path
stringlengths 9
117
| type
stringclasses 2
values | project
stringclasses 10
values | commit_hash
stringlengths 40
40
| commit_message
stringlengths 1
137
| ground_truth
stringlengths 0
2.74k
| main_code
stringlengths 102
3.37k
| context
stringlengths 0
14.7k
|
---|---|---|---|---|---|---|---|
tests.test_functional/test_blockwise_cpu_large
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
df86625a9399d16d6fb2e3bab6bb7bcc729f3b7d
|
Isolated CUDASetup logging; all tests green.
|
<4>:<add> for hidden in [128]:#, 14336]:
<del> for hidden in [128, 14336]:
|
# module: tests.test_functional
def test_blockwise_cpu_large():
<0> diffs = []
<1> reldiffs = []
<2> batch = 128
<3> seq = 128
<4> for hidden in [128, 14336]:
<5> for blocksize in [4096, 16384]:
<6> for i in range(2):
<7> A1 = torch.randn(batch, seq, hidden, device='cpu')
<8> t0 = time.time()
<9> C, S = F.quantize_blockwise(A1, blocksize=blocksize)
<10> A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
<11> print(time.time() - t0)
<12> diff = torch.abs(A1 - A2)
<13> reldiff = diff / torch.abs(A1 + 1e-8)
<14> diffs.append(diff.mean().item())
<15> reldiffs.append(reldiff.mean().item())
<16> assert diffs[-1] < 0.011
<17>
|
===========changed ref 0===========
# module: tests.test_functional
def test_matmuls():
+ a = torch.randn(256, 512).half().cuda()
- a = torch.randn(256, 256).half().cuda()
+ b = torch.randn(256, 512).half().cuda()
- b = torch.randn(256, 256).half().cuda()
+ c1 = torch.matmul(a, b.t())
- c1 = torch.matmul(a, b)
c2 = bnb.matmul(a, b)
+ c3 = bnb.matmul_cublas(a, b.t())
- c3 = bnb.matmul(a, b)
err1 = torch.abs(c1 - c2).mean().item()
err2 = torch.abs(c1 - c3).mean().item()
assert err1 < 0.2
assert err2 < 0.2
+ print(err1, err2)
===========changed ref 1===========
# module: tests.test_functional
- @pytest.mark.parametrize(
- "dim1, dim2, dtype, orderA, orderOut", values, ids=names
- )
- def test_transform_to_row(dim1, dim2, dtype, orderA, orderOut):
- for i in range(1):
- A = torch.randint(-127, 127, size=(dim1, dim2), device="cuda").to(dtype)
-
- out2, S2 = F.transform(A, to_order=orderA)
- A2, S3 = F.transform(out2, from_order=orderA, to_order="row", state=S2)
- assert A2.shape[0] == A.shape[0]
- assert A2.shape[1] == A.shape[1]
-
- print("")
- print(A)
- print(out2)
- print(A2)
-
===========changed ref 2===========
# module: bitsandbytes.cextension
+ class CUDASetup(object):
+ _instance = None
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDALibrary_Singleton(object):
- _instance = None
-
===========changed ref 4===========
# module: bitsandbytes.cextension
+ class CUDASetup(object):
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDALibrary_Singleton(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 6===========
# module: bitsandbytes.cextension
+ class CUDASetup(object):
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 7===========
# module: bitsandbytes.cextension
+ class CUDASetup(object):
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 8===========
# module: bitsandbytes.cextension
- class CUDALibrary_Singleton(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 9===========
# module: bitsandbytes.cextension
+ class CUDASetup(object):
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 10===========
# module: tests.test_cuda_setup_evaluator
- @pytest.mark.parametrize("test_input, expected", HAPPY_PATH__LD_LIB_TEST_PATHS)
- def test_determine_cuda_runtime_lib_path__happy_path(
- tmp_path, test_input: str, expected: str
- ):
- for path in extract_candidate_paths(test_input):
- path.mkdir()
- (path / CUDA_RUNTIME_LIB).touch()
- assert determine_cuda_runtime_lib_path(test_input) == expected
-
===========changed ref 11===========
# module: tests.test_functional
def test_spmm_bench():
batch = 2
model = 1024 * 1
hidden = model * 4
seq = 1024
dim1 = batch * seq
dim2 = model
dim3 = hidden
threshold = 4
A = torch.randn(dim1, dim2, device="cuda").half()
B = torch.randn(dim2, dim3, device="cuda").half()
for i in range(10):
+ C1 = bnb.matmul(A, B.t())
- C1 = bnb.matmul(A, B)
torch.cuda.synchronize()
t0 = time.time()
for i in range(k):
+ C1 = bnb.matmul(A, B.t())
- C1 = bnb.matmul(A, B)
torch.cuda.synchronize()
t8 = time.time() - t0
idx = torch.abs(A) >= threshold
nnz = (idx == 1).sum().item()
print(nnz / idx.numel())
rows, cols = torch.where(idx)
values = A[idx]
cooA = F.COOSparseTensor(
A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
)
for i in range(10):
out2 = F.spmm_coo(cooA, B)
torch.cuda.synchronize()
t0 = time.time()
for i in range(k):
out2 = F.spmm_coo(cooA, B)
torch.cuda.synchronize()
tsp = time.time() - t0
print(tsp, t8)
print(tsp / t8)
===========changed ref 12===========
# module: bitsandbytes.nn.modules
- class Linear8bit(nn.Linear):
- def __init__(
- self,
- input_features,
- output_features,
- bias=True,
- quant_type="vector",
- index=None,
- args=None,
- sparse_decomp=False,
- ):
- super(Linear8bit, self).__init__(input_features, output_features, bias)
- self.quant_type = quant_type
- self.index = index
- self.args = args
- self.iter = 0
-
===========changed ref 13===========
# module: tests.test_cuda_setup_evaluator
- @pytest.mark.parametrize("test_input", UNHAPPY_PATH__LD_LIB_TEST_PATHS)
- def test_determine_cuda_runtime_lib_path__unhappy_path(tmp_path, test_input: str):
- test_input = tmp_path / test_input
- (test_input / CUDA_RUNTIME_LIB).touch()
- with pytest.raises(FileNotFoundError) as err_info:
- determine_cuda_runtime_lib_path(test_input)
- assert all(match in err_info for match in {"duplicate", CUDA_RUNTIME_LIB})
-
|
bitsandbytes.cextension/CUDASetup.initialize
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
a371be302ddbdf3f36acef1a6fe365672099c9d9
|
Added CUDA SETUP instruction generator.
|
<1>:<add> self.lib = None
<3>:<add> binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup()
<add> self.cudart_path = cudart_path
<add> self.cuda = cuda
<add> self.cc = cc
<add> self.cuda_version_string = cuda_version_string
<add>
<del> binary_name = evaluate_cuda_setup()
<9>:<add> self.add_log_entry(f"CUDA SETUP: Required library version not found: {binary_name}. Maybe you need to compile it from source?")
<del> self.add_log_entry(f"CUDA SETUP: TODO: compile library for specific version: {binary_name}")
<14>:<add> self.add_log_entry('')
<add> self.add_log_entry('='*48 + 'ERROR' + '='*37)
<add> self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:')
<add> self.add_log_entry('1. CUDA driver not installed')
<add> self.add_log_entry('2. CUDA not installed')
<add> self.add_log_entry('3. You
|
# module: bitsandbytes.cextension
class CUDASetup(object):
def initialize(self):
<0> self.cuda_setup_log = []
<1>
<2> from .cuda_setup.main import evaluate_cuda_setup
<3> binary_name = evaluate_cuda_setup()
<4> package_dir = Path(__file__).parent
<5> binary_path = package_dir / binary_name
<6>
<7> try:
<8> if not binary_path.exists():
<9> self.add_log_entry(f"CUDA SETUP: TODO: compile library for specific version: {binary_name}")
<10> legacy_binary_name = "libbitsandbytes.so"
<11> self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...")
<12> binary_path = package_dir / legacy_binary_name
<13> if not binary_path.exists():
<14> self.add_log_entry('CUDA SETUP: CUDA detection failed. Either CUDA driver not installed, CUDA not installed, or you have multiple conflicting CUDA libraries!')
<15> self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.')
<16> self.print_log_stack()
<17> raise Exception('CUDA SETUP: Setup Failed!')
<18> self.lib = ct.cdll.LoadLibrary(binary_path)
<19> else:
<20> self.add_log_entry(f"CUDA SETUP: Loading binary {binary_path}...")
<21> self.lib = ct.cdll.LoadLibrary(binary_path)
<22> except:
<23> self.print_log_stack()
<24>
|
===========unchanged ref 0===========
at: bitsandbytes.cextension.CUDASetup
_instance = None
add_log_entry(msg, is_warning=False)
at: bitsandbytes.cextension.CUDASetup.initialize
self.cudart_path = cudart_path
self.cuda = cuda
self.cuda_version_string = cuda_version_string
|
bitsandbytes.cuda_setup.main/evaluate_cuda_setup
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
a371be302ddbdf3f36acef1a6fe365672099c9d9
|
Added CUDA SETUP instruction generator.
|
# module: bitsandbytes.cuda_setup.main
def evaluate_cuda_setup():
<0> # we remove this for now and see how things go
<1> #print('')
<2> #print('='*35 + 'BUG REPORT' + '='*35)
<3> #print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
<4> #print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
<5> #print('='*80)
<6> #if not torch.cuda.is_available():
<7> #print('No GPU detected. Loading CPU library...')
<8> #return binary_name
<9>
<10> binary_name = "libbitsandbytes_cpu.so"
<11>
<12> cuda_setup = CUDASetup.get_instance()
<13> cudart_path = determine_cuda_runtime_lib_path()
<14> if cudart_path is None:
<15> cuda_setup.add_log_entry("WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!", is_warning=True)
<16> return binary_name
<17>
<18> cuda_setup.add_log_entry((f"CUDA SETUP: CUDA runtime path found: {cudart_path}"))
<19> cuda = get_cuda_lib_handle()
<20> cc = get_compute_capability(cuda)
<21> cuda_setup.add_log_entry(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}")
<22> cuda_version_string = get_cuda_version(cuda, cudart_path)
<23>
<24>
<25> if cc == '':
<26> cuda_setup.add_log_entry("WARNING: No</s>
|
===========below chunk 0===========
# module: bitsandbytes.cuda_setup.main
def evaluate_cuda_setup():
# offset: 1
return binary_name
# 7.5 is the minimum CC vor cublaslt
has_cublaslt = cc in ["7.5", "8.0", "8.6"]
# TODO:
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
# (2) Multiple CUDA versions installed
# we use ls -l instead of nvcc to determine the cuda version
# since most installations will have the libcudart.so installed, but not the compiler
cuda_setup.add_log_entry(f'CUDA SETUP: Detected CUDA version {cuda_version_string}')
def get_binary_name():
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so"
bin_base_name = "libbitsandbytes_cuda"
if has_cublaslt:
return f"{bin_base_name}{cuda_version_string}.so"
else:
return f"{bin_base_name}{cuda_version_string}_nocublaslt.so"
binary_name = get_binary_name()
return binary_name
===========unchanged ref 0===========
at: bitsandbytes.cextension
CUDASetup()
at: bitsandbytes.cextension.CUDASetup
_instance = None
get_instance()
at: bitsandbytes.cuda_setup.main
get_cuda_version(cuda, cudart_path)
get_cuda_lib_handle()
get_compute_capability(cuda)
at: bitsandbytes.cuda_setup.paths
determine_cuda_runtime_lib_path() -> Union[Path, None]
===========changed ref 0===========
# module: bitsandbytes.cextension
lib = CUDASetup.get_instance().lib
try:
+ if lib is None and torch.cuda.is_available():
+ CUDASetup.get_instance().generate_instructions()
+ CUDASetup.get_instance().print_log_stack()
+ raise RuntimeError('''
+ CUDA Setup failed despite GPU being available. Inspect the CUDA SETUP outputs to fix your environment!
+ If you cannot find any issues and suspect a bug, please open an issue with detals about your environment:
+ https://github.com/TimDettmers/bitsandbytes/issues''')
lib.cadam32bit_g32
lib.get_context.restype = ct.c_void_p
lib.get_cusparse.restype = ct.c_void_p
COMPILED_WITH_CUDA = True
except AttributeError:
warn(
"The installed version of bitsandbytes was compiled without GPU support. "
"8-bit optimizers and GPU quantization are unavailable."
)
COMPILED_WITH_CUDA = False
===========changed ref 1===========
# module: bitsandbytes.cextension
class CUDASetup(object):
def initialize(self):
self.cuda_setup_log = []
+ self.lib = None
from .cuda_setup.main import evaluate_cuda_setup
+ binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup()
+ self.cudart_path = cudart_path
+ self.cuda = cuda
+ self.cc = cc
+ self.cuda_version_string = cuda_version_string
+
- binary_name = evaluate_cuda_setup()
package_dir = Path(__file__).parent
binary_path = package_dir / binary_name
try:
if not binary_path.exists():
+ self.add_log_entry(f"CUDA SETUP: Required library version not found: {binary_name}. Maybe you need to compile it from source?")
- self.add_log_entry(f"CUDA SETUP: TODO: compile library for specific version: {binary_name}")
legacy_binary_name = "libbitsandbytes.so"
self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...")
binary_path = package_dir / legacy_binary_name
if not binary_path.exists():
+ self.add_log_entry('')
+ self.add_log_entry('='*48 + 'ERROR' + '='*37)
+ self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:')
+ self.add_log_entry('1. CUDA driver not installed')
+ self.add_log_entry('2. CUDA not installed')
+ self.add_log_entry('3. You have multiple conflicting CUDA libraries')
+ self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!')
- self.add_log_entry('CUDA SETUP: CUDA detection failed. Either CUDA driver</s>
===========changed ref 2===========
# module: bitsandbytes.cextension
class CUDASetup(object):
def initialize(self):
# offset: 1
<s>andbytes release!')
- self.add_log_entry('CUDA SETUP: CUDA detection failed. Either CUDA driver not installed, CUDA not installed, or you have multiple conflicting CUDA libraries!')
self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.')
+ self.add_log_entry('='*80)
+ self.add_log_entry('')
+ self.generate_instructions()
self.print_log_stack()
raise Exception('CUDA SETUP: Setup Failed!')
self.lib = ct.cdll.LoadLibrary(binary_path)
else:
self.add_log_entry(f"CUDA SETUP: Loading binary {binary_path}...")
self.lib = ct.cdll.LoadLibrary(binary_path)
except:
self.print_log_stack()
|
|
tests.test_cuda_setup_evaluator/test_full_system
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
a371be302ddbdf3f36acef1a6fe365672099c9d9
|
Added CUDA SETUP instruction generator.
|
<6>:<del> ls_output, err = bnb.utils.execute_and_return(
<7>:<del> f'ls -l {os.environ["CONDA_PREFIX"]}/lib/libcudart.so'
<8>:<del> )
<9>:<del> major, minor, revision = (
<10>:<add> ls_output, err = bnb.utils.execute_and_return(f'ls -l {os.environ["CONDA_PREFIX"]}/lib/libcudart.so')
<add> major, minor, revision = (ls_output.split(" ")[-1].replace("libcudart.so.", "").split("."))
<del> ls_output.split(" ")[-1].replace("libcudart.so.", "").split(".")
<11>:<del> )
<27>:<add> binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup()
<del> binary_name = evaluate_cuda_setup()
|
# module: tests.test_cuda_setup_evaluator
def test_full_system():
<0> ## this only tests the cuda version and not compute capability
<1>
<2> # if CONDA_PREFIX exists, it has priority before all other env variables
<3> # but it does not contain the library directly, so we need to look at the a sub-folder
<4> version = ""
<5> if "CONDA_PREFIX" in os.environ:
<6> ls_output, err = bnb.utils.execute_and_return(
<7> f'ls -l {os.environ["CONDA_PREFIX"]}/lib/libcudart.so'
<8> )
<9> major, minor, revision = (
<10> ls_output.split(" ")[-1].replace("libcudart.so.", "").split(".")
<11> )
<12> version = float(f"{major}.{minor}")
<13>
<14> if version == "" and "LD_LIBRARY_PATH" in os.environ:
<15> ld_path = os.environ["LD_LIBRARY_PATH"]
<16> paths = ld_path.split(":")
<17> version = ""
<18> for p in paths:
<19> if "cuda" in p:
<20> idx = p.rfind("cuda-")
<21> version = p[idx + 5 : idx + 5 + 4].replace("/", "")
<22> version = float(version)
<23> break
<24>
<25>
<26> assert version > 0
<27> binary_name = evaluate_cuda_setup()
<28> binary_name = binary_name.replace("libbitsandbytes_cuda", "")
<29> assert binary_name.startswith(str(version).replace(".", ""))
<30>
|
===========unchanged ref 0===========
at: bitsandbytes.cuda_setup.main
evaluate_cuda_setup()
at: bitsandbytes.utils
execute_and_return(command_string: str) -> Tuple[str, str]
at: os
environ = _createenviron()
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
def evaluate_cuda_setup():
# we remove this for now and see how things go
#print('')
#print('='*35 + 'BUG REPORT' + '='*35)
#print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
#print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
#print('='*80)
#if not torch.cuda.is_available():
#print('No GPU detected. Loading CPU library...')
