path
stringlengths
9
117
type
stringclasses
2 values
project
stringclasses
10 values
commit_hash
stringlengths
40
40
commit_message
stringlengths
1
137
ground_truth
stringlengths
0
2.74k
main_code
stringlengths
102
3.37k
context
stringlengths
0
14.7k
tests.test_optim/test_optimizer8bit
Modified
bitsandbytes-foundation~bitsandbytes
2eb310835668f854c169953814f1d3b16a44346b
Fixed bug where beta2 was not passed into Lion 32-bit.
# module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer8bit(dim1, dim2, gtype, optim_name): <0> if dim1 == 1 and dim2 == 1: <1> return <2> p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 <3> p2 = p1.clone() <4> p1 = p1.float() <5> blocksize = 2048 <6> <7> torch_optimizer = str2optimizers[optim_name][0]([p1]) <8> bnb_optimizer = str2optimizers[optim_name][1]([p2]) <9> <10> if gtype == torch.float32: <11> atol, rtol = 3e-3, 1e-3 <12> patol, prtol = 1e-5, 1e-3 <13> <14> else: <15> atol, rtol = 3e-3, 1e-3 <16> patol, prtol = 1e-5, 1e-3 <17> <18> errors = [] <19> relerrors = [] <20> <21> for i in range(50): <22> g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01 <23> p1.grad = g.clone().float() <24> p2.grad = g.clone() <25> <26> bnb_optimizer.step() <27> torch_optimizer.step() <28> <29> # since Lion can have pretty noisy updates where things lie at the boundary <30> # allow up to 5 errors for Lion <31> assert_most_approx_close(p1, p2.float(), patol, prtol, max_error_count=5) <32> <33> dequant_states = [] <34> for name1, name2, qmap, max_val in str2statenames[optim_name]: <35> # print(bnb_optimizer.state[p2][max_val], name1) <36> if "</s>
===========below chunk 0=========== # module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer8bit(dim1, dim2, gtype, optim_name): # offset: 1 s1 = F.dequantize_blockwise( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize, ) else: s1 = F.dequantize( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], ) num_not_close = ( torch.isclose( torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol ) == 0 ) assert num_not_close.sum().item() < 20 dequant_states.append(s1.clone()) err = torch.abs(p1 - p2) relerr = err / torch.abs(p1) assert err.mean() < 0.0001 assert relerr.mean() < 0.001 errors.append(err.mean().item()) relerrors.append(relerr.mean().item()) if i % 10 == 0 and i > 0: for (name1, name2, qmap, max_val), s in zip( str2statenames[optim_name], dequant_states ): s1cpy = s.clone() raws1cpy = bnb_optimizer.state[p2][name2].clone() qmap1 = bnb_optimizer.state[p2][qmap].clone() path = get_temp_dir() torch.save(bnb_optimizer.state_dict(), join(path</s> ===========below chunk 1=========== # module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer8bit(dim1, dim2, gtype, optim_name): # offset: 2 <s>() path = get_temp_dir() torch.save(bnb_optimizer.state_dict(), join(path, "opt.pt")) del bnb_optimizer bnb_optimizer = None bnb_optimizer = str2optimizers[optim_name][1]([p2]) bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt"))) rm_path(path) torch.testing.assert_allclose( raws1cpy, bnb_optimizer.state[p2][name2] ) torch.testing.assert_allclose( qmap1, bnb_optimizer.state[p2][qmap] ) if "blockwise" in optim_name: s1 = F.dequantize_blockwise( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize, ) else: s1 = F.dequantize( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], ) torch.testing.assert_allclose(s1cpy, s1) num_not_close = ( torch.isclose( torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol, </s> ===========below chunk 2=========== # module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer8bit(dim1, dim2, gtype, optim_name): # offset: 3 <s> == 0 ) assert num_not_close.sum().item() < 20 # since Lion can have pretty noisy updates where things lie at the boundary # allow up to 5 errors for Lion assert_most_approx_close(p1, p2.float(), patol, prtol, max_error_count=5) # the parameters diverge quickly. Here we keep them close # together so we can test against the Adam error p1.data = p1.data.to(gtype).float() p2.copy_(p1.data) torch.testing.assert_allclose(p1.to(gtype), p2) for (name1, name2, qmap, max_val), s in zip( str2statenames[optim_name], dequant_states ): torch_optimizer.state[p1][name1].copy_(s.data) ===========changed ref 0=========== # module: tests.test_optim def assert_most_approx_close(a, b, rtol=1e-3, atol=1e-3, max_error_count=0): idx = torch.isclose(a, b, rtol, atol) error_count = (idx == 0).sum().item() if error_count > max_error_count: + print(f"Too many values not close: assert {error_count} < {max_error_count}") - print(f"Too many values not close: assert {sumval} < {count}") torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 1=========== # module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer32bit(dim1, dim2, gtype, optim_name): if dim1 == 1 and dim2 == 1: return p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 p2 = p1.clone() p1 = p1.float() torch_optimizer = str2optimizers[optim_name][0]([p1]) bnb_optimizer = str2optimizers[optim_name][1]([p2]) if gtype == torch.float32: atol, rtol = 1e-6, 1e-5 else: atol, rtol = 1e-4, 1e-3 for i in range(k): g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01 p1.grad = g.clone().float() p2.grad = g.clone() bnb_optimizer.step() torch_optimizer.step() + for name1, name2 in str2statenames[optim_name]: torch.testing.assert_allclose( torch_optimizer.state[p1][name1], bnb_optimizer.state[p2][name2], atol=atol, rtol=rtol, ) + # since Lion can have pretty noisy updates where things lie at the boundary + # allow up to 10 errors for Lion + assert_most_approx_close(p1, p2.float(), atol, rtol, max_error_count=10) - torch.testing.assert_allclose(p1, p2.float(), atol=atol, rtol=rtol) if i % (k // 5) == 0 and i > 0: path = get_temp_dir() torch.save(b</s>
bitsandbytes.functional/optimizer_update_32bit
Modified
bitsandbytes-foundation~bitsandbytes
2bb5c00ba9b0af840e9226a6100f2e968c0763f4
Added pre/post call to all lib calls. Fixes #120
<s> g: Tensor, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor = None, beta2: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: <0> """ <1> Performs an inplace optimizer update with one or two optimizer states. <2> <3> Universal optimizer update for 32-bit state and 32/16-bit gradients/weights. <4> <5> Parameters <6> ---------- <7> optimizer_name : str <8> The name of the optimizer: {adam}. <9> g : torch.Tensor <10> Gradient tensor. <11> p : torch.Tensor <12> Parameter tensor. <13> state1 : torch.Tensor <14> Optimizer state 1. <15> beta1 : float <16> Optimizer beta1. <17> eps : float <18> Optimizer epsilon. <19> weight_decay : float <20> Weight decay. <21> step : int <22> Current optimizer step. <23> lr : float <24> The learning rate. <25> state2 : torch.Tensor <26> Optimizer state 2. <27> beta2 : float <28> Optimizer beta2. <29> gnorm_scale : float <30> The factor to rescale the gradient to the max clip value. <31> unorm_vec : torch.Tensor <32> The tensor for the update norm. <33> max_unorm : float <34> The maximum update norm relative to the weight norm. <35> skip_zeros : bool <36> Whether to skip zero-valued gradients or not (default: False). <37> """ <38> <39> param_norm = 0.0 <40> if max_unorm > 0.0: <41> param_norm = torch.norm(p.data.float()) <42> <43> if optimizer_name not in str2optimizer32bit: <44> raise NotImplementedError( <45> f</s>
===========below chunk 0=========== <s>, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor = None, beta2: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: # offset: 1 ) if g.dtype == torch.float32 and state1.dtype == torch.float32: str2optimizer32bit[optimizer_name][0]( get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay), ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) elif g.dtype == torch.float16 and state1.dtype == torch.float32: str2optimizer32bit[optimizer_name][1]( get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay), ct.c_int32(step), ct.c</s> ===========below chunk 1=========== <s>, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor = None, beta2: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: # offset: 2 <s>eps), ct.c_float(weight_decay), ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) else: raise ValueError( f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}" )
bitsandbytes.functional/optimizer_update_8bit
Modified
bitsandbytes-foundation~bitsandbytes
2bb5c00ba9b0af840e9226a6100f2e968c0763f4
Added pre/post call to all lib calls. Fixes #120
<s> beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, max1: Tensor, max2: Tensor, new_max1: Tensor, new_max2: Tensor, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, ) -> None: <0> """ <1> Performs an inplace Adam update. <2> <3> Universal Adam update for 32/8-bit state and 32/16-bit gradients/weights. <4> Uses AdamW formulation if weight decay > 0.0. <5> <6> Parameters <7> ---------- <8> optimizer_name : str <9> The name of the optimizer. Choices {adam, momentum} <10> g : torch.Tensor <11> Gradient tensor. <12> p : torch.Tensor <13> Parameter tensor. <14> state1 : torch.Tensor <15> Adam state 1. <16> state2 : torch.Tensor <17> Adam state 2. <18> beta1 : float <19> Adam beta1. <20> beta2 : float <21> Adam beta2. <22> eps : float <23> Adam epsilon. <24> weight_decay : float <25> Weight decay. <26> step : int <27> Current optimizer step. <28> lr : float <29> The learning rate. <30> qmap1 : torch.Tensor <31> Quantization map for first Adam state. <32> qmap2 : torch.Tensor <33> Quantization map for second Adam state. <34> max1 : torch.Tensor <35> Max value for first Adam state update. <36> max2 : torch.Tensor <37> Max value for second Adam state update. <38> new_max1 : torch.Tensor <39> Max value for the next Adam update of the first state. <40> new_max2 : torch.Tensor <41> Max value for the next Adam update of the second state. <42> g</s>
===========below chunk 0=========== <s>, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, max1: Tensor, max2: Tensor, new_max1: Tensor, new_max2: Tensor, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, ) -> None: # offset: 1 The factor to rescale the gradient to the max clip value. unorm_vec : torch.Tensor The tensor for the update norm. max_unorm : float The maximum update norm relative to the weight norm. """ param_norm = 0.0 if max_unorm > 0.0: param_norm = torch.norm(p.data.float()) if g.dtype == torch.float32 and state1.dtype == torch.uint8: str2optimizer8bit[optimizer_name][0]( get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2), get_ptr(max1), get_ptr(max2), get_ptr(new_max1), get_ptr(new_max2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_int32(g.numel()), ) elif g.dtype == torch.float16 and state1.dtype == torch.uint8: str2optimizer</s> ===========below chunk 1=========== <s>, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, max1: Tensor, max2: Tensor, new_max1: Tensor, new_max2: Tensor, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, ) -> None: # offset: 2 <s> ) elif g.dtype == torch.float16 and state1.dtype == torch.uint8: str2optimizer8bit[optimizer_name][1]( get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2), get_ptr(max1), get_ptr(max2), get_ptr(new_max1), get_ptr(new_max2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_int32(g.numel()), ) else: raise ValueError( f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}" ) ===========changed ref 0=========== <s> g: Tensor, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor = None, beta2: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: """ Performs an inplace optimizer update with one or two optimizer states. Universal optimizer update for 32-bit state and 32/16-bit gradients/weights. Parameters ---------- optimizer_name : str The name of the optimizer: {adam}. g : torch.Tensor Gradient tensor. p : torch.Tensor Parameter tensor. state1 : torch.Tensor Optimizer state 1. beta1 : float Optimizer beta1. eps : float Optimizer epsilon. weight_decay : float Weight decay. step : int Current optimizer step. lr : float The learning rate. state2 : torch.Tensor Optimizer state 2. beta2 : float Optimizer beta2. gnorm_scale : float The factor to rescale the gradient to the max clip value. unorm_vec : torch.Tensor The tensor for the update norm. max_unorm : float The maximum update norm relative to the weight norm. skip_zeros : bool Whether to skip zero-valued gradients or not (default: False). """ param_norm = 0.0 if max_unorm > 0.0: param_norm = torch.norm(p.data.float()) if optimizer_name not in str2optimizer32bit: raise NotImplementedError( f'Optimizer not implemented: {optimizer_name}. Choices: {",".join(str2optimizer32bit.keys())}' ) + prev_device = pre_call(g.device)</s> ===========changed ref 1=========== <s>, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor = None, beta2: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: # offset: 1 <s>join(str2optimizer32bit.keys())}' ) + prev_device = pre_call(g.device) + is_on_gpu([g, p, state1, state2, unorm_vec]) if g.dtype == torch.float32 and state1.dtype == torch.float32: str2optimizer32bit[optimizer_name][0]( get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay), ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) elif g.dtype == torch.float16 and state1.dtype == torch.float32: str2optimizer32bit[optimizer_name][1]( get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), </s>
bitsandbytes.functional/optimizer_update_8bit_blockwise
Modified
bitsandbytes-foundation~bitsandbytes
2bb5c00ba9b0af840e9226a6100f2e968c0763f4
Added pre/post call to all lib calls. Fixes #120
<0>:<add> prev_device = pre_call(g.device) <add> is_on_gpu([g, p, state1, state2, qmap1, qmap2, absmax1, absmax2])
<s> g: Tensor, p: Tensor, state1: Tensor, state2: Tensor, beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, absmax1: Tensor, absmax2: Tensor, weight_decay: float = 0.0, gnorm_scale: float = 1.0, skip_zeros=False, ) -> None: <0> if g.dtype == torch.float32 and state1.dtype == torch.uint8: <1> str2optimizer8bit_blockwise[optimizer_name][0]( <2> get_ptr(p), <3> get_ptr(g), <4> get_ptr(state1), <5> get_ptr(state2), <6> ct.c_float(beta1), <7> ct.c_float(beta2), <8> ct.c_float(eps), <9> ct.c_int32(step), <10> ct.c_float(lr), <11> get_ptr(qmap1), <12> get_ptr(qmap2), <13> get_ptr(absmax1), <14> get_ptr(absmax2), <15> ct.c_float(weight_decay), <16> ct.c_float(gnorm_scale), <17> ct.c_bool(skip_zeros), <18> ct.c_int32(g.numel()), <19> ) <20> elif g.dtype == torch.float16 and state1.dtype == torch.uint8: <21> str2optimizer8bit_blockwise[optimizer_name][1]( <22> get_ptr(p), <23> get_ptr(g), <24> get_ptr(state1), <25> get_ptr(state2), <26> ct.c_float(beta1), <27> ct.c_float(beta2), <28> ct.c_float(eps), <29> ct.c_int32(step), <30> ct.c_float(lr), <31> get_ptr</s>
===========below chunk 0=========== <s> p: Tensor, state1: Tensor, state2: Tensor, beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, absmax1: Tensor, absmax2: Tensor, weight_decay: float = 0.0, gnorm_scale: float = 1.0, skip_zeros=False, ) -> None: # offset: 1 get_ptr(qmap2), get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) else: raise ValueError( f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}" ) ===========changed ref 0=========== <s> g: Tensor, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor = None, beta2: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: """ Performs an inplace optimizer update with one or two optimizer states. Universal optimizer update for 32-bit state and 32/16-bit gradients/weights. Parameters ---------- optimizer_name : str The name of the optimizer: {adam}. g : torch.Tensor Gradient tensor. p : torch.Tensor Parameter tensor. state1 : torch.Tensor Optimizer state 1. beta1 : float Optimizer beta1. eps : float Optimizer epsilon. weight_decay : float Weight decay. step : int Current optimizer step. lr : float The learning rate. state2 : torch.Tensor Optimizer state 2. beta2 : float Optimizer beta2. gnorm_scale : float The factor to rescale the gradient to the max clip value. unorm_vec : torch.Tensor The tensor for the update norm. max_unorm : float The maximum update norm relative to the weight norm. skip_zeros : bool Whether to skip zero-valued gradients or not (default: False). """ param_norm = 0.0 if max_unorm > 0.0: param_norm = torch.norm(p.data.float()) if optimizer_name not in str2optimizer32bit: raise NotImplementedError( f'Optimizer not implemented: {optimizer_name}. Choices: {",".join(str2optimizer32bit.keys())}' ) + prev_device = pre_call(g.device)</s> ===========changed ref 1=========== <s>, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor = None, beta2: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: # offset: 1 <s>join(str2optimizer32bit.keys())}' ) + prev_device = pre_call(g.device) + is_on_gpu([g, p, state1, state2, unorm_vec]) if g.dtype == torch.float32 and state1.dtype == torch.float32: str2optimizer32bit[optimizer_name][0]( get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay), ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) elif g.dtype == torch.float16 and state1.dtype == torch.float32: str2optimizer32bit[optimizer_name][1]( get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), </s> ===========changed ref 2=========== <s>, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor = None, beta2: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: # offset: 2 <s>.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay), ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) else: raise ValueError( f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}" ) + post_call(prev_device)
bitsandbytes.functional/percentile_clipping
Modified
bitsandbytes-foundation~bitsandbytes
2bb5c00ba9b0af840e9226a6100f2e968c0763f4
Added pre/post call to all lib calls. Fixes #120
<10>:<add> prev_device = pre_call(grad.device) <27>:<add> post_call(prev_device)
# module: bitsandbytes.functional def percentile_clipping( grad: Tensor, gnorm_vec: Tensor, step: int, percentile: int = 5 ): <0> """Applies percentile clipping <1> <2> grad: torch.Tensor <3> The gradient tensor. <4> gnorm_vec: torch.Tensor <5> Vector of gradient norms. 100 elements expected. <6> step: int <7> The current optimiation steps (number of past gradient norms). <8> <9> """ <10> is_on_gpu([grad, gnorm_vec]) <11> if grad.dtype == torch.float32: <12> lib.cpercentile_clipping_g32( <13> get_ptr(grad), <14> get_ptr(gnorm_vec), <15> ct.c_int32(step), <16> ct.c_int32(grad.numel()), <17> ) <18> elif grad.dtype == torch.float16: <19> lib.cpercentile_clipping_g16( <20> get_ptr(grad), <21> get_ptr(gnorm_vec), <22> ct.c_int32(step), <23> ct.c_int32(grad.numel()), <24> ) <25> else: <26> raise ValueError(f"Gradient type {grad.dtype} not supported!") <27> <28> current_gnorm = torch.sqrt(gnorm_vec[step % 100]) <29> vals, idx = torch.sort(gnorm_vec) <30> clip_value = torch.sqrt(vals[percentile]) <31> gnorm_scale = 1.0 <32> <33> if current_gnorm > clip_value: <34> gnorm_scale = clip_value / current_gnorm <35> <36> return current_gnorm, clip_value, gnorm_scale <37>
===========changed ref 0=========== <s> g: Tensor, p: Tensor, state1: Tensor, state2: Tensor, beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, absmax1: Tensor, absmax2: Tensor, weight_decay: float = 0.0, gnorm_scale: float = 1.0, skip_zeros=False, ) -> None: + prev_device = pre_call(g.device) + is_on_gpu([g, p, state1, state2, qmap1, qmap2, absmax1, absmax2]) if g.dtype == torch.float32 and state1.dtype == torch.uint8: str2optimizer8bit_blockwise[optimizer_name][0]( get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2), get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) elif g.dtype == torch.float16 and state1.dtype == torch.uint8: str2optimizer8bit_blockwise[optimizer_name][1]( get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_int32</s> ===========changed ref 1=========== <s> p: Tensor, state1: Tensor, state2: Tensor, beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, absmax1: Tensor, absmax2: Tensor, weight_decay: float = 0.0, gnorm_scale: float = 1.0, skip_zeros=False, ) -> None: # offset: 1 <s>), ct.c_float(beta2), ct.c_float(eps), ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2), get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) else: raise ValueError( f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}" ) + post_call(prev_device) ===========changed ref 2=========== <s> g: Tensor, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor = None, beta2: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: """ Performs an inplace optimizer update with one or two optimizer states. Universal optimizer update for 32-bit state and 32/16-bit gradients/weights. Parameters ---------- optimizer_name : str The name of the optimizer: {adam}. g : torch.Tensor Gradient tensor. p : torch.Tensor Parameter tensor. state1 : torch.Tensor Optimizer state 1. beta1 : float Optimizer beta1. eps : float Optimizer epsilon. weight_decay : float Weight decay. step : int Current optimizer step. lr : float The learning rate. state2 : torch.Tensor Optimizer state 2. beta2 : float Optimizer beta2. gnorm_scale : float The factor to rescale the gradient to the max clip value. unorm_vec : torch.Tensor The tensor for the update norm. max_unorm : float The maximum update norm relative to the weight norm. skip_zeros : bool Whether to skip zero-valued gradients or not (default: False). """ param_norm = 0.0 if max_unorm > 0.0: param_norm = torch.norm(p.data.float()) if optimizer_name not in str2optimizer32bit: raise NotImplementedError( f'Optimizer not implemented: {optimizer_name}. Choices: {",".join(str2optimizer32bit.keys())}' ) + prev_device = pre_call(g.device)</s> ===========changed ref 3=========== <s>, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor = None, beta2: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: # offset: 1 <s>join(str2optimizer32bit.keys())}' ) + prev_device = pre_call(g.device) + is_on_gpu([g, p, state1, state2, unorm_vec]) if g.dtype == torch.float32 and state1.dtype == torch.float32: str2optimizer32bit[optimizer_name][0]( get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay), ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) elif g.dtype == torch.float16 and state1.dtype == torch.float32: str2optimizer32bit[optimizer_name][1]( get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), </s>
bitsandbytes.functional/spmm_coo_very_sparse
Modified
bitsandbytes-foundation~bitsandbytes
2bb5c00ba9b0af840e9226a6100f2e968c0763f4
Added pre/post call to all lib calls. Fixes #120
<5>:<add> prev_device = pre_call(B.device)
# module: bitsandbytes.functional def spmm_coo_very_sparse(cooA, B, dequant_stats=None, out=None): <0> if out is None: <1> out = torch.zeros( <2> (cooA.rows, B.shape[1]), device=B.device, dtype=cooA.values.dtype <3> ) <4> nnz = cooA.nnz <5> assert cooA.rowidx.numel() == nnz <6> assert cooA.colidx.numel() == nnz <7> assert cooA.values.numel() == nnz <8> assert cooA.cols == B.shape[0], f"{cooA.cols} vs {B.shape}" <9> <10> transposed_B = False if B.is_contiguous() else True <11> <12> ldb = B.stride()[(1 if transposed_B else 0)] <13> ldc = B.shape[1] <14> <15> values, counts = torch.unique(cooA.rowidx, return_counts=True) <16> offset = counts.cumsum(0).int() <17> max_count, max_idx = torch.sort(counts, descending=True) <18> max_idx = max_idx.int() <19> max_count = max_count.int() <20> assert ( <21> max_count[0] <= 32 <22> ), f"Current max count per row is 8 but found {max_count[0]}." <23> assert B.dtype in [torch.float16, torch.int8] <24> ptrOffset = get_ptr(offset) <25> ptrMaxCount = get_ptr(max_count) <26> ptrMaxIdx = get_ptr(max_idx) <27> <28> ptrRowidx = get_ptr(cooA.rowidx) <29> ptrColidx = get_ptr(cooA.colidx) <30> ptrValues = get_ptr(cooA.values) <31> ptrB = get_ptr(B) <32> ptrC = get_ptr(out) <33> ptrDequant</s>
===========below chunk 0=========== # module: bitsandbytes.functional def spmm_coo_very_sparse(cooA, B, dequant_stats=None, out=None): # offset: 1 cnnz_rows = ct.c_int32(counts.numel()) cnnz = ct.c_int32(cooA.nnz) crowsA = ct.c_int32(cooA.rows) ccolsA = ct.c_int32(cooA.cols) crowsB = ct.c_int32(B.shape[1]) ccolsB = ct.c_int32(B.shape[1]) cldb = ct.c_int32(ldb) cldc = ct.c_int32(ldc) # print(cooA.rowidx[:64]) # print(cooA.colidx[:64].sort()[0]) is_on_gpu([cooA.rowidx, cooA.colidx, cooA.values, B, out, dequant_stats]) if B.dtype == torch.float16: lib.cspmm_coo_very_sparse_naive_fp16( ptrMaxCount, ptrMaxIdx, ptrOffset, ptrRowidx, ptrColidx, ptrValues, ptrB, ptrC, ptrDequantStats, cnnz_rows, cnnz, crowsA, crowsB, ccolsB, ) elif B.dtype == torch.int8: lib.cspmm_coo_very_sparse_naive_int8( ptrMaxCount, ptrMaxIdx, ptrOffset, ptrRowidx, ptrColidx, ptrValues, ptrB, ptrC, ptrDequantStats, cnnz_rows, cnnz, crowsA, crowsB, ccolsB, ) # else: assertion error return out ===========changed ref 0=========== # module: bitsandbytes.functional def percentile_clipping( grad: Tensor, gnorm_vec: Tensor, step: int, percentile: int = 5 ): """Applies percentile clipping grad: torch.Tensor The gradient tensor. gnorm_vec: torch.Tensor Vector of gradient norms. 100 elements expected. step: int The current optimiation steps (number of past gradient norms). """ + prev_device = pre_call(grad.device) is_on_gpu([grad, gnorm_vec]) if grad.dtype == torch.float32: lib.cpercentile_clipping_g32( get_ptr(grad), get_ptr(gnorm_vec), ct.c_int32(step), ct.c_int32(grad.numel()), ) elif grad.dtype == torch.float16: lib.cpercentile_clipping_g16( get_ptr(grad), get_ptr(gnorm_vec), ct.c_int32(step), ct.c_int32(grad.numel()), ) else: raise ValueError(f"Gradient type {grad.dtype} not supported!") + post_call(prev_device) current_gnorm = torch.sqrt(gnorm_vec[step % 100]) vals, idx = torch.sort(gnorm_vec) clip_value = torch.sqrt(vals[percentile]) gnorm_scale = 1.0 if current_gnorm > clip_value: gnorm_scale = clip_value / current_gnorm return current_gnorm, clip_value, gnorm_scale ===========changed ref 1=========== <s> g: Tensor, p: Tensor, state1: Tensor, state2: Tensor, beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, absmax1: Tensor, absmax2: Tensor, weight_decay: float = 0.0, gnorm_scale: float = 1.0, skip_zeros=False, ) -> None: + prev_device = pre_call(g.device) + is_on_gpu([g, p, state1, state2, qmap1, qmap2, absmax1, absmax2]) if g.dtype == torch.float32 and state1.dtype == torch.uint8: str2optimizer8bit_blockwise[optimizer_name][0]( get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2), get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) elif g.dtype == torch.float16 and state1.dtype == torch.uint8: str2optimizer8bit_blockwise[optimizer_name][1]( get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_int32</s> ===========changed ref 2=========== <s> p: Tensor, state1: Tensor, state2: Tensor, beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, absmax1: Tensor, absmax2: Tensor, weight_decay: float = 0.0, gnorm_scale: float = 1.0, skip_zeros=False, ) -> None: # offset: 1 <s>), ct.c_float(beta2), ct.c_float(eps), ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2), get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) else: raise ValueError( f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}" ) + post_call(prev_device)
bitsandbytes.cuda_setup.main/CUDASetup.run_cuda_setup
Modified
bitsandbytes-foundation~bitsandbytes
4cd63deff3b3cdc923e151c4efdaa281fa42d668
Fixed CUDA Conda PyTorch 2.0 issues.
<11>:<add> <add> print('bin', binary_path)
# module: bitsandbytes.cuda_setup.main class CUDASetup: def run_cuda_setup(self): <0> self.initialized = True <1> self.cuda_setup_log = [] <2> <3> binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup() <4> self.cudart_path = cudart_path <5> self.cuda = cuda <6> self.cc = cc <7> self.cuda_version_string = cuda_version_string <8> <9> package_dir = Path(__file__).parent.parent <10> binary_path = package_dir / binary_name <11> <12> try: <13> if not binary_path.exists(): <14> self.add_log_entry(f"CUDA SETUP: Required library version not found: {binary_name}. Maybe you need to compile it from source?") <15> legacy_binary_name = "libbitsandbytes_cpu.so" <16> self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...") <17> binary_path = package_dir / legacy_binary_name <18> if not binary_path.exists() or torch.cuda.is_available(): <19> self.add_log_entry('') <20> self.add_log_entry('='*48 + 'ERROR' + '='*37) <21> self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:') <22> self.add_log_entry('1. CUDA driver not installed') <23> self.add_log_entry('2. CUDA not installed') <24> self.add_log_entry('3. You have multiple conflicting CUDA libraries') <25> self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!') <26> self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.') <27> </s>
===========below chunk 0=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def run_cuda_setup(self): # offset: 1 self.add_log_entry('='*80) self.add_log_entry('') self.generate_instructions() self.print_log_stack() raise Exception('CUDA SETUP: Setup Failed!') self.lib = ct.cdll.LoadLibrary(binary_path) else: self.add_log_entry(f"CUDA SETUP: Loading binary {binary_path}...") self.lib = ct.cdll.LoadLibrary(binary_path) except Exception as ex: self.add_log_entry(str(ex)) self.print_log_stack() ===========changed ref 0=========== # module: bitsandbytes.cuda_setup.main + # these are the most common libs names + # libcudart.so is missing by default for a conda install with PyTorch 2.0 and instead + # we have libcudart.so.11.0 which causes a lot of errors before + # not sure if libcudart.so.12.0 exists in pytorch installs, but it does not hurt + CUDA_RUNTIME_LIBS: list = ["libcudart.so", 'libcudart.so.11.0', 'libcudart.so.12.0'] - CUDA_RUNTIME_LIB: str = "libcudart.so" + # this is a order list of backup paths to search CUDA in, if it cannot be found in the main environmental paths + backup_paths = [] + backup_paths.append('$CONDA_PREFIX/lib/libcudart.so.11.0') +
bitsandbytes.cuda_setup.main/get_cuda_runtime_lib_paths
Modified
bitsandbytes-foundation~bitsandbytes
4cd63deff3b3cdc923e151c4efdaa281fa42d668
Fixed CUDA Conda PyTorch 2.0 issues.
<0>:<add> paths = set() <add> for libname in CUDA_RUNTIME_LIBS: <del> return { <1>:<del> path / CUDA_RUNTIME_LIB <2>:<add> for path in candidate_paths: <del> for path in candidate_paths <3>:<add> if (path / libname).is_file(): <add> paths.add(path / libname) <add> return paths <del> if (path / CUDA_RUNTIME_LIB).is_file() <4>:<del> }
# module: bitsandbytes.cuda_setup.main def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]: <0> return { <1> path / CUDA_RUNTIME_LIB <2> for path in candidate_paths <3> if (path / CUDA_RUNTIME_LIB).is_file() <4> } <5>
===========changed ref 0=========== # module: bitsandbytes.cuda_setup.main + # these are the most common libs names + # libcudart.so is missing by default for a conda install with PyTorch 2.0 and instead + # we have libcudart.so.11.0 which causes a lot of errors before + # not sure if libcudart.so.12.0 exists in pytorch installs, but it does not hurt + CUDA_RUNTIME_LIBS: list = ["libcudart.so", 'libcudart.so.11.0', 'libcudart.so.12.0'] - CUDA_RUNTIME_LIB: str = "libcudart.so" + # this is a order list of backup paths to search CUDA in, if it cannot be found in the main environmental paths + backup_paths = [] + backup_paths.append('$CONDA_PREFIX/lib/libcudart.so.11.0') + ===========changed ref 1=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def run_cuda_setup(self): self.initialized = True self.cuda_setup_log = [] binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup() self.cudart_path = cudart_path self.cuda = cuda self.cc = cc self.cuda_version_string = cuda_version_string package_dir = Path(__file__).parent.parent binary_path = package_dir / binary_name + + print('bin', binary_path) try: if not binary_path.exists(): self.add_log_entry(f"CUDA SETUP: Required library version not found: {binary_name}. Maybe you need to compile it from source?") legacy_binary_name = "libbitsandbytes_cpu.so" self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...") binary_path = package_dir / legacy_binary_name if not binary_path.exists() or torch.cuda.is_available(): self.add_log_entry('') self.add_log_entry('='*48 + 'ERROR' + '='*37) self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:') self.add_log_entry('1. CUDA driver not installed') self.add_log_entry('2. CUDA not installed') self.add_log_entry('3. You have multiple conflicting CUDA libraries') self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!') self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.') self.add_log_entry('CUDA SETUP: The CU</s> ===========changed ref 2=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def run_cuda_setup(self): # offset: 1 <s> example, `make CUDA_VERSION=113`.') self.add_log_entry('CUDA SETUP: The CUDA version for the compile might depend on your conda install. Inspect CUDA version via `conda list | grep cuda`.') self.add_log_entry('='*80) self.add_log_entry('') self.generate_instructions() - self.print_log_stack() raise Exception('CUDA SETUP: Setup Failed!') self.lib = ct.cdll.LoadLibrary(binary_path) else: self.add_log_entry(f"CUDA SETUP: Loading binary {binary_path}...") self.lib = ct.cdll.LoadLibrary(binary_path) except Exception as ex: self.add_log_entry(str(ex)) - self.print_log_stack()
bitsandbytes.cuda_setup.main/determine_cuda_runtime_lib_path
Modified
bitsandbytes-foundation~bitsandbytes
4cd63deff3b3cdc923e151c4efdaa281fa42d668
Fixed CUDA Conda PyTorch 2.0 issues.
# module: bitsandbytes.cuda_setup.main def determine_cuda_runtime_lib_path() -> Union[Path, None]: <0> """ <1> Searches for a cuda installations, in the following order of priority: <2> 1. active conda env <3> 2. LD_LIBRARY_PATH <4> 3. any other env vars, while ignoring those that <5> - are known to be unrelated (see `bnb.cuda_setup.env_vars.to_be_ignored`) <6> - don't contain the path separator `/` <7> <8> If multiple libraries are found in part 3, we optimistically try one, <9> while giving a warning message. <10> """ <11> candidate_env_vars = get_potentially_lib_path_containing_env_vars() <12> <13> if "CONDA_PREFIX" in candidate_env_vars: <14> conda_libs_path = Path(candidate_env_vars["CONDA_PREFIX"]) / "lib" <15> <16> conda_cuda_libs = find_cuda_lib_in(str(conda_libs_path)) <17> warn_in_case_of_duplicates(conda_cuda_libs) <18> <19> if conda_cuda_libs: <20> return next(iter(conda_cuda_libs)) <21> <22> CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["CONDA_PREFIX"]} did not contain ' <23> f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True) <24> <25> if "LD_LIBRARY_PATH" in candidate_env_vars: <26> lib_ld_cuda_libs = find_cuda_lib_in(candidate_env_vars["LD_LIBRARY_PATH"]) <27> <28> if lib_ld_cuda_libs: <29> return next(iter(lib_ld_cuda_libs)) <30> warn_in_case_of_duplicates(lib_ld_cuda_libs) <31> <32> CUDASetup.get_instance().add_</s>
===========below chunk 0=========== # module: bitsandbytes.cuda_setup.main def determine_cuda_runtime_lib_path() -> Union[Path, None]: # offset: 1 f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True) remaining_candidate_env_vars = { env_var: value for env_var, value in candidate_env_vars.items() if env_var not in {"CONDA_PREFIX", "LD_LIBRARY_PATH"} } cuda_runtime_libs = set() for env_var, value in remaining_candidate_env_vars.items(): cuda_runtime_libs.update(find_cuda_lib_in(value)) if len(cuda_runtime_libs) == 0: CUDASetup.get_instance().add_log_entry('CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching /usr/local/cuda/lib64...') cuda_runtime_libs.update(find_cuda_lib_in('/usr/local/cuda/lib64')) warn_in_case_of_duplicates(cuda_runtime_libs) return next(iter(cuda_runtime_libs)) if cuda_runtime_libs else None ===========changed ref 0=========== # module: bitsandbytes.cuda_setup.main def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]: + paths = set() + for libname in CUDA_RUNTIME_LIBS: - return { - path / CUDA_RUNTIME_LIB + for path in candidate_paths: - for path in candidate_paths + if (path / libname).is_file(): + paths.add(path / libname) + return paths - if (path / CUDA_RUNTIME_LIB).is_file() - } ===========changed ref 1=========== # module: bitsandbytes.cuda_setup.main + # these are the most common libs names + # libcudart.so is missing by default for a conda install with PyTorch 2.0 and instead + # we have libcudart.so.11.0 which causes a lot of errors before + # not sure if libcudart.so.12.0 exists in pytorch installs, but it does not hurt + CUDA_RUNTIME_LIBS: list = ["libcudart.so", 'libcudart.so.11.0', 'libcudart.so.12.0'] - CUDA_RUNTIME_LIB: str = "libcudart.so" + # this is a order list of backup paths to search CUDA in, if it cannot be found in the main environmental paths + backup_paths = [] + backup_paths.append('$CONDA_PREFIX/lib/libcudart.so.11.0') + ===========changed ref 2=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def run_cuda_setup(self): self.initialized = True self.cuda_setup_log = [] binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup() self.cudart_path = cudart_path self.cuda = cuda self.cc = cc self.cuda_version_string = cuda_version_string package_dir = Path(__file__).parent.parent binary_path = package_dir / binary_name + + print('bin', binary_path) try: if not binary_path.exists(): self.add_log_entry(f"CUDA SETUP: Required library version not found: {binary_name}. Maybe you need to compile it from source?") legacy_binary_name = "libbitsandbytes_cpu.so" self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...") binary_path = package_dir / legacy_binary_name if not binary_path.exists() or torch.cuda.is_available(): self.add_log_entry('') self.add_log_entry('='*48 + 'ERROR' + '='*37) self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:') self.add_log_entry('1. CUDA driver not installed') self.add_log_entry('2. CUDA not installed') self.add_log_entry('3. You have multiple conflicting CUDA libraries') self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!') self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.') self.add_log_entry('CUDA SETUP: The CU</s> ===========changed ref 3=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def run_cuda_setup(self): # offset: 1 <s> example, `make CUDA_VERSION=113`.') self.add_log_entry('CUDA SETUP: The CUDA version for the compile might depend on your conda install. Inspect CUDA version via `conda list | grep cuda`.') self.add_log_entry('='*80) self.add_log_entry('') self.generate_instructions() - self.print_log_stack() raise Exception('CUDA SETUP: Setup Failed!') self.lib = ct.cdll.LoadLibrary(binary_path) else: self.add_log_entry(f"CUDA SETUP: Loading binary {binary_path}...") self.lib = ct.cdll.LoadLibrary(binary_path) except Exception as ex: self.add_log_entry(str(ex)) - self.print_log_stack()
bitsandbytes.cuda_setup.main/evaluate_cuda_setup
Modified
bitsandbytes-foundation~bitsandbytes
89e3b82731db66eb4bb0c0690f1f623c8ef6df65
Added more detailed cuda setup debug and debugging instructions.
<3>:<add> print(('Welcome to bitsandbytes. For bug reports, please run\n\npython -m bitsandbytes\n\n'), <add> ('and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')) <del> print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
# module: bitsandbytes.cuda_setup.main def evaluate_cuda_setup(): <0> if 'BITSANDBYTES_NOWELCOME' not in os.environ or str(os.environ['BITSANDBYTES_NOWELCOME']) == '0': <1> print('') <2> print('='*35 + 'BUG REPORT' + '='*35) <3> print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues') <4> print('='*80) <5> if not torch.cuda.is_available(): return 'libbitsandbytes_cpu.so', None, None, None, None <6> <7> cuda_setup = CUDASetup.get_instance() <8> cudart_path = determine_cuda_runtime_lib_path() <9> cuda = get_cuda_lib_handle() <10> cc = get_compute_capability(cuda) <11> cuda_version_string = get_cuda_version(cuda, cudart_path) <12> <13> failure = False <14> if cudart_path is None: <15> failure = True <16> cuda_setup.add_log_entry("WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!", is_warning=True) <17> else: <18> cuda_setup.add_log_entry(f"CUDA SETUP: CUDA runtime path found: {cudart_path}") <19> <20> if cc == '' or cc is None: <21> failure = True <22> cuda_setup.add_log_entry("WARNING: No GPU detected! Check your CUDA paths. Proceeding to load CPU-only library...", is_warning=True) <23> else: <24> cuda_setup.add_log_entry(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}") <25> <26> if cuda is None: <27> failure = True <28> else: <29> cuda_setup.add_log_entry(f'CUDA</s>
===========below chunk 0=========== # module: bitsandbytes.cuda_setup.main def evaluate_cuda_setup(): # offset: 1 # 7.5 is the minimum CC vor cublaslt has_cublaslt = is_cublasLt_compatible(cc) # TODO: # (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible) # (2) Multiple CUDA versions installed # we use ls -l instead of nvcc to determine the cuda version # since most installations will have the libcudart.so installed, but not the compiler if failure: binary_name = "libbitsandbytes_cpu.so" elif has_cublaslt: binary_name = f"libbitsandbytes_cuda{cuda_version_string}.so" else: "if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so" binary_name = f"libbitsandbytes_cuda{cuda_version_string}_nocublaslt.so" return binary_name, cudart_path, cuda, cc, cuda_version_string
bitsandbytes.cuda_setup.main/warn_in_case_of_duplicates
Modified
bitsandbytes-foundation~bitsandbytes
659a7dfc7165b166b7972250c39daa0b90ad501d
Fixing #300.
<2>:<add> f"Found duplicate {CUDA_RUNTIME_LIBS} files: {results_paths}.. " <del> f"Found duplicate {CUDA_RUNTIME_LIB} files: {results_paths}.. " <7>:<add> f"{CUDA_RUNTIME_LIBS} in the paths that we search based on your env.") <del> f"{CUDA_RUNTIME_LIB} in the paths that we search based on your env.")
# module: bitsandbytes.cuda_setup.main def warn_in_case_of_duplicates(results_paths: Set[Path]) -> None: <0> if len(results_paths) > 1: <1> warning_msg = ( <2> f"Found duplicate {CUDA_RUNTIME_LIB} files: {results_paths}.. " <3> "We'll flip a coin and try one of these, in order to fail forward.\n" <4> "Either way, this might cause trouble in the future:\n" <5> "If you get `CUDA error: invalid device function` errors, the above " <6> "might be the cause and the solution is to make sure only one " <7> f"{CUDA_RUNTIME_LIB} in the paths that we search based on your env.") <8> CUDASetup.get_instance().add_log_entry(warning_msg, is_warning=True) <9>
===========unchanged ref 0=========== at: bitsandbytes.cuda_setup.main CUDA_RUNTIME_LIBS: list = ["libcudart.so", 'libcudart.so.11.0', 'libcudart.so.12.0'] CUDASetup() at: bitsandbytes.cuda_setup.main.CUDASetup _instance = None get_instance() at: pathlib Path() at: typing Set = _alias(set, 1, inst=False, name='Set')
bitsandbytes.cuda_setup.main/determine_cuda_runtime_lib_path
Modified
bitsandbytes-foundation~bitsandbytes
659a7dfc7165b166b7972250c39daa0b90ad501d
Fixing #300.
