [3,3], padding = 'same', activation = 'relu')) model.add(MaxPool2D(pool_size = [3,3])) model.add(Conv2D(512, kernel_size = [3,3], padding = 'same', activation = 'relu')) model.add(MaxPool2D(pool_size = [2,2])) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dropout(0.5)) model.add(Dense(1024, activation = 'relu', kernel_regularizer = regularizers.l2(0.001))) model.add(Dense(512, activation = 'relu', kernel_regularizer = regularizers.l2(0.001))) model.add(Dense(36, activation = 'softmax')) print("MODEL CREATED") return model model = create_model() model.summary() model.compile(optimizer = 'adam', loss = keras.losses.categorical_crossentropy, metrics = ["accuracy"]) model_hist = model.fit(X_train, y_train, batch_size = 32, epochs = 15, validation_data=(X_test, y_test))<jupyter_output>WARNING:tensorflow:From /opt/conda/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. Train on 24026 samples, validate on 1265 samples Epoch 1/15 24026/24026 [==============================] - 84s 3ms/step - loss: 2.1800 - acc: 0.5566 - val_loss: 2.0808 - val_acc: 0.5407 Epoch 2/15 24026/24026 [==============================] - 81s 3ms/step - loss: 0.8187 - acc: 0.8212 - val_loss: 0.5425 - val_acc: 0.8838 Epoch 3/15 24026/24026 [==============================] - 81s 3ms/step - loss: 0.4958 - acc: 0.8852 - val_loss: 0.8439 - val_acc: 0.7739 Epoch 4/15 24026/24026 [==============================] - 81s 3ms/step - loss: 0.3759 - acc: 0.9093 - val_loss: 0.3088 - val_acc: 0.9241 Epoch 5/15 24026/24026 [==============================] - 81s 3ms/step - loss: 0.3117 - acc: 0.9276 - val_loss: 0.3129 - val_acc: 0.9273 Epoch 6/15 24[...]<jupyter_text>### Plotting training metrices<jupyter_code>def plot_accuracy(y): if(y == True): plt.plot(model_hist.history['acc']) plt.plot(model_hist.history['val_acc']) plt.legend(['train', 'test'], loc='lower right') plt.title('accuracy plot - train vs test') plt.xlabel('epoch') plt.ylabel('accuracy') plt.show() else: pass return def plot_loss(y): if(y == True): plt.plot(model_hist.history['loss']) plt.plot(model_hist.history['val_loss']) plt.legend(['training loss', 'validation loss'], loc = 'upper right') plt.title('loss plot - training vs vaidation') plt.xlabel('epoch') plt.ylabel('loss') plt.show() else: pass return plot_accuracy(True) plot_loss(True) model.save("asl_bestsofar.h5") samples_test = np.random.choice(len(X_test), 8) samples_test sample_images = [] sample_labels = [] pred_labels = [] for sample in samples_test: sample_images.append(X_test[sample]) img = X_test[sample].reshape((1,200,200,3)) pred = model.predict_classes(img) for key, val in label_dict.items(): if pred[0] == int(val): pred_labels.append(key) for key, val in label_dict.items(): if np.argmax(y_test[sample]) == val: sample_labels.append(key) def show_test_images(images, cols = 1, true_label = None, pred_label=None): n_images = len(images) fig = plt.figure() for n, (image, label, pred) in enumerate(zip(images, true_label, pred_label)): a = fig.add_subplot(cols, np.ceil(n_images/float(cols)), n + 1) if image.ndim == 2: plt.gray() plt.imshow(image) a.set_title("{}\n{}".format(label, pred), fontsize=50) a.grid(False) a.axis("off") fig.set_size_inches(np.array(fig.get_size_inches()) * n_images) plt.show() show_test_images(sample_images, 2, sample_labels, pred_labels)<jupyter_output><empty_output>
no_license
/asl-training.ipynb
ayulockin/ASL_Classifier
3
<jupyter_start><jupyter_text># Pandas basics In this notebook we will **learn** how to work with the two main data types in `pandas`: `DataFrame` and `Series`.## Data structures (`pandas`)### `Series` In `pandas`, series are the building blocks of dataframes. Think of a series as a column in a table. A series collects *observations* about a given *variable*. <jupyter_code>from random import random import pandas as pd import numpy as np from pandas import Series, DataFrame<jupyter_output><empty_output><jupyter_text>#### Numerical series<jupyter_code># let's create a series containing 100 random numbers # ranging between 0 and 1 s = pd.Series([random() for n in range(0, 10)])<jupyter_output><empty_output><jupyter_text>Each observation in the series has an **index** as well as a set of **values**: they can be accessed via the omonymous properties:<jupyter_code>s.index list(s.index) s.values<jupyter_output><empty_output><jupyter_text>The `head()` and `tail()` methods allows for looking at the begininning and end of a series:<jupyter_code>s.head() s.tail()<jupyter_output><empty_output><jupyter_text>The `value_counts()` method returns a count of distinct values within a series.Is there any number in `s` that occurs twice?<jupyter_code># a `Series` can be easily cast into a list list(s.value_counts()).count(2)<jupyter_output><empty_output><jupyter_text>Another way of verifying this:<jupyter_code>s.is_unique s.min() s.max() s.mean() s.median()<jupyter_output><empty_output><jupyter_text>#### Datetime series<jupyter_code>from random import randint from datetime import date # let's generate a list of random dates # in the range 1900-1950 dates = [ date( year, randint(1, 12), randint(1, 28) # try replacing with 31 and see what happens ) for year in range(1900,1950) ] s1 = pd.Series(dates) s1 type(s1[1]) s1 = Series(pd.to_datetime(dates)) type(s1[1]) s1[1].day_name() s1.min() s1.max() s1.mean()<jupyter_output><empty_output><jupyter_text>### `DataFrame` What is a `pandas.DataFrame`? Think of it as an in-memory spreadsheet that you can analyse and manipulate programmatically. A `DataFrame` is a collection of `Series` having the same length and whose indexes are in sync. A *collection* means that each column of a dataframe is a seriesLet's create a toy `DataFrame` by hand. <jupyter_code>dates = [ date( year, randint(1, 12), randint(1, 28) # try replacing with 31 and see what happens ) for year in range(1980,1990) ] counts = [ randint(0, 10000) for i in range(0, 10) ] event_types = ["fire", "flood", "car_crash", "plane_crash"] events = [ np.random.choice(event_types) for i in range(0, 10) ] assert len(events) == len(counts) == len(dates) toy_df = pd.DataFrame({ "date": dates, "count": counts, "event": events }) toy_df<jupyter_output><empty_output><jupyter_text>**Try out**: what happens if you change the length of either of the two lists? Try e.g. passing 20 dates instead of 10.<jupyter_code># a df is a collection of series # each column is a series type(toy_df.date)<jupyter_output><empty_output><jupyter_text>## Data manipulation in `pandas`### Data types String, datetimes (see above), categorical data. In `pandas`, categories behave very much like string, yet they lead to better performances (faster operations, optimized storage).Bottom-up approach:<jupyter_code># transforms a Series with strings into categories toy_df.event.astype('category')<jupyter_output><empty_output><jupyter_text>### Exploring a dataframe Exploring a dataframe: df.head(), df.tail(), df.info().The method `info()` gives you information about a dataframe: - how much space does it take in memory? - what is the datatype of each column? - how many records are there? - how many `null` values does each column contain (!)?<jupyter_code>toy_df.info()<jupyter_output><class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 date 10 non-null object 1 count 10 non-null int64 2 event 10 non-null object dtypes: int64(1), object(2) memory usage: 368.0+ bytes <jupyter_text>Alternatively, if you need to know only the number of columns and rows you can use the `.shape` property. It returns a tuple with 1) number of rows, 2) number of columns.<jupyter_code>toy_df.shape<jupyter_output><empty_output><jupyter_text>`head()` prints by first five rows of a dataframe:<jupyter_code>toy_df.head()<jupyter_output><empty_output><jupyter_text>But the number of lines displayed is a parameter that can be changed:<jupyter_code>toy_df.head(2)<jupyter_output><empty_output><jupyter_text>`tail()` does the opposite, i.e. prints the last n rows in the dataframe:<jupyter_code>toy_df.tail()<jupyter_output><empty_output><jupyter_text>#### Adding columnsLet's go back to our toy dataframe:<jupyter_code>toy_df.head()<jupyter_output><empty_output><jupyter_text>Using the column selector with the name of a column that does not exist yet will add the effect of setting the values of all rows in that column to the value specified.<jupyter_code>toy_df['country'] = "UK" toy_df.head(3)<jupyter_output><empty_output><jupyter_text>But if the column already exists, its value is reset:<jupyter_code>toy_df['country'] = "USA" toy_df.head(3)<jupyter_output><empty_output><jupyter_text>#### Removing columnsThe double square bracket notation ``[[...]]`` returns a dataframe having only the columns specified inside the inner brackets.This said, removing a column is done by unselecting it:<jupyter_code># here we removed the column country toy_df2 = toy_df[['date', 'count', 'event']] # it worked! toy_df2.head()<jupyter_output><empty_output><jupyter_text>#### Setting a column as index<jupyter_code>toy_df.set_index('date') toy_df.head(3) toy_df.set_index('date', inplace=True) toy_df.head(3)<jupyter_output><empty_output><jupyter_text>**Q**: can you explain the effect of the `inplace` parameter by looking at the cells above?### Accessing data .loc, .iloc, slicing, iteration over rows<jupyter_code>toy_df.head(3)<jupyter_output><empty_output><jupyter_text>#### Label-based indexing<jupyter_code>toy_df.loc[date(1980,1,1):date(1982,1,1)]<jupyter_output><empty_output><jupyter_text>#### Integer-based indexing<jupyter_code># select a single row, the first one toy_df.iloc[0] # select a range of rows by index toy_df.iloc[[1,3,-1]] # select a range of rows with slicing toy_df.iloc[0:5] toy_df.index<jupyter_output><empty_output><jupyter_text>#### Iterating over rows<jupyter_code>for n, row in toy_df.iterrows(): print(n) for n, row in toy_df.iterrows(): print(n, row.event)<jupyter_output>1980-01-23 plane_crash 1981-04-15 plane_crash 1982-11-12 flood 1983-11-22 plane_crash 1984-11-04 fire 1985-06-19 flood 1986-09-14 plane_crash 1987-01-05 fire 1988-03-11 flood 1989-10-10 car_crash
permissive
/notebooks/3_PandasBasics.ipynb
Giovanni1085/UvA_CDH_2020
24