#return binary_name
binary_name = "libbitsandbytes_cpu.so"
cuda_setup = CUDASetup.get_instance()
cudart_path = determine_cuda_runtime_lib_path()
if cudart_path is None:
cuda_setup.add_log_entry("WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!", is_warning=True)
return binary_name
cuda_setup.add_log_entry((f"CUDA SETUP: CUDA runtime path found: {cudart_path}"))
cuda = get_cuda_lib_handle()
cc = get_compute_capability(cuda)
cuda_setup.add_log_entry(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}")
cuda_version_string = get_cuda_version(cuda, cudart_path)
if cc == '':
cuda_setup.add_log_entry("WARNING: No GPU detected! Check your CUDA paths. Processing to load CPU-only library...", is_warning=True)
return</s>
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
def evaluate_cuda_setup():
# offset: 1
<s>WARNING: No GPU detected! Check your CUDA paths. Processing to load CPU-only library...", is_warning=True)
return binary_name
# 7.5 is the minimum CC vor cublaslt
has_cublaslt = cc in ["7.5", "8.0", "8.6"]
# TODO:
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
# (2) Multiple CUDA versions installed
# we use ls -l instead of nvcc to determine the cuda version
# since most installations will have the libcudart.so installed, but not the compiler
cuda_setup.add_log_entry(f'CUDA SETUP: Detected CUDA version {cuda_version_string}')
def get_binary_name():
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so"
bin_base_name = "libbitsandbytes_cuda"
if has_cublaslt:
return f"{bin_base_name}{cuda_version_string}.so"
else:
return f"{bin_base_name}{cuda_version_string}_nocublaslt.so"
binary_name = get_binary_name()
+ return binary_name, cudart_path, cuda, cc, cuda_version_string
- return binary_name
===========changed ref 2===========
# module: bitsandbytes.cextension
lib = CUDASetup.get_instance().lib
try:
+ if lib is None and torch.cuda.is_available():
+ CUDASetup.get_instance().generate_instructions()
+ CUDASetup.get_instance().print_log_stack()
+ raise RuntimeError('''
+ CUDA Setup failed despite GPU being available. Inspect the CUDA SETUP outputs to fix your environment!
+ If you cannot find any issues and suspect a bug, please open an issue with detals about your environment:
+ https://github.com/TimDettmers/bitsandbytes/issues''')
lib.cadam32bit_g32
lib.get_context.restype = ct.c_void_p
lib.get_cusparse.restype = ct.c_void_p
COMPILED_WITH_CUDA = True
except AttributeError:
warn(
"The installed version of bitsandbytes was compiled without GPU support. "
"8-bit optimizers and GPU quantization are unavailable."
)
COMPILED_WITH_CUDA = False
===========changed ref 3===========
# module: bitsandbytes.cextension
class CUDASetup(object):
def initialize(self):
self.cuda_setup_log = []
+ self.lib = None
from .cuda_setup.main import evaluate_cuda_setup
+ binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup()
+ self.cudart_path = cudart_path
+ self.cuda = cuda
+ self.cc = cc
+ self.cuda_version_string = cuda_version_string
+
- binary_name = evaluate_cuda_setup()
package_dir = Path(__file__).parent
binary_path = package_dir / binary_name
try:
if not binary_path.exists():
+ self.add_log_entry(f"CUDA SETUP: Required library version not found: {binary_name}. Maybe you need to compile it from source?")
- self.add_log_entry(f"CUDA SETUP: TODO: compile library for specific version: {binary_name}")
legacy_binary_name = "libbitsandbytes.so"
self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...")
binary_path = package_dir / legacy_binary_name
if not binary_path.exists():
+ self.add_log_entry('')
+ self.add_log_entry('='*48 + 'ERROR' + '='*37)
+ self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:')
+ self.add_log_entry('1. CUDA driver not installed')
+ self.add_log_entry('2. CUDA not installed')
+ self.add_log_entry('3. You have multiple conflicting CUDA libraries')
+ self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!')
- self.add_log_entry('CUDA SETUP: CUDA detection failed. Either CUDA driver</s>
|
bitsandbytes.cuda_setup.paths/warn_in_case_of_duplicates
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
c584482f1f13e073dac714815f2d439fd66699d1
|
Resolve cases of CUDASetup.get_instance not being called when used
|
<8>:<add> CUDASetup.get_instance().add_log_entry(warning_msg, is_warning=True)
<del> CUDASetup.get_instance.add_log_entry(warning_msg, is_warning=True)
|
# module: bitsandbytes.cuda_setup.paths
def warn_in_case_of_duplicates(results_paths: Set[Path]) -> None:
<0> if len(results_paths) > 1:
<1> warning_msg = (
<2> f"Found duplicate {CUDA_RUNTIME_LIB} files: {results_paths}.. "
<3> "We'll flip a coin and try one of these, in order to fail forward.\n"
<4> "Either way, this might cause trouble in the future:\n"
<5> "If you get `CUDA error: invalid device function` errors, the above "
<6> "might be the cause and the solution is to make sure only one "
<7> f"{CUDA_RUNTIME_LIB} in the paths that we search based on your env.")
<8> CUDASetup.get_instance.add_log_entry(warning_msg, is_warning=True)
<9>
|
===========unchanged ref 0===========
at: bitsandbytes.cextension
CUDASetup()
at: bitsandbytes.cextension.CUDASetup
_instance = None
get_instance()
at: bitsandbytes.cuda_setup.paths
CUDA_RUNTIME_LIB: str = "libcudart.so"
at: pathlib
Path()
at: typing
Set = _alias(set, 1, inst=False, name='Set')
|
bitsandbytes.cuda_setup.paths/determine_cuda_runtime_lib_path
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
c584482f1f13e073dac714815f2d439fd66699d1
|
Resolve cases of CUDASetup.get_instance not being called when used
|
<22>:<add> CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["CONDA_PREFIX"]} did not contain '
<del> CUDASetup.get_instance.add_log_entry(f'{candidate_env_vars["CONDA_PREFIX"]} did not contain '
|
# module: bitsandbytes.cuda_setup.paths
def determine_cuda_runtime_lib_path() -> Union[Path, None]:
<0> """
<1> Searches for a cuda installations, in the following order of priority:
<2> 1. active conda env
<3> 2. LD_LIBRARY_PATH
<4> 3. any other env vars, while ignoring those that
<5> - are known to be unrelated (see `bnb.cuda_setup.env_vars.to_be_ignored`)
<6> - don't contain the path separator `/`
<7>
<8> If multiple libraries are found in part 3, we optimistically try one,
<9> while giving a warning message.
<10> """
<11> candidate_env_vars = get_potentially_lib_path_containing_env_vars()
<12>
<13> if "CONDA_PREFIX" in candidate_env_vars:
<14> conda_libs_path = Path(candidate_env_vars["CONDA_PREFIX"]) / "lib"
<15>
<16> conda_cuda_libs = find_cuda_lib_in(str(conda_libs_path))
<17> warn_in_case_of_duplicates(conda_cuda_libs)
<18>
<19> if conda_cuda_libs:
<20> return next(iter(conda_cuda_libs))
<21>
<22> CUDASetup.get_instance.add_log_entry(f'{candidate_env_vars["CONDA_PREFIX"]} did not contain '
<23> f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True)
<24>
<25> if "LD_LIBRARY_PATH" in candidate_env_vars:
<26> lib_ld_cuda_libs = find_cuda_lib_in(candidate_env_vars["LD_LIBRARY_PATH"])
<27>
<28> if lib_ld_cuda_libs:
<29> return next(iter(lib_ld_cuda_libs))
<30> warn_in_case_of_duplicates(lib_ld_cuda_libs)
<31>
<32> CUDASetup.get_instance().add_</s>
|
===========below chunk 0===========
# module: bitsandbytes.cuda_setup.paths
def determine_cuda_runtime_lib_path() -> Union[Path, None]:
# offset: 1
f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True)
remaining_candidate_env_vars = {
env_var: value for env_var, value in candidate_env_vars.items()
if env_var not in {"CONDA_PREFIX", "LD_LIBRARY_PATH"}
}
cuda_runtime_libs = set()
for env_var, value in remaining_candidate_env_vars.items():
cuda_runtime_libs.update(find_cuda_lib_in(value))
if len(cuda_runtime_libs) == 0:
CUDASetup.get_instance().add_log_entry('CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching /usr/local/cuda/lib64...')
cuda_runtime_libs.update(find_cuda_lib_in('/usr/local/cuda/lib64'))
warn_in_case_of_duplicates(cuda_runtime_libs)
return next(iter(cuda_runtime_libs)) if cuda_runtime_libs else None
===========unchanged ref 0===========
at: bitsandbytes.cextension
CUDASetup()
at: bitsandbytes.cextension.CUDASetup
get_instance()
at: bitsandbytes.cuda_setup.env_vars
get_potentially_lib_path_containing_env_vars() -> Dict[str, str]
at: bitsandbytes.cuda_setup.paths
CUDA_RUNTIME_LIB: str = "libcudart.so"
find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]
warn_in_case_of_duplicates(results_paths: Set[Path]) -> None
at: pathlib
Path()
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.paths
def warn_in_case_of_duplicates(results_paths: Set[Path]) -> None:
if len(results_paths) > 1:
warning_msg = (
f"Found duplicate {CUDA_RUNTIME_LIB} files: {results_paths}.. "
"We'll flip a coin and try one of these, in order to fail forward.\n"
"Either way, this might cause trouble in the future:\n"
"If you get `CUDA error: invalid device function` errors, the above "
"might be the cause and the solution is to make sure only one "
f"{CUDA_RUNTIME_LIB} in the paths that we search based on your env.")
+ CUDASetup.get_instance().add_log_entry(warning_msg, is_warning=True)
- CUDASetup.get_instance.add_log_entry(warning_msg, is_warning=True)
|
bitsandbytes.cuda_setup.main/check_cuda_result
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
c584482f1f13e073dac714815f2d439fd66699d1
|
Resolve cases of CUDASetup.get_instance not being called when used
|
<4>:<add> CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
<del> CUDASetup.get_instance.add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
|
# module: bitsandbytes.cuda_setup.main
def check_cuda_result(cuda, result_val):
<0> # 3. Check for CUDA errors
<1> if result_val != 0:
<2> error_str = ctypes.c_char_p()
<3> cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
<4> CUDASetup.get_instance.add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
<5>
|
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.paths
def warn_in_case_of_duplicates(results_paths: Set[Path]) -> None:
if len(results_paths) > 1:
warning_msg = (
f"Found duplicate {CUDA_RUNTIME_LIB} files: {results_paths}.. "
"We'll flip a coin and try one of these, in order to fail forward.\n"
"Either way, this might cause trouble in the future:\n"
"If you get `CUDA error: invalid device function` errors, the above "
"might be the cause and the solution is to make sure only one "
f"{CUDA_RUNTIME_LIB} in the paths that we search based on your env.")
+ CUDASetup.get_instance().add_log_entry(warning_msg, is_warning=True)
- CUDASetup.get_instance.add_log_entry(warning_msg, is_warning=True)
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.paths
def determine_cuda_runtime_lib_path() -> Union[Path, None]:
"""
Searches for a cuda installations, in the following order of priority:
1. active conda env
2. LD_LIBRARY_PATH
3. any other env vars, while ignoring those that
- are known to be unrelated (see `bnb.cuda_setup.env_vars.to_be_ignored`)
- don't contain the path separator `/`
If multiple libraries are found in part 3, we optimistically try one,
while giving a warning message.
"""
candidate_env_vars = get_potentially_lib_path_containing_env_vars()
if "CONDA_PREFIX" in candidate_env_vars:
conda_libs_path = Path(candidate_env_vars["CONDA_PREFIX"]) / "lib"
conda_cuda_libs = find_cuda_lib_in(str(conda_libs_path))
warn_in_case_of_duplicates(conda_cuda_libs)
if conda_cuda_libs:
return next(iter(conda_cuda_libs))
+ CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["CONDA_PREFIX"]} did not contain '
- CUDASetup.get_instance.add_log_entry(f'{candidate_env_vars["CONDA_PREFIX"]} did not contain '
f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True)
if "LD_LIBRARY_PATH" in candidate_env_vars:
lib_ld_cuda_libs = find_cuda_lib_in(candidate_env_vars["LD_LIBRARY_PATH"])
if lib_ld_cuda_libs:
return next(iter(lib_ld_cuda_libs))
warn_in_case_of_duplicates(lib_ld_cuda_libs)
CUDASetup.get_instance</s>
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.paths
def determine_cuda_runtime_lib_path() -> Union[Path, None]:
# offset: 1
<s> warn_in_case_of_duplicates(lib_ld_cuda_libs)
CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["LD_LIBRARY_PATH"]} did not contain '
f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True)
remaining_candidate_env_vars = {
env_var: value for env_var, value in candidate_env_vars.items()
if env_var not in {"CONDA_PREFIX", "LD_LIBRARY_PATH"}
}
cuda_runtime_libs = set()
for env_var, value in remaining_candidate_env_vars.items():
cuda_runtime_libs.update(find_cuda_lib_in(value))
if len(cuda_runtime_libs) == 0:
CUDASetup.get_instance().add_log_entry('CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching /usr/local/cuda/lib64...')
cuda_runtime_libs.update(find_cuda_lib_in('/usr/local/cuda/lib64'))
warn_in_case_of_duplicates(cuda_runtime_libs)
return next(iter(cuda_runtime_libs)) if cuda_runtime_libs else None
|
bitsandbytes.cuda_setup.main/get_cuda_version
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
c584482f1f13e073dac714815f2d439fd66699d1
|
Resolve cases of CUDASetup.get_instance not being called when used
|
<4>:<add> CUDASetup.get_instance().add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
<del> CUDASetup.get_instance.add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
|
# module: bitsandbytes.cuda_setup.main
def get_cuda_version(cuda, cudart_path):
<0> # https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
<1> try:
<2> cudart = ctypes.CDLL(cudart_path)
<3> except OSError:
<4> CUDASetup.get_instance.add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
<5> return None
<6>
<7> version = ctypes.c_int()
<8> check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ctypes.byref(version)))
<9> version = int(version.value)
<10> major = version//1000
<11> minor = (version-(major*1000))//10
<12>
<13> if major < 11:
<14> CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currenlty not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
<15>
<16> return f'{major}{minor}'
<17>
|
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
def check_cuda_result(cuda, result_val):
# 3. Check for CUDA errors
if result_val != 0:
error_str = ctypes.c_char_p()
cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
+ CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
- CUDASetup.get_instance.add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.paths
def warn_in_case_of_duplicates(results_paths: Set[Path]) -> None:
if len(results_paths) > 1:
warning_msg = (
f"Found duplicate {CUDA_RUNTIME_LIB} files: {results_paths}.. "
"We'll flip a coin and try one of these, in order to fail forward.\n"
"Either way, this might cause trouble in the future:\n"
"If you get `CUDA error: invalid device function` errors, the above "
"might be the cause and the solution is to make sure only one "
f"{CUDA_RUNTIME_LIB} in the paths that we search based on your env.")
+ CUDASetup.get_instance().add_log_entry(warning_msg, is_warning=True)
- CUDASetup.get_instance.add_log_entry(warning_msg, is_warning=True)
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.paths
def determine_cuda_runtime_lib_path() -> Union[Path, None]:
"""
Searches for a cuda installations, in the following order of priority:
1. active conda env
2. LD_LIBRARY_PATH
3. any other env vars, while ignoring those that
- are known to be unrelated (see `bnb.cuda_setup.env_vars.to_be_ignored`)
- don't contain the path separator `/`
If multiple libraries are found in part 3, we optimistically try one,
while giving a warning message.