<23>:<add> f'{CUDA_RUNTIME_LIBS} as expected! Searching further paths...', is_warning=True) <del> f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True)
# module: bitsandbytes.cuda_setup.main def determine_cuda_runtime_lib_path() -> Union[Path, None]: <0> """ <1> Searches for a cuda installations, in the following order of priority: <2> 1. active conda env <3> 2. LD_LIBRARY_PATH <4> 3. any other env vars, while ignoring those that <5> - are known to be unrelated (see `bnb.cuda_setup.env_vars.to_be_ignored`) <6> - don't contain the path separator `/` <7> <8> If multiple libraries are found in part 3, we optimistically try one, <9> while giving a warning message. <10> """ <11> candidate_env_vars = get_potentially_lib_path_containing_env_vars() <12> <13> if "CONDA_PREFIX" in candidate_env_vars: <14> conda_libs_path = Path(candidate_env_vars["CONDA_PREFIX"]) / "lib" <15> <16> conda_cuda_libs = find_cuda_lib_in(str(conda_libs_path)) <17> warn_in_case_of_duplicates(conda_cuda_libs) <18> <19> if conda_cuda_libs: <20> return next(iter(conda_cuda_libs)) <21> <22> CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["CONDA_PREFIX"]} did not contain ' <23> f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True) <24> <25> if "LD_LIBRARY_PATH" in candidate_env_vars: <26> lib_ld_cuda_libs = find_cuda_lib_in(candidate_env_vars["LD_LIBRARY_PATH"]) <27> <28> if lib_ld_cuda_libs: <29> return next(iter(lib_ld_cuda_libs)) <30> warn_in_case_of_duplicates(lib_ld_cuda_libs) <31> <32> CUDASetup.get_instance().add_</s>
===========below chunk 0=========== # module: bitsandbytes.cuda_setup.main def determine_cuda_runtime_lib_path() -> Union[Path, None]: # offset: 1 f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True) remaining_candidate_env_vars = { env_var: value for env_var, value in candidate_env_vars.items() if env_var not in {"CONDA_PREFIX", "LD_LIBRARY_PATH"} } cuda_runtime_libs = set() for env_var, value in remaining_candidate_env_vars.items(): cuda_runtime_libs.update(find_cuda_lib_in(value)) if len(cuda_runtime_libs) == 0: CUDASetup.get_instance().add_log_entry('CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching in backup paths...') cuda_runtime_libs.update(find_cuda_lib_in('/usr/local/cuda/lib64')) warn_in_case_of_duplicates(cuda_runtime_libs) return next(iter(cuda_runtime_libs)) if cuda_runtime_libs else None ===========unchanged ref 0=========== at: bitsandbytes.cuda_setup.env_vars get_potentially_lib_path_containing_env_vars() -> Dict[str, str] at: bitsandbytes.cuda_setup.main CUDA_RUNTIME_LIBS: list = ["libcudart.so", 'libcudart.so.11.0', 'libcudart.so.12.0'] CUDASetup() find_cuda_lib_in(paths_list_candidate: str) -> Set[Path] warn_in_case_of_duplicates(results_paths: Set[Path]) -> None at: bitsandbytes.cuda_setup.main.CUDASetup get_instance() at: pathlib Path() ===========changed ref 0=========== # module: bitsandbytes.cuda_setup.main def warn_in_case_of_duplicates(results_paths: Set[Path]) -> None: if len(results_paths) > 1: warning_msg = ( + f"Found duplicate {CUDA_RUNTIME_LIBS} files: {results_paths}.. " - f"Found duplicate {CUDA_RUNTIME_LIB} files: {results_paths}.. " "We'll flip a coin and try one of these, in order to fail forward.\n" "Either way, this might cause trouble in the future:\n" "If you get `CUDA error: invalid device function` errors, the above " "might be the cause and the solution is to make sure only one " + f"{CUDA_RUNTIME_LIBS} in the paths that we search based on your env.") - f"{CUDA_RUNTIME_LIB} in the paths that we search based on your env.") CUDASetup.get_instance().add_log_entry(warning_msg, is_warning=True)
bitsandbytes.functional/create_fp8_map
Modified
bitsandbytes-foundation~bitsandbytes
7140c014058f9fa2a75ff315af6af9a59efcfe5f
Merge branch 'main' into fp8_merge
<14>:<add> bias = 2**(exponent_bits-1) <del> bias = 2**(exponent_bits-1)-1 <22>:<add> value = value*2**-(bias) <del> value = value*2**-(bias-1) <25>:<add> value = value*2**-(evalue-bias-1) <del> value = value*2**-(evalue-bias-2)
# module: bitsandbytes.functional def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8): <0> e = exponent_bits <1> p = precision_bits <2> has_sign = 1 if signed else 0 <3> assert e+p == total_bits-has_sign <4> # the exponent is biased to 2^(e-1) -1 == 0 <5> evalues = [] <6> pvalues = [] <7> for i, val in enumerate(range(-((2**(exponent_bits-has_sign))), 2**(exponent_bits-has_sign), 1)): <8> evalues.append(2**val) <9> <10> <11> values = [] <12> lst = list(itertools.product([0, 1], repeat=precision_bits)) <13> #for ev in evalues: <14> bias = 2**(exponent_bits-1)-1 <15> for evalue in range(2**(exponent_bits)): <16> for bit_pattern in lst: <17> value = (1 if evalue != 0 else 0) <18> for i, pval in enumerate(list(bit_pattern)): <19> value += pval*(2**-(i+1)) <20> if evalue == 0: <21> # subnormals <22> value = value*2**-(bias-1) <23> else: <24> # normals <25> value = value*2**-(evalue-bias-2) <26> values.append(value) <27> if signed: <28> values.append(-value) <29> <30> <31> assert len(values) == 2**total_bits <32> values.sort() <33> if total_bits < 8: <34> gap = 256 - len(values) <35> for i in range(gap): <36> values.append(0) <37> values.sort() <38> code = torch.Tensor(values) <39> code /= code.max() <40> <41> return code <42>
===========changed ref 0=========== + # module: bitsandbytes.nn.triton_based_modules + + ===========changed ref 1=========== + # module: bitsandbytes.triton.int8_matmul_rowwise_dequantize + + ===========changed ref 2=========== + # module: bitsandbytes.triton + + ===========changed ref 3=========== + # module: bitsandbytes.triton.quantize_global + + ===========changed ref 4=========== + # module: bitsandbytes.triton.int8_matmul_mixed_dequanitze + + ===========changed ref 5=========== + # module: bitsandbytes.triton.dequantize_rowwise + + ===========changed ref 6=========== + # module: bitsandbytes.triton.quantize_columnwise_and_transpose + + ===========changed ref 7=========== + # module: bitsandbytes.triton.quantize_rowwise + + ===========changed ref 8=========== # module: bitsandbytes.utils + class OutlierTracer(object): + _instance = None + ===========changed ref 9=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def is_initialized(self): + return getattr(self, 'initialized', False) + ===========changed ref 10=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 11=========== + # module: bitsandbytes.triton.int8_matmul_rowwise_dequantize + # This is a matmul kernel based on triton.ops.matmul + # It is modified to support rowwise quantized input and columnwise quantized weight + # It's purpose is fused matmul then dequantize + # It does support bias. + + def init_to_zero(name): + return lambda nargs: nargs[name].zero_() + ===========changed ref 12=========== + # module: bitsandbytes.triton.int8_matmul_mixed_dequanitze + # This is a matmul kernel based on triton.ops.matmul + # It is modified to support rowwise quantized input and global quantized weight + # It's purpose is fused matmul then dequantize + # It does support bias. + + def init_to_zero(name): + return lambda nargs: nargs[name].zero_() + ===========changed ref 13=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def get_hvalue(self, weight): + return weight.data.storage().data_ptr() + ===========changed ref 14=========== + # module: bitsandbytes.nn.triton_based_modules + class StandardLinear(nn.Linear): + def forward(self, x): + return StandardLinearFunction.apply(x, self.weight, self.bias) + ===========changed ref 15=========== # module: bitsandbytes.nn.modules + class OutlierAwareLinear(nn.Linear): + def quantize_weight(self, w, outlier_idx): + raise NotImplementedError('Please override the `quantize_weights(self, w, outlier_idx)` function') + ===========changed ref 16=========== # module: bitsandbytes.nn.modules + class OutlierAwareLinear(nn.Linear): + def forward_with_outliers(self, x, outlier_idx): + raise NotImplementedError('Please override the `forward_with_outliers(self, x, outlier_idx)` function') + ===========changed ref 17=========== # module: bitsandbytes.utils + class OutlierTracer(object): + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + return cls._instance + ===========changed ref 18=========== # module: bitsandbytes.nn.modules + class OutlierAwareLinear(nn.Linear): + def __init__(self, input_features, output_features, bias=True): + super().__init__(input_features, output_features, bias) + self.outlier_dim = None + self.is_quantized = False + ===========changed ref 19=========== # module: bitsandbytes.nn.modules + class SwitchBackLinearBnb(nn.Linear): + def init_8bit_state(self): + self.state.CB = self.weight.CB + self.state.SCB = self.weight.SCB + self.weight.CB = None + self.weight.SCB = None + ===========changed ref 20=========== + # module: bitsandbytes.nn.triton_based_modules + SwitchBackLinearGlobal = partial(SwitchBackLinear, vectorize=False) + SwitchBackLinearGlobalMemEfficient = partial(SwitchBackLinear, vectorize=False, mem_efficient=True) + SwitchBackLinearVectorized = partial(SwitchBackLinear, vectorize=True) + ===========changed ref 21=========== # module: bitsandbytes.nn.modules + class SwitchBackLinearBnb(nn.Linear): + def forward(self, x): + self.state.is_training = self.training + + if self.weight.CB is not None: + self.init_8bit_state() + + out = bnb.matmul_mixed(x.half(), self.weight.half(), bias=None, state=self.state) + self.bias + ===========changed ref 22=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def get_outliers(self, weight): + if not self.is_initialized(): + print('Outlier tracer is not initialized...') + return None + hvalue = self.get_hvalue(weight) + if hvalue in self.hvalue2outlier_idx: + return self.hvalue2outlier_idx[hvalue] + else: + return None + ===========changed ref 23=========== + # module: bitsandbytes.nn.triton_based_modules + # This is just the standard linear function. + class StandardLinearFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, input, weight, bias=None): + X = input.view(-1, input.size(-1)) + + ctx.save_for_backward(X, weight, bias) + output = input.matmul(weight.t()) + if bias is not None: + output += bias.unsqueeze(0).expand_as(output) + return output.view(*input.size()[:-1], -1) + ===========changed ref 24=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def initialize(self, model): + self.last_w = None + self.current_outlier_dims = None + self.hvalues = [] + self.outliers = [] + self.hvalue2outlier_idx = {} + self.initialized = True + self.hooks = [] + + for n, m in model.named_modules(): + if isinstance(m, torch.nn.Linear): + self.hooks.append(m.register_forward_pre_hook(outlier_hook)) + ===========changed ref 25=========== <s>iton.Config({}, num_warps=4), + triton.Config({}, num_warps=8), + ], + key=['n_elements'] + ) + @triton.jit + def _dequantize_rowwise( + x_ptr, + state_x, + output_ptr, + inv_127, + n_elements, + BLOCK_SIZE: tl.constexpr, + P2: tl.constexpr, + ): + pid = tl.program_id(axis=0) + block_start = pid * BLOCK_SIZE + arange = tl.arange(0, P2) + offsets = block_start + arange + row_mask = arange < BLOCK_SIZE + x = tl.load(x_ptr + offsets, mask=row_mask) + max_val = tl.load(state_x + pid) + output = max_val * x * inv_127 + tl.store(output_ptr + offsets, output, mask=row_mask) +
bitsandbytes.functional/quantize_blockwise
Modified
bitsandbytes-foundation~bitsandbytes
7140c014058f9fa2a75ff315af6af9a59efcfe5f
Merge branch 'main' into fp8_merge
# module: bitsandbytes.functional def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, rand=None, out: Tensor = None, blocksize=4096) -> Tensor: <0> """ <1> Quantize tensor A in blocks of size 4096 values. <2> <3> Quantizes tensor A by dividing it into blocks of 4096 values. <4> Then the absolute maximum value within these blocks is calculated <5> for the non-linear quantization. <6> <7> Parameters <8> ---------- <9> A : torch.Tensor <10> The input tensor. <11> code : torch.Tensor <12> The quantization map. <13> absmax : torch.Tensor <14> The absmax values. <15> rand : torch.Tensor <16> The tensor for stochastic rounding. <17> out : torch.Tensor <18> The output tensor (8-bit). <19> <20> Returns <21> ------- <22> torch.Tensor: <23> The 8-bit tensor. <24> tuple(torch.Tensor, torch.Tensor): <25> The quantization state to undo the quantization. <26> """ <27> <28> <29> if code is None: <30> if "dynamic" not in name2qmap: <31> name2qmap["dynamic"] = create_dynamic_map().to(A.device) <32> code = name2qmap["dynamic"] <33> <34> if absmax is None: <35> n = A.numel() <36> blocks = n // blocksize <37> blocks += 1 if n % blocksize > 0 else 0 <38> absmax = torch.zeros((blocks,), device=A.device) <39> <40> if out is None: <41> out = torch.zeros_like(A, dtype=torch.uint8) <42> <43> if A.device.type != 'cpu': <44> assert blocksize in [4096, 2048, 1024, 512, 256, 128, 64] <45> cblocksize = ct.c_int32(blocksize) <46> prev_device = pre_call(A.device) <47> code = code.to(A.device) <48> if rand is</s>
===========below chunk 0=========== # module: bitsandbytes.functional def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, rand=None, out: Tensor = None, blocksize=4096) -> Tensor: # offset: 1 is_on_gpu([code, A, out, absmax, rand]) assert blocksize==4096 assert rand.numel() >= 1024 rand_offset = random.randint(0, 1023) if A.dtype == torch.float32: lib.cquantize_blockwise_stochastic_fp32(get_ptr(code), get_ptr(A),get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel())) elif A.dtype == torch.float16: lib.cquantize_blockwise_stochastic_fp16(get_ptr(code), get_ptr(A),get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel())) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") else: is_on_gpu([code, A, out, absmax]) if A.dtype == torch.float32: lib.cquantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel())) elif A.dtype == torch.float16: lib.cquantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel())) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") post_call(A.device) else: </s> ===========below chunk 1=========== # module: bitsandbytes.functional def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, rand=None, out: Tensor = None, blocksize=4096) -> Tensor: # offset: 2 <s> 16/32-bit floats, but got {A.dtype}") post_call(A.device) else: # cpu code = code.cpu() assert rand is None lib.cquantize_blockwise_cpu_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel())) return out, (absmax, code) ===========changed ref 0=========== # module: bitsandbytes.functional def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8): e = exponent_bits p = precision_bits has_sign = 1 if signed else 0 assert e+p == total_bits-has_sign # the exponent is biased to 2^(e-1) -1 == 0 evalues = [] pvalues = [] for i, val in enumerate(range(-((2**(exponent_bits-has_sign))), 2**(exponent_bits-has_sign), 1)): evalues.append(2**val) values = [] lst = list(itertools.product([0, 1], repeat=precision_bits)) #for ev in evalues: + bias = 2**(exponent_bits-1) - bias = 2**(exponent_bits-1)-1 for evalue in range(2**(exponent_bits)): for bit_pattern in lst: value = (1 if evalue != 0 else 0) for i, pval in enumerate(list(bit_pattern)): value += pval*(2**-(i+1)) if evalue == 0: # subnormals + value = value*2**-(bias) - value = value*2**-(bias-1) else: # normals + value = value*2**-(evalue-bias-1) - value = value*2**-(evalue-bias-2) values.append(value) if signed: values.append(-value) assert len(values) == 2**total_bits values.sort() if total_bits < 8: gap = 256 - len(values) for i in range(gap): values.append(0) values.sort() code = torch.Tensor(values) code /= code.max() return code ===========changed ref 1=========== + # module: bitsandbytes.nn.triton_based_modules + + ===========changed ref 2=========== + # module: bitsandbytes.triton.int8_matmul_rowwise_dequantize + + ===========changed ref 3=========== + # module: bitsandbytes.triton + + ===========changed ref 4=========== + # module: bitsandbytes.triton.quantize_global + + ===========changed ref 5=========== + # module: bitsandbytes.triton.int8_matmul_mixed_dequanitze + + ===========changed ref 6=========== + # module: bitsandbytes.triton.dequantize_rowwise + + ===========changed ref 7=========== + # module: bitsandbytes.triton.quantize_columnwise_and_transpose + + ===========changed ref 8=========== + # module: bitsandbytes.triton.quantize_rowwise + + ===========changed ref 9=========== # module: bitsandbytes.utils + class OutlierTracer(object): + _instance = None + ===========changed ref 10=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def is_initialized(self): + return getattr(self, 'initialized', False) + ===========changed ref 11=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 12=========== + # module: bitsandbytes.triton.int8_matmul_rowwise_dequantize + # This is a matmul kernel based on triton.ops.matmul + # It is modified to support rowwise quantized input and columnwise quantized weight + # It's purpose is fused matmul then dequantize + # It does support bias. + + def init_to_zero(name): + return lambda nargs: nargs[name].zero_() + ===========changed ref 13=========== + # module: bitsandbytes.triton.int8_matmul_mixed_dequanitze + # This is a matmul kernel based on triton.ops.matmul + # It is modified to support rowwise quantized input and global quantized weight + # It's purpose is fused matmul then dequantize + # It does support bias. + + def init_to_zero(name): + return lambda nargs: nargs[name].zero_() + ===========changed ref 14=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def get_hvalue(self, weight): + return weight.data.storage().data_ptr() + ===========changed ref 15=========== + # module: bitsandbytes.nn.triton_based_modules + class StandardLinear(nn.Linear): + def forward(self, x): + return StandardLinearFunction.apply(x, self.weight, self.bias) + ===========changed ref 16=========== # module: bitsandbytes.nn.modules + class OutlierAwareLinear(nn.Linear): + def quantize_weight(self, w, outlier_idx): + raise NotImplementedError('Please override the `quantize_weights(self, w, outlier_idx)` function') + ===========changed ref 17=========== # module: bitsandbytes.nn.modules + class OutlierAwareLinear(nn.Linear): + def forward_with_outliers(self, x, outlier_idx): + raise NotImplementedError('Please override the `forward_with_outliers(self, x, outlier_idx)` function') + ===========changed ref 18=========== # module: bitsandbytes.utils + class OutlierTracer(object): + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + return cls._instance +
tests.test_functional/test_dynamic_blockwise_stochastic_quantization
Modified
bitsandbytes-foundation~bitsandbytes
7140c014058f9fa2a75ff315af6af9a59efcfe5f
Merge branch 'main' into fp8_merge
<3>:<add> err = 0 <5>:<add> C1, S1 = F.quantize_blockwise(A1, rand=rand, blocksize=blocksize) <del> C1, S1 = F.quantize_blockwise(A1, rand=rand) <6>:<add> C2, S2 = F.quantize_blockwise(A1, blocksize=blocksize) <del> C2, S2 = F.quantize_blockwise(A1) <7>:<add> A2 = F.dequantize_blockwise(C1, S1, blocksize=blocksize) <add> err += (A1-A2).abs().mean().item()/100 <11>:<del> torch.testing.assert_allclose( <12>:<add> torch.testing.assert_allclose(fraction_larger, fraction_smaller, atol=0.01, rtol=0) <del> fraction_larger, fraction_smaller, atol=0.01, rtol=0 <13>:<add> assert err < 0.019 <del> )
<s>fs)/len(diffs)) #print('rand', blocksize, sum(reldiffs)/len(reldiffs)) + + @pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64]) + @pytest.mark.skip("Stochastic has some bugs, but will be deprecated soon anyways.") + def test_dynamic_blockwise_stochastic_quantization(blocksize): - def test_dynamic_blockwise_stochastic_quantization(): <0> diffs = [] <1> reldiffs = [] <2> rand = torch.rand(1024).cuda() <3> for i in range(100): <4> A1 = torch.randn(1024, 1024, device="cuda") <5> C1, S1 = F.quantize_blockwise(A1, rand=rand) <6> C2, S2 = F.quantize_blockwise(A1) <7> # a maximunm distance of quantized values of 1 <8> torch.testing.assert_allclose(C1, C2, atol=1, rtol=0) <9> fraction_smaller = (C1 < C2).float().sum() / C1.numel() <10> fraction_larger = (C1 > C2).float().sum() / C1.numel() <11> torch.testing.assert_allclose( <12> fraction_larger, fraction_smaller, atol=0.01, rtol=0 <13> ) <14>
===========changed ref 0=========== + # module: bitsandbytes.nn.triton_based_modules + + ===========changed ref 1=========== + # module: bitsandbytes.triton.int8_matmul_rowwise_dequantize + + ===========changed ref 2=========== + # module: bitsandbytes.triton + + ===========changed ref 3=========== + # module: bitsandbytes.triton.quantize_global + + ===========changed ref 4=========== + # module: bitsandbytes.triton.int8_matmul_mixed_dequanitze + + ===========changed ref 5=========== + # module: bitsandbytes.triton.dequantize_rowwise + + ===========changed ref 6=========== + # module: bitsandbytes.triton.quantize_columnwise_and_transpose + + ===========changed ref 7=========== + # module: bitsandbytes.triton.quantize_rowwise + + ===========changed ref 8=========== # module: bitsandbytes.utils + class OutlierTracer(object): + _instance = None + ===========changed ref 9=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def is_initialized(self): + return getattr(self, 'initialized', False) + ===========changed ref 10=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 11=========== + # module: bitsandbytes.triton.int8_matmul_rowwise_dequantize + # This is a matmul kernel based on triton.ops.matmul + # It is modified to support rowwise quantized input and columnwise quantized weight + # It's purpose is fused matmul then dequantize + # It does support bias. + + def init_to_zero(name): + return lambda nargs: nargs[name].zero_() + ===========changed ref 12=========== + # module: bitsandbytes.triton.int8_matmul_mixed_dequanitze + # This is a matmul kernel based on triton.ops.matmul + # It is modified to support rowwise quantized input and global quantized weight + # It's purpose is fused matmul then dequantize + # It does support bias. + + def init_to_zero(name): + return lambda nargs: nargs[name].zero_() + ===========changed ref 13=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def get_hvalue(self, weight): + return weight.data.storage().data_ptr() + ===========changed ref 14=========== + # module: bitsandbytes.nn.triton_based_modules + class StandardLinear(nn.Linear): + def forward(self, x): + return StandardLinearFunction.apply(x, self.weight, self.bias) + ===========changed ref 15=========== # module: bitsandbytes.nn.modules + class OutlierAwareLinear(nn.Linear): + def quantize_weight(self, w, outlier_idx): + raise NotImplementedError('Please override the `quantize_weights(self, w, outlier_idx)` function') + ===========changed ref 16=========== # module: bitsandbytes.nn.modules + class OutlierAwareLinear(nn.Linear): + def forward_with_outliers(self, x, outlier_idx): + raise NotImplementedError('Please override the `forward_with_outliers(self, x, outlier_idx)` function') + ===========changed ref 17=========== # module: bitsandbytes.utils + class OutlierTracer(object): + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + return cls._instance + ===========changed ref 18=========== # module: bitsandbytes.nn.modules + class OutlierAwareLinear(nn.Linear): + def __init__(self, input_features, output_features, bias=True): + super().__init__(input_features, output_features, bias) + self.outlier_dim = None + self.is_quantized = False + ===========changed ref 19=========== # module: bitsandbytes.nn.modules + class SwitchBackLinearBnb(nn.Linear): + def init_8bit_state(self): + self.state.CB = self.weight.CB + self.state.SCB = self.weight.SCB + self.weight.CB = None + self.weight.SCB = None + ===========changed ref 20=========== + # module: bitsandbytes.nn.triton_based_modules + SwitchBackLinearGlobal = partial(SwitchBackLinear, vectorize=False) + SwitchBackLinearGlobalMemEfficient = partial(SwitchBackLinear, vectorize=False, mem_efficient=True) + SwitchBackLinearVectorized = partial(SwitchBackLinear, vectorize=True) + ===========changed ref 21=========== # module: bitsandbytes.nn.modules + class SwitchBackLinearBnb(nn.Linear): + def forward(self, x): + self.state.is_training = self.training + + if self.weight.CB is not None: + self.init_8bit_state() + + out = bnb.matmul_mixed(x.half(), self.weight.half(), bias=None, state=self.state) + self.bias + ===========changed ref 22=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def get_outliers(self, weight): + if not self.is_initialized(): + print('Outlier tracer is not initialized...') + return None + hvalue = self.get_hvalue(weight) + if hvalue in self.hvalue2outlier_idx: + return self.hvalue2outlier_idx[hvalue] + else: + return None + ===========changed ref 23=========== + # module: bitsandbytes.nn.triton_based_modules + # This is just the standard linear function. + class StandardLinearFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, input, weight, bias=None): + X = input.view(-1, input.size(-1)) + + ctx.save_for_backward(X, weight, bias) + output = input.matmul(weight.t()) + if bias is not None: + output += bias.unsqueeze(0).expand_as(output) + return output.view(*input.size()[:-1], -1) + ===========changed ref 24=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def initialize(self, model): + self.last_w = None + self.current_outlier_dims = None + self.hvalues = [] + self.outliers = [] + self.hvalue2outlier_idx = {} + self.initialized = True + self.hooks = [] + + for n, m in model.named_modules(): + if isinstance(m, torch.nn.Linear): + self.hooks.append(m.register_forward_pre_hook(outlier_hook)) + ===========changed ref 25=========== <s>iton.Config({}, num_warps=4), + triton.Config({}, num_warps=8), + ], + key=['n_elements'] + ) + @triton.jit + def _dequantize_rowwise( + x_ptr, + state_x, + output_ptr, + inv_127, + n_elements, + BLOCK_SIZE: tl.constexpr, + P2: tl.constexpr, + ): + pid = tl.program_id(axis=0) + block_start = pid * BLOCK_SIZE + arange = tl.arange(0, P2) + offsets = block_start + arange + row_mask = arange < BLOCK_SIZE + x = tl.load(x_ptr + offsets, mask=row_mask) + max_val = tl.load(state_x + pid) + output = max_val * x * inv_127 + tl.store(output_ptr + offsets, output, mask=row_mask) +
tests.test_functional/test_few_bit_quant
Modified
bitsandbytes-foundation~bitsandbytes
7140c014058f9fa2a75ff315af6af9a59efcfe5f
Merge branch 'main' into fp8_merge
<13>:<add> print(code)
# module: tests.test_functional #assert diff < 0.0075 #print(3, sum(abserr)/len(abserr)) #print(3, sum(relerr)/len(relerr)) def test_few_bit_quant(): <0> #print('') <1> for bits in range(2, 9): <2> #print('='*30, bits, '='*30) <3> for method in ['linear', 'fp8', 'dynamic', 'quantile']: <4> abserrs = [] <5> relerrs = [] <6> code = None <7> if method == 'linear': <8> code = F.create_linear_map(True, total_bits=bits).cuda() <9> elif method == 'fp8': <10> ebits = math.ceil(bits/2) <11> pbits = bits-ebits-1 <12> code = F.create_fp8_map(True, ebits, pbits, bits).cuda() <13> elif method == 'dynamic': <14> code = F.create_dynamic_map(True, bits-0, bits).cuda() <15> elif method == 'quantile': <16> values = torch.randn(2048, 2048, device='cuda') <17> code = F.create_quantile_map(values, bits).cuda() <18> # for some data types we have no zero <19> # for some data types we have one zero <20> # for some data types we have two zeros <21> assert torch.unique(code).numel() in [2**bits, 2**bits-1], f'bits: {bits}, method: {method}' <22> #print(method, (code==0).sum()) <23> assert code.numel() == 256 <24> for i in range(10): <25> <26> values = torch.randn(1, 32, device='cuda') <27> values /= values.abs().max() <28> #values[values.abs() < 1e-6] += 1e-5 <29> <30> q1 = [] <31> v1 = [] <32> for v in values[</s>
===========below chunk 0=========== # module: tests.test_functional #assert diff < 0.0075 #print(3, sum(abserr)/len(abserr)) #print(3, sum(relerr)/len(relerr)) def test_few_bit_quant(): # offset: 1 idx = torch.abs(v-code).argmin() q1.append(idx.item()) v1.append(code[idx].item()) q1 = torch.Tensor(q1).cuda() v1 = torch.Tensor(v1).cuda() q2, S2 = F.quantize_blockwise(values, code=code) v2 = F.dequantize_blockwise(q2, S2) idx = torch.isclose(q1.int(), q2.int()) err2 = torch.abs(v2-values) abserrs.append(err2.mean().item()) relerrs.append((err2/(1e-10+values).abs()).mean().item()) if idx.sum(): # some weird cases err1 = torch.abs(v1-values).mean() #assert err2.mean() <= err1 else: torch.testing.assert_allclose(q1, q2) ===========changed ref 0=========== + # module: bitsandbytes.nn.triton_based_modules + + ===========changed ref 1=========== + # module: bitsandbytes.triton.int8_matmul_rowwise_dequantize + + ===========changed ref 2=========== + # module: bitsandbytes.triton + + ===========changed ref 3=========== + # module: bitsandbytes.triton.quantize_global + + ===========changed ref 4=========== + # module: bitsandbytes.triton.int8_matmul_mixed_dequanitze + + ===========changed ref 5=========== + # module: bitsandbytes.triton.dequantize_rowwise + + ===========changed ref 6=========== + # module: bitsandbytes.triton.quantize_columnwise_and_transpose + + ===========changed ref 7=========== + # module: bitsandbytes.triton.quantize_rowwise + + ===========changed ref 8=========== # module: bitsandbytes.utils + class OutlierTracer(object): + _instance = None + ===========changed ref 9=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def is_initialized(self): + return getattr(self, 'initialized', False) + ===========changed ref 10=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 11=========== + # module: bitsandbytes.triton.int8_matmul_rowwise_dequantize + # This is a matmul kernel based on triton.ops.matmul + # It is modified to support rowwise quantized input and columnwise quantized weight + # It's purpose is fused matmul then dequantize + # It does support bias. + + def init_to_zero(name): + return lambda nargs: nargs[name].zero_() + ===========changed ref 12=========== + # module: bitsandbytes.triton.int8_matmul_mixed_dequanitze + # This is a matmul kernel based on triton.ops.matmul + # It is modified to support rowwise quantized input and global quantized weight + # It's purpose is fused matmul then dequantize + # It does support bias. + + def init_to_zero(name): + return lambda nargs: nargs[name].zero_() + ===========changed ref 13=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def get_hvalue(self, weight): + return weight.data.storage().data_ptr() + ===========changed ref 14=========== + # module: bitsandbytes.nn.triton_based_modules + class StandardLinear(nn.Linear): + def forward(self, x): + return StandardLinearFunction.apply(x, self.weight, self.bias) + ===========changed ref 15=========== # module: bitsandbytes.nn.modules + class OutlierAwareLinear(nn.Linear): + def quantize_weight(self, w, outlier_idx): + raise NotImplementedError('Please override the `quantize_weights(self, w, outlier_idx)` function') + ===========changed ref 16=========== # module: bitsandbytes.nn.modules + class OutlierAwareLinear(nn.Linear): + def forward_with_outliers(self, x, outlier_idx): + raise NotImplementedError('Please override the `forward_with_outliers(self, x, outlier_idx)` function') + ===========changed ref 17=========== # module: bitsandbytes.utils + class OutlierTracer(object): + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + return cls._instance + ===========changed ref 18=========== # module: bitsandbytes.nn.modules + class OutlierAwareLinear(nn.Linear): + def __init__(self, input_features, output_features, bias=True): + super().__init__(input_features, output_features, bias) + self.outlier_dim = None + self.is_quantized = False + ===========changed ref 19=========== # module: bitsandbytes.nn.modules + class SwitchBackLinearBnb(nn.Linear): + def init_8bit_state(self): + self.state.CB = self.weight.CB + self.state.SCB = self.weight.SCB + self.weight.CB = None + self.weight.SCB = None + ===========changed ref 20=========== + # module: bitsandbytes.nn.triton_based_modules + SwitchBackLinearGlobal = partial(SwitchBackLinear, vectorize=False) + SwitchBackLinearGlobalMemEfficient = partial(SwitchBackLinear, vectorize=False, mem_efficient=True) + SwitchBackLinearVectorized = partial(SwitchBackLinear, vectorize=True) + ===========changed ref 21=========== # module: bitsandbytes.nn.modules + class SwitchBackLinearBnb(nn.Linear): + def forward(self, x): + self.state.is_training = self.training + + if self.weight.CB is not None: + self.init_8bit_state() + + out = bnb.matmul_mixed(x.half(), self.weight.half(), bias=None, state=self.state) + self.bias + ===========changed ref 22=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def get_outliers(self, weight): + if not self.is_initialized(): + print('Outlier tracer is not initialized...') + return None + hvalue = self.get_hvalue(weight) + if hvalue in self.hvalue2outlier_idx: + return self.hvalue2outlier_idx[hvalue] + else: + return None + ===========changed ref 23=========== + # module: bitsandbytes.nn.triton_based_modules + # This is just the standard linear function. + class StandardLinearFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, input, weight, bias=None): + X = input.view(-1, input.size(-1)) + + ctx.save_for_backward(X, weight, bias) + output = input.matmul(weight.t()) + if bias is not None: + output += bias.unsqueeze(0).expand_as(output) + return output.view(*input.size()[:-1], -1) + ===========changed ref 24=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def initialize(self, model): + self.last_w = None + self.current_outlier_dims = None + self.hvalues = [] + self.outliers = [] + self.hvalue2outlier_idx = {} + self.initialized = True + self.hooks = [] + + for n, m in model.named_modules(): + if isinstance(m, torch.nn.Linear): + self.hooks.append(m.register_forward_pre_hook(outlier_hook)) +
tests.test_functional/test_bench_dequantization
Modified
bitsandbytes-foundation~bitsandbytes
7140c014058f9fa2a75ff315af6af9a59efcfe5f
Merge branch 'main' into fp8_merge
<1>:<add> code =F.create_fp8_map(True, 3, 0, 4).cuda() <add> qa, SA = F.quantize_blockwise(a, code=code) <del> qa, SA = F.quantize_blockwise(a) <2>:<add> print(qa.max())
# module: tests.test_functional def test_bench_dequantization(): <0> a = torch.rand(1024, 1024, device='cuda').half() <1> qa, SA = F.quantize_blockwise(a) <2> <3> max_theoretical_mu = 1024*1024*2/1024**3/672*1000*1000 <4> #print(max_theoretical_mu) <5> <6> torch.cuda.synchronize() <7> t0 = time.time() <8> for i in range(100): <9> F.dequantize_blockwise(qa, SA, blocksize=2048) <10> torch.cuda.synchronize() <11>
===========changed ref 0=========== # module: tests.test_functional #assert diff < 0.0075 #print(3, sum(abserr)/len(abserr)) #print(3, sum(relerr)/len(relerr)) def test_few_bit_quant(): #print('') for bits in range(2, 9): #print('='*30, bits, '='*30) for method in ['linear', 'fp8', 'dynamic', 'quantile']: abserrs = [] relerrs = [] code = None if method == 'linear': code = F.create_linear_map(True, total_bits=bits).cuda() elif method == 'fp8': ebits = math.ceil(bits/2) pbits = bits-ebits-1 code = F.create_fp8_map(True, ebits, pbits, bits).cuda() + print(code) elif method == 'dynamic': code = F.create_dynamic_map(True, bits-0, bits).cuda() elif method == 'quantile': values = torch.randn(2048, 2048, device='cuda') code = F.create_quantile_map(values, bits).cuda() # for some data types we have no zero # for some data types we have one zero # for some data types we have two zeros assert torch.unique(code).numel() in [2**bits, 2**bits-1], f'bits: {bits}, method: {method}' #print(method, (code==0).sum()) assert code.numel() == 256 for i in range(10): values = torch.randn(1, 32, device='cuda') values /= values.abs().max() #values[values.abs() < 1e-6] += 1e-5 q1 = [] v1 = [] for v in values[0]: idx = torch.abs(v-code).argmin() q1.append(idx.</s> ===========changed ref 1=========== # module: tests.test_functional #assert diff < 0.0075 #print(3, sum(abserr)/len(abserr)) #print(3, sum(relerr)/len(relerr)) def test_few_bit_quant(): # offset: 1 <s> v in values[0]: idx = torch.abs(v-code).argmin() q1.append(idx.item()) v1.append(code[idx].item()) q1 = torch.Tensor(q1).cuda() v1 = torch.Tensor(v1).cuda() q2, S2 = F.quantize_blockwise(values, code=code) v2 = F.dequantize_blockwise(q2, S2) idx = torch.isclose(q1.int(), q2.int()) err2 = torch.abs(v2-values) abserrs.append(err2.mean().item()) relerrs.append((err2/(1e-10+values).abs()).mean().item()) if idx.sum(): # some weird cases err1 = torch.abs(v1-values).mean() #assert err2.mean() <= err1 else: torch.testing.assert_allclose(q1, q2) ===========changed ref 2=========== + # module: bitsandbytes.nn.triton_based_modules + + ===========changed ref 3=========== + # module: bitsandbytes.triton.int8_matmul_rowwise_dequantize + + ===========changed ref 4=========== + # module: bitsandbytes.triton + + ===========changed ref 5=========== + # module: bitsandbytes.triton.quantize_global + + ===========changed ref 6=========== + # module: bitsandbytes.triton.int8_matmul_mixed_dequanitze + + ===========changed ref 7=========== + # module: bitsandbytes.triton.dequantize_rowwise + + ===========changed ref 8=========== + # module: bitsandbytes.triton.quantize_columnwise_and_transpose + + ===========changed ref 9=========== + # module: bitsandbytes.triton.quantize_rowwise + + ===========changed ref 10=========== # module: bitsandbytes.utils + class OutlierTracer(object): + _instance = None + ===========changed ref 11=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def is_initialized(self): + return getattr(self, 'initialized', False) + ===========changed ref 12=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 13=========== + # module: bitsandbytes.triton.int8_matmul_rowwise_dequantize + # This is a matmul kernel based on triton.ops.matmul + # It is modified to support rowwise quantized input and columnwise quantized weight + # It's purpose is fused matmul then dequantize + # It does support bias. + + def init_to_zero(name): + return lambda nargs: nargs[name].zero_() + ===========changed ref 14=========== + # module: bitsandbytes.triton.int8_matmul_mixed_dequanitze + # This is a matmul kernel based on triton.ops.matmul + # It is modified to support rowwise quantized input and global quantized weight + # It's purpose is fused matmul then dequantize + # It does support bias. + + def init_to_zero(name): + return lambda nargs: nargs[name].zero_() + ===========changed ref 15=========== # module: bitsandbytes.utils + class OutlierTracer(object): + def get_hvalue(self, weight): + return weight.data.storage().data_ptr() + ===========changed ref 16=========== + # module: bitsandbytes.nn.triton_based_modules + class StandardLinear(nn.Linear): + def forward(self, x): + return StandardLinearFunction.apply(x, self.weight, self.bias) + ===========changed ref 17=========== # module: bitsandbytes.nn.modules + class OutlierAwareLinear(nn.Linear): + def quantize_weight(self, w, outlier_idx): + raise NotImplementedError('Please override the `quantize_weights(self, w, outlier_idx)` function') + ===========changed ref 18=========== # module: bitsandbytes.nn.modules + class OutlierAwareLinear(nn.Linear): + def forward_with_outliers(self, x, outlier_idx): + raise NotImplementedError('Please override the `forward_with_outliers(self, x, outlier_idx)` function') + ===========changed ref 19=========== # module: bitsandbytes.utils + class OutlierTracer(object): + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + return cls._instance + ===========changed ref 20=========== # module: bitsandbytes.nn.modules + class OutlierAwareLinear(nn.Linear): + def __init__(self, input_features, output_features, bias=True): + super().__init__(input_features, output_features, bias) + self.outlier_dim = None + self.is_quantized = False + ===========changed ref 21=========== # module: bitsandbytes.nn.modules + class SwitchBackLinearBnb(nn.Linear): + def init_8bit_state(self): + self.state.CB = self.weight.CB + self.state.SCB = self.weight.SCB + self.weight.CB = None + self.weight.SCB = None + ===========changed ref 22=========== + # module: bitsandbytes.nn.triton_based_modules + SwitchBackLinearGlobal = partial(SwitchBackLinear, vectorize=False) + SwitchBackLinearGlobalMemEfficient = partial(SwitchBackLinear, vectorize=False, mem_efficient=True) + SwitchBackLinearVectorized = partial(SwitchBackLinear, vectorize=True) +
bitsandbytes.research.autograd._functions/switchback_bnb
Modified
bitsandbytes-foundation~bitsandbytes
c3d87e4435c168ab29d9ba50916ef0d3b015fb24
Added is_available_triton guard.
<3>:<add> return SwitchBackBnb.apply(A, B, out, bias, state) <del> return MatMul8bitMixed.apply(A, B, out, bias, state)
# module: bitsandbytes.research.autograd._functions def switchback_bnb( A: tensor, B: tensor, out: tensor = None, state: MatmulLtState = None, threshold=0.0, bias=None ): <0> state = state or MatmulLtState() <1> if threshold > 0.0: <2> state.threshold = threshold <3> return MatMul8bitMixed.apply(A, B, out, bias, state) <4>
===========unchanged ref 0=========== at: bitsandbytes.autograd._functions MatmulLtState(_tile_indices: Optional[torch.Tensor]=None, force_no_igemmlt: bool=False) at: bitsandbytes.autograd._functions.MatmulLtState _tile_indices: Optional[torch.Tensor] = None force_no_igemmlt: bool = False CB = None CxB = None SB = None SCB = None CxBt = None SBt = None CBt = None subB = None outlier_pool = None has_accumulated_gradients = False threshold = 0.0 idx = None is_training = True has_fp16_weights = True memory_efficient_backward = False use_pool = False formatB = F.get_special_format_str() at: bitsandbytes.research.autograd._functions tensor = torch.Tensor SwitchBackBnb(*args, **kwargs) ===========changed ref 0=========== # module: bitsandbytes.research.autograd._functions - class MatMul8bitMixed(torch.autograd.Function): - @staticmethod - def backward(ctx, grad_output): - if ctx.is_empty: - bias_grad = (None if ctx.bias is None else torch.zeros_like(ctx.bias)) - return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None - req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad - CAt, subA, A = ctx.tensors - SCAt, idx = ctx.tensor_states - formatB = ctx.formatB - state = ctx.state - grad_A = grad_B = grad_bias = None - - if req_gradBias: - # compute grad_bias first before changing grad_output dtype - grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias) - - # Cast grad_output to fp16 - if len(grad_output.shape) == 3: - grad_output = grad_output.reshape( - -1, grad_output.shape[-1] - ).contiguous() - - Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16)) - - if req_gradB: - # print('back A shape', A.shape) - # print('grad output t shape', grad_output.t().shape) - grad_B = torch.matmul(grad_output.t(), A) - - if req_gradA: - if state.CBt is not None: - C32grad, Sgrad = F.transform(Cgrad, "col32") - if state.CxBt is None: - state.CxBt, state.SBt = F.transform( - state.CBt, to_</s> ===========changed ref 1=========== # module: bitsandbytes.research.autograd._functions - class MatMul8bitMixed(torch.autograd.Function): - @staticmethod - def backward(ctx, grad_output): # offset: 1 <s> None: - state.CxBt, state.SBt = F.transform( - state.CBt, to_order=formatB, transpose=True - ) - # print('back B shape', state.CxBt.shape) - # print('back grad shape', C32grad.shape) - gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt) - grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape).to(ctx.dtype_A) - - elif state.CB is not None: - CB = state.CB.to(ctx.dtype_A, copy=True).mul_(state.SCB.unsqueeze(1).mul(1. / 127.0)) - grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A) - else: - raise Exception('State must contain either CBt or CB matrix for backward') - - return grad_A, grad_B, None, grad_bias, None - ===========changed ref 2=========== # module: bitsandbytes.research.autograd._functions - class MatMul8bitMixed(torch.autograd.Function): - @staticmethod - def backward(ctx, grad_output): - if ctx.is_empty: - bias_grad = (None if ctx.bias is None else torch.zeros_like(ctx.bias)) - return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None - req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad - CAt, subA, A = ctx.tensors - SCAt, idx = ctx.tensor_states - formatB = ctx.formatB - state = ctx.state - grad_A = grad_B = grad_bias = None - - if req_gradBias: - # compute grad_bias first before changing grad_output dtype - grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias) - - # Cast grad_output to fp16 - if len(grad_output.shape) == 3: - grad_output = grad_output.reshape( - -1, grad_output.shape[-1] - ).contiguous() - - Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16)) - - if req_gradB: - # print('back A shape', A.shape) - # print('grad output t shape', grad_output.t().shape) - grad_B = torch.matmul(grad_output.t(), A) - - if req_gradA: - if state.CBt is not None: - C32grad, Sgrad = F.transform(Cgrad, "col32") - if state.CxBt is None: - state.CxBt, state.SBt = F.transform( - state.CBt, to_</s>
bitsandbytes.nn.triton_based_modules/SwitchBackLinear.__init__
Modified
bitsandbytes-foundation~bitsandbytes
5b612bc6dfa131fb0cb27dcae5fd863c15694328
Added is_available_triton guard to Triton SwitchBackLinear.
<1>:<add> <add> if not is_triton_available: <add> raise ImportError('''Could not import triton. Please install triton to use SwitchBackLinear. <add> Alternatively, you can use bnb.nn.SwitchBackLinearBnb, but it will be slower''')
# module: bitsandbytes.nn.triton_based_modules class SwitchBackLinear(nn.Linear): def __init__( self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None, vectorize: bool = False, mem_efficient : bool = False, ): <0> super().__init__(in_features, out_features, bias, device, dtype) <1> <2> # By default, we use the global quantization. <3> self.vectorize = vectorize <4> if self.vectorize: <5> self._fn = _switchback_vectorrize <6> if mem_efficient: <7> print('mem efficient is not supported for vectorize mode.') <8> exit(1) <9> else: <10> if mem_efficient: <11> self._fn = _switchback_global_mem_efficient <12> else: <13> self._fn = _switchback_global <14>
===========unchanged ref 0=========== at: bitsandbytes.nn.triton_based_modules _switchback_vectorrize(*args, **kwargs) at: torch.nn.modules.linear Linear(in_features: int, out_features: int, bias: bool=True, device=None, dtype=None) at: torch.nn.modules.linear.Linear __constants__ = ['in_features', 'out_features'] in_features: int out_features: int weight: Tensor __init__(in_features: int, out_features: int, bias: bool=True, device=None, dtype=None) -> None __init__(self, in_features: int, out_features: int, bias: bool=True, device=None, dtype=None) -> None
bitsandbytes.nn.triton_based_modules/SwitchBackLinear.__init__
Modified
bitsandbytes-foundation~bitsandbytes
9e7cdc9ea95e9756d9f5621a0e2c7e2538363fae
Added last SwitchBack refactors. All tests green.
<7>:<add> self.vector_wise_quantization = vector_wise_quantization <add> if self.vector_wise_quantization: <del> self.vectorize = vectorize <8>:<del> if self.vectorize: <11>:<add> print('mem efficient is not supported for vector-wise quantization.') <del> print('mem efficient is not supported for vectorize mode.')
# module: bitsandbytes.nn.triton_based_modules class SwitchBackLinear(nn.Linear): def __init__( self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None, + vector_wise_quantization: bool = False, - vectorize: bool = False, mem_efficient : bool = False, ): <0> super().__init__(in_features, out_features, bias, device, dtype) <1> <2> if not is_triton_available: <3> raise ImportError('''Could not import triton. Please install triton to use SwitchBackLinear. <4> Alternatively, you can use bnb.nn.SwitchBackLinearBnb, but it will be slower''') <5> <6> # By default, we use the global quantization. <7> self.vectorize = vectorize <8> if self.vectorize: <9> self._fn = _switchback_vectorrize <10> if mem_efficient: <11> print('mem efficient is not supported for vectorize mode.') <12> exit(1) <13> else: <14> if mem_efficient: <15> self._fn = _switchback_global_mem_efficient <16> else: <17> self._fn = _switchback_global <18>
===========unchanged ref 0=========== at: bitsandbytes.triton.triton_utils is_triton_available() at: torch.nn.modules.linear.Linear __constants__ = ['in_features', 'out_features'] in_features: int out_features: int weight: Tensor __init__(in_features: int, out_features: int, bias: bool=True, device=None, dtype=None) -> None __init__(self, in_features: int, out_features: int, bias: bool=True, device=None, dtype=None) -> None
bitsandbytes.nn.triton_based_modules/SwitchBackLinear.prepare_for_eval
Modified
bitsandbytes-foundation~bitsandbytes
9e7cdc9ea95e9756d9f5621a0e2c7e2538363fae
Added last SwitchBack refactors. All tests green.
<8>:<add> if self.vector_wise_quantization: <del> if self.vectorize:
# module: bitsandbytes.nn.triton_based_modules class SwitchBackLinear(nn.Linear): def prepare_for_eval(self): <0> # If we just want to do eval, we can pre-quantize the weights instead of doing it on the forward pass. <1> # Note this is experimental and not tested thoroughly. <2> # Note this needs to be explicitly called with something like <3> # def cond_prepare(m): <4> # if hasattr(m, "prepare_for_eval"): <5> # m.prepare_for_eval() <6> # model.apply(cond_prepare) <7> print('=> preparing for eval.') <8> if self.vectorize: <9> W_int8, state_W = quantize_rowwise(self.weight) <10> else: <11> W_int8, state_W = quantize_global(self.weight) <12> <13> self.register_buffer("W_int8", W_int8) <14> self.register_buffer("state_W", state_W) <15> <16> del self.weight <17>
===========unchanged ref 0=========== at: bitsandbytes.nn.triton_based_modules.SwitchBackLinear.__init__ self.vector_wise_quantization = vector_wise_quantization ===========changed ref 0=========== # module: bitsandbytes.nn.triton_based_modules class SwitchBackLinear(nn.Linear): def __init__( self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None, + vector_wise_quantization: bool = False, - vectorize: bool = False, mem_efficient : bool = False, ): super().__init__(in_features, out_features, bias, device, dtype) if not is_triton_available: raise ImportError('''Could not import triton. Please install triton to use SwitchBackLinear. Alternatively, you can use bnb.nn.SwitchBackLinearBnb, but it will be slower''') # By default, we use the global quantization. + self.vector_wise_quantization = vector_wise_quantization + if self.vector_wise_quantization: - self.vectorize = vectorize - if self.vectorize: self._fn = _switchback_vectorrize if mem_efficient: + print('mem efficient is not supported for vector-wise quantization.') - print('mem efficient is not supported for vectorize mode.') exit(1) else: if mem_efficient: self._fn = _switchback_global_mem_efficient else: self._fn = _switchback_global
bitsandbytes.nn.triton_based_modules/SwitchBackLinear.forward
Modified
bitsandbytes-foundation~bitsandbytes
9e7cdc9ea95e9756d9f5621a0e2c7e2538363fae
Added last SwitchBack refactors. All tests green.
<11>:<add> if self.vector_wise_quantization: <del> if self.vectorize:
# module: bitsandbytes.nn.triton_based_modules class SwitchBackLinear(nn.Linear): def forward(self, x): <0> if self.training: <1> return self._fn.apply(x, self.weight, self.bias) <2> else: <3> # If it hasn't been "prepared for eval", run the standard forward pass. <4> if not hasattr(self, "W_int8"): <5> return self._fn.apply(x, self.weight, self.bias) <6> <7> # Otherwise, use pre-computed weights. <8> X = x.view(-1, x.size(-1)) <9> X_int8, state_X = quantize_rowwise(X) <10> <11> if self.vectorize: <12> return int8_matmul_rowwise_dequantize( <13> X_int8, self.W_int8.t(), state_X, self.state_W, self.bias <14> ).view(*x.size()[:-1], -1) <15> else: <16> return int8_matmul_mixed_dequanitze( <17> X_int8, self.W_int8.t(), state_X, self.state_W, self.bias <18> ).view(*x.size()[:-1], -1) <19>
===========unchanged ref 0=========== at: bitsandbytes.nn.triton_based_modules.SwitchBackLinear.__init__ self.vector_wise_quantization = vector_wise_quantization self._fn = _switchback_vectorrize self._fn = _switchback_global self._fn = _switchback_global_mem_efficient ===========changed ref 0=========== # module: bitsandbytes.nn.triton_based_modules class SwitchBackLinear(nn.Linear): def prepare_for_eval(self): # If we just want to do eval, we can pre-quantize the weights instead of doing it on the forward pass. # Note this is experimental and not tested thoroughly. # Note this needs to be explicitly called with something like # def cond_prepare(m): # if hasattr(m, "prepare_for_eval"): # m.prepare_for_eval() # model.apply(cond_prepare) print('=> preparing for eval.') + if self.vector_wise_quantization: - if self.vectorize: W_int8, state_W = quantize_rowwise(self.weight) else: W_int8, state_W = quantize_global(self.weight) self.register_buffer("W_int8", W_int8) self.register_buffer("state_W", state_W) del self.weight ===========changed ref 1=========== # module: bitsandbytes.nn.triton_based_modules class SwitchBackLinear(nn.Linear): def __init__( self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None, + vector_wise_quantization: bool = False, - vectorize: bool = False, mem_efficient : bool = False, ): super().__init__(in_features, out_features, bias, device, dtype) if not is_triton_available: raise ImportError('''Could not import triton. Please install triton to use SwitchBackLinear. Alternatively, you can use bnb.nn.SwitchBackLinearBnb, but it will be slower''') # By default, we use the global quantization. + self.vector_wise_quantization = vector_wise_quantization + if self.vector_wise_quantization: - self.vectorize = vectorize - if self.vectorize: self._fn = _switchback_vectorrize if mem_efficient: + print('mem efficient is not supported for vector-wise quantization.') - print('mem efficient is not supported for vectorize mode.') exit(1) else: if mem_efficient: self._fn = _switchback_global_mem_efficient else: self._fn = _switchback_global
tests.test_triton/test_switchback
Modified
bitsandbytes-foundation~bitsandbytes
9e7cdc9ea95e9756d9f5621a0e2c7e2538363fae
Added last SwitchBack refactors. All tests green.