<jupyter_start><jupyter_text><jupyter_code>import numpy as np # useful for many scientific computing in Python import pandas as pd # primary data structure library !conda install -c anaconda xlrd --yes df_can = pd.read_excel('https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/DV0101EN/labs/Data_Files/Canada.xlsx', sheet_name='Canada by Citizenship', skiprows=range(20), skipfooter=2) print ('Data read into a pandas dataframe!') #Dataset of immigration into canada from other countries - 1980 to 2013 (each year and each country) df_can.head(10) df_can.shape df_can.tail() df_can.info() #simplify and remove unnecessary columns df_can.drop(['AREA','REG','DEV','Type','Coverage'], inplace=True, axis='columns') df_can.head() #rename columns to sensible names df_can.rename(columns={'OdName':'Country', 'AreaName':'Continent', 'RegName':'Continent-Region'}, inplace=True) df_can.head() #count total immigration by country for all years df_can['total_immigration'] = df_can.sum(axis='columns') df_can.head() df_can.describe() df_can.isnull().sum() df_can.dtypes #Select immigration of years 1980-1985 from the dataset, for all countries? #get the list of columns in the dataframe df_can.columns df_can[['Country',1980,1981,1982,1983,1984,1985]] #simplify the dataset by changing the index from numbers to country names df_can.index.values df_can.set_index('Country', inplace=True) df_can.head() print(df_can.loc['India']) df_can.iloc[8] print(df_can.loc['Japan',2000]) print(df_can.iloc[12,12]) #convert columns names to string #map - syntax(function, collection) #apply function to each element of the collection - equivalent apply, mapply,sapply,lapply functions of R df_can.columns = list(map(str,df_can.columns)) df_can.columns #filtering on dataframe #Q. find all countries in Asia condition = df_can['Continent'] == 'Asia' df_can[condition] #Q. multiple conditions df_can[(df_can['Continent']=='Asia')] df_can[(df_can['1980'] > 1000)] #syntax - df[(condition)] df_can[(df_can['Continent']=='Asia')&(df_can['2013']>10000)] df_can.where(df_can['Continent']=='Asia') #conditions #basic stats import matplotlib.pyplot as plt import matplotlib as mpl import plotly as px mpl.__version__ df_can.columns years = list(map(str,range(1980,2014))) years india = df_can.loc['India',years] india india.plot() india.index #change the index to integer india.index = india.index.map(int) india.plot(kind='line') plt.title('Immigration from India') plt.ylabel('Number of immigrants') plt.xlabel('Years') #update the plot plt.show() india.plot(kind='line') plt.title('Immigration from India') plt.ylabel('Number of immigrants') plt.xlabel('Years') plt.text(2000, 32000, 'Y2K Revolution') plt.text(1990,15000,'Recession') plt.text(1985,10000,'Economic boom') #update the plot plt.show() years = list(map(str,range(1980,2014))) china = df_can.loc['China', years] china.plot() china.index = china.index.map(int) china.plot(kind='line') plt.title('Immigration of China') plt.xlabel('Years') plt.ylabel('Immigrants') plt.text(1990,10000,'Marker') plt.show() years = list(map(str,range(1980,2014))) chinaindia = df_can.loc[['China','India'], years] new_chinaindia = chinaindia.transpose() new_chinaindia.plot() new_chinaindia.index = new_chinaindia.index.map(int) new_chinaindia.plot(kind='line') plt.title('Immigration of China and India') plt.xlabel('Years') plt.ylabel('Immigrants') #plt.text(1990,10000,'Marker') plt.show() #Q. Which two countries have similar immigration trends over the years 1980-2013? #Q. France and Germany #top 5 countries that send immigrants to canada df_can.sort_values(by='total_immigration', ascending=False, axis='index', inplace=True) top5 = df_can.head(5) top5 years = list(map(str,range(1980,2014))) top5_clean = top5[years] top5_clean = top5_clean.transpose() top5_clean.plot()<jupyter_output><empty_output><jupyter_text>#Part 2<jupyter_code>#Area plots - Stacked line plot top5_clean top5_clean.index = top5_clean.index.map(int) top5_clean.plot(kind="area", stacked=False, figsize=(20,10)) plt.title('Immigration trends in top five countries (1980-2013)') plt.xlabel('Years') plt.ylabel('Immigrants count') plt.show() top5_clean.index = top5_clean.index.map(int) top5_clean.plot(kind="area", stacked=True, figsize=(20,10)) plt.title('Immigration trends in top five countries (1980-2013)') plt.xlabel('Years') plt.ylabel('Immigrants count') plt.show() top5_clean.index = top5_clean.index.map(int) #alpha parameter for transparency - default = 0.5 (range is 0 to 1) top5_clean.plot(kind="area", stacked=False, figsize=(20,10), alpha=0.25) plt.title('Immigration trends in top five countries (1980-2013)') plt.xlabel('Years') plt.ylabel('Immigrants count') plt.show() #Bottom five countries - stacked and unstacked area plot #histogram - at a particular time period / snapshot of the data df_can['2000'] df_can['2000'].plot(kind='hist', figsize=(20,10)) plt.title('Immigration trends in 195 countries in 2000') plt.xlabel('Number of Immigrants') plt.ylabel('Number of Countries') plt.show() #histogram years = list(map(str,range(1980,2014))) df_can.loc[['India','China','Denmark','Norway','France','Germany'], years].transpose().plot.hist() df_can.loc[['India','China','Denmark','Norway','France','Germany'], years].transpose().plot.hist() plt.title('Immigration trends in 6 countries in 1980-2013') plt.xlabel('Number of Immigrants') plt.ylabel('Number of Countries') plt.show()<jupyter_output><empty_output><jupyter_text>#Vertical bar plot<jupyter_code>india = df_can.loc['India', years] india.plot(kind='bar', figsize=(20,10)) plt.title('Immigration trends India immigrants from 1980 to 2013') plt.xlabel('Years') plt.ylabel('India immigrants from 1980 to 2013') plt.show() india = df_can.loc['India', years] india.index = india.index.map(int) india.plot(kind='bar', figsize=(10,6)) plt.title('Immigration trends India immigrants from 1980 to 2013') plt.xlabel('Years') plt.ylabel('India immigrants from 1980 to 2013') plt.annotate('Increasing trends', xy=(32, 70), xycoords='data', xytext=(28, 20), arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='left', verticalalignment='top', ) plt.show() india = df_can.loc['India', years] india.plot(kind='barh', figsize=(20,10)) plt.title('Immigration trends India immigrants from 1980 to 2013') plt.xlabel('India immigrants from 1980 to 2013') plt.ylabel('Years') plt.show()<jupyter_output><empty_output>
permissive
/Lab Experiments/Experiment_3_200720.ipynb
rohitsmittal7/J045-ML-Sem-V
3
<jupyter_start><jupyter_text>**MATH 3332 ** **Section 52 ** # In Who-is-Normal.xslx there are 7 columns representing variables x1-x7, one of which is sample from the normal distribution. Find which one of the variables is normal? ## Reading in Values The program starts by reading in the values from the Excel spreadsheet after they have been exported to a CSV format.<jupyter_code>import csv f = open('input.csv', 'r') reader = csv.reader(f) values = [] for row in reader: values.append(row)<jupyter_output><empty_output><jupyter_text>## Manipulating the Values The program then transposes the matrix that was created when reading in the values from the CSV. The result is an array, where the rows consist of the name of the data (e.g., x1, x2) and the values for that distribution. <jupyter_code>import numpy as np matrix = np.transpose(np.array(values))<jupyter_output><empty_output><jupyter_text>## Creating the Probability Plot The program then creates a plot for each distribution using the **scipy.stats** library. The plot contains the **plotted values**, the $R^2$ value, the **mean**, and the **standard deviation **.<jupyter_code>import scipy.stats import matplotlib.pyplot as plt import matplotlib.gridspec as grid %matplotlib inline # Iterate over each dataset (x1, x2, etc) for x_column in xrange(len(matrix)): # Create array of float-type values from the dataset values = np.array(matrix[x_column][1:]) values = [float(value) for value in values] # Create a seperate figure to create the probability plot fig = plt.figure() fig.text(0, 0, 'Mean %s' % np.mean(values)) fig.text(1, 0, 'Std %s' % np.std(values)) fig.suptitle('x%s' % (x_column + 1)) # Produce the probability plot scipy.stats.probplot(values, plot=plt) # Create a separate figure to create the histogram fig2 = plt.figure() fig2.suptitle('x%s Histogram' % (x_column + 1)) # Produce the histogram using normalized values plt.hist(values, normed=True) # Add the normal distribution curve to the plot mu, std = scipy.stats.norm.fit(values) xmin, xmax = plt.xlim() x = np.linspace(xmin, xmax, 100) p = scipy.stats.norm.pdf(x, mu, std) plt.plot(x, p, 'k', linewidth=2) plt.show()<jupyter_output><empty_output>
no_license
/Probability/Normal.ipynb
rlacherksu/notebooks
3
<jupyter_start><jupyter_text># 株価の関係<jupyter_code>%matplotlib inline import matplotlib.pyplot as plt import matplotlib import numpy import sqlite3 import pandas as pd import os fmdate="2015-01-01" todate="2016-12-31" code="6502" if os.name == "nt": fname=r'C:\WINDOWS\Fonts\ipaexg.ttf' else: fname = os.environ["HOME"]+'/Library/Fonts/ipaexg.ttf' fp = matplotlib.font_manager.FontProperties(fname=fname, size=14) con=sqlite3.connect(os.environ["DATA"]+"/board/board.db") sql="""select date as tm,close from histDaily where code=? and date between ? and ? order by tm""" res=pd.read_sql_query(sql,con,params=(code,fmdate,todate,)) dt=pd.to_datetime(res["tm"].values) plt.scatter(dt,res["close"].values) plt.xticks(rotation=90) plt.title("株価ヒストリカル", fontproperties=fp) plt.xlabel("date") plt.ylabel("price") plt.show()<jupyter_output><empty_output><jupyter_text>## 出来高との関係 出来高が増える。注目度が高くなる。なので<jupyter_code>%matplotlib inline import matplotlib.pyplot as plt import numpy import sqlite3 import pandas as pd import matplotlib fmdate="2015-01-01" todate="2017-07-31" code="6502" if os.name == "nt": fname=r'C:\WINDOWS\Fonts\ipaexg.ttf' else: fname = r'/Users/admin/Library/Fonts/ipaexg.ttf' fp = matplotlib.font_manager.FontProperties(fname=fname, size=14) con=sqlite3.connect(os.environ["DATA"]+"/stock/daily.db") sql="""select strftime('%Y%m%d',date) as tm,volume from histDaily where code=? and date between ? and ? order by tm""" res=pd.read_sql_query(sql,con,params=(code,fmdate,todate,)) dt=pd.to_datetime(res["tm"].values) plt.scatter(dt,res["volume"].values) plt.xticks(rotation=90) plt.title("出来高のヒストリカル", fontproperties=fp) plt.xlabel("date") plt.ylabel("volume") plt.show()<jupyter_output><empty_output><jupyter_text>## 投稿文字スコアの推移 1or-1に修正し合算する,悲観的な投稿が多いか少ないかを見る<jupyter_code>%matplotlib inline import matplotlib.pyplot as plt import numpy as np import sqlite3 import pandas as pd fmdate="2015-01-01" todate="2017-07-31" code="6502" if os.name == "nt": fname=r'C:\WINDOWS\Fonts\ipaexg.ttf' else: fname = r'/Users/admin/Library/Fonts/ipaexg.ttf' fp = matplotlib.font_manager.FontProperties(fname=fname, size=14) con=sqlite3.connect(os.environ["DATA"]+"/board/board.db") # https://stackoverflow.com/questions/41324503/pandas-sqlite-query-using-variable sql="""select strftime('%Y%m%d',b.date) as tm,sum(case when e.score >=0 then 1 else -1 end) as score from board b ,board_score e where b.code=e.code and b.tno=e.tno and b.mno=e.mno and b.code=? and b.date between ? and ? group by tm order by tm""" res=pd.read_sql_query(sql,con,params=(code,fmdate,todate,)) #https://qiita.com/ColdFreak/items/1028927c81fdfa5f3ac2 dt=pd.to_datetime(res["tm"].values) plt.scatter(dt,res["score"].values) plt.xticks(rotation=90) plt.title("投稿スコアの推移", fontproperties=fp) plt.xlabel("tm") plt.ylabel("log10(avg(score))") plt.show()<jupyter_output><empty_output><jupyter_text>## ここまでの予想 - 出来高が上がると注目度が高くなる - そうすると人が増える - 怪しい情報も増えてくる ### 絵文字は置いといて -時系列で集まる人数をカウントする。