"""
candidate_env_vars = get_potentially_lib_path_containing_env_vars()
if "CONDA_PREFIX" in candidate_env_vars:
conda_libs_path = Path(candidate_env_vars["CONDA_PREFIX"]) / "lib"
conda_cuda_libs = find_cuda_lib_in(str(conda_libs_path))
warn_in_case_of_duplicates(conda_cuda_libs)
if conda_cuda_libs:
return next(iter(conda_cuda_libs))
+ CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["CONDA_PREFIX"]} did not contain '
- CUDASetup.get_instance.add_log_entry(f'{candidate_env_vars["CONDA_PREFIX"]} did not contain '
f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True)
if "LD_LIBRARY_PATH" in candidate_env_vars:
lib_ld_cuda_libs = find_cuda_lib_in(candidate_env_vars["LD_LIBRARY_PATH"])
if lib_ld_cuda_libs:
return next(iter(lib_ld_cuda_libs))
warn_in_case_of_duplicates(lib_ld_cuda_libs)
CUDASetup.get_instance</s>
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.paths
def determine_cuda_runtime_lib_path() -> Union[Path, None]:
# offset: 1
<s> warn_in_case_of_duplicates(lib_ld_cuda_libs)
CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["LD_LIBRARY_PATH"]} did not contain '
f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True)
remaining_candidate_env_vars = {
env_var: value for env_var, value in candidate_env_vars.items()
if env_var not in {"CONDA_PREFIX", "LD_LIBRARY_PATH"}
}
cuda_runtime_libs = set()
for env_var, value in remaining_candidate_env_vars.items():
cuda_runtime_libs.update(find_cuda_lib_in(value))
if len(cuda_runtime_libs) == 0:
CUDASetup.get_instance().add_log_entry('CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching /usr/local/cuda/lib64...')
cuda_runtime_libs.update(find_cuda_lib_in('/usr/local/cuda/lib64'))
warn_in_case_of_duplicates(cuda_runtime_libs)
return next(iter(cuda_runtime_libs)) if cuda_runtime_libs else None
|
bitsandbytes.cuda_setup.main/get_cuda_lib_handle
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
4faf6cb7e983a7ceb32b6329a597e26748dc3977
|
Replace seemingly incorrect use of CUDA_RUNTIME_LIB
|
<4>:<add> CUDASetup.get_instance().add_log_entry('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
<del> CUDA_RUNTIME_LIB.get_instance().add_log_entry('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
|
# module: bitsandbytes.cuda_setup.main
def get_cuda_lib_handle():
<0> # 1. find libcuda.so library (GPU driver) (/usr/lib)
<1> try:
<2> cuda = ctypes.CDLL("libcuda.so")
<3> except OSError:
<4> CUDA_RUNTIME_LIB.get_instance().add_log_entry('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
<5> return None
<6> check_cuda_result(cuda, cuda.cuInit(0))
<7>
<8> return cuda
<9>
| |
bitsandbytes.cuda_setup.main/evaluate_cuda_setup
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
4844aef4ff51b433d549a9acc49b11a925b6f4fe
|
Fixing bad error when GPU was not detected for #73.
|
<25>:<add> if cc == '' or cc is None:
<del> if cc == '':
|
# module: bitsandbytes.cuda_setup.main
def evaluate_cuda_setup():
<0> # we remove this for now and see how things go
<1> #print('')
<2> #print('='*35 + 'BUG REPORT' + '='*35)
<3> #print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
<4> #print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
<5> #print('='*80)
<6> #if not torch.cuda.is_available():
<7> #print('No GPU detected. Loading CPU library...')
<8> #return binary_name
<9>
<10> binary_name = "libbitsandbytes_cpu.so"
<11>
<12> cuda_setup = CUDASetup.get_instance()
<13> cudart_path = determine_cuda_runtime_lib_path()
<14> if cudart_path is None:
<15> cuda_setup.add_log_entry("WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!", is_warning=True)
<16> return binary_name
<17>
<18> cuda_setup.add_log_entry((f"CUDA SETUP: CUDA runtime path found: {cudart_path}"))
<19> cuda = get_cuda_lib_handle()
<20> cc = get_compute_capability(cuda)
<21> cuda_setup.add_log_entry(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}")
<22> cuda_version_string = get_cuda_version(cuda, cudart_path)
<23>
<24>
<25> if cc == '':
<26> cuda_setup.add_log_entry("WARNING: No</s>
|
===========below chunk 0===========
# module: bitsandbytes.cuda_setup.main
def evaluate_cuda_setup():
# offset: 1
return binary_name
# 7.5 is the minimum CC vor cublaslt
has_cublaslt = cc in ["7.5", "8.0", "8.6"]
# TODO:
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
# (2) Multiple CUDA versions installed
# we use ls -l instead of nvcc to determine the cuda version
# since most installations will have the libcudart.so installed, but not the compiler
cuda_setup.add_log_entry(f'CUDA SETUP: Detected CUDA version {cuda_version_string}')
def get_binary_name():
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so"
bin_base_name = "libbitsandbytes_cuda"
if has_cublaslt:
return f"{bin_base_name}{cuda_version_string}.so"
else:
return f"{bin_base_name}{cuda_version_string}_nocublaslt.so"
binary_name = get_binary_name()
return binary_name, cudart_path, cuda, cc, cuda_version_string
===========unchanged ref 0===========
at: bitsandbytes.cextension
CUDASetup()
at: bitsandbytes.cextension.CUDASetup
_instance = None
get_instance()
at: bitsandbytes.cuda_setup.main
get_cuda_version(cuda, cudart_path)
get_cuda_lib_handle()
get_compute_capability(cuda)
at: bitsandbytes.cuda_setup.paths
determine_cuda_runtime_lib_path() -> Union[Path, None]
|
bitsandbytes.cuda_setup.main/get_cuda_version
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
8d87c0b85214c07756b5dcdb09ceb26b0bb1cb7a
|
Fixed CUDA setup bugs, including #81.
|
<0>:<add> if cuda is None: return None
<add>
<del> # https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
|
# module: bitsandbytes.cuda_setup.main
+ # https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
def get_cuda_version(cuda, cudart_path):
<0> # https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
<1> try:
<2> cudart = ctypes.CDLL(cudart_path)
<3> except OSError:
<4> CUDASetup.get_instance().add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
<5> return None
<6>
<7> version = ctypes.c_int()
<8> check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ctypes.byref(version)))
<9> version = int(version.value)
<10> major = version//1000
<11> minor = (version-(major*1000))//10
<12>
<13> if major < 11:
<14> CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currenlty not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
<15>
<16> return f'{major}{minor}'
<17>
|
===========changed ref 0===========
# module: bitsandbytes.cextension
lib = CUDASetup.get_instance().lib
try:
if lib is None and torch.cuda.is_available():
CUDASetup.get_instance().generate_instructions()
CUDASetup.get_instance().print_log_stack()
raise RuntimeError('''
+ CUDA Setup failed despite GPU being available. Inspect the CUDA SETUP outputs aboveto fix your environment!
- CUDA Setup failed despite GPU being available. Inspect the CUDA SETUP outputs to fix your environment!
If you cannot find any issues and suspect a bug, please open an issue with detals about your environment:
https://github.com/TimDettmers/bitsandbytes/issues''')
lib.cadam32bit_g32
lib.get_context.restype = ct.c_void_p
lib.get_cusparse.restype = ct.c_void_p
COMPILED_WITH_CUDA = True
except AttributeError:
- warn(
+ warn("The installed version of bitsandbytes was compiled without GPU support. "
- "The installed version of bitsandbytes was compiled without GPU support. "
+ "8-bit optimizers and GPU quantization are unavailable.")
- "8-bit optimizers and GPU quantization are unavailable."
- )
COMPILED_WITH_CUDA = False
|
bitsandbytes.cuda_setup.main/get_compute_capability
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
8d87c0b85214c07756b5dcdb09ceb26b0bb1cb7a
|
Fixed CUDA setup bugs, including #81.
|
<5>:<add> if cuda is None: return None
<add>
<add> # TODO: handle different compute capabilities; for now, take the max
<6>:<del> if ccs:
<7>:<del> # TODO: handle different compute capabilities; for now, take the max
<8>:<add> if ccs: return ccs[-1]
<del> return ccs[-1]
<9>:<del> return None
|
# module: bitsandbytes.cuda_setup.main
# def get_compute_capability()-> Union[List[str, ...], None]: # FIXME: error
def get_compute_capability(cuda):
<0> """
<1> Extracts the highest compute capbility from all available GPUs, as compute
<2> capabilities are downwards compatible. If no GPUs are detected, it returns
<3> None.
<4> """
<5> ccs = get_compute_capabilities(cuda)
<6> if ccs:
<7> # TODO: handle different compute capabilities; for now, take the max
<8> return ccs[-1]
<9> return None
<10>
|
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
+ # https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
def get_cuda_version(cuda, cudart_path):
+ if cuda is None: return None
+
- # https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
try:
cudart = ctypes.CDLL(cudart_path)
except OSError:
CUDASetup.get_instance().add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
return None
version = ctypes.c_int()
check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ctypes.byref(version)))
version = int(version.value)
major = version//1000
minor = (version-(major*1000))//10
if major < 11:
CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currenlty not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
return f'{major}{minor}'
===========changed ref 1===========
# module: bitsandbytes.cextension
lib = CUDASetup.get_instance().lib
try:
if lib is None and torch.cuda.is_available():
CUDASetup.get_instance().generate_instructions()
CUDASetup.get_instance().print_log_stack()
raise RuntimeError('''
+ CUDA Setup failed despite GPU being available. Inspect the CUDA SETUP outputs aboveto fix your environment!
- CUDA Setup failed despite GPU being available. Inspect the CUDA SETUP outputs to fix your environment!
If you cannot find any issues and suspect a bug, please open an issue with detals about your environment:
https://github.com/TimDettmers/bitsandbytes/issues''')
lib.cadam32bit_g32
lib.get_context.restype = ct.c_void_p
lib.get_cusparse.restype = ct.c_void_p
COMPILED_WITH_CUDA = True
except AttributeError:
- warn(
+ warn("The installed version of bitsandbytes was compiled without GPU support. "
- "The installed version of bitsandbytes was compiled without GPU support. "
+ "8-bit optimizers and GPU quantization are unavailable.")
- "8-bit optimizers and GPU quantization are unavailable."
- )
COMPILED_WITH_CUDA = False
|
bitsandbytes.cuda_setup.main/evaluate_cuda_setup
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
8d87c0b85214c07756b5dcdb09ceb26b0bb1cb7a
|
Fixed CUDA setup bugs, including #81.
|
<6>:<del> #if not torch.cuda.is_available():
<7>:<del> #print('No GPU detected. Loading CPU library...')
<8>:<del> #return binary_name
<9>:<del>
<10>:<del> binary_name = "libbitsandbytes_cpu.so"
<11>:<add> if not torch.cuda.is_available(): return 'libsbitsandbytes_cpu.so', None, None, None, None
<14>:<del> if cudart_path is None:
<15>:<del> cuda_setup.add_log_entry("WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!", is_warning=True)
<16>:<del> return binary_name
<17>:<del>
<18>:<del> cuda_setup.add_log_entry((f"CUDA SETUP: CUDA runtime path found: {cudart_path}"))
<21>:<del> cuda_setup.add_log_entry(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}")
<24>:<add> failure = False
<add> if cudart_path is None:
<add> failure = True
<add> cuda_setup.add_log_entry("WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!", is_warning=True)
<add> else:
<add> cuda_setup.add_log_entry((f"CUDA SETUP: CUDA runtime path found: {cudart_path}"))
<26>:<add> failure = True
<add> cuda_setup.add_log_entry("WARNING: No GPU detected! Check your CUDA paths. Proceeding to load CPU-only library...", is_warning=True)
<del> cuda_setup.add_log_entry
|
# module: bitsandbytes.cuda_setup.main
def evaluate_cuda_setup():
<0> # we remove this for now and see how things go
<1> #print('')
<2> #print('='*35 + 'BUG REPORT' + '='*35)
<3> #print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
<4> #print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
<5> #print('='*80)
<6> #if not torch.cuda.is_available():
<7> #print('No GPU detected. Loading CPU library...')
<8> #return binary_name
<9>
<10> binary_name = "libbitsandbytes_cpu.so"
<11>
<12> cuda_setup = CUDASetup.get_instance()
<13> cudart_path = determine_cuda_runtime_lib_path()
<14> if cudart_path is None:
<15> cuda_setup.add_log_entry("WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!", is_warning=True)
<16> return binary_name
<17>
<18> cuda_setup.add_log_entry((f"CUDA SETUP: CUDA runtime path found: {cudart_path}"))
<19> cuda = get_cuda_lib_handle()
<20> cc = get_compute_capability(cuda)
<21> cuda_setup.add_log_entry(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}")
<22> cuda_version_string = get_cuda_version(cuda, cudart_path)
<23>
<24>
<25> if cc == '' or cc is None:
<26> cuda_setup.add_log_entry</s>
|
===========below chunk 0===========
# module: bitsandbytes.cuda_setup.main
def evaluate_cuda_setup():
# offset: 1
return binary_name, cudart_path, cuda, cc, cuda_version_string
# 7.5 is the minimum CC vor cublaslt
has_cublaslt = cc in ["7.5", "8.0", "8.6"]
# TODO:
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
# (2) Multiple CUDA versions installed
# we use ls -l instead of nvcc to determine the cuda version
# since most installations will have the libcudart.so installed, but not the compiler
cuda_setup.add_log_entry(f'CUDA SETUP: Detected CUDA version {cuda_version_string}')
def get_binary_name():
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so"
bin_base_name = "libbitsandbytes_cuda"
if has_cublaslt:
return f"{bin_base_name}{cuda_version_string}.so"
else:
return f"{bin_base_name}{cuda_version_string}_nocublaslt.so"
binary_name = get_binary_name()
return binary_name, cudart_path, cuda, cc, cuda_version_string
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
# def get_compute_capability()-> Union[List[str, ...], None]: # FIXME: error
def get_compute_capability(cuda):
"""
Extracts the highest compute capbility from all available GPUs, as compute
capabilities are downwards compatible. If no GPUs are detected, it returns
None.
"""
+ if cuda is None: return None
+
+ # TODO: handle different compute capabilities; for now, take the max
ccs = get_compute_capabilities(cuda)
- if ccs:
- # TODO: handle different compute capabilities; for now, take the max
+ if ccs: return ccs[-1]
- return ccs[-1]
- return None
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
+ # https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
def get_cuda_version(cuda, cudart_path):
+ if cuda is None: return None
+
- # https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
try:
cudart = ctypes.CDLL(cudart_path)
except OSError:
CUDASetup.get_instance().add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
return None
version = ctypes.c_int()
check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ctypes.byref(version)))
version = int(version.value)
major = version//1000
minor = (version-(major*1000))//10
if major < 11:
CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currenlty not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
return f'{major}{minor}'
===========changed ref 2===========
# module: bitsandbytes.cextension
lib = CUDASetup.get_instance().lib
try:
if lib is None and torch.cuda.is_available():
CUDASetup.get_instance().generate_instructions()
CUDASetup.get_instance().print_log_stack()
raise RuntimeError('''
+ CUDA Setup failed despite GPU being available. Inspect the CUDA SETUP outputs aboveto fix your environment!
- CUDA Setup failed despite GPU being available. Inspect the CUDA SETUP outputs to fix your environment!
If you cannot find any issues and suspect a bug, please open an issue with detals about your environment:
https://github.com/TimDettmers/bitsandbytes/issues''')
lib.cadam32bit_g32
lib.get_context.restype = ct.c_void_p
lib.get_cusparse.restype = ct.c_void_p
COMPILED_WITH_CUDA = True
except AttributeError:
- warn(
+ warn("The installed version of bitsandbytes was compiled without GPU support. "
- "The installed version of bitsandbytes was compiled without GPU support. "
+ "8-bit optimizers and GPU quantization are unavailable.")
- "8-bit optimizers and GPU quantization are unavailable."