<0>:<add> for dim in [83]: <del> for dim in [83, 17, 128]: <1>:<add> for batch in [13]: <del> for batch in [13, 128, 256]: <4>:<del> print('vectorrize', vectorrize) <5>:<add> switchback = SwitchBackLinear(dim, 4 * dim, vector_wise_quantization=vector_wise_quantization).cuda().half() <del> switchback = SwitchBackLinear(dim, 4 * dim, vectorize=vectorrize).cuda().half()
<s>pytest.mark.skipif(not torch.cuda.is_available() or not torch.cuda.get_device_capability()[0] >= 8, reason="This test requires a GPU with compute capability 8.0 or higher.") + @pytest.mark.parametrize("vector_wise_quantization", [False, True]) - @pytest.mark.parametrize("vectorrize", [False, True]) + def test_switchback(vector_wise_quantization): - def test_switchback(vectorrize): <0> for dim in [83, 17, 128]: <1> for batch in [13, 128, 256]: <2> <3> standard = torch.nn.Linear(dim, 4 * dim).cuda().half() <4> print('vectorrize', vectorrize) <5> switchback = SwitchBackLinear(dim, 4 * dim, vectorize=vectorrize).cuda().half() <6> baseline = Linear8bitLt(dim, 4 * dim).cuda().half() <7> switchback.weight.data.copy_(standard.weight) <8> switchback.bias.data.copy_(standard.bias) <9> baseline.weight.data.copy_(standard.weight) <10> baseline.bias.data.copy_(standard.bias) <11> <12> x1 = torch.randn(batch, dim).cuda().half().requires_grad_(True) <13> x2 = x1.clone().detach().requires_grad_(True) <14> x3 = x1.clone().detach().requires_grad_(True) <15> <16> out_standard = standard(x1) <17> (2**10 * out_standard.abs().mean()).backward() <18> <19> print(x2.dtype) <20> out_sb = switchback(x2) <21> (2**10 * out_sb.abs().mean()).backward() <22> <23> out_baseline = baseline(x3) <24> (2**10 * out_baseline.abs().mean()).backward() <25> <26> err_sb = (out_standard - out_sb).abs().mean() <27> </s>
===========below chunk 0=========== <s>skipif(not torch.cuda.is_available() or not torch.cuda.get_device_capability()[0] >= 8, reason="This test requires a GPU with compute capability 8.0 or higher.") + @pytest.mark.parametrize("vector_wise_quantization", [False, True]) - @pytest.mark.parametrize("vectorrize", [False, True]) + def test_switchback(vector_wise_quantization): - def test_switchback(vectorrize): # offset: 1 print('OUT', err_sb, err_baseline) assert err_sb < 2 * err_baseline err_sb = (standard.bias.grad - switchback.bias.grad).abs().mean() err_baseline = (standard.bias.grad - baseline.bias.grad).abs().mean() print('GW2', err_sb, err_baseline) assert err_sb < 2 * err_baseline err_sb = (standard.weight.grad - switchback.weight.grad).abs().mean() err_baseline = (standard.weight.grad - baseline.weight.grad).abs().mean() print('GW1', err_sb, err_baseline) assert err_sb < 2 * err_baseline err_sb = (x1.grad - x2.grad).abs().mean() err_baseline = (x1.grad - x3.grad).abs().mean() print('GX1', err_sb, err_baseline) assert err_sb < 2 * err_baseline ===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: _pytest.mark.structures.MarkGenerator skip: _SkipMarkDecorator skipif: _SkipifMarkDecorator xfail: _XfailMarkDecorator parametrize: _ParametrizeMarkDecorator usefixtures: _UsefixturesMarkDecorator filterwarnings: _FilterwarningsMarkDecorator at: bitsandbytes.nn.modules Linear8bitLt(input_features, output_features, bias=True, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0, index=None) at: bitsandbytes.nn.modules.Int8Params.cuda self.data = CB at: bitsandbytes.nn.modules.Linear8bitLt.__init__ self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights) at: bitsandbytes.nn.triton_based_modules SwitchBackLinear(in_features: int, out_features: int, bias: bool=True, device=None, dtype=None, vector_wise_quantization: bool=False, mem_efficient: bool=False) at: bitsandbytes.triton.triton_utils is_triton_available() ===========unchanged ref 1=========== at: torch._C._VariableFunctions randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(*size: _int, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(*size: _int, generator: Optional[Generator], out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(size: Sequence[Union[_int, SymInt]], *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional</s> ===========unchanged ref 2=========== at: torch._tensor.Tensor.__setstate__ self.data = state[0] at: torch.cuda is_available() -> bool get_device_capability(device: Optional[_device_t]=None) -> Tuple[int, int] at: torch.nn.modules.linear Linear(in_features: int, out_features: int, bias: bool=True, device=None, dtype=None) at: torch.nn.modules.linear.Linear.__init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) self.bias = Parameter(torch.empty(out_features, **factory_kwargs)) at: torch.nn.modules.module.Module dump_patches: bool = False _version: int = 1 training: bool _parameters: Dict[str, Optional[Parameter]] _buffers: Dict[str, Optional[Tensor]] _non_persistent_buffers_set: Set[str] _backward_pre_hooks: Dict[int, Callable] _backward_hooks: Dict[int, Callable] _is_full_backward_hook: Optional[bool] _forward_hooks: Dict[int, Callable] _forward_hooks_with_kwargs: Dict[int, bool] _forward_hooks_always_called: Dict[int, bool] _forward_pre_hooks: Dict[int, Callable] _forward_pre_hooks_with_kwargs: Dict[int, bool] _state_dict_hooks: Dict[int, Callable] _load_state_dict_pre_hooks: Dict[int, Callable] _state_dict_pre_hooks: Dict[int, Callable] _load_state_dict_post_hooks: Dict[int, Callable] _modules: Dict[str, Optional['Module']] call_super_init: bool = False _compiled_call_impl : Optional[Callable] = None ===========unchanged ref 3=========== forward: Callable[..., Any] = _forward_unimplemented cuda(device: Optional[Union[int, device]]=None) -> T half() -> T __call__ : Callable[..., Any] = _wrapped_call_impl T_destination = TypeVar('T_destination', bound=Dict[str, Any]) ===========changed ref 0=========== # module: bitsandbytes.nn.triton_based_modules + SwitchBackLinearGlobal = partial(SwitchBackLinear, vector_wise_quantization=False) - SwitchBackLinearGlobal = partial(SwitchBackLinear, vectorize=False) + SwitchBackLinearGlobalMemEfficient = partial(SwitchBackLinear, vector_wise_quantization=False, mem_efficient=True) - SwitchBackLinearGlobalMemEfficient = partial(SwitchBackLinear, vectorize=False, mem_efficient=True) + SwitchBackLinearVectorwise = partial(SwitchBackLinear, vector_wise_quantization=True) - SwitchBackLinearVectorized = partial(SwitchBackLinear, vectorize=True)
bitsandbytes.cuda_setup.main/CUDASetup.generate_instructions
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<0>:<add> if getattr(self, 'error', False): return <add> print(self.error) <add> self.error = True
# module: bitsandbytes.cuda_setup.main class CUDASetup: def generate_instructions(self): <0> if self.cuda is None: <1> self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA library was not detected.') <2> self.add_log_entry('CUDA SETUP: Solution 1): Your paths are probably not up-to-date. You can update them via: sudo ldconfig.') <3> self.add_log_entry('CUDA SETUP: Solution 2): If you do not have sudo rights, you can do the following:') <4> self.add_log_entry('CUDA SETUP: Solution 2a): Find the cuda library via: find / -name libcuda.so 2>/dev/null') <5> self.add_log_entry('CUDA SETUP: Solution 2b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_2a') <6> self.add_log_entry('CUDA SETUP: Solution 2c): For a permanent solution add the export from 2b into your .bashrc file, located at ~/.bashrc') <7> return <8> <9> if self.cudart_path is None: <10> self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA runtime library was not detected.') <11> self.add_log_entry('CUDA SETUP: Solution 1: To solve the issue the libcudart.so location needs to be added to the LD_LIBRARY_PATH variable') <12> self.add_log_entry('CUDA SETUP: Solution 1a): Find the cuda runtime library via: find / -name libcudart.so 2>/dev/null') <13> self.add_log_entry('CUDA SETUP: Solution 1b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a') <14> self.add_log_entry('CUDA</s>
===========below chunk 0=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def generate_instructions(self): # offset: 1 self.add_log_entry('CUDA SETUP: Solution 2: If no library was found in step 1a) you need to install CUDA.') self.add_log_entry('CUDA SETUP: Solution 2a): Download CUDA install script: wget https://github.com/TimDettmers/bitsandbytes/blob/main/cuda_install.sh') self.add_log_entry('CUDA SETUP: Solution 2b): Install desired CUDA version to desired location. The syntax is bash cuda_install.sh CUDA_VERSION PATH_TO_INSTALL_INTO.') self.add_log_entry('CUDA SETUP: Solution 2b): For example, "bash cuda_install.sh 113 ~/local/" will download CUDA 11.3 and install into the folder ~/local') return make_cmd = f'CUDA_VERSION={self.cuda_version_string}' if len(self.cuda_version_string) < 3: make_cmd += ' make cuda92' elif self.cuda_version_string == '110': make_cmd += ' make cuda110' elif self.cuda_version_string[:2] == '11' and int(self.cuda_version_string[2]) > 0: make_cmd += ' make cuda11x' elif self.cuda_version_string == '100': self.add_log_entry('CUDA SETUP: CUDA 10.0 not supported. Please use a different CUDA version.') self.add_log_entry('CUDA SETUP: Before you try again running bitsandbytes, make sure old CUDA 10.0 versions are uninstalled and removed from $LD_LIBRARY_PATH variables.') return has_cublaslt = is_cublasLt_compatible(self.cc) if not has_cublaslt: make_cmd += '_nomatmul' self.add_log_entry('CUDA SETUP: Something unexpected</s> ===========below chunk 1=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def generate_instructions(self): # offset: 2 <s>: make_cmd += '_nomatmul' self.add_log_entry('CUDA SETUP: Something unexpected happened. Please compile from source:') self.add_log_entry('git clone [email protected]:TimDettmers/bitsandbytes.git') self.add_log_entry('cd bitsandbytes') self.add_log_entry(make_cmd) self.add_log_entry('python setup.py install')
bitsandbytes.cuda_setup.main/CUDASetup.initialize
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<4>:<add> self.error = False
# module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): <0> if not getattr(self, 'initialized', False): <1> self.has_printed = False <2> self.lib = None <3> self.initialized = False <4>
===========changed ref 0=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def generate_instructions(self): + if getattr(self, 'error', False): return + print(self.error) + self.error = True if self.cuda is None: self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA library was not detected.') self.add_log_entry('CUDA SETUP: Solution 1): Your paths are probably not up-to-date. You can update them via: sudo ldconfig.') self.add_log_entry('CUDA SETUP: Solution 2): If you do not have sudo rights, you can do the following:') self.add_log_entry('CUDA SETUP: Solution 2a): Find the cuda library via: find / -name libcuda.so 2>/dev/null') self.add_log_entry('CUDA SETUP: Solution 2b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_2a') self.add_log_entry('CUDA SETUP: Solution 2c): For a permanent solution add the export from 2b into your .bashrc file, located at ~/.bashrc') return if self.cudart_path is None: self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA runtime library was not detected.') self.add_log_entry('CUDA SETUP: Solution 1: To solve the issue the libcudart.so location needs to be added to the LD_LIBRARY_PATH variable') self.add_log_entry('CUDA SETUP: Solution 1a): Find the cuda runtime library via: find / -name libcudart.so 2>/dev/null') self.add_log_entry('CUDA SETUP: Solution 1b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM</s> ===========changed ref 1=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def generate_instructions(self): # offset: 1 <s> it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a') self.add_log_entry('CUDA SETUP: Solution 1c): For a permanent solution add the export from 1b into your .bashrc file, located at ~/.bashrc') self.add_log_entry('CUDA SETUP: Solution 2: If no library was found in step 1a) you need to install CUDA.') self.add_log_entry('CUDA SETUP: Solution 2a): Download CUDA install script: wget https://github.com/TimDettmers/bitsandbytes/blob/main/cuda_install.sh') self.add_log_entry('CUDA SETUP: Solution 2b): Install desired CUDA version to desired location. The syntax is bash cuda_install.sh CUDA_VERSION PATH_TO_INSTALL_INTO.') self.add_log_entry('CUDA SETUP: Solution 2b): For example, "bash cuda_install.sh 113 ~/local/" will download CUDA 11.3 and install into the folder ~/local') return make_cmd = f'CUDA_VERSION={self.cuda_version_string}' if len(self.cuda_version_string) < 3: make_cmd += ' make cuda92' elif self.cuda_version_string == '110': make_cmd += ' make cuda110' elif self.cuda_version_string[:2] == '11' and int(self.cuda_version_string[2]) > 0: make_cmd += ' make cuda11x' elif self.cuda_version_string == '100': self.add_log_entry('CUDA SETUP: CUDA 10.0 not supported. Please use a different CUDA version.') </s> ===========changed ref 2=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def generate_instructions(self): # offset: 2 <s>add_log_entry('CUDA SETUP: Before you try again running bitsandbytes, make sure old CUDA 10.0 versions are uninstalled and removed from $LD_LIBRARY_PATH variables.') return has_cublaslt = is_cublasLt_compatible(self.cc) if not has_cublaslt: make_cmd += '_nomatmul' self.add_log_entry('CUDA SETUP: Something unexpected happened. Please compile from source:') self.add_log_entry('git clone [email protected]:TimDettmers/bitsandbytes.git') self.add_log_entry('cd bitsandbytes') self.add_log_entry(make_cmd) self.add_log_entry('python setup.py install')
bitsandbytes.optim.adamw/AdamW.__init__
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<0>:<del> super().__init__( <1>:<del> "adam", <2>:<del> params, <3>:<del> lr, <4>:<del> betas, <5>:<del> eps, <6>:<del> weight_decay, <7>:<del> optim_bits, <8>:<del> args, <9>:<del> min_8bit_size, <10>:<del> percentile_clipping, <11>:<del> block_wise, <12>:<del> ) <13>:<add> super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged )
<s>size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): <0> super().__init__( <1> "adam", <2> params, <3> lr, <4> betas, <5> eps, <6> weight_decay, <7> optim_bits, <8> args, <9> min_8bit_size, <10> percentile_clipping, <11> block_wise, <12> ) <13>
===========unchanged ref 0=========== at: bitsandbytes.optim.optimizer Optimizer2State(optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, is_paged=False) at: bitsandbytes.optim.optimizer.Optimizer2State __init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, is_paged=False) __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, is_paged=False) ===========changed ref 0=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 1=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def generate_instructions(self): + if getattr(self, 'error', False): return + print(self.error) + self.error = True if self.cuda is None: self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA library was not detected.') self.add_log_entry('CUDA SETUP: Solution 1): Your paths are probably not up-to-date. You can update them via: sudo ldconfig.') self.add_log_entry('CUDA SETUP: Solution 2): If you do not have sudo rights, you can do the following:') self.add_log_entry('CUDA SETUP: Solution 2a): Find the cuda library via: find / -name libcuda.so 2>/dev/null') self.add_log_entry('CUDA SETUP: Solution 2b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_2a') self.add_log_entry('CUDA SETUP: Solution 2c): For a permanent solution add the export from 2b into your .bashrc file, located at ~/.bashrc') return if self.cudart_path is None: self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA runtime library was not detected.') self.add_log_entry('CUDA SETUP: Solution 1: To solve the issue the libcudart.so location needs to be added to the LD_LIBRARY_PATH variable') self.add_log_entry('CUDA SETUP: Solution 1a): Find the cuda runtime library via: find / -name libcudart.so 2>/dev/null') self.add_log_entry('CUDA SETUP: Solution 1b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM</s> ===========changed ref 2=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def generate_instructions(self): # offset: 1 <s> it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a') self.add_log_entry('CUDA SETUP: Solution 1c): For a permanent solution add the export from 1b into your .bashrc file, located at ~/.bashrc') self.add_log_entry('CUDA SETUP: Solution 2: If no library was found in step 1a) you need to install CUDA.') self.add_log_entry('CUDA SETUP: Solution 2a): Download CUDA install script: wget https://github.com/TimDettmers/bitsandbytes/blob/main/cuda_install.sh') self.add_log_entry('CUDA SETUP: Solution 2b): Install desired CUDA version to desired location. The syntax is bash cuda_install.sh CUDA_VERSION PATH_TO_INSTALL_INTO.') self.add_log_entry('CUDA SETUP: Solution 2b): For example, "bash cuda_install.sh 113 ~/local/" will download CUDA 11.3 and install into the folder ~/local') return make_cmd = f'CUDA_VERSION={self.cuda_version_string}' if len(self.cuda_version_string) < 3: make_cmd += ' make cuda92' elif self.cuda_version_string == '110': make_cmd += ' make cuda110' elif self.cuda_version_string[:2] == '11' and int(self.cuda_version_string[2]) > 0: make_cmd += ' make cuda11x' elif self.cuda_version_string == '100': self.add_log_entry('CUDA SETUP: CUDA 10.0 not supported. Please use a different CUDA version.') </s> ===========changed ref 3=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def generate_instructions(self): # offset: 2 <s>add_log_entry('CUDA SETUP: Before you try again running bitsandbytes, make sure old CUDA 10.0 versions are uninstalled and removed from $LD_LIBRARY_PATH variables.') return has_cublaslt = is_cublasLt_compatible(self.cc) if not has_cublaslt: make_cmd += '_nomatmul' self.add_log_entry('CUDA SETUP: Something unexpected happened. Please compile from source:') self.add_log_entry('git clone [email protected]:TimDettmers/bitsandbytes.git') self.add_log_entry('cd bitsandbytes') self.add_log_entry(make_cmd) self.add_log_entry('python setup.py install')
bitsandbytes.optim.adamw/AdamW8bit.__init__
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<0>:<del> super().__init__( <1>:<del> "adam", <2>:<del> params, <3>:<del> lr, <4>:<del> betas, <5>:<del> eps, <6>:<del> weight_decay, <7>:<del> 8, <8>:<del> args, <9>:<del> min_8bit_size, <10>:<del> percentile_clipping, <11>:<del> block_wise, <12>:<del> ) <13>:<add> super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged )
<s>size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): <0> super().__init__( <1> "adam", <2> params, <3> lr, <4> betas, <5> eps, <6> weight_decay, <7> 8, <8> args, <9> min_8bit_size, <10> percentile_clipping, <11> block_wise, <12> ) <13>
===========changed ref 0=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 1=========== # module: bitsandbytes.optim.adamw + class PagedAdamW8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 2=========== # module: bitsandbytes.optim.adamw + class PagedAdamW(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 3=========== <s>size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "adam", - params, - lr, - betas, - eps, - weight_decay, - optim_bits, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged ) ===========changed ref 4=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 5=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def generate_instructions(self): + if getattr(self, 'error', False): return + print(self.error) + self.error = True if self.cuda is None: self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA library was not detected.') self.add_log_entry('CUDA SETUP: Solution 1): Your paths are probably not up-to-date. You can update them via: sudo ldconfig.') self.add_log_entry('CUDA SETUP: Solution 2): If you do not have sudo rights, you can do the following:') self.add_log_entry('CUDA SETUP: Solution 2a): Find the cuda library via: find / -name libcuda.so 2>/dev/null') self.add_log_entry('CUDA SETUP: Solution 2b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_2a') self.add_log_entry('CUDA SETUP: Solution 2c): For a permanent solution add the export from 2b into your .bashrc file, located at ~/.bashrc') return if self.cudart_path is None: self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA runtime library was not detected.') self.add_log_entry('CUDA SETUP: Solution 1: To solve the issue the libcudart.so location needs to be added to the LD_LIBRARY_PATH variable') self.add_log_entry('CUDA SETUP: Solution 1a): Find the cuda runtime library via: find / -name libcudart.so 2>/dev/null') self.add_log_entry('CUDA SETUP: Solution 1b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM</s> ===========changed ref 6=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def generate_instructions(self): # offset: 1 <s> it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a') self.add_log_entry('CUDA SETUP: Solution 1c): For a permanent solution add the export from 1b into your .bashrc file, located at ~/.bashrc') self.add_log_entry('CUDA SETUP: Solution 2: If no library was found in step 1a) you need to install CUDA.') self.add_log_entry('CUDA SETUP: Solution 2a): Download CUDA install script: wget https://github.com/TimDettmers/bitsandbytes/blob/main/cuda_install.sh') self.add_log_entry('CUDA SETUP: Solution 2b): Install desired CUDA version to desired location. The syntax is bash cuda_install.sh CUDA_VERSION PATH_TO_INSTALL_INTO.') self.add_log_entry('CUDA SETUP: Solution 2b): For example, "bash cuda_install.sh 113 ~/local/" will download CUDA 11.3 and install into the folder ~/local') return make_cmd = f'CUDA_VERSION={self.cuda_version_string}' if len(self.cuda_version_string) < 3: make_cmd += ' make cuda92' elif self.cuda_version_string == '110': make_cmd += ' make cuda110' elif self.cuda_version_string[:2] == '11' and int(self.cuda_version_string[2]) > 0: make_cmd += ' make cuda11x' elif self.cuda_version_string == '100': self.add_log_entry('CUDA SETUP: CUDA 10.0 not supported. Please use a different CUDA version.') </s>
bitsandbytes.optim.adamw/AdamW32bit.__init__
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<0>:<del> super().__init__( <1>:<del> "adam", <2>:<del> params, <3>:<del> lr, <4>:<del> betas, <5>:<del> eps, <6>:<del> weight_decay, <7>:<del> 32, <8>:<del> args, <9>:<del> min_8bit_size, <10>:<del> percentile_clipping, <11>:<del> block_wise, <12>:<del> ) <13>:<add> super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged)
<s>size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): <0> super().__init__( <1> "adam", <2> params, <3> lr, <4> betas, <5> eps, <6> weight_decay, <7> 32, <8> args, <9> min_8bit_size, <10> percentile_clipping, <11> block_wise, <12> ) <13>
===========changed ref 0=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 1=========== # module: bitsandbytes.optim.adamw + class PagedAdamW8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 2=========== # module: bitsandbytes.optim.adamw + class PagedAdamW(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 3=========== <s>size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "adam", - params, - lr, - betas, - eps, - weight_decay, - 8, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged ) ===========changed ref 4=========== <s>size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "adam", - params, - lr, - betas, - eps, - weight_decay, - optim_bits, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged ) ===========changed ref 5=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 6=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def generate_instructions(self): + if getattr(self, 'error', False): return + print(self.error) + self.error = True if self.cuda is None: self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA library was not detected.') self.add_log_entry('CUDA SETUP: Solution 1): Your paths are probably not up-to-date. You can update them via: sudo ldconfig.') self.add_log_entry('CUDA SETUP: Solution 2): If you do not have sudo rights, you can do the following:') self.add_log_entry('CUDA SETUP: Solution 2a): Find the cuda library via: find / -name libcuda.so 2>/dev/null') self.add_log_entry('CUDA SETUP: Solution 2b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_2a') self.add_log_entry('CUDA SETUP: Solution 2c): For a permanent solution add the export from 2b into your .bashrc file, located at ~/.bashrc') return if self.cudart_path is None: self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA runtime library was not detected.') self.add_log_entry('CUDA SETUP: Solution 1: To solve the issue the libcudart.so location needs to be added to the LD_LIBRARY_PATH variable') self.add_log_entry('CUDA SETUP: Solution 1a): Find the cuda runtime library via: find / -name libcudart.so 2>/dev/null') self.add_log_entry('CUDA SETUP: Solution 1b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM</s>
bitsandbytes.optim.adam/Adam.__init__
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<0>:<del> super().__init__( <1>:<del> "adam", <2>:<del> params, <3>:<del> lr, <4>:<del> betas, <5>:<del> eps, <6>:<del> weight_decay, <7>:<del> optim_bits, <8>:<del> args, <9>:<del> min_8bit_size, <10>:<del> percentile_clipping, <11>:<del> block_wise, <12>:<del> ) <13>:<add> super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged)
<s>8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): <0> super().__init__( <1> "adam", <2> params, <3> lr, <4> betas, <5> eps, <6> weight_decay, <7> optim_bits, <8> args, <9> min_8bit_size, <10> percentile_clipping, <11> block_wise, <12> ) <13>
===========unchanged ref 0=========== at: bitsandbytes.optim.optimizer Optimizer2State(optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, is_paged=False) at: bitsandbytes.optim.optimizer.Optimizer2State __init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, is_paged=False) __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, is_paged=False) ===========changed ref 0=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 1=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 2=========== # module: bitsandbytes.optim.adamw + class PagedAdamW8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 3=========== # module: bitsandbytes.optim.adamw + class PagedAdamW(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 4=========== <s>size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "adam", - params, - lr, - betas, - eps, - weight_decay, - 32, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) ===========changed ref 5=========== <s>size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "adam", - params, - lr, - betas, - eps, - weight_decay, - 8, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged ) ===========changed ref 6=========== <s>size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "adam", - params, - lr, - betas, - eps, - weight_decay, - optim_bits, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged )
bitsandbytes.optim.adam/Adam8bit.__init__
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<0>:<del> super().__init__( <1>:<del> "adam", <2>:<del> params, <3>:<del> lr, <4>:<del> betas, <5>:<del> eps, <6>:<del> weight_decay, <7>:<del> 8, <8>:<del> args, <9>:<del> min_8bit_size, <10>:<del> percentile_clipping, <11>:<del> block_wise, <12>:<del> ) <13>:<add> super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged)
<s>8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): <0> super().__init__( <1> "adam", <2> params, <3> lr, <4> betas, <5> eps, <6> weight_decay, <7> 8, <8> args, <9> min_8bit_size, <10> percentile_clipping, <11> block_wise, <12> ) <13>
===========changed ref 0=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 1=========== # module: bitsandbytes.optim.adam + class PagedAdam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 2=========== # module: bitsandbytes.optim.adam + class PagedAdam(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 3=========== <s>8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "adam", - params, - lr, - betas, - eps, - weight_decay, - optim_bits, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) ===========changed ref 4=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 5=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 6=========== # module: bitsandbytes.optim.adamw + class PagedAdamW8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 7=========== # module: bitsandbytes.optim.adamw + class PagedAdamW(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 8=========== <s>size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "adam", - params, - lr, - betas, - eps, - weight_decay, - 32, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) ===========changed ref 9=========== <s>size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "adam", - params, - lr, - betas, - eps, - weight_decay, - 8, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged )
bitsandbytes.optim.adam/Adam32bit.__init__
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<0>:<del> super().__init__( <1>:<del> "adam", <2>:<del> params, <3>:<del> lr, <4>:<del> betas, <5>:<del> eps, <6>:<del> weight_decay, <7>:<del> 32, <8>:<del> args, <9>:<del> min_8bit_size, <10>:<del> percentile_clipping, <11>:<del> block_wise, <12>:<del> ) <13>:<add> super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged)
<s>8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): <0> super().__init__( <1> "adam", <2> params, <3> lr, <4> betas, <5> eps, <6> weight_decay, <7> 32, <8> args, <9> min_8bit_size, <10> percentile_clipping, <11> block_wise, <12> ) <13>
===========unchanged ref 0=========== at: torch.optim.optimizer.Optimizer OptimizerPreHook: TypeAlias = Callable[[Self, Args, Kwargs], Optional[Tuple[Args, Kwargs]]] # type: ignore[misc] OptimizerPostHook: TypeAlias = Callable[[Self, Args, Kwargs], None] # type: ignore[misc] _optimizer_step_pre_hooks: Dict[int, OptimizerPreHook] _optimizer_step_post_hooks: Dict[int, OptimizerPostHook] _optimizer_state_dict_pre_hooks: 'OrderedDict[int, Callable[["Optimizer"], None]]' _optimizer_state_dict_post_hooks: 'OrderedDict[int, Callable[["Optimizer", StateDict], Optional[StateDict]]]' _optimizer_load_state_dict_pre_hooks: 'OrderedDict[int, Callable[["Optimizer", StateDict], Optional[StateDict]]]' _optimizer_load_state_dict_post_hooks: 'OrderedDict[int, Callable[["Optimizer"], None]]' __init__(params: params_t, defaults: Dict[str, Any]) -> None ===========changed ref 0=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 1=========== # module: bitsandbytes.optim.adam + class PagedAdam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 2=========== # module: bitsandbytes.optim.adam + class PagedAdam(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 3=========== <s>8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "adam", - params, - lr, - betas, - eps, - weight_decay, - 8, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) ===========changed ref 4=========== <s>8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "adam", - params, - lr, - betas, - eps, - weight_decay, - optim_bits, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) ===========changed ref 5=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 6=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 7=========== # module: bitsandbytes.optim.adamw + class PagedAdamW8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 8=========== # module: bitsandbytes.optim.adamw + class PagedAdamW(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) +
bitsandbytes.autograd._functions/MatMul8bitLt.forward
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
# module: bitsandbytes.autograd._functions class MatMul8bitLt(torch.autograd.Function): # forward is the same, but we added the fallback for pre-turing GPUs # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None") @staticmethod def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState): <0> using_igemmlt = supports_igemmlt(A.device) and not state.force_no_igemmlt <1> # default of pytorch behavior if inputs are empty <2> ctx.is_empty = False <3> if prod(A.shape) == 0: <4> ctx.is_empty = True <5> ctx.A = A <6> ctx.B = B <7> ctx.bias = bias <8> if A.shape[-1] == B.shape[0]: <9> return torch.empty(A.shape[:-1] + B.shape[1:], dtype=A.dtype, device=A.device) <10> else: <11> return torch.empty(A.shape[:-1] + B.shape[:1], dtype=A.dtype, device=A.device) <12> <13> # 1. Quantize A <14> # 2. Quantize B <15> # 3. Matmul <16> # 4. Mixed-precision decomposition matmul <17> # 5. Save state <18> formatB = state.formatB <19> input_shape = A.shape <20> if state.outlier_pool is None: <21> state.outlier_pool = GlobalOutlierPooler.get_instance() <22> <23> # Cast A to fp16 <24> if A.dtype != torch.float16: <25> warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization") <26> <27> # 1. Quantize A <28> if len(A.shape) == 3: <29> A = A.view(-1, A.shape[-1]).contiguous() <30> CA,</s>
===========below chunk 0=========== # module: bitsandbytes.autograd._functions class MatMul8bitLt(torch.autograd.Function): # forward is the same, but we added the fallback for pre-turing GPUs # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None") @staticmethod def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState): # offset: 1 if state.threshold > 0.0 and coo_tensorA is not None: if state.has_fp16_weights: idx = torch.unique(coo_tensorA.colidx).long() CA[:, idx] = 0 CAt[:, idx] = 0 subA = A[:, idx] state.subB = B[:, idx].t().contiguous() state.idx = idx else: if state.CxB is None and using_igemmlt: # B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions # we also need to convert it to the turing/ampere format state.CxB, state.SB = F.transform(state.CB, to_order=formatB) else: if not state.has_fp16_weights and state.CxB is None and using_igemmlt: state.CxB, state.SB = F.transform(state.CB, to_order=formatB) subA = None # 2. Quantize B if state.has_fp16_weights: has_grad = True if (getattr(B, "grad", None) is not None) else False is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1) if is_transposed: B = B.contiguous() if (state.is_training and not has_grad) or state.CxB is None: state.reset_grads() ( CB, state.CBt, </s> ===========below chunk 1=========== # module: bitsandbytes.autograd._functions class MatMul8bitLt(torch.autograd.Function): # forward is the same, but we added the fallback for pre-turing GPUs # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None") @staticmethod def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState): # offset: 2 <s>.CxB is None: state.reset_grads() ( CB, state.CBt, state.SCB, state.SCBt, coo_tensorB, ) = F.double_quant(B.to(torch.float16)) if using_igemmlt: state.CxB, state.SB = F.transform(CB, to_order=formatB) else: state.CB = CB else: has_grad = False if coo_tensorA is not None and not state.has_fp16_weights: # extract outliers outlier_idx = torch.unique(coo_tensorA.colidx) state.idx = outlier_idx # state.outlier_pool.add_outliers(outlier_idx, A.shape[-1]) # if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]: # # do not use pool for 2nd FFN layer # state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device) # else: # state.idx = outlier_idx if state.CxB is not None: outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int()) else: outliers = state.CB[:, state.idx.long()].clone() </s> ===========below chunk 2=========== # module: bitsandbytes.autograd._functions class MatMul8bitLt(torch.autograd.Function): # forward is the same, but we added the fallback for pre-turing GPUs # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None") @staticmethod def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState): # offset: 3 <s>subB = (outliers * state.SCB.view(-1, 1) / 127.0).t().contiguous().to(A.dtype) CA[:, state.idx.long()] = 0 CAt[:, state.idx.long()] = 0 subA = A[:, state.idx.long()] shapeB = state.SB[0] if state.SB else B.shape if len(input_shape) == 3: output_shape = (input_shape[0], input_shape[1], shapeB[0]) else: output_shape = (input_shape[0], shapeB[0]) # 3. Matmul if using_igemmlt: C32A, SA = F.transform(CA, "col32") out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB) if bias is None or bias.dtype == torch.float16: # we apply the fused bias here output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias) output = output.to(A.dtype) else: # apply bias separately output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=None) output = output.to(A.dtype).add_(bias) else: A_wo_outliers = A.clone</s> ===========below chunk 3=========== # module: bitsandbytes.autograd._functions class MatMul8bitLt(torch.autograd.Function): # forward is the same, but we added the fallback for pre-turing GPUs # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None") @staticmethod def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState): # offset: 4 <s> if state.idx is not None: A_wo_outliers[:, state.idx.long()] = 0 output = torch.nn.functional.linear(A_wo_outliers, state.CB.to(A.dtype)) output = output.mul_(state.SCB.unsqueeze(0).mul(1.0 / 127.0)) if bias is not None: output = output.add_(bias) # 4. Mixed-precision decomposition matmul if coo_tensorA is not None and subA is not None: output += torch.matmul(subA, state.subB) # 5. Save state ctx.state = state ctx.formatB = formatB ctx.grad_shape = input_shape ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype if any(ctx.needs_input_grad[:2]): ctx.tensors = (CAt, subA) ctx.tensor_states = (SCAt, state.idx) else: ctx.tensors = [None, None] ctx.tensor_states = (None, None) ctx.save_for_backward(None, None) clone_func = torch.clone if len(output_shape) == 3 else lambda x: x return clone_func(output.view(output_shape))
bitsandbytes.autograd._functions/MatMul8bitLt.backward
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<4>:<add> CAt, subA, A = ctx.tensors <del> CAt, subA = ctx.tensors <20>:<add> #grad_B = torch.matmul(grad_output.t(), A)
# module: bitsandbytes.autograd._functions class MatMul8bitLt(torch.autograd.Function): @staticmethod def backward(ctx, grad_output): <0> if ctx.is_empty: <1> bias_grad = None if ctx.bias is None else torch.zeros_like(ctx.bias) <2> return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None <3> req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad <4> CAt, subA = ctx.tensors <5> SCAt, idx = ctx.tensor_states <6> formatB = ctx.formatB <7> state = ctx.state <8> grad_A = grad_B = grad_bias = None <9> <10> if req_gradBias: <11> # compute grad_bias first before changing grad_output dtype <12> grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias) <13> <14> # Cast grad_output to fp16 <15> if len(grad_output.shape) == 3: <16> grad_output = grad_output.reshape(-1, grad_output.shape[-1]).contiguous() <17> <18> Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16)) <19> if req_gradB: <20> CxAt, SAt = F.transform(CAt, formatB, transpose=True) <21> C32grad, Sgrad = F.transform(Cgradt, "col32", transpose=True) <22> gradB32, SgradB32 = F.igemmlt(C32grad, CxAt, Sgrad, SAt) <23> grad_B = F.mm_dequant(gradB32, SgradB32, SCgradt, SCAt) <24> if state.threshold > 0.0 and subA is not None: <25> grad_B[:, idx] += torch.matmul(grad_output.t(), subA)</s>
===========below chunk 0=========== # module: bitsandbytes.autograd._functions class MatMul8bitLt(torch.autograd.Function): @staticmethod def backward(ctx, grad_output): # offset: 1 if req_gradA: if state.CBt is not None: C32grad, Sgrad = F.transform(Cgrad, "col32") if state.CxBt is None: state.CxBt, state.SBt = F.transform(state.CBt, to_order=formatB, transpose=True) gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt) grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape).to(ctx.dtype_A) elif state.CB is not None: CB = state.CB.to(ctx.dtype_A, copy=True).mul_(state.SCB.unsqueeze(1).mul(1.0 / 127.0)) grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A) elif state.CxB is not None: CB = ( undo_layout(state.CxB, state.tile_indices) .to(ctx.dtype_A) .mul_(state.SCB.unsqueeze(1).mul(1.0 / 127.0)) ) grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A) else: raise Exception("State must contain either CBt or CB or CxB matrix for backward") return grad_A, grad_B, None, grad_bias, None ===========changed ref 0=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 1=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 2=========== # module: bitsandbytes.optim.adam + class PagedAdam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 3=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 4=========== # module: bitsandbytes.optim.adamw + class PagedAdamW8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 5=========== # module: bitsandbytes.optim.adam + class PagedAdam(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 6=========== # module: bitsandbytes.optim.adamw + class PagedAdamW(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 7=========== <s>8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "adam", - params, - lr, - betas, - eps, - weight_decay, - 32, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged)
bitsandbytes.nn.modules/OutlierAwareLinear.forward
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<13>:<del> return self.forward_with_outliers(x, self.outlier_dim) <14>:<del>
# module: bitsandbytes.nn.modules class OutlierAwareLinear(nn.Linear): def forward(self, x): <0> if self.outlier_dim is None: <1> tracer = OutlierTracer.get_instance() <2> if not tracer.is_initialized(): <3> print('Please use OutlierTracer.initialize(model) before using the OutlierAwareLinear layer') <4> outlier_idx = tracer.get_outliers(self.weight) <5> #print(outlier_idx, tracer.get_hvalue(self.weight)) <6> self.outlier_dim = outlier_idx <7> <8> if not self.is_quantized: <9> w = self.quantize_weight(self.weight, self.outlier_dim) <10> self.weight.data.copy_(w) <11> self.is_quantized = True <12> <13> return self.forward_with_outliers(x, self.outlier_dim) <14>
===========unchanged ref 0=========== at: bitsandbytes.nn.modules T = TypeVar("T", bound="torch.nn.Module") at: torch._C device(device: Union[_device, _int, str]) device(type: str, index: _int) dtype() ===========changed ref 0=========== # module: bitsandbytes.nn.modules + class Params4bit(torch.nn.Parameter): + def __new__(cls, data=None, requires_grad=True, quant_state=None, blocksize=64, compress_statistics=True, quant_type='fp4'): + if data is None: + data = torch.empty(0) + + self = torch.Tensor._make_subclass(cls, data, requires_grad) + self.blocksize = blocksize + self.compress_statistics = compress_statistics + self.quant_type = quant_type + self.quant_state = quant_state + self.data = data + return self + ===========changed ref 1=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) + ===========changed ref 2=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 3=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 4=========== # module: bitsandbytes.optim.adam + class PagedAdam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 5=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 6=========== # module: bitsandbytes.optim.adamw + class PagedAdamW8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 7=========== # module: bitsandbytes.optim.adam + class PagedAdam(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 8=========== # module: bitsandbytes.optim.adamw + class PagedAdamW(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 9=========== <s>8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "adam", - params, - lr, - betas, - eps, - weight_decay, - 32, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) ===========changed ref 10=========== <s>8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "adam", - params, - lr, - betas, - eps, - weight_decay, - 8, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged)
bitsandbytes.functional/is_on_gpu
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<1>:<add> gpu_ids = set() <3>:<add> is_paged = getattr(t, 'is_paged', False) <add> on_gpu &= (t.device.type == 'cuda' or is_paged) <del> on_gpu &= t.device.type == 'cuda' <4>:<add> if not is_paged: <add> gpu_ids.add(t.device.index) <add> if not on_gpu: <add> raise TypeError(f'All input tensors need to be on the same GPU, but found some tensors to not be on a GPU:\n {[(t.shape, t.device) for t in tensors]}') <add> if len(gpu_ids) > 1: <add> raise TypeError(f'Input tensors need to be on the same GPU, but found the following tensor and device combinations:\n {[(t.shape, t.device) for t in tensors]}')
# module: bitsandbytes.functional def is_on_gpu(tensors): <0> on_gpu = True <1> for t in tensors: <2> if t is None: continue # NULL pointers are fine <3> on_gpu &= t.device.type == 'cuda' <4> return on_gpu <5>
===========changed ref 0=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 1=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 2=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 5=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 6=========== # module: bitsandbytes.functional + def prefetch_tensor(A, to_cpu=False): + assert A.is_paged, 'Only paged tensors can be prefetched!' + if to_cpu: + deviceid = -1 + else: + deviceid = A.page_deviceid + + num_bytes = dtype2bytes[A.dtype]*A.numel() + lib.cprefetch(get_ptr(A), ct.c_size_t(num_bytes), ct.c_int32(deviceid)) + ===========changed ref 7=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 8=========== # module: bitsandbytes.functional + class GlobalPageManager: + def prefetch_all(self, to_cpu=False): + # assume the first added, will be hte + # ones that are used first, so swap them in last + # in the case they are evicted again + for t in self.paged_tensors[::-1]: + prefetch_tensor(t, to_cpu) + ===========changed ref 9=========== # module: bitsandbytes.functional + def get_paged(*shape, dtype=torch.float32, device=torch.device('cuda', index=0)): + num_bytes = dtype2bytes[dtype]*prod(shape) + cuda_ptr = lib.cget_managed_ptr(ct.c_size_t(num_bytes)) + c_ptr = ct.cast(cuda_ptr, ct.POINTER(ct.c_int)) + new_array = np.ctypeslib.as_array(c_ptr, shape=shape) + out = torch.frombuffer(new_array, dtype=dtype, count=prod(shape)).view(shape) + out.is_paged = True + out.page_deviceid = device.index + return out + ===========changed ref 10=========== # module: bitsandbytes.functional + def elementwise_func(func_name, A, B, value, prefetch=True): + func = None + if A.dtype == torch.float32: + func = getattr(lib, f'c{func_name}_fp32', None) + cvalue = ct.c_float(value) + elif A.dtype == torch.uint8: + func = getattr(lib, f'c{func_name}_uint8', None) + cvalue = ct.c_uint8(value) + + if func is None: raise NotImplementedError(f'Function not implemented: {func_name}') + + is_managed = getattr(A, 'is_managed', False) + if is_managed and prefetch: + prefetch_tensor(A) + if B is not None: prefetch_tensor(B) + + func(get_ptr(A), get_ptr(B), cvalue, ct.c_int64(A.numel())) + if A.is_paged or B.is_paged: + # paged function are fully asynchronous + # if we return from this function, we want to the tensor + # to be in the correct state, that is the final state after the + # operation occured. So we synchronize. + torch.cuda.synchronize() + ===========changed ref 11=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 12=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 13=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) + ===========changed ref 14=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 15=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 16=========== # module: bitsandbytes.optim.adam + class PagedAdam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 17=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) +
bitsandbytes.functional/quantize_blockwise
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<15>:<del> rand : torch.Tensor <16>:<del> The tensor for stochastic rounding.
# module: bitsandbytes.functional + def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, out: Tensor = None, blocksize=4096, nested=False) -> Tensor: - def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, rand=None, out: Tensor = None, blocksize=4096) -> Tensor: <0> """ <1> Quantize tensor A in blocks of size 4096 values. <2> <3> Quantizes tensor A by dividing it into blocks of 4096 values. <4> Then the absolute maximum value within these blocks is calculated <5> for the non-linear quantization. <6> <7> Parameters <8> ---------- <9> A : torch.Tensor <10> The input tensor. <11> code : torch.Tensor <12> The quantization map. <13> absmax : torch.Tensor <14> The absmax values. <15> rand : torch.Tensor <16> The tensor for stochastic rounding. <17> out : torch.Tensor <18> The output tensor (8-bit). <19> <20> Returns <21> ------- <22> torch.Tensor: <23> The 8-bit tensor. <24> tuple(torch.Tensor, torch.Tensor): <25> The quantization state to undo the quantization. <26> """ <27> <28> <29> if code is None: <30> if "dynamic" not in name2qmap: <31> name2qmap["dynamic"] = create_dynamic_map().to(A.device) <32> code = name2qmap["dynamic"] <33> <34> if absmax is None: <35> n = A.numel() <36> blocks = n // blocksize <37> blocks += 1 if n % blocksize > 0 else 0 <38> absmax = torch.zeros((blocks,), device=A.device) <39> <40> if out is None: <41> out = torch.zeros_like(A, dtype=torch.uint8) <42> <43> if A.device.type != 'cpu': <44> assert blocksize in [4096, 2048, 1024, 512, 256, 128, 64] <45> cblock</s>
===========below chunk 0=========== # module: bitsandbytes.functional + def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, out: Tensor = None, blocksize=4096, nested=False) -> Tensor: - def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, rand=None, out: Tensor = None, blocksize=4096) -> Tensor: # offset: 1 prev_device = pre_call(A.device) code = code.to(A.device) if rand is not None: is_on_gpu([code, A, out, absmax, rand]) assert rand.numel() >= 1024 rand_offset = random.randint(0, 1023) if A.dtype == torch.float32: lib.cquantize_blockwise_stochastic_fp32(get_ptr(code), get_ptr(A),get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), cblocksize, ct.c_int(A.numel())) elif A.dtype == torch.float16: lib.cquantize_blockwise_stochastic_fp16(get_ptr(code), get_ptr(A),get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), cblocksize, ct.c_int(A.numel())) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") else: is_on_gpu([code, A, out, absmax]) if A.dtype == torch.float32: lib.cquantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel())) elif A.dtype == torch.float16: lib.cquantize_blockwise_fp16(get_ptr(code), get_</s> ===========below chunk 1=========== # module: bitsandbytes.functional + def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, out: Tensor = None, blocksize=4096, nested=False) -> Tensor: - def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, rand=None, out: Tensor = None, blocksize=4096) -> Tensor: # offset: 2 <s>.dtype == torch.float16: lib.cquantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel())) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") post_call(A.device) else: # cpu code = code.cpu() assert rand is None lib.cquantize_blockwise_cpu_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel())) return out, (absmax, code) ===========changed ref 0=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 1=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 2=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 5=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 6=========== # module: bitsandbytes.functional + def prefetch_tensor(A, to_cpu=False): + assert A.is_paged, 'Only paged tensors can be prefetched!' + if to_cpu: + deviceid = -1 + else: + deviceid = A.page_deviceid + + num_bytes = dtype2bytes[A.dtype]*A.numel() + lib.cprefetch(get_ptr(A), ct.c_size_t(num_bytes), ct.c_int32(deviceid)) + ===========changed ref 7=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 8=========== # module: bitsandbytes.functional def is_on_gpu(tensors): on_gpu = True + gpu_ids = set() for t in tensors: if t is None: continue # NULL pointers are fine + is_paged = getattr(t, 'is_paged', False) + on_gpu &= (t.device.type == 'cuda' or is_paged) - on_gpu &= t.device.type == 'cuda' + if not is_paged: + gpu_ids.add(t.device.index) + if not on_gpu: + raise TypeError(f'All input tensors need to be on the same GPU, but found some tensors to not be on a GPU:\n {[(t.shape, t.device) for t in tensors]}') + if len(gpu_ids) > 1: + raise TypeError(f'Input tensors need to be on the same GPU, but found the following tensor and device combinations:\n {[(t.shape, t.device) for t in tensors]}') return on_gpu ===========changed ref 9=========== # module: bitsandbytes.functional + class GlobalPageManager: + def prefetch_all(self, to_cpu=False): + # assume the first added, will be hte + # ones that are used first, so swap them in last + # in the case they are evicted again + for t in self.paged_tensors[::-1]: + prefetch_tensor(t, to_cpu) +
bitsandbytes.functional/dequantize_blockwise
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<33>:<add> <34>:<add> quant_state = (absmax, code, blocksize) <del> quant_state = (absmax, code) <35>:<add> assert absmax is not None and out is not None <36>:<add> absmax, code, blocksize, nested, offset, state2 = quant_state <add> if nested: <add> absmax = dequantize_blockwise(absmax, state2) <add> absmax += offset <del> absmax, code = quant_state
# module: bitsandbytes.functional def dequantize_blockwise( A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, code: Tensor = None, out: Tensor = None, blocksize: int = 4096, + nested=False ) -> Tensor: <0> """ <1> Dequantizes blockwise quantized values. <2> <3> Dequantizes the tensor A with maximum absolute values absmax in <4> blocks of size 4096. <5> <6> Parameters <7> ---------- <8> A : torch.Tensor <9> The input 8-bit tensor. <10> quant_state : tuple(torch.Tensor, torch.Tensor) <11> Tuple of code and absmax values. <12> absmax : torch.Tensor <13> The absmax values. <14> code : torch.Tensor <15> The quantization map. <16> out : torch.Tensor <17> Dequantized output tensor (default: float32) <18> <19> <20> Returns <21> ------- <22> torch.Tensor: <23> Dequantized tensor (default: float32) <24> """ <25> assert quant_state is not None or absmax is not None <26> if code is None and quant_state is None: <27> if "dynamic" not in name2qmap: <28> name2qmap["dynamic"] = create_dynamic_map().to(A.device) <29> code = name2qmap["dynamic"] <30> <31> if out is None: <32> out = torch.zeros_like(A, dtype=torch.float32) <33> if quant_state is None: <34> quant_state = (absmax, code) <35> else: <36> absmax, code = quant_state <37> <38> <39> if A.device.type != 'cpu': <40> device = pre_call(A.device) <41> code = code.to(A.device) <42> if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]: <43> raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values:</s>
===========below chunk 0=========== # module: bitsandbytes.functional def dequantize_blockwise( A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, code: Tensor = None, out: Tensor = None, blocksize: int = 4096, + nested=False ) -> Tensor: # offset: 1 is_on_gpu([A, out]) if out.dtype == torch.float32: lib.cdequantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel())) elif out.dtype == torch.float16: lib.cdequantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel())) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") post_call(A.device) else: code = code.cpu() lib.cdequantize_blockwise_cpu_fp32(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel())) return out ===========changed ref 0=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 1=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 2=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 5=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 6=========== # module: bitsandbytes.functional + def prefetch_tensor(A, to_cpu=False): + assert A.is_paged, 'Only paged tensors can be prefetched!' + if to_cpu: + deviceid = -1 + else: + deviceid = A.page_deviceid + + num_bytes = dtype2bytes[A.dtype]*A.numel() + lib.cprefetch(get_ptr(A), ct.c_size_t(num_bytes), ct.c_int32(deviceid)) + ===========changed ref 7=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 8=========== # module: bitsandbytes.functional def is_on_gpu(tensors): on_gpu = True + gpu_ids = set() for t in tensors: if t is None: continue # NULL pointers are fine + is_paged = getattr(t, 'is_paged', False) + on_gpu &= (t.device.type == 'cuda' or is_paged) - on_gpu &= t.device.type == 'cuda' + if not is_paged: + gpu_ids.add(t.device.index) + if not on_gpu: + raise TypeError(f'All input tensors need to be on the same GPU, but found some tensors to not be on a GPU:\n {[(t.shape, t.device) for t in tensors]}') + if len(gpu_ids) > 1: + raise TypeError(f'Input tensors need to be on the same GPU, but found the following tensor and device combinations:\n {[(t.shape, t.device) for t in tensors]}') return on_gpu ===========changed ref 9=========== # module: bitsandbytes.functional + class GlobalPageManager: + def prefetch_all(self, to_cpu=False): + # assume the first added, will be hte + # ones that are used first, so swap them in last + # in the case they are evicted again + for t in self.paged_tensors[::-1]: + prefetch_tensor(t, to_cpu) + ===========changed ref 10=========== # module: bitsandbytes.functional + def create_normal_map(offset=0.9677083, use_extra_value=True): + if use_extra_value: + # one more positive value, this is an asymmetric type + v1 = norm.ppf(torch.linspace(offset, 0.5, 9)[:-1]).tolist() + v2 = [0]*(256-15) ## we have 15 non-zero values in this data type + v3 = (-norm.ppf(torch.linspace(offset, 0.5, 8)[:-1])).tolist() + v = v1 + v2 + v3 + else: + v1 = norm.ppf(torch.linspace(offset, 0.5, 8)[:-1]).tolist() + v2 = [0]*(256-14) ## we have 14 non-zero values in this data type + v3 = (-norm.ppf(torch.linspace(offset, 0.5, 8)[:-1])).tolist() + v = v1 + v2 + v3 + + values = torch.Tensor(v) + values = values.sort().values + values /= values.max() + assert values.numel() == 256 + return values + ===========changed ref 11=========== # module: bitsandbytes.functional + def get_paged(*shape, dtype=torch.float32, device=torch.device('cuda', index=0)): + num_bytes = dtype2bytes[dtype]*prod(shape) + cuda_ptr = lib.cget_managed_ptr(ct.c_size_t(num_bytes)) + c_ptr = ct.cast(cuda_ptr, ct.POINTER(ct.c_int)) + new_array = np.ctypeslib.as_array(c_ptr, shape=shape) + out = torch.frombuffer(new_array, dtype=dtype, count=prod(shape)).view(shape) + out.is_paged = True + out.page_deviceid = device.index + return out +