## 書き込み人数を時系列で出力 <jupyter_code># emoji kind %matplotlib inline import matplotlib import matplotlib.pyplot as plt import numpy import sqlite3 import os import pandas as pd fmdate="2015-01-01" todate="2017-07-31" code="6502" if os.name == "nt": fname=r'C:\WINDOWS\Fonts\ipaexg.ttf' else: fname = r'/Users/admin/Library/Fonts/ipaexg.ttf' fp = matplotlib.font_manager.FontProperties(fname=fname, size=14) con=sqlite3.connect(os.environ["DATA"]+"/board/board.db") cur=con.cursor() res=pd.read_sql_query("select tm,count(*) as user_count from (select strftime('%Y%m%d',date) as tm,user from board"+ " where date between ? and ? and code=? group by tm,user) group by tm",con,params=(fmdate,todate,code,)) dt=pd.to_datetime(res["tm"].values) plt.scatter(dt,res["user_count"].values) plt.xticks(rotation=90) plt.title("投稿者数と時系列", fontproperties=fp) plt.xlabel("tm") plt.ylabel("user_count") plt.show() <jupyter_output><empty_output><jupyter_text>## 相関を見る - 投稿者数と出来高の相関係数 - 営業日以外の場合もあるし,投稿のない場合もあるのでInnerJoin<jupyter_code># emoji kind %matplotlib inline import matplotlib import matplotlib.pyplot as plt import numpy as np import sqlite3 import os import pandas as pd from sklearn import linear_model fmdate="2015-01-01" todate="2017-07-31" code="6502" if os.name == "nt": fname=r'C:\WINDOWS\Fonts\ipaexg.ttf' else: fname = r'/Users/admin/Library/Fonts/ipaexg.ttf' fp = matplotlib.font_manager.FontProperties(fname=fname, size=14) con=sqlite3.connect(os.environ["DATA"]+"/board/board.db") cur=con.cursor() user=pd.read_sql_query("select tm,count(*) as user_count from (select strftime('%Y%m%d',date) as tm,user from board"+ " where date between ? and ? and code=? group by tm,user) group by tm",con,params=(fmdate,todate,code,)) user["tm"]=pd.to_datetime(user["tm"]) #user=user.set_index("tm") #cur.close() #con.close() print(user.head()) #con=sqlite3.connect("../../../../data/stock/daily.db") #cur=con.cursor() volume=pd.read_sql_query("select strftime('%Y%m%d',date) as tm,volume/10000 as volume from histDaily where code=? and date between ? and ? order by tm",con,params=(code,fmdate,todate,)) volume["tm"]=pd.to_datetime(volume["tm"]) #volume=volume.set_index("tm") cur.close() con.close() print(volume.head()) data=pd.merge(volume,user,how="inner",left_on="tm",right_on="tm") print(data.head()) # https://qiita.com/m-hayashi/items/ee379c86e3e18f0ddc6d # http://pythondatascience.plavox.info/scikit-learn/線形回帰 x=pd.DataFrame(data["volume"]).values y=pd.DataFrame(data["user_count"]).values model=linear_model.LinearRegression() model.fit(x,y) # 回帰係数 print(model.coef_) # 切片 (誤差) print(model.intercept_) # 決定係数 print(model.score(x, y)) plt.scatter(x,y,color="red") plt.plot(x,model.predict(x)) plt.title("出来高と投稿者数の関係", fontproperties=fp) plt.xlabel("volume") plt.ylabel("user_count") plt.show()<jupyter_output> tm user_count 0 2015-01-01 1 1 2015-01-02 2 2 2015-01-03 1 3 2015-01-04 1 4 2015-01-05 1 tm volume 0 2015-01-05 2110.3 1 2015-01-06 3103.5 2 2015-01-07 2395.0 3 2015-01-08 1928.2 4 2015-01-09 3816.0 tm volume user_count 0 2015-01-05 2110.3 1 1 2015-01-06 3103.5 2 2 2015-01-07 2395.0 6 3 2015-01-08 1928.2 1 4 2015-01-09 3816.0 11 [[ 0.02094571]] [-17.38032316] 0.709948491945 <jupyter_text>- 出来高が増えると投稿者数も増える - 要は出来高が増えると目立つので参加者が増えるということ## 投稿スコアと出来高の関係 どうやら出来高で説明ができるのか?<jupyter_code># emoji kind %matplotlib inline import matplotlib import matplotlib.pyplot as plt import numpy as np import sqlite3 import os import pandas as pd from sklearn import linear_model fmdate="2015-01-01" todate="2017-07-31" code="6502" if os.name == "nt": fname=r'C:\WINDOWS\Fonts\ipaexg.ttf' else: fname = r'/Users/admin/Library/Fonts/ipaexg.ttf' fp = matplotlib.font_manager.FontProperties(fname=fname, size=14) con=sqlite3.connect(os.environ["DATA"]+"/board/board.db") cur=con.cursor() sql="""select strftime('%Y%m%d',b.date) as tm,sum(case when e.score >=0 then 1 else -1 end) as score,avg(e.score/e.wordnum) as ascore from board b ,board_score e where b.code=e.code and b.tno=e.tno and b.mno=e.mno and b.code=? and b.date between ? and ? group by tm order by tm""" score=pd.read_sql_query(sql,con,params=(code,fmdate,todate,)) #https://qiita.com/ColdFreak/items/1028927c81fdfa5f3ac2 score["tm"]=pd.to_datetime(score["tm"]) #cur.close() #con.close() print(score.head()) #con=sqlite3.connect("../../../../data/stock/daily.db") #cur=con.cursor() volume=pd.read_sql_query("select strftime('%Y%m%d',date) as tm,volume/10000 as volume from histDaily where code=? and date between ? and ? order by tm",con,params=(code,fmdate,todate,)) volume["tm"]=pd.to_datetime(volume["tm"]) #volume=volume.set_index("tm") cur.close() con.close() print(volume.head()) data=pd.merge(volume,score,how="inner",left_on="tm",right_on="tm") print(data.head()) # https://qiita.com/m-hayashi/items/ee379c86e3e18f0ddc6d # http://pythondatascience.plavox.info/scikit-learn/線形回帰 x=pd.DataFrame(data["volume"]).values y=pd.DataFrame(data["score"]).values model=linear_model.LinearRegression() model.fit(x,y) # 回帰係数 print(model.coef_) # 切片 (誤差) print(model.intercept_) # 決定係数 print(model.score(x, y)) plt.scatter(x,y,color="red") plt.plot(x,model.predict(x)) plt.title("出来高と投稿スコアの関係,スコアは-1to1に修正", fontproperties=fp) plt.xlabel("volume") plt.ylabel("score") plt.show() ## 平均化 x=pd.DataFrame(data["volume"]).values y=pd.DataFrame(data["ascore"]).values model=linear_model.LinearRegression() model.fit(x,y) # 回帰係数 print(model.coef_) # 切片 (誤差) print(model.intercept_) # 決定係数 print(model.score(x, y)) plt.scatter(x,y,color="red") plt.plot(x,model.predict(x)) plt.title("出来高と投稿スコアの関係,スコアはscore/wordnumに修正", fontproperties=fp) plt.xlabel("volume") plt.ylabel("score") plt.show() <jupyter_output> tm score ascore 0 2015-01-01 1 0.043008 1 2015-01-02 -3 -0.463773 2 2015-01-03 -1 -0.399109 3 2015-01-04 -1 -0.455821 4 2015-01-05 -1 -0.555359 tm volume 0 2015-01-05 2110.3 1 2015-01-06 3103.5 2 2015-01-07 2395.0 3 2015-01-08 1928.2 4 2015-01-09 3816.0 tm volume score ascore 0 2015-01-05 2110.3 -1 -0.555359 1 2015-01-06 3103.5 -2 -0.728097 2 2015-01-07 2395.0 -7 -0.479000 3 2015-01-08 1928.2 -1 -0.605556 4 2015-01-09 3816.0 -13 -0.503629 [[-0.09497118]] [ 101.33264451] 0.650158690959 <jupyter_text>出来高と投稿スコアにも相関関係がある## 投稿スコアと参加者数の関係 となるとこれも相関があるのか?<jupyter_code># emoji kind %matplotlib inline import matplotlib import matplotlib.pyplot as plt import numpy as np import sqlite3 import os import pandas as pd from sklearn import linear_model fmdate="2015-01-01" todate="2017-07-31" code="6502" if os.name == "nt": fname=r'C:\WINDOWS\Fonts\ipaexg.ttf' else: fname = os.environ["HOME"]+'/Library/Fonts/ipaexg.ttf' fp = matplotlib.font_manager.FontProperties(fname=fname, size=14) con=sqlite3.connect(os.environ["DATA"]+"/board/board.db") cur=con.cursor() sql="""select strftime('%Y%m%d',b.date) as tm,sum(case when e.score >=0 then 1 else -1 end) as score,avg(e.score/e.wordnum) as ascore from board b ,board_score e where b.code=e.code and b.tno=e.tno and b.mno=e.mno and b.code=? and b.date between ? and ? group by tm order by tm""" score=pd.read_sql_query(sql,con,params=(code,fmdate,todate,)) #https://qiita.com/ColdFreak/items/1028927c81fdfa5f3ac2 score["tm"]=pd.to_datetime(score["tm"]) user=pd.read_sql_query("select tm,count(*) as user_count from (select strftime('%Y%m%d',date) as tm,user from board"+ " where date between ? and ? and code=? group by tm,user) group by tm",con,params=(fmdate,todate,code,)) user["tm"]=pd.to_datetime(user["tm"]) #user=user.set_index("tm") cur.close() con.close() print(user.head()) print(score.head()) data=pd.merge(user,score,how="inner",left_on="tm",right_on="tm") print(data.head()) # https://qiita.com/m-hayashi/items/ee379c86e3e18f0ddc6d # http://pythondatascience.plavox.info/scikit-learn/線形回帰 x=pd.DataFrame(data["user_count"]).values y=pd.DataFrame(data["score"]).values model=linear_model.LinearRegression() model.fit(x,y) # 回帰係数 print(model.coef_) # 切片 (誤差) print(model.intercept_) # 決定係数 print(model.score(x, y)) plt.scatter(x,y,color="red") plt.plot(x,model.predict(x)) plt.title("参加者数と投稿スコアの関係,スコア-1to1修正", fontproperties=fp) plt.xlabel("user_count") plt.ylabel("score") plt.show() #### x=pd.DataFrame(data["user_count"]).values y=pd.DataFrame(data["ascore"]).values model=linear_model.LinearRegression() model.fit(x,y) # 回帰係数 print(model.coef_) # 切片 (誤差) print(model.intercept_) # 決定係数 print(model.score(x, y)) plt.scatter(x,y,color="red") plt.plot(x,model.predict(x)) plt.title("参加者数と投稿スコアの関係,スコアscore/wordnum", fontproperties=fp) plt.xlabel("user_count") plt.ylabel("score") plt.show()<jupyter_output> tm user_count 0 2015-01-01 1 1 2015-01-02 2 2 2015-01-03 1 3 2015-01-04 1 4 2015-01-05 1 tm score ascore 0 2015-01-01 1 0.043008 1 2015-01-02 -3 -0.463773 2 2015-01-03 -1 -0.399109 3 2015-01-04 -1 -0.455821 4 2015-01-05 -1 -0.555359 tm user_count score ascore 0 2015-01-01 1 1 0.043008 1 2015-01-02 2 -3 -0.463773 2 2015-01-03 1 -1 -0.399109 3 2015-01-04 1 -1 -0.455821 4 2015-01-05 1 -1 -0.555359 [[-4.60171765]] [ 28.35209875] 0.948489885375 <jupyter_text>どうやら人が増えるとスコアが下がる。下げたい人間が多いようだ## 参加者が多い時,少ない時の絵文字の特徴 - 参加者が多い時は下げようとする傾向が高いので絵文字がスコア低くなる? - 1日ごとの絵文字別投稿数と参加者数,もしくは出来高との相関 - 使われている絵文字の上位10個 これはそのまま出して,一投稿1絵文字種類に修正する。(同じ絵文字を繰り返し使う投稿の影響削除)<jupyter_code>%matplotlib inline import matplotlib import matplotlib.pyplot as plt import numpy as np import sqlite3 import os import pandas as pd from sklearn import linear_model fmdate="2015-01-01" todate="2017-07-31" code="6502" if os.name == "nt": fname=r'C:\WINDOWS\Fonts\ipaexg.ttf' else: fname = os.environ["HOME"]+'/Library/Fonts/ipaexg.ttf' fp = matplotlib.font_manager.FontProperties(fname=fname, size=14) con=sqlite3.connect(os.environ["DATA"]+"/board/board.db") # top 10 sql="select c.emoji,sum(c.num),s.score from board_emoji_count c,emoji_score s,board b where b.code=c.code and b.tno=c.tno and b.mno=c.mno and c.emoji=s.emoji and c.code=? and b.date between ? and ? group by c.emoji order by sum(c.num) desc limit 10" emoji_list=pd.read_sql_query(sql,con,params=(code,fmdate,todate,)) print(emoji_list) for em in emoji_list["emoji"]: print(em) user=pd.read_sql_query("select tm,count(*) as user_count from (select strftime('%Y%m%d',date) as tm,user from board"+ " where date between ? and ? and code=? group by tm,user) group by tm",con,params=(fmdate,todate,code,)) user["tm"]=pd.to_datetime(user["tm"]) emoji=pd.read_sql_query("select strftime('%Y%m%d',date) as tm,sum(c.num) as emoji_count from board b ,board_emoji_count c"+ " where b.code=c.code and b.tno=c.tno and b.mno=c.mno and b.date between ? and ? and b.code=? and c.emoji=? group by tm",con,params=(fmdate,todate,code,em,)) emoji["tm"]=pd.to_datetime(emoji["tm"]) data=pd.merge(user,emoji,how="inner") data.drop("tm",axis=1) x=pd.DataFrame(data["user_count"]).values y=pd.DataFrame(data["emoji_count"]).values model=linear_model.LinearRegression() model.fit(x,y) # 回帰係数 print(model.coef_) # 切片 (誤差) print(model.intercept_) # 決定係数 print(model.score(x, y)) plt.scatter(x,y,color="red") plt.plot(x,model.predict(x)) plt.title("絵文字"+em+"数とユーザ数の関係", fontproperties=fp) plt.xlabel("user_count") plt.ylabel("emoji_score") plt.show() con.close() <jupyter_output> emoji sum(c.num) score 0 🙌 3329 1.00 1 😱 908 -0.75 2 💛 549 0.75 3 💀 514 -0.50 4 💩 450 -0.75 5 😁 383 0.50 6 😅 381 0.50 7 👍 180 0.50 8 😊 165 0.50 9 😃 134 0.50 🙌 [[ 0.06752109]] [ 33.30399642] 0.0204427406372 <jupyter_text>## 一投稿人絵文字にDistinctする<jupyter_code>%matplotlib inline import matplotlib import matplotlib.pyplot as plt import numpy as np import sqlite3 import os import pandas as pd from sklearn import linear_model fmdate="2015-01-01" todate="2017-07-31" code="6502" if os.name == "nt": fname=r'C:\WINDOWS\Fonts\ipaexg.ttf' else: fname = os.environ["HOME"]+'/Library/Fonts/ipaexg.ttf' fp = matplotlib.font_manager.FontProperties(fname=fname, size=14) con=sqlite3.connect(os.environ["DATA"]+"/board/board.db") # top 10 sql="select c.emoji,sum(c.num),s.score from board_emoji_count c,emoji_score s,board b where b.code=c.code and b.tno=c.tno and b.mno=c.mno and c.emoji=s.emoji and c.code=? and b.date between ? and ? group by c.emoji order by sum(c.num) desc limit 10" emoji_list=pd.read_sql_query(sql,con,params=(code,fmdate,todate,)) print(emoji_list) for em in emoji_list["emoji"]: print(em) user=pd.read_sql_query("select tm,count(*) as user_count from "+ "(select strftime('%Y%m%d',date) as tm,user from board "+ " where date between ? and ? and code=? group by tm,user) "+ "group by tm",con,params=(fmdate,todate,code,)) user["tm"]=pd.to_datetime(user["tm"]) emoji=pd.read_sql_query("select strftime('%Y%m%d',date) as tm,count(*) as emoji_count "+ " from board b ,board_emoji_count c"+ " where b.code=c.code and b.tno=c.tno and b.mno=c.mno and "+ " b.date between ? and ? and b.code=? and c.emoji=? group by tm",con,params=(fmdate,todate,code,em,)) emoji["tm"]=pd.to_datetime(emoji["tm"]) data=pd.merge(user,emoji,how="inner") data.drop("tm",axis=1) x=pd.DataFrame(data["user_count"]).values y=pd.DataFrame(data["emoji_count"]).values model=linear_model.LinearRegression() model.fit(x,y) # 回帰係数 print(model.coef_) # 切片 (誤差) print(model.intercept_) # 決定係数 print(model.score(x, y)) plt.scatter(x,y,color="red") plt.plot(x,model.predict(x)) plt.title("絵文字"+em+"数とユーザ数の関係", fontproperties=fp) plt.xlabel("user_count") plt.ylabel("emoji_score") plt.show() con.close() <jupyter_output> emoji sum(c.num) score 0 🙌 3329 1.00 1 😱 908 -0.75 2 💛 549 0.75 3 💀 514 -0.50 4 💩 450 -0.75 5 😁 383 0.50 6 😅 381 0.50 7 👍 180 0.50 8 😊 165 0.50 9 😃 134 0.50 🙌 [[ 0.00145165]] [ 0.92381301] 0.23822882925 <jupyter_text># 絵文字投稿率と出来高 絵文字の投稿率と出来高は関係があるか?