- )
COMPILED_WITH_CUDA = False
|
bitsandbytes.nn.modules/StableEmbedding.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
62d39a237cfcfb664c3165271d2105cfbb480451
|
add device and dtype parameters to StableEmbedding
|
<9>:<add> device,
<add> dtype,
<10>:<add> self.norm = torch.nn.LayerNorm(embedding_dim, device=device)
<del> self.norm = torch.nn.LayerNorm(embedding_dim)
|
<s>.nn.Embedding):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
+ device=None,
+ dtype=None,
) -> None:
<0> super(StableEmbedding, self).__init__(
<1> num_embeddings,
<2> embedding_dim,
<3> padding_idx,
<4> max_norm,
<5> norm_type,
<6> scale_grad_by_freq,
<7> sparse,
<8> _weight,
<9> )
<10> self.norm = torch.nn.LayerNorm(embedding_dim)
<11> GlobalOptimManager.get_instance().register_module_override(
<12> self, "weight", {"optim_bits": 32}
<13> )
<14>
| |
bitsandbytes.nn.modules/StableEmbedding.forward
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
62d39a237cfcfb664c3165271d2105cfbb480451
|
add device and dtype parameters to StableEmbedding
|
<10>:<add> # always apply layer norm in full precision
<add> emb = emb.to(torch.get_default_dtype())
<del> return self.norm(emb)
|
# module: bitsandbytes.nn.modules
class StableEmbedding(torch.nn.Embedding):
def forward(self, input: Tensor) -> Tensor:
<0> emb = F.embedding(
<1> input,
<2> self.weight,
<3> self.padding_idx,
<4> self.max_norm,
<5> self.norm_type,
<6> self.scale_grad_by_freq,
<7> self.sparse,
<8> )
<9>
<10> return self.norm(emb)
<11>
|
===========changed ref 0===========
<s>.nn.Embedding):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
+ device=None,
+ dtype=None,
) -> None:
super(StableEmbedding, self).__init__(
num_embeddings,
embedding_dim,
padding_idx,
max_norm,
norm_type,
scale_grad_by_freq,
sparse,
_weight,
+ device,
+ dtype,
)
+ self.norm = torch.nn.LayerNorm(embedding_dim, device=device)
- self.norm = torch.nn.LayerNorm(embedding_dim)
GlobalOptimManager.get_instance().register_module_override(
self, "weight", {"optim_bits": 32}
)
|
bitsandbytes.cuda_setup.main/check_cuda_result
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<2>:<add> error_str = ct.c_char_p()
<del> error_str = ctypes.c_char_p()
<3>:<add> cuda.cuGetErrorString(result_val, ct.byref(error_str))
<del> cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
|
# module: bitsandbytes.cuda_setup.main
def check_cuda_result(cuda, result_val):
<0> # 3. Check for CUDA errors
<1> if result_val != 0:
<2> error_str = ctypes.c_char_p()
<3> cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
<4> CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
<5>
| |
bitsandbytes.cuda_setup.main/get_cuda_version
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<3>:<add> cudart = ct.CDLL(cudart_path)
<del> cudart = ctypes.CDLL(cudart_path)
<8>:<add> version = ct.c_int()
<del> version = ctypes.c_int()
<9>:<add> check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ct.byref(version)))
<del> check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ctypes.byref(version)))
<15>:<add> CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currently not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
<del> CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currenlty not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
|
# module: bitsandbytes.cuda_setup.main
# https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
def get_cuda_version(cuda, cudart_path):
<0> if cuda is None: return None
<1>
<2> try:
<3> cudart = ctypes.CDLL(cudart_path)
<4> except OSError:
<5> CUDASetup.get_instance().add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
<6> return None
<7>
<8> version = ctypes.c_int()
<9> check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ctypes.byref(version)))
<10> version = int(version.value)
<11> major = version//1000
<12> minor = (version-(major*1000))//10
<13>
<14> if major < 11:
<15> CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currenlty not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
<16>
<17> return f'{major}{minor}'
<18>
|
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
def check_cuda_result(cuda, result_val):
# 3. Check for CUDA errors
if result_val != 0:
+ error_str = ct.c_char_p()
- error_str = ctypes.c_char_p()
+ cuda.cuGetErrorString(result_val, ct.byref(error_str))
- cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
|
bitsandbytes.cuda_setup.main/get_cuda_lib_handle
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<2>:<add> cuda = ct.CDLL("libcuda.so")
<del> cuda = ctypes.CDLL("libcuda.so")
|
# module: bitsandbytes.cuda_setup.main
def get_cuda_lib_handle():
<0> # 1. find libcuda.so library (GPU driver) (/usr/lib)
<1> try:
<2> cuda = ctypes.CDLL("libcuda.so")
<3> except OSError:
<4> CUDASetup.get_instance().add_log_entry('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
<5> return None
<6> check_cuda_result(cuda, cuda.cuInit(0))
<7>
<8> return cuda
<9>
|
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
def check_cuda_result(cuda, result_val):
# 3. Check for CUDA errors
if result_val != 0:
+ error_str = ct.c_char_p()
- error_str = ctypes.c_char_p()
+ cuda.cuGetErrorString(result_val, ct.byref(error_str))
- cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
# https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
def get_cuda_version(cuda, cudart_path):
if cuda is None: return None
try:
+ cudart = ct.CDLL(cudart_path)
- cudart = ctypes.CDLL(cudart_path)
except OSError:
CUDASetup.get_instance().add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
return None
+ version = ct.c_int()
- version = ctypes.c_int()
+ check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ct.byref(version)))
- check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ctypes.byref(version)))
version = int(version.value)
major = version//1000
minor = (version-(major*1000))//10
if major < 11:
+ CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currently not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
- CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currenlty not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
return f'{major}{minor}'
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def generate_instructions(self):
+ if self.cuda is None:
+ self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA library was not detected.')
+ self.add_log_entry('CUDA SETUP: Solution 1): Your paths are probably not up-to-date. You can update them via: sudo ldconfig.')
+ self.add_log_entry('CUDA SETUP: Solution 2): If you do not have sudo rights, you can do the following:')
+ self.add_log_entry('CUDA SETUP: Solution 2a): Find the cuda library via: find / -name libcuda.so 2>/dev/null')
+ self.add_log_entry('CUDA SETUP: Solution 2b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_2a')
+ self.add_log_entry('CUDA SETUP: Solution 2c): For a permanent solution add the export from 2b into your .bashrc file, located at ~/.bashrc')
+ return
+
+ if self.cudart_path is None:
+ self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA runtime library was not detected.')
+ self.add_log_entry('CUDA SETUP: Solution 1: To solve the issue the libcudart.so location needs to be added to the LD_LIBRARY_PATH variable')
+ self.add_log_entry('CUDA SETUP: Solution 1a): Find the cuda runtime library via: find / -name libcudart.so 2>/dev/null')
+ self.add_log_entry('CUDA SETUP: Solution 1b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a')
+ self.add_log_entry('</s>
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def generate_instructions(self):
# offset: 1
<s>_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a')
+ self.add_log_entry('CUDA SETUP: Solution 1c): For a permanent solution add the export from 1b into your .bashrc file, located at ~/.bashrc')
+ self.add_log_entry('CUDA SETUP: Solution 2: If no library was found in step 1a) you need to install CUDA.')
+ self.add_log_entry('CUDA SETUP: Solution 2a): Download CUDA install script: wget https://github.com/TimDettmers/bitsandbytes/blob/main/cuda_install.sh')
+ self.add_log_entry('CUDA SETUP: Solution 2b): Install desired CUDA version to desired location. The syntax is bash cuda_install.sh CUDA_VERSION PATH_TO_INSTALL_INTO.')
+ self.add_log_entry('CUDA SETUP: Solution 2b): For example, "bash cuda_install.sh 113 ~/local/" will download CUDA 11.3 and install into the folder ~/local')
+ return
+
+ make_cmd = f'CUDA_VERSION={self.cuda_version_string}'
+ if len(self.cuda_version_string) < 3:
+ make_cmd += ' make cuda92'
+ elif self.cuda_version_string == '110':
+ make_cmd += ' make cuda110'
+ elif self.cuda_version_string[:2] == '11' and int(self.cuda_version_string[2]) > 0:
+ make_cmd += ' make cuda11x'
+
+ has_cublaslt = is_cublasLt_compatible(self.cc)
+ if not has_cublaslt:
+ make_cmd += '_nomatmul'
+ </s>
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def generate_instructions(self):
# offset: 2
<s> self.add_log_entry('CUDA SETUP: Something unexpected happened. Please compile from source:')
+ self.add_log_entry('git clone [email protected]:TimDettmers/bitsandbytes.git')
+ self.add_log_entry('cd bitsandbytes')
+ self.add_log_entry(make_cmd)
+ self.add_log_entry('python setup.py install')
+
|
bitsandbytes.cuda_setup.main/get_compute_capabilities
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<10>:<add> nGpus = ct.c_int()
<del> nGpus = ctypes.c_int()
<11>:<add> cc_major = ct.c_int()
<del> cc_major = ctypes.c_int()
<12>:<add> cc_minor = ct.c_int()
<del> cc_minor = ctypes.c_int()
<14>:<add> device = ct.c_int()
<del> device = ctypes.c_int()
<16>:<add> check_cuda_result(cuda, cuda.cuDeviceGetCount(ct.byref(nGpus)))
<del> check_cuda_result(cuda, cuda.cuDeviceGetCount(ctypes.byref(nGpus)))
<19>:<add> check_cuda_result(cuda, cuda.cuDeviceGet(ct.byref(device), i))
<del> check_cuda_result(cuda, cuda.cuDeviceGet(ctypes.byref(device), i))
<20>:<add> ref_major = ct.byref(cc_major)
<del> ref_major = ctypes.byref(cc_major)
<21>:<add> ref_minor = ct.byref(cc_minor)
<del> ref_minor = ctypes.byref(cc_minor)
|
# module: bitsandbytes.cuda_setup.main
def get_compute_capabilities(cuda):
<0> """
<1> 1. find libcuda.so library (GPU driver) (/usr/lib)
<2> init_device -> init variables -> call function by reference
<3> 2. call extern C function to determine CC
<4> (https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
<5> 3. Check for CUDA errors
<6> https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
<7> # bits taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
<8> """
<9>
<10> nGpus = ctypes.c_int()
<11> cc_major = ctypes.c_int()
<12> cc_minor = ctypes.c_int()
<13>
<14> device = ctypes.c_int()
<15>
<16> check_cuda_result(cuda, cuda.cuDeviceGetCount(ctypes.byref(nGpus)))
<17> ccs = []
<18> for i in range(nGpus.value):
<19> check_cuda_result(cuda, cuda.cuDeviceGet(ctypes.byref(device), i))
<20> ref_major = ctypes.byref(cc_major)
<21> ref_minor = ctypes.byref(cc_minor)
<22> # 2. call extern C function to determine CC
<23> check_cuda_result(cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device))
<24> ccs.append(f"{cc_major.value}.{cc_minor.value}")
<25>
<26> return ccs
<27>
|
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
def get_cuda_lib_handle():
# 1. find libcuda.so library (GPU driver) (/usr/lib)
try:
+ cuda = ct.CDLL("libcuda.so")
- cuda = ctypes.CDLL("libcuda.so")
except OSError:
CUDASetup.get_instance().add_log_entry('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
return None
check_cuda_result(cuda, cuda.cuInit(0))
return cuda
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
def check_cuda_result(cuda, result_val):
# 3. Check for CUDA errors
if result_val != 0:
+ error_str = ct.c_char_p()
- error_str = ctypes.c_char_p()
+ cuda.cuGetErrorString(result_val, ct.byref(error_str))
- cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
# https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
def get_cuda_version(cuda, cudart_path):
if cuda is None: return None
try:
+ cudart = ct.CDLL(cudart_path)
- cudart = ctypes.CDLL(cudart_path)
except OSError:
CUDASetup.get_instance().add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
return None
+ version = ct.c_int()
- version = ctypes.c_int()
+ check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ct.byref(version)))
- check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ctypes.byref(version)))
version = int(version.value)
major = version//1000
minor = (version-(major*1000))//10
if major < 11:
+ CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currently not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
- CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currenlty not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
return f'{major}{minor}'
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def generate_instructions(self):
+ if self.cuda is None:
+ self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA library was not detected.')
+ self.add_log_entry('CUDA SETUP: Solution 1): Your paths are probably not up-to-date. You can update them via: sudo ldconfig.')
+ self.add_log_entry('CUDA SETUP: Solution 2): If you do not have sudo rights, you can do the following:')
+ self.add_log_entry('CUDA SETUP: Solution 2a): Find the cuda library via: find / -name libcuda.so 2>/dev/null')
+ self.add_log_entry('CUDA SETUP: Solution 2b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_2a')
+ self.add_log_entry('CUDA SETUP: Solution 2c): For a permanent solution add the export from 2b into your .bashrc file, located at ~/.bashrc')
+ return
+
+ if self.cudart_path is None:
+ self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA runtime library was not detected.')
+ self.add_log_entry('CUDA SETUP: Solution 1: To solve the issue the libcudart.so location needs to be added to the LD_LIBRARY_PATH variable')
+ self.add_log_entry('CUDA SETUP: Solution 1a): Find the cuda runtime library via: find / -name libcudart.so 2>/dev/null')
+ self.add_log_entry('CUDA SETUP: Solution 1b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a')
+ self.add_log_entry('</s>
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def generate_instructions(self):
# offset: 1
<s>_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a')
+ self.add_log_entry('CUDA SETUP: Solution 1c): For a permanent solution add the export from 1b into your .bashrc file, located at ~/.bashrc')
+ self.add_log_entry('CUDA SETUP: Solution 2: If no library was found in step 1a) you need to install CUDA.')
+ self.add_log_entry('CUDA SETUP: Solution 2a): Download CUDA install script: wget https://github.com/TimDettmers/bitsandbytes/blob/main/cuda_install.sh')
+ self.add_log_entry('CUDA SETUP: Solution 2b): Install desired CUDA version to desired location. The syntax is bash cuda_install.sh CUDA_VERSION PATH_TO_INSTALL_INTO.')