bitsandbytes.functional/optimizer_update_32bit
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<43>:<del> if optimizer_name not in str2optimizer32bit: <44>:<del> raise NotImplementedError( <45>:<del> f
<s> g: Tensor, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor = None, beta2: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: <0> """ <1> Performs an inplace optimizer update with one or two optimizer states. <2> <3> Universal optimizer update for 32-bit state and 32/16-bit gradients/weights. <4> <5> Parameters <6> ---------- <7> optimizer_name : str <8> The name of the optimizer: {adam}. <9> g : torch.Tensor <10> Gradient tensor. <11> p : torch.Tensor <12> Parameter tensor. <13> state1 : torch.Tensor <14> Optimizer state 1. <15> beta1 : float <16> Optimizer beta1. <17> eps : float <18> Optimizer epsilon. <19> weight_decay : float <20> Weight decay. <21> step : int <22> Current optimizer step. <23> lr : float <24> The learning rate. <25> state2 : torch.Tensor <26> Optimizer state 2. <27> beta2 : float <28> Optimizer beta2. <29> gnorm_scale : float <30> The factor to rescale the gradient to the max clip value. <31> unorm_vec : torch.Tensor <32> The tensor for the update norm. <33> max_unorm : float <34> The maximum update norm relative to the weight norm. <35> skip_zeros : bool <36> Whether to skip zero-valued gradients or not (default: False). <37> """ <38> <39> param_norm = 0.0 <40> if max_unorm > 0.0: <41> param_norm = torch.norm(p.data.float()) <42> <43> if optimizer_name not in str2optimizer32bit: <44> raise NotImplementedError( <45> f</s>
===========below chunk 0=========== <s>, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor = None, beta2: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: # offset: 1 ) prev_device = pre_call(g.device) is_on_gpu([g, p, state1, state2, unorm_vec]) if g.dtype == torch.float32 and state1.dtype == torch.float32: str2optimizer32bit[optimizer_name][0]( get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay), ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) elif g.dtype == torch.float16 and state1.dtype == torch.float32: str2optimizer32bit[optimizer_name][1]( get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), </s> ===========below chunk 1=========== <s>, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor = None, beta2: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: # offset: 2 <s>_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay), ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) else: raise ValueError( f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}" ) post_call(prev_device) ===========changed ref 0=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 1=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 2=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 5=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 6=========== # module: bitsandbytes.functional + def prefetch_tensor(A, to_cpu=False): + assert A.is_paged, 'Only paged tensors can be prefetched!' + if to_cpu: + deviceid = -1 + else: + deviceid = A.page_deviceid + + num_bytes = dtype2bytes[A.dtype]*A.numel() + lib.cprefetch(get_ptr(A), ct.c_size_t(num_bytes), ct.c_int32(deviceid)) + ===========changed ref 7=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 8=========== # module: bitsandbytes.functional def is_on_gpu(tensors): on_gpu = True + gpu_ids = set() for t in tensors: if t is None: continue # NULL pointers are fine + is_paged = getattr(t, 'is_paged', False) + on_gpu &= (t.device.type == 'cuda' or is_paged) - on_gpu &= t.device.type == 'cuda' + if not is_paged: + gpu_ids.add(t.device.index) + if not on_gpu: + raise TypeError(f'All input tensors need to be on the same GPU, but found some tensors to not be on a GPU:\n {[(t.shape, t.device) for t in tensors]}') + if len(gpu_ids) > 1: + raise TypeError(f'Input tensors need to be on the same GPU, but found the following tensor and device combinations:\n {[(t.shape, t.device) for t in tensors]}') return on_gpu ===========changed ref 9=========== # module: bitsandbytes.functional + class GlobalPageManager: + def prefetch_all(self, to_cpu=False): + # assume the first added, will be hte + # ones that are used first, so swap them in last + # in the case they are evicted again + for t in self.paged_tensors[::-1]: + prefetch_tensor(t, to_cpu) + ===========changed ref 10=========== # module: bitsandbytes.functional + def create_normal_map(offset=0.9677083, use_extra_value=True): + if use_extra_value: + # one more positive value, this is an asymmetric type + v1 = norm.ppf(torch.linspace(offset, 0.5, 9)[:-1]).tolist() + v2 = [0]*(256-15) ## we have 15 non-zero values in this data type + v3 = (-norm.ppf(torch.linspace(offset, 0.5, 8)[:-1])).tolist() + v = v1 + v2 + v3 + else: + v1 = norm.ppf(torch.linspace(offset, 0.5, 8)[:-1]).tolist() + v2 = [0]*(256-14) ## we have 14 non-zero values in this data type + v3 = (-norm.ppf(torch.linspace(offset, 0.5, 8)[:-1])).tolist() + v = v1 + v2 + v3 + + values = torch.Tensor(v) + values = values.sort().values + values /= values.max() + assert values.numel() == 256 + return values +
bitsandbytes.functional/optimizer_update_8bit_blockwise
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<0>:<add> optim_func = None <3>:<add> optim_func = str2optimizer8bit_blockwise[optimizer_name][0] <del> str2optimizer8bit_blockwise[optimizer_name][0]( <4>:<del> get_ptr(p), <5>:<del> get_ptr(g), <6>:<del> get_ptr(state1), <7>:<del> get_ptr(state2), <8>:<del> ct.c_float(beta1), <9>:<del> ct.c_float(beta2), <10>:<del> ct.c_float(eps), <11>:<del> ct.c_int32(step), <12>:<del> ct.c_float(lr), <13>:<del> get_ptr(qmap1), <14>:<del> get_ptr(qmap2), <15>:<del> get_ptr(absmax1), <16>:<del> get_ptr(absmax2), <17>:<del> ct.c_float(weight_decay), <18>:<del> ct.c_float(gnorm_scale), <19>:<del> ct.c_bool(skip_zeros), <20>:<del> ct.c_int32(g.numel()), <21>:<del> ) <23>:<add> optim_func = str2optimizer8bit_blockwise[optimizer_name][1] <del> str2optimizer8bit_blockwise[optimizer_name][1]( <24>:<del> get_ptr(p), <25>:<del> get_ptr(g), <26>:<del> get_ptr(state1), <27>:<del> get_ptr(state2), <28>:<del> ct.c_float(beta1), <29>:<del> ((bad delete))
<s> g: Tensor, p: Tensor, state1: Tensor, state2: Tensor, beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, absmax1: Tensor, absmax2: Tensor, weight_decay: float = 0.0, gnorm_scale: float = 1.0, skip_zeros=False, ) -> None: <0> prev_device = pre_call(g.device) <1> is_on_gpu([g, p, state1, state2, qmap1, qmap2, absmax1, absmax2]) <2> if g.dtype == torch.float32 and state1.dtype == torch.uint8: <3> str2optimizer8bit_blockwise[optimizer_name][0]( <4> get_ptr(p), <5> get_ptr(g), <6> get_ptr(state1), <7> get_ptr(state2), <8> ct.c_float(beta1), <9> ct.c_float(beta2), <10> ct.c_float(eps), <11> ct.c_int32(step), <12> ct.c_float(lr), <13> get_ptr(qmap1), <14> get_ptr(qmap2), <15> get_ptr(absmax1), <16> get_ptr(absmax2), <17> ct.c_float(weight_decay), <18> ct.c_float(gnorm_scale), <19> ct.c_bool(skip_zeros), <20> ct.c_int32(g.numel()), <21> ) <22> elif g.dtype == torch.float16 and state1.dtype == torch.uint8: <23> str2optimizer8bit_blockwise[optimizer_name][1]( <24> get_ptr(p), <25> get_ptr(g), <26> get_ptr(state1), <27> get_ptr(state2), <28> ct.c_float(beta1), <29> </s>
===========below chunk 0=========== <s> p: Tensor, state1: Tensor, state2: Tensor, beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, absmax1: Tensor, absmax2: Tensor, weight_decay: float = 0.0, gnorm_scale: float = 1.0, skip_zeros=False, ) -> None: # offset: 1 ct.c_float(eps), ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2), get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) else: raise ValueError( f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}" ) post_call(prev_device) ===========changed ref 0=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 1=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 2=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 3=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 4=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 5=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 6=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 7=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 8=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 9=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 10=========== # module: bitsandbytes.functional + def prefetch_tensor(A, to_cpu=False): + assert A.is_paged, 'Only paged tensors can be prefetched!' + if to_cpu: + deviceid = -1 + else: + deviceid = A.page_deviceid + + num_bytes = dtype2bytes[A.dtype]*A.numel() + lib.cprefetch(get_ptr(A), ct.c_size_t(num_bytes), ct.c_int32(deviceid)) + ===========changed ref 11=========== # module: bitsandbytes.functional + def dequantize_4bit(A: Tensor,quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64, quant_type='fp4') -> Tensor: + """ + Dequantizes FP4 blockwise quantized values. + + Dequantizes the tensor A with maximum absolute values absmax in blocks of size blocksize. + + Parameters + ---------- + A : torch.Tensor + The input 8-bit tensor (packed 4-bit values). + quant_state : tuple(torch.Tensor, torch.Size, torch.dtype) + Tuple of absmax values, original tensor shape and original dtype. + absmax : torch.Tensor + The absmax values. + out : torch.Tensor + Dequantized output tensor. + blocksize : int + The blocksize used in quantization. + quant_type : str + The 4-bit quantization data type {fp4, nf4} + + + Returns + ------- + torch.Tensor: + Dequantized tensor. + """ + if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]: + raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]") + if quant_type not in ['fp4', 'nf4']: + raise NotImplementedError(f'4-bit quantization data type {quant_type} is not implemented.') + + if quant_state is None: + assert absmax is not None and out is not None + shape = out.shape + dtype = out.dtype + else: + absmax, shape, dtype, blocksize, compressed_stats, quant_type = quant_state + + + if compressed_stats is not None: + offset, state2 = compressed_stats + absmax = dequantize_blockwise(absmax, state2) + </s>
bitsandbytes.optim.optimizer/Optimizer8bit.__init__
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<3>:<add> self.is_paged = is_paged <add> self.page_mng = F.GlobalPageManager.get_instance()
# module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): + def __init__(self, params, defaults, optim_bits=32, is_paged=False): - def __init__(self, params, defaults, optim_bits=32): <0> super().__init__(params, defaults) <1> self.initialized = False <2> self.name2qmap = {} <3> <4> self.mng = GlobalOptimManager.get_instance() <5> self.non_castable_tensor_keys = { <6> "qmap1", <7> "qmap2", <8> "max1", <9> "max2", <10> "new_max1", <11> "new_max2", <12> "state1", <13> "state2", <14> "gnorm_vec", <15> "absmax1", <16> "absmax2", <17> "unorm_vec", <18> } <19> <20> if optim_bits == 8: <21> self.fill_qmap() <22>
===========changed ref 0=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 1=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 2=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 3=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 4=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 5=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 6=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 7=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 8=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 9=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 10=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 11=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 12=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) + ===========changed ref 13=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 14=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 15=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 16=========== # module: bitsandbytes.optim.adam + class PagedAdam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 17=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 18=========== # module: bitsandbytes.optim.adamw + class PagedAdamW8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 19=========== # module: bitsandbytes.optim.adam + class PagedAdam(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) +
bitsandbytes.optim.optimizer/Optimizer8bit.to_gpu
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<6>:<add> is_paged = getattr(v, 'is_paged', False) <add> if not is_paged: <add> self.state[p][k] = v.to(p.device) <del> self.state[p][k] = v.to(p.device)
# module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def to_gpu(self): <0> for gindex, group in enumerate(self.param_groups): <1> for pindex, p in enumerate(group["params"]): <2> if p in self.state: <3> values = self.state[p] <4> for k, v in values.items(): <5> if isinstance(v, torch.Tensor): <6> self.state[p][k] = v.to(p.device) <7>
===========changed ref 0=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): + def __init__(self, params, defaults, optim_bits=32, is_paged=False): - def __init__(self, params, defaults, optim_bits=32): super().__init__(params, defaults) self.initialized = False self.name2qmap = {} + self.is_paged = is_paged + self.page_mng = F.GlobalPageManager.get_instance() self.mng = GlobalOptimManager.get_instance() self.non_castable_tensor_keys = { "qmap1", "qmap2", "max1", "max2", "new_max1", "new_max2", "state1", "state2", "gnorm_vec", "absmax1", "absmax2", "unorm_vec", } if optim_bits == 8: self.fill_qmap() ===========changed ref 1=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 2=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 4=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 5=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 6=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 7=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 8=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 9=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 10=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 11=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 12=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 13=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) + ===========changed ref 14=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 15=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 16=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 17=========== # module: bitsandbytes.optim.adam + class PagedAdam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 18=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 19=========== # module: bitsandbytes.optim.adamw + class PagedAdamW8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) +
bitsandbytes.optim.optimizer/Optimizer8bit.step
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<18>:<add> #if self.is_paged: self.page_mng.prefetch_all() <26>:<add> self.prefetch_state(p) <27>:<add> torch.cuda.synchronize() <add> if self.is_paged: <add> # all paged operation are asynchronous, we need <add> # to sync to make sure all tensors are in the right state <add> torch.cuda.synchronize() <add>
# module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): @torch.no_grad() def step(self, closure=None): <0> """Performs a single optimization step. <1> <2> Arguments: <3> closure (callable, optional): A closure that reevaluates the model <4> and returns the loss. <5> """ <6> loss = None <7> if closure is not None: <8> with torch.enable_grad(): <9> loss = closure() <10> <11> overflows = [] <12> <13> if not self.initialized: <14> self.check_overrides() <15> self.to_gpu() # needed for fairseq pure fp16 training <16> self.initialized = True <17> <18> for gindex, group in enumerate(self.param_groups): <19> for pindex, p in enumerate(group["params"]): <20> if p.grad is None: <21> continue <22> state = self.state[p] <23> if len(state) == 0: <24> self.init_state(group, p, gindex, pindex) <25> <26> self.update_step(group, p, gindex, pindex) <27> <28> return loss <29>
===========changed ref 0=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def to_gpu(self): for gindex, group in enumerate(self.param_groups): for pindex, p in enumerate(group["params"]): if p in self.state: values = self.state[p] for k, v in values.items(): if isinstance(v, torch.Tensor): + is_paged = getattr(v, 'is_paged', False) + if not is_paged: + self.state[p][k] = v.to(p.device) - self.state[p][k] = v.to(p.device) ===========changed ref 1=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): + def __init__(self, params, defaults, optim_bits=32, is_paged=False): - def __init__(self, params, defaults, optim_bits=32): super().__init__(params, defaults) self.initialized = False self.name2qmap = {} + self.is_paged = is_paged + self.page_mng = F.GlobalPageManager.get_instance() self.mng = GlobalOptimManager.get_instance() self.non_castable_tensor_keys = { "qmap1", "qmap2", "max1", "max2", "new_max1", "new_max2", "state1", "state2", "gnorm_vec", "absmax1", "absmax2", "unorm_vec", } if optim_bits == 8: self.fill_qmap() ===========changed ref 2=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 5=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 6=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 7=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 8=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 9=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 10=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 11=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 12=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 13=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 14=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) + ===========changed ref 15=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 16=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 17=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 18=========== # module: bitsandbytes.optim.adam + class PagedAdam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 19=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) +
bitsandbytes.optim.optimizer/Optimizer2State.__init__
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<18>:<add> super().__init__(params, defaults, optim_bits, is_paged) <del> super().__init__(params, defaults, optim_bits)
<s> optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, + is_paged=False ): <0> if not 0.0 <= lr: <1> raise ValueError(f"Invalid learning rate: {lr}") <2> if not 0.0 <= eps: <3> raise ValueError(f"Invalid epsilon value: {eps}") <4> if isinstance(betas, str): <5> # format: '(beta1, beta2)' <6> betas = betas.replace("(", "").replace(")", "").strip().split(",") <7> betas = [float(b) for b in betas] <8> for i in range(len(betas)): <9> if not 0.0 <= betas[i] < 1.0: <10> raise ValueError( <11> f"Invalid beta parameter at index {i}: {betas[i]}" <12> ) <13> if not 0.0 <= weight_decay: <14> raise ValueError( <15> f"Invalid weight_decay value: {weight_decay}" <16> ) <17> defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) <18> super().__init__(params, defaults, optim_bits) <19> <20> if args is None: <21> args = {} <22> args["optim_bits"] = optim_bits <23> args["percentile_clipping"] = 100 <24> args["min_8bit_size"] = min_8bit_size <25> args["percentile_clipping"] = percentile_clipping <26> args["block_wise"] = block_wise <27> args["max_unorm"] = max_unorm <28> args["skip_zeros"] = skip_</s>
===========below chunk 0=========== <s> params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, + is_paged=False ): # offset: 1 self.args = MockArgs(args) else: self.args = args self.optimizer_name = optimizer_name ===========changed ref 0=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): + def get_state_buffer(self, p, dtype=torch.float32): + if not self.is_paged or p.numel() < 1e5: + return torch.zeros_like(p, dtype=dtype, device=p.device) + else: + # > 1 MB + buff = F.get_paged(*p.shape, dtype=dtype, device=p.device) + F.fill(buff, 0) + self.page_mng.paged_tensors.append(buff) + return buff + ===========changed ref 1=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def to_gpu(self): for gindex, group in enumerate(self.param_groups): for pindex, p in enumerate(group["params"]): if p in self.state: values = self.state[p] for k, v in values.items(): if isinstance(v, torch.Tensor): + is_paged = getattr(v, 'is_paged', False) + if not is_paged: + self.state[p][k] = v.to(p.device) - self.state[p][k] = v.to(p.device) ===========changed ref 2=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() overflows = [] if not self.initialized: self.check_overrides() self.to_gpu() # needed for fairseq pure fp16 training self.initialized = True + #if self.is_paged: self.page_mng.prefetch_all() for gindex, group in enumerate(self.param_groups): for pindex, p in enumerate(group["params"]): if p.grad is None: continue state = self.state[p] if len(state) == 0: self.init_state(group, p, gindex, pindex) + self.prefetch_state(p) self.update_step(group, p, gindex, pindex) + torch.cuda.synchronize() + if self.is_paged: + # all paged operation are asynchronous, we need + # to sync to make sure all tensors are in the right state + torch.cuda.synchronize() + return loss ===========changed ref 3=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): + def __init__(self, params, defaults, optim_bits=32, is_paged=False): - def __init__(self, params, defaults, optim_bits=32): super().__init__(params, defaults) self.initialized = False self.name2qmap = {} + self.is_paged = is_paged + self.page_mng = F.GlobalPageManager.get_instance() self.mng = GlobalOptimManager.get_instance() self.non_castable_tensor_keys = { "qmap1", "qmap2", "max1", "max2", "new_max1", "new_max2", "state1", "state2", "gnorm_vec", "absmax1", "absmax2", "unorm_vec", } if optim_bits == 8: self.fill_qmap() ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 5=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 6=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 7=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 8=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 9=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 10=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 11=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 12=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 13=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 14=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 15=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 16=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) +
bitsandbytes.optim.optimizer/Optimizer2State.init_state
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<20>:<del> state["state1"] = torch.zeros_like( <21>:<del> p, <22>:<del> memory_format=torch.preserve_format, <23>:<del> dtype=torch.float32, <24>:<del> device=p.device, <25>:<del> ) <26>:<del> state["state2"] = torch.zeros_like( <27>:<del> p, <28>:<del> memory_format=torch.preserve_format, <29>:<del> dtype=torch.float32, <30>:<del> device=p.device, <31>:<del> ) <32>:<add> state["state1"] = self.get_state_buffer(p, dtype=torch.float32) <add> state["state2"] = self.get_state_buffer(p, dtype=torch.float32) <43>:<del> state["state1"] = torch.zeros_like( <44>:<del> p, <45>:<del> memory_format=torch.preserve_format,
# module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): <0> config = self.get_config(gindex, pindex, group) <1> <2> if config["optim_bits"] == 32: <3> dtype = torch.float32 <4> elif config["optim_bits"] == 8: <5> dtype = torch.uint8 <6> else: <7> raise NotImplementedError( <8> f'Amount of optimizer bits not supported: {config["optim_bits"]}' <9> ) <10> <11> if p.numel() < config["min_8bit_size"]: <12> dtype = torch.float32 <13> <14> state = self.state[p] <15> state["step"] = 0 <16> <17> if dtype == torch.float32 or ( <18> dtype == torch.uint8 and p.numel() < 4096 <19> ): <20> state["state1"] = torch.zeros_like( <21> p, <22> memory_format=torch.preserve_format, <23> dtype=torch.float32, <24> device=p.device, <25> ) <26> state["state2"] = torch.zeros_like( <27> p, <28> memory_format=torch.preserve_format, <29> dtype=torch.float32, <30> device=p.device, <31> ) <32> elif dtype == torch.uint8: <33> if state["step"] == 0: <34> if "dynamic" not in self.name2qmap: <35> self.fill_qmap() <36> self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to( <37> p.device <38> ) <39> self.name2qmap["udynamic"] = self.name2qmap["udynamic"].to( <40> p.device <41> ) <42> <43> state["state1"] = torch.zeros_like( <44> p, <45> memory_format=torch.preserve_format,</s>
===========below chunk 0=========== # module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): # offset: 1 device=p.device, ) state["qmap1"] = self.name2qmap["dynamic"] state["state2"] = torch.zeros_like( p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device, ) state["qmap2"] = self.name2qmap["udynamic"] if config["block_wise"]: n = p.numel() blocks = n // 2048 blocks += 1 if n % 2048 > 0 else 0 state["absmax1"] = torch.zeros( (blocks,), dtype=torch.float32, device=p.device ) state["absmax2"] = torch.zeros( (blocks,), dtype=torch.float32, device=p.device ) else: state["max1"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) state["new_max1"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) state["max2"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) state["new_max2"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) if config["percentile_clipping"] < 100: state["gnorm_vec"] = torch.zeros((100,), device=p.device) if config["max_unorm"] > 0.0: state["unorm_vec"] = torch.zeros((1,), device=p.device) ===========changed ref 0=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): + def prefetch_state(self, p): + if self.is_paged: + state = self.state[p] + s1 = state['state1'] + is_paged = getattr(s1, 'is_paged', False) + if is_paged: + F.prefetch_tensor(state['state1']) + if 'state2' in state: + F.prefetch_tensor(state['state2']) + ===========changed ref 1=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): + def get_state_buffer(self, p, dtype=torch.float32): + if not self.is_paged or p.numel() < 1e5: + return torch.zeros_like(p, dtype=dtype, device=p.device) + else: + # > 1 MB + buff = F.get_paged(*p.shape, dtype=dtype, device=p.device) + F.fill(buff, 0) + self.page_mng.paged_tensors.append(buff) + return buff + ===========changed ref 2=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def to_gpu(self): for gindex, group in enumerate(self.param_groups): for pindex, p in enumerate(group["params"]): if p in self.state: values = self.state[p] for k, v in values.items(): if isinstance(v, torch.Tensor): + is_paged = getattr(v, 'is_paged', False) + if not is_paged: + self.state[p][k] = v.to(p.device) - self.state[p][k] = v.to(p.device) ===========changed ref 3=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() overflows = [] if not self.initialized: self.check_overrides() self.to_gpu() # needed for fairseq pure fp16 training self.initialized = True + #if self.is_paged: self.page_mng.prefetch_all() for gindex, group in enumerate(self.param_groups): for pindex, p in enumerate(group["params"]): if p.grad is None: continue state = self.state[p] if len(state) == 0: self.init_state(group, p, gindex, pindex) + self.prefetch_state(p) self.update_step(group, p, gindex, pindex) + torch.cuda.synchronize() + if self.is_paged: + # all paged operation are asynchronous, we need + # to sync to make sure all tensors are in the right state + torch.cuda.synchronize() + return loss ===========changed ref 4=========== <s> optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, + is_paged=False ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if isinstance(betas, str): # format: '(beta1, beta2)' betas = betas.replace("(", "").replace(")", "").strip().split(",") betas = [float(b) for b in betas] for i in range(len(betas)): if not 0.0 <= betas[i] < 1.0: raise ValueError( f"Invalid beta parameter at index {i}: {betas[i]}" ) if not 0.0 <= weight_decay: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) + super().__init__(params, defaults, optim_bits, is_paged) - super().__init__(params, defaults, optim_bits) if args is None: args = {} args["optim_bits"] = optim_bits args["percentile_clipping"] = 100 args["min_8bit_size"] = min_8bit_size args["percentile_clipping"] = percentile_clipping args["block_wise"] = block_wise args["max_unorm"] = max_unorm args["skip_zeros"] = skip_zeros self.</s>
bitsandbytes.optim.optimizer/Optimizer1State.__init__
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<14>:<add> super().__init__(params, defaults, optim_bits, is_paged) <del> super().__init__(params, defaults, optim_bits)
<s> optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, + is_paged=False ): <0> if not 0.0 <= lr: <1> raise ValueError(f"Invalid learning rate: {lr}") <2> if not 0.0 <= eps: <3> raise ValueError(f"Invalid epsilon value: {eps}") <4> for i in range(len(betas)): <5> if not 0.0 <= betas[i] < 1.0: <6> raise ValueError( <7> f"Invalid beta parameter at index {i}: {betas[i]}" <8> ) <9> if not 0.0 <= weight_decay: <10> raise ValueError( <11> f"Invalid weight_decay value: {weight_decay}" <12> ) <13> defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) <14> super().__init__(params, defaults, optim_bits) <15> <16> if args is None: <17> args = {} <18> args["optim_bits"] = optim_bits <19> args["percentile_clipping"] = 100 <20> args["min_8bit_size"] = min_8bit_size <21> args["percentile_clipping"] = percentile_clipping <22> args["block_wise"] = block_wise <23> args["max_unorm"] = max_unorm <24> args["skip_zeros"] = skip_zeros <25> <26> self.args = MockArgs(args) <27> else: <28> self.args = args <29> <30> self.optimizer_name = optimizer_name <31>
===========changed ref 0=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): + def prefetch_state(self, p): + if self.is_paged: + state = self.state[p] + s1 = state['state1'] + is_paged = getattr(s1, 'is_paged', False) + if is_paged: + F.prefetch_tensor(state['state1']) + if 'state2' in state: + F.prefetch_tensor(state['state2']) + ===========changed ref 1=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): + def get_state_buffer(self, p, dtype=torch.float32): + if not self.is_paged or p.numel() < 1e5: + return torch.zeros_like(p, dtype=dtype, device=p.device) + else: + # > 1 MB + buff = F.get_paged(*p.shape, dtype=dtype, device=p.device) + F.fill(buff, 0) + self.page_mng.paged_tensors.append(buff) + return buff + ===========changed ref 2=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def to_gpu(self): for gindex, group in enumerate(self.param_groups): for pindex, p in enumerate(group["params"]): if p in self.state: values = self.state[p] for k, v in values.items(): if isinstance(v, torch.Tensor): + is_paged = getattr(v, 'is_paged', False) + if not is_paged: + self.state[p][k] = v.to(p.device) - self.state[p][k] = v.to(p.device) ===========changed ref 3=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() overflows = [] if not self.initialized: self.check_overrides() self.to_gpu() # needed for fairseq pure fp16 training self.initialized = True + #if self.is_paged: self.page_mng.prefetch_all() for gindex, group in enumerate(self.param_groups): for pindex, p in enumerate(group["params"]): if p.grad is None: continue state = self.state[p] if len(state) == 0: self.init_state(group, p, gindex, pindex) + self.prefetch_state(p) self.update_step(group, p, gindex, pindex) + torch.cuda.synchronize() + if self.is_paged: + # all paged operation are asynchronous, we need + # to sync to make sure all tensors are in the right state + torch.cuda.synchronize() + return loss ===========changed ref 4=========== <s> optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, + is_paged=False ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if isinstance(betas, str): # format: '(beta1, beta2)' betas = betas.replace("(", "").replace(")", "").strip().split(",") betas = [float(b) for b in betas] for i in range(len(betas)): if not 0.0 <= betas[i] < 1.0: raise ValueError( f"Invalid beta parameter at index {i}: {betas[i]}" ) if not 0.0 <= weight_decay: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) + super().__init__(params, defaults, optim_bits, is_paged) - super().__init__(params, defaults, optim_bits) if args is None: args = {} args["optim_bits"] = optim_bits args["percentile_clipping"] = 100 args["min_8bit_size"] = min_8bit_size args["percentile_clipping"] = percentile_clipping args["block_wise"] = block_wise args["max_unorm"] = max_unorm args["skip_zeros"] = skip_zeros self.</s> ===========changed ref 5=========== <s> params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, + is_paged=False ): # offset: 1 <s> args["max_unorm"] = max_unorm args["skip_zeros"] = skip_zeros self.args = MockArgs(args) else: self.args = args self.optimizer_name = optimizer_name ===========changed ref 6=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): + def __init__(self, params, defaults, optim_bits=32, is_paged=False): - def __init__(self, params, defaults, optim_bits=32): super().__init__(params, defaults) self.initialized = False self.name2qmap = {} + self.is_paged = is_paged + self.page_mng = F.GlobalPageManager.get_instance() self.mng = GlobalOptimManager.get_instance() self.non_castable_tensor_keys = { "qmap1", "qmap2", "max1", "max2", "new_max1", "new_max2", "state1", "state2", "gnorm_vec", "absmax1", "absmax2", "unorm_vec", } if optim_bits == 8: self.fill_qmap() ===========changed ref 7=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 8=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 9=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 10=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) +
bitsandbytes.optim.optimizer/Optimizer1State.init_state
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<20>:<del> state["state1"] = torch.zeros_like( <21>:<del> p, <22>:<del> memory_format=torch.preserve_format, <23>:<del> dtype=torch.float32, <24>:<del> device=p.device, <25>:<del> ) <26>:<add> state["state1"] = self.get_state_buffer(p, dtype=torch.float32) <34>:<del> state["state1"] = torch.zeros_like( <35>:<del> p, <36>:<del> memory_format=torch.preserve_format, <37>:<del> dtype=torch.uint8, <38>:<del> device=p.device, <39>:<del> ) <40>:<add> state["state1"] = self.get_state_buffer(p, dtype=torch.uint8)
# module: bitsandbytes.optim.optimizer class Optimizer1State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): <0> config = self.get_config(gindex, pindex, group) <1> <2> if config["optim_bits"] == 32: <3> dtype = torch.float32 <4> elif config["optim_bits"] == 8: <5> dtype = torch.uint8 <6> else: <7> raise NotImplementedError( <8> f'Amount of optimizer bits not supported: {config["optim_bits"]}' <9> ) <10> <11> if p.numel() < config["min_8bit_size"]: <12> dtype = torch.float32 <13> <14> state = self.state[p] <15> state["step"] = 0 <16> <17> if dtype == torch.float32 or ( <18> dtype == torch.uint8 and p.numel() < 4096 <19> ): <20> state["state1"] = torch.zeros_like( <21> p, <22> memory_format=torch.preserve_format, <23> dtype=torch.float32, <24> device=p.device, <25> ) <26> elif dtype == torch.uint8: <27> if state["step"] == 0: <28> if "dynamic" not in self.name2qmap: <29> self.fill_qmap() <30> self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to( <31> p.device <32> ) <33> <34> state["state1"] = torch.zeros_like( <35> p, <36> memory_format=torch.preserve_format, <37> dtype=torch.uint8, <38> device=p.device, <39> ) <40> state["qmap1"] = self.name2qmap["dynamic"] <41> <42> if config["block_wise"]: <43> n = p.numel() <44> blocks = n // 2048 <45> blocks += 1 if n % 2048 > 0 else 0 <46> <47> state["</s>
===========below chunk 0=========== # module: bitsandbytes.optim.optimizer class Optimizer1State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): # offset: 1 (blocks,), dtype=torch.float32, device=p.device ) else: state["max1"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) state["new_max1"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) if config["percentile_clipping"] < 100: state["gnorm_vec"] = torch.zeros((100,), device=p.device) if config["max_unorm"] > 0.0: state["unorm_vec"] = torch.zeros((1,), device=p.device) ===========changed ref 0=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): + def prefetch_state(self, p): + if self.is_paged: + state = self.state[p] + s1 = state['state1'] + is_paged = getattr(s1, 'is_paged', False) + if is_paged: + F.prefetch_tensor(state['state1']) + if 'state2' in state: + F.prefetch_tensor(state['state2']) + ===========changed ref 1=========== <s> optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, + is_paged=False ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") for i in range(len(betas)): if not 0.0 <= betas[i] < 1.0: raise ValueError( f"Invalid beta parameter at index {i}: {betas[i]}" ) if not 0.0 <= weight_decay: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) + super().__init__(params, defaults, optim_bits, is_paged) - super().__init__(params, defaults, optim_bits) if args is None: args = {} args["optim_bits"] = optim_bits args["percentile_clipping"] = 100 args["min_8bit_size"] = min_8bit_size args["percentile_clipping"] = percentile_clipping args["block_wise"] = block_wise args["max_unorm"] = max_unorm args["skip_zeros"] = skip_zeros self.args = MockArgs(args) else: self.args = args self.optimizer_name = optimizer_name ===========changed ref 2=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): + def get_state_buffer(self, p, dtype=torch.float32): + if not self.is_paged or p.numel() < 1e5: + return torch.zeros_like(p, dtype=dtype, device=p.device) + else: + # > 1 MB + buff = F.get_paged(*p.shape, dtype=dtype, device=p.device) + F.fill(buff, 0) + self.page_mng.paged_tensors.append(buff) + return buff + ===========changed ref 3=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def to_gpu(self): for gindex, group in enumerate(self.param_groups): for pindex, p in enumerate(group["params"]): if p in self.state: values = self.state[p] for k, v in values.items(): if isinstance(v, torch.Tensor): + is_paged = getattr(v, 'is_paged', False) + if not is_paged: + self.state[p][k] = v.to(p.device) - self.state[p][k] = v.to(p.device) ===========changed ref 4=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() overflows = [] if not self.initialized: self.check_overrides() self.to_gpu() # needed for fairseq pure fp16 training self.initialized = True + #if self.is_paged: self.page_mng.prefetch_all() for gindex, group in enumerate(self.param_groups): for pindex, p in enumerate(group["params"]): if p.grad is None: continue state = self.state[p] if len(state) == 0: self.init_state(group, p, gindex, pindex) + self.prefetch_state(p) self.update_step(group, p, gindex, pindex) + torch.cuda.synchronize() + if self.is_paged: + # all paged operation are asynchronous, we need + # to sync to make sure all tensors are in the right state + torch.cuda.synchronize() + return loss
tests.test_autograd/test_matmullt
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<s>.mark.parametrize( "dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights, has_bias", values, ids=names, ) def test_matmullt( dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights, has_bias ): <0> if not torch.cuda.is_available(): pytest.skip('No GPU found.') <1> dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2) <2> dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3) <3> outlier_dim = torch.randint(0, dimA[1], size=(dimA[1] // 8,), device="cuda") <4> if has_bias == False: <5> req_grad = list(req_grad) <6> req_grad[2] = False <7> <8> for i in range(k): <9> <10> # normal multiply <11> if funcs[0] in [torch.mm, torch.matmul]: <12> A = torch.randn( <13> size=dimA, device="cuda", requires_grad=req_grad[0], dtype=dtype <14> ) <15> if decomp == 6.0: <16> with torch.no_grad(): <17> A[:, outlier_dim] = 6.0 <18> B = torch.randn( <19> size=dimB, device="cuda", requires_grad=req_grad[1], dtype=dtype <20> ) <21> target = torch.randn( <22> size=(dim2, dim4), <23> device="cuda", <24> requires_grad=req_grad[1], <25> dtype=dtype, <26> ) <27> bias = None <28> bias2 = None <29> if has_bias: <30> bias = torch</s>
===========below chunk 0=========== <s>ize( "dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights, has_bias", values, ids=names, ) def test_matmullt( dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights, has_bias ): # offset: 1 bias2 = bias.clone() torch.nn.init.xavier_uniform_(B) B2 = B.clone() state = bnb.MatmulLtState() state.threshold = decomp state.has_fp16_weights = has_fp16_weights if not has_fp16_weights: if not transpose[0] and not transpose[1]: B2 = B2.t().contiguous() ( state.CB, CBt, state.SCB, SCBt, coo_tensorB, ) = bnb.functional.double_quant(B2.to(torch.float16)) B2 = state.CB if not transpose[0] and transpose[1]: out_torch = funcs[0](A, B.t()) out_bnb = funcs[1](A, B2, state=state, bias=bias2) elif not transpose[0] and not transpose[1]: out_torch = funcs[0](A, B) out_bnb = funcs[1](A, B2.t(), state=state, bias=bias2) if has_bias: out_torch += bias assert out_bnb.dtype == A.dtype, f"bnb matmullt received {A.dtype} but returned {out_bnb.dtype}" n = out_bnb.numel() err = torch.abs(out_bnb - out_torch).mean().item() # print</s> ===========below chunk 1=========== <s>ize( "dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights, has_bias", values, ids=names, ) def test_matmullt( dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights, has_bias ): # offset: 2 <s>.numel() err = torch.abs(out_bnb - out_torch).mean().item() # print(f'abs error {err:.4f}') idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1) assert (idx == 0).sum().item() <= n * (0.0175 if dtype == torch.float16 else 0.021) idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2) assert (idx == 0).sum().item() <= n * 0.001 if has_fp16_weights: if any(req_grad): out_bnb.data.copy_(out_torch) torch.cuda.synchronize() loss_bnb = torch.nn.functional.mse_loss( out_bnb, target ).mean() loss_bnb.backward() gradA1 = A.grad gradB1 = B.grad A.grad = None B.grad = None if has_bias: gradBias1 = bias.grad bias.grad = None loss_torch = torch.nn.functional.mse_loss( out_torch, target ).mean() loss_torch.backward() grad</s> ===========below chunk 2=========== <s>ize( "dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights, has_bias", values, ids=names, ) def test_matmullt( dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights, has_bias ): # offset: 3 <s> = A.grad gradB2 = B.grad A.grad = None B.grad = None if has_bias: gradBias2 = bias.grad bias.grad = None if req_grad[0]: torch.testing.assert_allclose( gradA1, gradA2, atol=0.015, rtol=0.1 ) if req_grad[1]: n = gradB1.numel() if dim2 > 0: assert torch.abs(gradB1).sum() > 0.0 assert torch.abs(gradB2).sum() > 0.0 else: assert torch.abs(gradB1).sum() == 0.0 assert torch.abs(gradB2).sum() == 0.0 idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3) assert (idx == 0).sum().item() <= n * 0.1 idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3) assert (idx == 0).sum().item() <= n * 0.02 torch.testing.assert_allclose( gradB1, gradB2, atol=0.18, rtol=0.3 ) if req_grad[2]: torch.testing.assert_ ===========changed ref 0=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 1=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 2=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 3=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 4=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 5=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 6=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 7=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 8=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') +
tests.test_autograd/test_matmul_fp8
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<11>:<add>
# module: tests.test_autograd @pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU") @pytest.mark.parametrize( "dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose", values, ids=names) def test_matmul_fp8( dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose): <0> dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2) <1> dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3) <2> req_grad = list(req_grad) <3> req_grad[2] = False <4> <5> for i in range(k): <6> # normal multiply <7> if funcs[0] in [torch.mm, torch.matmul]: <8> A = torch.randn(size=dimA, device="cuda", requires_grad=req_grad[0], dtype=dtype) <9> B = torch.randn(size=dimB, device="cuda", requires_grad=req_grad[1], dtype=dtype) <10> target = torch.randn(size=(dim2, dim4), device="cuda", requires_grad=req_grad[1], dtype=dtype) <11> torch.nn.init.xavier_uniform_(B) <12> <13> fw_code = bnb.functional.create_fp8_map(True, 4, 3, 8).to(A.device) <14> bw_code = bnb.functional.create_fp8_map(True, 5, 2, 8).to(A.device) <15> <16> if not transpose[0] and transpose[1]: <17> out_torch = funcs[0](A, B.t()) <18> out_bnb = funcs[1](A, B.t(), fw_code, bw_code) <19> elif not transpose[0] and not transpose[1]: <20> out_torch = funcs[0](A, B) </s>
===========below chunk 0=========== # module: tests.test_autograd @pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU") @pytest.mark.parametrize( "dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose", values, ids=names) def test_matmul_fp8( dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose): # offset: 1 assert out_bnb.dtype == A.dtype, f"bnb matmullt received {A.dtype} but returned {out_bnb.dtype}" n = out_bnb.numel() err = torch.abs(out_bnb - out_torch).float().mean().item() if n > 0: assert err < 0.20 if any(req_grad): out_bnb.data.copy_(out_torch) torch.cuda.synchronize() loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean() loss_bnb.backward() gradA1 = A.grad gradB1 = B.grad A.grad = None B.grad = None loss_torch = torch.nn.functional.mse_loss( out_torch, target ).mean() loss_torch.backward() gradA2 = A.grad gradB2 = B.grad A.grad = None B.grad = None if req_grad[0]: torch.testing.assert_allclose( gradA1, gradA2, atol=0.015, rtol=0.1) if req_grad[1]: n = gradB1.numel() if dim2 > 0: assert torch.abs(gradB1).sum() > 0.0 assert torch.abs(gradB2).sum() > 0.0 else: assert torch.abs(gradB1).sum() == 0.0</s> ===========below chunk 1=========== # module: tests.test_autograd @pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU") @pytest.mark.parametrize( "dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose", values, ids=names) def test_matmul_fp8( dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose): # offset: 2 <s>B2).sum() > 0.0 else: assert torch.abs(gradB1).sum() == 0.0 assert torch.abs(gradB2).sum() == 0.0 idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3) assert (idx == 0).sum().item() <= n * 0.1 idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3) assert (idx == 0).sum().item() <= n * 0.02 grad_err = (gradB1-gradB2).abs().mean() assert grad_err.item() < 0.003 torch.testing.assert_allclose( gradB1, gradB2, atol=0.18, rtol=0.3 ) ===========changed ref 0=========== # module: tests.test_autograd n = 1 k = 3 dim1 = torch.randint(16, 64, size=(n,)).tolist() dim2 = torch.randint(32, 96, size=(n,)).tolist() dim3 = torch.randint(32, 96, size=(n,)).tolist() dim4 = torch.randint(32, 96, size=(n,)).tolist() dim2.append(0) + + funcs = [(torch.matmul, bnb.matmul_4bit)] + str_funcs = ["matmul"] + req_grad = list(product([True, False], repeat=3)) + req_grad_str = [] + for c in req_grad: + strval = '' + for v in c: + if v == True: strval += 'T' + else: strval += 'F' + req_grad_str.append(strval) + + transpose = [(False, True), (False, False)] + str_transpose = ["NT", "NN"] + dtype = [torch.float16, torch.float32] + compress_statistics = [False, True] + has_fp16_weights = [True, False] + has_bias = [True, False] + quant_type = ['fp4', 'nf4'] + values = list(product(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, has_bias, compress_statistics, quant_type)) + str_values = list(product(dim1, dim2, dim3, dim4, str_funcs, dtype, req_grad_str, str_transpose, has_bias, compress_statistics, quant_type)) + names = ["dim1_{}_dim2_{}_dim3_{}_dim4_{}_func_{}_dtype_{}_requires_grad_{}_transpose_{}_has_bias_{}_compress_statistics_{}_quant_type_{}".format(*vals) for vals in str_values] funcs = [(torch.matmul, bnb.research.matmul_fp</s> ===========changed ref 1=========== # module: tests.test_autograd # offset: 1 <s>) for vals in str_values] funcs = [(torch.matmul, bnb.research.matmul_fp8_mixed), (torch.matmul, bnb.research.matmul_fp8_global)] str_funcs = ["matmul_fp8_mixed", 'matmul_fp8_global'] req_grad = list(product([True, False], repeat=3)) req_grad_str = [] for c in req_grad: strval = '' for v in c: if v == True: strval += 'T' else: strval += 'F' req_grad_str.append(strval) transpose = [(False, True), (False, False)] str_transpose = ["NT", "NN"] dtype = [torch.float16, torch.float32] has_fp16_weights = [True, False] values = list(product(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose)) str_values = list(product(dim1, dim2, dim3, dim4, str_funcs, dtype, req_grad_str, str_transpose)) names = ["dim1_{}_dim2_{}_dim3_{}_dim4_{}_func_{}_dtype_{}_requires_grad_{}_transpose_{}".format(*vals) for vals in str_values] ===========changed ref 2=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 5=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 6=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 7=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) +
tests.test_functional/assert_all_approx_close
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<3>:<add> if throw: <add> print(f"Too many values not close: assert {sumval} < {count}") <del> print(f"Too many values not close: assert {sumval} < {count}") <4>:<add> torch.testing.assert_close(a, b, rtol, atol) <del> torch.testing.assert_allclose(a, b, rtol, atol)
# module: tests.test_functional + def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True): - def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0): <0> idx = torch.isclose(a, b, rtol, atol) <1> sumval = (idx == 0).sum().item() <2> if sumval > count: <3> print(f"Too many values not close: assert {sumval} < {count}") <4> torch.testing.assert_allclose(a, b, rtol, atol) <5>
===========changed ref 0=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 1=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 2=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 3=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 4=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 5=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 6=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 7=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 8=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 9=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 10=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 11=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 12=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) + ===========changed ref 13=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 14=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 15=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 16=========== # module: bitsandbytes.optim.adam + class PagedAdam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 17=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 18=========== # module: bitsandbytes.optim.adamw + class PagedAdamW8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 19=========== # module: bitsandbytes.optim.adam + class PagedAdam(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) +
tests.test_functional/test_estimate_quantiles
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<5>:<add> torch.testing.assert_close(percs, code, atol=1e-3, rtol=1e-2) <del> torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2)
# module: tests.test_functional @pytest.mark.parametrize( "dtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_estimate_quantiles(dtype): <0> A = torch.rand(1024, 1024, device="cuda") <1> A = A.to(dtype) <2> code = F.estimate_quantiles(A) <3> <4> percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device) <5> torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2) <6> <7> A = torch.randn(1024, 1024, device="cuda") <8> A = A.to(dtype) <9> code = F.estimate_quantiles(A) <10> <11> quantiles = torch.quantile(A.float(), percs) <12> diff = torch.abs(code - quantiles) <13> assert (diff > 5e-02).sum().item() == 0 <14>
===========changed ref 0=========== # module: tests.test_functional + def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True): - def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0): idx = torch.isclose(a, b, rtol, atol) sumval = (idx == 0).sum().item() if sumval > count: + if throw: + print(f"Too many values not close: assert {sumval} < {count}") - print(f"Too many values not close: assert {sumval} < {count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 1=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 2=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 4=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 5=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 6=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 7=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 8=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 9=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 10=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 11=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 12=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 13=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) + ===========changed ref 14=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 15=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 16=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 17=========== # module: bitsandbytes.optim.adam + class PagedAdam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 18=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 19=========== # module: bitsandbytes.optim.adamw + class PagedAdamW8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) +
tests.test_functional/test_quantile_quantization
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<13>:<add> torch.testing.assert_close(A1, A2, atol=5e-3, rtol=0) <del> torch.testing.assert_allclose(A1, A2, atol=5e-3, rtol=0)