出来高が増えると人が増える,絵文字率が増えるか。1日あたりの投稿率で<jupyter_code>%matplotlib inline import matplotlib import matplotlib.pyplot as plt import numpy as np import sqlite3 import os import pandas as pd from sklearn import linear_model fmdate="2015-01-01" todate="2017-07-31" code="6502" if os.name == "nt": fname=r'C:\WINDOWS\Fonts\ipaexg.ttf' else: fname = os.environ["HOME"]+'/Library/Fonts/ipaexg.ttf' fp = matplotlib.font_manager.FontProperties(fname=fname, size=14) con=sqlite3.connect(os.environ["DATA"]+"/board/board.db") # emoji post sql="select strftime('%Y%m%d',b.date) as tm,count(*) emoji_post_count from board b,board_emoji_count e where b.code=e.code and b.mno=e.mno and b.tno=e.mno and e.code=? and b.date between ? and ? group by tm order by tm " emoji_list=pd.read_sql_query(sql,con,params=(code,fmdate,todate,)) # all post sql="select strftime('%Y%m%d',date) as tm,count(*) all_post_count from board where code=? and date between ? and ? group by tm" allpost_list=pd.read_sql_query(sql,con,params=(code,fmdate,todate,)) data=pd.merge(emoji_list,allpost_list,how="inner",left_on="tm",right_on="tm") data["emoji_post_ratio"]=data["emoji_post_count"]/data["all_post_count"] con.close() # 出来高 con=sqlite3.connect("../../../../data/stock/daily.db") cur=con.cursor() volume=pd.read_sql_query("select strftime('%Y%m%d',date) as tm,volume/10000 as volume from histDaily where code=? and date between ? and ? order by tm",con,params=(code,fmdate,todate,)) #volume["tm"]=pd.to_datetime(volume["tm"]) #volume=volume.set_index("tm") cur.close() con.close() data=pd.merge(data,volume,how="inner",left_on="tm",right_on="tm") x=pd.DataFrame(data["volume"]).values y=pd.DataFrame(data["emoji_post_ratio"]).values model=linear_model.LinearRegression() model.fit(x,y) # 回帰係数 print(model.coef_) # 切片 (誤差) print(model.intercept_) # 決定係数 print(model.score(x, y)) plt.scatter(x,y,color="red") plt.plot(x,model.predict(x)) plt.title("絵文字投稿率と出来高", fontproperties=fp) plt.xlabel("volume") plt.ylabel("emoji_post_ratio") plt.show()<jupyter_output>[[ -4.82129903e-07]] [ 0.01603249] 0.12813828662
no_license
/theme/notebook/22_toshiba_stock.ipynb
k-utsubo/xc40
10
<jupyter_start><jupyter_text>## Online Factorization Machine Online factorization models take single data as an input, make a prediction, and train with the data.### 1. Setup The from models imports the package for use. We have also imported a few other packages for plotting.<jupyter_code>import sys sys.path.append('./../') from utils import data_preprocess, plot import os import pickle import numpy as np import torch from time import time from models.models_online.FM_FTRL import FM_FTRL from models.models_online.SFTRL_CCFM import SFTRL_CCFM from models.models_online.SFTRL_Vanila import SFTRL_Vanila from models.models_online.RRF_Online import RRF_Online from utils.data_manager import * from utils.metric_manager import * Tensor_type = torch.DoubleTensor import seaborn as sns import os sns.set() sns.set_style('white') import matplotlib plt.rcParams["axes.grid"] = True plt.rc('font', family='serif') current_palette = sns.color_palette(sns.hls_palette(5, l=.6, s=1.0)) sns.palplot(current_palette) current_palette = np.asarray(current_palette)<jupyter_output><empty_output><jupyter_text>### 2. Create a dataset depending on task We prepare movielens100-k for regression and cod-ran dataset for classification<jupyter_code>task = 'cls' if task == 'reg': nbUsers = 943 nbMovies = 1682 nbFeatures = nbUsers + nbMovies nbRatingsTrain = 90570 nbRatingsTest = 9430 data_dir = os.getcwd() + '/../dataset/ml-100k/' #filename1, filename2 = 'ub.base', 'ub.test' filename1, filename2 = 'ua.base', 'ua.test' _, x_train, y_train, rate_train, timestamp_train = load_dataset_movielens(data_dir + filename1,nbRatingsTrain,nbFeatures,nbUsers) x_train_s, rate_train_s, _ = sort_dataset_movielens(x_train, rate_train, timestamp_train) want_permute = True if want_permute : idx = np.random.permutation(x_train_s.shape[0]) x_train_s = x_train_s[idx] rate_train_s = rate_train_s[idx] else: pass x_train_s = x_train_s.todense() elif task == 'cls': data_dir = './../dataset/cod-rna2/' filename = "cod-rna2.scale" X, y = load_svmlight_file(data_dir + filename, n_features=8) X = X.toarray() want_permute = False if want_permute : idx = np.random.permutation(X.shape[0]) x_train_s = np.asarray(X[idx]) rate_train_s = np.asarray(y[idx]) else: x_train_s = np.asarray(X) rate_train_s = np.asarray(y) else: raise ValueError<jupyter_output><empty_output><jupyter_text>### 3. Create factorization machines and conduct online task There are four models in this notebook; 'FTRL','SFTRL_C','SFTRL_V','Online_RFF'<jupyter_code>model_option_list = ['FTRL','SFTRL_C','SFTRL_V','Online_RFF'] model_option = 'SFTRL_C' #model_option = 'Online_RFF' m = 40 lr_FM = 0.005 assert(model_option in model_option_list) if model_option is 'FTRL': Model_FM_FTRL = FM_FTRL(Tensor_type(x_train_s),Tensor_type(rate_train_s) , task,lr_FM, m ) pred_y, label_y , time = Model_FM_FTRL.online_learning() elif model_option is 'SFTRL_C': Model_SFTRL_C = SFTRL_CCFM(Tensor_type(x_train_s),Tensor_type(rate_train_s) , task,lr_FM,m ) pred_y, label_y , time = Model_SFTRL_C.online_learning() elif model_option is 'SFTRL_V': Model_SFTRL_V = SFTRL_Vanila(Tensor_type(x_train_s),Tensor_type(rate_train_s) , task,lr_FM,m ) pred_y, label_y , time = Model_SFTRL_V.online_learning() elif model_option in 'Online_RFF': inputs_matrix, outputs = Tensor_type(x_train_s), Tensor_type(rate_train_s) Online_RRF = RRF_Online(inputs_matrix,outputs,task) pred_y, label_y , time = Online_RRF.online_learning() #print(type(x_train_s)) <jupyter_output>======================================== SFTRL_CCFM_0.005_40_start 0 th : pred 1.000000 , real -1.000000 1000 th : pred -1.000000 , real -1.000000 2000 th : pred -1.000000 , real 1.000000 3000 th : pred -1.000000 , real -1.000000 4000 th : pred -1.000000 , real -1.000000 5000 th : pred -1.000000 , real -1.000000 6000 th : pred -1.000000 , real -1.000000 7000 th : pred -1.000000 , real -1.000000 8000 th : pred -1.000000 , real -1.000000 9000 th : pred -1.000000 , real -1.000000 10000 th : pred -1.000000 , real -1.000000 11000 th : pred -1.000000 , real -1.000000 12000 th : pred -1.000000 , real -1.000000 13000 th : pred -1.000000 , real -1.000000 14000 th : pred -1.000000 , real -1.000000 15000 th : pred -1.000000 , real -1.000000 16000 th : pred -1.000000 , real -1.000000 17000 th : pred -1.000000 , real -1.000000 18000 th : pred -1.000000 , real -1.000000 19000 th : pred -1.000000 , real -1.000000 20000 th : pred -1.000000 , real -1.000000 21[...]<jupyter_text>### 4. Cacluate Metric We prepare the each metric for regression (average root mean squre) and classification (average accuracy )<jupyter_code>if task == 'reg': metric = regression_metric(pred_y,label_y) elif task == 'cls': _,metric = classfication_metric(pred_y,label_y)<jupyter_output><empty_output><jupyter_text>### 5. Results figures We shows the resutls of prediction and accuracy for regression and classification<jupyter_code>fontsiz = 15 fig = plt.figure(figsize=(8*2,5.5)) fig.add_subplot(1,2,1) plt.plot(pred_y,'b.', label = 'pred',alpha = 0.8) plt.plot(label_y,'r.' , label = 'label',alpha = 0.8) plt.xlabel('iteration' , fontsize = fontsiz) plt.ylabel('y' , fontsize = fontsiz) plt.title('pred vs real' ,fontsize = fontsiz) plt.tick_params(axis='both', labelsize=fontsiz) #plt.legend(loc='upper center', bbox_to_anchor=(0, 1. + 0.075 ,1-0.05,0.1), ncol = 2 , fontsize = fontsiz) plt.legend( fontsize = fontsiz) fig.add_subplot(1,2,2) plt.plot(metric,'b', label = 'metric',alpha = 0.8 ,linewidth = 2.0) plt.xlabel('iteration' , fontsize = fontsiz) plt.ylabel('accumulated metric' , fontsize = fontsiz) plt.title('accumulated metric over iteration' ,fontsize = fontsiz) plt.tick_params(axis='both', labelsize=fontsiz) #plt.legend(ncol = 2 , fontsize = 12) #plt.legend(loc='upper center', bbox_to_anchor=(0, 1. + 0.075 ,1-0.05,0.1), ncol = 2 , fontsize = fontsiz) plt.legend( fontsize = fontsiz) fig.tight_layout() <jupyter_output><empty_output>
no_license
/jupyters/online_models_example.ipynb
yejihan-dev/fm-for-online-recommendation
5
<jupyter_start><jupyter_text>### 运行一次来获得cookie - 注意填充自己的帐号密码<jupyter_code>import requests import time from selenium import webdriver def get_pixiv_cookie(pixiv_id,pixiv_pw): driver = webdriver.Chrome() # Optional argument, if not specified will search pat driver.get('https://accounts.pixiv.net/login'); time.sleep(0.5) account = driver.find_element_by_css_selector('input[autocomplete="username"]') account.send_keys(pixiv_id) time.sleep(10) password = driver.find_element_by_css_selector('input[autocomplete="current-password"]') password.send_keys(pixiv_pw) time.sleep(1) password.submit() time.sleep(10) cookie=driver.get_cookies() driver.close() return cookie f=open("account.txt") p_id = f.readline().rstrip() p_pw = f.readline().rstrip() f.close() cookies_list=get_pixiv_cookie(p_id,p_pw) f=open("cookie.txt","w") f.write(str(cookies_list)) f.close()<jupyter_output><empty_output><jupyter_text>### 下面的直接运行可以就可以根据id爬图了- 从保存的文件获取cookie<jupyter_code>f=open("cookie.txt","r") cookie_list=eval(f.readline()) f.close() s = requests.Session() for cookie in cookie_list: s.cookies.set(cookie['name'], cookie['value'])<jupyter_output><empty_output><jupyter_text>- 获取预载信息<jupyter_code>pid='86685722' delay=0.5 url="https://www.pixiv.net/artworks/"+pid hder1={ 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36 Edg/84.0.522.63', } r=s.get(url,headers=hder1) soup=BeautifulSoup(r.text, 'html.parser') meta=soup.find('meta',id="meta-preload-data")# 格式化后可清晰看到这里是预载信息 js=json.loads(meta['content']) # print(json.dumps(js,indent=2))<jupyter_output><empty_output><jupyter_text>使用`print(soup.prettify())`打印输出之后,可以清楚的发现预载信息在一个叫`meta-preload-data`的`meta`中 之后将内容提取之后也格式化 这是json文件,使用`json.dumps(js,indent=2)`进行格式化输出 ![image.png](images/image2.png) js本身是列表,通过列表的形式获取需要的信息,这里需要的主要是url和页数信息- 获取图片<jupyter_code>def get_image(_url,_hder,_filename=None,_folder='img'): if _filename==None: img_path=urllib.parse.urlparse(_url).path _filename=img_path.split('/')[-1]#路径的最后一项是文件名 f=open(_folder+'/'+_filename,"wb") re=requests.get(_url,headers=_hder) f.write(re.content) f.close() hder2 = { 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36 Edg/84.0.522.63', "referer":"https://www.pixiv.net/" } ori=js["illust"][pid]['urls']['original'] pagecount=js['illust'][pid]['pageCount'] for i in range(pagecount): url=ori.replace("p0","p"+str(i)) # print(url) get_image(url,hder2) time.sleep(delay)<jupyter_output><empty_output><jupyter_text>这里注意只有`pixiv.net`发出的原图请求`pximg.net`才会受理,这个需要在原图界面观察Network后筛选得到 ![image.png](images/image1.png)### 整合了以上代码<jupyter_code>import requests import urllib.request import urllib.parse from bs4 import BeautifulSoup from PIL import Image import sys import time import json def get_image(_url,_hder,_filename=None,_folder='img'): if _filename==None: img_path=urllib.parse.urlparse(_url).path _filename=img_path.split('/')[-1]#路径的最后一项是文件名 f=open(_folder+'/'+_filename,"wb") re=requests.get(_url,headers=_hder) f.write(re.content) f.close() def download_id(pid): f=open("cookie.txt","r") cookie_list=eval(f.readline()) f.close() s = requests.Session() for cookie in cookie_list: s.cookies.set(cookie['name'], cookie['value']) if(type(pid)==int): pid=str(pid) delay=0.5 url="https://www.pixiv.net/artworks/"+pid hder1={ 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36 Edg/84.0.522.63', } r=s.get(url,headers=hder1) soup=BeautifulSoup(r.text, 'html.parser') meta=soup.find('meta',id="meta-preload-data") js=json.loads(meta['content']) hder2 = { 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36 Edg/84.0.522.63', "referer":"https://www.pixiv.net/" } ori=js["illust"][pid]['urls']['original'] pagecount=js['illust'][pid]['pageCount'] for i in range(pagecount): url=ori.replace("p0","p"+str(i)) get_image(url,hder2) time.sleep(delay) download_id(90479236)<jupyter_output><empty_output><jupyter_text>### 尝试通过作者爬取作品id<jupyter_code>author_id='27691' url='https://www.pixiv.net/ajax/user/'+author_id+'/profile/all' hder={ 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36 Edg/84.0.522.63', } js=json.loads(s.get(url,headers=hder).text) print(js["body"]["illusts"].keys())<jupyter_output><empty_output><jupyter_text>首先通过 ``` url='https://www.pixiv.net/users/'+author_id+'/artworks' soup=BeautifulSoup(s.get(url,headers=hder).text) print(soup.prettify()) ``` 直接爬取该页面信息,但是分析后发现没有id信息,然后打开浏览器加载这个页面,在Network下的XHR里可以找到传来id信息的页面,是https://www.pixiv.net/ajax/user/27691/profile/all ![image3.png](images/image3.png) 直接点击可以访问,说明不需要cookie,只需要浏览器UA即可. 得到所有插画的id就等同于得到所有图片了<jupyter_code>for id in list(js["body"]["illusts"].keys()): download_id(id)<jupyter_output><empty_output>