+ self.add_log_entry('CUDA SETUP: Solution 2b): For example, "bash cuda_install.sh 113 ~/local/" will download CUDA 11.3 and install into the folder ~/local')
+ return
+
+ make_cmd = f'CUDA_VERSION={self.cuda_version_string}'
+ if len(self.cuda_version_string) < 3:
+ make_cmd += ' make cuda92'
+ elif self.cuda_version_string == '110':
+ make_cmd += ' make cuda110'
+ elif self.cuda_version_string[:2] == '11' and int(self.cuda_version_string[2]) > 0:
+ make_cmd += ' make cuda11x'
+
+ has_cublaslt = is_cublasLt_compatible(self.cc)
+ if not has_cublaslt:
+ make_cmd += '_nomatmul'
+ </s>
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def generate_instructions(self):
# offset: 2
<s> self.add_log_entry('CUDA SETUP: Something unexpected happened. Please compile from source:')
+ self.add_log_entry('git clone [email protected]:TimDettmers/bitsandbytes.git')
+ self.add_log_entry('cd bitsandbytes')
+ self.add_log_entry(make_cmd)
+ self.add_log_entry('python setup.py install')
+
|
bitsandbytes.cuda_setup.main/evaluate_cuda_setup
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> if 'BITSANDBYTES_NOWELCOME' not in os.environ or str(os.environ['BITSANDBYTES_NOWELCOME']) == '0':
<del> # we remove this for now and see how things go
<1>:<add> print('')
<del> #print('')
<2>:<add> print('='*35 + 'BUG REPORT' + '='*35)
<del> #print('='*35 + 'BUG REPORT' + '='*35)
<3>:<add> print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
<del> #print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
<4>:<add> print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
<del> #print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
<5>:<add> print('='*80)
<del> #print('='*80)
<19>:<add> cuda_setup.add_log_entry(f"CUDA SETUP: CUDA runtime path found: {cudart
|
# module: bitsandbytes.cuda_setup.main
def evaluate_cuda_setup():
<0> # we remove this for now and see how things go
<1> #print('')
<2> #print('='*35 + 'BUG REPORT' + '='*35)
<3> #print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
<4> #print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
<5> #print('='*80)
<6> if not torch.cuda.is_available(): return 'libsbitsandbytes_cpu.so', None, None, None, None
<7>
<8> cuda_setup = CUDASetup.get_instance()
<9> cudart_path = determine_cuda_runtime_lib_path()
<10> cuda = get_cuda_lib_handle()
<11> cc = get_compute_capability(cuda)
<12> cuda_version_string = get_cuda_version(cuda, cudart_path)
<13>
<14> failure = False
<15> if cudart_path is None:
<16> failure = True
<17> cuda_setup.add_log_entry("WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!", is_warning=True)
<18> else:
<19> cuda_setup.add_log_entry((f"CUDA SETUP: CUDA runtime path found: {cudart_path}"))
<20>
<21> if cc == '' or cc is None:
<22> failure = True
<23> cuda_setup.add_log_entry("WARNING: No GPU detected! Check your CUDA paths. Proceeding to load CPU-only library...", is_warning=True)
<24> else:
<25> cuda_setup.add_log</s>
|
===========below chunk 0===========
# module: bitsandbytes.cuda_setup.main
def evaluate_cuda_setup():
# offset: 1
if cuda is None:
failure = True
else:
cuda_setup.add_log_entry(f'CUDA SETUP: Detected CUDA version {cuda_version_string}')
# 7.5 is the minimum CC vor cublaslt
has_cublaslt = cc in ["7.5", "8.0", "8.6"]
# TODO:
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
# (2) Multiple CUDA versions installed
# we use ls -l instead of nvcc to determine the cuda version
# since most installations will have the libcudart.so installed, but not the compiler
if failure:
binary_name = "libbitsandbytes_cpu.so"
elif has_cublaslt:
binary_name = f"libbitsandbytes_cuda{cuda_version_string}.so"
else:
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so"
binary_name = f"libbitsandbytes_cuda{cuda_version_string}_nocublaslt.so"
return binary_name, cudart_path, cuda, cc, cuda_version_string
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
def get_cuda_lib_handle():
# 1. find libcuda.so library (GPU driver) (/usr/lib)
try:
+ cuda = ct.CDLL("libcuda.so")
- cuda = ctypes.CDLL("libcuda.so")
except OSError:
CUDASetup.get_instance().add_log_entry('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
return None
check_cuda_result(cuda, cuda.cuInit(0))
return cuda
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
def check_cuda_result(cuda, result_val):
# 3. Check for CUDA errors
if result_val != 0:
+ error_str = ct.c_char_p()
- error_str = ctypes.c_char_p()
+ cuda.cuGetErrorString(result_val, ct.byref(error_str))
- cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
# https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
def get_cuda_version(cuda, cudart_path):
if cuda is None: return None
try:
+ cudart = ct.CDLL(cudart_path)
- cudart = ctypes.CDLL(cudart_path)
except OSError:
CUDASetup.get_instance().add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
return None
+ version = ct.c_int()
- version = ctypes.c_int()
+ check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ct.byref(version)))
- check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ctypes.byref(version)))
version = int(version.value)
major = version//1000
minor = (version-(major*1000))//10
if major < 11:
+ CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currently not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
- CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currenlty not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
return f'{major}{minor}'
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
def get_compute_capabilities(cuda):
"""
1. find libcuda.so library (GPU driver) (/usr/lib)
init_device -> init variables -> call function by reference
2. call extern C function to determine CC
(https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
3. Check for CUDA errors
https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
# bits taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
"""
+ nGpus = ct.c_int()
- nGpus = ctypes.c_int()
+ cc_major = ct.c_int()
- cc_major = ctypes.c_int()
+ cc_minor = ct.c_int()
- cc_minor = ctypes.c_int()
+ device = ct.c_int()
- device = ctypes.c_int()
+ check_cuda_result(cuda, cuda.cuDeviceGetCount(ct.byref(nGpus)))
- check_cuda_result(cuda, cuda.cuDeviceGetCount(ctypes.byref(nGpus)))
ccs = []
for i in range(nGpus.value):
+ check_cuda_result(cuda, cuda.cuDeviceGet(ct.byref(device), i))
- check_cuda_result(cuda, cuda.cuDeviceGet(ctypes.byref(device), i))
+ ref_major = ct.byref(cc_major)
- ref_major = ctypes.byref(cc_major)
+ ref_minor = ct.byref(cc_minor)
- ref_minor = ctypes.byref(cc_minor)
# 2. call extern C</s>
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
def get_compute_capabilities(cuda):
# offset: 1
<s>ref(cc_minor)
- ref_minor = ctypes.byref(cc_minor)
# 2. call extern C function to determine CC
check_cuda_result(cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device))
ccs.append(f"{cc_major.value}.{cc_minor.value}")
return ccs
|
bitsandbytes.autograd._functions/MatMul8bit.forward
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> if precision is None:
<add> precision = [8, 8, 8]
|
# module: bitsandbytes.autograd._functions
class MatMul8bit(torch.autograd.Function):
@staticmethod
+ def forward(ctx, A, B, out=None, quant_type="vector", precision=None):
- def forward(ctx, A, B, out=None, quant_type="vector", precision=[8, 8, 8]):
<0> if precision[0] != 8:
<1> with torch.no_grad():
<2> output = torch.matmul(A, B)
<3> else:
<4> if len(B.shape) == 2:
<5> dim = 0
<6> else:
<7> dim = 1
<8> qA, SA = F.vectorwise_quant(A, dim=-1, quant_type=quant_type)
<9> qB, SB = F.vectorwise_quant(B, dim=dim, quant_type=quant_type)
<10> iout = F.igemm(qA, qB)
<11> output = F.vectorwise_mm_dequant(iout, SA, SB, A.dtype, quant_type)
<12>
<13> if A.requires_grad or B.requires_grad:
<14> ctx.save_for_backward(A, B)
<15>
<16> ctx.quant_type = quant_type
<17> ctx.precision = precision
<18>
<19> return output
<20>
|
===========changed ref 0===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def is_cublasLt_compatible(cc):
+ has_cublaslt = False
+ if cc is not None:
+ cc_major, cc_minor = cc.split('.')
+ if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
+ cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Proceeding to load CPU-only library...", is_warning=True)
+ else:
+ has_cublaslt = True
+ return has_cublaslt
+
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
def check_cuda_result(cuda, result_val):
# 3. Check for CUDA errors
if result_val != 0:
+ error_str = ct.c_char_p()
- error_str = ctypes.c_char_p()
+ cuda.cuGetErrorString(result_val, ct.byref(error_str))
- cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
def get_cuda_lib_handle():
# 1. find libcuda.so library (GPU driver) (/usr/lib)
try:
+ cuda = ct.CDLL("libcuda.so")
- cuda = ctypes.CDLL("libcuda.so")
except OSError:
CUDASetup.get_instance().add_log_entry('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
return None
check_cuda_result(cuda, cuda.cuInit(0))
return cuda
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ def remove_non_existent_dirs(candidate_paths: Set[Path]) -> Set[Path]:
+ existent_directories: Set[Path] = set()
+ for path in candidate_paths:
+ try:
+ if path.exists():
+ existent_directories.add(path)
+ except OSError as exc:
+ if exc.errno != errno.ENAMETOOLONG:
+ raise exc
+
+ non_existent_directories: Set[Path] = candidate_paths - existent_directories
+ if non_existent_directories:
+ CUDASetup.get_instance().add_log_entry("WARNING: The following directories listed in your path were found to "
+ f"be non-existent: {non_existent_directories}", is_warning=True)
+
+ return existent_directories
+
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ def warn_in_case_of_duplicates(results_paths: Set[Path]) -> None:
+ if len(results_paths) > 1:
+ warning_msg = (
+ f"Found duplicate {CUDA_RUNTIME_LIB} files: {results_paths}.. "
+ "We'll flip a coin and try one of these, in order to fail forward.\n"
+ "Either way, this might cause trouble in the future:\n"
+ "If you get `CUDA error: invalid device function` errors, the above "
+ "might be the cause and the solution is to make sure only one "
+ f"{CUDA_RUNTIME_LIB} in the paths that we search based on your env.")
+ CUDASetup.get_instance().add_log_entry(warning_msg, is_warning=True)
+
|
bitsandbytes.functional/create_linear_map
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> sign = (-1.0 if signed else 0.0)
<add> total_values = 2**total_bits
<add> if add_zero or total_bits < 8:
<add> # add a zero
<add> # since we simulate less bits by having zeros in the data type, we
<add> # we need to center the quantization around zero and as such lose
<add> # a single value
<add> total_values = (2**total_bits if not signed else 2**total_bits-1)
<add>
<add> values = torch.linspace(sign, 1.0, total_values)
<add> gap = 256 - values.numel()
<add> if gap == 0:
<add> return values
<del> if signed:
<1>:<del> return torch.linspace(-1.0, 1.0, 256)
<3>:<add> l = values.numel()//2
<add> #return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
<add> return torch.Tensor(values[:l].tolist() + [0
|
# module: bitsandbytes.functional
+ def create_linear_map(signed=True, total_bits=8, add_zero=True):
- def create_linear_map(signed=True):
<0> if signed:
<1> return torch.linspace(-1.0, 1.0, 256)
<2> else:
<3> return torch.linspace(0.0, 1.0, 256)
<4>
|
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 1===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 11===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 14===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 16===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ def is_cublasLt_compatible(cc):
+ has_cublaslt = False
+ if cc is not None:
+ cc_major, cc_minor = cc.split('.')
+ if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
+ cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Proceeding to load CPU-only library...", is_warning=True)
+ else:
+ has_cublaslt = True
+ return has_cublaslt
+
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
def check_cuda_result(cuda, result_val):
# 3. Check for CUDA errors
if result_val != 0:
+ error_str = ct.c_char_p()
- error_str = ctypes.c_char_p()
+ cuda.cuGetErrorString(result_val, ct.byref(error_str))
- cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
===========changed ref 19===========
# module: bitsandbytes.cuda_setup.main
def get_cuda_lib_handle():
# 1. find libcuda.so library (GPU driver) (/usr/lib)
try:
+ cuda = ct.CDLL("libcuda.so")
- cuda = ctypes.CDLL("libcuda.so")
except OSError:
CUDASetup.get_instance().add_log_entry('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
return None
check_cuda_result(cuda, cuda.cuInit(0))
return cuda
===========changed ref 20===========
# module: bitsandbytes.cuda_setup.main
+ def remove_non_existent_dirs(candidate_paths: Set[Path]) -> Set[Path]:
+ existent_directories: Set[Path] = set()
+ for path in candidate_paths:
+ try:
+ if path.exists():
+ existent_directories.add(path)
+ except OSError as exc:
+ if exc.errno != errno.ENAMETOOLONG:
+ raise exc
+
+ non_existent_directories: Set[Path] = candidate_paths - existent_directories
+ if non_existent_directories:
+ CUDASetup.get_instance().add_log_entry("WARNING: The following directories listed in your path were found to "
+ f"be non-existent: {non_existent_directories}", is_warning=True)
+
+ return existent_directories
+
|
bitsandbytes.functional/create_fp8_map
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<2>:<add> has_sign = 1 if signed else 0
<add> assert e+p == total_bits-has_sign
<del> assert e+p == 7
<6>:<add> for i, val in enumerate(range(-((2**(exponent_bits-has_sign))), 2**(exponent_bits-has_sign), 1)):
<del> for i, val in enumerate(range(-((2**(exponent_bits-1))), 2**(exponent_bits-1), 1)):
<10>:<add> values = []
<11>:<add> #for ev in evalues:
<add> bias = 2**(exponent_bits-1)-1
<add> for evalue in range(2**(exponent_bits)):
<add> for bit_pattern in lst:
<del> for bit_pattern in lst:
<12>:<add> value = (1 if evalue != 0 else 0)
<del> value = 1
<13>:<add> for i, pval in enumerate(list(bit_pattern)):
<del> for i, pval in enumerate(list(bit_pattern)):
<14>:<add> value += pval*(2**-(i+1))
<del> value += pval*(2**-(i+1))
<15>:<add> if evalue == 0:
<add> # subnormals
<add> value = value*2**-(bias-1)
<add> else:
<add> # normals
<add> value = value*2**-(evalue-bias-2)
<add> values.
|
# module: bitsandbytes.functional
+ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
- def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):
<0> e = exponent_bits
<1> p = precision_bits
<2> assert e+p == 7
<3> # the exponent is biased to 2^(e-1) -1 == 0
<4> evalues = []
<5> pvalues = []
<6> for i, val in enumerate(range(-((2**(exponent_bits-1))), 2**(exponent_bits-1), 1)):
<7> evalues.append(2**val)
<8>
<9>
<10> lst = list(itertools.product([0, 1], repeat=precision_bits))
<11> for bit_pattern in lst:
<12> value = 1
<13> for i, pval in enumerate(list(bit_pattern)):
<14> value += pval*(2**-(i+1))
<15> pvalues.append(value)
<16>
<17> assert len(evalues)*len(pvalues) == 128
<18> values = []
<19> for ev in evalues:
<20> for pv in pvalues:
<21> values.append(-ev*pv)
<22> values.append(ev*pv)
<23> values.sort()
<24> code = torch.Tensor(values)
<25> code /= code.max()
<26> code[127] = 0
<27>
<28> return code
<29>
|
===========changed ref 0===========
# module: bitsandbytes.functional
+ def create_linear_map(signed=True, total_bits=8, add_zero=True):
- def create_linear_map(signed=True):
+ sign = (-1.0 if signed else 0.0)
+ total_values = 2**total_bits
+ if add_zero or total_bits < 8:
+ # add a zero
+ # since we simulate less bits by having zeros in the data type, we
+ # we need to center the quantization around zero and as such lose
+ # a single value
+ total_values = (2**total_bits if not signed else 2**total_bits-1)
+
+ values = torch.linspace(sign, 1.0, total_values)
+ gap = 256 - values.numel()
+ if gap == 0:
+ return values
- if signed:
- return torch.linspace(-1.0, 1.0, 256)
else:
+ l = values.numel()//2
+ #return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
+ return torch.Tensor(values[:l].tolist() + [0]*gap + values[l:].tolist())
- return torch.linspace(0.0, 1.0, 256)
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 2===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 12===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 15===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 17===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
+ def is_cublasLt_compatible(cc):
+ has_cublaslt = False
+ if cc is not None:
+ cc_major, cc_minor = cc.split('.')
+ if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
+ cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Proceeding to load CPU-only library...", is_warning=True)
+ else:
+ has_cublaslt = True
+ return has_cublaslt
+
===========changed ref 19===========
# module: bitsandbytes.cuda_setup.main
def check_cuda_result(cuda, result_val):
# 3. Check for CUDA errors
if result_val != 0:
+ error_str = ct.c_char_p()
- error_str = ctypes.c_char_p()
+ cuda.cuGetErrorString(result_val, ct.byref(error_str))
- cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
===========changed ref 20===========
# module: bitsandbytes.cuda_setup.main
def get_cuda_lib_handle():
# 1. find libcuda.so library (GPU driver) (/usr/lib)
try:
+ cuda = ct.CDLL("libcuda.so")
- cuda = ctypes.CDLL("libcuda.so")
except OSError:
CUDASetup.get_instance().add_log_entry('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
return None
check_cuda_result(cuda, cuda.cuInit(0))
return cuda
|
bitsandbytes.functional/create_dynamic_map
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<20>:<add> non_sign_bits = total_bits - (1 if signed else 0)
<add> additional_items = 2 ** (non_sign_bits - max_exponent_bits) - 1
<del> additional_items = 2 ** (7 - n) - 1
<23>:<del> for i in range(n):
<24>:<del> fraction_items = (
<25>:<del> 2 ** (i + 7 - n) + 1 if signed else 2 ** (i + 7 - n + 1) + 1
<26>:<del> )
<27>:<add> for i in range(max_exponent_bits):
<add> fraction_items = int((2 ** (i + non_sign_bits - max_exponent_bits) + 1 if signed else 2 ** (i + non_sign_bits - max_exponent_bits + 1) + 1))
<29>:<add> data += ((10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
<del> data += ((10 ** (-(n - 1) + i)) * means).tolist()
<31>:<add> data += (-(10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
<del> data += (-(10 ** (-(n - 1) + i)) * means).tolist()
<33>:<add> if additional_items > 0:
<del> if additional_items > 0:
<34>:<add> boundaries = torch.linspace(0.1, 1, additional_items + 1)
<del> boundaries = torch.linspace(0.1, 1, additional_items + 1)
<35>:<add> means = (boundaries[:-1] + boundaries
|
# module: bitsandbytes.functional
+ def create_dynamic_map(signed=True, max_exponent_bits=7, total_bits=8):
- def create_dynamic_map(signed=True, n=7):
<0> """
<1> Creates the dynamic quantiztion map.
<2>
<3> The dynamic data type is made up of a dynamic exponent and
<4> fraction. As the exponent increase from 0 to -7 the number
<5> of bits available for the fraction shrinks.
<6>
<7> This is a generalization of the dynamic type where a certain
<8> number of the bits and be reserved for the linear quantization
<9> region (the fraction). n determines the maximum number of
<10> exponent bits.