# module: tests.test_functional def test_quantile_quantization(): <0> for i in range(100): <1> A1 = torch.randn(1024, 1024, device="cuda") <2> code = F.estimate_quantiles(A1) <3> C = F.quantize_no_absmax(A1, code) <4> A2 = F.dequantize_no_absmax(C, code) <5> diff = torch.abs(A1 - A2).mean().item() <6> assert diff < 0.0075 <7> <8> A1 = torch.rand(1024, 1024, device="cuda") <9> code = F.estimate_quantiles(A1) <10> C = F.quantize_no_absmax(A1, code) <11> A2 = F.dequantize_no_absmax(C, code) <12> diff = torch.abs(A1 - A2).mean().item() <13> torch.testing.assert_allclose(A1, A2, atol=5e-3, rtol=0) <14> assert diff < 0.001 <15>
===========changed ref 0=========== # module: tests.test_functional + def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True): - def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0): idx = torch.isclose(a, b, rtol, atol) sumval = (idx == 0).sum().item() if sumval > count: + if throw: + print(f"Too many values not close: assert {sumval} < {count}") - print(f"Too many values not close: assert {sumval} < {count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 1=========== # module: tests.test_functional @pytest.mark.parametrize( "dtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_estimate_quantiles(dtype): A = torch.rand(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device) + torch.testing.assert_close(percs, code, atol=1e-3, rtol=1e-2) - torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2) A = torch.randn(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) quantiles = torch.quantile(A.float(), percs) diff = torch.abs(code - quantiles) assert (diff > 5e-02).sum().item() == 0 ===========changed ref 2=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 5=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 6=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 7=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 8=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 9=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 10=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 11=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 12=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 13=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 14=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) + ===========changed ref 15=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 16=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 17=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 18=========== # module: bitsandbytes.optim.adam + class PagedAdam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) +
tests.test_functional/test_dynamic_quantization
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<19>:<add> torch.testing.assert_close(A1, A2, atol=1e-2, rtol=0) <del> torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
# module: tests.test_functional def test_dynamic_quantization(): <0> diffs = [] <1> reldiffs = [] <2> for i in range(100): <3> A1 = torch.randn(1024, 1024, device="cuda") <4> C, S = F.quantize(A1) <5> A2 = F.dequantize(C, S) <6> diff = torch.abs(A1 - A2) <7> reldiff = diff / torch.abs(A1 + 1e-8) <8> diffs.append(diff.mean().item()) <9> reldiffs.append(reldiff.mean().item()) <10> assert diff.mean().item() < 0.0135 <11> # print(sum(diffs)/len(diffs)) <12> # print(sum(reldiffs)/len(reldiffs)) <13> <14> for i in range(100): <15> A1 = torch.rand(1024, 1024, device="cuda") <16> C, S = F.quantize(A1) <17> A2 = F.dequantize(C, S) <18> diff = torch.abs(A1 - A2).mean().item() <19> torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0) <20> assert diff < 0.004 <21>
===========changed ref 0=========== # module: tests.test_functional + def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True): - def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0): idx = torch.isclose(a, b, rtol, atol) sumval = (idx == 0).sum().item() if sumval > count: + if throw: + print(f"Too many values not close: assert {sumval} < {count}") - print(f"Too many values not close: assert {sumval} < {count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 1=========== # module: tests.test_functional @pytest.mark.parametrize( "dtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_estimate_quantiles(dtype): A = torch.rand(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device) + torch.testing.assert_close(percs, code, atol=1e-3, rtol=1e-2) - torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2) A = torch.randn(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) quantiles = torch.quantile(A.float(), percs) diff = torch.abs(code - quantiles) assert (diff > 5e-02).sum().item() == 0 ===========changed ref 2=========== # module: tests.test_functional def test_quantile_quantization(): for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") code = F.estimate_quantiles(A1) C = F.quantize_no_absmax(A1, code) A2 = F.dequantize_no_absmax(C, code) diff = torch.abs(A1 - A2).mean().item() assert diff < 0.0075 A1 = torch.rand(1024, 1024, device="cuda") code = F.estimate_quantiles(A1) C = F.quantize_no_absmax(A1, code) A2 = F.dequantize_no_absmax(C, code) diff = torch.abs(A1 - A2).mean().item() + torch.testing.assert_close(A1, A2, atol=5e-3, rtol=0) - torch.testing.assert_allclose(A1, A2, atol=5e-3, rtol=0) assert diff < 0.001 ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 5=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 6=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 7=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 8=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 9=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 10=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 11=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 12=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 13=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 14=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 15=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) + ===========changed ref 16=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 17=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 18=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) +
tests.test_functional/test_dynamic_blockwise_quantization
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<1>:<del> for blocksize in [4096, 2048, 1024, 512]: <2>:<add> diffs = [] <del> diffs = [] <3>:<add> reldiffs = [] <del> reldiffs = [] <4>:<add> for i in range(100): <del> for i in range(100): <5>:<add> A1 = torch.randn(1024, 1024, device="cuda") <del> A1 = torch.randn(1024, 1024, device="cuda") <6>:<add> C, S = F.quantize_blockwise(A1, blocksize=blocksize, nested=nested) <del> C, S = F.quantize_blockwise(A1, blocksize=blocksize) <7>:<add> A2 = F.dequantize_blockwise(C, S) <del> A2 = F.dequantize_blockwise(C, S, blocksize=blocksize) <8>:<add> diff = torch.abs(A1 - A2) <del> diff = torch.abs(A1 - A2) <9>:<add> reldiff = diff / torch.abs(A1 + 1e-8) <del> reldiff = diff / torch.abs(A1 + 1e-8) <10>:<add> diffs.append(diff.mean().item()) <del> diffs.append(diff.mean().item()) <11>:<add> reldiffs.append(reldiff.mean().item()) <del> reldiffs.append(reldiff.mean().item()) <12>:<add> abserr = sum(diffs)/len(diffs) <del> abserr = sum(diffs)/len(diffs) <13>:<add> relerr = sum(reldiffs)/len(reldiffs) <del> relerr = sum(reldiffs)/len(reldiffs) <14>:<add> assert abserr < 0.011 <del> assert abserr < 0.011 <15>:<add> assert relerr < 0.018 <del> assert relerr < 0.018 <16>:<add> #print('nested=
# module: tests.test_functional + @pytest.mark.parametrize("nested", [False, True], ids=["False", "True"]) + @pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64]) + def test_dynamic_blockwise_quantization(nested, blocksize): - def test_dynamic_blockwise_quantization(): <0> #print('') <1> for blocksize in [4096, 2048, 1024, 512]: <2> diffs = [] <3> reldiffs = [] <4> for i in range(100): <5> A1 = torch.randn(1024, 1024, device="cuda") <6> C, S = F.quantize_blockwise(A1, blocksize=blocksize) <7> A2 = F.dequantize_blockwise(C, S, blocksize=blocksize) <8> diff = torch.abs(A1 - A2) <9> reldiff = diff / torch.abs(A1 + 1e-8) <10> diffs.append(diff.mean().item()) <11> reldiffs.append(reldiff.mean().item()) <12> abserr = sum(diffs)/len(diffs) <13> relerr = sum(reldiffs)/len(reldiffs) <14> assert abserr < 0.011 <15> assert relerr < 0.018 <16> #print('randn', blocksize, sum(diffs)/len(diffs)) <17> #print('randn', blocksize, sum(reldiffs)/len(reldiffs)) <18> <19> diffs = [] <20> for i in range(100): <21> A1 = torch.rand(1024, 1024, device="cuda") <22> C, S = F.quantize_blockwise(A1, blocksize=blocksize) <23> A2 = F.dequantize_blockwise(C, S, blocksize=blocksize) <24> diff = torch.abs(A1 - A2) <25> reldiff = diff / torch.abs(A1 + 1e-8) <26> </s>
===========below chunk 0=========== # module: tests.test_functional + @pytest.mark.parametrize("nested", [False, True], ids=["False", "True"]) + @pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64]) + def test_dynamic_blockwise_quantization(nested, blocksize): - def test_dynamic_blockwise_quantization(): # offset: 1 reldiffs.append(reldiff.mean().item()) #torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0) abserr = sum(diffs)/len(diffs) relerr = sum(reldiffs)/len(reldiffs) assert abserr < 0.0035 assert relerr < 0.015 ===========changed ref 0=========== # module: tests.test_functional + def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True): - def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0): idx = torch.isclose(a, b, rtol, atol) sumval = (idx == 0).sum().item() if sumval > count: + if throw: + print(f"Too many values not close: assert {sumval} < {count}") - print(f"Too many values not close: assert {sumval} < {count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 1=========== # module: tests.test_functional @pytest.mark.parametrize( "dtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_estimate_quantiles(dtype): A = torch.rand(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device) + torch.testing.assert_close(percs, code, atol=1e-3, rtol=1e-2) - torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2) A = torch.randn(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) quantiles = torch.quantile(A.float(), percs) diff = torch.abs(code - quantiles) assert (diff > 5e-02).sum().item() == 0 ===========changed ref 2=========== # module: tests.test_functional def test_quantile_quantization(): for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") code = F.estimate_quantiles(A1) C = F.quantize_no_absmax(A1, code) A2 = F.dequantize_no_absmax(C, code) diff = torch.abs(A1 - A2).mean().item() assert diff < 0.0075 A1 = torch.rand(1024, 1024, device="cuda") code = F.estimate_quantiles(A1) C = F.quantize_no_absmax(A1, code) A2 = F.dequantize_no_absmax(C, code) diff = torch.abs(A1 - A2).mean().item() + torch.testing.assert_close(A1, A2, atol=5e-3, rtol=0) - torch.testing.assert_allclose(A1, A2, atol=5e-3, rtol=0) assert diff < 0.001 ===========changed ref 3=========== # module: tests.test_functional def test_dynamic_quantization(): diffs = [] reldiffs = [] for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") C, S = F.quantize(A1) A2 = F.dequantize(C, S) diff = torch.abs(A1 - A2) reldiff = diff / torch.abs(A1 + 1e-8) diffs.append(diff.mean().item()) reldiffs.append(reldiff.mean().item()) assert diff.mean().item() < 0.0135 # print(sum(diffs)/len(diffs)) # print(sum(reldiffs)/len(reldiffs)) for i in range(100): A1 = torch.rand(1024, 1024, device="cuda") C, S = F.quantize(A1) A2 = F.dequantize(C, S) diff = torch.abs(A1 - A2).mean().item() + torch.testing.assert_close(A1, A2, atol=1e-2, rtol=0) - torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0) assert diff < 0.004 ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 5=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 6=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 7=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 8=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 9=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 10=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 11=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 12=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 13=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') +
tests.test_functional/test_percentile_clipping
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<22>:<add> torch.testing.assert_close(gnorm_vec1, torch.sqrt(gnorm_vec2)) <del> torch.testing.assert_allclose(gnorm_vec1, torch.sqrt(gnorm_vec2)) <23>:<add> torch.testing.assert_close(clip1, clip2) <del> torch.testing.assert_allclose(clip1, clip2) <24>:<add> torch.testing.assert_close(gnorm1, gnorm2) <del> torch.testing.assert_allclose(gnorm1, gnorm2)
# module: tests.test_functional + #print('nested=', nested, 'rand', blocksize, sum(diffs)/len(diffs)) + #print('nested=', nested, 'rand', blocksize, sum(reldiffs)/len(reldiffs)) + + + @pytest.mark.parametrize( "gtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_percentile_clipping(gtype): <0> gnorm_vec1 = torch.zeros(100, device="cuda") <1> gnorm_vec2 = torch.zeros(100, device="cuda") <2> n = 4 <3> step = 0 <4> percentile = 5 <5> for i in range(k): <6> step += 1 <7> g = torch.randn(n, n, dtype=gtype, device="cuda") <8> gnorm1, clip2, gnorm_scale = F.percentile_clipping( <9> g, gnorm_vec2, step, percentile=percentile <10> ) <11> assert gnorm_scale == 1.0 if gnorm1 < clip2 else clip2 / gnorm1 <12> <13> gnorm2 = torch.norm(g.float()) <14> if step == 1: <15> gnorm_vec1[:] = gnorm2 <16> else: <17> gnorm_vec1[step % 100] = gnorm2 <18> <19> vals, idx = torch.sort(gnorm_vec1) <20> clip1 = vals[percentile] <21> <22> torch.testing.assert_allclose(gnorm_vec1, torch.sqrt(gnorm_vec2)) <23> torch.testing.assert_allclose(clip1, clip2) <24> torch.testing.assert_allclose(gnorm1, gnorm2) <25>
===========changed ref 0=========== <s> - #print('rand', blocksize, sum(diffs)/len(diffs)) - #print('rand', blocksize, sum(reldiffs)/len(reldiffs)) - - - - @pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64]) - @pytest.mark.skip("Stochastic has some bugs, but will be deprecated soon anyways.") - def test_dynamic_blockwise_stochastic_quantization(blocksize): - diffs = [] - reldiffs = [] - rand = torch.rand(1024).cuda() - err = 0 - for i in range(100): - A1 = torch.randn(1024, 1024, device="cuda") - C1, S1 = F.quantize_blockwise(A1, rand=rand, blocksize=blocksize) - C2, S2 = F.quantize_blockwise(A1, blocksize=blocksize) - A2 = F.dequantize_blockwise(C1, S1, blocksize=blocksize) - err += (A1-A2).abs().mean().item()/100 - # a maximunm distance of quantized values of 1 - torch.testing.assert_allclose(C1, C2, atol=1, rtol=0) - fraction_smaller = (C1 < C2).float().sum() / C1.numel() - fraction_larger = (C1 > C2).float().sum() / C1.numel() - torch.testing.assert_allclose(fraction_larger, fraction_smaller, atol=0.01, rtol=0) - assert err < 0.019 - ===========changed ref 1=========== # module: tests.test_functional + def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True): - def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0): idx = torch.isclose(a, b, rtol, atol) sumval = (idx == 0).sum().item() if sumval > count: + if throw: + print(f"Too many values not close: assert {sumval} < {count}") - print(f"Too many values not close: assert {sumval} < {count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 2=========== # module: tests.test_functional @pytest.mark.parametrize( "dtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_estimate_quantiles(dtype): A = torch.rand(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device) + torch.testing.assert_close(percs, code, atol=1e-3, rtol=1e-2) - torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2) A = torch.randn(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) quantiles = torch.quantile(A.float(), percs) diff = torch.abs(code - quantiles) assert (diff > 5e-02).sum().item() == 0 ===========changed ref 3=========== # module: tests.test_functional def test_quantile_quantization(): for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") code = F.estimate_quantiles(A1) C = F.quantize_no_absmax(A1, code) A2 = F.dequantize_no_absmax(C, code) diff = torch.abs(A1 - A2).mean().item() assert diff < 0.0075 A1 = torch.rand(1024, 1024, device="cuda") code = F.estimate_quantiles(A1) C = F.quantize_no_absmax(A1, code) A2 = F.dequantize_no_absmax(C, code) diff = torch.abs(A1 - A2).mean().item() + torch.testing.assert_close(A1, A2, atol=5e-3, rtol=0) - torch.testing.assert_allclose(A1, A2, atol=5e-3, rtol=0) assert diff < 0.001 ===========changed ref 4=========== # module: tests.test_functional def test_dynamic_quantization(): diffs = [] reldiffs = [] for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") C, S = F.quantize(A1) A2 = F.dequantize(C, S) diff = torch.abs(A1 - A2) reldiff = diff / torch.abs(A1 + 1e-8) diffs.append(diff.mean().item()) reldiffs.append(reldiff.mean().item()) assert diff.mean().item() < 0.0135 # print(sum(diffs)/len(diffs)) # print(sum(reldiffs)/len(reldiffs)) for i in range(100): A1 = torch.rand(1024, 1024, device="cuda") C, S = F.quantize(A1) A2 = F.dequantize(C, S) diff = torch.abs(A1 - A2).mean().item() + torch.testing.assert_close(A1, A2, atol=1e-2, rtol=0) - torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0) assert diff < 0.004 ===========changed ref 5=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 6=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 7=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 8=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 9=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 10=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 11=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 12=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') +
tests.test_functional/test_approx_igemm
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<4>:<add> #print("") <del> print("") <16>:<add> torch.testing.assert_close( <del> torch.testing.assert_allclose(
# module: tests.test_functional @pytest.mark.parametrize( "dim1, dim2, quant_methods, batched", values, ids=names ) def test_approx_igemm(dim1, dim2, quant_methods, batched): <0> dim1 = dim1 - (dim1 % 32) <1> dim2 = dim2 - (dim2 % 32) <2> errors = [] <3> relerrors = [] <4> print("") <5> for i in range(5): <6> if batched: <7> A = torch.normal(0, 0.5, size=(32, dim1, dim2 // 32), device="cuda") <8> B = torch.normal(0, 0.5, size=(32, dim2 // 32, dim1), device="cuda") <9> maxA, Ac = quant_methods[0](A, 2) <10> maxB, Bc = quant_methods[1](B, 1) <11> else: <12> A = torch.normal(0, 0.5, size=(dim1, dim2), device="cuda") <13> B = torch.normal(0, 0.5, size=(dim2, dim1), device="cuda") <14> maxA, Ac = quant_methods[0](A, 1) <15> maxB, Bc = quant_methods[1](B, 0) <16> torch.testing.assert_allclose( <17> quant_methods[2](maxA, Ac), A, atol=0.025, rtol=0.05 <18> ) <19> if batched: <20> out2 = torch.bmm(A, B) <21> C = torch.bmm(Ac.float(), Bc.float()) <22> else: <23> out2 = torch.mm(A, B) <24> C = F.igemm(Ac, Bc) <25> out = quant_methods[4](maxA, maxB, C) <26> std = out2.std() <27> out /= std <28> out2 /= std <29> err = torch.abs(out - out2) <30> </s>
===========below chunk 0=========== # module: tests.test_functional @pytest.mark.parametrize( "dim1, dim2, quant_methods, batched", values, ids=names ) def test_approx_igemm(dim1, dim2, quant_methods, batched): # offset: 1 errors.append(err.mean().item()) relerrors.append(relerr.mean().item()) print(mean(errors)) print(mean(relerrors)) ===========changed ref 0=========== <s> - #print('rand', blocksize, sum(diffs)/len(diffs)) - #print('rand', blocksize, sum(reldiffs)/len(reldiffs)) - - - - @pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64]) - @pytest.mark.skip("Stochastic has some bugs, but will be deprecated soon anyways.") - def test_dynamic_blockwise_stochastic_quantization(blocksize): - diffs = [] - reldiffs = [] - rand = torch.rand(1024).cuda() - err = 0 - for i in range(100): - A1 = torch.randn(1024, 1024, device="cuda") - C1, S1 = F.quantize_blockwise(A1, rand=rand, blocksize=blocksize) - C2, S2 = F.quantize_blockwise(A1, blocksize=blocksize) - A2 = F.dequantize_blockwise(C1, S1, blocksize=blocksize) - err += (A1-A2).abs().mean().item()/100 - # a maximunm distance of quantized values of 1 - torch.testing.assert_allclose(C1, C2, atol=1, rtol=0) - fraction_smaller = (C1 < C2).float().sum() / C1.numel() - fraction_larger = (C1 > C2).float().sum() / C1.numel() - torch.testing.assert_allclose(fraction_larger, fraction_smaller, atol=0.01, rtol=0) - assert err < 0.019 - ===========changed ref 1=========== # module: tests.test_functional + def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True): - def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0): idx = torch.isclose(a, b, rtol, atol) sumval = (idx == 0).sum().item() if sumval > count: + if throw: + print(f"Too many values not close: assert {sumval} < {count}") - print(f"Too many values not close: assert {sumval} < {count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 2=========== # module: tests.test_functional @pytest.mark.parametrize( "dtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_estimate_quantiles(dtype): A = torch.rand(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device) + torch.testing.assert_close(percs, code, atol=1e-3, rtol=1e-2) - torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2) A = torch.randn(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) quantiles = torch.quantile(A.float(), percs) diff = torch.abs(code - quantiles) assert (diff > 5e-02).sum().item() == 0 ===========changed ref 3=========== # module: tests.test_functional + #print('nested=', nested, 'rand', blocksize, sum(diffs)/len(diffs)) + #print('nested=', nested, 'rand', blocksize, sum(reldiffs)/len(reldiffs)) + + + @pytest.mark.parametrize( "gtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_percentile_clipping(gtype): gnorm_vec1 = torch.zeros(100, device="cuda") gnorm_vec2 = torch.zeros(100, device="cuda") n = 4 step = 0 percentile = 5 for i in range(k): step += 1 g = torch.randn(n, n, dtype=gtype, device="cuda") gnorm1, clip2, gnorm_scale = F.percentile_clipping( g, gnorm_vec2, step, percentile=percentile ) assert gnorm_scale == 1.0 if gnorm1 < clip2 else clip2 / gnorm1 gnorm2 = torch.norm(g.float()) if step == 1: gnorm_vec1[:] = gnorm2 else: gnorm_vec1[step % 100] = gnorm2 vals, idx = torch.sort(gnorm_vec1) clip1 = vals[percentile] + torch.testing.assert_close(gnorm_vec1, torch.sqrt(gnorm_vec2)) - torch.testing.assert_allclose(gnorm_vec1, torch.sqrt(gnorm_vec2)) + torch.testing.assert_close(clip1, clip2) - torch.testing.assert_allclose(clip1, clip2) + torch.testing.assert_close(gnorm1, gnorm2) - torch.testing.assert_allclose(gnorm1, gnorm2) ===========changed ref 4=========== # module: tests.test_functional def test_quantile_quantization(): for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") code = F.estimate_quantiles(A1) C = F.quantize_no_absmax(A1, code) A2 = F.dequantize_no_absmax(C, code) diff = torch.abs(A1 - A2).mean().item() assert diff < 0.0075 A1 = torch.rand(1024, 1024, device="cuda") code = F.estimate_quantiles(A1) C = F.quantize_no_absmax(A1, code) A2 = F.dequantize_no_absmax(C, code) diff = torch.abs(A1 - A2).mean().item() + torch.testing.assert_close(A1, A2, atol=5e-3, rtol=0) - torch.testing.assert_allclose(A1, A2, atol=5e-3, rtol=0) assert diff < 0.001
tests.test_functional/test_igemm
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<29>:<add> torch.testing.assert_close(out.float(), out2) <del> torch
# module: tests.test_functional @pytest.mark.parametrize( "hidden_dim, batch_dim, transpose, seq_dim", values, ids=names ) def test_igemm(hidden_dim, batch_dim, transpose, seq_dim): <0> hidden_dim = hidden_dim - (hidden_dim % 32) <1> batch_dim = batch_dim - (batch_dim % 16) <2> seq_dim = seq_dim - (seq_dim % 16) <3> for i in range(k): <4> shapeA = ( <5> (batch_dim, hidden_dim) <6> if not transpose[0] <7> else (hidden_dim, batch_dim) <8> ) <9> shapeB = ( <10> (32 * random.randint(1, 4), hidden_dim) <11> if transpose[1] <12> else (hidden_dim, 32 * random.randint(1, 4)) <13> ) <14> A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8) <15> B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8) <16> if not transpose[0] and not transpose[1]: <17> out2 = torch.matmul(A.float(), B.float()) <18> out = F.igemm(A, B) <19> elif not transpose[0] and transpose[1]: <20> out2 = torch.matmul(A.float(), B.t().float()) <21> out = F.igemm(A, B.t()) <22> elif transpose[0] and not transpose[1]: <23> out2 = torch.matmul(A.t().float(), B.float()) <24> out = F.igemm(A.t(), B) <25> elif transpose[0] and transpose[1]: <26> out2 = torch.matmul(A.t().float(), B.t().float()) <27> out = F.igemm(A.t(), B.t()) <28> <29> torch</s>
===========below chunk 0=========== # module: tests.test_functional @pytest.mark.parametrize( "hidden_dim, batch_dim, transpose, seq_dim", values, ids=names ) def test_igemm(hidden_dim, batch_dim, transpose, seq_dim): # offset: 1 for i in range(k): shapeA = (batch_dim, seq_dim, hidden_dim) shapeB = ( (32 * random.randint(1, 4), hidden_dim) if transpose[1] else (hidden_dim, 32 * random.randint(1, 4)) ) A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8) B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8) if not transpose[0] and not transpose[1]: out2 = torch.matmul(A.float(), B.float()) out = F.igemm(A, B) elif not transpose[0] and transpose[1]: out2 = torch.matmul(A.float(), B.t().float()) out = F.igemm(A, B.t()) torch.testing.assert_allclose(out.float(), out2) ===========changed ref 0=========== <s> - #print('rand', blocksize, sum(diffs)/len(diffs)) - #print('rand', blocksize, sum(reldiffs)/len(reldiffs)) - - - - @pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64]) - @pytest.mark.skip("Stochastic has some bugs, but will be deprecated soon anyways.") - def test_dynamic_blockwise_stochastic_quantization(blocksize): - diffs = [] - reldiffs = [] - rand = torch.rand(1024).cuda() - err = 0 - for i in range(100): - A1 = torch.randn(1024, 1024, device="cuda") - C1, S1 = F.quantize_blockwise(A1, rand=rand, blocksize=blocksize) - C2, S2 = F.quantize_blockwise(A1, blocksize=blocksize) - A2 = F.dequantize_blockwise(C1, S1, blocksize=blocksize) - err += (A1-A2).abs().mean().item()/100 - # a maximunm distance of quantized values of 1 - torch.testing.assert_allclose(C1, C2, atol=1, rtol=0) - fraction_smaller = (C1 < C2).float().sum() / C1.numel() - fraction_larger = (C1 > C2).float().sum() / C1.numel() - torch.testing.assert_allclose(fraction_larger, fraction_smaller, atol=0.01, rtol=0) - assert err < 0.019 - ===========changed ref 1=========== # module: tests.test_functional + def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True): - def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0): idx = torch.isclose(a, b, rtol, atol) sumval = (idx == 0).sum().item() if sumval > count: + if throw: + print(f"Too many values not close: assert {sumval} < {count}") - print(f"Too many values not close: assert {sumval} < {count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 2=========== # module: tests.test_functional @pytest.mark.parametrize( "dtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_estimate_quantiles(dtype): A = torch.rand(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device) + torch.testing.assert_close(percs, code, atol=1e-3, rtol=1e-2) - torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2) A = torch.randn(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) quantiles = torch.quantile(A.float(), percs) diff = torch.abs(code - quantiles) assert (diff > 5e-02).sum().item() == 0 ===========changed ref 3=========== # module: tests.test_functional + #print('nested=', nested, 'rand', blocksize, sum(diffs)/len(diffs)) + #print('nested=', nested, 'rand', blocksize, sum(reldiffs)/len(reldiffs)) + + + @pytest.mark.parametrize( "gtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_percentile_clipping(gtype): gnorm_vec1 = torch.zeros(100, device="cuda") gnorm_vec2 = torch.zeros(100, device="cuda") n = 4 step = 0 percentile = 5 for i in range(k): step += 1 g = torch.randn(n, n, dtype=gtype, device="cuda") gnorm1, clip2, gnorm_scale = F.percentile_clipping( g, gnorm_vec2, step, percentile=percentile ) assert gnorm_scale == 1.0 if gnorm1 < clip2 else clip2 / gnorm1 gnorm2 = torch.norm(g.float()) if step == 1: gnorm_vec1[:] = gnorm2 else: gnorm_vec1[step % 100] = gnorm2 vals, idx = torch.sort(gnorm_vec1) clip1 = vals[percentile] + torch.testing.assert_close(gnorm_vec1, torch.sqrt(gnorm_vec2)) - torch.testing.assert_allclose(gnorm_vec1, torch.sqrt(gnorm_vec2)) + torch.testing.assert_close(clip1, clip2) - torch.testing.assert_allclose(clip1, clip2) + torch.testing.assert_close(gnorm1, gnorm2) - torch.testing.assert_allclose(gnorm1, gnorm2)
tests.test_functional/test_dim3_igemm
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<16>:<add> torch.testing.assert_close(out.float(), out2) <del> torch.testing.assert_allclose(out.float(), out2)
# module: tests.test_functional @pytest.mark.parametrize("seq_dim, hidden_dim, batch_dim", values, ids=names) def test_dim3_igemm(seq_dim, hidden_dim, batch_dim): <0> seq_dim = seq_dim - (seq_dim % 32) <1> hidden_dim = hidden_dim - (hidden_dim % 32) <2> batch_dim = batch_dim - (batch_dim % 2) <3> for i in range(25): <4> A = torch.randint( <5> -128, 127, size=(batch_dim, seq_dim, hidden_dim), device="cuda" <6> ).to(torch.int8) <7> B = torch.randint( <8> -128, 127, size=(batch_dim, seq_dim, 1024), device="cuda" <9> ).to(torch.int8) <10> out2 = torch.einsum("bsi, bso->io", A.float(), B.float()) <11> iout = torch.empty( <12> A.shape[2], B.shape[2], dtype=torch.int32, device=A.device <13> ) <14> out = F.igemm(A, B, out=iout) <15> <16> torch.testing.assert_allclose(out.float(), out2) <17>
===========changed ref 0=========== <s> - #print('rand', blocksize, sum(diffs)/len(diffs)) - #print('rand', blocksize, sum(reldiffs)/len(reldiffs)) - - - - @pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64]) - @pytest.mark.skip("Stochastic has some bugs, but will be deprecated soon anyways.") - def test_dynamic_blockwise_stochastic_quantization(blocksize): - diffs = [] - reldiffs = [] - rand = torch.rand(1024).cuda() - err = 0 - for i in range(100): - A1 = torch.randn(1024, 1024, device="cuda") - C1, S1 = F.quantize_blockwise(A1, rand=rand, blocksize=blocksize) - C2, S2 = F.quantize_blockwise(A1, blocksize=blocksize) - A2 = F.dequantize_blockwise(C1, S1, blocksize=blocksize) - err += (A1-A2).abs().mean().item()/100 - # a maximunm distance of quantized values of 1 - torch.testing.assert_allclose(C1, C2, atol=1, rtol=0) - fraction_smaller = (C1 < C2).float().sum() / C1.numel() - fraction_larger = (C1 > C2).float().sum() / C1.numel() - torch.testing.assert_allclose(fraction_larger, fraction_smaller, atol=0.01, rtol=0) - assert err < 0.019 - ===========changed ref 1=========== # module: tests.test_functional + def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True): - def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0): idx = torch.isclose(a, b, rtol, atol) sumval = (idx == 0).sum().item() if sumval > count: + if throw: + print(f"Too many values not close: assert {sumval} < {count}") - print(f"Too many values not close: assert {sumval} < {count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 2=========== # module: tests.test_functional @pytest.mark.parametrize( "dtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_estimate_quantiles(dtype): A = torch.rand(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device) + torch.testing.assert_close(percs, code, atol=1e-3, rtol=1e-2) - torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2) A = torch.randn(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) quantiles = torch.quantile(A.float(), percs) diff = torch.abs(code - quantiles) assert (diff > 5e-02).sum().item() == 0 ===========changed ref 3=========== # module: tests.test_functional + #print('nested=', nested, 'rand', blocksize, sum(diffs)/len(diffs)) + #print('nested=', nested, 'rand', blocksize, sum(reldiffs)/len(reldiffs)) + + + @pytest.mark.parametrize( "gtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_percentile_clipping(gtype): gnorm_vec1 = torch.zeros(100, device="cuda") gnorm_vec2 = torch.zeros(100, device="cuda") n = 4 step = 0 percentile = 5 for i in range(k): step += 1 g = torch.randn(n, n, dtype=gtype, device="cuda") gnorm1, clip2, gnorm_scale = F.percentile_clipping( g, gnorm_vec2, step, percentile=percentile ) assert gnorm_scale == 1.0 if gnorm1 < clip2 else clip2 / gnorm1 gnorm2 = torch.norm(g.float()) if step == 1: gnorm_vec1[:] = gnorm2 else: gnorm_vec1[step % 100] = gnorm2 vals, idx = torch.sort(gnorm_vec1) clip1 = vals[percentile] + torch.testing.assert_close(gnorm_vec1, torch.sqrt(gnorm_vec2)) - torch.testing.assert_allclose(gnorm_vec1, torch.sqrt(gnorm_vec2)) + torch.testing.assert_close(clip1, clip2) - torch.testing.assert_allclose(clip1, clip2) + torch.testing.assert_close(gnorm1, gnorm2) - torch.testing.assert_allclose(gnorm1, gnorm2) ===========changed ref 4=========== # module: tests.test_functional @pytest.mark.parametrize( "dim1, dim2, quant_methods, batched", values, ids=names ) def test_approx_igemm(dim1, dim2, quant_methods, batched): dim1 = dim1 - (dim1 % 32) dim2 = dim2 - (dim2 % 32) errors = [] relerrors = [] + #print("") - print("") for i in range(5): if batched: A = torch.normal(0, 0.5, size=(32, dim1, dim2 // 32), device="cuda") B = torch.normal(0, 0.5, size=(32, dim2 // 32, dim1), device="cuda") maxA, Ac = quant_methods[0](A, 2) maxB, Bc = quant_methods[1](B, 1) else: A = torch.normal(0, 0.5, size=(dim1, dim2), device="cuda") B = torch.normal(0, 0.5, size=(dim2, dim1), device="cuda") maxA, Ac = quant_methods[0](A, 1) maxB, Bc = quant_methods[1](B, 0) + torch.testing.assert_close( - torch.testing.assert_allclose( quant_methods[2](maxA, Ac), A, atol=0.025, rtol=0.05 ) if batched: out2 = torch.bmm(A, B) C = torch.bmm(Ac.float(), Bc.float()) else: out2 = torch.mm(A, B) C = F.igemm(Ac, Bc) out = quant_methods[4](maxA, maxB, C) std = out2.std() out /= std out2 /= std err = torch.abs(out - out2) relerr = err / torch.abs(</s>
tests.test_functional/test_ibmm
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
# module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dim3, dim4, transpose", values, ids=names) def test_ibmm(dim1, dim2, dim3, dim4, transpose): <0> dim2 = dim2 - (dim2 % 16) <1> dim3 = dim3 - (dim3 % 16) <2> dim4 = dim4 - (dim4 % 16) <3> for i in range(k): <4> shapeA = (dim1, dim3, dim2) if transpose[0] else (dim1, dim2, dim3) <5> shapeB = (dim1, dim4, dim3) if transpose[1] else (dim1, dim3, dim4) <6> A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8) <7> B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8) <8> <9> if not transpose[0] and not transpose[1]: <10> out2 = torch.bmm(A.float(), B.float()) <11> out = F.igemm(A, B) <12> elif not transpose[0] and transpose[1]: <13> out2 = torch.bmm(A.float(), B.permute([0, 2, 1]).float()) <14> out = F.igemm(A, B.permute([0, 2, 1])) <15> elif transpose[0] and not transpose[1]: <16> out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.float()) <17> out = F.igemm(A.permute([0, 2, 1]), B) <18> elif transpose[0] and transpose[1]: <19> out2 = torch.bmm( <20> A.permute([0, 2, 1]).float(), B.permute([0, 2, 1]).float() <21> ) <22> out = F.igemm(A.permute([0, 2, 1]</s>
===========below chunk 0=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dim3, dim4, transpose", values, ids=names) def test_ibmm(dim1, dim2, dim3, dim4, transpose): # offset: 1 torch.testing.assert_allclose(out.float(), out2.float()) ===========changed ref 0=========== # module: tests.test_functional @pytest.mark.parametrize("seq_dim, hidden_dim, batch_dim", values, ids=names) def test_dim3_igemm(seq_dim, hidden_dim, batch_dim): seq_dim = seq_dim - (seq_dim % 32) hidden_dim = hidden_dim - (hidden_dim % 32) batch_dim = batch_dim - (batch_dim % 2) for i in range(25): A = torch.randint( -128, 127, size=(batch_dim, seq_dim, hidden_dim), device="cuda" ).to(torch.int8) B = torch.randint( -128, 127, size=(batch_dim, seq_dim, 1024), device="cuda" ).to(torch.int8) out2 = torch.einsum("bsi, bso->io", A.float(), B.float()) iout = torch.empty( A.shape[2], B.shape[2], dtype=torch.int32, device=A.device ) out = F.igemm(A, B, out=iout) + torch.testing.assert_close(out.float(), out2) - torch.testing.assert_allclose(out.float(), out2) ===========changed ref 1=========== <s> - #print('rand', blocksize, sum(diffs)/len(diffs)) - #print('rand', blocksize, sum(reldiffs)/len(reldiffs)) - - - - @pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64]) - @pytest.mark.skip("Stochastic has some bugs, but will be deprecated soon anyways.") - def test_dynamic_blockwise_stochastic_quantization(blocksize): - diffs = [] - reldiffs = [] - rand = torch.rand(1024).cuda() - err = 0 - for i in range(100): - A1 = torch.randn(1024, 1024, device="cuda") - C1, S1 = F.quantize_blockwise(A1, rand=rand, blocksize=blocksize) - C2, S2 = F.quantize_blockwise(A1, blocksize=blocksize) - A2 = F.dequantize_blockwise(C1, S1, blocksize=blocksize) - err += (A1-A2).abs().mean().item()/100 - # a maximunm distance of quantized values of 1 - torch.testing.assert_allclose(C1, C2, atol=1, rtol=0) - fraction_smaller = (C1 < C2).float().sum() / C1.numel() - fraction_larger = (C1 > C2).float().sum() / C1.numel() - torch.testing.assert_allclose(fraction_larger, fraction_smaller, atol=0.01, rtol=0) - assert err < 0.019 - ===========changed ref 2=========== # module: tests.test_functional + def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True): - def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0): idx = torch.isclose(a, b, rtol, atol) sumval = (idx == 0).sum().item() if sumval > count: + if throw: + print(f"Too many values not close: assert {sumval} < {count}") - print(f"Too many values not close: assert {sumval} < {count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 3=========== # module: tests.test_functional @pytest.mark.parametrize( "dtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_estimate_quantiles(dtype): A = torch.rand(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device) + torch.testing.assert_close(percs, code, atol=1e-3, rtol=1e-2) - torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2) A = torch.randn(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) quantiles = torch.quantile(A.float(), percs) diff = torch.abs(code - quantiles) assert (diff > 5e-02).sum().item() == 0 ===========changed ref 4=========== # module: tests.test_functional + #print('nested=', nested, 'rand', blocksize, sum(diffs)/len(diffs)) + #print('nested=', nested, 'rand', blocksize, sum(reldiffs)/len(reldiffs)) + + + @pytest.mark.parametrize( "gtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_percentile_clipping(gtype): gnorm_vec1 = torch.zeros(100, device="cuda") gnorm_vec2 = torch.zeros(100, device="cuda") n = 4 step = 0 percentile = 5 for i in range(k): step += 1 g = torch.randn(n, n, dtype=gtype, device="cuda") gnorm1, clip2, gnorm_scale = F.percentile_clipping( g, gnorm_vec2, step, percentile=percentile ) assert gnorm_scale == 1.0 if gnorm1 < clip2 else clip2 / gnorm1 gnorm2 = torch.norm(g.float()) if step == 1: gnorm_vec1[:] = gnorm2 else: gnorm_vec1[step % 100] = gnorm2 vals, idx = torch.sort(gnorm_vec1) clip1 = vals[percentile] + torch.testing.assert_close(gnorm_vec1, torch.sqrt(gnorm_vec2)) - torch.testing.assert_allclose(gnorm_vec1, torch.sqrt(gnorm_vec2)) + torch.testing.assert_close(clip1, clip2) - torch.testing.assert_allclose(clip1, clip2) + torch.testing.assert_close(gnorm1, gnorm2) - torch.testing.assert_allclose(gnorm1, gnorm2)
tests.test_functional/test_nvidia_transform
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<16>:<add> torch.testing.assert_close(A.flatten(), out.flatten()) <del> torch.testing.assert_allclose(A.flatten(), out.flatten()) <18>:<add> torch.testing.assert_close(A.t().flatten(), out.flatten()) <del> torch.testing.assert_allclose(A.t().flatten(), out.flatten())
# module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose",values,ids=names) def test_nvidia_transform(dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose): <0> if dims == 3 and out_order != "col32": <1> return <2> if dtype == torch.int32 and out_order != "col32": <3> return <4> func = F.get_transform_func(dtype, orderA, orderOut, transpose) <5> <6> if dims == 2: <7> A = torch.randint(-128, 127, size=(dim1, dim2), device="cuda").to(dtype) <8> elif dims == 3: <9> A = torch.randint(-128, 127, size=(dim1, dim2, dim3), device="cuda").to( <10> dtype <11> ) <12> <13> out, S = F.nvidia_transform(A, to_order=orderOut) <14> <15> if orderOut == "row": <16> torch.testing.assert_allclose(A.flatten(), out.flatten()) <17> elif orderOut == "col": <18> torch.testing.assert_allclose(A.t().flatten(), out.flatten()) <19> elif orderOut == "col32": <20> if dims == 2: <21> n = A.shape[0] * (A.shape[1] + (32 - (A.shape[1] % 32))) <22> elif dims == 3: <23> n = ( <24> A.shape[0] <25> * A.shape[1] <26> * (A.shape[2] + (32 - (A.shape[2] % 32))) <27> ) <28> assert out.numel() == n <29> elif orderOut == "col_turing": <30> # 32 col 8 row tiles <31> n = (A.shape[0] + (8 - A.shape[0] % 8)) * ( <32> A.shape[1] + (32</s>
===========below chunk 0=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose",values,ids=names) def test_nvidia_transform(dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose): # offset: 1 ) assert out.numel() == n total_coltile = (A.shape[1] // 32) + (1 if A.shape[1] % 32 != 0 else 0) for row in range(A.shape[0]): for col in range(A.shape[1]): i = row * A.shape[1] j = col coltile = (col // 32) + (1 if col % 32 != 0 else 0) rowtile = ( (row // 8) + (1 if row % 8 != 0 else 0) ) * total_coltile offset = 32 * 8 * (rowtile + coltile) col2 = col % 32 row2 = (row % 8) * 32 assert A.flatten()[i + j] == A[row, col] # assert A.flatten()[i+j] == out.flatten()[row2+col2] # torch.testing.assert_allclose(A.flatten()[i+j], A[row, col]) # torch.testing.assert_allclose(A.flatten()[i+j], out.flatten()[row2+ col2+block_offset]) if orderOut == "col32": out2, S = F.nvidia_transform( out, from_order=orderOut, to_order="row", state=S ) torch.testing.assert_allclose(A, out2) ===========changed ref 0=========== # module: tests.test_functional @pytest.mark.parametrize("seq_dim, hidden_dim, batch_dim", values, ids=names) def test_dim3_igemm(seq_dim, hidden_dim, batch_dim): seq_dim = seq_dim - (seq_dim % 32) hidden_dim = hidden_dim - (hidden_dim % 32) batch_dim = batch_dim - (batch_dim % 2) for i in range(25): A = torch.randint( -128, 127, size=(batch_dim, seq_dim, hidden_dim), device="cuda" ).to(torch.int8) B = torch.randint( -128, 127, size=(batch_dim, seq_dim, 1024), device="cuda" ).to(torch.int8) out2 = torch.einsum("bsi, bso->io", A.float(), B.float()) iout = torch.empty( A.shape[2], B.shape[2], dtype=torch.int32, device=A.device ) out = F.igemm(A, B, out=iout) + torch.testing.assert_close(out.float(), out2) - torch.testing.assert_allclose(out.float(), out2) ===========changed ref 1=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dim3, dim4, transpose", values, ids=names) def test_ibmm(dim1, dim2, dim3, dim4, transpose): dim2 = dim2 - (dim2 % 16) dim3 = dim3 - (dim3 % 16) dim4 = dim4 - (dim4 % 16) for i in range(k): shapeA = (dim1, dim3, dim2) if transpose[0] else (dim1, dim2, dim3) shapeB = (dim1, dim4, dim3) if transpose[1] else (dim1, dim3, dim4) A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8) B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8) if not transpose[0] and not transpose[1]: out2 = torch.bmm(A.float(), B.float()) out = F.igemm(A, B) elif not transpose[0] and transpose[1]: out2 = torch.bmm(A.float(), B.permute([0, 2, 1]).float()) out = F.igemm(A, B.permute([0, 2, 1])) elif transpose[0] and not transpose[1]: out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.float()) out = F.igemm(A.permute([0, 2, 1]), B) elif transpose[0] and transpose[1]: out2 = torch.bmm( A.permute([0, 2, 1]).float(), B.permute([0, 2, 1]).float() ) out = F.igemm(A.permute([0, 2, 1]), B.permute([0, 2, 1])) + torch.testing.assert_close</s> ===========changed ref 2=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dim3, dim4, transpose", values, ids=names) def test_ibmm(dim1, dim2, dim3, dim4, transpose): # offset: 1 <s>([0, 2, 1]), B.permute([0, 2, 1])) + torch.testing.assert_close(out.float(), out2.float()) - torch.testing.assert_allclose(out.float(), out2.float()) ===========changed ref 3=========== <s> - #print('rand', blocksize, sum(diffs)/len(diffs)) - #print('rand', blocksize, sum(reldiffs)/len(reldiffs)) - - - - @pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64]) - @pytest.mark.skip("Stochastic has some bugs, but will be deprecated soon anyways.") - def test_dynamic_blockwise_stochastic_quantization(blocksize): - diffs = [] - reldiffs = [] - rand = torch.rand(1024).cuda() - err = 0 - for i in range(100): - A1 = torch.randn(1024, 1024, device="cuda") - C1, S1 = F.quantize_blockwise(A1, rand=rand, blocksize=blocksize) - C2, S2 = F.quantize_blockwise(A1, blocksize=blocksize) - A2 = F.dequantize_blockwise(C1, S1, blocksize=blocksize) - err += (A1-A2).abs().mean().item()/100 - # a maximunm distance of quantized values of 1 - torch.testing.assert_allclose(C1, C2, atol=1, rtol=0) - fraction_smaller = (C1 < C2).float().sum() / C1.numel() - fraction_larger = (C1 > C2).float().sum() / C1.numel() - torch.testing.assert_allclose(fraction_larger, fraction_smaller, atol=0.01, rtol=0) - assert err < 0.019 -
tests.test_functional/test_igemmlt_int
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<18>:<add> torch.testing.assert_close(C1, C3.float()) <del> torch.testing.assert_allclose(C1, C3.float()) <29>:<add> torch.testing.assert_close(C1, C3.float()) <del>
# module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dim3, dim4, dims, ldb", values, ids=names) def test_igemmlt_int(dim1, dim2, dim3, dim4, dims, ldb): <0> for i in range(k): <1> if dims == 2: <2> A = torch.randint(-128, 127, size=(dim1, dim3), device="cuda").to( <3> torch.int8 <4> ) <5> elif dims == 3: <6> A = torch.randint( <7> -128, 127, size=(dim1, dim2, dim3), device="cuda" <8> ).to(torch.int8) <9> B = torch.randint(-128, 127, size=(dim4, dim3), device="cuda").to( <10> torch.int8 <11> ) <12> C1 = torch.matmul(A.float(), B.t().float()) <13> <14> A2, SA = F.transform(A, "col32") <15> B2, SB = F.transform(B, "col_turing") <16> C2, SC = F.igemmlt(A2, B2, SA, SB) <17> C3, S = F.nvidia_transform(C2, "row", state=SC) <18> torch.testing.assert_allclose(C1, C3.float()) <19> <20> # transpose <21> B = torch.randint(-128, 127, size=(dim3, dim4), device="cuda").to( <22> torch.int8 <23> ) <24> C1 = torch.matmul(A.float(), B.float()) <25> <26> B2t, SBt = F.transform(B, "col_turing", transpose=True) <27> C2, SC = F.igemmlt(A2, B2t, SA, SBt) <28> C3, S = F.nvidia_transform(C2, "row", state=SC) <29> </s>
===========below chunk 0=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dim3, dim4, dims, ldb", values, ids=names) def test_igemmlt_int(dim1, dim2, dim3, dim4, dims, ldb): # offset: 1 ===========changed ref 0=========== # module: tests.test_functional @pytest.mark.parametrize("seq_dim, hidden_dim, batch_dim", values, ids=names) def test_dim3_igemm(seq_dim, hidden_dim, batch_dim): seq_dim = seq_dim - (seq_dim % 32) hidden_dim = hidden_dim - (hidden_dim % 32) batch_dim = batch_dim - (batch_dim % 2) for i in range(25): A = torch.randint( -128, 127, size=(batch_dim, seq_dim, hidden_dim), device="cuda" ).to(torch.int8) B = torch.randint( -128, 127, size=(batch_dim, seq_dim, 1024), device="cuda" ).to(torch.int8) out2 = torch.einsum("bsi, bso->io", A.float(), B.float()) iout = torch.empty( A.shape[2], B.shape[2], dtype=torch.int32, device=A.device ) out = F.igemm(A, B, out=iout) + torch.testing.assert_close(out.float(), out2) - torch.testing.assert_allclose(out.float(), out2) ===========changed ref 1=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dim3, dim4, transpose", values, ids=names) def test_ibmm(dim1, dim2, dim3, dim4, transpose): dim2 = dim2 - (dim2 % 16) dim3 = dim3 - (dim3 % 16) dim4 = dim4 - (dim4 % 16) for i in range(k): shapeA = (dim1, dim3, dim2) if transpose[0] else (dim1, dim2, dim3) shapeB = (dim1, dim4, dim3) if transpose[1] else (dim1, dim3, dim4) A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8) B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8) if not transpose[0] and not transpose[1]: out2 = torch.bmm(A.float(), B.float()) out = F.igemm(A, B) elif not transpose[0] and transpose[1]: out2 = torch.bmm(A.float(), B.permute([0, 2, 1]).float()) out = F.igemm(A, B.permute([0, 2, 1])) elif transpose[0] and not transpose[1]: out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.float()) out = F.igemm(A.permute([0, 2, 1]), B) elif transpose[0] and transpose[1]: out2 = torch.bmm( A.permute([0, 2, 1]).float(), B.permute([0, 2, 1]).float() ) out = F.igemm(A.permute([0, 2, 1]), B.permute([0, 2, 1])) + torch.testing.assert_close</s> ===========changed ref 2=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dim3, dim4, transpose", values, ids=names) def test_ibmm(dim1, dim2, dim3, dim4, transpose): # offset: 1 <s>([0, 2, 1]), B.permute([0, 2, 1])) + torch.testing.assert_close(out.float(), out2.float()) - torch.testing.assert_allclose(out.float(), out2.float()) ===========changed ref 3=========== <s> - #print('rand', blocksize, sum(diffs)/len(diffs)) - #print('rand', blocksize, sum(reldiffs)/len(reldiffs)) - - - - @pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64]) - @pytest.mark.skip("Stochastic has some bugs, but will be deprecated soon anyways.") - def test_dynamic_blockwise_stochastic_quantization(blocksize): - diffs = [] - reldiffs = [] - rand = torch.rand(1024).cuda() - err = 0 - for i in range(100): - A1 = torch.randn(1024, 1024, device="cuda") - C1, S1 = F.quantize_blockwise(A1, rand=rand, blocksize=blocksize) - C2, S2 = F.quantize_blockwise(A1, blocksize=blocksize) - A2 = F.dequantize_blockwise(C1, S1, blocksize=blocksize) - err += (A1-A2).abs().mean().item()/100 - # a maximunm distance of quantized values of 1 - torch.testing.assert_allclose(C1, C2, atol=1, rtol=0) - fraction_smaller = (C1 < C2).float().sum() / C1.numel() - fraction_larger = (C1 > C2).float().sum() / C1.numel() - torch.testing.assert_allclose(fraction_larger, fraction_smaller, atol=0.01, rtol=0) - assert err < 0.019 - ===========changed ref 4=========== # module: tests.test_functional + def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True): - def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0): idx = torch.isclose(a, b, rtol, atol) sumval = (idx == 0).sum().item() if sumval > count: + if throw: + print(f"Too many values not close: assert {sumval} < {count}") - print(f"Too many values not close: assert {sumval} < {count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 5=========== # module: tests.test_functional @pytest.mark.parametrize( "dtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_estimate_quantiles(dtype): A = torch.rand(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device) + torch.testing.assert_close(percs, code, atol=1e-3, rtol=1e-2) - torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2) A = torch.randn(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) quantiles = torch.quantile(A.float(), percs) diff = torch.abs(code - quantiles) assert (diff > 5e-02).sum().item() == 0
tests.test_functional/test_colrow_absmax
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<31>:<add> torch.testing.assert_close(col_stats1_trunc, col_stats2) <del> torch.testing.assert_allclose(col
# module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dims", values, ids=names) def test_colrow_absmax(dim1, dim2, dims): <0> for i in range(k): <1> threshold = 3.0 <2> A = torch.randn(dim1, dim2, device="cuda").half() <3> A_truncated = A.clone() <4> A_truncated[torch.abs(A_truncated) >= 3.0] = 0.0 <5> if dims == 2: <6> row_stats1, _ = torch.abs(A.float()).max(1) <7> col_stats1, _ = torch.abs(A.float()).max(0) <8> row_stats1_trunc, _ = torch.abs(A_truncated.float()).max(1) <9> col_stats1_trunc, _ = torch.abs(A_truncated.float()).max(0) <10> else: <11> assert False <12> <13> row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax( <14> A, threshold=threshold <15> ) <16> <17> A_blocked = einops.rearrange( <18> torch.abs(A), <19> "(rows row_tiles) (cols block_size)-> rows cols row_tiles block_size", <20> row_tiles=16, <21> block_size=64 * 4, <22> ) <23> nnz_rows1_counts = (torch.abs(A_blocked) >= threshold).sum(3).flatten() <24> nnz_block_ptr1 = torch.zeros( <25> nnz_rows1_counts.shape[0] + 1, <26> dtype=nnz_rows1_counts.dtype, <27> device=nnz_rows1_counts.device, <28> ) <29> nnz_block_ptr1[1:] = nnz_rows1_counts.cumsum(0) <30> <31> torch.testing.assert_allclose(col</s>
===========below chunk 0=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dims", values, ids=names) def test_colrow_absmax(dim1, dim2, dims): # offset: 1 torch.testing.assert_allclose(row_stats1_trunc, row_stats2) torch.testing.assert_allclose(nnz_block_ptr1, nnz_block_ptr2) row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax( A, threshold=0.0 ) torch.testing.assert_allclose(col_stats1, col_stats2) torch.testing.assert_allclose(row_stats1, row_stats2) assert nnz_block_ptr2 is None ===========changed ref 0=========== # module: tests.test_functional # print('') # print(output.flatten()[:10]) # print(C1.flatten()[:10]) # print(C2.flatten()[:10]) + # torch.testing.assert_close(C1.view(-1, C1.shape[-1]), output, atol=0.025, rtol=0.05) - # torch.testing.assert_allclose(C1.view(-1, C1.shape[-1]), output, atol=0.025, rtol=0.05) # transpose # B = torch.randint(-128, 127, size=(dim3, dim4), device='cuda').to(torch.int8) # C1 = torch.matmul(A.float(), B.float()) # B2t, SBt = F.transform2(B, 'col_turing', transpose=True) # C2, SC = F.igemmlt(A2, B2t, SA, SBt) # C3, S = F.transform(C2, 'row', state=SC) + # torch.testing.assert_close(C1, C3.float()) - # torch.testing.assert_allclose(C1, C3.float()) batch_size = 2 seqdim = 512 # values = [(batch_size, seqdim, 4*1024, 16*1024),(batch_size, seqdim, 5120, 4*5120),(batch_size, seqdim, 12*1024, 4*12*1024)] values = [ (batch_size, seqdim, 4 * 1024, 3 * 4 * 1024), (batch_size, seqdim, 5120, 3 * 5120), (batch_size, seqdim, 12 * 1024, 4 * 12 * 1024), ] # values = list(product(batch, seq, model, hidden)) names = [ "batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values ] ===========changed ref 1=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dim3, dim4, dims, ldb", values, ids=names) def test_igemmlt_int(dim1, dim2, dim3, dim4, dims, ldb): for i in range(k): if dims == 2: A = torch.randint(-128, 127, size=(dim1, dim3), device="cuda").to( torch.int8 ) elif dims == 3: A = torch.randint( -128, 127, size=(dim1, dim2, dim3), device="cuda" ).to(torch.int8) B = torch.randint(-128, 127, size=(dim4, dim3), device="cuda").to( torch.int8 ) C1 = torch.matmul(A.float(), B.t().float()) A2, SA = F.transform(A, "col32") B2, SB = F.transform(B, "col_turing") C2, SC = F.igemmlt(A2, B2, SA, SB) C3, S = F.nvidia_transform(C2, "row", state=SC) + torch.testing.assert_close(C1, C3.float()) - torch.testing.assert_allclose(C1, C3.float()) # transpose B = torch.randint(-128, 127, size=(dim3, dim4), device="cuda").to( torch.int8 ) C1 = torch.matmul(A.float(), B.float()) B2t, SBt = F.transform(B, "col_turing", transpose=True) C2, SC = F.igemmlt(A2, B2t, SA, SBt) C3, S = F.nvidia_transform(C2, "row", state=SC) + torch.testing.assert_close</s> ===========changed ref 2=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dim3, dim4, dims, ldb", values, ids=names) def test_igemmlt_int(dim1, dim2, dim3, dim4, dims, ldb): # offset: 1 <s> = F.nvidia_transform(C2, "row", state=SC) + torch.testing.assert_close(C1, C3.float()) - torch.testing.assert_allclose(C1, C3.float()) ===========changed ref 3=========== # module: tests.test_functional @pytest.mark.parametrize("seq_dim, hidden_dim, batch_dim", values, ids=names) def test_dim3_igemm(seq_dim, hidden_dim, batch_dim): seq_dim = seq_dim - (seq_dim % 32) hidden_dim = hidden_dim - (hidden_dim % 32) batch_dim = batch_dim - (batch_dim % 2) for i in range(25): A = torch.randint( -128, 127, size=(batch_dim, seq_dim, hidden_dim), device="cuda" ).to(torch.int8) B = torch.randint( -128, 127, size=(batch_dim, seq_dim, 1024), device="cuda" ).to(torch.int8) out2 = torch.einsum("bsi, bso->io", A.float(), B.float()) iout = torch.empty( A.shape[2], B.shape[2], dtype=torch.int32, device=A.device ) out = F.igemm(A, B, out=iout) + torch.testing.assert_close(out.float(), out2) - torch.testing.assert_allclose(out.float(), out2)
tests.test_functional/test_double_quant
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<8>:<add> torch.testing.assert_close(CA, out_row1, atol=1, rtol=0) <del> torch.testing.assert_allclose(CA, out_row1, atol=1, rtol=0) <9>:<add> torch.testing.assert_close(CAt, out_col1, atol=1, rtol=0) <del> torch.testing.assert_allclose(CAt, out_col1, atol=1, rtol=0) <32>:<add> torch.testing.assert_close(Srow.flatten().float(), statsA) <del> torch.testing.assert_allclose