no_license
/pixiv.ipynb
Unknown-Chinese-User/pixiv-spider
7
<jupyter_start><jupyter_text>**This notebook is an exercise in the [Intro to Deep Learning](https://www.kaggle.com/learn/intro-to-deep-learning) course. You can reference the tutorial at [this link](https://www.kaggle.com/ryanholbrook/deep-neural-networks).** --- # Introduction # In the tutorial, we saw how to build deep neural networks by stacking layers inside a `Sequential` model. By adding an *activation function* after the hidden layers, we gave the network the ability to learn more complex (non-linear) relationships in the data. In these exercises, you'll build a neural network with several hidden layers and then explore some activation functions beyond ReLU. Run this next cell to set everything up!<jupyter_code>import tensorflow as tf # Setup plotting import matplotlib.pyplot as plt plt.style.use('seaborn-whitegrid') # Set Matplotlib defaults plt.rc('figure', autolayout=True) plt.rc('axes', labelweight='bold', labelsize='large', titleweight='bold', titlesize=18, titlepad=10) # Setup feedback system from learntools.core import binder binder.bind(globals()) from learntools.deep_learning_intro.ex2 import *<jupyter_output><empty_output><jupyter_text>In the *Concrete* dataset, your task is to predict the compressive strength of concrete manufactured according to various recipes. Run the next code cell without changes to load the dataset.<jupyter_code>import pandas as pd concrete = pd.read_csv('../input/dl-course-data/concrete.csv') concrete.head()<jupyter_output><empty_output><jupyter_text># 1) Input Shape # The target for this task is the column `'CompressiveStrength'`. The remaining columns are the features we'll use as inputs. What would be the input shape for this dataset?<jupyter_code>concrete.shape # YOUR CODE HERE input_shape = [8] # Check your answer q_1.check() # Lines below will give you a hint or solution code #q_1.hint() #q_1.solution()<jupyter_output><empty_output><jupyter_text># 2) Define a Model with Hidden Layers # Now create a model with three hidden layers, each having 512 units and the ReLU activation. Be sure to include an output layer of one unit and no activation, and also `input_shape` as an argument to the first layer.<jupyter_code>from tensorflow import keras from tensorflow.keras import layers # YOUR CODE HERE model = keras.Sequential([ layers.Dense(units= 512, activation= 'relu',input_shape= [8]), layers.Dense(units= 512, activation= 'relu'), layers.Dense(units= 512, activation= 'relu'), layers.Dense(units= 1) ]) # Check your answer q_2.check() # Lines below will give you a hint or solution code #q_2.hint() #q_2.solution()<jupyter_output><empty_output><jupyter_text># 3) Activation Layers # Let's explore activations functions some. The usual way of attaching an activation function to a `Dense` layer is to include it as part of the definition with the `activation` argument. Sometimes though you'll want to put some other layer between the `Dense` layer and its activation function. (We'll see an example of this in Lesson 5 with *batch normalization*.) In this case, we can define the activation in its own `Activation` layer, like so: ``` layers.Dense(units=8), layers.Activation('relu') ``` This is completely equivalent to the ordinary way: `layers.Dense(units=8, activation='relu')`. Rewrite the following model so that each activation is in its own `Activation` layer.<jupyter_code>### YOUR CODE HERE: rewrite this to use activation layers model = keras.Sequential([ layers.Dense(32, activation='relu', input_shape=[8]), layers.Dense(32, activation='relu'), layers.Dense(1), ]) model = keras.Sequential([ layers.Dense(units= 32, input_shape=[8]), layers.Activation('relu'), layers.Dense(units= 32), layers.Activation('relu'), layers.Dense(units= 1), ]) # Check your answer q_3.check() # Lines below will give you a hint or solution code #q_3.hint() #q_3.solution()<jupyter_output><empty_output><jupyter_text># Optional: Alternatives to ReLU # There is a whole family of variants of the `'relu'` activation -- `'elu'`, `'selu'`, and `'swish'`, among others -- all of which you can use in Keras. Sometimes one activation will perform better than another on a given task, so you could consider experimenting with activations as you develop a model. The ReLU activation tends to do well on most problems, so it's a good one to start with. Let's look at the graphs of some of these. Change the activation from `'relu'` to one of the others named above. Then run the cell to see the graph. (Check out the [documentation](https://www.tensorflow.org/api_docs/python/tf/keras/activations) for more ideas.)<jupyter_code># YOUR CODE HERE: Change 'relu' to 'elu', 'selu', 'swish'... or something else activation_layer = layers.Activation('swish') x = tf.linspace(-3.0, 3.0, 100) y = activation_layer(x) # once created, a layer is callable just like a function plt.figure(dpi=100) plt.plot(x, y) plt.xlim(-3, 3) plt.xlabel("Input") plt.ylabel("Output") plt.show()<jupyter_output><empty_output>
no_license
/Intro to Deep Learning/2 - Deep Neural Networks/exercise-deep-neural-networks.ipynb
mtamjidhossain/Kaggle-courses
6
<jupyter_start><jupyter_text># Answering Questions for the Chinook Record StoreThe Chinook record store has just signed a deal with a new record label, and you've been tasked with selecting the first three albums that will be added to the store, from a list of four. All four albums are by artists that don't have any tracks in the store right now - we have the artist names, and the genre of music they produce: Artist Name - Genre - Regal - Hip-Hop - Red Tone - Punk - Meteor and the Girls - Pop - Slim Jim Bites - Blues The record label specializes in artists from the USA, and they have given Chinook some money to advertise the new albums in the USA, so we're interested in finding out which genres sell the best in the USA.<jupyter_code>%%capture %load_ext sql %sql sqlite:///chinook.db<jupyter_output><empty_output><jupyter_text># Overview of the Data Query the database to get a list of all tables and views in our database:<jupyter_code>%%sql SELECT name, type FROM sqlite_master WHERE type IN ("table","view");<jupyter_output>Done. <jupyter_text># Selecting Albums to PurchaseWrite a query that returns each genre, with the number of tracks sold in the USA: - in absolute numbers - in percentages<jupyter_code>%%sql SELECT il.* FROM invoice_line il INNER JOIN invoice i ON i.invoice_id = il.invoice_id INNER JOIN customer c on c.customer_id = i.customer_id WHERE c.country = 'USA' LIMIT 10; %%sql WITH usa_sold AS(SELECT il.* FROM invoice_line il INNER JOIN invoice i ON i.invoice_id = il.invoice_id INNER JOIN customer c on c.customer_id = i.customer_id WHERE c.country = 'USA' ) SELECT g.name genre, count(us.invoice_line_id) tracks_sold FROM usa_sold us INNER JOIN track t ON t.track_id = us.track_id INNER JOIN genre g ON g.genre_id = t.genre_id GROUP BY 1 ORDER BY 2; %%sql WITH usa_sold AS(SELECT il.* FROM invoice_line il INNER JOIN invoice i ON i.invoice_id = il.invoice_id INNER JOIN customer c on c.customer_id = i.customer_id WHERE c.country = 'USA' ) SELECT g.name genre, count(us.invoice_line_id) tracks_sold, cast(count(us.invoice_line_id) AS FLOAT) / ( SELECT COUNT(*) from usa_sold ) percentage_sold FROM usa_sold us INNER JOIN track t ON t.track_id = us.track_id INNER JOIN genre g ON g.genre_id = t.genre_id GROUP BY 1 ORDER BY 2 DESC LIMIT 10; <jupyter_output>Done. <jupyter_text>Based on the table above and the four options mentioned at the beginning, the albums to choose would be from should be: - Red Tone - Punk - Slim Jim Bites - Blues - Meteor and the Girls - Pop<jupyter_code>%%sql WITH usa_sold AS(SELECT il.* FROM invoice_line il INNER JOIN invoice i ON i.invoice_id = il.invoice_id INNER JOIN customer c on c.customer_id = i.customer_id WHERE c.country = 'USA' ) SELECT DISTINCT t.composer artist_name, g.name genre, count(us.invoice_line_id) tracks_sold, cast(count(us.invoice_line_id) AS FLOAT) / ( SELECT COUNT(*) from usa_sold ) percentage_sold FROM usa_sold us INNER JOIN track t ON t.track_id = us.track_id INNER JOIN genre g ON g.genre_id = t.genre_id WHERE g.name = 'Rock' GROUP BY 1 ORDER BY 3 DESC LIMIT 5; <jupyter_output>Done. <jupyter_text>Rock, Alternative & Punk, and Metal have the most tracks sold. Adding more artists along the lines of The Rolling Stones and Nirvana would be beneficial after adding the three albums from above.# Analyzing Employee Sales PerformanceWrite a query that finds the total dollar amount of sales assigned to each sales support agent within the company. Add any extra attributes for that employee that you find are relevant to the analysis.<jupyter_code>%%sql SELECT SUM(i.total) total_sales, c.support_rep_id FROM invoice i INNER JOIN customer c ON c.customer_id = i.customer_id GROUP BY 2<jupyter_output>Done. <jupyter_text>There is data on three sales agents.<jupyter_code>%%sql SELECT e.first_name ||' '|| e.last_name employee_name, e.title FROM employee e<jupyter_output>Done. <jupyter_text>Confirming the three sales agents.<jupyter_code>%%sql WITH total_sales_report AS ( SELECT SUM(i.total) total, c.support_rep_id FROM invoice i INNER JOIN customer c ON c.customer_id = i.customer_id GROUP BY 2 ) SELECT e.first_name ||' '|| e.last_name employee_name, e.hire_date, SUM(tsr.total) total_sales FROM total_sales_report tsr INNER JOIN employee e ON e.employee_id = tsr.support_rep_id GROUP BY 1;<jupyter_output>Done. <jupyter_text>Steve started six months later, so that's why his numbers are a bit behind.# Analyzing Sales by Country<jupyter_code>%%sql WITH country_or_other AS ( SELECT CASE WHEN ( SELECT count(*) FROM customer where country = c.country ) = 1 THEN "Other" ELSE c.country END AS country, c.customer_id, il.* FROM invoice_line il INNER JOIN invoice i ON i.invoice_id = il.invoice_id INNER JOIN customer c ON c.customer_id = i.customer_id ) SELECT country, customers, total_sales, average_order, customer_lifetime_value FROM ( SELECT country, count(distinct customer_id) customers, SUM(unit_price) total_sales, SUM(unit_price) / count(distinct customer_id) customer_lifetime_value, SUM(unit_price) / count(distinct invoice_id) average_order, CASE WHEN country = "Other" THEN 1 ELSE 0 END AS sort FROM country_or_other GROUP BY country ORDER BY sort ASC, total_sales DESC );<jupyter_output>Done.