<11>
<12> For more details see
<13> (8-Bit Approximations for Parallelism in Deep Learning)[https://arxiv.org/abs/1511.04561]
<14> """
<15>
<16> data = []
<17> # these are additional items that come from the case
<18> # where all the exponent bits are zero and no
<19> # indicator bit is present
<20> additional_items = 2 ** (7 - n) - 1
<21> if not signed:
<22> additional_items = 2 * additional_items
<23> for i in range(n):
<24> fraction_items = (
<25> 2 ** (i + 7 - n) + 1 if signed else 2 ** (i + 7 - n + 1) + 1
<26> )
<27> boundaries = torch.linspace(0.1, 1, fraction_items)
<28> means = (boundaries[:-1] + boundaries[1:]) / 2.0
<29> data += ((10 ** (-(n - 1) + i)) * means).tolist()
<30> if signed:
<31> data += (-(10 ** (-(n - 1) + i)) * means).tolist()
<32>
<33> if additional_items > 0:
<34> boundaries = torch.linspace(0.1, 1, additional_items + 1)
<35> means = (boundaries[:-1] + boundaries[1:]) / 2.0
<36> data += ((10 ** (-(n - 1) + i))</s>
|
===========below chunk 0===========
# module: bitsandbytes.functional
+ def create_dynamic_map(signed=True, max_exponent_bits=7, total_bits=8):
- def create_dynamic_map(signed=True, n=7):
# offset: 1
if signed:
data += (-(10 ** (-(n - 1) + i)) * means).tolist()
data.append(0)
data.append(1.0)
data.sort()
return Tensor(data)
===========changed ref 0===========
# module: bitsandbytes.functional
+ def create_linear_map(signed=True, total_bits=8, add_zero=True):
- def create_linear_map(signed=True):
+ sign = (-1.0 if signed else 0.0)
+ total_values = 2**total_bits
+ if add_zero or total_bits < 8:
+ # add a zero
+ # since we simulate less bits by having zeros in the data type, we
+ # we need to center the quantization around zero and as such lose
+ # a single value
+ total_values = (2**total_bits if not signed else 2**total_bits-1)
+
+ values = torch.linspace(sign, 1.0, total_values)
+ gap = 256 - values.numel()
+ if gap == 0:
+ return values
- if signed:
- return torch.linspace(-1.0, 1.0, 256)
else:
+ l = values.numel()//2
+ #return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
+ return torch.Tensor(values[:l].tolist() + [0]*gap + values[l:].tolist())
- return torch.linspace(0.0, 1.0, 256)
===========changed ref 1===========
# module: bitsandbytes.functional
+ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
- def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):
e = exponent_bits
p = precision_bits
+ has_sign = 1 if signed else 0
+ assert e+p == total_bits-has_sign
- assert e+p == 7
# the exponent is biased to 2^(e-1) -1 == 0
evalues = []
pvalues = []
+ for i, val in enumerate(range(-((2**(exponent_bits-has_sign))), 2**(exponent_bits-has_sign), 1)):
- for i, val in enumerate(range(-((2**(exponent_bits-1))), 2**(exponent_bits-1), 1)):
evalues.append(2**val)
+ values = []
lst = list(itertools.product([0, 1], repeat=precision_bits))
+ #for ev in evalues:
+ bias = 2**(exponent_bits-1)-1
+ for evalue in range(2**(exponent_bits)):
+ for bit_pattern in lst:
- for bit_pattern in lst:
+ value = (1 if evalue != 0 else 0)
- value = 1
+ for i, pval in enumerate(list(bit_pattern)):
- for i, pval in enumerate(list(bit_pattern)):
+ value += pval*(2**-(i+1))
- value += pval*(2**-(i+1))
+ if evalue == 0:
+ # subnormals
+ value = value*2**-(bias-1)
+ else:
+ # normals
+ value = value*2**-(evalue-bias-2)
+ values.append(value)
- pvalues.append(value)
+ if signed:
+ values.append(-value)
+
+ assert len(</s>
===========changed ref 2===========
# module: bitsandbytes.functional
+ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
- def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):
# offset: 1
<s>values.append(value)
+ if signed:
+ values.append(-value)
+
+ assert len(values) == 2**total_bits
+ values.sort()
+ if total_bits < 8:
+ gap = 256 - len(values)
+ for i in range(gap):
- assert len(evalues)*len(pvalues) == 128
- values = []
- for ev in evalues:
- for pv in pvalues:
- values.append(-ev*pv)
+ values.append(0)
- values.append(ev*pv)
values.sort()
code = torch.Tensor(values)
code /= code.max()
- code[127] = 0
return code
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 9===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 14===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
|
bitsandbytes.functional/get_special_format_str
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<1>:<add> major, _minor = torch.cuda.get_device_capability()
<del> major, minor = torch.cuda.get_device_capability()
<4>:<add> if major == 8:
<del> elif major == 8:
<6>:<del> else:
<7>:<add> return "col_turing"
<del> return "col_turing"
|
# module: bitsandbytes.functional
def get_special_format_str():
<0> if not torch.cuda.is_available(): return 'col_turing'
<1> major, minor = torch.cuda.get_device_capability()
<2> if major <= 7:
<3> return "col_turing"
<4> elif major == 8:
<5> return "col_ampere"
<6> else:
<7> return "col_turing"
<8>
|
===========changed ref 0===========
# module: bitsandbytes.functional
+ def create_linear_map(signed=True, total_bits=8, add_zero=True):
- def create_linear_map(signed=True):
+ sign = (-1.0 if signed else 0.0)
+ total_values = 2**total_bits
+ if add_zero or total_bits < 8:
+ # add a zero
+ # since we simulate less bits by having zeros in the data type, we
+ # we need to center the quantization around zero and as such lose
+ # a single value
+ total_values = (2**total_bits if not signed else 2**total_bits-1)
+
+ values = torch.linspace(sign, 1.0, total_values)
+ gap = 256 - values.numel()
+ if gap == 0:
+ return values
- if signed:
- return torch.linspace(-1.0, 1.0, 256)
else:
+ l = values.numel()//2
+ #return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
+ return torch.Tensor(values[:l].tolist() + [0]*gap + values[l:].tolist())
- return torch.linspace(0.0, 1.0, 256)
===========changed ref 1===========
# module: bitsandbytes.functional
+ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
- def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):
e = exponent_bits
p = precision_bits
+ has_sign = 1 if signed else 0
+ assert e+p == total_bits-has_sign
- assert e+p == 7
# the exponent is biased to 2^(e-1) -1 == 0
evalues = []
pvalues = []
+ for i, val in enumerate(range(-((2**(exponent_bits-has_sign))), 2**(exponent_bits-has_sign), 1)):
- for i, val in enumerate(range(-((2**(exponent_bits-1))), 2**(exponent_bits-1), 1)):
evalues.append(2**val)
+ values = []
lst = list(itertools.product([0, 1], repeat=precision_bits))
+ #for ev in evalues:
+ bias = 2**(exponent_bits-1)-1
+ for evalue in range(2**(exponent_bits)):
+ for bit_pattern in lst:
- for bit_pattern in lst:
+ value = (1 if evalue != 0 else 0)
- value = 1
+ for i, pval in enumerate(list(bit_pattern)):
- for i, pval in enumerate(list(bit_pattern)):
+ value += pval*(2**-(i+1))
- value += pval*(2**-(i+1))
+ if evalue == 0:
+ # subnormals
+ value = value*2**-(bias-1)
+ else:
+ # normals
+ value = value*2**-(evalue-bias-2)
+ values.append(value)
- pvalues.append(value)
+ if signed:
+ values.append(-value)
+
+ assert len(</s>
===========changed ref 2===========
# module: bitsandbytes.functional
+ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
- def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):
# offset: 1
<s>values.append(value)
+ if signed:
+ values.append(-value)
+
+ assert len(values) == 2**total_bits
+ values.sort()
+ if total_bits < 8:
+ gap = 256 - len(values)
+ for i in range(gap):
- assert len(evalues)*len(pvalues) == 128
- values = []
- for ev in evalues:
- for pv in pvalues:
- values.append(-ev*pv)
+ values.append(0)
- values.append(ev*pv)
values.sort()
code = torch.Tensor(values)
code /= code.max()
- code[127] = 0
return code
===========changed ref 3===========
# module: bitsandbytes.functional
+ def create_dynamic_map(signed=True, max_exponent_bits=7, total_bits=8):
- def create_dynamic_map(signed=True, n=7):
"""
Creates the dynamic quantiztion map.
The dynamic data type is made up of a dynamic exponent and
fraction. As the exponent increase from 0 to -7 the number
of bits available for the fraction shrinks.
This is a generalization of the dynamic type where a certain
number of the bits and be reserved for the linear quantization
region (the fraction). n determines the maximum number of
exponent bits.
For more details see
(8-Bit Approximations for Parallelism in Deep Learning)[https://arxiv.org/abs/1511.04561]
"""
data = []
# these are additional items that come from the case
# where all the exponent bits are zero and no
# indicator bit is present
+ non_sign_bits = total_bits - (1 if signed else 0)
+ additional_items = 2 ** (non_sign_bits - max_exponent_bits) - 1
- additional_items = 2 ** (7 - n) - 1
if not signed:
additional_items = 2 * additional_items
- for i in range(n):
- fraction_items = (
- 2 ** (i + 7 - n) + 1 if signed else 2 ** (i + 7 - n + 1) + 1
- )
+ for i in range(max_exponent_bits):
+ fraction_items = int((2 ** (i + non_sign_bits - max_exponent_bits) + 1 if signed else 2 ** (i + non_sign_bits - max_exponent_bits + 1) + 1))
boundaries = torch.linspace(0.1, 1, fraction_items)
means = (boundaries[:-1] + boundaries[1:]) / 2.0
+ data += ((10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
- data += ((10 ** (-(n -</s>
|
bitsandbytes.functional/nvidia_transform
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<26>:<del> ptrA = get_ptr(A)
<27>:<del> ptrOut = get_ptr(out)
|
# module: bitsandbytes.functional
def nvidia_transform(
A,
to_order,
from_order="row",
out=None,
transpose=False,
state=None,
ld=None,
):
<0> if state is None:
<1> state = (A.shape, from_order)
<2> else:
<3> from_order = state[1]
<4> if out is None:
<5> out, new_state = get_transform_buffer(
<6> state[0], A.dtype, A.device, to_order, state[1]
<7> )
<8> else:
<9> new_state = (state[1], to_order)
<10> func = get_transform_func(A.dtype, from_order, to_order, transpose)
<11>
<12> shape = state[0]
<13> if len(shape) == 2:
<14> dim1 = ct.c_int32(shape[0])
<15> dim2 = ct.c_int32(shape[1])
<16> elif ld is not None:
<17> n = prod(shape)
<18> dim1 = prod([shape[i] for i in ld])
<19> dim2 = ct.c_int32(n // dim1)
<20> dim1 = ct.c_int32(dim1)
<21> else:
<22> dim1 = ct.c_int32(shape[0] * shape[1])
<23> dim2 = ct.c_int32(shape[2])
<24>
<25> ptr = CUBLAS_Context.get_instance().get_context(A.device)
<26> ptrA = get_ptr(A)
<27> ptrOut = get_ptr(out)
<28> func(ptr, get_ptr(A), get_ptr(out), dim1, dim2)
<29>
<30> return out, new_state
<31>
|
===========changed ref 0===========
# module: bitsandbytes.functional
+ def create_quantile_map(A, total_bits=8):
+ q = estimate_quantiles(A, num_quantiles=2**total_bits-1)
+ q = q.tolist()
+ q.append(0)
+
+ gap = 256 - len(q)
+ for i in range(gap):
+ q.append(0)
+
+ q.sort()
+
+ q = Tensor(q)
+ q = q/q.abs().max()
+ return q
+
===========changed ref 1===========
# module: bitsandbytes.functional
def get_special_format_str():
if not torch.cuda.is_available(): return 'col_turing'
+ major, _minor = torch.cuda.get_device_capability()
- major, minor = torch.cuda.get_device_capability()
if major <= 7:
return "col_turing"
+ if major == 8:
- elif major == 8:
return "col_ampere"
- else:
+ return "col_turing"
- return "col_turing"
===========changed ref 2===========
# module: bitsandbytes.functional
+ def create_linear_map(signed=True, total_bits=8, add_zero=True):
- def create_linear_map(signed=True):
+ sign = (-1.0 if signed else 0.0)
+ total_values = 2**total_bits
+ if add_zero or total_bits < 8:
+ # add a zero
+ # since we simulate less bits by having zeros in the data type, we
+ # we need to center the quantization around zero and as such lose
+ # a single value
+ total_values = (2**total_bits if not signed else 2**total_bits-1)
+
+ values = torch.linspace(sign, 1.0, total_values)
+ gap = 256 - values.numel()
+ if gap == 0:
+ return values
- if signed:
- return torch.linspace(-1.0, 1.0, 256)
else:
+ l = values.numel()//2
+ #return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
+ return torch.Tensor(values[:l].tolist() + [0]*gap + values[l:].tolist())
- return torch.linspace(0.0, 1.0, 256)
===========changed ref 3===========
# module: bitsandbytes.functional
+ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
- def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):
e = exponent_bits
p = precision_bits
+ has_sign = 1 if signed else 0
+ assert e+p == total_bits-has_sign
- assert e+p == 7
# the exponent is biased to 2^(e-1) -1 == 0
evalues = []
pvalues = []
+ for i, val in enumerate(range(-((2**(exponent_bits-has_sign))), 2**(exponent_bits-has_sign), 1)):
- for i, val in enumerate(range(-((2**(exponent_bits-1))), 2**(exponent_bits-1), 1)):
evalues.append(2**val)
+ values = []
lst = list(itertools.product([0, 1], repeat=precision_bits))
+ #for ev in evalues:
+ bias = 2**(exponent_bits-1)-1
+ for evalue in range(2**(exponent_bits)):
+ for bit_pattern in lst:
- for bit_pattern in lst:
+ value = (1 if evalue != 0 else 0)
- value = 1
+ for i, pval in enumerate(list(bit_pattern)):
- for i, pval in enumerate(list(bit_pattern)):
+ value += pval*(2**-(i+1))
- value += pval*(2**-(i+1))
+ if evalue == 0:
+ # subnormals
+ value = value*2**-(bias-1)
+ else:
+ # normals
+ value = value*2**-(evalue-bias-2)
+ values.append(value)
- pvalues.append(value)
+ if signed:
+ values.append(-value)
+
+ assert len(</s>
===========changed ref 4===========
# module: bitsandbytes.functional
+ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
- def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):
# offset: 1
<s>values.append(value)
+ if signed:
+ values.append(-value)
+
+ assert len(values) == 2**total_bits
+ values.sort()
+ if total_bits < 8:
+ gap = 256 - len(values)
+ for i in range(gap):
- assert len(evalues)*len(pvalues) == 128
- values = []
- for ev in evalues:
- for pv in pvalues:
- values.append(-ev*pv)
+ values.append(0)
- values.append(ev*pv)
values.sort()
code = torch.Tensor(values)
code /= code.max()
- code[127] = 0
return code
===========changed ref 5===========
# module: bitsandbytes.functional
+ def create_dynamic_map(signed=True, max_exponent_bits=7, total_bits=8):
- def create_dynamic_map(signed=True, n=7):
"""
Creates the dynamic quantiztion map.
The dynamic data type is made up of a dynamic exponent and
fraction. As the exponent increase from 0 to -7 the number
of bits available for the fraction shrinks.
This is a generalization of the dynamic type where a certain
number of the bits and be reserved for the linear quantization
region (the fraction). n determines the maximum number of
exponent bits.
For more details see
(8-Bit Approximations for Parallelism in Deep Learning)[https://arxiv.org/abs/1511.04561]
"""
data = []
# these are additional items that come from the case
# where all the exponent bits are zero and no
# indicator bit is present
+ non_sign_bits = total_bits - (1 if signed else 0)
+ additional_items = 2 ** (non_sign_bits - max_exponent_bits) - 1
- additional_items = 2 ** (7 - n) - 1
if not signed:
additional_items = 2 * additional_items
- for i in range(n):
- fraction_items = (
- 2 ** (i + 7 - n) + 1 if signed else 2 ** (i + 7 - n + 1) + 1
- )
+ for i in range(max_exponent_bits):
+ fraction_items = int((2 ** (i + non_sign_bits - max_exponent_bits) + 1 if signed else 2 ** (i + non_sign_bits - max_exponent_bits + 1) + 1))
boundaries = torch.linspace(0.1, 1, fraction_items)
means = (boundaries[:-1] + boundaries[1:]) / 2.0
+ data += ((10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
- data += ((10 ** (-(n -</s>
|
bitsandbytes.functional/estimate_quantiles
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<19>:<add> The offset for the first and last quantile from 0 and 1. Default: 1/(2*num_quantiles)
<del> The offset for the first and last quantile from 0 and 1. Default: 1/512
<20>:<add> num_quantiles : int
<add> The number of equally spaced quantiles.
<26>:<add> if A.numel() < 256: raise NotImplementedError(f'Quantile estimation needs at least 256 values in the Tensor, but Tensor had only {A.numel()} values.')
<add> if num_quantiles > 256: raise NotImplementedError(f"Currently only a maximum of 256 equally spaced quantiles are supported, but the argument num_quantiles={num_quantiles}")
<add> if num_quantiles < 256 and offset == 1/(512):
<add> # override default arguments
<add> offset = 1/(2*num_quantiles)
<add>
<28>:<add> device = pre_call(A.device)
<29>:<del> lib.cestimate_quantiles_fp32(
<30>:<add> lib.cestimate_quantiles_fp32(get_ptr(A), get_ptr(out), ct.c_float
|
# module: bitsandbytes.functional
- def estimate_quantiles(
- A: Tensor, out: Tensor = None, offset: float = 1 / 512
- ) -> Tensor:
+ def estimate_quantiles(A: Tensor, out: Tensor = None, offset: float = 1 / 512, num_quantiles=256) -> Tensor:
<0> '''
<1> Estimates 256 equidistant quantiles on the input tensor eCDF.