# module: tests.test_functional @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_double_quant(dim1, dim2): <0> for i in range(k): <1> A = torch.randn(dim1, dim2, device="cuda").half() <2> out_col1, Scol = F.vectorwise_quant(A, dim=0) <3> out_row1, Srow = F.vectorwise_quant(A, dim=1) <4> <5> CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A) <6> <7> # max difference is 1 due to rounding differences <8> torch.testing.assert_allclose(CA, out_row1, atol=1, rtol=0) <9> torch.testing.assert_allclose(CAt, out_col1, atol=1, rtol=0) <10> <11> n = CAt.numel() <12> num_not_close_rows = ( <13> (torch.isclose(CA, out_row1, atol=1) == 0).sum().item() <14> ) <15> num_not_close_cols = ( <16> (torch.isclose(CAt, out_col1, atol=1) == 0).sum().item() <17> ) <18> <19> # allow for 1:500 error due to rounding differences <20> min_error = 1 / 500 <21> if num_not_close_cols > (min_error * n): <22> print( <23> f"Min error exceeded {num_not_close_cols} elements are different. Error: {num_not_close_cols/n:.4f}" <24> ) <25> assert False <26> if num_not_close_rows > (min_error * n): <27> print( <28> f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_rows/n:.4f}" <29> ) <30> assert False <31> <32> torch.testing.assert_allclose</s>
===========below chunk 0=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_double_quant(dim1, dim2): # offset: 1 torch.testing.assert_allclose(Scol.flatten(), statsAt) ===========changed ref 0=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dims", values, ids=names) def test_colrow_absmax(dim1, dim2, dims): for i in range(k): threshold = 3.0 A = torch.randn(dim1, dim2, device="cuda").half() A_truncated = A.clone() A_truncated[torch.abs(A_truncated) >= 3.0] = 0.0 if dims == 2: row_stats1, _ = torch.abs(A.float()).max(1) col_stats1, _ = torch.abs(A.float()).max(0) row_stats1_trunc, _ = torch.abs(A_truncated.float()).max(1) col_stats1_trunc, _ = torch.abs(A_truncated.float()).max(0) else: assert False row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax( A, threshold=threshold ) A_blocked = einops.rearrange( torch.abs(A), "(rows row_tiles) (cols block_size)-> rows cols row_tiles block_size", row_tiles=16, block_size=64 * 4, ) nnz_rows1_counts = (torch.abs(A_blocked) >= threshold).sum(3).flatten() nnz_block_ptr1 = torch.zeros( nnz_rows1_counts.shape[0] + 1, dtype=nnz_rows1_counts.dtype, device=nnz_rows1_counts.device, ) nnz_block_ptr1[1:] = nnz_rows1_counts.cumsum(0) + torch.testing.assert_close(col_stats1_trunc, col_stats2) - torch.testing.assert_allclose(col_stats1_trunc, col</s> ===========changed ref 1=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dims", values, ids=names) def test_colrow_absmax(dim1, dim2, dims): # offset: 1 <s>1_trunc, col_stats2) - torch.testing.assert_allclose(col_stats1_trunc, col_stats2) + torch.testing.assert_close(row_stats1_trunc, row_stats2) - torch.testing.assert_allclose(row_stats1_trunc, row_stats2) + torch.testing.assert_close(nnz_block_ptr1.int(), nnz_block_ptr2) - torch.testing.assert_allclose(nnz_block_ptr1, nnz_block_ptr2) row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax( A, threshold=0.0 ) + torch.testing.assert_close(col_stats1, col_stats2) - torch.testing.assert_allclose(col_stats1, col_stats2) + torch.testing.assert_close(row_stats1, row_stats2) - torch.testing.assert_allclose(row_stats1, row_stats2) assert nnz_block_ptr2 is None ===========changed ref 2=========== # module: tests.test_functional # print('') # print(output.flatten()[:10]) # print(C1.flatten()[:10]) # print(C2.flatten()[:10]) + # torch.testing.assert_close(C1.view(-1, C1.shape[-1]), output, atol=0.025, rtol=0.05) - # torch.testing.assert_allclose(C1.view(-1, C1.shape[-1]), output, atol=0.025, rtol=0.05) # transpose # B = torch.randint(-128, 127, size=(dim3, dim4), device='cuda').to(torch.int8) # C1 = torch.matmul(A.float(), B.float()) # B2t, SBt = F.transform2(B, 'col_turing', transpose=True) # C2, SC = F.igemmlt(A2, B2t, SA, SBt) # C3, S = F.transform(C2, 'row', state=SC) + # torch.testing.assert_close(C1, C3.float()) - # torch.testing.assert_allclose(C1, C3.float()) batch_size = 2 seqdim = 512 # values = [(batch_size, seqdim, 4*1024, 16*1024),(batch_size, seqdim, 5120, 4*5120),(batch_size, seqdim, 12*1024, 4*12*1024)] values = [ (batch_size, seqdim, 4 * 1024, 3 * 4 * 1024), (batch_size, seqdim, 5120, 3 * 5120), (batch_size, seqdim, 12 * 1024, 4 * 12 * 1024), ] # values = list(product(batch, seq, model, hidden)) names = [ "batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values ] ===========changed ref 3=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dim3, dim4, dims, ldb", values, ids=names) def test_igemmlt_int(dim1, dim2, dim3, dim4, dims, ldb): for i in range(k): if dims == 2: A = torch.randint(-128, 127, size=(dim1, dim3), device="cuda").to( torch.int8 ) elif dims == 3: A = torch.randint( -128, 127, size=(dim1, dim2, dim3), device="cuda" ).to(torch.int8) B = torch.randint(-128, 127, size=(dim4, dim3), device="cuda").to( torch.int8 ) C1 = torch.matmul(A.float(), B.t().float()) A2, SA = F.transform(A, "col32") B2, SB = F.transform(B, "col_turing") C2, SC = F.igemmlt(A2, B2, SA, SB) C3, S = F.nvidia_transform(C2, "row", state=SC) + torch.testing.assert_close(C1, C3.float()) - torch.testing.assert_allclose(C1, C3.float()) # transpose B = torch.randint(-128, 127, size=(dim3, dim4), device="cuda").to( torch.int8 ) C1 = torch.matmul(A.float(), B.float()) B2t, SBt = F.transform(B, "col_turing", transpose=True) C2, SC = F.igemmlt(A2, B2t, SA, SBt) C3, S = F.nvidia_transform(C2, "row", state=SC) + torch.testing.assert_close</s>
tests.test_functional/test_integrated_igemmlt
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<11>:<add> torch.testing.assert_close(maxA.flatten().float(), stats1a) <del> torch.testing.assert_allclose(maxA.flatten(), stats1a) <12>:<add> torch.testing.assert_close(maxB.flatten().float(), stats2a) <del> torch.testing.assert_allclose(maxB.flatten(), stats2a) <13>:<add> torch.testing.assert_close(C1a, A1, rtol=0, atol=1) <del> torch.testing.assert_allclose(C1a, A1, rtol=0, atol=1) <14>:<add> torch.testing.assert_close(C2a, B1, rtol=0, atol=1) <del> torch.testing.assert_allclose(C2a, B1, rtol=0, atol=1)
# module: tests.test_functional @pytest.mark.parametrize("dim1, dim4, inner", values, ids=names) def test_integrated_igemmlt(dim1, dim4, inner): <0> for i in range(k): <1> A = torch.randn(dim1, inner, device="cuda").half() <2> B = torch.randn(dim4, inner, device="cuda").half() <3> <4> out1 = torch.matmul(A.half(), B.t().half()) <5> <6> C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A) <7> C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B) <8> A1, maxA = F.vectorwise_quant(A, dim=1) <9> B1, maxB = F.vectorwise_quant(B, dim=1) <10> <11> torch.testing.assert_allclose(maxA.flatten(), stats1a) <12> torch.testing.assert_allclose(maxB.flatten(), stats2a) <13> torch.testing.assert_allclose(C1a, A1, rtol=0, atol=1) <14> torch.testing.assert_allclose(C2a, B1, rtol=0, atol=1) <15> <16> A2, SA = F.nvidia_transform(C1a, "col32") <17> B2, SB = F.nvidia_transform(C2a, "col_turing") <18> outC32, SC = F.igemmlt(A2, B2, SA, SB) <19> out2 = F.mm_dequant(outC32, SC, stats1a, stats2a) <20> <21> A2, SA = F.nvidia_transform(A1, "col32") <22> B2, SB = F.nvidia_transform(B1, "col_turing") <23> C2, SC =</s>
===========below chunk 0=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim4, inner", values, ids=names) def test_integrated_igemmlt(dim1, dim4, inner): # offset: 1 C3, S = F.nvidia_transform(C2, "row", state=SC) out3 = F.vectorwise_mm_dequant(C3.float(), maxA, maxB.t()) err1 = torch.abs(out1 - out2).mean().item() err2 = torch.abs(out1 - out3).mean().item() assert err2 <= err1 * 1.025 ===========changed ref 0=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_double_quant(dim1, dim2): for i in range(k): A = torch.randn(dim1, dim2, device="cuda").half() out_col1, Scol = F.vectorwise_quant(A, dim=0) out_row1, Srow = F.vectorwise_quant(A, dim=1) CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A) # max difference is 1 due to rounding differences + torch.testing.assert_close(CA, out_row1, atol=1, rtol=0) - torch.testing.assert_allclose(CA, out_row1, atol=1, rtol=0) + torch.testing.assert_close(CAt, out_col1, atol=1, rtol=0) - torch.testing.assert_allclose(CAt, out_col1, atol=1, rtol=0) n = CAt.numel() num_not_close_rows = ( (torch.isclose(CA, out_row1, atol=1) == 0).sum().item() ) num_not_close_cols = ( (torch.isclose(CAt, out_col1, atol=1) == 0).sum().item() ) # allow for 1:500 error due to rounding differences min_error = 1 / 500 if num_not_close_cols > (min_error * n): print( f"Min error exceeded {num_not_close_cols} elements are different. Error: {num_not_close_cols/n:.4f}" ) assert False if num_not_close_rows > (min_error * n): print( f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_</s> ===========changed ref 1=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_double_quant(dim1, dim2): # offset: 1 <s>( f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_rows/n:.4f}" ) assert False + torch.testing.assert_close(Srow.flatten().float(), statsA) - torch.testing.assert_allclose(Srow.flatten(), statsA) + torch.testing.assert_close(Scol.flatten().float(), statsAt) - torch.testing.assert_allclose(Scol.flatten(), statsAt) ===========changed ref 2=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dims", values, ids=names) def test_colrow_absmax(dim1, dim2, dims): for i in range(k): threshold = 3.0 A = torch.randn(dim1, dim2, device="cuda").half() A_truncated = A.clone() A_truncated[torch.abs(A_truncated) >= 3.0] = 0.0 if dims == 2: row_stats1, _ = torch.abs(A.float()).max(1) col_stats1, _ = torch.abs(A.float()).max(0) row_stats1_trunc, _ = torch.abs(A_truncated.float()).max(1) col_stats1_trunc, _ = torch.abs(A_truncated.float()).max(0) else: assert False row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax( A, threshold=threshold ) A_blocked = einops.rearrange( torch.abs(A), "(rows row_tiles) (cols block_size)-> rows cols row_tiles block_size", row_tiles=16, block_size=64 * 4, ) nnz_rows1_counts = (torch.abs(A_blocked) >= threshold).sum(3).flatten() nnz_block_ptr1 = torch.zeros( nnz_rows1_counts.shape[0] + 1, dtype=nnz_rows1_counts.dtype, device=nnz_rows1_counts.device, ) nnz_block_ptr1[1:] = nnz_rows1_counts.cumsum(0) + torch.testing.assert_close(col_stats1_trunc, col_stats2) - torch.testing.assert_allclose(col_stats1_trunc, col</s> ===========changed ref 3=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dims", values, ids=names) def test_colrow_absmax(dim1, dim2, dims): # offset: 1 <s>1_trunc, col_stats2) - torch.testing.assert_allclose(col_stats1_trunc, col_stats2) + torch.testing.assert_close(row_stats1_trunc, row_stats2) - torch.testing.assert_allclose(row_stats1_trunc, row_stats2) + torch.testing.assert_close(nnz_block_ptr1.int(), nnz_block_ptr2) - torch.testing.assert_allclose(nnz_block_ptr1, nnz_block_ptr2) row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax( A, threshold=0.0 ) + torch.testing.assert_close(col_stats1, col_stats2) - torch.testing.assert_allclose(col_stats1, col_stats2) + torch.testing.assert_close(row_stats1, row_stats2) - torch.testing.assert_allclose(row_stats1, row_stats2) assert nnz_block_ptr2 is None
tests.test_functional/test_transform
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<23>:<add> torch.testing.assert_close(out1, out2) <del> torch.testing.assert_allclose(out1, out2)
# module: tests.test_functional @pytest.mark.parametrize( "dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose", values, ids=names, ) def test_transform(dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose): <0> for i in range(k): <1> if dims == 2: <2> A = torch.randint(10, 99, size=(dim1, dim2), device="cuda").to( <3> dtype <4> ) <5> elif dims == 3: <6> A = torch.randint( <7> 10, 99, size=(dim1, dim2, dim3), device="cuda" <8> ).to(dtype) <9> <10> A.view(-1)[-1] = -1 <11> if transpose: <12> At = A.t().contiguous() <13> out1, S1 = F.nvidia_transform(At, to_order=orderOut) <14> else: <15> out1, S1 = F.nvidia_transform(A, to_order=orderOut) <16> out2, S2 = F.transform(A, to_order=orderOut, transpose=transpose) <17> <18> assert S1[0][0] == S2[0][0] <19> assert S1[0][1] == S2[0][1] <20> # print(out1) <21> # print(out2) <22> <23> torch.testing.assert_allclose(out1, out2) <24>
===========changed ref 0=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_double_quant(dim1, dim2): for i in range(k): A = torch.randn(dim1, dim2, device="cuda").half() out_col1, Scol = F.vectorwise_quant(A, dim=0) out_row1, Srow = F.vectorwise_quant(A, dim=1) CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A) # max difference is 1 due to rounding differences + torch.testing.assert_close(CA, out_row1, atol=1, rtol=0) - torch.testing.assert_allclose(CA, out_row1, atol=1, rtol=0) + torch.testing.assert_close(CAt, out_col1, atol=1, rtol=0) - torch.testing.assert_allclose(CAt, out_col1, atol=1, rtol=0) n = CAt.numel() num_not_close_rows = ( (torch.isclose(CA, out_row1, atol=1) == 0).sum().item() ) num_not_close_cols = ( (torch.isclose(CAt, out_col1, atol=1) == 0).sum().item() ) # allow for 1:500 error due to rounding differences min_error = 1 / 500 if num_not_close_cols > (min_error * n): print( f"Min error exceeded {num_not_close_cols} elements are different. Error: {num_not_close_cols/n:.4f}" ) assert False if num_not_close_rows > (min_error * n): print( f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_</s> ===========changed ref 1=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_double_quant(dim1, dim2): # offset: 1 <s>( f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_rows/n:.4f}" ) assert False + torch.testing.assert_close(Srow.flatten().float(), statsA) - torch.testing.assert_allclose(Srow.flatten(), statsA) + torch.testing.assert_close(Scol.flatten().float(), statsAt) - torch.testing.assert_allclose(Scol.flatten(), statsAt) ===========changed ref 2=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim4, inner", values, ids=names) def test_integrated_igemmlt(dim1, dim4, inner): for i in range(k): A = torch.randn(dim1, inner, device="cuda").half() B = torch.randn(dim4, inner, device="cuda").half() out1 = torch.matmul(A.half(), B.t().half()) C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A) C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B) A1, maxA = F.vectorwise_quant(A, dim=1) B1, maxB = F.vectorwise_quant(B, dim=1) + torch.testing.assert_close(maxA.flatten().float(), stats1a) - torch.testing.assert_allclose(maxA.flatten(), stats1a) + torch.testing.assert_close(maxB.flatten().float(), stats2a) - torch.testing.assert_allclose(maxB.flatten(), stats2a) + torch.testing.assert_close(C1a, A1, rtol=0, atol=1) - torch.testing.assert_allclose(C1a, A1, rtol=0, atol=1) + torch.testing.assert_close(C2a, B1, rtol=0, atol=1) - torch.testing.assert_allclose(C2a, B1, rtol=0, atol=1) A2, SA = F.nvidia_transform(C1a, "col32") B2, SB = F.nvidia_transform(C2a, "col_turing") outC32, SC = F.igemmlt(A2, B2, SA, SB</s> ===========changed ref 3=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim4, inner", values, ids=names) def test_integrated_igemmlt(dim1, dim4, inner): # offset: 1 <s>col_turing") outC32, SC = F.igemmlt(A2, B2, SA, SB) out2 = F.mm_dequant(outC32, SC, stats1a, stats2a) A2, SA = F.nvidia_transform(A1, "col32") B2, SB = F.nvidia_transform(B1, "col_turing") C2, SC = F.igemmlt(A2, B2, SA, SB) C3, S = F.nvidia_transform(C2, "row", state=SC) out3 = F.vectorwise_mm_dequant(C3.float(), maxA, maxB.t()) err1 = torch.abs(out1 - out2).mean().item() err2 = torch.abs(out1 - out3).mean().item() assert err2 <= err1 * 1.025
tests.test_functional/test_coo_double_quant
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<16>:<add> torch.testing.assert_close(A1, A2) <del> torch.testing.assert_allclose(A1, A2) <20>:<add> torch.testing.assert_close( <del> torch.testing.assert_allclose(
# module: tests.test_functional @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_coo_double_quant(dim1, dim2): <0> threshold = 3.00 <1> for i in range(k): <2> A = torch.randn(dim1, dim2, device="cuda").half() <3> <4> idx = torch.abs(A) >= threshold <5> CA2, CAt, statsA, statsAt, coo_tensor = F.double_quant(A) <6> CA, CAt, statsA, statsAt, coo_tensor = F.double_quant( <7> A, threshold=threshold <8> ) <9> <10> if coo_tensor is not None: <11> A1 = A * idx <12> A2 = torch.zeros_like(A) <13> A2[ <14> coo_tensor.rowidx.long(), coo_tensor.colidx.long() <15> ] = coo_tensor.values <16> torch.testing.assert_allclose(A1, A2) <17> <18> A1 = A * (idx == 0) <19> A2 = (CA.float() * statsA.unsqueeze(1) / 127).half() <20> torch.testing.assert_allclose( <21> A * (idx == 0), A2, rtol=0.05, atol=1.5e-2 <22> ) <23>
===========changed ref 0=========== # module: tests.test_functional @pytest.mark.parametrize( "dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose", values, ids=names, ) def test_transform(dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose): for i in range(k): if dims == 2: A = torch.randint(10, 99, size=(dim1, dim2), device="cuda").to( dtype ) elif dims == 3: A = torch.randint( 10, 99, size=(dim1, dim2, dim3), device="cuda" ).to(dtype) A.view(-1)[-1] = -1 if transpose: At = A.t().contiguous() out1, S1 = F.nvidia_transform(At, to_order=orderOut) else: out1, S1 = F.nvidia_transform(A, to_order=orderOut) out2, S2 = F.transform(A, to_order=orderOut, transpose=transpose) assert S1[0][0] == S2[0][0] assert S1[0][1] == S2[0][1] # print(out1) # print(out2) + torch.testing.assert_close(out1, out2) - torch.testing.assert_allclose(out1, out2) ===========changed ref 1=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_double_quant(dim1, dim2): for i in range(k): A = torch.randn(dim1, dim2, device="cuda").half() out_col1, Scol = F.vectorwise_quant(A, dim=0) out_row1, Srow = F.vectorwise_quant(A, dim=1) CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A) # max difference is 1 due to rounding differences + torch.testing.assert_close(CA, out_row1, atol=1, rtol=0) - torch.testing.assert_allclose(CA, out_row1, atol=1, rtol=0) + torch.testing.assert_close(CAt, out_col1, atol=1, rtol=0) - torch.testing.assert_allclose(CAt, out_col1, atol=1, rtol=0) n = CAt.numel() num_not_close_rows = ( (torch.isclose(CA, out_row1, atol=1) == 0).sum().item() ) num_not_close_cols = ( (torch.isclose(CAt, out_col1, atol=1) == 0).sum().item() ) # allow for 1:500 error due to rounding differences min_error = 1 / 500 if num_not_close_cols > (min_error * n): print( f"Min error exceeded {num_not_close_cols} elements are different. Error: {num_not_close_cols/n:.4f}" ) assert False if num_not_close_rows > (min_error * n): print( f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_</s> ===========changed ref 2=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_double_quant(dim1, dim2): # offset: 1 <s>( f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_rows/n:.4f}" ) assert False + torch.testing.assert_close(Srow.flatten().float(), statsA) - torch.testing.assert_allclose(Srow.flatten(), statsA) + torch.testing.assert_close(Scol.flatten().float(), statsAt) - torch.testing.assert_allclose(Scol.flatten(), statsAt) ===========changed ref 3=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim4, inner", values, ids=names) def test_integrated_igemmlt(dim1, dim4, inner): for i in range(k): A = torch.randn(dim1, inner, device="cuda").half() B = torch.randn(dim4, inner, device="cuda").half() out1 = torch.matmul(A.half(), B.t().half()) C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A) C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B) A1, maxA = F.vectorwise_quant(A, dim=1) B1, maxB = F.vectorwise_quant(B, dim=1) + torch.testing.assert_close(maxA.flatten().float(), stats1a) - torch.testing.assert_allclose(maxA.flatten(), stats1a) + torch.testing.assert_close(maxB.flatten().float(), stats2a) - torch.testing.assert_allclose(maxB.flatten(), stats2a) + torch.testing.assert_close(C1a, A1, rtol=0, atol=1) - torch.testing.assert_allclose(C1a, A1, rtol=0, atol=1) + torch.testing.assert_close(C2a, B1, rtol=0, atol=1) - torch.testing.assert_allclose(C2a, B1, rtol=0, atol=1) A2, SA = F.nvidia_transform(C1a, "col32") B2, SB = F.nvidia_transform(C2a, "col_turing") outC32, SC = F.igemmlt(A2, B2, SA, SB</s> ===========changed ref 4=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim4, inner", values, ids=names) def test_integrated_igemmlt(dim1, dim4, inner): # offset: 1 <s>col_turing") outC32, SC = F.igemmlt(A2, B2, SA, SB) out2 = F.mm_dequant(outC32, SC, stats1a, stats2a) A2, SA = F.nvidia_transform(A1, "col32") B2, SB = F.nvidia_transform(B1, "col_turing") C2, SC = F.igemmlt(A2, B2, SA, SB) C3, S = F.nvidia_transform(C2, "row", state=SC) out3 = F.vectorwise_mm_dequant(C3.float(), maxA, maxB.t()) err1 = torch.abs(out1 - out2).mean().item() err2 = torch.abs(out1 - out3).mean().item() assert err2 <= err1 * 1.025 ===========changed ref 5=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 6=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 7=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") +
tests.test_functional/test_coo2csr
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<14>:<add> torch.testing.assert_close(counts.long(), (A2 != 0).sum(1)) <del> torch.testing.assert_allclose(counts, (A2 != 0).sum(1)) <16>:<add> torch.testing.assert_close(A2[idx], csrA.values) <del> torch.testing.assert_allclose(A2[idx], csrA.values)
<s> #out3 = F.spmm_coo(cooA, Bt.t()) # #out2 = F.spmm_coo(cooA, B) # #out2 = F.spmm_coo_very_sparse(cooA, B) # #out1 = torch.matmul(A, Bt.t()) # torch.cuda.synchronize() # print(time.time() - t0) def test_coo2csr(): <0> threshold = 1 <1> A = torch.randn(128, 128).half().cuda() <2> idx = torch.abs(A) >= threshold <3> nnz = (idx == 1).sum().item() <4> rows, cols = torch.where(idx) <5> values = A[idx] <6> cooA = F.COOSparseTensor( <7> A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values <8> ) <9> A2 = A * idx <10> csrA = F.coo2csr(cooA) <11> counts = csrA.rowptr[1:] - csrA.rowptr[:-1] <12> assert counts.numel() == A.shape[0] <13> <14> torch.testing.assert_allclose(counts, (A2 != 0).sum(1)) <15> idx = A2 != 0 <16> torch.testing.assert_allclose(A2[idx], csrA.values) <17>
===========changed ref 0=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_coo_double_quant(dim1, dim2): threshold = 3.00 for i in range(k): A = torch.randn(dim1, dim2, device="cuda").half() idx = torch.abs(A) >= threshold CA2, CAt, statsA, statsAt, coo_tensor = F.double_quant(A) CA, CAt, statsA, statsAt, coo_tensor = F.double_quant( A, threshold=threshold ) if coo_tensor is not None: A1 = A * idx A2 = torch.zeros_like(A) A2[ coo_tensor.rowidx.long(), coo_tensor.colidx.long() ] = coo_tensor.values + torch.testing.assert_close(A1, A2) - torch.testing.assert_allclose(A1, A2) A1 = A * (idx == 0) A2 = (CA.float() * statsA.unsqueeze(1) / 127).half() + torch.testing.assert_close( - torch.testing.assert_allclose( A * (idx == 0), A2, rtol=0.05, atol=1.5e-2 ) ===========changed ref 1=========== # module: tests.test_functional @pytest.mark.parametrize( "dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose", values, ids=names, ) def test_transform(dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose): for i in range(k): if dims == 2: A = torch.randint(10, 99, size=(dim1, dim2), device="cuda").to( dtype ) elif dims == 3: A = torch.randint( 10, 99, size=(dim1, dim2, dim3), device="cuda" ).to(dtype) A.view(-1)[-1] = -1 if transpose: At = A.t().contiguous() out1, S1 = F.nvidia_transform(At, to_order=orderOut) else: out1, S1 = F.nvidia_transform(A, to_order=orderOut) out2, S2 = F.transform(A, to_order=orderOut, transpose=transpose) assert S1[0][0] == S2[0][0] assert S1[0][1] == S2[0][1] # print(out1) # print(out2) + torch.testing.assert_close(out1, out2) - torch.testing.assert_allclose(out1, out2) ===========changed ref 2=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 5=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 6=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 7=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 8=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 9=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 10=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 11=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 12=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 13=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 14=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) + ===========changed ref 15=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 16=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 17=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) +
tests.test_functional/test_coo2csc
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<14>:<add> torch.testing.assert_close(counts.long(), (A2 != 0).sum(0)) <del> torch.testing.assert_allclose(counts, (A2 != 0).sum(0)) <17>:<add> torch.testing.assert_close(A2.t()[idx], cscA.values) <del> torch.testing.assert_allclose(A2.t()[idx], cscA.values)
# module: tests.test_functional def test_coo2csc(): <0> threshold = 1 <1> A = torch.randn(128, 128).half().cuda() <2> idx = torch.abs(A) >= threshold <3> nnz = (idx == 1).sum().item() <4> rows, cols = torch.where(idx) <5> values = A[idx] <6> cooA = F.COOSparseTensor( <7> A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values <8> ) <9> A2 = A * idx <10> cscA = F.coo2csc(cooA) <11> counts = cscA.colptr[1:] - cscA.colptr[:-1] <12> assert counts.numel() == A.shape[1] <13> <14> torch.testing.assert_allclose(counts, (A2 != 0).sum(0)) <15> # torch uses row-major -> use transpose to transfer to col-major <16> idx = A2.t() != 0 <17> torch.testing.assert_allclose(A2.t()[idx], cscA.values) <18>
===========changed ref 0=========== <s> #out3 = F.spmm_coo(cooA, Bt.t()) # #out2 = F.spmm_coo(cooA, B) # #out2 = F.spmm_coo_very_sparse(cooA, B) # #out1 = torch.matmul(A, Bt.t()) # torch.cuda.synchronize() # print(time.time() - t0) def test_coo2csr(): threshold = 1 A = torch.randn(128, 128).half().cuda() idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) A2 = A * idx csrA = F.coo2csr(cooA) counts = csrA.rowptr[1:] - csrA.rowptr[:-1] assert counts.numel() == A.shape[0] + torch.testing.assert_close(counts.long(), (A2 != 0).sum(1)) - torch.testing.assert_allclose(counts, (A2 != 0).sum(1)) idx = A2 != 0 + torch.testing.assert_close(A2[idx], csrA.values) - torch.testing.assert_allclose(A2[idx], csrA.values) ===========changed ref 1=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_coo_double_quant(dim1, dim2): threshold = 3.00 for i in range(k): A = torch.randn(dim1, dim2, device="cuda").half() idx = torch.abs(A) >= threshold CA2, CAt, statsA, statsAt, coo_tensor = F.double_quant(A) CA, CAt, statsA, statsAt, coo_tensor = F.double_quant( A, threshold=threshold ) if coo_tensor is not None: A1 = A * idx A2 = torch.zeros_like(A) A2[ coo_tensor.rowidx.long(), coo_tensor.colidx.long() ] = coo_tensor.values + torch.testing.assert_close(A1, A2) - torch.testing.assert_allclose(A1, A2) A1 = A * (idx == 0) A2 = (CA.float() * statsA.unsqueeze(1) / 127).half() + torch.testing.assert_close( - torch.testing.assert_allclose( A * (idx == 0), A2, rtol=0.05, atol=1.5e-2 ) ===========changed ref 2=========== # module: tests.test_functional @pytest.mark.parametrize( "dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose", values, ids=names, ) def test_transform(dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose): for i in range(k): if dims == 2: A = torch.randint(10, 99, size=(dim1, dim2), device="cuda").to( dtype ) elif dims == 3: A = torch.randint( 10, 99, size=(dim1, dim2, dim3), device="cuda" ).to(dtype) A.view(-1)[-1] = -1 if transpose: At = A.t().contiguous() out1, S1 = F.nvidia_transform(At, to_order=orderOut) else: out1, S1 = F.nvidia_transform(A, to_order=orderOut) out2, S2 = F.transform(A, to_order=orderOut, transpose=transpose) assert S1[0][0] == S2[0][0] assert S1[0][1] == S2[0][1] # print(out1) # print(out2) + torch.testing.assert_close(out1, out2) - torch.testing.assert_allclose(out1, out2) ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 5=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 6=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 7=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 8=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 9=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 10=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 11=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 12=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 13=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 14=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 15=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) +
tests.test_functional/test_spmm_coo_dequant
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
# module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dtype", values, ids=names) def test_spmm_coo_dequant(dim1, dim2, dtype): <0> threshold = 6.0 <1> # threshold = 2.8 <2> # threshold = 0.0 <3> A = torch.randn(dim1, dim2, device="cuda").half() <4> B = torch.empty(dim2, dim2 * 4, device="cuda", dtype=torch.float16) <5> torch.nn.init.xavier_uniform_(B) <6> Bt = B.t().contiguous() <7> <8> CB, CBt, statsB, statsBt, coo_tensor = F.double_quant(B) <9> <10> rowidx = torch.randint(0, A.shape[-1], size=(15,)) <11> <12> A[:, rowidx] = 8.0 <13> <14> idx = torch.abs(A) >= threshold <15> nnz = (idx == 1).sum().item() <16> rows, cols = torch.where(idx) <17> values = A[idx] <18> cooA = F.COOSparseTensor( <19> A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values <20> ) <21> A2 = A * idx <22> out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt) <23> out1 = torch.matmul(A2, B.half()) <24> out3 = F.spmm_coo_very_sparse(cooA, CBt.half()) <25> out3 = out3 * statsBt.half() / 127 <26> <27> values, counts = torch.unique(cooA.rowidx, return_counts=True) <28> offset = counts.cumsum(0).int() <29> max_count, max_idx = torch.sort(counts, descending=True) <30> print(torch.median(max_count</s>
===========below chunk 0=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dtype", values, ids=names) def test_spmm_coo_dequant(dim1, dim2, dtype): # offset: 1 torch.testing.assert_allclose(out2, out3, rtol=0.05, atol=0.001) p = 200 / (2048 * 12288 * 4) n = out1.numel() count = math.ceil(p * n) assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=count) # torch.cuda.synchronize() # t0 = time.time() # for i in range(100): # out2 = F.spmm_coo_very_sparse(cooA, B) # torch.cuda.synchronize() # print('fp16', time.time() - t0) torch.cuda.synchronize() t0 = time.time() for i in range(100): out2 = F.spmm_coo(cooA, B) torch.cuda.synchronize() print("cusparse fp16", time.time() - t0) torch.cuda.synchronize() t0 = time.time() for i in range(100): out2 = F.spmm_coo_very_sparse(cooA, CBt) torch.cuda.synchronize() print("int8", time.time() - t0) torch.cuda.synchronize() t0 = time.time() for i in range(100): out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt) torch.cuda.synchronize() print("int8+dequant", time.time() - t0) torch.cuda.</s> ===========below chunk 1=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2, dtype", values, ids=names) def test_spmm_coo_dequant(dim1, dim2, dtype): # offset: 2 <s>synchronize() print("int8+dequant", time.time() - t0) torch.cuda.synchronize() t0 = time.time() for i in range(100): out2 = torch.matmul(A, B) torch.cuda.synchronize() print("matmul", time.time() - t0) torch.cuda.synchronize() t0 = time.time() for i in range(100): out1 = bnb.matmul(A, Bt) out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt) out = out1 + out2 torch.cuda.synchronize() print("sparse+ matmul", time.time() - t0) torch.cuda.synchronize() t0 = time.time() for i in range(100): out1 = bnb.matmul(A, Bt) torch.matmul(A[:, rowidx], Bt.t()[rowidx], out=out1) torch.cuda.synchronize() print("partial matmul", time.time() - t0) torch.cuda.synchronize() t0 = time.time() for i in range(100): out1 = bnb.matmul(A, Bt) torch.cuda.synchronize() print("partial matmul", time.time() - t0) ===========changed ref 0=========== <s> #out3 = F.spmm_coo(cooA, Bt.t()) # #out2 = F.spmm_coo(cooA, B) # #out2 = F.spmm_coo_very_sparse(cooA, B) # #out1 = torch.matmul(A, Bt.t()) # torch.cuda.synchronize() # print(time.time() - t0) def test_coo2csr(): threshold = 1 A = torch.randn(128, 128).half().cuda() idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) A2 = A * idx csrA = F.coo2csr(cooA) counts = csrA.rowptr[1:] - csrA.rowptr[:-1] assert counts.numel() == A.shape[0] + torch.testing.assert_close(counts.long(), (A2 != 0).sum(1)) - torch.testing.assert_allclose(counts, (A2 != 0).sum(1)) idx = A2 != 0 + torch.testing.assert_close(A2[idx], csrA.values) - torch.testing.assert_allclose(A2[idx], csrA.values) ===========changed ref 1=========== # module: tests.test_functional def test_coo2csc(): threshold = 1 A = torch.randn(128, 128).half().cuda() idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) A2 = A * idx cscA = F.coo2csc(cooA) counts = cscA.colptr[1:] - cscA.colptr[:-1] assert counts.numel() == A.shape[1] + torch.testing.assert_close(counts.long(), (A2 != 0).sum(0)) - torch.testing.assert_allclose(counts, (A2 != 0).sum(0)) # torch uses row-major -> use transpose to transfer to col-major idx = A2.t() != 0 + torch.testing.assert_close(A2.t()[idx], cscA.values) - torch.testing.assert_allclose(A2.t()[idx], cscA.values)
tests.test_functional/test_bench_matmul
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<0>:<add> iters = 1 <del> iters = 128 <6>:<add> <add> B_fp4, state = F.quantize_fp4(B) <add> B_fp4_c, state_c = F.quantize_fp4(B, compress_statistics=True) <add> <add> B_nf4, state_nf4= F.quantize_nf4(B) <13>:<del> linearMixedBit = ( <14>:<add> linearMixedBit = (bnb.nn.Linear8bitLt(model, hidden, False, threshold=6.0).cuda().half()) <del> bnb.nn.Linear8bitLt(model, hidden, False, threshold=6.0).cuda().half() <15>:<del> ) <17>:<add> <add> linear8bit_train = bnb.nn.Linear8bitLt(model, hidden, False).cuda().half() <add> linear8bit_train_thresh = bnb.nn.Linear8bitLt(model, hidden, False, threshold=6.0).cuda().half() <29>:<del> print( <30>:<add> print( f"pytorch fp16: [{batch},{seq},{model}], [{model},{hidden}]
# module: tests.test_functional @pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names) def test_bench_matmul(batch, seq, model, hidden): <0> iters = 128 <1> formatB = F.get_special_format_str() <2> <3> A = torch.randn(batch, seq, model, device="cuda").half() <4> B = torch.empty(hidden, model, dtype=torch.float16, device="cuda") <5> torch.nn.init.xavier_uniform_(B) <6> <7> linear8bit = bnb.nn.Linear8bitLt(model, hidden, False).cuda().half() <8> linear8bit.eval() <9> <10> outliers = torch.randint(0, model, size=(5,)).cuda() <11> A[:, :, outliers] = 8.0 <12> <13> linearMixedBit = ( <14> bnb.nn.Linear8bitLt(model, hidden, False, threshold=6.0).cuda().half() <15> ) <16> linearMixedBit.eval() <17> <18> # warmup <19> for i in range(iters): <20> torch.matmul(A, B.t()) <21> torch.cuda.synchronize() <22> print("") <23> <24> torch.cuda.synchronize() <25> t0 = time.time() <26> for i in range(iters): <27> torch.matmul(A, B.t()) <28> torch.cuda.synchronize() <29> print( <30> f"pytorch fp16: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" <31> ) <32> <33> torch.cuda.synchronize() <34> t0 = time.time() <35> for i in range(iters): <36> bnb.matmul(A, B) <37> torch.cuda.synchronize() <38> print(f</s>
===========below chunk 0=========== # module: tests.test_functional @pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names) def test_bench_matmul(batch, seq, model, hidden): # offset: 1 torch.cuda.synchronize() t0 = time.time() for i in range(iters): bnb.matmul(A, B, threshold=6.0) torch.cuda.synchronize() print(f"CB -> CxB conversion + threshold: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A, threshold=0.0) C32A, SA = F.transform(CA, "col32") CB, CBt, SCB, SCBt, coo_tensorB = F.double_quant(B) CxB, SB = F.transform(CB, to_order=formatB) torch.cuda.synchronize() t0 = time.time() for i in range(iters): out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB) torch.cuda.synchronize() print(f"no overhead matmul-lt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") BA, statsB = F.vectorwise_quant(B, dim=1) CxB, SB = F.nvidia_transform(CB, to_order=formatB) torch.cuda.synchronize() t0 = time.time() for i in range(iters): A2 = A.view(-1, A.shape[-1]).contiguous() CA, statsA = F.vectorwise_quant(A2, dim=1) </s> ===========below chunk 1=========== # module: tests.test_functional @pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names) def test_bench_matmul(batch, seq, model, hidden): # offset: 2 <s>.shape[-1]).contiguous() CA, statsA = F.vectorwise_quant(A2, dim=1) C32A, SA = F.nvidia_transform(CA, "col32") out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB) Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32) F.vectorwise_mm_dequant(Cout, statsA, statsB.t()) torch.cuda.synchronize() #print(f"vector pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") BA, statsB = F.vectorwise_quant(B, dim=1, quant_type="linear") CxB, SB = F.nvidia_transform(CB, to_order=formatB) torch.cuda.synchronize() t0 = time.time() for i in range(iters): A2 = A.view(-1, A.shape[-1]).contiguous() CA, statsA = F.vectorwise_quant(A2, dim=1, quant_type="linear") C32A, SA = F.nvidia_transform(CA, "col32") out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB) Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32) out = Cout * statsB * statsA * (1.</s> ===========below chunk 2=========== # module: tests.test_functional @pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names) def test_bench_matmul(batch, seq, model, hidden): # offset: 3 <s> (127 * 127)) torch.cuda.synchronize() #print(f"linear pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") linear8bit(A) torch.cuda.synchronize() t0 = time.time() for i in range(iters): linear8bit(A) torch.cuda.synchronize() print( f"bnb linear8bitlt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" ) linearMixedBit(A) torch.cuda.synchronize() t0 = time.time() for i in range(iters): linearMixedBit(A) torch.cuda.synchronize() print( f"bnb linear8bitlt with threshold: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" ) ===========changed ref 0=========== <s> #out3 = F.spmm_coo(cooA, Bt.t()) # #out2 = F.spmm_coo(cooA, B) # #out2 = F.spmm_coo_very_sparse(cooA, B) # #out1 = torch.matmul(A, Bt.t()) # torch.cuda.synchronize() # print(time.time() - t0) def test_coo2csr(): threshold = 1 A = torch.randn(128, 128).half().cuda() idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) A2 = A * idx csrA = F.coo2csr(cooA) counts = csrA.rowptr[1:] - csrA.rowptr[:-1] assert counts.numel() == A.shape[0] + torch.testing.assert_close(counts.long(), (A2 != 0).sum(1)) - torch.testing.assert_allclose(counts, (A2 != 0).sum(1)) idx = A2 != 0 + torch.testing.assert_close(A2[idx], csrA.values) - torch.testing.assert_allclose(A2[idx], csrA.values)
tests.test_functional/test_extract_outliers
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<14>:<add> torch.testing.assert_close(outliers1, outliers2) <del> torch.testing.assert_allclose(outliers1, outliers2) <23>:<add> torch.testing.assert_close(outliers1, outliers2) <del> torch.testing.assert_allclose(outliers1, outliers2)
# module: tests.test_functional def test_extract_outliers(): <0> for i in range(k): <1> shapeA = (4096, 4096 * 4) <2> idx = torch.unique(torch.randint(0, shapeA[1], size=(10,)).int()).cuda() <3> # idx = torch.Tensor([0]).int().cuda() <4> A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8) <5> outliers1 = A[:, idx.long()] <6> <7> CA, SA = F.transform(A, "col_turing") <8> <9> outliers2 = F.extract_outliers(CA, SA, idx) <10> <11> assert outliers2.shape[0] == shapeA[0] <12> assert outliers2.shape[1] == idx.numel() <13> <14> torch.testing.assert_allclose(outliers1, outliers2) <15> <16> CA, SA = F.transform(A, "col_ampere") <17> <18> outliers2 = F.extract_outliers(CA, SA, idx) <19> <20> assert outliers2.shape[0] == shapeA[0] <21> assert outliers2.shape[1] == idx.numel() <22> <23> torch.testing.assert_allclose(outliers1, outliers2) <24>
===========changed ref 0=========== <s> #out3 = F.spmm_coo(cooA, Bt.t()) # #out2 = F.spmm_coo(cooA, B) # #out2 = F.spmm_coo_very_sparse(cooA, B) # #out1 = torch.matmul(A, Bt.t()) # torch.cuda.synchronize() # print(time.time() - t0) def test_coo2csr(): threshold = 1 A = torch.randn(128, 128).half().cuda() idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) A2 = A * idx csrA = F.coo2csr(cooA) counts = csrA.rowptr[1:] - csrA.rowptr[:-1] assert counts.numel() == A.shape[0] + torch.testing.assert_close(counts.long(), (A2 != 0).sum(1)) - torch.testing.assert_allclose(counts, (A2 != 0).sum(1)) idx = A2 != 0 + torch.testing.assert_close(A2[idx], csrA.values) - torch.testing.assert_allclose(A2[idx], csrA.values) ===========changed ref 1=========== # module: tests.test_functional def test_coo2csc(): threshold = 1 A = torch.randn(128, 128).half().cuda() idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) A2 = A * idx cscA = F.coo2csc(cooA) counts = cscA.colptr[1:] - cscA.colptr[:-1] assert counts.numel() == A.shape[1] + torch.testing.assert_close(counts.long(), (A2 != 0).sum(0)) - torch.testing.assert_allclose(counts, (A2 != 0).sum(0)) # torch uses row-major -> use transpose to transfer to col-major idx = A2.t() != 0 + torch.testing.assert_close(A2.t()[idx], cscA.values) - torch.testing.assert_allclose(A2.t()[idx], cscA.values) ===========changed ref 2=========== # module: tests.test_functional + batch_size = 2 - batch_size = 1 + seqdim = 2048 - seqdim = 1 values = [] values.append((batch_size, seqdim, 768, 4 * 768)) + #values.append((batch_size, seqdim, 1024, 4*1024)) - # values.append((batch_size, seqdim, 1024, 4*1024)) + #values.append((batch_size, seqdim, 1536, 4*1536)) - # values.append((batch_size, seqdim, 1536, 4*1536)) + #values.append((batch_size, seqdim, 2048, 4*2048)) - # values.append((batch_size, seqdim, 2048, 4*2048)) + #values.append((batch_size, seqdim, 2560, 4*2560)) - # values.append((batch_size, seqdim, 2560, 4*2560)) + #values.append((batch_size, seqdim, 4096, 4*4096)) - # values.append((batch_size, seqdim, 4096, 4*4096)) + #values.append((batch_size, seqdim, 5140, 4*5140)) - # values.append((batch_size, seqdim, 5140, 4*5140)) #values.append((batch_size, seqdim, 12288, 4*12288)) - names = [ + names = ["batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values] - "batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values - ] + # F.prefetch_tensor(A) + # F.prefetch_tensor(B) + + + # F.fill(B2, 17.0) + # F._mul(A, B2) + + # F.prefetch_tensor(A, to_cpu=True) + # F.prefetch_tensor(B, to_cpu=True) + # F.prefetch_tensor(B</s> ===========changed ref 3=========== # module: tests.test_functional # offset: 1 <s> <add> # F.prefetch_tensor(B, to_cpu=True) + # F.prefetch_tensor(B2, to_cpu=True) + # torch.cuda.synchronize() + + # assert (A==17).sum().item() == n*n + + # torch.testing.assert_close(A, torch.ones(A.shape)*289) + ===========changed ref 4=========== # module: tests.test_functional @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_coo_double_quant(dim1, dim2): threshold = 3.00 for i in range(k): A = torch.randn(dim1, dim2, device="cuda").half() idx = torch.abs(A) >= threshold CA2, CAt, statsA, statsAt, coo_tensor = F.double_quant(A) CA, CAt, statsA, statsAt, coo_tensor = F.double_quant( A, threshold=threshold ) if coo_tensor is not None: A1 = A * idx A2 = torch.zeros_like(A) A2[ coo_tensor.rowidx.long(), coo_tensor.colidx.long() ] = coo_tensor.values + torch.testing.assert_close(A1, A2) - torch.testing.assert_allclose(A1, A2) A1 = A * (idx == 0) A2 = (CA.float() * statsA.unsqueeze(1) / 127).half() + torch.testing.assert_close( - torch.testing.assert_allclose( A * (idx == 0), A2, rtol=0.05, atol=1.5e-2 )
tests.test_functional/test_fp8_quant
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<4>:<del> print(e_bits, p_bits)
# module: tests.test_functional # print(sum(diffs)/len(diffs)) # print(sum(reldiffs)/len(reldiffs)) def test_fp8_quant(): <0> for e_bits in range(1, 7): <1> p_bits = 7-e_bits <2> code = F.create_fp8_map(True, e_bits, p_bits).cuda() <3> <4> print(e_bits, p_bits) <5> abserr = [] <6> relerr = [] <7> for i in range(100): <8> A1 = torch.randn(1024, 1024, device="cuda") <9> C, SC = F.quantize_blockwise(A1, code=code) <10> A2 = F.dequantize_blockwise(C, SC) <11> diff = torch.abs(A1 - A2) <12> reldiff = diff/torch.abs(A1+1e-8) <13> abserr.append(diff.mean().item()) <14> relerr.append(reldiff.mean().item()) <15> #assert diff < 0.0075 <16> #print(sum(abserr)/len(abserr)) <17> #print(sum(relerr)/len(relerr)) <18> <19> abserr = [] <20> relerr = [] <21> for i in range(100): <22> A1 = torch.rand(1024, 1024, device="cuda") <23> C, SC = F.quantize_blockwise(A1, code=code) <24> A2 = F.dequantize_blockwise(C, SC) <25> diff = torch.abs(A1 - A2) <26> reldiff = diff/torch.abs(A1+1e-8) <27> abserr.append(diff.mean().item()) <28> relerr.append(reldiff.mean().item()) <29> #assert diff < 0.0075 <30> #print(sum(abserr)/len(abserr)) <31> #print(sum(relerr)/</s>
===========below chunk 0=========== # module: tests.test_functional # print(sum(diffs)/len(diffs)) # print(sum(reldiffs)/len(reldiffs)) def test_fp8_quant(): # offset: 1 abserr = [] relerr = [] for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") C, SC = F.quantize_blockwise(A1) A2 = F.dequantize_blockwise(C, SC) diff = torch.abs(A1 - A2) reldiff = diff/torch.abs(A1+1e-8) abserr.append(diff.mean().item()) relerr.append(reldiff.mean().item()) ===========changed ref 0=========== # module: tests.test_functional def test_extract_outliers(): for i in range(k): shapeA = (4096, 4096 * 4) idx = torch.unique(torch.randint(0, shapeA[1], size=(10,)).int()).cuda() # idx = torch.Tensor([0]).int().cuda() A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8) outliers1 = A[:, idx.long()] CA, SA = F.transform(A, "col_turing") outliers2 = F.extract_outliers(CA, SA, idx) assert outliers2.shape[0] == shapeA[0] assert outliers2.shape[1] == idx.numel() + torch.testing.assert_close(outliers1, outliers2) - torch.testing.assert_allclose(outliers1, outliers2) CA, SA = F.transform(A, "col_ampere") outliers2 = F.extract_outliers(CA, SA, idx) assert outliers2.shape[0] == shapeA[0] assert outliers2.shape[1] == idx.numel() + torch.testing.assert_close(outliers1, outliers2) - torch.testing.assert_allclose(outliers1, outliers2) ===========changed ref 1=========== <s> #out3 = F.spmm_coo(cooA, Bt.t()) # #out2 = F.spmm_coo(cooA, B) # #out2 = F.spmm_coo_very_sparse(cooA, B) # #out1 = torch.matmul(A, Bt.t()) # torch.cuda.synchronize() # print(time.time() - t0) def test_coo2csr(): threshold = 1 A = torch.randn(128, 128).half().cuda() idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) A2 = A * idx csrA = F.coo2csr(cooA) counts = csrA.rowptr[1:] - csrA.rowptr[:-1] assert counts.numel() == A.shape[0] + torch.testing.assert_close(counts.long(), (A2 != 0).sum(1)) - torch.testing.assert_allclose(counts, (A2 != 0).sum(1)) idx = A2 != 0 + torch.testing.assert_close(A2[idx], csrA.values) - torch.testing.assert_allclose(A2[idx], csrA.values) ===========changed ref 2=========== # module: tests.test_functional def test_coo2csc(): threshold = 1 A = torch.randn(128, 128).half().cuda() idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) A2 = A * idx cscA = F.coo2csc(cooA) counts = cscA.colptr[1:] - cscA.colptr[:-1] assert counts.numel() == A.shape[1] + torch.testing.assert_close(counts.long(), (A2 != 0).sum(0)) - torch.testing.assert_allclose(counts, (A2 != 0).sum(0)) # torch uses row-major -> use transpose to transfer to col-major idx = A2.t() != 0 + torch.testing.assert_close(A2.t()[idx], cscA.values) - torch.testing.assert_allclose(A2.t()[idx], cscA.values) ===========changed ref 3=========== # module: tests.test_functional + batch_size = 2 - batch_size = 1 + seqdim = 2048 - seqdim = 1 values = [] values.append((batch_size, seqdim, 768, 4 * 768)) + #values.append((batch_size, seqdim, 1024, 4*1024)) - # values.append((batch_size, seqdim, 1024, 4*1024)) + #values.append((batch_size, seqdim, 1536, 4*1536)) - # values.append((batch_size, seqdim, 1536, 4*1536)) + #values.append((batch_size, seqdim, 2048, 4*2048)) - # values.append((batch_size, seqdim, 2048, 4*2048)) + #values.append((batch_size, seqdim, 2560, 4*2560)) - # values.append((batch_size, seqdim, 2560, 4*2560)) + #values.append((batch_size, seqdim, 4096, 4*4096)) - # values.append((batch_size, seqdim, 4096, 4*4096)) + #values.append((batch_size, seqdim, 5140, 4*5140)) - # values.append((batch_size, seqdim, 5140, 4*5140)) #values.append((batch_size, seqdim, 12288, 4*12288)) - names = [ + names = ["batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values] - "batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values - ] + # F.prefetch_tensor(A) + # F.prefetch_tensor(B) + + + # F.fill(B2, 17.0) + # F._mul(A, B2) + + # F.prefetch_tensor(A, to_cpu=True) + # F.prefetch_tensor(B, to_cpu=True) + # F.prefetch_tensor(B</s> ===========changed ref 4=========== # module: tests.test_functional # offset: 1 <s> <add> # F.prefetch_tensor(B, to_cpu=True) + # F.prefetch_tensor(B2, to_cpu=True) + # torch.cuda.synchronize() + + # assert (A==17).sum().item() == n*n + + # torch.testing.assert_close(A, torch.ones(A.shape)*289) +
tests.test_functional/test_few_bit_quant
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<13>:<del> print(code)
# module: tests.test_functional #assert diff < 0.0075 #print(3, sum(abserr)/len(abserr)) #print(3, sum(relerr)/len(relerr)) def test_few_bit_quant(): <0> #print('') <1> for bits in range(2, 9): <2> #print('='*30, bits, '='*30) <3> for method in ['linear', 'fp8', 'dynamic', 'quantile']: <4> abserrs = [] <5> relerrs = [] <6> code = None <7> if method == 'linear': <8> code = F.create_linear_map(True, total_bits=bits).cuda() <9> elif method == 'fp8': <10> ebits = math.ceil(bits/2) <11> pbits = bits-ebits-1 <12> code = F.create_fp8_map(True, ebits, pbits, bits).cuda() <13> print(code) <14> elif method == 'dynamic': <15> code = F.create_dynamic_map(True, bits-0, bits).cuda() <16> elif method == 'quantile': <17> values = torch.randn(2048, 2048, device='cuda') <18> code = F.create_quantile_map(values, bits).cuda() <19> # for some data types we have no zero <20> # for some data types we have one zero <21> # for some data types we have two zeros <22> assert torch.unique(code).numel() in [2**bits, 2**bits-1], f'bits: {bits}, method: {method}' <23> #print(method, (code==0).sum()) <24> assert code.numel() == 256 <25> for i in range(10): <26> <27> values = torch.randn(1, 32, device='cuda') <28> values /= values.abs().max() <29> #values[values.abs() < 1e-6] += 1e-5 <30> <31> q1 = [] <32> v1 = [] </s>
===========below chunk 0=========== # module: tests.test_functional #assert diff < 0.0075 #print(3, sum(abserr)/len(abserr)) #print(3, sum(relerr)/len(relerr)) def test_few_bit_quant(): # offset: 1 idx = torch.abs(v-code).argmin() q1.append(idx.item()) v1.append(code[idx].item()) q1 = torch.Tensor(q1).cuda() v1 = torch.Tensor(v1).cuda() q2, S2 = F.quantize_blockwise(values, code=code) v2 = F.dequantize_blockwise(q2, S2) idx = torch.isclose(q1.int(), q2.int()) err2 = torch.abs(v2-values) abserrs.append(err2.mean().item()) relerrs.append((err2/(1e-10+values).abs()).mean().item()) if idx.sum(): # some weird cases err1 = torch.abs(v1-values).mean() #assert err2.mean() <= err1 else: torch.testing.assert_allclose(q1, q2) ===========changed ref 0=========== # module: tests.test_functional def test_extract_outliers(): for i in range(k): shapeA = (4096, 4096 * 4) idx = torch.unique(torch.randint(0, shapeA[1], size=(10,)).int()).cuda() # idx = torch.Tensor([0]).int().cuda() A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8) outliers1 = A[:, idx.long()] CA, SA = F.transform(A, "col_turing") outliers2 = F.extract_outliers(CA, SA, idx) assert outliers2.shape[0] == shapeA[0] assert outliers2.shape[1] == idx.numel() + torch.testing.assert_close(outliers1, outliers2) - torch.testing.assert_allclose(outliers1, outliers2) CA, SA = F.transform(A, "col_ampere") outliers2 = F.extract_outliers(CA, SA, idx) assert outliers2.shape[0] == shapeA[0] assert outliers2.shape[1] == idx.numel() + torch.testing.assert_close(outliers1, outliers2) - torch.testing.assert_allclose(outliers1, outliers2) ===========changed ref 1=========== # module: tests.test_functional # print(sum(diffs)/len(diffs)) # print(sum(reldiffs)/len(reldiffs)) def test_fp8_quant(): for e_bits in range(1, 7): p_bits = 7-e_bits code = F.create_fp8_map(True, e_bits, p_bits).cuda() - print(e_bits, p_bits) abserr = [] relerr = [] for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") C, SC = F.quantize_blockwise(A1, code=code) A2 = F.dequantize_blockwise(C, SC) diff = torch.abs(A1 - A2) reldiff = diff/torch.abs(A1+1e-8) abserr.append(diff.mean().item()) relerr.append(reldiff.mean().item()) #assert diff < 0.0075 #print(sum(abserr)/len(abserr)) #print(sum(relerr)/len(relerr)) abserr = [] relerr = [] for i in range(100): A1 = torch.rand(1024, 1024, device="cuda") C, SC = F.quantize_blockwise(A1, code=code) A2 = F.dequantize_blockwise(C, SC) diff = torch.abs(A1 - A2) reldiff = diff/torch.abs(A1+1e-8) abserr.append(diff.mean().item()) relerr.append(reldiff.mean().item()) #assert diff < 0.0075 #print(sum(abserr)/len(abserr)) #print(sum(relerr)/len(relerr)) abserr = [] relerr = [] for i in range(100): A1</s> ===========changed ref 2=========== # module: tests.test_functional # print(sum(diffs)/len(diffs)) # print(sum(reldiffs)/len(reldiffs)) def test_fp8_quant(): # offset: 1 <s>(relerr)) abserr = [] relerr = [] for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") C, SC = F.quantize_blockwise(A1) A2 = F.dequantize_blockwise(C, SC) diff = torch.abs(A1 - A2) reldiff = diff/torch.abs(A1+1e-8) abserr.append(diff.mean().item()) relerr.append(reldiff.mean().item()) ===========changed ref 3=========== <s> #out3 = F.spmm_coo(cooA, Bt.t()) # #out2 = F.spmm_coo(cooA, B) # #out2 = F.spmm_coo_very_sparse(cooA, B) # #out1 = torch.matmul(A, Bt.t()) # torch.cuda.synchronize() # print(time.time() - t0) def test_coo2csr(): threshold = 1 A = torch.randn(128, 128).half().cuda() idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) A2 = A * idx csrA = F.coo2csr(cooA) counts = csrA.rowptr[1:] - csrA.rowptr[:-1] assert counts.numel() == A.shape[0] + torch.testing.assert_close(counts.long(), (A2 != 0).sum(1)) - torch.testing.assert_allclose(counts, (A2 != 0).sum(1)) idx = A2 != 0 + torch.testing.assert_close(A2[idx], csrA.values) - torch.testing.assert_allclose(A2[idx], csrA.values)
tests.test_functional/test_bench_dequantization
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<11>:<add> qa, SA = F.quantize_blockwise(a) <del> F.dequantize_blockwise(qa, SA, blocksize=2048)
# module: tests.test_functional def test_bench_dequantization(): <0> a = torch.rand(1024, 1024, device='cuda').half() <1> code =F.create_fp8_map(True, 3, 0, 4).cuda() <2> qa, SA = F.quantize_blockwise(a, code=code) <3> print(qa.max()) <4> <5> max_theoretical_mu = 1024*1024*2/1024**3/672*1000*1000 <6> #print(max_theoretical_mu) <7> <8> torch.cuda.synchronize() <9> t0 = time.time() <10> for i in range(100): <11> F.dequantize_blockwise(qa, SA, blocksize=2048) <12> torch.cuda.synchronize() <13>
===========changed ref 0=========== # module: tests.test_functional def test_extract_outliers(): for i in range(k): shapeA = (4096, 4096 * 4) idx = torch.unique(torch.randint(0, shapeA[1], size=(10,)).int()).cuda() # idx = torch.Tensor([0]).int().cuda() A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8) outliers1 = A[:, idx.long()] CA, SA = F.transform(A, "col_turing") outliers2 = F.extract_outliers(CA, SA, idx) assert outliers2.shape[0] == shapeA[0] assert outliers2.shape[1] == idx.numel() + torch.testing.assert_close(outliers1, outliers2) - torch.testing.assert_allclose(outliers1, outliers2) CA, SA = F.transform(A, "col_ampere") outliers2 = F.extract_outliers(CA, SA, idx) assert outliers2.shape[0] == shapeA[0] assert outliers2.shape[1] == idx.numel() + torch.testing.assert_close(outliers1, outliers2) - torch.testing.assert_allclose(outliers1, outliers2) ===========changed ref 1=========== # module: tests.test_functional # print(sum(diffs)/len(diffs)) # print(sum(reldiffs)/len(reldiffs)) def test_fp8_quant(): for e_bits in range(1, 7): p_bits = 7-e_bits code = F.create_fp8_map(True, e_bits, p_bits).cuda() - print(e_bits, p_bits) abserr = [] relerr = [] for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") C, SC = F.quantize_blockwise(A1, code=code) A2 = F.dequantize_blockwise(C, SC) diff = torch.abs(A1 - A2) reldiff = diff/torch.abs(A1+1e-8) abserr.append(diff.mean().item()) relerr.append(reldiff.mean().item()) #assert diff < 0.0075 #print(sum(abserr)/len(abserr)) #print(sum(relerr)/len(relerr)) abserr = [] relerr = [] for i in range(100): A1 = torch.rand(1024, 1024, device="cuda") C, SC = F.quantize_blockwise(A1, code=code) A2 = F.dequantize_blockwise(C, SC) diff = torch.abs(A1 - A2) reldiff = diff/torch.abs(A1+1e-8) abserr.append(diff.mean().item()) relerr.append(reldiff.mean().item()) #assert diff < 0.0075 #print(sum(abserr)/len(abserr)) #print(sum(relerr)/len(relerr)) abserr = [] relerr = [] for i in range(100): A1</s> ===========changed ref 2=========== # module: tests.test_functional # print(sum(diffs)/len(diffs)) # print(sum(reldiffs)/len(reldiffs)) def test_fp8_quant(): # offset: 1 <s>(relerr)) abserr = [] relerr = [] for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") C, SC = F.quantize_blockwise(A1) A2 = F.dequantize_blockwise(C, SC) diff = torch.abs(A1 - A2) reldiff = diff/torch.abs(A1+1e-8) abserr.append(diff.mean().item()) relerr.append(reldiff.mean().item()) ===========changed ref 3=========== # module: tests.test_functional #assert diff < 0.0075 #print(3, sum(abserr)/len(abserr)) #print(3, sum(relerr)/len(relerr)) def test_few_bit_quant(): #print('') for bits in range(2, 9): #print('='*30, bits, '='*30) for method in ['linear', 'fp8', 'dynamic', 'quantile']: abserrs = [] relerrs = [] code = None if method == 'linear': code = F.create_linear_map(True, total_bits=bits).cuda() elif method == 'fp8': ebits = math.ceil(bits/2) pbits = bits-ebits-1 code = F.create_fp8_map(True, ebits, pbits, bits).cuda() - print(code) elif method == 'dynamic': code = F.create_dynamic_map(True, bits-0, bits).cuda() elif method == 'quantile': values = torch.randn(2048, 2048, device='cuda') code = F.create_quantile_map(values, bits).cuda() # for some data types we have no zero # for some data types we have one zero # for some data types we have two zeros assert torch.unique(code).numel() in [2**bits, 2**bits-1], f'bits: {bits}, method: {method}' #print(method, (code==0).sum()) assert code.numel() == 256 for i in range(10): values = torch.randn(1, 32, device='cuda') values /= values.abs().max() #values[values.abs() < 1e-6] += 1e-5 q1 = [] v1 = [] for v in values[0]: idx = torch.abs(v-code).argmin() q1.append(idx.</s> ===========changed ref 4=========== # module: tests.test_functional #assert diff < 0.0075 #print(3, sum(abserr)/len(abserr)) #print(3, sum(relerr)/len(relerr)) def test_few_bit_quant(): # offset: 1 <s> v in values[0]: idx = torch.abs(v-code).argmin() q1.append(idx.item()) v1.append(code[idx].item()) q1 = torch.Tensor(q1).cuda() v1 = torch.Tensor(v1).cuda() q2, S2 = F.quantize_blockwise(values, code=code) v2 = F.dequantize_blockwise(q2, S2) idx = torch.isclose(q1.int(), q2.int()) err2 = torch.abs(v2-values) abserrs.append(err2.mean().item()) relerrs.append((err2/(1e-10+values).abs()).mean().item()) if idx.sum(): # some weird cases err1 = torch.abs(v1-values).mean() #assert err2.mean() <= err1 else: + torch.testing.assert_close(q1, q2) - torch.testing.assert_allclose(q1, q2)