no_license
/chinook_store_sql.ipynb
EdsTyping/chinook_record_store_sql
8
<jupyter_start><jupyter_text>## Surrogate Models & Helper Functions<jupyter_code>ValueRange = namedtuple('ValueRange', ['min', 'max']) def determinerange(values): """Determine the range of values in each dimension""" return ValueRange(np.min(values, axis=0), np.max(values, axis=0)) def linearscaletransform(values, *, range_in=None, range_out=ValueRange(0, 1), scale_only=False): """Perform a scale transformation of `values`: [range_in] --> [range_out]""" if range_in is None: range_in = determinerange(values) elif not isinstance(range_in, ValueRange): range_in = ValueRange(*range_in) if not isinstance(range_out, ValueRange): range_out = ValueRange(*range_out) scale_out = range_out.max - range_out.min scale_in = range_in.max - range_in.min if scale_only: scaled_values = (values / scale_in) * scale_out else: scaled_values = (values - range_in.min) / scale_in scaled_values = (scaled_values * scale_out) + range_out.min return scaled_values ''' F16 ''' def F16(X): f = bn.F16() X = np.array(X) return f(X) ''' Latin HyperCube Sampling Design of Experiment ''' def DOE(n_obs, dim): np.random.seed(0) lhd = pyDOE.lhs(n=dim, samples=n_obs, criterion='m') X = [lhd[:,idx] for idx in range(dim)] return X def create_basis_function(data): true = np.array(data['Y']) data = pd.DataFrame(np.atleast_2d(PolynomialFeatures(degree=2).fit_transform(data.iloc[:,:-1]))) data['Y'] = pd.Series(true) return data ''' Create Basis Functions ''' def create_function_basis(x): return np.atleast_2d(PolynomialFeatures(degree=2).fit_transform(x.reshape(1,-1))) ''' Elastic Net Regression ''' def elastic_net(train_data,test_data): scaler = MinMaxScaler().fit(np.r_[train_data.iloc[:,:-1].values]) regr = ElasticNet(alpha= 0.12 ,random_state=0 , l1_ratio=0.81, fit_intercept =True, max_iter=3000,selection='random').fit(scaler.transform ( np.array(train_data.iloc[:,:-1])) , np.array(train_data.iloc[:,-1])) pred = regr.predict(scaler.transform(test_data)) def predict(scaler, regr): def __predict__(x): x = create_function_basis(x) return regr.predict(scaler.transform(x)) return __predict__ return regr,pred, predict(scaler, regr) ''' Kriging''' def kriging(train_data,test_data): kernel = RBF() scaler = MinMaxScaler().fit(np.r_[train_data.iloc[:,:-1].values]) gpr = GaussianProcessRegressor(kernel=kernel,n_restarts_optimizer= 15,random_state=0, normalize_y=True ).fit(scaler.transform(train_data.iloc[:,:-1]), train_data.iloc[:,-1]) pred = gpr.predict(scaler.transform(test_data)) def predict(scaler, gpr): def __predict__(x): x = np.atleast_2d(x) return gpr.predict(scaler.transform(x)) return __predict__ return gpr,pred, predict(scaler,gpr) ''' Support Vector Regression''' def _SVR(train_data,test_data): scaler = MinMaxScaler().fit(np.r_[train_data.iloc[:,:-1].values]) gpr = sklearn.svm.SVR(kernel='rbf', gamma = 37.213462 , C = 1000.000000 ,max_iter=1500).fit( scaler.transform(train_data.iloc[:,:-1]), train_data.iloc[:,-1]) pred = gpr.predict(scaler.transform(test_data)) def predict(scaler, gpr): def __predict__(x): x = np.atleast_2d(x) return gpr.predict(scaler.transform(x)) return __predict__ return gpr,pred, predict(scaler,gpr)<jupyter_output><empty_output><jupyter_text>## Load Training and Test Data Set initially Generated<jupyter_code>path = "train_16_4000Samples.csv" train = pd.read_csv(path).iloc[:,1:] test = pd.read_csv('test_16_800Samples.csv').iloc[:,1:] true = np.array(test['Y'])<jupyter_output><empty_output><jupyter_text>## Surrogate Models<jupyter_code>model_kri , pred_kri , predict_kri = kriging(train,test.iloc[:,:-1]) model_svr , pred_svr , predict_svr = _SVR(train,test.iloc[:,:-1]) train = create_basis_function(train) test = create_basis_function(test) model_eln , pred_eln , predict_eln = elastic_net(train,test.iloc[:,:-1])<jupyter_output>/usr/local/lib/python3.6/dist-packages/sklearn/svm/_base.py:231: ConvergenceWarning: Solver terminated early (max_iter=1500). Consider pre-processing your data with StandardScaler or MinMaxScaler. % self.max_iter, ConvergenceWarning) <jupyter_text>## CMA-ES<jupyter_code>Columns = ['Kri' , 'SVR' , 'ELN' ] Cols = [] for j in range(len(Columns)): for i in range(1,201): Cols.append(Columns[j]+'_X'+str(i)) const = [ [-5] * 200, [5] * 200 ] opt = cma.CMAOptions() opt.set("bounds", const) opt.set ("seed" , 0) opt.set ("maxfevals" , 200000) n_obs , dim = 30, 200 G = DOE(n_obs, dim) G = [ linearscaletransform(G[idx] , range_out=(-5,5)) for idx in range(dim) ] G = [ G[idx].reshape(n_obs,1) for idx in range(len(G)) ] X_Values = np.zeros([10,600]) for i in range(10, 20): print ('Run : '+ str(i)) min_kri = cma.fmin(predict_kri , np.concatenate(G, 1)[i] , 2.5 , options=opt) [0] min_svr = cma.fmin(predict_svr , np.concatenate(G, 1)[i] , 2.5 , options=opt) [0] min_eln = cma.fmin(predict_eln , np.concatenate(G, 1)[i] , 2.5 , options=opt) [0] X_Values [i-10,:] = list(min_kri)+list(min_svr)+list(min_eln) X_Values = pd.DataFrame(X_Values) X_Values.columns = Cols X_Values.to_csv('sample_data\\F16_X_Values_first.csv') Krig_Fun = np.zeros(10) SVM_Fun = np.zeros(10) ELN_Fun = np.zeros(10) for i in range(X_Values.shape[0]): Krig_Fun [i] = F16(X_Values.iloc[i,:200]) SVM_Fun [i] = F16(X_Values.iloc[i,200:400]) ELN_Fun [i] = F16(X_Values.iloc[i,400:600]) print ('Kriging') print (stats.mode(Krig_Fun) , np.std(Krig_Fun)) print ('SVM') print (stats.mode(SVM_Fun) , np.std(SVM_Fun)) print ('ELN') print (stats.mode(ELN_Fun) , np.std(ELN_Fun)) <jupyter_output><empty_output>
no_license
/Original - Optimality/200D/second/F16_200_original.ipynb
SibghatUllah13/Deep-Latent_Variable_Models-for-dimensionality-reduction-in-surrogate-assisted-optimization
4
<jupyter_start><jupyter_text>## Download rnn_merged.zip & rnn_embed.zip from https://drive.google.com/drive/folders/1yO_W-m0fF_PludrnScdgyTGsPFoDsA6_?usp=sharing and unzip to the same folder of this file ## Also download train_jpg.zip & test_jpg.zip from competition website<jupyter_code>import pandas as pd import tensorflow as tf from keras.preprocessing import text, sequence import numpy as np from keras.layers import Input, SpatialDropout1D,Dropout, GlobalAveragePooling1D, GlobalMaxPooling1D, \ CuDNNGRU, GRU, Bidirectional, LSTM, Dense, Embedding, concatenate, Embedding, \ Flatten, Activation, BatchNormalization, regularizers, Conv1D, Conv2D, MaxPooling2D from keras.constraints import max_norm from keras.initializers import Orthogonal from keras.models import Model from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LambdaCallback, Callback, LearningRateScheduler import keras.backend as K import numpy as np from sklearn import metrics from sklearn.model_selection import train_test_split import os import pickle import gc; gc.enable() import matplotlib import matplotlib.pyplot as plt %matplotlib inline import string import nltk from nltk.corpus import stopwords from nltk.stem.snowball import RussianStemmer from scipy.stats import boxcox import re #from tqdm import tqdm<jupyter_output>E:\Anaconda3\envs\tensorflow\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters Using TensorFlow backend. <jupyter_text>### Check GPU Availability<jupyter_code>sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) K.tensorflow_backend._get_available_gpus()<jupyter_output>[name: "/device:CPU:0" device_type: "CPU" memory_limit: 268435456 locality { } incarnation: 339512226104842527 , name: "/device:GPU:0" device_type: "GPU" memory_limit: 3174131302 locality { bus_id: 1 links { } } incarnation: 17746058336949755705 physical_device_desc: "device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1" ] <jupyter_text>### Preprocess Training and Testing Data<jupyter_code>seed = 411 rnn_train_epochs = 10 batch_size=128 # 32 or 64 is good (too huge for my PC), 128 is worse in the past experiments cpu_count=4 features = pickle.load(open('rnn_merged.pkl', 'rb')) features.keys() train = features['train'] test = features['test'] renamed_cols = [] count = 0 for col in train.columns: if 'cat_features_user_id_category_name' in col: col = 'cat_features_user_id_category_name_'+str(count) count += 1 renamed_cols.append(col) train.columns = renamed_cols test.columns = renamed_cols train_len = train.shape[0] train_y = features['y_train'] categorical = features['categorical'] numerical = [f for f in train.columns if f not in categorical] features = numerical + categorical train.columns.tolist() # remove features: text, image, other embeddings\feature engineerings remove_cols = [ 'cat_features_user_id_category_name_0', 'cat_features_user_id_category_name_1', 'cat_features_user_id_category_name_2', 'cat_features_user_id_category_name_3', 'cat_features_user_id_category_name_4', 'cat_features_user_id_category_name_5', 'cat_features_user_id_category_name_6', 'cat_features_user_id_category_name_7', 'cat_features_user_id_category_name_8', 'cat_features_user_id_category_name_9', 'cat_features_user_id_category_name_10', 'cat_features_user_id_category_name_11', 'cat_features_user_id_category_name_12', 'cat_features_user_id_category_name_13', 'cat_features_user_id_category_name_14', 'cat_features_user_id_category_name_15', 'cat_features_user_id_category_name_16', 'cat_features_user_id_category_name_17', 'cat_features_user_id_category_name_18', 'cat_features_user_id_category_name_19', 'cat_features_user_id_category_name_20', 'cat_features_user_id_category_name_21', 'cat_features_user_id_category_name_22', 'cat_features_user_id_category_name_23', 'cat_features_user_id_category_name_24', 'cat_features_user_id_category_name_25', 'cat_features_user_id_category_name_26', 'cat_features_user_id_category_name_27', 'cat_features_user_id_category_name_28', 'cat_features_user_id_category_name_29', 'cat_features_user_id_category_name_30', 'cat_features_user_id_category_name_31', 'cat_features_user_id_category_name_32', 'cat_features_user_id_category_name_33', 'cat_features_user_id_category_name_34', 'cat_features_user_id_category_name_35', 'cat_features_user_id_category_name_36', 'cat_features_user_id_category_name_37', 'cat_features_user_id_category_name_38', 'cat_features_user_id_category_name_39', 'cat_features_user_id_category_name_40', 'cat_features_user_id_category_name_41', 'cat_features_user_id_category_name_42', 'cat_features_user_id_category_name_43', 'cat_features_user_id_category_name_44', 'cat_features_user_id_category_name_45', 'cat_features_user_id_category_name_46', 'title_tfidf_svd_1', 'title_tfidf_svd_2', 'title_tfidf_svd_3', 'title_tfidf_svd_4', 'title_tfidf_svd_5', 'description_tfidf_svd_1', 'description_tfidf_svd_2', 'description_tfidf_svd_3', 'description_tfidf_svd_4', 'description_tfidf_svd_5', 'region_mean_price', 'region_mean_image_top_1', 'region_mean_item_seq_number', 'region_mean_price_pred', 'region_mean_price_pred_all', 'region_mean_ridge_preds', 'city_mean_price', 'city_mean_image_top_1', 'city_mean_item_seq_number', 'city_mean_price_pred', 'city_mean_price_pred_all', 'city_mean_ridge_preds', 'parent_category_name_mean_price', 'parent_category_name_mean_image_top_1', 'parent_category_name_mean_item_seq_number', 'parent_category_name_mean_price_pred', 'parent_category_name_mean_price_pred_all', 'parent_category_name_mean_ridge_preds', 'category_name_mean_price', 'category_name_mean_image_top_1', 'category_name_mean_item_seq_number', 'category_name_mean_price_pred', 'category_name_mean_price_pred_all', 'category_name_mean_ridge_preds', 'user_type_mean_price', 'user_type_mean_image_top_1', 'user_type_mean_item_seq_number', 'user_type_mean_price_pred', 'user_type_mean_price_pred_all', 'user_type_mean_ridge_preds', 'param_1_mean_price', 'param_1_mean_image_top_1', 'param_1_mean_item_seq_number', 'param_1_mean_price_pred', 'param_1_mean_price_pred_all', 'param_1_mean_ridge_preds', 'param_2_mean_price', 'param_2_mean_image_top_1', 'param_2_mean_item_seq_number', 'param_2_mean_price_pred', 'param_2_mean_price_pred_all', 'param_2_mean_ridge_preds', 'param_3_mean_price', 'param_3_mean_image_top_1', 'param_3_mean_item_seq_number', 'param_3_mean_price_pred', 'param_3_mean_price_pred_all', 'param_3_mean_ridge_preds', 'user_id_nunique_parent_category_name', 'user_id_nunique_category_name', 'user_id_nunique_param_1', 'user_id_nunique_param_2', 'user_id_nunique_param_3', 'user_id_nunique_activation_date', 'user_id_activation_date_count_item_id', 'image_top_1_nunique_item_id', 'image_top_1_nunique_user_id', 