--- license: cc-by-nc-nd-4.0 task_categories: - text-to-image --- The **Git-10M** dataset is a global-scale remote sensing image-text pair dataset, consisting of over **10 million** image-text pairs with geographical locations and resolution information. ## CC-BY-NC-ND-4.0 License: This dataset is not allowed to be modified or distributed without authorization!

Project Page: https://chen-yang-liu.github.io/Text2Earth/

## View samples from the dataset ```python from datasets import load_dataset import math def XYZToLonLat(x,y,z): # Transform tile-location to (longitude,latitude) n = 2**z*1.0 lon = x / n * 360.0 - 180.0 # longitude lat = math.atan(math.sinh(math.pi * (1 - 2.0 * y / n))) lat = math.degrees(lat) # latitude return lon,lat # load dataset save_path = 'xxxxx' ds = load_dataset.load('lcybuaa/Git-10M', cache_dir=save_path) train_dataset = ds["train"] for i, example in enumerate(train_dataset): # PIL image: image = example["image"] # filename of the image: img_name = example["img_name"] # visual quality score as shown in Fig. 5 of the paper. img_quality_score = example['img_quality_score'] # caption of the image caption = example['caption'] # word length of the caption as shown in Fig. 6 of the paper. caption_length = example['caption_length'] # image spatial resolution as shown in Fig. 4 of the paper. resolution = example['resolution'] # image Geolocation as shown in Fig. 3 of the paper. Google_location = example['Google_location'] Level_TileZ, TileX, TileY = Google_location.split('_') longitude, latitude = XYZToLonLat(TileX, TileY, Level_TileZ) # More Tips: # Resolution = 2 ** (17 - Level_TileZ) ``` ## Git-RSCLIP: Remote Sensing Vision-Language Contrastive Pre-training Foundation Model Git-RSCLIP is pre-trained using the contrastive learning framework on the **Git-10M dataset**. Git-RSCLIP is here:[[Huggingface](https://huggingface.co/lcybuaa/Git-RSCLIP) | [Modelscope](https://modelscope.cn/models/lcybuaa1111/Git-RSCLIP)] Compare the Top1-Acc of Zero-shot classification on multiple image classification datasets: | Method | OPTIMAL31 | RSC11 | RSICB128 | WHURS19 | RS2800/RSSCN7 | CLRS | Average score | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | CLIP | 0.6 | 0.45 | 0.25 | 0.77 | 0.52 | 0.56 | 0.52 | | RemoteCLIP | 0.82 | 0.67 | 0.34 | 0.93 | 0.52 | 0.66 | 0.65 | | GeoRSCLIP | 0.83 | 0.67 | 0.35 | 0.89 | 0.63 | 0.69 | 0.68 | | SkyCLIP50 | 0.77 | 0.60 | 0.38 | 0.78 | 0.55 | 0.61 | 0.62 | | (Git-RSCLIP) Ours | **0.95** | **0.67** | **0.52** | **0.94** | **0.64** | **0.65** | **0.73** | # BibTeX entry and citation info ```bibtex @ARTICLE{Text2Earth, author={Liu, Chenyang and Chen, Keyan and Zhao, Rui and Zou, Zhengxia and Shi, Zhenwei}, journal={IEEE Geoscience and Remote Sensing Magazine}, title={Text2Earth: Unlocking text-driven remote sensing image generation with a global-scale dataset and a foundation model}, year={2025}, volume={}, number={}, pages={2-23}, doi={10.1109/MGRS.2025.3560455}} ```