tests.test_optim/assert_most_approx_close
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<4>:<add> torch.testing.assert_close(a, b, rtol, atol) <del> torch.testing.assert_allclose(a, b, rtol, atol)
# module: tests.test_optim def assert_most_approx_close(a, b, rtol=1e-3, atol=1e-3, max_error_count=0): <0> idx = torch.isclose(a, b, rtol, atol) <1> error_count = (idx == 0).sum().item() <2> if error_count > max_error_count: <3> print(f"Too many values not close: assert {error_count} < {max_error_count}") <4> torch.testing.assert_allclose(a, b, rtol, atol) <5>
===========changed ref 0=========== # module: tests.test_optim # import apex k = 20 + str2bf16support = {} + str2bf16support['adam8bit_blockwise'] = True + ===========changed ref 1=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 2=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 4=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 5=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 6=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 7=========== # module: tests.test_functional - #print((time.time()-t0)/1e6) - ===========changed ref 8=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 9=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 10=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 11=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 12=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 13=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 14=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) + ===========changed ref 15=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 16=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 17=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 18=========== # module: bitsandbytes.optim.adam + class PagedAdam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 19=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 20=========== # module: bitsandbytes.optim.adamw + class PagedAdamW8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 21=========== # module: bitsandbytes.optim.adam + class PagedAdam(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) +
tests.test_optim/test_optimizer32bit
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<11>:<add> elif gtype == torch.bfloat16: <add> atol, rtol = 1e-3, 1e-2 <24>:<add> torch.testing.assert_close( <del> torch.testing.assert_allclose( <26>:<add> bnb_optimizer.state[p2][name2].cuda(), <del> bnb_optimizer.state[p2][name2],
# module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer32bit(dim1, dim2, gtype, optim_name): <0> if dim1 == 1 and dim2 == 1: <1> return <2> p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 <3> p2 = p1.clone() <4> p1 = p1.float() <5> <6> torch_optimizer = str2optimizers[optim_name][0]([p1]) <7> bnb_optimizer = str2optimizers[optim_name][1]([p2]) <8> <9> if gtype == torch.float32: <10> atol, rtol = 1e-6, 1e-5 <11> else: <12> atol, rtol = 1e-4, 1e-3 <13> <14> for i in range(k): <15> g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01 <16> p1.grad = g.clone().float() <17> p2.grad = g.clone() <18> <19> bnb_optimizer.step() <20> torch_optimizer.step() <21> <22> <23> for name1, name2 in str2statenames[optim_name]: <24> torch.testing.assert_allclose( <25> torch_optimizer.state[p1][name1], <26> bnb_optimizer.state[p2][name2], <27> atol=atol, <28> rtol=rtol, <29> ) <30> <31> # since Lion can have pretty noisy updates where things lie at the boundary <32> # allow up to 10 errors for Lion <33> assert_most_approx_close(p1, p2.float(), atol, rtol, max_error_count=10) <34> <35> if i % (k // 5) == 0 and i > 0: <36> path = get_temp_dir() <37> torch.save</s>
===========below chunk 0=========== # module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer32bit(dim1, dim2, gtype, optim_name): # offset: 1 del bnb_optimizer bnb_optimizer = None bnb_optimizer = str2optimizers[optim_name][1]([p2]) bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt"))) rm_path(path) # since Lion can have pretty noisy updates where things lie at the boundary # allow up to 10 errors for Lion assert_most_approx_close(p1, p2.float(), atol, rtol, max_error_count=10) for name1, name2 in str2statenames[optim_name]: # since Lion can have pretty noisy updates where things lie at the boundary # allow up to 10 errors for Lion assert_most_approx_close(torch_optimizer.state[p1][name1], bnb_optimizer.state[p2][name2], atol=atol, rtol=rtol, max_error_count=10) if gtype == torch.float16: # the adam buffers should also be close because they are 32-bit # but the paramters can diverge because they are 16-bit # the difference grow larger and larger with each update # --> copy the state to keep weights close p1.data = p1.data.half().float() p2.copy_(p1.data) torch.testing.assert_allclose(p1.half(), p2) if optim_name in ["lars", "lamb"]: assert bnb_optimizer.state[p2]["unorm_vec"] > 0.0 ===========changed ref 0=========== # module: tests.test_optim # import apex k = 20 + str2bf16support = {} + str2bf16support['adam8bit_blockwise'] = True + ===========changed ref 1=========== # module: tests.test_optim def assert_most_approx_close(a, b, rtol=1e-3, atol=1e-3, max_error_count=0): idx = torch.isclose(a, b, rtol, atol) error_count = (idx == 0).sum().item() if error_count > max_error_count: print(f"Too many values not close: assert {error_count} < {max_error_count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 2=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 5=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 6=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 7=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 8=========== # module: tests.test_functional - #print((time.time()-t0)/1e6) - ===========changed ref 9=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 10=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 11=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 12=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 13=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 14=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 15=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) + ===========changed ref 16=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 17=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 18=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) +
tests.test_optim/test_optimizer8bit
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<0>:<add> if gtype == torch.bfloat16 and optim_name not in str2bf16support: return <13>:<add> elif gtype == torch.bfloat16: <add> atol, rtol = 3e-3, 1e-3 <add> patol, prtol = 1e-4, 1e-2 <del> <21>:<add> for i in range(100): <del> for i in range(50):
# module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer8bit(dim1, dim2, gtype, optim_name): <0> if dim1 == 1 and dim2 == 1: <1> return <2> p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 <3> p2 = p1.clone() <4> p1 = p1.float() <5> blocksize = 2048 <6> <7> torch_optimizer = str2optimizers[optim_name][0]([p1]) <8> bnb_optimizer = str2optimizers[optim_name][1]([p2]) <9> <10> if gtype == torch.float32: <11> atol, rtol = 3e-3, 1e-3 <12> patol, prtol = 1e-5, 1e-3 <13> <14> else: <15> atol, rtol = 3e-3, 1e-3 <16> patol, prtol = 1e-5, 1e-3 <17> <18> errors = [] <19> relerrors = [] <20> <21> for i in range(50): <22> g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01 <23> p1.grad = g.clone().float() <24> p2.grad = g.clone() <25> <26> bnb_optimizer.step() <27> torch_optimizer.step() <28> <29> # since Lion can have pretty noisy updates where things lie at the boundary <30> # allow up to 5 errors for Lion <31> assert_most_approx_close(p1, p2.float(), patol, prtol, max_error_count=5) <32> <33> dequant_states = [] <34> for name1, name2, qmap, max_val in str2statenames[optim_name]: <35> # print(bnb_optimizer.state[p2][max_val], name1) <36> if "</s>
===========below chunk 0=========== # module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer8bit(dim1, dim2, gtype, optim_name): # offset: 1 s1 = F.dequantize_blockwise( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize, ) else: s1 = F.dequantize( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], ) num_not_close = ( torch.isclose( torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol ) == 0 ) assert num_not_close.sum().item() < 20 dequant_states.append(s1.clone()) err = torch.abs(p1 - p2) relerr = err / (torch.abs(p1)+1e-9) assert err.mean() < 0.0001 assert relerr.mean() < 0.001 errors.append(err.mean().item()) relerrors.append(relerr.mean().item()) if i % 10 == 0 and i > 0: for (name1, name2, qmap, max_val), s in zip( str2statenames[optim_name], dequant_states ): s1cpy = s.clone() raws1cpy = bnb_optimizer.state[p2][name2].clone() qmap1 = bnb_optimizer.state[p2][qmap].clone() path = get_temp_dir() torch.save(bnb_optimizer.</s> ===========below chunk 1=========== # module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer8bit(dim1, dim2, gtype, optim_name): # offset: 2 <s>p2][qmap].clone() path = get_temp_dir() torch.save(bnb_optimizer.state_dict(), join(path, "opt.pt")) del bnb_optimizer bnb_optimizer = None bnb_optimizer = str2optimizers[optim_name][1]([p2]) bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt"))) rm_path(path) torch.testing.assert_allclose( raws1cpy, bnb_optimizer.state[p2][name2] ) torch.testing.assert_allclose( qmap1, bnb_optimizer.state[p2][qmap] ) if "blockwise" in optim_name: s1 = F.dequantize_blockwise( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize, ) else: s1 = F.dequantize( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], ) torch.testing.assert_allclose(s1cpy, s1) num_not_close = ( torch.isclose( torch_optimizer.state[p1][name1], s1, atol=atol, </s> ===========below chunk 2=========== # module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer8bit(dim1, dim2, gtype, optim_name): # offset: 3 <s>=rtol, ) == 0 ) assert num_not_close.sum().item() < 20 # since Lion can have pretty noisy updates where things lie at the boundary # allow up to 5 errors for Lion assert_most_approx_close(p1, p2.float(), patol, prtol, max_error_count=5) # the parameters diverge quickly. Here we keep them close # together so we can test against the Adam error p1.data = p1.data.to(gtype).float() p2.copy_(p1.data) torch.testing.assert_allclose(p1.to(gtype), p2) for (name1, name2, qmap, max_val), s in zip( str2statenames[optim_name], dequant_states ): torch_optimizer.state[p1][name1].copy_(s.data) ===========changed ref 0=========== # module: tests.test_optim dim1 = [1024] dim2 = [32, 1024, 4097] + gtype = [torch.float32, torch.float16, torch.bfloat16] - gtype = [torch.float32, torch.float16] optimizer_names = [ "adam8bit", "lion8bit", "momentum8bit", "rmsprop8bit", "adam8bit_blockwise", "lion8bit_blockwise", - "lars8bit", "momentum8bit_blockwise", "rmsprop8bit_blockwise", ] values = list(product(dim1, dim2, gtype, optimizer_names)) names = [ "dim1_{}_dim2_{}_gtype_{}_optim_{}".format(*vals) for vals in values ] ===========changed ref 1=========== # module: tests.test_optim # import apex k = 20 + str2bf16support = {} + str2bf16support['adam8bit_blockwise'] = True + ===========changed ref 2=========== # module: tests.test_optim def assert_most_approx_close(a, b, rtol=1e-3, atol=1e-3, max_error_count=0): idx = torch.isclose(a, b, rtol, atol) error_count = (idx == 0).sum().item() if error_count > max_error_count: print(f"Too many values not close: assert {error_count} < {max_error_count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 5=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 6=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 7=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 8=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) +
tests.test_optim/test_adam_percentile_clipping
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
# module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_bits", values, ids=names) def test_adam_percentile_clipping(dim1, dim2, gtype, optim_bits): <0> if dim1 == 1 and dim2 == 1: <1> return <2> p1 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1 <3> beta1 = 0.9 <4> beta2 = 0.999 <5> lr = 0.001 <6> eps = 1e-8 <7> p1 = p1.cuda() <8> p2 = p1.clone() <9> adam1 = bnb.optim.Adam([p1], lr, (beta1, beta2), eps, optim_bits=optim_bits) <10> adam2 = bnb.optim.Adam( <11> [p2], <12> lr, <13> (beta1, beta2), <14> eps, <15> optim_bits=optim_bits, <16> percentile_clipping=5, <17> ) <18> <19> gnorm_vec = torch.zeros(100).cuda() <20> step = 0 <21> <22> for i in range(50): <23> step += 1 <24> g1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + ( <25> 0.01 * i <26> ) <27> g2 = g1.clone() <28> p2.grad = g2 <29> <30> current_gnorm, clip_val, gnorm_scale = F.percentile_clipping( <31> g1, gnorm_vec, step, 5 <32> ) <33> g1 = (g1.float() * gnorm_scale).to(gtype) <34> p1.grad = g1 <35> <36> adam1.step() <37> adam2.step() <38> <39> # gnorm_scale is not deterministic (warp reductions), as such there can be slight differences in state <40> if</s>
===========below chunk 0=========== # module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_bits", values, ids=names) def test_adam_percentile_clipping(dim1, dim2, gtype, optim_bits): # offset: 1 torch.testing.assert_allclose(p1, p2) torch.testing.assert_allclose( adam1.state[p1]["state1"], adam2.state[p2]["state1"], atol=5e-5, rtol=1e-4, ) torch.testing.assert_allclose( adam1.state[p1]["state2"], adam2.state[p2]["state2"], atol=5e-5, rtol=1e-4, ) elif optim_bits == 8: torch.testing.assert_allclose(p1, p2, atol=1e-4, rtol=1e-3) torch.testing.assert_allclose( adam1.state[p1]["state1"], adam2.state[p2]["state1"], atol=2, rtol=1e-3, ) torch.testing.assert_allclose( adam1.state[p1]["state2"], adam2.state[p2]["state2"], atol=2, rtol=1e-3, ) adam1.state[p1]["state1"].copy_(adam2.state[p2]["state1"]) adam1.state[p1]["state2"].copy_(adam2.state[p2]["state2"]) if i % 10 == 0 and i > 0: path = get_temp_dir() torch.save(adam2.state_dict(), join(path, "opt.pt")) del adam2 adam2 =</s> ===========below chunk 1=========== # module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_bits", values, ids=names) def test_adam_percentile_clipping(dim1, dim2, gtype, optim_bits): # offset: 2 <s>adam2.state_dict(), join(path, "opt.pt")) del adam2 adam2 = None adam2 = bnb.optim.Adam( [p2], lr, (beta1, beta2), eps, optim_bits=optim_bits, percentile_clipping=5, ) adam2.load_state_dict(torch.load(join(path, "opt.pt"))) ===========changed ref 0=========== # module: tests.test_optim dim1 = [1024] dim2 = [32, 1024, 4097] + gtype = [torch.float32, torch.float16, torch.bfloat16] - gtype = [torch.float32, torch.float16] optimizer_names = [ "adam8bit", "lion8bit", "momentum8bit", "rmsprop8bit", "adam8bit_blockwise", "lion8bit_blockwise", - "lars8bit", "momentum8bit_blockwise", "rmsprop8bit_blockwise", ] values = list(product(dim1, dim2, gtype, optimizer_names)) names = [ "dim1_{}_dim2_{}_gtype_{}_optim_{}".format(*vals) for vals in values ] ===========changed ref 1=========== # module: tests.test_optim # import apex k = 20 + str2bf16support = {} + str2bf16support['adam8bit_blockwise'] = True + ===========changed ref 2=========== # module: tests.test_optim def assert_most_approx_close(a, b, rtol=1e-3, atol=1e-3, max_error_count=0): idx = torch.isclose(a, b, rtol, atol) error_count = (idx == 0).sum().item() if error_count > max_error_count: print(f"Too many values not close: assert {error_count} < {max_error_count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 4=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 5=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 6=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 7=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 8=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 9=========== # module: tests.test_functional - #print((time.time()-t0)/1e6) - ===========changed ref 10=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 11=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 12=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 13=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 14=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 15=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') +
tests.test_modules/assert_all_approx_close
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<4>:<add> torch.testing.assert_close(a, b, rtol, atol) <del> torch.testing.assert_allclose(a, b, rtol, atol)
# module: tests.test_modules def assert_all_approx_close(a, b, atol=1e-8, rtol=1e-5, count=10): <0> idx = torch.isclose(a, b, rtol, atol) <1> sumval = (idx == 0).sum().item() <2> if sumval > count: <3> print(f"Too many values not close: assert {sumval} < {count}") <4> torch.testing.assert_allclose(a, b, rtol, atol) <5>
===========changed ref 0=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 1=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 2=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 3=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 4=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 5=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 6=========== # module: tests.test_functional - #print((time.time()-t0)/1e6) - ===========changed ref 7=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 8=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 9=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 10=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 11=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 12=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 13=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) + ===========changed ref 14=========== # module: tests.test_optim # import apex k = 20 + str2bf16support = {} + str2bf16support['adam8bit_blockwise'] = True + ===========changed ref 15=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 16=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 17=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 18=========== # module: bitsandbytes.optim.adam + class PagedAdam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 19=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 20=========== # module: bitsandbytes.optim.adamw + class PagedAdamW8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 21=========== # module: bitsandbytes.optim.adam + class PagedAdam(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) +
tests.test_modules/test_linear8bitlt_accumulated_gradient
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<0>:<del> l1 = torch.nn.Sequential( <1>:<add> l1 = torch.nn.Sequential(*[bnb.nn.Linear8bitLt(32, 32).cuda().half() for i in range(2)]) <del> *[bnb.nn.Linear8bitLt(32, 32).cuda().half() for i in range(2)] <2>:<del> ) <3>:<del> l2 = torch.nn.Sequential( <4>:<add> l2 = torch.nn.Sequential(*[torch.nn.Linear(32, 32).cuda().half() for i in range(2)]) <del> *[torch.nn.Linear(32, 32).cuda().half() for i in range(2)] <5>:<del> ) <27>:<add> print(i)
# module: tests.test_modules def test_linear8bitlt_accumulated_gradient(): <0> l1 = torch.nn.Sequential( <1> *[bnb.nn.Linear8bitLt(32, 32).cuda().half() for i in range(2)] <2> ) <3> l2 = torch.nn.Sequential( <4> *[torch.nn.Linear(32, 32).cuda().half() for i in range(2)] <5> ) <6> l2[0].weight = torch.nn.Parameter(l1[0].weight.clone()) <7> l2[0].bias = torch.nn.Parameter(l1[0].bias.clone()) <8> l2[1].weight = torch.nn.Parameter(l1[1].weight.clone()) <9> l2[1].bias = torch.nn.Parameter(l1[1].bias.clone()) <10> opt1 = bnb.optim.Adam8bit(l1.parameters(), lr=0.001) <11> opt2 = bnb.optim.Adam8bit(l2.parameters(), lr=0.001) <12> <13> acc_steps = 10 <14> <15> for i in range(10): <16> b1 = torch.randn(16, 8, 32, device="cuda").half() <17> o1 = l1(b1) <18> o2 = l2(b1) <19> loss1 = o1.mean() <20> loss2 = o2.mean() <21> loss1.backward() <22> loss2.backward() <23> if i == 2: <24> assert l1[0].state.CxB is not None <25> assert l1[1].state.CxB is not None <26> <27> if i > 0 and i % acc_steps == 0: <28> opt1.step() <29> opt1.zero_grad(True) <30> opt2.step() <31> opt2.zero_grad(True) <32> assert_all_approx_close( <33> l1[0].weight, l2[0].weight, rtol=1.05, atol=</s>
===========below chunk 0=========== # module: tests.test_modules def test_linear8bitlt_accumulated_gradient(): # offset: 1 ) assert_all_approx_close( l1[1].weight, l2[1].weight, rtol=1.05, atol=0.01, count=2 ) # we do this copy because otherwise we have small divergences over time that add up l1[0].weight.data.copy_(l2[0].weight.data) l1[1].weight.data.copy_(l2[1].weight.data) else: torch.testing.assert_allclose(l1[0].weight.grad, l2[0].weight.grad) torch.testing.assert_allclose(l1[1].weight.grad, l2[1].weight.grad) ===========changed ref 0=========== # module: tests.test_modules def assert_all_approx_close(a, b, atol=1e-8, rtol=1e-5, count=10): idx = torch.isclose(a, b, rtol, atol) sumval = (idx == 0).sum().item() if sumval > count: print(f"Too many values not close: assert {sumval} < {count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol) ===========changed ref 1=========== # module: bitsandbytes.functional + class GlobalPageManager: + _instance = None + ===========changed ref 2=========== # module: bitsandbytes.functional + class GlobalPageManager: + def initialize(self): + self.paged_tensors = [] + ===========changed ref 3=========== # module: bitsandbytes.functional + class GlobalPageManager: + def __init__(self): + raise RuntimeError("Call get_instance() instead") + ===========changed ref 4=========== # module: bitsandbytes.functional + def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value) + elementwise_func('fill', A, None, value) + ===========changed ref 5=========== # module: bitsandbytes.functional + def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0) + elementwise_func('_mul', A, B, 0) + ===========changed ref 6=========== # module: bitsandbytes.functional + def arange(A, device=None): elementwise_func('arange', A, None, 0) + elementwise_func('arange', A, None, 0) + ===========changed ref 7=========== # module: tests.test_functional - #print((time.time()-t0)/1e6) - ===========changed ref 8=========== # module: bitsandbytes.functional + def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4') + ===========changed ref 9=========== # module: bitsandbytes.functional + def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4') + ===========changed ref 10=========== # module: bitsandbytes.functional + def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False): + return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4') + ===========changed ref 11=========== # module: bitsandbytes.functional + def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor: + return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4') + ===========changed ref 12=========== # module: bitsandbytes.nn.modules + class LinearFP4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4') + ===========changed ref 13=========== # module: bitsandbytes.nn.modules + class LinearNF4(Linear4bit): + def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True): + super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4') + ===========changed ref 14=========== # module: bitsandbytes.autograd._functions + def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): + assert quant_state is not None + return MatMul4Bit.apply(A, B, out, bias, quant_state) + ===========changed ref 15=========== # module: tests.test_optim # import apex k = 20 + str2bf16support = {} + str2bf16support['adam8bit_blockwise'] = True + ===========changed ref 16=========== # module: bitsandbytes.functional + class GlobalPageManager: + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + ===========changed ref 17=========== # module: bitsandbytes.cuda_setup.main class CUDASetup: def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False + self.error = False ===========changed ref 18=========== # module: bitsandbytes.optim.adam + class PagedAdam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 19=========== # module: bitsandbytes.optim.adam + class PagedAdam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 20=========== # module: bitsandbytes.optim.adamw + class PagedAdamW32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, + args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) +
tests.test_modules/test_linear8bitlt_no_fp16_weights
Modified
bitsandbytes-foundation~bitsandbytes
675baa79d2434b8bb779859ad08a73b9c0c82fbe
Merge remote-tracking branch 'origin/main' into merge
<0>:<del> l1 = ( <1>:<del> bnb.nn.Linear8bitLt( <2>:<add> l1 = (bnb.nn.Linear8bitLt( 32, 64, threshold=threshold, has_fp16_weights=False, memory_efficient_backward=memory_efficient_backward).cuda().half()) <del> 32, 64, threshold=threshold, has_fp16_weights=False, memory_efficient_backward=memory_efficient_backward <3>:<del> ) <4>:<del> .cuda() <5>:<del> .half() <6>:<del> )
# module: tests.test_modules + @pytest.mark.parametrize("threshold", [0.0, 2.0]) - @pytest.mark.parametrize("threshold", values, ids=names) @pytest.mark.parametrize("memory_efficient_backward", [False]) def test_linear8bitlt_no_fp16_weights(threshold, memory_efficient_backward): <0> l1 = ( <1> bnb.nn.Linear8bitLt( <2> 32, 64, threshold=threshold, has_fp16_weights=False, memory_efficient_backward=memory_efficient_backward <3> ) <4> .cuda() <5> .half() <6> ) <7> assert l1.weight.dtype == torch.int8 <8> <9> l1.eval() <10> for i in range(100): <11> b1 = torch.randn(16, 8, 32, device="cuda").half() <12> o1 = l1(b1) <13> assert o1.dtype == torch.float16 <14> <15> mlp = MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False).cuda() <16> assert mlp.fc1.weight.dtype == torch.int8 <17> assert mlp.fc2.weight.dtype == torch.int8 <18> <19> for i in range(100): <20> b1 = torch.randn(16, 8, 32, device="cuda").half() <21> o1 = mlp(b1) <22> assert o1.dtype == torch.float16 <23> if threshold > 0: <24> assert mlp.fc1.state.idx is not None <25> if threshold > 0: <26> assert mlp.fc2.state.idx is not None <27> <28> mlp = ( <29> MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False) <30> .cuda() <31> .half() <32> ) <33> assert mlp.fc1.weight.dtype == torch.int8 <34> assert mlp.fc2.weight.dtype</s>
===========below chunk 0=========== # module: tests.test_modules + @pytest.mark.parametrize("threshold", [0.0, 2.0]) - @pytest.mark.parametrize("threshold", values, ids=names) @pytest.mark.parametrize("memory_efficient_backward", [False]) def test_linear8bitlt_no_fp16_weights(threshold, memory_efficient_backward): # offset: 1 for i in range(100): b1 = torch.randn(16, 8, 32, device="cuda").half() o1 = mlp(b1) assert o1.dtype == torch.float16 if threshold > 0: assert mlp.fc1.state.idx is not None if threshold > 0: assert mlp.fc2.state.idx is not None mlp = ( MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False) .half() .cuda() ) for i in range(100): b1 = torch.randn(16, 8, 32, device="cuda").half() o1 = mlp(b1) assert o1.dtype == torch.float16 if threshold > 0: assert mlp.fc1.state.idx is not None if threshold > 0: assert mlp.fc2.state.idx is not None assert mlp.fc1.weight.dtype == torch.int8 assert mlp.fc2.weight.dtype == torch.int8 mlp = ( MLP8bit( 32, 64, threshold=threshold, has_fp16_weights=False, memory_efficient_backward=memory_efficient_backward ) .half() .to("cuda") ) for i in range(100): b1 = torch.randn(16, 8, 32, device="cuda").half() o1 = mlp(b1) assert o1.dtype == torch.float16 if threshold > 0: assert mlp.</s> ===========below chunk 1=========== # module: tests.test_modules + @pytest.mark.parametrize("threshold", [0.0, 2.0]) - @pytest.mark.parametrize("threshold", values, ids=names) @pytest.mark.parametrize("memory_efficient_backward", [False]) def test_linear8bitlt_no_fp16_weights(threshold, memory_efficient_backward): # offset: 2 <s>lp(b1) assert o1.dtype == torch.float16 if threshold > 0: assert mlp.fc1.state.idx is not None if threshold > 0: assert mlp.fc2.state.idx is not None assert mlp.fc1.weight.dtype == torch.int8 assert mlp.fc2.weight.dtype == torch.int8 assert mlp.fc1.weight.device.type == "cuda" assert mlp.fc2.weight.device.type == "cuda" mlp = MLP8bit( 32, 64, threshold=threshold, has_fp16_weights=False, memory_efficient_backward=memory_efficient_backward ) w1, w2 = mlp.fc1.weight.clone().cuda(), mlp.fc2.weight.clone().cuda() # grab weights before quantization, mlp = mlp.cuda().half() # and this line triggers quantization for i in range(100): b1 = torch.randn(16, 8, 32, device="cuda").half() o1 = mlp(b1) assert o1.dtype == torch.float16 if threshold > 0: assert mlp.fc1.state.idx is not None if threshold > 0: assert mlp.fc2.state.idx is not None assert mlp.fc1.weight.dtype == torch.int8 assert mlp.fc2.weight.dtype == torch.int8 </s> ===========below chunk 2=========== # module: tests.test_modules + @pytest.mark.parametrize("threshold", [0.0, 2.0]) - @pytest.mark.parametrize("threshold", values, ids=names) @pytest.mark.parametrize("memory_efficient_backward", [False]) def test_linear8bitlt_no_fp16_weights(threshold, memory_efficient_backward): # offset: 3 <s>lp.fc1.weight.device.type == "cuda" assert mlp.fc2.weight.device.type == "cuda" if memory_efficient_backward: b1 = torch.randn(16, 8, 32, device="cuda", requires_grad=True, dtype=torch.half) o1 = mlp(b1) assert o1.dtype == torch.float16 assert o1.requires_grad grad_proj = torch.randn_like(o1) mlp.zero_grad() (o1 * grad_proj).sum().backward() grad_ref = grad_proj.flatten(2) @ w2.half() @ w1.half() scale = grad_ref.abs().mean() torch.testing.assert_allclose(b1.grad, grad_ref, rtol=0, atol=0.05 * scale) idx = torch.isclose(b1.grad, grad_ref, atol=0.01 * scale, rtol=0.1) assert (idx == 0).sum().item() <= b1.numel() * 0.005 ===========changed ref 0=========== # module: tests.test_modules + modules = [] + modules.append(bnb.nn.Linear8bitLt) + modules.append(bnb.nn.Linear4bit) + modules.append(bnb.nn.LinearFP4) + modules.append(bnb.nn.LinearNF4) + modules.append(lambda d1, d2: bnb.nn.LinearFP4(d1, d2, compress_statistics=True)) + modules.append(lambda d1, d2: bnb.nn.LinearNF4(d1, d2, compress_statistics=True)) + names = ['Int8Lt', '4bit', 'FP4', 'NF4', 'FP4+C', 'NF4+C'] - threshold = [0.0, 2.0] - values = threshold - names = [f"threshold_{vals}" for vals in values] ===========changed ref 1=========== # module: tests.test_modules def assert_all_approx_close(a, b, atol=1e-8, rtol=1e-5, count=10): idx = torch.isclose(a, b, rtol, atol) sumval = (idx == 0).sum().item() if sumval > count: print(f"Too many values not close: assert {sumval} < {count}") + torch.testing.assert_close(a, b, rtol, atol) - torch.testing.assert_allclose(a, b, rtol, atol)
tests.test_modules/test_linear8bitlt_accumulated_gradient
Modified
bitsandbytes-foundation~bitsandbytes
4bd11518293ea30c6792a5baf64f0715739a09ca
Fixed gradient accumulation test.
<2>:<add> l1[0].weight.data.copy_(l2[0].weight.data) <add> l1[1].weight.data.copy_(l2[1].weight.data) <add> l1[0].bias.data.copy_(l2[0].bias.data) <add> l1[1].bias.data.copy_(l2[1].bias.data) <add> <del> l2[0].weight = torch.nn.Parameter(l1[0].weight.clone()) <3>:<del> l2[0].bias = torch.nn.Parameter(l1[0].bias.clone()) <4>:<del> l2[1].weight = torch.nn.Parameter(l1[1].weight.clone()) <5>:<del> l2[1].bias = torch.nn.Parameter(l1[1].bias.clone()) <6>:<add> opt1 = bnb.optim.Adam32bit(l1.parameters(), lr=0.001) <del> opt1 = bnb.optim.Adam8bit(l1.parameters(), lr=0.001) <7>:<add> opt2 = bnb.optim.Adam32bit(l2.parameters(), lr=0.001) <del> opt2 = bnb.optim.Adam8bit(l2.parameters(), lr=0.001) <23>:<del> print(i)
# module: tests.test_modules def test_linear8bitlt_accumulated_gradient(): <0> l1 = torch.nn.Sequential(*[bnb.nn.Linear8bitLt(32, 32).cuda().half() for i in range(2)]) <1> l2 = torch.nn.Sequential(*[torch.nn.Linear(32, 32).cuda().half() for i in range(2)]) <2> l2[0].weight = torch.nn.Parameter(l1[0].weight.clone()) <3> l2[0].bias = torch.nn.Parameter(l1[0].bias.clone()) <4> l2[1].weight = torch.nn.Parameter(l1[1].weight.clone()) <5> l2[1].bias = torch.nn.Parameter(l1[1].bias.clone()) <6> opt1 = bnb.optim.Adam8bit(l1.parameters(), lr=0.001) <7> opt2 = bnb.optim.Adam8bit(l2.parameters(), lr=0.001) <8> <9> acc_steps = 10 <10> <11> for i in range(10): <12> b1 = torch.randn(16, 8, 32, device="cuda").half() <13> o1 = l1(b1) <14> o2 = l2(b1) <15> loss1 = o1.mean() <16> loss2 = o2.mean() <17> loss1.backward() <18> loss2.backward() <19> if i == 2: <20> assert l1[0].state.CxB is not None <21> assert l1[1].state.CxB is not None <22> <23> print(i) <24> if i > 0 and i % acc_steps == 0: <25> opt1.step() <26> opt1.zero_grad(True) <27> opt2.step() <28> opt2.zero_grad(True) <29> assert_all_approx_close( <30> l1[0].weight, l2[0].weight, rtol=1.05, atol=0.01, count=2</s>
===========below chunk 0=========== # module: tests.test_modules def test_linear8bitlt_accumulated_gradient(): # offset: 1 assert_all_approx_close( l1[1].weight, l2[1].weight, rtol=1.05, atol=0.01, count=2 ) # we do this copy because otherwise we have small divergences over time that add up l1[0].weight.data.copy_(l2[0].weight.data) l1[1].weight.data.copy_(l2[1].weight.data) else: torch.testing.assert_close(l1[0].weight.grad, l2[0].weight.grad) torch.testing.assert_close(l1[1].weight.grad, l2[1].weight.grad) ===========unchanged ref 0=========== at: bitsandbytes.nn.modules Linear8bitLt(input_features, output_features, bias=True, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0, index=None) at: bitsandbytes.optim.adam Adam32bit(params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False) at: bitsandbytes.optim.optimizer.Optimizer8bit step(closure=None) at: tests.test_modules assert_all_approx_close(a, b, atol=1e-8, rtol=1e-5, count=10) ===========unchanged ref 1=========== at: torch._C._VariableFunctions randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(*size: _int, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(*size: _int, generator: Optional[Generator], out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(size: Sequence[Union[_int, SymInt]], *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional</s> ===========unchanged ref 2=========== at: torch.nn.modules.container Sequential(*args: Module) Sequential(arg: 'OrderedDict[str, Module]') at: torch.nn.modules.linear Linear(in_features: int, out_features: int, bias: bool=True, device=None, dtype=None) at: torch.nn.modules.module.Module dump_patches: bool = False _version: int = 1 training: bool _parameters: Dict[str, Optional[Parameter]] _buffers: Dict[str, Optional[Tensor]] _non_persistent_buffers_set: Set[str] _backward_pre_hooks: Dict[int, Callable] _backward_hooks: Dict[int, Callable] _is_full_backward_hook: Optional[bool] _forward_hooks: Dict[int, Callable] _forward_hooks_with_kwargs: Dict[int, bool] _forward_hooks_always_called: Dict[int, bool] _forward_pre_hooks: Dict[int, Callable] _forward_pre_hooks_with_kwargs: Dict[int, bool] _state_dict_hooks: Dict[int, Callable] _load_state_dict_pre_hooks: Dict[int, Callable] _state_dict_pre_hooks: Dict[int, Callable] _load_state_dict_post_hooks: Dict[int, Callable] _modules: Dict[str, Optional['Module']] call_super_init: bool = False _compiled_call_impl : Optional[Callable] = None forward: Callable[..., Any] = _forward_unimplemented cuda(device: Optional[Union[int, device]]=None) -> T half() -> T __call__ : Callable[..., Any] = _wrapped_call_impl T_destination = TypeVar('T_destination', bound=Dict[str, Any]) parameters(recurse: bool=True) -> Iterator[Parameter] ===========unchanged ref 3=========== at: torch.optim.optimizer.Optimizer OptimizerPreHook: TypeAlias = Callable[[Self, Args, Kwargs], Optional[Tuple[Args, Kwargs]]] # type: ignore[misc] OptimizerPostHook: TypeAlias = Callable[[Self, Args, Kwargs], None] # type: ignore[misc] _optimizer_step_pre_hooks: Dict[int, OptimizerPreHook] _optimizer_step_post_hooks: Dict[int, OptimizerPostHook] _optimizer_state_dict_pre_hooks: 'OrderedDict[int, Callable[["Optimizer"], None]]' _optimizer_state_dict_post_hooks: 'OrderedDict[int, Callable[["Optimizer", StateDict], Optional[StateDict]]]' _optimizer_load_state_dict_pre_hooks: 'OrderedDict[int, Callable[["Optimizer", StateDict], Optional[StateDict]]]' _optimizer_load_state_dict_post_hooks: 'OrderedDict[int, Callable[["Optimizer"], None]]' _disable_dynamo(fn=None) inner(*args, fn, **kwargs)
tests.test_functional/test_bench_matmul
Modified
bitsandbytes-foundation~bitsandbytes
2bce175d156b5c5c1be925cb57fe33215675fafd
Fixed Makefile.
<0>:<add> iters = 80 <del> iters = 1 <12>:<add> linear8bit = bnb.nn.Linear8bitLt(model, hidden, False, False).cuda().half() <del> linear8bit = bnb.nn.Linear8bitLt(model, hidden, False).cuda().half() <18>:<add> linearMixedBit = (bnb.nn.Linear8bitLt(model, hidden, False, False, threshold=6.0).cuda().half()) <del> linearMixedBit = (bnb.nn.Linear8bitLt(model, hidden, False, threshold=6.0).cuda().half()) <19>:<add> #linearMixedBit.eval() <del> linearMixedBit.eval()
# module: tests.test_functional @pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names) def test_bench_matmul(batch, seq, model, hidden): <0> iters = 1 <1> formatB = F.get_special_format_str() <2> <3> A = torch.randn(batch, seq, model, device="cuda").half() <4> B = torch.empty(hidden, model, dtype=torch.float16, device="cuda") <5> torch.nn.init.xavier_uniform_(B) <6> <7> B_fp4, state = F.quantize_fp4(B) <8> B_fp4_c, state_c = F.quantize_fp4(B, compress_statistics=True) <9> <10> B_nf4, state_nf4= F.quantize_nf4(B) <11> <12> linear8bit = bnb.nn.Linear8bitLt(model, hidden, False).cuda().half() <13> linear8bit.eval() <14> <15> outliers = torch.randint(0, model, size=(5,)).cuda() <16> A[:, :, outliers] = 8.0 <17> <18> linearMixedBit = (bnb.nn.Linear8bitLt(model, hidden, False, threshold=6.0).cuda().half()) <19> linearMixedBit.eval() <20> <21> linear8bit_train = bnb.nn.Linear8bitLt(model, hidden, False).cuda().half() <22> linear8bit_train_thresh = bnb.nn.Linear8bitLt(model, hidden, False, threshold=6.0).cuda().half() <23> <24> # warmup <25> for i in range(iters): <26> torch.matmul(A, B.t()) <27> torch.cuda.synchronize() <28> print("") <29> <30> torch.cuda.synchronize() <31> t0 = time.time() <32> for i in range(iters): <33> torch.matmul(A,</s>
===========below chunk 0=========== # module: tests.test_functional @pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names) def test_bench_matmul(batch, seq, model, hidden): # offset: 1 torch.cuda.synchronize() print( f"pytorch fp16: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" ) torch.cuda.synchronize() t0 = time.time() for i in range(iters): bnb.matmul_4bit(A, B_fp4.t(), quant_state=state) torch.cuda.synchronize() print( f"bnb fp4: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" ) torch.cuda.synchronize() t0 = time.time() for i in range(iters): bnb.matmul_4bit(A, B_fp4.t(), quant_state=state_c) torch.cuda.synchronize() print( f"bnb fp4 + compressed stats: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" ) torch.cuda.synchronize() t0 = time.time() for i in range(iters): bnb.matmul_4bit(A, B_nf4.t(), quant_state=state_nf4) torch.cuda.synchronize() print( f"bnb nf4: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" ) ===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: _pytest.mark.structures.MarkGenerator skip: _SkipMarkDecorator skipif: _SkipifMarkDecorator xfail: _XfailMarkDecorator parametrize: _ParametrizeMarkDecorator usefixtures: _UsefixturesMarkDecorator filterwarnings: _FilterwarningsMarkDecorator at: bitsandbytes.autograd._functions matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor=None, bias=None) at: bitsandbytes.functional get_special_format_str() quantize_fp4(A: Tensor, absmax: Tensor=None, out: Tensor=None, blocksize=64, compress_statistics=False) quantize_nf4(A: Tensor, absmax: Tensor=None, out: Tensor=None, blocksize=64, compress_statistics=False) at: bitsandbytes.nn.modules Linear8bitLt(input_features, output_features, bias=True, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0, index=None) at: tests.test_functional values = [] at: time time() -> float at: torch._C float16: dtype = ... ===========unchanged ref 1=========== at: torch._C._VariableFunctions empty(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], memory_format: Optional[memory_format]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor empty(*size: _int, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor empty(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], memory_format: Optional[memory_format]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor empty(size: Sequence[Union[_int, SymInt]], *, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor matmul(input: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor ===========unchanged ref 2=========== randint(low: Union[_int, SymInt], high: Union[_int, SymInt], size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randint(high: Union[_int, SymInt], size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randint(low: Union[_int, SymInt], high: Union[_int, SymInt], size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randint(high: Union[_int, SymInt], size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randint(high: _int, size: _size, *, generator: Optional[Generator]=None, dtype: Optional[_dtype]=None, device: Device=None, requires_grad: _bool=False) -> Tensor randint(low: _int, high: _int, size: _size, *, generator: Optional[Generator]=</s>
bitsandbytes.optim.lion/Lion.__init__
Modified
bitsandbytes-foundation~bitsandbytes
1b8772a8f33fdb47df0c849302cbb7e703571b8c
Added PagedLion and bf16 Lion.
<0>:<del> super().__init__( <1>:<del> "lion", <2>:<del> params, <3>:<del> lr, <4>:<del> betas, <5>:<del> 0., <6>:<del> weight_decay, <7>:<del> optim_bits, <8>:<del> args, <9>:<del> min_8bit_size, <10>:<del> percentile_clipping, <11>:<del> block_wise, <12>:<del> ) <13>:<add> super().__init__("lion", params, lr, betas, 0., weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged)
<s>bits=32, - args=None, - min_8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): <0> super().__init__( <1> "lion", <2> params, <3> lr, <4> betas, <5> 0., <6> weight_decay, <7> optim_bits, <8> args, <9> min_8bit_size, <10> percentile_clipping, <11> block_wise, <12> ) <13>
===========unchanged ref 0=========== at: bitsandbytes.optim.optimizer Optimizer1State(optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, is_paged=False) at: bitsandbytes.optim.optimizer.Optimizer1State __init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, is_paged=False) __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, is_paged=False)
bitsandbytes.optim.lion/Lion8bit.__init__
Modified
bitsandbytes-foundation~bitsandbytes
1b8772a8f33fdb47df0c849302cbb7e703571b8c
Added PagedLion and bf16 Lion.
<0>:<del> super().__init__( <1>:<del> "lion", <2>:<del> params, <3>:<del> lr, <4>:<del> betas, <5>:<del> 0., <6>:<del> weight_decay, <7>:<del> 8, <8>:<del> args, <9>:<del> min_8bit_size, <10>:<del> percentile_clipping, <11>:<del> block_wise, <12>:<del> ) <13>:<add> super().__init__("lion", params, lr, betas, 0., weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged)
<s>), - weight_decay=0, - args=None, - min_8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): <0> super().__init__( <1> "lion", <2> params, <3> lr, <4> betas, <5> 0., <6> weight_decay, <7> 8, <8> args, <9> min_8bit_size, <10> percentile_clipping, <11> block_wise, <12> ) <13>
===========changed ref 0=========== # module: bitsandbytes.optim.lion + class PagedLion32bit(Optimizer1State): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__("lion", params, lr, betas, 0., weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 1=========== # module: bitsandbytes.optim.lion + class PagedLion8bit(Optimizer1State): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__("lion", params, lr, betas, 0., weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 2=========== # module: bitsandbytes.optim.lion + class PagedLion(Optimizer1State): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__("lion", params, lr, betas, 0., weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 3=========== <s>bits=32, - args=None, - min_8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "lion", - params, - lr, - betas, - 0., - weight_decay, - optim_bits, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__("lion", params, lr, betas, 0., weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged)
bitsandbytes.optim.lion/Lion32bit.__init__
Modified
bitsandbytes-foundation~bitsandbytes
1b8772a8f33fdb47df0c849302cbb7e703571b8c
Added PagedLion and bf16 Lion.
<0>:<del> super().__init__( <1>:<del> "lion", <2>:<del> params, <3>:<del> lr, <4>:<del> betas, <5>:<del> 0., <6>:<del> weight_decay, <7>:<del> 32, <8>:<del> args, <9>:<del> min_8bit_size, <10>:<del> percentile_clipping, <11>:<del> block_wise, <12>:<del> ) <13>:<add> super().__init__("lion", params, lr, betas, 0., weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged)
<s>), - weight_decay=0, - args=None, - min_8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): <0> super().__init__( <1> "lion", <2> params, <3> lr, <4> betas, <5> 0., <6> weight_decay, <7> 32, <8> args, <9> min_8bit_size, <10> percentile_clipping, <11> block_wise, <12> ) <13>
===========changed ref 0=========== # module: bitsandbytes.optim.lion + class PagedLion32bit(Optimizer1State): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__("lion", params, lr, betas, 0., weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 1=========== # module: bitsandbytes.optim.lion + class PagedLion8bit(Optimizer1State): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__("lion", params, lr, betas, 0., weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 2=========== # module: bitsandbytes.optim.lion + class PagedLion(Optimizer1State): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__("lion", params, lr, betas, 0., weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 3=========== <s>), - weight_decay=0, - args=None, - min_8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "lion", - params, - lr, - betas, - 0., - weight_decay, - 8, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__("lion", params, lr, betas, 0., weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) ===========changed ref 4=========== <s>bits=32, - args=None, - min_8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "lion", - params, - lr, - betas, - 0., - weight_decay, - optim_bits, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__("lion", params, lr, betas, 0., weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged)
tests.test_optim/assert_most_approx_close
Modified
bitsandbytes-foundation~bitsandbytes
1b8772a8f33fdb47df0c849302cbb7e703571b8c
Added PagedLion and bf16 Lion.
<0>:<add> idx = torch.isclose(a, b, rtol=rtol, atol=atol) <del> idx = torch.isclose(a, b, rtol, atol) <4>:<add> torch.testing.assert_close(a, b, rtol=rtol, atol=atol) <del> torch.testing.assert_close(a, b, rtol, atol)
# module: tests.test_optim def assert_most_approx_close(a, b, rtol=1e-3, atol=1e-3, max_error_count=0): <0> idx = torch.isclose(a, b, rtol, atol) <1> error_count = (idx == 0).sum().item() <2> if error_count > max_error_count: <3> print(f"Too many values not close: assert {error_count} < {max_error_count}") <4> torch.testing.assert_close(a, b, rtol, atol) <5>
===========changed ref 0=========== # module: bitsandbytes.optim.lion + class PagedLion32bit(Optimizer1State): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__("lion", params, lr, betas, 0., weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 1=========== # module: bitsandbytes.optim.lion + class PagedLion8bit(Optimizer1State): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__("lion", params, lr, betas, 0., weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 2=========== # module: bitsandbytes.optim.lion + class PagedLion(Optimizer1State): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__("lion", params, lr, betas, 0., weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 3=========== <s>), - weight_decay=0, - args=None, - min_8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "lion", - params, - lr, - betas, - 0., - weight_decay, - 32, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__("lion", params, lr, betas, 0., weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) ===========changed ref 4=========== <s>), - weight_decay=0, - args=None, - min_8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "lion", - params, - lr, - betas, - 0., - weight_decay, - 8, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__("lion", params, lr, betas, 0., weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) ===========changed ref 5=========== <s>bits=32, - args=None, - min_8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "lion", - params, - lr, - betas, - 0., - weight_decay, - optim_bits, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__("lion", params, lr, betas, 0., weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) ===========changed ref 6=========== # module: bitsandbytes.functional name2qmap = {} if COMPILED_WITH_CUDA: """C FUNCTIONS FOR OPTIMIZERS""" str2optimizer32bit = {} str2optimizer32bit["adam"] = (lib.cadam32bit_grad_fp32, lib.cadam32bit_grad_fp16, lib.cadam32bit_grad_bf16) str2optimizer32bit["momentum"] = ( lib.cmomentum32bit_grad_32, lib.cmomentum32bit_grad_16, ) str2optimizer32bit["rmsprop"] = ( lib.crmsprop32bit_grad_32, lib.crmsprop32bit_grad_16, ) - str2optimizer32bit["lion"] = ( - lib.clion32bit_grad_32, - lib.clion32bit_grad_16, - ) + str2optimizer32bit["lion"] = (lib.clion32bit_grad_fp32, lib.clion32bit_grad_fp16, lib.clion32bit_grad_bf16) str2optimizer32bit["adagrad"] = ( lib.cadagrad32bit_grad_32, lib.cadagrad32bit_grad_16, ) str2optimizer8bit = {} str2optimizer8bit["adam"] = ( lib.cadam_static_8bit_grad_32, lib.cadam_static_8bit_grad_16, ) str2optimizer8bit["momentum"] = ( lib.cmomentum_static_8bit_grad_32, lib.cmomentum_static_8bit_grad_16, ) str2optimizer8bit["rmsprop"] = ( lib.crmsprop_static_8bit_grad_32, lib.crmsprop_static_8bit_grad_16, ) str2optimizer8bit["lion"] = ( lib.clion</s>
tests.test_optim/test_optimizer32bit
Modified
bitsandbytes-foundation~bitsandbytes
1b8772a8f33fdb47df0c849302cbb7e703571b8c
Added PagedLion and bf16 Lion.
<0>:<add> if gtype == torch.bfloat16 and optim_name in ['momentum', 'rmsprop']: pytest.skip()
# module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer32bit(dim1, dim2, gtype, optim_name): <0> if dim1 == 1 and dim2 == 1: <1> return <2> p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 <3> p2 = p1.clone() <4> p1 = p1.float() <5> <6> torch_optimizer = str2optimizers[optim_name][0]([p1]) <7> bnb_optimizer = str2optimizers[optim_name][1]([p2]) <8> <9> if gtype == torch.float32: <10> atol, rtol = 1e-6, 1e-5 <11> elif gtype == torch.bfloat16: <12> atol, rtol = 1e-3, 1e-2 <13> else: <14> atol, rtol = 1e-4, 1e-3 <15> <16> for i in range(k): <17> g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01 <18> p1.grad = g.clone().float() <19> p2.grad = g.clone() <20> <21> bnb_optimizer.step() <22> torch_optimizer.step() <23> <24> <25> for name1, name2 in str2statenames[optim_name]: <26> torch.testing.assert_close( <27> torch_optimizer.state[p1][name1], <28> bnb_optimizer.state[p2][name2].cuda(), <29> atol=atol, <30> rtol=rtol, <31> ) <32> <33> # since Lion can have pretty noisy updates where things lie at the boundary <34> # allow up to 10 errors for Lion <35> assert_most_approx_close(p1, p2.float(), atol, rtol, max_error_count=10) <36> <37> </s>
===========below chunk 0=========== # module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer32bit(dim1, dim2, gtype, optim_name): # offset: 1 path = get_temp_dir() torch.save(bnb_optimizer.state_dict(), join(path, "opt.pt")) del bnb_optimizer bnb_optimizer = None bnb_optimizer = str2optimizers[optim_name][1]([p2]) bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt"))) rm_path(path) # since Lion can have pretty noisy updates where things lie at the boundary # allow up to 10 errors for Lion assert_most_approx_close(p1, p2.float(), atol, rtol, max_error_count=10) for name1, name2 in str2statenames[optim_name]: # since Lion can have pretty noisy updates where things lie at the boundary # allow up to 10 errors for Lion assert_most_approx_close(torch_optimizer.state[p1][name1], bnb_optimizer.state[p2][name2], atol=atol, rtol=rtol, max_error_count=10) if gtype != torch.float32: # the adam buffers should also be close because they are 32-bit # but the paramters can diverge because they are 16-bit # the difference grow larger and larger with each update # --> copy the state to keep weights close p1.data = p1.data.to(p2.dtype).float() p2.copy_(p1.data) torch.testing.assert_close(p1.to(p2.dtype), p2) if optim_name in ["lars", "lamb"]: assert bnb_optimizer.state[p2]["unorm_vec"] > 0.0 ===========changed ref 0=========== # module: tests.test_optim def assert_most_approx_close(a, b, rtol=1e-3, atol=1e-3, max_error_count=0): + idx = torch.isclose(a, b, rtol=rtol, atol=atol) - idx = torch.isclose(a, b, rtol, atol) error_count = (idx == 0).sum().item() if error_count > max_error_count: print(f"Too many values not close: assert {error_count} < {max_error_count}") + torch.testing.assert_close(a, b, rtol=rtol, atol=atol) - torch.testing.assert_close(a, b, rtol, atol) ===========changed ref 1=========== # module: bitsandbytes.optim.lion + class PagedLion32bit(Optimizer1State): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__("lion", params, lr, betas, 0., weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 2=========== # module: bitsandbytes.optim.lion + class PagedLion8bit(Optimizer1State): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__("lion", params, lr, betas, 0., weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 3=========== # module: bitsandbytes.optim.lion + class PagedLion(Optimizer1State): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super().__init__("lion", params, lr, betas, 0., weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) + ===========changed ref 4=========== <s>), - weight_decay=0, - args=None, - min_8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "lion", - params, - lr, - betas, - 0., - weight_decay, - 32, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__("lion", params, lr, betas, 0., weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) ===========changed ref 5=========== <s>), - weight_decay=0, - args=None, - min_8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "lion", - params, - lr, - betas, - 0., - weight_decay, - 8, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__("lion", params, lr, betas, 0., weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) ===========changed ref 6=========== <s>bits=32, - args=None, - min_8bit_size=4096, - percentile_clipping=100, - block_wise=True, - ): + def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): - super().__init__( - "lion", - params, - lr, - betas, - 0., - weight_decay, - optim_bits, - args, - min_8bit_size, - percentile_clipping, - block_wise, - ) + super().__init__("lion", params, lr, betas, 0., weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged)
tests.test_optim/test_optimizer8bit
Modified
bitsandbytes-foundation~bitsandbytes
1b8772a8f33fdb47df0c849302cbb7e703571b8c
Added PagedLion and bf16 Lion.