<2>
<3> Uses SRAM-Quantiles algorithm to quickly estimate 256 equidistant quantiles
<4> via the eCDF of the input tensor `A`. This is a fast but approximate algorithm
<5> and the extreme quantiles close to 0 and 1 have high variance / large estimation
<6> errors. These large errors can be avoided by using the offset variable which trims
<7> the distribution. The default offset value of 1/512 ensures minimum entropy encoding -- it
<8> trims 1/512 = 0.2% from each side of the distrivution. An offset value of 0.01 to 0.02
<9> usually has a much lower error but is not a minimum entropy encoding. Given an offset
<10> of 0.02 equidistance points in the range [0.02, 0.98] are used for the quantiles.
<11>
<12> Parameters
<13> ----------
<14> A : torch.Tensor
<15> The input tensor. Any shape.
<16> out : torch.Tensor
<17> Tensor with the 256 estimated quantiles.
<18> offset : float
<19> The offset for the first and last quantile from 0 and 1. Default: 1/512
<20>
<21> Returns
<22> -------
<23> torch.Tensor:
<24> The 256 quantiles in float32 datatype.
<25> '''
<26> if out is None: out = torch.zeros((256,), dtype=torch.float32, device=A.device)
<27> is_on_gpu([A, out])
<28> if A.dtype == torch.float32:
<29> lib.cestimate_quantiles_fp32(
<30> get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel())
<31> )
<32> elif A</s>
|
===========below chunk 0===========
# module: bitsandbytes.functional
- def estimate_quantiles(
- A: Tensor, out: Tensor = None, offset: float = 1 / 512
- ) -> Tensor:
+ def estimate_quantiles(A: Tensor, out: Tensor = None, offset: float = 1 / 512, num_quantiles=256) -> Tensor:
# offset: 1
lib.cestimate_quantiles_fp16(
get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel())
)
else:
raise NotImplementedError(f"Not supported data type {A.dtype}")
return out
===========changed ref 0===========
# module: bitsandbytes.functional
+ def create_quantile_map(A, total_bits=8):
+ q = estimate_quantiles(A, num_quantiles=2**total_bits-1)
+ q = q.tolist()
+ q.append(0)
+
+ gap = 256 - len(q)
+ for i in range(gap):
+ q.append(0)
+
+ q.sort()
+
+ q = Tensor(q)
+ q = q/q.abs().max()
+ return q
+
===========changed ref 1===========
# module: bitsandbytes.functional
def get_special_format_str():
if not torch.cuda.is_available(): return 'col_turing'
+ major, _minor = torch.cuda.get_device_capability()
- major, minor = torch.cuda.get_device_capability()
if major <= 7:
return "col_turing"
+ if major == 8:
- elif major == 8:
return "col_ampere"
- else:
+ return "col_turing"
- return "col_turing"
===========changed ref 2===========
# module: bitsandbytes.functional
def nvidia_transform(
A,
to_order,
from_order="row",
out=None,
transpose=False,
state=None,
ld=None,
):
if state is None:
state = (A.shape, from_order)
else:
from_order = state[1]
if out is None:
out, new_state = get_transform_buffer(
state[0], A.dtype, A.device, to_order, state[1]
)
else:
new_state = (state[1], to_order)
func = get_transform_func(A.dtype, from_order, to_order, transpose)
shape = state[0]
if len(shape) == 2:
dim1 = ct.c_int32(shape[0])
dim2 = ct.c_int32(shape[1])
elif ld is not None:
n = prod(shape)
dim1 = prod([shape[i] for i in ld])
dim2 = ct.c_int32(n // dim1)
dim1 = ct.c_int32(dim1)
else:
dim1 = ct.c_int32(shape[0] * shape[1])
dim2 = ct.c_int32(shape[2])
ptr = CUBLAS_Context.get_instance().get_context(A.device)
- ptrA = get_ptr(A)
- ptrOut = get_ptr(out)
func(ptr, get_ptr(A), get_ptr(out), dim1, dim2)
return out, new_state
===========changed ref 3===========
# module: bitsandbytes.functional
+ def create_linear_map(signed=True, total_bits=8, add_zero=True):
- def create_linear_map(signed=True):
+ sign = (-1.0 if signed else 0.0)
+ total_values = 2**total_bits
+ if add_zero or total_bits < 8:
+ # add a zero
+ # since we simulate less bits by having zeros in the data type, we
+ # we need to center the quantization around zero and as such lose
+ # a single value
+ total_values = (2**total_bits if not signed else 2**total_bits-1)
+
+ values = torch.linspace(sign, 1.0, total_values)
+ gap = 256 - values.numel()
+ if gap == 0:
+ return values
- if signed:
- return torch.linspace(-1.0, 1.0, 256)
else:
+ l = values.numel()//2
+ #return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
+ return torch.Tensor(values[:l].tolist() + [0]*gap + values[l:].tolist())
- return torch.linspace(0.0, 1.0, 256)
===========changed ref 4===========
# module: bitsandbytes.functional
+ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
- def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):
e = exponent_bits
p = precision_bits
+ has_sign = 1 if signed else 0
+ assert e+p == total_bits-has_sign
- assert e+p == 7
# the exponent is biased to 2^(e-1) -1 == 0
evalues = []
pvalues = []
+ for i, val in enumerate(range(-((2**(exponent_bits-has_sign))), 2**(exponent_bits-has_sign), 1)):
- for i, val in enumerate(range(-((2**(exponent_bits-1))), 2**(exponent_bits-1), 1)):
evalues.append(2**val)
+ values = []
lst = list(itertools.product([0, 1], repeat=precision_bits))
+ #for ev in evalues:
+ bias = 2**(exponent_bits-1)-1
+ for evalue in range(2**(exponent_bits)):
+ for bit_pattern in lst:
- for bit_pattern in lst:
+ value = (1 if evalue != 0 else 0)
- value = 1
+ for i, pval in enumerate(list(bit_pattern)):
- for i, pval in enumerate(list(bit_pattern)):
+ value += pval*(2**-(i+1))
- value += pval*(2**-(i+1))
+ if evalue == 0:
+ # subnormals
+ value = value*2**-(bias-1)
+ else:
+ # normals
+ value = value*2**-(evalue-bias-2)
+ values.append(value)
- pvalues.append(value)
+ if signed:
+ values.append(-value)
+
+ assert len(</s>
===========changed ref 5===========
# module: bitsandbytes.functional
+ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
- def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):
# offset: 1
<s>values.append(value)
+ if signed:
+ values.append(-value)
+
+ assert len(values) == 2**total_bits
+ values.sort()
+ if total_bits < 8:
+ gap = 256 - len(values)
+ for i in range(gap):
- assert len(evalues)*len(pvalues) == 128
- values = []
- for ev in evalues:
- for pv in pvalues:
- values.append(-ev*pv)
+ values.append(0)
- values.append(ev*pv)
values.sort()
code = torch.Tensor(values)
code /= code.max()
- code[127] = 0
return code
|
bitsandbytes.functional/quantize_blockwise
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<28>:<add>
<32>:<del> code = code.to(A.device)
<36>:<del> blocksize = (blocksize if A.device.type == 'cpu' else 4096)
<45>:<add> assert blocksize in [4096, 2048, 1024, 512, 256, 128, 64]
<add> cblocksize = ct.c_int32(blocksize)
<add> prev_device = pre_call(A.device)
<add> code = code.to(A.device)
<del> is_on_gpu([code, A, absmax, out, rand])
<47>:<add> is_on_gpu([code, A, out, absmax, rand])
<add> assert blocksize==4096
|
# module: bitsandbytes.functional
def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, rand=None, out: Tensor = None, blocksize=4096) -> Tensor:
<0> """
<1> Quantize tensor A in blocks of size 4096 values.
<2>
<3> Quantizes tensor A by dividing it into blocks of 4096 values.
<4> Then the absolute maximum value within these blocks is calculated
<5> for the non-linear quantization.
<6>
<7> Parameters
<8> ----------
<9> A : torch.Tensor
<10> The input tensor.
<11> code : torch.Tensor
<12> The quantization map.
<13> absmax : torch.Tensor
<14> The absmax values.
<15> rand : torch.Tensor
<16> The tensor for stochastic rounding.
<17> out : torch.Tensor
<18> The output tensor (8-bit).
<19>
<20> Returns
<21> -------
<22> torch.Tensor:
<23> The 8-bit tensor.
<24> tuple(torch.Tensor, torch.Tensor):
<25> The quantization state to undo the quantization.
<26> """
<27>
<28> if code is None:
<29> if "dynamic" not in name2qmap:
<30> name2qmap["dynamic"] = create_dynamic_map().to(A.device)
<31> code = name2qmap["dynamic"]
<32> code = code.to(A.device)
<33>
<34> if absmax is None:
<35> n = A.numel()
<36> blocksize = (blocksize if A.device.type == 'cpu' else 4096)
<37> blocks = n // blocksize
<38> blocks += 1 if n % blocksize > 0 else 0
<39> absmax = torch.zeros((blocks,), device=A.device)
<40>
<41> if out is None:
<42> out = torch.zeros_like(A, dtype=torch.uint8)
<43>
<44> if A.device.type != 'cpu':
<45> is_on_gpu([code, A, absmax, out, rand])
<46> if rand is not None:
<47> assert rand.numel() >= 1024
<48> </s>
|
===========below chunk 0===========
# module: bitsandbytes.functional
def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, rand=None, out: Tensor = None, blocksize=4096) -> Tensor:
# offset: 1
if A.dtype == torch.float32:
lib.cquantize_blockwise_stochastic_fp32(get_ptr(code), get_ptr(A),get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel()))
elif A.dtype == torch.float16:
lib.cquantize_blockwise_stochastic_fp16(get_ptr(code), get_ptr(A),get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel()))
else:
raise ValueError(
f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}"
)
else:
if A.dtype == torch.float32:
lib.cquantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out),ct.c_int(A.numel()))
elif A.dtype == torch.float16:
lib.cquantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out),ct.c_int(A.numel()))
else:
raise ValueError(
f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}"
)
else:
# cpu
assert rand is None
lib.cquantize_blockwise_cpu_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel()))
return out, (</s>
===========below chunk 1===========
# module: bitsandbytes.functional
def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, rand=None, out: Tensor = None, blocksize=4096) -> Tensor:
# offset: 2
<s> ct.c_longlong(blocksize), ct.c_longlong(A.numel()))
return out, (absmax, code)
===========changed ref 0===========
# module: bitsandbytes.functional
+ def create_quantile_map(A, total_bits=8):
+ q = estimate_quantiles(A, num_quantiles=2**total_bits-1)
+ q = q.tolist()
+ q.append(0)
+
+ gap = 256 - len(q)
+ for i in range(gap):
+ q.append(0)
+
+ q.sort()
+
+ q = Tensor(q)
+ q = q/q.abs().max()
+ return q
+
===========changed ref 1===========
# module: bitsandbytes.functional
def get_special_format_str():
if not torch.cuda.is_available(): return 'col_turing'
+ major, _minor = torch.cuda.get_device_capability()
- major, minor = torch.cuda.get_device_capability()
if major <= 7:
return "col_turing"
+ if major == 8:
- elif major == 8:
return "col_ampere"
- else:
+ return "col_turing"
- return "col_turing"
===========changed ref 2===========
# module: bitsandbytes.functional
def nvidia_transform(
A,
to_order,
from_order="row",
out=None,
transpose=False,
state=None,
ld=None,
):
if state is None:
state = (A.shape, from_order)
else:
from_order = state[1]
if out is None:
out, new_state = get_transform_buffer(
state[0], A.dtype, A.device, to_order, state[1]
)
else:
new_state = (state[1], to_order)
func = get_transform_func(A.dtype, from_order, to_order, transpose)
shape = state[0]
if len(shape) == 2:
dim1 = ct.c_int32(shape[0])
dim2 = ct.c_int32(shape[1])
elif ld is not None:
n = prod(shape)
dim1 = prod([shape[i] for i in ld])
dim2 = ct.c_int32(n // dim1)
dim1 = ct.c_int32(dim1)
else:
dim1 = ct.c_int32(shape[0] * shape[1])
dim2 = ct.c_int32(shape[2])
ptr = CUBLAS_Context.get_instance().get_context(A.device)
- ptrA = get_ptr(A)
- ptrOut = get_ptr(out)
func(ptr, get_ptr(A), get_ptr(out), dim1, dim2)
return out, new_state
===========changed ref 3===========
# module: bitsandbytes.functional
+ def create_linear_map(signed=True, total_bits=8, add_zero=True):
- def create_linear_map(signed=True):
+ sign = (-1.0 if signed else 0.0)
+ total_values = 2**total_bits
+ if add_zero or total_bits < 8:
+ # add a zero
+ # since we simulate less bits by having zeros in the data type, we
+ # we need to center the quantization around zero and as such lose
+ # a single value
+ total_values = (2**total_bits if not signed else 2**total_bits-1)
+
+ values = torch.linspace(sign, 1.0, total_values)
+ gap = 256 - values.numel()
+ if gap == 0:
+ return values
- if signed:
- return torch.linspace(-1.0, 1.0, 256)
else:
+ l = values.numel()//2
+ #return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
+ return torch.Tensor(values[:l].tolist() + [0]*gap + values[l:].tolist())
- return torch.linspace(0.0, 1.0, 256)
|
bitsandbytes.functional/dequantize_blockwise
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<30>:<del> code = code.to(A.device)
<36>:<add> else:
<add> absmax, code = quant_state
<39>:<add> device = pre_call(A.device)
<add> code = code.to(A.device)
<add> if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]:
<del> if blocksize not in [2048, 4096]:
<40>:<add> raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]")
<del> raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values: [2048 4096]")
<43>:<add> lib.cdequantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel()))
<del> lib.cdequantize_blockwise_
|
# module: bitsandbytes.functional
def dequantize_blockwise(
A: Tensor,
quant_state: Tuple[Tensor, Tensor] = None,
absmax: Tensor = None,
code: Tensor = None,
out: Tensor = None,
blocksize: int = 4096,
) -> Tensor:
<0> """
<1> Dequantizes blockwise quantized values.
<2>
<3> Dequantizes the tensor A with maximum absolute values absmax in
<4> blocks of size 4096.
<5>
<6> Parameters
<7> ----------
<8> A : torch.Tensor
<9> The input 8-bit tensor.
<10> quant_state : tuple(torch.Tensor, torch.Tensor)
<11> Tuple of code and absmax values.
<12> absmax : torch.Tensor
<13> The absmax values.
<14> code : torch.Tensor
<15> The quantization map.