'image_top_1_nunique_category_name', 'image_top_1_nunique_param_1', 'image_top_1_nunique_item_seq_number', 'image_top_1_mean_price_pred', 'image_top_1_std_price_pred', 'image_top_1_mean_item_seq_number', 'user_id_mean_ridge_preds', 'user_id_category_name_mean_ridge_preds', 'user_id_image_top_1_mean_ridge_preds', 'user_id_category_name_sum_ridge_preds', 'cityxcatxusertypeitem_num', 'cityxcatxusertypecity_fm_factor_0', 'cityxcatxusertypecity_fm_factor_1', 'cityxcatxusertypecategory_name_fm_factor_0', 'cityxcatxusertypecategory_name_fm_factor_1', 'cityxcatxusertypeuser_type_fm_factor_0', 'cityxcatxusertypeuser_type_fm_factor_1', 'cityxcatxusertypecity_fm_bias', 'cityxcatxusertypecategory_name_fm_bias', 'cityxcatxusertypeuser_type_fm_bias', 'imgxcityxcatitem_num', 'imgxcityxcatimage_top_1_fm_factor_0', 'imgxcityxcatimage_top_1_fm_factor_1', 'imgxcityxcatcity_fm_factor_0', 'imgxcityxcatcity_fm_factor_1', 'imgxcityxcatcategory_name_fm_factor_0', 'imgxcityxcatcategory_name_fm_factor_1', 'imgxcityxcatimage_top_1_fm_bias', 'imgxcityxcatcity_fm_bias', 'imgxcityxcatcategory_name_fm_bias', 'imgxisqnxusertypeitem_num', 'imgxisqnxusertypeimage_top_1_fm_factor_0', 'imgxisqnxusertypeimage_top_1_fm_factor_1', 'imgxisqnxusertypeitem_seq_number_fm_factor_0', 'imgxisqnxusertypeitem_seq_number_fm_factor_1', 'imgxisqnxusertypeuser_type_fm_factor_0', 'imgxisqnxusertypeimage_top_1_fm_bias', 'imgxisqnxusertypeitem_seq_number_fm_bias', 'b_intensity_mean', 'b_intensity_median', 'b_intensity_std', 'g_intensity_mean', 'g_intensity_median', 'g_intensity_std', 'gray_intensity_mean', 'gray_intensity_median', 'gray_intensity_std', 'r_intensity_mean', 'r_intensity_median', 'r_intensity_std', 'nasnet_nima_med', 'nasnet_nima_std', 'nasnet_nima_max', 'nasnet_nima_min', 'nasnet_nima_1_quartile', 'nasnet_nima_3_quartile', 'nasnet_nima_13_quartile_diff', 'nasnet_nima_max_min_diff', 'nasnet_nima_non_max_mean', 'nasnet_nima_max_non_max_mean_diff', ] train.drop(remove_cols, axis=1, inplace=True) test.drop(remove_cols, axis=1, inplace=True) for col in remove_cols: if col in categorical: categorical.remove(col) if col in numerical: numerical.remove(col) features = numerical + categorical train.loc[:, 'image'] = pd.read_csv('train.csv', usecols=['activation_date', 'image'], parse_dates=['activation_date']) \ .sort_values('activation_date').reset_index(drop=True)['image'].fillna('no-image') test.loc[:, 'image'] = pd.read_csv('test.csv', usecols=['image'])['image'].fillna('no-image') max_features = 500000 maxlen = 150 embed_size = 300 title_max_features = 200000 title_maxlen = 80 title_embed_size = 100 embed_info = pickle.load(open('rnn_embed.pkl', 'rb')) embed_info.keys() desc_embed_info = embed_info['desc_embed_info'] title_embed_info = embed_info['title_embed_info'] print('setup max info for embedding in categorical variables') max_info = dict((col, train[col].max()+1) for col in categorical)<jupyter_output>setup max info for embedding in categorical variables <jupyter_text>### Build RNN Model<jupyter_code>def root_mean_squared_error(y_true, y_pred): return K.sqrt(K.mean(K.square(y_true - y_pred))) from keras.engine.topology import Layer from keras import initializers, regularizers, constraints class Attention(Layer): def __init__(self, step_dim, W_regularizer=None, b_regularizer=None, W_constraint=None, b_constraint=None, bias=True, **kwargs): self.supports_masking = True self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias self.step_dim = step_dim self.features_dim = 0 super(Attention, self).__init__(**kwargs) def build(self, input_shape): print(input_shape) assert len(input_shape) == 3 self.W = self.add_weight((input_shape[-1],), initializer=self.init, name='{}_W'.format(self.name), regularizer=self.W_regularizer, constraint=self.W_constraint) self.features_dim = input_shape[-1] if self.bias: self.b = self.add_weight((input_shape[1],), initializer='zero', name='{}_b'.format(self.name), regularizer=self.b_regularizer, constraint=self.b_constraint) else: self.b = None self.built = True def compute_mask(self, input, input_mask=None): return None def call(self, x, mask=None): features_dim = self.features_dim step_dim = self.step_dim eij = K.reshape(K.dot(K.reshape(x, (-1, features_dim)), K.reshape(self.W, (features_dim, 1))), (-1, step_dim)) if self.bias: eij += self.b eij = K.tanh(eij) a = K.exp(eij) if mask is not None: a *= K.cast(mask, K.floatx()) a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx()) a = K.expand_dims(a) weighted_input = x * a return K.sum(weighted_input, axis=1) def compute_output_shape(self, input_shape): return input_shape[0], self.features_dim def clip_rmse(true, prediction): return np.sqrt(metrics.mean_squared_error(true, np.clip(prediction, 0., 1.))) class NBatchEvalLogger(Callback): def __init__(self, display, val_X, val_y, save_path=None, save_start=1000): self.step = 0 self.display = display self.val_X = val_X self.val_y = val_y self.best_loss = None self.save_path = save_path self.save_start = save_start self.record_count = 0 def on_batch_end(self, batch, logs={}): self.step += 1 if self.step % self.display == 0 and self.step >= self.save_start: #loss, metric = self.model.evaluate(self.val_X, self.val_y, batch_size=128, verbose=1) prediction = self.model.predict(self.val_X, batch_size=128, verbose=0) loss = clip_rmse(self.val_y, prediction) if self.best_loss is None: self.best_loss = loss else: if loss < self.best_loss: self.best_loss = loss if self.save_path is not None: self.model.save(self.save_path, overwrite=True) self.record_count += 1 print('\rstep: {} val loss={:.5f}, best loss={:.5f}'.format(self.step, loss, self.best_loss)) import keras from copy import deepcopy as cp import os from zipfile import ZipFile import cv2 import numpy as np import pandas as pd from dask import bag, threaded from dask.diagnostics import ProgressBar import matplotlib.pyplot as plt from keras.preprocessing.image import load_img, img_to_array from keras.applications.resnet50 import preprocess_input import concurrent.futures from multiprocessing.pool import ThreadPool class DataGenerator(keras.utils.Sequence): #'Generates data for Keras' def __init__(self, list_IDs, X, y, img_arch, img_path, batch_size=32, shuffle=True, is_train=True): #'Initialization' self.batch_size = batch_size self.X = X self.y = y self.list_IDs = list_IDs self.shuffle = shuffle self.img_path = img_path self.is_train = is_train self.on_epoch_end() self.zipped = ZipFile(img_arch) #print('file names:\n', self.zipped.namelist()[1:10], '\n...') self.img_path = img_path global cpu_count self.pool = ThreadPool(cpu_count) def __getstate__(self): """ This is called before pickling. """ state = self.__dict__.copy() del state['zipped'] return state def __setstate__(self, state): """ This is called while unpickling. """ self.__dict__.update(state) def __len__(self): #'Denotes the number of batches per epoch' return int(np.ceil(len(self.list_IDs) / self.batch_size)) def __getitem__(self, index): #'Generate one batch of data' # Generate indexes of the batch start = index*self.batch_size end = min((index+1)*self.batch_size, len(self.indexes)) indexes = self.indexes[start: end] # Generate data return self.__data_generation(indexes) def on_epoch_end(self): #'Updates indexes after each epoch' self.indexes = cp(list(self.list_IDs)) if self.shuffle == True: np.random.shuffle(self.indexes) def load_img_from_zipped(self, img_id, i, imgs_holder): invalid_img_ids = ['4f029e2a00e892aa2cac27d98b52ef8b13d91471f613c8d3c38e3f29d4da0b0c', '8513a91e55670c709069b5f85e12a59095b802877715903abef16b7a6f306e58', '60d310a42e87cdf799afcd89dc1b11ae3fdc3d0233747ec7ef78d82c87002e83', 'b98b291bd04c3d92165ca515e00468fd9756af9a8f1df42505deed1dcfb5d7ae'] try: if img_id in invalid_img_ids or img_id == 'no-image': pass else: exfile = self.zipped.read(self.img_path+img_id+'.jpg') arr = np.frombuffer(exfile, np.uint8) imz = cv2.imdecode(arr, flags=cv2.IMREAD_UNCHANGED) imz = cv2.resize(imz, (224,224), interpolation=cv2.INTER_AREA) imgs_holder[i] = img_to_array(imz) except: print(img_id, ' is invalid') pass return None def parallel_load_imgs(self, img_ids, wait=True): imgs_holder = np.zeros((len(img_ids), 224, 224, 3)) ''' for i, im_id in enumerate(img_ids): self.load_img_from_zipped(im_id, i, imgs_holder) ''' self.res = [self.pool.apply_async(self.load_img_from_zipped, (im_id, i, imgs_holder)) for i, im_id in enumerate(img_ids)] if wait: for r in self.res: r.get() #print(imgs_holder) imgs_holder = preprocess_input(imgs_holder) # adjust to mean of rgb to some value return imgs_holder def __data_generation(self, list_IDs_temp): #'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Generate data X = dict((col, self.X.loc[list_IDs_temp, col].values) for col in features) X['desc'] = desc_embed_info['text'][list_IDs_temp,:] X['title'] = title_embed_info['text'][list_IDs_temp,:] X['imgs'] = self.parallel_load_imgs(self.X.loc[list_IDs_temp, 'image'].values) if self.is_train: y = cp(self.y[list_IDs_temp]) return X, y else: return X # 'train_jpg.zip', 'data/competition_files/train_jpg/', # debug use ''' zipped = ZipFile('train_jpg.zip') print(zipped.namelist()[1:10]) img_id = '2809fd6afd6d3cae4dd4ad93a7f905a0db32292f4df4b3f19fa5492e08cbfd90' target_size=(224,224) try: exfile = zipped.read('data/competition_files/train_jpg/'+img_id+'.jpg') arr = np.frombuffer(exfile, np.uint8) imz = cv2.imdecode(arr, flags=cv2.IMREAD_UNCHANGED) imz = cv2.resize(imz, target_size, interpolation=cv2.INTER_AREA) except: print(img_id, ' is invalid') imz = None imz ''' def build_model(categorical_features, numerical_features): # non-cat features non_cat_inputs = [] for col in numerical_features: f = Input(shape=[1], name=col) non_cat_inputs.append(f) # cat features cat_inputs = [] cat_embeds = [] for col in categorical_features: f = Input(shape=[1], name=col) embed_dim = max_info[col].max() if max_info[col] > 10: reduced_dim = 10 else: reduced_dim = 1 embed_f = Embedding(embed_dim, reduced_dim)(f) flatten_f = Flatten()(embed_f) cat_inputs.append(f) cat_embeds.append(flatten_f) # text features: architecture of text to try here!!! # description text_inp = Input(shape = (maxlen, ), name='desc') text_emb = Embedding(desc_embed_info['nb_words'], embed_size, weights = [desc_embed_info['emb_matrix']], input_length = maxlen, trainable = False)(text_inp) text_emb = SpatialDropout1D(0.3)(text_emb) text_gru = Bidirectional(CuDNNGRU(128, return_sequences = True))(text_emb) text_gru = Conv1D(64, kernel_size = 3, padding = "valid", kernel_initializer = "glorot_uniform")(text_gru) text_gru_avg = GlobalAveragePooling1D()(text_gru) text_gru_max = GlobalMaxPooling1D()(text_gru) text_gru = concatenate([text_gru_avg, text_gru_max]) text_gru = Dropout(0.1)(text_gru) # title title_inp = Input(shape = (title_maxlen, ), name='title') title_emb = Embedding(title_embed_info['nb_words'], title_embed_size, weights = [title_embed_info['emb_matrix']], input_length = title_maxlen, trainable = False)(title_inp) title_emb = SpatialDropout1D(0.1)(title_emb) title_gru = Bidirectional(CuDNNGRU(32, return_sequences = True))(title_emb) title_gru = Conv1D(16, kernel_size = 3, padding = "valid", kernel_initializer = "glorot_uniform")(title_gru) title_gru_avg = GlobalAveragePooling1D()(title_gru) title_gru_max = GlobalMaxPooling1D()(title_gru) title_gru = concatenate([title_gru_avg, title_gru_max]) title_gru = Dropout(0.1)(title_gru) # add image architecture # reference: https://keras.io/getting-started/functional-api-guide/#more-examples, Visual question answering model ''' img_inp = Input(shape = (224, 224, 3 ), name='imgs') img_ch = Conv2D(64, (3, 3), activation='relu', padding='same', W_constraint=max_norm(3))(img_inp) img_ch = Conv2D(64, (3, 3), activation='relu')(img_ch) img_ch = MaxPooling2D((2, 2))(img_ch) #img_ch = Conv2D(128, (3, 3), activation='relu', padding='same', W_constraint=max_norm(3))(img_ch) #img_ch = Conv2D(128, (3, 3), activation='relu')(img_ch) #img_ch = MaxPooling2D((2, 2))(img_ch) #img_ch = Conv2D(256, (3, 3), activation='relu', padding='same', W_constraint=max_norm(3))(img_ch) #img_ch = Conv2D(256, (3, 3), activation='relu')(img_ch) #img_ch = Conv2D(256, (3, 3), activation='relu')(img_ch) #img_ch = MaxPooling2D((2, 2))(img_ch) img_ch = Flatten()(img_ch) img_ch = Dense(64, activation='relu')(img_ch) ''' # merge each branch: non-cat, cat, text, img concat_main = non_cat_inputs+cat_embeds+[text_gru, title_gru] main = concatenate(concat_main) main = BatchNormalization()(main) main = Dropout(0.1)(main) main = BatchNormalization()(Dense(256, activation='relu')(main)) main = Dropout(0.1)(main) main = BatchNormalization()(Dense(64, activation='relu')(main)) out = Dense(1, activation = "sigmoid")(main) concat_input = non_cat_inputs+cat_inputs+[text_inp, title_inp] model = Model(concat_input, out) model.regularizers = [regularizers.l2(0.0001)] model.compile(optimizer = Adam(lr=0.001), loss = root_mean_squared_error, metrics =[root_mean_squared_error]) model.summary() return model<jupyter_output><empty_output><jupyter_text>### Training<jupyter_code>from sklearn.model_selection import KFold import warnings; warnings.filterwarnings('ignore') train_indices = np.arange(0, train_len) test_indices = np.arange(0, test.shape[0]) from keras_tqdm import TQDMNotebookCallback from ipywidgets import IntProgress start_fold = 0 # <= 0 for invalid, train from fold 1, > 0: used to train from fold=start_fold resume_file_prefix = '0619_rnn' # whatever we like if start_fold > 0: import pickle ret = pickle.load(open(resume_file_prefix+'_oof_val_pred', 'rb')) ret_test = pickle.load(open(resume_file_prefix+'_oof_test_pred', 'rb')) print(ret) print(ret_test) else: ret = np.zeros((train.shape[0],)) ret_test = np.zeros((test.shape[0],)) fold = 0 for tr_ix, val_ix in KFold(5, shuffle=True, random_state=seed).split(train_indices): fold += 1 if start_fold > 0 and fold < start_fold: continue else: pass model = build_model(categorical, numerical) file_path = "rnn_weights/model_final_fold_{}.hdf5".format(fold) # customized batch loader training_generator = DataGenerator(tr_ix, train, train_y, 'train_jpg.zip', 'data/competition_files/train_jpg/', batch_size=batch_size, shuffle=True) validation_generator = DataGenerator(val_ix, train, train_y, 'train_jpg.zip', 'data/competition_files/train_jpg/', batch_size=batch_size, shuffle=False) lr_schd = LearningRateScheduler(lambda epoch: 0.001*(0.2**(epoch//6)), verbose=1) check_point = ModelCheckpoint(file_path, monitor = "val_loss", mode = "min", save_best_only = True, verbose = 1) history = model.fit_generator(generator=training_generator, validation_data=validation_generator, use_multiprocessing=False, workers=1, epochs=rnn_train_epochs, verbose = 0, callbacks = [lr_schd, check_point, TQDMNotebookCallback(leave_inner=True, leave_outer=True)]) # Predict val + test oofs model.load_weights(file_path) # load weight with best validation score del validation_generator validation_generator = DataGenerator(val_ix, train, None, 'train_jpg.zip', 'data/competition_files/train_jpg/', batch_size=batch_size, shuffle=False, is_train=False) test_generator = DataGenerator(test_indices, test, None, 'test_jpg.zip', 'data/competition_files/test_jpg/', batch_size=batch_size, shuffle=False, is_train=False) ret[val_ix] = model.predict_generator(validation_generator, use_multiprocessing=False, workers=1).reshape((len(val_ix),)) ret_test += model.predict_generator(test_generator, use_multiprocessing=False, workers=1).reshape((ret_test.shape[0],)) del model, history, training_generator, validation_generator, test_generator; gc.collect() ret_test /= 5 # uncomment these to dump files if OOM (out-of-mem) happens import pickle pickle.dump(ret, open(resume_file_prefix+'_oof_val_pred', 'wb')) pickle.dump(ret_test, open(resume_file_prefix+'_oof_test_pred', 'wb')) # public kernel: cv = .2220, lb = .2247 # bigru-conv1d: cv =.2185 , lb = .2235 # bigru-attention: cv =.2186 , lb = .2235 # 2gru: lb: .2239 # self-trained wordvec: cv .217232, lb: .2229 # +partial new features: cv .216326, lb: <jupyter_output><empty_output><jupyter_text>### Generate OOFs and Submissions<jupyter_code>prefix = 'selftrained_bigru_conv1d_merged' pd.DataFrame(data=ret, columns=[prefix+'_rnn_pred']).to_csv(prefix+'_rnn_oof_val_pred.csv', index=False) pd.DataFrame(data=ret_test, columns=[prefix+'_rnn_pred']).to_csv(prefix+'_rnn_oof_test_pred.csv', index=False) subm = pd.read_csv('sample_submission.csv') subm['deal_probability'] = np.clip(ret_test, 0, 1) subm.to_csv(prefix+'_rnn_submission.csv', index=False)<jupyter_output><empty_output>
no_license
/RNN Self-Trained WordVec + Image + Merge Features (with Fast Loading)-Copy1.ipynb
tnmichael309/kaggle-avito-demand-challenge
6
<jupyter_start><jupyter_text># Consume deployed webservice via REST Demonstrates the usage of a deployed model via plain REST. REST is language-agnostic, so you should be able to query from any REST-capable programming language.## Configuration<jupyter_code>from environs import Env env = Env() env.read_env("foundation.env") env.read_env("service-principals.env") # image to test IMAGE_TO_TEST = "mnist_fashion/04_consumption/random_test_images/random-test-image-1601.png" # endpoint of the scoring webservice SCORING_URI = "<...use your own..., eg. https://....westeurope.cloudapp.azure.com:443/api/v1/service/mnist-fashion-service/score>" # auth method, either "Token", "Keys" or "None". # also specify additional values depending on auth method AUTH_METHOD = "Token" if AUTH_METHOD == "Keys": AUTH_KEY = "<add your key here>" elif AUTH_METHOD == "Token": REGION = "eastus" SUBSCRIPTION_ID = env("SUBSCRIPTION_ID") RESOURCE_GROUP = env("RESOURCE_GROUP") WORKSPACE_NAME = env("WORKSPACE_NAME") SERVICE_NAME = "mnist-fashion-service" CONSUME_MODEL_SP_TENANT_ID = env("CONSUME_MODEL_SP_TENANT_ID") CONSUME_MODEL_SP_CLIENT_ID = env("CONSUME_MODEL_SP_CLIENT_ID") CONSUME_MODEL_SP_CLIENT_SECRET = env("CONSUME_MODEL_SP_CLIENT_SECRET") elif AUTH_METHOD == "None": pass<jupyter_output><empty_output><jupyter_text>## Load a random image and plot it<jupyter_code>import matplotlib.pyplot as plt from PIL import Image image = Image.open(IMAGE_TO_TEST) plt.figure() plt.imshow(image) plt.colorbar() plt.grid(False) plt.show()<jupyter_output><empty_output><jupyter_text>## Invoke the webservice and show result<jupyter_code>import requests import json # --- get input data input_data = open(IMAGE_TO_TEST, "rb").read() # alternatively for JSON input #input_data = json.dumps({"x": 4711}) # --- get headers # Content-Type # for binary data headers = {"Content-Type": "application/octet-stream"} # alternatively for JSON data #headers = {"Content-Type": "application/json"} # Authorization if AUTH_METHOD == "Token": # get an access token for the service principal to access Azure azure_access_token = requests.post( f"https://login.microsoftonline.com/{CONSUME_MODEL_SP_TENANT_ID}/oauth2/token", headers={"Content-Type": "application/x-www-form-urlencoded"}, data="grant_type=client_credentials" + "&resource=https%3A%2F%2Fmanagement.azure.com%2F" + f"&client_id={CONSUME_MODEL_SP_CLIENT_ID}" + f"&client_secret={CONSUME_MODEL_SP_CLIENT_SECRET}", ).json()["access_token"] # use that token to get another token for accessing the webservice # note: the token is only valid for a certain period of time. # after that time, a new token has to be used. the logic # to do this, is not implemented here yet. you can check # the current time against the refresh after time to know # if a new token is required. refreshAfter and expiryOn # are UNIX timestamps. use time.time() to get the current # timestamp. token_response = requests.post( f"https://{REGION}.modelmanagement.azureml.net/modelmanagement/v1.0/subscriptions/{SUBSCRIPTION_ID}/resourceGroups/{RESOURCE_GROUP}/providers/Microsoft.MachineLearningServices/workspaces/{WORKSPACE_NAME}/services/{SERVICE_NAME}/token", headers={"Authorization": f"Bearer {azure_access_token}"} ).json() access_token = token_response["accessToken"] access_token_refresh_after = int(token_response["refreshAfter"]) access_token_expiry_on = int(token_response["expiryOn"]) # finally, use that token to access the webservice headers["Authorization"] = f"Bearer {access_token}" if AUTH_METHOD == "Keys": headers["Authorization"] = f"Bearer {AUTH_KEY}" if AUTH_METHOD == "None": # do nothing pass # --- make request and display response response = requests.post(SCORING_URI, input_data, headers=headers, verify=True) print(response.json())<jupyter_output>{'predicted_label': 'Bag', 'confidence': '1.0'}
permissive
/mnist_fashion/04_consumption/consume-webservice.ipynb
anderl80/aml-template
3
<jupyter_start><jupyter_text># Problem : Print all ancestors of binary tree. Algorithm: 1. Check if root or node is None, if yes, return False 2. Append the ancestor list with the root 3. If the root equals node return True to the calling function 4. Check the left and right subtree for node recursively 5. If found return true else pop the node from the list and return False.\ Time Complexity: O(n) Space Complexity: O(n^2)<jupyter_code>def findAllAncestors(root, node, ancestors): if root is None or node is None: return False ancestors.append(root.getData()) if root.getData() == node: return True if (findAllAncestors(root.getLeft(), node, ancestors) or findAllAncestors(root.getRight(), node, ancestors)): return True ancestors.pop() return False class TreeNode: def __init__(self, data, left=None, right=None): self.data = data self.left = left self.right = right def getData(self): return self.data def setData(self, data): self.data = data def getLeft(self): return self.left def getRight(self): return self.right def setLeft(self, left): self.left = left def setRight(self, right): self.right = right a = TreeNode(1) b = TreeNode(2) c = TreeNode(3) a.setLeft(b) a.setRight(c) d = TreeNode(4) e = TreeNode(5) x = TreeNode(8) y = TreeNode(9) e.setLeft(x) b.setLeft(d) b.setRight(e) f = TreeNode(6) g = TreeNode(7) f.setRight(y) c.setLeft(f) c.setRight(g) ans = [] findAllAncestors(a, 9, ans) print(ans)<jupyter_output>[1, 3, 6, 9] <jupyter_text># Alternative way of solving the problem<jupyter_code>def printAllAncestors(root, node): if root is None or node is None: return False if ((root.getData() == node) or printAllAncestors(root.getLeft(), node) or printAllAncestors(root.getRight(), node)): print(root.getData()) return True return False printAllAncestors(a,9)<jupyter_output>9 6 3 1 <jupyter_text># Solution without recursion. Use postorder traversal to solve this problem. <jupyter_code>def findAncestorsIteratively(root, target): if root is None or target is None: return False stack = [] node = root prev_right = None while node or stack: if node: stack.append(node) node = node.getLeft() else: element = stack[-1] if element.getData() == target: break if element.getRight() and prev_right!=element.getRight(): prev_right= node = element.getRight() else: stack.pop() for i in stack: print(i.getData()) findAncestorsIteratively(a,9)<jupyter_output>1 3 6 9
no_license
/Trees/Binary Trees/Problems/.ipynb_checkpoints/AncestorsOfBinaryTree-checkpoint.ipynb
sumeet13/Algorithms-and-Data-Structures
3
<jupyter_start><jupyter_text>Table of Contents 1&nbsp;&nbsp;HISTOGRAM2&nbsp;&nbsp;QQPLOT3&nbsp;&nbsp;AGGREGATION PLOT (part4)## HISTOGRAM<jupyter_code>library(MASS) # Create a histogram of counts with hist() hist(Cars93$Horsepower, main = "hist() plot") # Create a normalized histogram with truehist() hist(Cars93$Horsepower, main = "truehist() plot", freq = FALSE) # Add the density curve to the histogram lines(density(Cars93$Horsepower))<jupyter_output><empty_output><jupyter_text>## QQPLOT<jupyter_code># Load the car package to make qqPlot() available library(car) # Create index16, pointing to 16-week chicks index16 <- which(ChickWeight$Time == 16) # Get the 16-week chick weights weights <- ChickWeight[index16,"weight"] # Show the normal QQ-plot of the chick weights qqPlot(weights) hist(weights, freq = FALSE) # Show the normal QQ-plot of the Boston$tax data qqPlot(Boston$tax) hist(Boston$tax)<jupyter_output>Warning message: "package 'car' was built under R version 3.5.2"<jupyter_text>## AGGREGATION PLOT (part4)<jupyter_code># Set up a two-by-two plot array par(mfrow = c(2,2)) # Plot the raw duration data plot(geyser$duration, main = "Raw data") # Plot the normalized histogram of the duration data truehist(geyser$duration, main = "Histogram") # Plot the density of the duration data plot(density(geyser$duration), main = "Density") # Construct the normal QQ-plot of the duration data qqPlot(geyser$duration, main = "QQ-plot")<jupyter_output><empty_output>
no_license
/Data visualization - base R/.ipynb_checkpoints/2.1. One variable-checkpoint.ipynb
yoogun143/Datacamp_R
3
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
3