<0>:<add> if gtype == torch.bfloat16 and optim_name not in ['adam8bit_blockwise', 'lion8bit_blockwise']: pytest.skip() <del> if gtype == torch.bfloat16 and optim_name not in str2bf16support: return
# module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer8bit(dim1, dim2, gtype, optim_name): <0> if gtype == torch.bfloat16 and optim_name not in str2bf16support: return <1> if dim1 == 1 and dim2 == 1: <2> return <3> p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 <4> p2 = p1.clone() <5> p1 = p1.float() <6> blocksize = 2048 <7> <8> torch_optimizer = str2optimizers[optim_name][0]([p1]) <9> bnb_optimizer = str2optimizers[optim_name][1]([p2]) <10> <11> if gtype == torch.float32: <12> atol, rtol = 3e-3, 1e-3 <13> patol, prtol = 1e-5, 1e-3 <14> elif gtype == torch.bfloat16: <15> atol, rtol = 3e-3, 1e-3 <16> patol, prtol = 1e-4, 1e-2 <17> else: <18> atol, rtol = 3e-3, 1e-3 <19> patol, prtol = 1e-5, 1e-3 <20> <21> errors = [] <22> relerrors = [] <23> <24> for i in range(100): <25> g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01 <26> p1.grad = g.clone().float() <27> p2.grad = g.clone() <28> <29> bnb_optimizer.step() <30> torch_optimizer.step() <31> <32> # since Lion can have pretty noisy updates where things lie at the boundary <33> # allow up to 5 errors for Lion <34> assert_most_approx_close(p1, p2.float(), patol, prtol, max_</s>
===========below chunk 0=========== # module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer8bit(dim1, dim2, gtype, optim_name): # offset: 1 dequant_states = [] for name1, name2, qmap, max_val in str2statenames[optim_name]: # print(bnb_optimizer.state[p2][max_val], name1) if "blockwise" in optim_name: s1 = F.dequantize_blockwise( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize, ) else: s1 = F.dequantize( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], ) num_not_close = ( torch.isclose( torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol ) == 0 ) #assert num_not_close.sum().item() < 20 dequant_states.append(s1.clone()) err = torch.abs(p1 - p2) relerr = err / (torch.abs(p1)+1e-9) if g.dtype == torch.bfloat16: assert err.mean() < 0.00015 assert relerr.mean() < 0.0016 else: assert err.mean() < 0.00012 assert relerr.mean() < 0.0012 errors.append(err.mean().item()) relerrors.append(relerr.mean().item()) if i % 10 == 0 and i > 0: for (</s> ===========below chunk 1=========== # module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer8bit(dim1, dim2, gtype, optim_name): # offset: 2 <s> relerrors.append(relerr.mean().item()) if i % 10 == 0 and i > 0: for (name1, name2, qmap, max_val), s in zip( str2statenames[optim_name], dequant_states ): s1cpy = s.clone() raws1cpy = bnb_optimizer.state[p2][name2].clone() qmap1 = bnb_optimizer.state[p2][qmap].clone() path = get_temp_dir() torch.save(bnb_optimizer.state_dict(), join(path, "opt.pt")) del bnb_optimizer bnb_optimizer = None bnb_optimizer = str2optimizers[optim_name][1]([p2]) bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt"))) rm_path(path) torch.testing.assert_close(raws1cpy, bnb_optimizer.state[p2][name2]) torch.testing.assert_close(qmap1, bnb_optimizer.state[p2][qmap]) if "blockwise" in optim_name: s1 = F.dequantize_blockwise( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize, ) else: s1 = F.dequantize( code=bnb_optimizer.state[p2][qmap], abs</s> ===========below chunk 2=========== # module: tests.test_optim @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer8bit(dim1, dim2, gtype, optim_name): # offset: 3 <s>bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], ) torch.testing.assert_close(s1cpy, s1) num_not_close = (torch.isclose(torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol) == 0) assert num_not_close.sum().item() < 20 # since Lion can have pretty noisy updates where things lie at the boundary # allow up to 5 errors for Lion assert_most_approx_close(p1, p2.float(), patol, prtol, max_error_count=5) # the parameters diverge quickly. Here we keep them close # together so we can test against the Adam error p1.data = p1.data.to(gtype).float() p2.copy_(p1.data) torch.testing.assert_close(p1.to(gtype), p2) for (name1, name2, qmap, max_val), s in zip(str2statenames[optim_name], dequant_states): torch_optimizer.state[p1][name1].copy_(s.data) ===========changed ref 0=========== # module: tests.test_optim def assert_most_approx_close(a, b, rtol=1e-3, atol=1e-3, max_error_count=0): + idx = torch.isclose(a, b, rtol=rtol, atol=atol) - idx = torch.isclose(a, b, rtol, atol) error_count = (idx == 0).sum().item() if error_count > max_error_count: print(f"Too many values not close: assert {error_count} < {max_error_count}") + torch.testing.assert_close(a, b, rtol=rtol, atol=atol) - torch.testing.assert_close(a, b, rtol, atol)
tests.test_functional/test_bench_4bit_dequant
Modified
bitsandbytes-foundation~bitsandbytes
b7f04e2a2064575d0c636a89d98a7075c46151e1
Added lookup table.
<12>:<add> iters = 100 <del> iters = 5
<s> blocksize, quant_type) @pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU") + #@pytest.mark.parametrize("quant_type", ['fp4', 'nf4']) - @pytest.mark.parametrize("quant_type", ['fp4', 'nf4']) + @pytest.mark.parametrize("quant_type", ['nf4']) def test_bench_4bit_dequant(quant_type): <0> blocksize = 256 <1> a = torch.rand(1024*12*4, 1024*12, device='cuda').half() <2> qa, SA = F.quantize_4bit(a, blocksize=blocksize, quant_type=quant_type) <3> <4> input_size = a.numel()/2 <5> output_size = a.numel()*2 <6> num_bytes = input_size+output_size <7> GB = num_bytes/1e9 <8> max_theoretical_s = GB/768 <9> #print(max_theoretical_s*1e6) <10> b = torch.randn(128, 1024*12, device='cuda').half() <11> <12> iters = 5 <13> torch.cuda.synchronize() <14> t0 = time.time() <15> for i in range(iters): <16> F.dequantize_4bit(qa, SA, blocksize=blocksize, quant_type=quant_type) <17> #b.copy_(a) <18> torch.cuda.synchronize() <19>
tests.test_functional/test_gemm_4bit
Modified
bitsandbytes-foundation~bitsandbytes
b7f04e2a2064575d0c636a89d98a7075c46151e1
Added lookup table.
# module: tests.test_functional #@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16']) @pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16']) def test_gemm_4bit(dtype): <0> #for dim in [32, 64, 128, 256, 512, 1024, 2048, 4096]: <1> #for dim in [4096, 5120, 6656, 8192]: <2> #for dim in [32]: <3> for dim in [4096]: <4> errs = [] <5> relerrs = [] <6> max_err = 0 <7> max_relerr = 0 <8> for i in range(1): <9> #A = torch.rand(2, 4092, dtype=dtype, device='cuda') <10> #B = torch.rand(4*4092, 4092, dtype=dtype, device='cuda') <11> #A = torch.rand(1, 4096, dtype=dtype, device='cuda') <12> #B = torch.rand(4*4096, 4096, dtype=dtype, device='cuda') <13> A = torch.randn(1, dim+0, dtype=dtype, device='cuda') <14> B = torch.randn(4*dim, dim+0, dtype=dtype, device='cuda')/math.sqrt(dim) <15> <16> #print('') <17> #print(A) <18> #print(B.t()) <19> #A[:, :-1] = 0 <20> #B[:, :-1] = 0 <21> <22> qB, state = F.quantize_nf4(B) <23> F.dequantize_nf4(qB, state) <24> <25> C3 = torch.matmul(A, B.t()) <26> C2 = F.cutlass3_gemm(A, qB.t(), state=state) <27> C1 = bnb.matmul_4bit(A, qB.t(), state)</s>
===========below chunk 0=========== # module: tests.test_functional #@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16']) @pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16']) def test_gemm_4bit(dtype): # offset: 1 print(C1.shape, C2.shape) # tensor cores are non-deterministic # so we need to analyze errors around the mean # to test our implementation err = torch.abs(C1-C2) mag = torch.abs(C1)+1e-8 relerr = err/mag max_err = max(err.max(), max_err) max_relerr = max(relerr.max(), max_relerr) err = err.mean().item() relerr = relerr.mean().item() errs.append(err) relerrs.append(relerr) if err/torch.abs(C1).mean() > 5e-5 or err > 3.2e-5: print('') print(i, err, relerr) print(A.flatten()[-6:]) print(B.flatten()[-6:]) out = A.flatten()[-6:]*B.flatten()[-6:] print(out) print(out[:-1].sum()) print('='*80) print(C1.flatten()[-6:]) print(C2.flatten()[-6:]) #assert False, 'ERROR' c = int(C1.numel()*0.0014*(dim/256))+1 c = assert_all_approx_close(C1, C2, 1e-5, 0.01, count=c, throw=False) #print(c/math.sqrt(dim)) print('') print(dim, sum(errs)/len(errs)/math.sqrt(dim)) print(dim, sum(relerrs)/</s> ===========below chunk 1=========== # module: tests.test_functional #@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16']) @pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16']) def test_gemm_4bit(dtype): # offset: 2 <s>dim, sum(errs)/len(errs)/math.sqrt(dim)) print(dim, sum(relerrs)/len(relerrs)/math.sqrt(dim)) print(dim, (max_err.item(), max_relerr.item())) ===========changed ref 0=========== <s> blocksize, quant_type) @pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU") + #@pytest.mark.parametrize("quant_type", ['fp4', 'nf4']) - @pytest.mark.parametrize("quant_type", ['fp4', 'nf4']) + @pytest.mark.parametrize("quant_type", ['nf4']) def test_bench_4bit_dequant(quant_type): blocksize = 256 a = torch.rand(1024*12*4, 1024*12, device='cuda').half() qa, SA = F.quantize_4bit(a, blocksize=blocksize, quant_type=quant_type) input_size = a.numel()/2 output_size = a.numel()*2 num_bytes = input_size+output_size GB = num_bytes/1e9 max_theoretical_s = GB/768 #print(max_theoretical_s*1e6) b = torch.randn(128, 1024*12, device='cuda').half() + iters = 100 - iters = 5 torch.cuda.synchronize() t0 = time.time() for i in range(iters): F.dequantize_4bit(qa, SA, blocksize=blocksize, quant_type=quant_type) #b.copy_(a) torch.cuda.synchronize()
tests.test_functional/test_gemm_4bit
Modified
bitsandbytes-foundation~bitsandbytes
e54d2730fc033489be1ee61dab5ac5e22f798527
Added debugging functions.
<3>:<add> for dim in [32]: <del> for dim in [4096]:
# module: tests.test_functional #@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16']) @pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16']) def test_gemm_4bit(dtype): <0> #for dim in [32, 64, 128, 256, 512, 1024, 2048, 4096]: <1> #for dim in [4096, 5120, 6656, 8192]: <2> #for dim in [32]: <3> for dim in [4096]: <4> errs = [] <5> relerrs = [] <6> max_err = 0 <7> max_relerr = 0 <8> for i in range(1): <9> #A = torch.rand(2, 4092, dtype=dtype, device='cuda') <10> #B = torch.rand(4*4092, 4092, dtype=dtype, device='cuda') <11> #A = torch.rand(1, 4096, dtype=dtype, device='cuda') <12> #B = torch.rand(4*4096, 4096, dtype=dtype, device='cuda') <13> A = torch.randn(1, dim+0, dtype=dtype, device='cuda') <14> B = torch.randn(4*dim, dim+0, dtype=dtype, device='cuda')/math.sqrt(dim) <15> <16> #print('') <17> #print(A) <18> #print(B.t()) <19> #A[:, :-1] = 0 <20> #B[:, :-1] = 0 <21> <22> qB, state = F.quantize_nf4(B) <23> F.dequantize_nf4(qB, state) <24> <25> C3 = torch.matmul(A, B.t()) <26> C2 = F.cutlass3_gemm(A, qB.t(), state=state) <27> C1 = bnb.matmul_4bit(A, qB.t(), state)</s>
===========below chunk 0=========== # module: tests.test_functional #@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16']) @pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16']) def test_gemm_4bit(dtype): # offset: 1 print(C1) print(C2) #print(C1.shape, C2.shape) # tensor cores are non-deterministic # so we need to analyze errors around the mean # to test our implementation err = torch.abs(C1-C2) mag = torch.abs(C1)+1e-8 relerr = err/mag max_err = max(err.max(), max_err) max_relerr = max(relerr.max(), max_relerr) err = err.mean().item() relerr = relerr.mean().item() print(err) errs.append(err) relerrs.append(relerr) if err/torch.abs(C1).mean() > 5e-5 or err > 3.2e-5: print('') print(i, err, relerr) print(A.flatten()[-6:]) print(B.flatten()[-6:]) out = A.flatten()[-6:]*B.flatten()[-6:] print(out) print(out[:-1].sum()) print('='*80) print(C1.flatten()[-6:]) print(C2.flatten()[-6:]) #assert False, 'ERROR' c = int(C1.numel()*0.0014*(dim/256))+1 c = assert_all_approx_close(C1, C2, 1e-5, 0.01, count=c, throw=False) #print(c/math.sqrt(dim)) print('') print(dim, sum(errs)/len(</s> ===========below chunk 1=========== # module: tests.test_functional #@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16']) @pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16']) def test_gemm_4bit(dtype): # offset: 2 <s> #print(c/math.sqrt(dim)) print('') print(dim, sum(errs)/len(errs)/math.sqrt(dim)) print(dim, sum(relerrs)/len(relerrs)/math.sqrt(dim)) print(dim, (max_err.item(), max_relerr.item()))
bitsandbytes.functional/cutlass3_gemm
Modified
bitsandbytes-foundation~bitsandbytes
f89ff93e26d02037db30e88053983d6bb12dd660
Initial 4-bit naive batch size 1, 81 vs 185.
# module: bitsandbytes.functional def cutlass3_gemm( A: Tensor, B: Tensor, out: Tensor = None, transposed_A=False, transposed_B=False, state=None ): <0> #sout = check_matmul(A, B, out, transposed_A, transposed_B, expected_type=A.dtype) <1> if state is None: <2> Bshape = B.shape <3> bout = Bshape[1] <4> else: <5> Bshape = state[1] <6> bout = Bshape[0] <7> if out is None: <8> out = torch.zeros(size=(A.shape[0], bout), dtype=A.dtype, device=A.device) <9> <10> sA = A.shape <11> sB = B.shape <12> if transposed_A and len(sA) == 2: <13> sA = (sA[1], sA[0]) <14> elif transposed_A and len(sA) == 3: <15> sA = (sA[0], sA[2], sA[0]) <16> if transposed_B and len(sB) == 2: <17> sB = (sB[1], sB[0]) <18> elif transposed_B and len(sB) == 3: <19> sB = (sB[0], sB[2], sB[0]) <20> # this is a mess: cuBLAS expect column major, but PyTorch is row major. <21> # So to perform the matrix multiplication, we have to treat A, B, and C matrices <22> # (transpose of row major is column major) <23> # This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these <24> <25> # matrices in the input arguments for cuBLAS <26> # column major: A @ B = C: [m, k] @ [k, n] = [m, n] <27> # row major: B^T @ A^T = C^T: [</s>
===========below chunk 0=========== # module: bitsandbytes.functional def cutlass3_gemm( A: Tensor, B: Tensor, out: Tensor = None, transposed_A=False, transposed_B=False, state=None ): # offset: 1 # column major with row major layout: B^T @ A^T = C^T: [k, m] @ [n, k] = [n, m] if len(sB) == 2: if B.stride()[0] == B.shape[1]: transposed_B = False elif B.stride()[1] == B.shape[0]: transposed_B = True if len(A.shape) == 2: if A.stride()[0] == A.shape[1]: transposed_A = False elif A.stride()[1] == A.shape[0]: transposed_A = True else: if A.stride()[1] == A.shape[2]: transposed_A = False elif A.stride()[2] == A.shape[1]: transposed_A = True if len(sA) == 2: n = sA[0] ldb = A.stride()[1 if transposed_A else 0] elif len(sA) == 3 and len(sB) == 2: n = sA[0] * sA[1] ldb = sA[2] m = sB[1] k = sB[0] lda = B.stride()[0] ldc = sB[1] elif len(sB) == 3: # special case assert len(sA) == 3 if not (sA[0] == sB[0] and sA[1] == sB[1]): raise ValueError( f"Only bsi,bso->io supported for tensor contractions, but dims for A x B were: {sA} x {sB}" ) trans</s> ===========below chunk 1=========== # module: bitsandbytes.functional def cutlass3_gemm( A: Tensor, B: Tensor, out: Tensor = None, transposed_A=False, transposed_B=False, state=None ): # offset: 2 <s> supported for tensor contractions, but dims for A x B were: {sA} x {sB}" ) transposed_A = True transposed_B = False m = sB[2] n = sA[2] k = sB[0] * sB[1] lda = n ldb = sA[2] ldc = m ptr = CUBLAS_Context.get_instance().get_context(A.device) # B^T @ A^T = C^T # [km, nk -> mn] #lda = ldb = ldc = 1 #lda = 1 if state is not None: m = Bshape[0] k = Bshape[1] lda = Bshape[0] ldc = Bshape[0] ldb = (ldb+1)//2 #print(m, n, k, lda, ldb, ldc) is_on_gpu([B, A, out]) m = ct.c_int32(m) n = ct.c_int32(n) k = ct.c_int32(k) lda = ct.c_int32(lda) ldb = ct.c_int32(ldb) ldc = ct.c_int32(ldc) if B.dtype == torch.uint8: lib.cgemm_4bit_inference(m, n, k, get_ptr(A), get_ptr(B), get_ptr(state[0]), get_ptr(out), lda,</s> ===========below chunk 2=========== # module: bitsandbytes.functional def cutlass3_gemm( A: Tensor, B: Tensor, out: Tensor = None, transposed_A=False, transposed_B=False, state=None ): # offset: 3 <s>, ldc, ct.c_int32(state[3])) elif A.dtype == torch.float32: lib.cgemm_host_fp32(m, n, k, get_ptr(A), get_ptr(B), get_ptr(out), lda, ldb, ldc) elif A.dtype == torch.float16: lib.cgemm_host_fp16(m, n, k, get_ptr(A), get_ptr(B), get_ptr(out), lda, ldb, ldc) else: raise NotImplementedError(f'Matmul not implemented for data type {A.dtype}') return out
tests.test_functional/test_bench_matmul
Modified
bitsandbytes-foundation~bitsandbytes
f89ff93e26d02037db30e88053983d6bb12dd660
Initial 4-bit naive batch size 1, 81 vs 185.
# module: tests.test_functional @pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names) def test_bench_matmul(batch, seq, model, hidden): <0> iters = 80 <1> formatB = F.get_special_format_str() <2> <3> A = torch.randn(batch, seq, model, device="cuda").half() <4> B = torch.empty(hidden, model, dtype=torch.float16, device="cuda") <5> torch.nn.init.xavier_uniform_(B) <6> <7> B_fp4, state = F.quantize_fp4(B) <8> B_fp4_c, state_c = F.quantize_fp4(B, compress_statistics=True) <9> <10> B_nf4, state_nf4= F.quantize_nf4(B) <11> <12> linear8bit = bnb.nn.Linear8bitLt(model, hidden, False, False).cuda().half() <13> linear8bit.eval() <14> <15> outliers = torch.randint(0, model, size=(5,)).cuda() <16> A[:, :, outliers] = 8.0 <17> <18> linearMixedBit = (bnb.nn.Linear8bitLt(model, hidden, False, False, threshold=6.0).cuda().half()) <19> #linearMixedBit.eval() <20> <21> linear8bit_train = bnb.nn.Linear8bitLt(model, hidden, False).cuda().half() <22> linear8bit_train_thresh = bnb.nn.Linear8bitLt(model, hidden, False, threshold=6.0).cuda().half() <23> <24> # warmup <25> for i in range(iters): <26> torch.matmul(A, B.t()) <27> torch.cuda.synchronize() <28> print("") <29> <30> torch.cuda.synchronize() <31> t0 = time.time() <32> for i in range(iters): <33> torch.</s>
===========below chunk 0=========== # module: tests.test_functional @pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names) def test_bench_matmul(batch, seq, model, hidden): # offset: 1 torch.cuda.synchronize() print( f"pytorch fp16: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" ) torch.cuda.synchronize() t0 = time.time() for i in range(iters): bnb.matmul_4bit(A, B_fp4.t(), quant_state=state) torch.cuda.synchronize() print( f"bnb fp4: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" ) torch.cuda.synchronize() t0 = time.time() for i in range(iters): bnb.matmul_4bit(A, B_fp4.t(), quant_state=state_c) torch.cuda.synchronize() print( f"bnb fp4 + compressed stats: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" ) torch.cuda.synchronize() t0 = time.time() for i in range(iters): bnb.matmul_4bit(A, B_nf4.t(), quant_state=state_nf4) torch.cuda.synchronize() print( f"bnb nf4: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" ) #torch.cuda.synchronize() </s> ===========below chunk 1=========== # module: tests.test_functional @pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names) def test_bench_matmul(batch, seq, model, hidden): # offset: 2 <s>time.time()-t0:.4f}s" ) #torch.cuda.synchronize() #t0 = time.time() #for i in range(iters): # bnb.matmul(A, B) #torch.cuda.synchronize() #print(f"CB -> CxB conversion (each iteration): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") #torch.cuda.synchronize() #t0 = time.time() #for i in range(iters): # bnb.matmul(A, B, threshold=6.0) #torch.cuda.synchronize() #print(f"CB -> CxB conversion + threshold: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") #CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A, threshold=0.0) #C32A, SA = F.transform(CA, "col32") #CB, CBt, SCB, SCBt, coo_tensorB = F.double_quant(B) #CxB, SB = F.transform(CB, to_order=formatB) #torch.cuda.synchronize() #t0 = time.time() #for i in range(iters): # out32, Sout32 = F.igemmlt(C32A, CxB, SA</s> ===========below chunk 2=========== # module: tests.test_functional @pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names) def test_bench_matmul(batch, seq, model, hidden): # offset: 3 <s>B) #torch.cuda.synchronize() #print(f"no overhead matmul-lt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") #BA, statsB = F.vectorwise_quant(B, dim=1) #CxB, SB = F.nvidia_transform(CB, to_order=formatB) #torch.cuda.synchronize() #t0 = time.time() #for i in range(iters): # A2 = A.view(-1, A.shape[-1]).contiguous() # CA, statsA = F.vectorwise_quant(A2, dim=1) # C32A, SA = F.nvidia_transform(CA, "col32") # out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB) # Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32) # F.vectorwise_mm_dequant(Cout, statsA, statsB.t()) #torch.cuda.synchronize() #print(f"vector pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") #BA, statsB = F.vectorwise_quant(B, dim=1, quant_type="linear") #CxB, SB = F.nvidia_transform(</s> ===========below chunk 3=========== # module: tests.test_functional @pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names) def test_bench_matmul(batch, seq, model, hidden): # offset: 4 <s> to_order=formatB) #torch.cuda.synchronize() #t0 = time.time() #for i in range(iters): # A2 = A.view(-1, A.shape[-1]).contiguous() # CA, statsA = F.vectorwise_quant(A2, dim=1, quant_type="linear") # C32A, SA = F.nvidia_transform(CA, "col32") # out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB) # Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32) # out = Cout * statsB * statsA * (1.0 / (127 * 127)) #torch.cuda.synchronize() #print(f"linear pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") linear8bit(A) torch.cuda.synchronize() t0 = time.time() for i in range(iters): linear8bit(A) torch.cuda.synchronize() print( f"bnb linear8bitlt (eval): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") linearMixedBit(A) torch.cuda.synchronize() t0 = time.time() for i in range(</s>
tests.test_functional/test_gemm_4bit
Modified
bitsandbytes-foundation~bitsandbytes
f89ff93e26d02037db30e88053983d6bb12dd660
Initial 4-bit naive batch size 1, 81 vs 185.
<0>:<add> print('') <3>:<add> for dim in [4096]: <add> #for dim in [5120]: <add> #for dim in [6656]: <add> #for dim in [128]: <del> for dim in [32]: <13>:<add> A = torch.randn(1, dim+2, dtype=dtype, device='cuda') <del> A = torch.randn(1, dim+0, dtype=dtype, device='cuda') <14>:<add> B = torch.randn(4*dim, dim+2, dtype=dtype, device='cuda')/math.sqrt(dim) <del> B = torch.randn(4*dim, dim+0, dtype=dtype, device='cuda')/math.sqrt(dim) <15>:<add> #B = torch.randn(1, dim+2, dtype=dtype, device='cuda')/math.sqrt(dim) <21>:<add> #A.flatten()[:-1] = 0 <add> #B.flatten()[:-1] = 0 <25>:<add> #C3 = torch.matmul(A, B.t()) <del> C3 = torch.matmul(A, B.t())
# module: tests.test_functional #@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16']) @pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16']) def test_gemm_4bit(dtype): <0> #for dim in [32, 64, 128, 256, 512, 1024, 2048, 4096]: <1> #for dim in [4096, 5120, 6656, 8192]: <2> #for dim in [32]: <3> for dim in [32]: <4> errs = [] <5> relerrs = [] <6> max_err = 0 <7> max_relerr = 0 <8> for i in range(1): <9> #A = torch.rand(2, 4092, dtype=dtype, device='cuda') <10> #B = torch.rand(4*4092, 4092, dtype=dtype, device='cuda') <11> #A = torch.rand(1, 4096, dtype=dtype, device='cuda') <12> #B = torch.rand(4*4096, 4096, dtype=dtype, device='cuda') <13> A = torch.randn(1, dim+0, dtype=dtype, device='cuda') <14> B = torch.randn(4*dim, dim+0, dtype=dtype, device='cuda')/math.sqrt(dim) <15> <16> #print('') <17> #print(A) <18> #print(B.t()) <19> #A[:, :-1] = 0 <20> #B[:, :-1] = 0 <21> <22> qB, state = F.quantize_nf4(B) <23> F.dequantize_nf4(qB, state) <24> <25> C3 = torch.matmul(A, B.t()) <26> C2 = F.cutlass3_gemm(A, qB.t(), state=state) <27> C1 = bnb.matmul_4bit(A, qB.t(), state) <28> </s>
===========below chunk 0=========== # module: tests.test_functional #@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16']) @pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16']) def test_gemm_4bit(dtype): # offset: 1 print(C2) #print(C1.shape, C2.shape) # tensor cores are non-deterministic # so we need to analyze errors around the mean # to test our implementation err = torch.abs(C1-C2) mag = torch.abs(C1)+1e-8 relerr = err/mag max_err = max(err.max(), max_err) max_relerr = max(relerr.max(), max_relerr) err = err.mean().item() relerr = relerr.mean().item() print(err) errs.append(err) relerrs.append(relerr) if err/torch.abs(C1).mean() > 5e-5 or err > 3.2e-5: print('') print(i, err, relerr) print(A.flatten()[-6:]) print(B.flatten()[-6:]) out = A.flatten()[-6:]*B.flatten()[-6:] print(out) print(out[:-1].sum()) print('='*80) print(C1.flatten()[-6:]) print(C2.flatten()[-6:]) #assert False, 'ERROR' c = int(C1.numel()*0.0014*(dim/256))+1 c = assert_all_approx_close(C1, C2, 1e-5, 0.01, count=c, throw=False) #print(c/math.sqrt(dim)) print('') print(dim, sum(errs)/len(errs)/math.sqrt(</s> ===========below chunk 1=========== # module: tests.test_functional #@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16']) @pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16']) def test_gemm_4bit(dtype): # offset: 2 <s>.sqrt(dim)) print('') print(dim, sum(errs)/len(errs)/math.sqrt(dim)) print(dim, sum(relerrs)/len(relerrs)/math.sqrt(dim)) print(dim, (max_err.item(), max_relerr.item())) ===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: _pytest.mark.structures.MarkGenerator parametrize: _ParametrizeMarkDecorator at: bitsandbytes.autograd._functions matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor=None, bias=None) at: bitsandbytes.functional quantize_nf4(A: Tensor, absmax: Tensor=None, out: Tensor=None, blocksize=64, compress_statistics=False) dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor]=None, absmax: Tensor=None, out: Tensor=None, blocksize: int=64) -> Tensor cutlass3_gemm(A: Tensor, B: Tensor, out: Tensor=None, transposed_A=False, transposed_B=False, state=None) at: math sqrt(x: SupportsFloat, /) -> float at: torch._C float16: dtype = ... at: torch._C._VariableFunctions abs(input: Tensor, *, out: Optional[Tensor]=None) -> Tensor ===========unchanged ref 1=========== randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(*size: _int, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(*size: _int, generator: Optional[Generator], out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(size: Sequence[Union[_int, SymInt]], *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device:</s>
tests.test_functional/test_gemm_4bit
Modified
bitsandbytes-foundation~bitsandbytes
dfe6900b94a0b38c649ea39b2dd12392c835195f
Vectorized loads, conflict free NF4; 52 vs 172.
<4>:<add> for dim in [2*4096]: <del> for dim in [4096]: <7>:<add> #for dim in [4]: <del> #for dim in [128]: <12>:<add> for i in range(100): <del> for i in range(1): <17>:<add> A = torch.randn(1, dim, dtype=dtype, device='cuda') <del> A = torch.randn(1, dim+2, dtype=dtype, device='cuda') <18>:<add> B = torch.randn(4*dim, dim, dtype=dtype, device='cuda')/math.sqrt(dim) <del> B = torch.randn(4*dim, dim+2, dtype=dtype, device='cuda')/math.sqrt(dim)
# module: tests.test_functional #@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16']) @pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16']) def test_gemm_4bit(dtype): <0> print('') <1> #for dim in [32, 64, 128, 256, 512, 1024, 2048, 4096]: <2> #for dim in [4096, 5120, 6656, 8192]: <3> #for dim in [32]: <4> for dim in [4096]: <5> #for dim in [5120]: <6> #for dim in [6656]: <7> #for dim in [128]: <8> errs = [] <9> relerrs = [] <10> max_err = 0 <11> max_relerr = 0 <12> for i in range(1): <13> #A = torch.rand(2, 4092, dtype=dtype, device='cuda') <14> #B = torch.rand(4*4092, 4092, dtype=dtype, device='cuda') <15> #A = torch.rand(1, 4096, dtype=dtype, device='cuda') <16> #B = torch.rand(4*4096, 4096, dtype=dtype, device='cuda') <17> A = torch.randn(1, dim+2, dtype=dtype, device='cuda') <18> B = torch.randn(4*dim, dim+2, dtype=dtype, device='cuda')/math.sqrt(dim) <19> #B = torch.randn(1, dim+2, dtype=dtype, device='cuda')/math.sqrt(dim) <20> <21> #print('') <22> #print(A) <23> #print(B.t()) <24> #A[:, :-1] = 0 <25> #B[:, :-1] = 0 <26> #A.flatten()[:-1] = 0 <27> #B.flatten()[:-1] = 0 <28> <29> qB, state</s>
===========below chunk 0=========== # module: tests.test_functional #@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16']) @pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16']) def test_gemm_4bit(dtype): # offset: 1 F.dequantize_nf4(qB, state) #C3 = torch.matmul(A, B.t()) C2 = F.cutlass3_gemm(A, qB.t(), state=state) C1 = bnb.matmul_4bit(A, qB.t(), state) #print(state) #print(qB) #print('') #print(A) #print(B) #print('='*89) #print(C1) #print(C2) #print(C3) #print(C1.shape, C2.shape) # tensor cores are non-deterministic # so we need to analyze errors around the mean # to test our implementation err = torch.abs(C1-C2) mag = torch.abs(C1)+1e-8 relerr = err/mag max_err = max(err.max(), max_err) max_relerr = max(relerr.max(), max_relerr) err = err.mean().item() relerr = relerr.mean().item() #print(err) errs.append(err) relerrs.append(relerr) if err/torch.abs(C1).mean() > 5e-5 or err > 3.2e-5: print('') print(i, err, relerr) #print(A.flatten()[-6:]) #print(B.flatten()[-6:]) #out = A.flatten()[-6:]*B.flatten()[-6:] #print(out) </s> ===========below chunk 1=========== # module: tests.test_functional #@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16']) @pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16']) def test_gemm_4bit(dtype): # offset: 2 <s>:]) #out = A.flatten()[-6:]*B.flatten()[-6:] #print(out) #print(out[:-1].sum()) print('='*80) #print(C1.flatten()[-6:]) #print(C2.flatten()[-6:]) #assert False, 'ERROR' c = int(C1.numel()*0.0014*(dim/256))+1 c = assert_all_approx_close(C1, C2, 1e-5, 0.01, count=c, throw=False) print(c/math.sqrt(dim)) print('') print(dim, sum(errs)/len(errs)/math.sqrt(dim)) print(dim, sum(relerrs)/len(relerrs)/math.sqrt(dim)) print(dim, (max_err.item(), max_relerr.item()))
bitsandbytes.autograd._functions/matmul_4bit
Modified
bitsandbytes-foundation~bitsandbytes
02fd80cb814285984415fd903278b8217c18c4df
Added bfloat16 quantizations and tests.
<1>:<add> if A.numel() == A.shape[-1] and A.requires_grad == False: <add> return F.cutlass3_gemm(A, B.t(), out, state=quant_state) <add> else: <add> return MatMul4Bit.apply(A, B, out, bias, quant_state) <del> return MatMul4Bit.apply(A, B, out, bias, quant_state)
# module: bitsandbytes.autograd._functions def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): <0> assert quant_state is not None <1> return MatMul4Bit.apply(A, B, out, bias, quant_state) <2>
===========unchanged ref 0=========== at: bitsandbytes.autograd._functions tensor = torch.Tensor at: torch._tensor.Tensor.__setstate__ self.requires_grad, _, self._backward_hooks = state at: typing List = _alias(list, 1, inst=False, name='List')
bitsandbytes.functional/quantize_blockwise
Modified
bitsandbytes-foundation~bitsandbytes
02fd80cb814285984415fd903278b8217c18c4df
Added bfloat16 quantizations and tests.
# module: bitsandbytes.functional def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, out: Tensor = None, blocksize=4096, nested=False) -> Tensor: <0> """ <1> Quantize tensor A in blocks of size 4096 values. <2> <3> Quantizes tensor A by dividing it into blocks of 4096 values. <4> Then the absolute maximum value within these blocks is calculated <5> for the non-linear quantization. <6> <7> Parameters <8> ---------- <9> A : torch.Tensor <10> The input tensor. <11> code : torch.Tensor <12> The quantization map. <13> absmax : torch.Tensor <14> The absmax values. <15> out : torch.Tensor <16> The output tensor (8-bit). <17> <18> Returns <19> ------- <20> torch.Tensor: <21> The 8-bit tensor. <22> tuple(torch.Tensor, torch.Tensor): <23> The quantization state to undo the quantization. <24> """ <25> <26> <27> if code is None: <28> if "dynamic" not in name2qmap: <29> name2qmap["dynamic"] = create_dynamic_map().to(A.device) <30> code = name2qmap["dynamic"] <31> <32> if absmax is None: <33> n = A.numel() <34> blocks = n // blocksize <35> blocks += 1 if n % blocksize > 0 else 0 <36> absmax = torch.zeros((blocks,), device=A.device) <37> <38> if out is None: <39> out = torch.zeros_like(A, dtype=torch.uint8) <40> <41> if A.device.type != 'cpu': <42> assert blocksize in [4096, 2048, 1024, 512, 256, 128, 64] <43> cblocksize = ct.c_int32(blocksize) <44> prev_device = pre_call(A.device) <45> code = code.to(A.device) <46> is_on_gpu([code, A, out, absmax]) <47> if A.</s>
===========below chunk 0=========== # module: bitsandbytes.functional def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, out: Tensor = None, blocksize=4096, nested=False) -> Tensor: # offset: 1 lib.cquantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel())) elif A.dtype == torch.float16: lib.cquantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel())) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") post_call(A.device) else: # cpu code = code.cpu() lib.cquantize_blockwise_cpu_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel())) if nested: offset = absmax.mean() absmax -= offset qabsmax, state2 = quantize_blockwise(absmax, blocksize=blocksize, nested=False) state = [qabsmax, code, blocksize, nested, offset, state2] else: state = [absmax, code, blocksize, nested, None, None] return out, state ===========changed ref 0=========== # module: bitsandbytes.autograd._functions def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): assert quant_state is not None + if A.numel() == A.shape[-1] and A.requires_grad == False: + return F.cutlass3_gemm(A, B.t(), out, state=quant_state) + else: + return MatMul4Bit.apply(A, B, out, bias, quant_state) - return MatMul4Bit.apply(A, B, out, bias, quant_state)
bitsandbytes.functional/dequantize_blockwise
Modified
bitsandbytes-foundation~bitsandbytes
02fd80cb814285984415fd903278b8217c18c4df
Added bfloat16 quantizations and tests.
<31>:<add> if quant_state is None: <add> quant_state = (absmax, code, blocksize, False, torch.float32, None, None) <add> <add> absmax, code, blocksize, nested, dtype, offset, state2 = quant_state <add> if nested: <add> absmax = dequantize_blockwise(absmax, state2) <add> absmax += offset <add> <32>:<del> out = torch.zeros_like(A, dtype=torch.float32) <33>:<del> <34>:<del> if quant_state is None: <35>:<del> quant_state = (absmax, code, blocksize) <36>:<del> assert absmax is not None and out is not None <37>:<del> else: <38>:<del> absmax, code, blocksize, nested, offset, state2 = quant_state <39>:<del> if nested: <40>:<del> absmax = dequantize_blockwise(absmax, state2) <41>:<del> absmax += offset <42>:<del> <43>:<add> out = torch.empty(A.shape, dtype=dtype, device=A.device)
# module: bitsandbytes.functional def dequantize_blockwise( A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, code: Tensor = None, out: Tensor = None, blocksize: int = 4096, nested=False ) -> Tensor: <0> """ <1> Dequantizes blockwise quantized values. <2> <3> Dequantizes the tensor A with maximum absolute values absmax in <4> blocks of size 4096. <5> <6> Parameters <7> ---------- <8> A : torch.Tensor <9> The input 8-bit tensor. <10> quant_state : tuple(torch.Tensor, torch.Tensor) <11> Tuple of code and absmax values. <12> absmax : torch.Tensor <13> The absmax values. <14> code : torch.Tensor <15> The quantization map. <16> out : torch.Tensor <17> Dequantized output tensor (default: float32) <18> <19> <20> Returns <21> ------- <22> torch.Tensor: <23> Dequantized tensor (default: float32) <24> """ <25> assert quant_state is not None or absmax is not None <26> if code is None and quant_state is None: <27> if "dynamic" not in name2qmap: <28> name2qmap["dynamic"] = create_dynamic_map().to(A.device) <29> code = name2qmap["dynamic"] <30> <31> if out is None: <32> out = torch.zeros_like(A, dtype=torch.float32) <33> <34> if quant_state is None: <35> quant_state = (absmax, code, blocksize) <36> assert absmax is not None and out is not None <37> else: <38> absmax, code, blocksize, nested, offset, state2 = quant_state <39> if nested: <40> absmax = dequantize_blockwise(absmax, state2) <41> absmax += offset <42> <43> <44> if A.device.type != 'cpu': <45> device = pre_call(A.device) </s>
===========below chunk 0=========== # module: bitsandbytes.functional def dequantize_blockwise( A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, code: Tensor = None, out: Tensor = None, blocksize: int = 4096, nested=False ) -> Tensor: # offset: 1 if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]: raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]") is_on_gpu([A, absmax, out]) if out.dtype == torch.float32: lib.cdequantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel())) elif out.dtype == torch.float16: lib.cdequantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel())) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") post_call(A.device) else: code = code.cpu() lib.cdequantize_blockwise_cpu_fp32(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel())) return out ===========changed ref 0=========== # module: bitsandbytes.functional def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, out: Tensor = None, blocksize=4096, nested=False) -> Tensor: """ Quantize tensor A in blocks of size 4096 values. Quantizes tensor A by dividing it into blocks of 4096 values. Then the absolute maximum value within these blocks is calculated for the non-linear quantization. Parameters ---------- A : torch.Tensor The input tensor. code : torch.Tensor The quantization map. absmax : torch.Tensor The absmax values. out : torch.Tensor The output tensor (8-bit). Returns ------- torch.Tensor: The 8-bit tensor. tuple(torch.Tensor, torch.Tensor): The quantization state to undo the quantization. """ if code is None: if "dynamic" not in name2qmap: name2qmap["dynamic"] = create_dynamic_map().to(A.device) code = name2qmap["dynamic"] if absmax is None: n = A.numel() blocks = n // blocksize blocks += 1 if n % blocksize > 0 else 0 absmax = torch.zeros((blocks,), device=A.device) if out is None: out = torch.zeros_like(A, dtype=torch.uint8) if A.device.type != 'cpu': assert blocksize in [4096, 2048, 1024, 512, 256, 128, 64] cblocksize = ct.c_int32(blocksize) prev_device = pre_call(A.device) code = code.to(A.device) is_on_gpu([code, A, out, absmax]) if A.dtype == torch.float32: lib.cquantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblock</s> ===========changed ref 1=========== # module: bitsandbytes.functional def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, out: Tensor = None, blocksize=4096, nested=False) -> Tensor: # offset: 1 <s>fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel())) elif A.dtype == torch.float16: lib.cquantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel())) + elif A.dtype == torch.bfloat16: + lib.cquantize_blockwise_bf16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel())) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") post_call(A.device) else: # cpu code = code.cpu() lib.cquantize_blockwise_cpu_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel())) if nested: offset = absmax.mean() absmax -= offset qabsmax, state2 = quantize_blockwise(absmax, blocksize=blocksize, nested=False) + state = [qabsmax, code, blocksize, nested, A.dtype, offset, state2] - state = [qabsmax, code, blocksize, nested, offset, state2] else: + state = [absmax, code, blocksize, nested, A.dtype</s> ===========changed ref 2=========== # module: bitsandbytes.functional def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, out: Tensor = None, blocksize=4096, nested=False) -> Tensor: # offset: 2 <s>, None] - state = [absmax, code, blocksize, nested, None, None] - - return out, state ===========changed ref 3=========== # module: bitsandbytes.autograd._functions def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): assert quant_state is not None + if A.numel() == A.shape[-1] and A.requires_grad == False: + return F.cutlass3_gemm(A, B.t(), out, state=quant_state) + else: + return MatMul4Bit.apply(A, B, out, bias, quant_state) - return MatMul4Bit.apply(A, B, out, bias, quant_state)
bitsandbytes.functional/quantize_4bit
Modified
bitsandbytes-foundation~bitsandbytes
02fd80cb814285984415fd903278b8217c18c4df
Added bfloat16 quantizations and tests.
# module: bitsandbytes.functional def quantize_4bit(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False, quant_type='fp4') -> Tensor: <0> """ <1> Quantize tensor A in blocks of 4-bit values. <2> <3> Quantizes tensor A by dividing it into blocks which are independently quantized to FP4. <4> <5> Parameters <6> ---------- <7> A : torch.Tensor <8> The input tensor. <9> absmax : torch.Tensor <10> The absmax values. <11> out : torch.Tensor <12> The output tensor (8-bit). <13> blocksize : int <14> The blocksize used in quantization. <15> quant_type : str <16> The 4-bit quantization data type {fp4, nf4} <17> <18> Returns <19> ------- <20> torch.Tensor: <21> The 8-bit tensor with packed 4-bit values. <22> tuple(torch.Tensor, torch.Size, torch.dtype, int): <23> The quantization state to undo the quantization. <24> """ <25> if A.device.type != 'cuda': <26> raise NotImplementedError(f'Device type not supported for FP4 quantization: {A.device.type}') <27> if quant_type not in ['fp4', 'nf4']: <28> raise NotImplementedError(f'4-bit quantization data type {quant_type} is not implemented.') <29> <30> n = A.numel() <31> input_shape = A.shape <32> <33> if absmax is None: <34> blocks = n // blocksize <35> blocks += 1 if n % blocksize > 0 else 0 <36> absmax = torch.zeros((blocks,), device=A.device) <37> <38> <39> if out is None: <40> out = torch.zeros(((n+1)//2, 1), dtype=torch.uint8, device=A.device) <41> <42> assert blocksize in [4096, 2048, 1024, 512, 256, 128, 64] <43> <44> prev_device = pre_</s>
===========below chunk 0=========== # module: bitsandbytes.functional def quantize_4bit(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False, quant_type='fp4') -> Tensor: # offset: 1 is_on_gpu([A, out, absmax]) if A.dtype == torch.float32: if quant_type == 'fp4': lib.cquantize_blockwise_fp32_fp4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int32(blocksize), ct.c_int(n)) else: lib.cquantize_blockwise_fp32_nf4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int32(blocksize), ct.c_int(n)) elif A.dtype == torch.float16: if quant_type == 'fp4': lib.cquantize_blockwise_fp16_fp4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int32(blocksize), ct.c_int(n)) else: lib.cquantize_blockwise_fp16_nf4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int32(blocksize), ct.c_int(n)) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") post_call(A.device) if compress_statistics: offset = absmax.mean() absmax -= offset #code = create_custom_map().to(absmax.device) #qabsmax, state2 = quantize_blockwise(absmax, code=code, blocksize=256) qabsmax, state2 = quantize_blockwise(absmax, blocksize=256) del absmax state</s> ===========below chunk 1=========== # module: bitsandbytes.functional def quantize_4bit(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False, quant_type='fp4') -> Tensor: # offset: 2 <s> qabsmax, state2 = quantize_blockwise(absmax, blocksize=256) del absmax state = [qabsmax, input_shape, A.dtype, blocksize, [offset, state2], quant_type] else: state = [absmax, input_shape, A.dtype, blocksize, None, quant_type] return out, state ===========changed ref 0=========== # module: bitsandbytes.functional def dequantize_blockwise( A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, code: Tensor = None, out: Tensor = None, blocksize: int = 4096, nested=False ) -> Tensor: """ Dequantizes blockwise quantized values. Dequantizes the tensor A with maximum absolute values absmax in blocks of size 4096. Parameters ---------- A : torch.Tensor The input 8-bit tensor. quant_state : tuple(torch.Tensor, torch.Tensor) Tuple of code and absmax values. absmax : torch.Tensor The absmax values. code : torch.Tensor The quantization map. out : torch.Tensor Dequantized output tensor (default: float32) Returns ------- torch.Tensor: Dequantized tensor (default: float32) """ assert quant_state is not None or absmax is not None if code is None and quant_state is None: if "dynamic" not in name2qmap: name2qmap["dynamic"] = create_dynamic_map().to(A.device) code = name2qmap["dynamic"] + if quant_state is None: + quant_state = (absmax, code, blocksize, False, torch.float32, None, None) + + absmax, code, blocksize, nested, dtype, offset, state2 = quant_state + if nested: + absmax = dequantize_blockwise(absmax, state2) + absmax += offset + if out is None: - out = torch.zeros_like(A, dtype=torch.float32) - - if quant_state is None: - quant_state = (absmax, code, blocksize) - assert absmax is not None and out is not None - else: - absmax, code, blocksize, nested, offset, state2 = quant_state </s> ===========changed ref 1=========== # module: bitsandbytes.functional def dequantize_blockwise( A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, code: Tensor = None, out: Tensor = None, blocksize: int = 4096, nested=False ) -> Tensor: # offset: 1 <s> out is not None - else: - absmax, code, blocksize, nested, offset, state2 = quant_state - if nested: - absmax = dequantize_blockwise(absmax, state2) - absmax += offset - + out = torch.empty(A.shape, dtype=dtype, device=A.device) if A.device.type != 'cpu': device = pre_call(A.device) code = code.to(A.device) if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]: raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]") is_on_gpu([A, absmax, out]) if out.dtype == torch.float32: lib.cdequantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel())) elif out.dtype == torch.float16: lib.cdequantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel())) + elif out.dtype == torch.bfloat16: + lib.cdequantize_blockwise_bf16(get_ptr(code), get_ptr(A), get_ptr</s> ===========changed ref 2=========== # module: bitsandbytes.functional def dequantize_blockwise( A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, code: Tensor = None, out: Tensor = None, blocksize: int = 4096, nested=False ) -> Tensor: # offset: 2 <s>max), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel())) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") post_call(A.device) else: code = code.cpu() lib.cdequantize_blockwise_cpu_fp32(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel())) return out
bitsandbytes.functional/dequantize_4bit
Modified
bitsandbytes-foundation~bitsandbytes
02fd80cb814285984415fd903278b8217c18c4df
Added bfloat16 quantizations and tests.
# module: bitsandbytes.functional def dequantize_4bit(A: Tensor,quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64, quant_type='fp4') -> Tensor: <0> """ <1> Dequantizes FP4 blockwise quantized values. <2> <3> Dequantizes the tensor A with maximum absolute values absmax in blocks of size blocksize. <4> <5> Parameters <6> ---------- <7> A : torch.Tensor <8> The input 8-bit tensor (packed 4-bit values). <9> quant_state : tuple(torch.Tensor, torch.Size, torch.dtype) <10> Tuple of absmax values, original tensor shape and original dtype. <11> absmax : torch.Tensor <12> The absmax values. <13> out : torch.Tensor <14> Dequantized output tensor. <15> blocksize : int <16> The blocksize used in quantization. <17> quant_type : str <18> The 4-bit quantization data type {fp4, nf4} <19> <20> <21> Returns <22> ------- <23> torch.Tensor: <24> Dequantized tensor. <25> """ <26> if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]: <27> raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]") <28> if quant_type not in ['fp4', 'nf4']: <29> raise NotImplementedError(f'4-bit quantization data type {quant_type} is not implemented.') <30> <31> if quant_state is None: <32> assert absmax is not None and out is not None <33> shape = out.shape <34> dtype = out.dtype <35> else: <36> absmax, shape, dtype, blocksize, compressed_stats, quant_type = quant_state <37> <38> <39> if compressed_stats is not None: <40> offset, state2 = compressed_stats <41> absmax = dequantize_blockwise(absmax, state2) <42> abs</s>
===========below chunk 0=========== # module: bitsandbytes.functional def dequantize_4bit(A: Tensor,quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64, quant_type='fp4') -> Tensor: # offset: 1 if out is None: out = torch.empty(shape, dtype=dtype, device=A.device) n = out.numel() device = pre_call(A.device) is_on_gpu([A, absmax, out]) if out.dtype == torch.float32: if quant_type == 'fp4': lib.cdequantize_blockwise_fp32_fp4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(n)) else: lib.cdequantize_blockwise_fp32_nf4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(n)) elif out.dtype == torch.float16: if quant_type == 'fp4': lib.cdequantize_blockwise_fp16_fp4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(n)) else: lib.cdequantize_blockwise_fp16_nf4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(n)) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") post_call(A.device) is_transposed = (True if A.shape[0] == 1 else False) if is_transposed: return out.t() </s> ===========below chunk 1=========== # module: bitsandbytes.functional def dequantize_4bit(A: Tensor,quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64, quant_type='fp4') -> Tensor: # offset: 2 <s> = (True if A.shape[0] == 1 else False) if is_transposed: return out.t() else: return out ===========changed ref 0=========== # module: bitsandbytes.functional def dequantize_blockwise( A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, code: Tensor = None, out: Tensor = None, blocksize: int = 4096, nested=False ) -> Tensor: """ Dequantizes blockwise quantized values. Dequantizes the tensor A with maximum absolute values absmax in blocks of size 4096. Parameters ---------- A : torch.Tensor The input 8-bit tensor. quant_state : tuple(torch.Tensor, torch.Tensor) Tuple of code and absmax values. absmax : torch.Tensor The absmax values. code : torch.Tensor The quantization map. out : torch.Tensor Dequantized output tensor (default: float32) Returns ------- torch.Tensor: Dequantized tensor (default: float32) """ assert quant_state is not None or absmax is not None if code is None and quant_state is None: if "dynamic" not in name2qmap: name2qmap["dynamic"] = create_dynamic_map().to(A.device) code = name2qmap["dynamic"] + if quant_state is None: + quant_state = (absmax, code, blocksize, False, torch.float32, None, None) + + absmax, code, blocksize, nested, dtype, offset, state2 = quant_state + if nested: + absmax = dequantize_blockwise(absmax, state2) + absmax += offset + if out is None: - out = torch.zeros_like(A, dtype=torch.float32) - - if quant_state is None: - quant_state = (absmax, code, blocksize) - assert absmax is not None and out is not None - else: - absmax, code, blocksize, nested, offset, state2 = quant_state </s> ===========changed ref 1=========== # module: bitsandbytes.functional def dequantize_blockwise( A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, code: Tensor = None, out: Tensor = None, blocksize: int = 4096, nested=False ) -> Tensor: # offset: 1 <s> out is not None - else: - absmax, code, blocksize, nested, offset, state2 = quant_state - if nested: - absmax = dequantize_blockwise(absmax, state2) - absmax += offset - + out = torch.empty(A.shape, dtype=dtype, device=A.device) if A.device.type != 'cpu': device = pre_call(A.device) code = code.to(A.device) if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]: raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]") is_on_gpu([A, absmax, out]) if out.dtype == torch.float32: lib.cdequantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel())) elif out.dtype == torch.float16: lib.cdequantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel())) + elif out.dtype == torch.bfloat16: + lib.cdequantize_blockwise_bf16(get_ptr(code), get_ptr(A), get_ptr</s> ===========changed ref 2=========== # module: bitsandbytes.functional def dequantize_blockwise( A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, code: Tensor = None, out: Tensor = None, blocksize: int = 4096, nested=False ) -> Tensor: # offset: 2 <s>max), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel())) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") post_call(A.device) else: code = code.cpu() lib.cdequantize_blockwise_cpu_fp32(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel())) return out