Git-10M / README.md
lcybuaa's picture
Update README.md
29f192b verified
---
license: cc-by-nc-nd-4.0
task_categories:
- text-to-image
---
The **Git-10M** dataset is a global-scale remote sensing image-text pair dataset, consisting of over **10 million** image-text pairs with geographical locations and resolution information.
## CC-BY-NC-ND-4.0 License: This dataset is not allowed to be modified or distributed without authorization!
<h1>
<a href="https://chen-yang-liu.github.io/Text2Earth/">Project Page: https://chen-yang-liu.github.io/Text2Earth/ </a>
</h1>
<div align="center">
<img src="https://github.com/Chen-Yang-Liu/Text2Earth/raw/main/images/dataset.png" width="1000"/>
</div>
## View samples from the dataset
```python
from datasets import load_dataset
import math
def XYZToLonLat(x,y,z):
# Transform tile-location to (longitude,latitude)
n = 2**z*1.0
lon = x / n * 360.0 - 180.0 # longitude
lat = math.atan(math.sinh(math.pi * (1 - 2.0 * y / n)))
lat = math.degrees(lat) # latitude
return lon,lat
# load dataset
save_path = 'xxxxx'
ds = load_dataset.load('lcybuaa/Git-10M', cache_dir=save_path)
train_dataset = ds["train"]
for i, example in enumerate(train_dataset):
# PIL image:
image = example["image"]
# filename of the image:
img_name = example["img_name"]
# visual quality score as shown in Fig. 5 of the paper.
img_quality_score = example['img_quality_score']
# caption of the image
caption = example['caption']
# word length of the caption as shown in Fig. 6 of the paper.
caption_length = example['caption_length']
# image spatial resolution as shown in Fig. 4 of the paper.
resolution = example['resolution']
# image Geolocation as shown in Fig. 3 of the paper.
Google_location = example['Google_location']
Level_TileZ, TileX, TileY = Google_location.split('_')
longitude, latitude = XYZToLonLat(TileX, TileY, Level_TileZ)
# More Tips:
# Resolution = 2 ** (17 - Level_TileZ)
```
## Git-RSCLIP: Remote Sensing Vision-Language Contrastive Pre-training Foundation Model
Git-RSCLIP is pre-trained using the contrastive learning framework on the **Git-10M dataset**.
Git-RSCLIP is here:[[Huggingface](https://huggingface.co/lcybuaa/Git-RSCLIP) | [Modelscope](https://modelscope.cn/models/lcybuaa1111/Git-RSCLIP)]
Compare the Top1-Acc of Zero-shot classification on multiple image classification datasets:
| Method | OPTIMAL31 | RSC11 | RSICB128 | WHURS19 | RS2800/RSSCN7 | CLRS | Average score |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CLIP | 0.6 | 0.45 | 0.25 | 0.77 | 0.52 | 0.56 | 0.52 |
| RemoteCLIP | 0.82 | 0.67 | 0.34 | 0.93 | 0.52 | 0.66 | 0.65 |
| GeoRSCLIP | 0.83 | 0.67 | 0.35 | 0.89 | 0.63 | 0.69 | 0.68 |
| SkyCLIP50 | 0.77 | 0.60 | 0.38 | 0.78 | 0.55 | 0.61 | 0.62 |
| (Git-RSCLIP) Ours | **0.95** | **0.67** | **0.52** | **0.94** | **0.64** | **0.65** | **0.73** |
# BibTeX entry and citation info
```bibtex
@ARTICLE{Text2Earth,
author={Liu, Chenyang and Chen, Keyan and Zhao, Rui and Zou, Zhengxia and Shi, Zhenwei},
journal={IEEE Geoscience and Remote Sensing Magazine},
title={Text2Earth: Unlocking text-driven remote sensing image generation with a global-scale dataset and a foundation model},
year={2025},
volume={},
number={},
pages={2-23},
doi={10.1109/MGRS.2025.3560455}}
```