<16> out : torch.Tensor
<17> Dequantized output tensor (default: float32)
<18>
<19>
<20> Returns
<21> -------
<22> torch.Tensor:
<23> Dequantized tensor (default: float32)
<24> """
<25> assert quant_state is not None or absmax is not None
<26> if code is None and quant_state is None:
<27> if "dynamic" not in name2qmap:
<28> name2qmap["dynamic"] = create_dynamic_map().to(A.device)
<29> code = name2qmap["dynamic"]
<30> code = code.to(A.device)
<31>
<32> if out is None:
<33> out = torch.zeros_like(A, dtype=torch.float32)
<34> if quant_state is None:
<35> quant_state = (absmax, code)
<36>
<37>
<38> if A.device.type != 'cpu':
<39> if blocksize not in [2048, 4096]:
<40> raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values: [2048 4096]")
<41> is_on_gpu([A, out])
<42> if out.dtype == torch.float32:
<43> lib.cdequantize_blockwise_</s>
|
===========below chunk 0===========
# module: bitsandbytes.functional
def dequantize_blockwise(
A: Tensor,
quant_state: Tuple[Tensor, Tensor] = None,
absmax: Tensor = None,
code: Tensor = None,
out: Tensor = None,
blocksize: int = 4096,
) -> Tensor:
# offset: 1
elif out.dtype == torch.float16:
lib.cdequantize_blockwise_fp16(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel()))
else:
raise ValueError(
f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}"
)
else:
lib.cdequantize_blockwise_cpu_fp32(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel()))
return out
===========changed ref 0===========
# module: bitsandbytes.functional
+ def create_quantile_map(A, total_bits=8):
+ q = estimate_quantiles(A, num_quantiles=2**total_bits-1)
+ q = q.tolist()
+ q.append(0)
+
+ gap = 256 - len(q)
+ for i in range(gap):
+ q.append(0)
+
+ q.sort()
+
+ q = Tensor(q)
+ q = q/q.abs().max()
+ return q
+
===========changed ref 1===========
# module: bitsandbytes.functional
def get_special_format_str():
if not torch.cuda.is_available(): return 'col_turing'
+ major, _minor = torch.cuda.get_device_capability()
- major, minor = torch.cuda.get_device_capability()
if major <= 7:
return "col_turing"
+ if major == 8:
- elif major == 8:
return "col_ampere"
- else:
+ return "col_turing"
- return "col_turing"
===========changed ref 2===========
# module: bitsandbytes.functional
def nvidia_transform(
A,
to_order,
from_order="row",
out=None,
transpose=False,
state=None,
ld=None,
):
if state is None:
state = (A.shape, from_order)
else:
from_order = state[1]
if out is None:
out, new_state = get_transform_buffer(
state[0], A.dtype, A.device, to_order, state[1]
)
else:
new_state = (state[1], to_order)
func = get_transform_func(A.dtype, from_order, to_order, transpose)
shape = state[0]
if len(shape) == 2:
dim1 = ct.c_int32(shape[0])
dim2 = ct.c_int32(shape[1])
elif ld is not None:
n = prod(shape)
dim1 = prod([shape[i] for i in ld])
dim2 = ct.c_int32(n // dim1)
dim1 = ct.c_int32(dim1)
else:
dim1 = ct.c_int32(shape[0] * shape[1])
dim2 = ct.c_int32(shape[2])
ptr = CUBLAS_Context.get_instance().get_context(A.device)
- ptrA = get_ptr(A)
- ptrOut = get_ptr(out)
func(ptr, get_ptr(A), get_ptr(out), dim1, dim2)
return out, new_state
===========changed ref 3===========
# module: bitsandbytes.functional
+ def create_linear_map(signed=True, total_bits=8, add_zero=True):
- def create_linear_map(signed=True):
+ sign = (-1.0 if signed else 0.0)
+ total_values = 2**total_bits
+ if add_zero or total_bits < 8:
+ # add a zero
+ # since we simulate less bits by having zeros in the data type, we
+ # we need to center the quantization around zero and as such lose
+ # a single value
+ total_values = (2**total_bits if not signed else 2**total_bits-1)
+
+ values = torch.linspace(sign, 1.0, total_values)
+ gap = 256 - values.numel()
+ if gap == 0:
+ return values
- if signed:
- return torch.linspace(-1.0, 1.0, 256)
else:
+ l = values.numel()//2
+ #return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
+ return torch.Tensor(values[:l].tolist() + [0]*gap + values[l:].tolist())
- return torch.linspace(0.0, 1.0, 256)
===========changed ref 4===========
# module: bitsandbytes.functional
+ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
- def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):
e = exponent_bits
p = precision_bits
+ has_sign = 1 if signed else 0
+ assert e+p == total_bits-has_sign
- assert e+p == 7
# the exponent is biased to 2^(e-1) -1 == 0
evalues = []
pvalues = []
+ for i, val in enumerate(range(-((2**(exponent_bits-has_sign))), 2**(exponent_bits-has_sign), 1)):
- for i, val in enumerate(range(-((2**(exponent_bits-1))), 2**(exponent_bits-1), 1)):
evalues.append(2**val)
+ values = []
lst = list(itertools.product([0, 1], repeat=precision_bits))
+ #for ev in evalues:
+ bias = 2**(exponent_bits-1)-1
+ for evalue in range(2**(exponent_bits)):
+ for bit_pattern in lst:
- for bit_pattern in lst:
+ value = (1 if evalue != 0 else 0)
- value = 1
+ for i, pval in enumerate(list(bit_pattern)):
- for i, pval in enumerate(list(bit_pattern)):
+ value += pval*(2**-(i+1))
- value += pval*(2**-(i+1))
+ if evalue == 0:
+ # subnormals
+ value = value*2**-(bias-1)
+ else:
+ # normals
+ value = value*2**-(evalue-bias-2)
+ values.append(value)
- pvalues.append(value)
+ if signed:
+ values.append(-value)
+
+ assert len(</s>
|
bitsandbytes.functional/histogram_scatter_add_2d
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<13>:<add> is_on_gpu([histogram, index1, index2, source])
<del> is_on_gpu([histogram, index1, index2d, source])
|
# module: bitsandbytes.functional
def histogram_scatter_add_2d(
histogram: Tensor, index1: Tensor, index2: Tensor, source: Tensor
):
<0> assert len(histogram.shape) == 2
<1> assert histogram.dtype == torch.float32
<2> assert source.dtype == torch.float32
<3> assert index1.dtype == torch.int32
<4> assert index2.dtype == torch.int32
<5>
<6> assert histogram.device.type == "cuda"
<7> assert index1.device.type == "cuda"
<8> assert index2.device.type == "cuda"
<9> assert source.device.type == "cuda"
<10>
<11> maxdim1 = ct.c_int32(histogram.shape[0])
<12> n = ct.c_int32(index1.numel())
<13> is_on_gpu([histogram, index1, index2d, source])
<14> lib.chistogram_scatter_add_2d(get_ptr(histogram), get_ptr(index1), get_ptr(index2), get_ptr(source), maxdim1, n)
<15>
|
===========changed ref 0===========
# module: bitsandbytes.functional
+ def create_quantile_map(A, total_bits=8):
+ q = estimate_quantiles(A, num_quantiles=2**total_bits-1)
+ q = q.tolist()
+ q.append(0)
+
+ gap = 256 - len(q)
+ for i in range(gap):
+ q.append(0)
+
+ q.sort()
+
+ q = Tensor(q)
+ q = q/q.abs().max()
+ return q
+
===========changed ref 1===========
# module: bitsandbytes.functional
def get_special_format_str():
if not torch.cuda.is_available(): return 'col_turing'
+ major, _minor = torch.cuda.get_device_capability()
- major, minor = torch.cuda.get_device_capability()
if major <= 7:
return "col_turing"
+ if major == 8:
- elif major == 8:
return "col_ampere"
- else:
+ return "col_turing"
- return "col_turing"
===========changed ref 2===========
# module: bitsandbytes.functional
def nvidia_transform(
A,
to_order,
from_order="row",
out=None,
transpose=False,
state=None,
ld=None,
):
if state is None:
state = (A.shape, from_order)
else:
from_order = state[1]
if out is None:
out, new_state = get_transform_buffer(
state[0], A.dtype, A.device, to_order, state[1]
)
else:
new_state = (state[1], to_order)
func = get_transform_func(A.dtype, from_order, to_order, transpose)
shape = state[0]
if len(shape) == 2:
dim1 = ct.c_int32(shape[0])
dim2 = ct.c_int32(shape[1])
elif ld is not None:
n = prod(shape)
dim1 = prod([shape[i] for i in ld])
dim2 = ct.c_int32(n // dim1)
dim1 = ct.c_int32(dim1)
else:
dim1 = ct.c_int32(shape[0] * shape[1])
dim2 = ct.c_int32(shape[2])
ptr = CUBLAS_Context.get_instance().get_context(A.device)
- ptrA = get_ptr(A)
- ptrOut = get_ptr(out)
func(ptr, get_ptr(A), get_ptr(out), dim1, dim2)
return out, new_state
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 9===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 14===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 17===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 19===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 20===========
# module: bitsandbytes.cuda_setup.main
+ def is_cublasLt_compatible(cc):
+ has_cublaslt = False
+ if cc is not None:
+ cc_major, cc_minor = cc.split('.')
+ if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
+ cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Proceeding to load CPU-only library...", is_warning=True)
+ else:
+ has_cublaslt = True
+ return has_cublaslt
+
|
bitsandbytes.functional/transform
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<14>:<del> ptrA = get_ptr(A)
<15>:<del> ptrOut = get_ptr(out)
|
# module: bitsandbytes.functional
def transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None):
<0> prev_device = pre_call(A.device)
<1> if state is None: state = (A.shape, from_order)
<2> else: from_order = state[1]
<3> if out is None: out, new_state = get_transform_buffer(state[0], A.dtype, A.device, to_order, state[1], transpose)
<4> else: new_state = (state[0], to_order) # (shape, order)
<5>
<6> shape = state[0]
<7> if len(shape) == 2:
<8> dim1 = ct.c_int32(shape[0])
<9> dim2 = ct.c_int32(shape[1])
<10> else:
<11> dim1 = ct.c_int32(shape[0] * shape[1])
<12> dim2 = ct.c_int32(shape[2])
<13>
<14> ptrA = get_ptr(A)
<15> ptrOut = get_ptr(out)
<16> is_on_gpu([A, out])
<17> if to_order == 'col32':
<18> if transpose:
<19> lib.ctransform_row2col32T(get_ptr(A), get_ptr(out), dim1, dim2)
<20> else:
<21> lib.ctransform_row2col32(get_ptr(A), get_ptr(out), dim1, dim2)
<22> elif to_order == "col_turing":
<23> if transpose:
<24> lib.ctransform_row2turingT(get_ptr(A), get_ptr(out), dim1, dim2)
<25> else:
<26> lib.ctransform_row2turing(get_ptr(A), get_ptr(out), dim1, dim2)
<27> elif to_order == "col_ampere":
<28> if transpose:
<29> lib.ctransform_row2ampereT(get_ptr</s>
|
===========below chunk 0===========
# module: bitsandbytes.functional
def transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None):
# offset: 1
else:
lib.ctransform_row2ampere(get_ptr(A), get_ptr(out), dim1, dim2)
elif to_order == "row":
if from_order == "col_turing":
lib.ctransform_turing2row(get_ptr(A), get_ptr(out), dim1, dim2)
elif from_order == "col_ampere":
lib.ctransform_ampere2row(get_ptr(A), get_ptr(out), dim1, dim2)
else:
raise NotImplementedError(f'Transform function not implemented: From {from_order} to {to_order}')
post_call(prev_device)
return out, new_state
===========changed ref 0===========
# module: bitsandbytes.functional
def histogram_scatter_add_2d(
histogram: Tensor, index1: Tensor, index2: Tensor, source: Tensor
):
assert len(histogram.shape) == 2
assert histogram.dtype == torch.float32
assert source.dtype == torch.float32
assert index1.dtype == torch.int32
assert index2.dtype == torch.int32
assert histogram.device.type == "cuda"
assert index1.device.type == "cuda"
assert index2.device.type == "cuda"
assert source.device.type == "cuda"
maxdim1 = ct.c_int32(histogram.shape[0])
n = ct.c_int32(index1.numel())
+ is_on_gpu([histogram, index1, index2, source])
- is_on_gpu([histogram, index1, index2d, source])
lib.chistogram_scatter_add_2d(get_ptr(histogram), get_ptr(index1), get_ptr(index2), get_ptr(source), maxdim1, n)
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 2===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 12===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 15===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 17===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 18===========
# module: bitsandbytes.functional
+ def create_quantile_map(A, total_bits=8):
+ q = estimate_quantiles(A, num_quantiles=2**total_bits-1)
+ q = q.tolist()
+ q.append(0)
+
+ gap = 256 - len(q)
+ for i in range(gap):
+ q.append(0)
+
+ q.sort()
+
+ q = Tensor(q)
+ q = q/q.abs().max()
+ return q
+
===========changed ref 19===========
# module: bitsandbytes.functional
def get_special_format_str():
if not torch.cuda.is_available(): return 'col_turing'
+ major, _minor = torch.cuda.get_device_capability()
- major, minor = torch.cuda.get_device_capability()
if major <= 7:
return "col_turing"
+ if major == 8:
- elif major == 8:
return "col_ampere"
- else:
+ return "col_turing"
- return "col_turing"
|
bitsandbytes.optim.optimizer/Optimizer8bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__(params, defaults)
<del> super(Optimizer8bit, self).__init__(params, defaults)
<5>:<add> self.non_castable_tensor_keys = {
<del> self.non_castable_tensor_keys = set(
<6>:<del> [
<19>:<del> ]
<20>:<add> }
<del> )
|
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __init__(self, params, defaults, optim_bits=32):
<0> super(Optimizer8bit, self).__init__(params, defaults)
<1> self.initialized = False
<2> self.name2qmap = {}
<3>
<4> self.mng = GlobalOptimManager.get_instance()
<5> self.non_castable_tensor_keys = set(
<6> [
<7> "qmap1",
<8> "qmap2",
<9> "max1",
<10> "max2",
<11> "new_max1",
<12> "new_max2",
<13> "state1",
<14> "state2",
<15> "gnorm_vec",
<16> "absmax1",
<17> "absmax2",
<18> "unorm_vec",
<19> ]
<20> )
<21>
<22> if optim_bits == 8:
<23> self.fill_qmap()
<24>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.optimizer
GlobalOptimManager()
at: bitsandbytes.optim.optimizer.GlobalOptimManager
_instance = None
get_instance()
at: bitsandbytes.optim.optimizer.Optimizer8bit.step
self.initialized = True
at: torch.optim.optimizer.Optimizer
OptimizerPreHook: TypeAlias = Callable[[Self, Args, Kwargs], Optional[Tuple[Args, Kwargs]]] # type: ignore[misc]
OptimizerPostHook: TypeAlias = Callable[[Self, Args, Kwargs], None] # type: ignore[misc]
_optimizer_step_pre_hooks: Dict[int, OptimizerPreHook]
_optimizer_step_post_hooks: Dict[int, OptimizerPostHook]
_optimizer_state_dict_pre_hooks: 'OrderedDict[int, Callable[["Optimizer"], None]]'
_optimizer_state_dict_post_hooks: 'OrderedDict[int, Callable[["Optimizer", StateDict], Optional[StateDict]]]'
_optimizer_load_state_dict_pre_hooks: 'OrderedDict[int, Callable[["Optimizer", StateDict], Optional[StateDict]]]'
_optimizer_load_state_dict_post_hooks: 'OrderedDict[int, Callable[["Optimizer"], None]]'
__init__(self, params: params_t, defaults: Dict[str, Any]) -> None
__init__(params: params_t, defaults: Dict[str, Any]) -> None
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 1===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 11===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 14===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 16===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 17===========
# module: bitsandbytes.functional
+ def create_quantile_map(A, total_bits=8):
+ q = estimate_quantiles(A, num_quantiles=2**total_bits-1)
+ q = q.tolist()
+ q.append(0)
+
+ gap = 256 - len(q)
+ for i in range(gap):
+ q.append(0)
+
+ q.sort()
+
+ q = Tensor(q)
+ q = q/q.abs().max()
+ return q
+
===========changed ref 18===========
# module: bitsandbytes.functional
def get_special_format_str():
if not torch.cuda.is_available(): return 'col_turing'
+ major, _minor = torch.cuda.get_device_capability()
- major, minor = torch.cuda.get_device_capability()
if major <= 7:
return "col_turing"
+ if major == 8:
- elif major == 8:
return "col_ampere"
- else:
+ return "col_turing"
- return "col_turing"
===========changed ref 19===========
# module: bitsandbytes.cuda_setup.main
+ def is_cublasLt_compatible(cc):
+ has_cublaslt = False
+ if cc is not None:
+ cc_major, cc_minor = cc.split('.')
+ if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
+ cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Proceeding to load CPU-only library...", is_warning=True)
+ else:
+ has_cublaslt = True
+ return has_cublaslt
+
|
bitsandbytes.optim.optimizer/Optimizer8bit.__setstate__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__setstate__(state)
<del> super(Optimizer8bit, self).__setstate__(state)
|
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
<0> super(Optimizer8bit, self).__setstate__(state)
<1>
|
===========unchanged ref 0===========
at: torch.optim.optimizer.Optimizer
_disable_dynamo(fn=None)
state_dict(fn, /, *args, fn, **kwargs)
_disable_dynamo(fn=None)
load_state_dict(fn, /, *args, fn, **kwargs)
===========changed ref 0===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __init__(self, params, defaults, optim_bits=32):
+ super().__init__(params, defaults)
- super(Optimizer8bit, self).__init__(params, defaults)
self.initialized = False
self.name2qmap = {}
self.mng = GlobalOptimManager.get_instance()
+ self.non_castable_tensor_keys = {
- self.non_castable_tensor_keys = set(
- [
"qmap1",
"qmap2",
"max1",
"max2",
"new_max1",
"new_max2",
"state1",
"state2",
"gnorm_vec",
"absmax1",
"absmax2",
"unorm_vec",
- ]
+ }
- )
if optim_bits == 8:
self.fill_qmap()
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 2===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 12===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 15===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 17===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 18===========
# module: bitsandbytes.functional
+ def create_quantile_map(A, total_bits=8):
+ q = estimate_quantiles(A, num_quantiles=2**total_bits-1)
+ q = q.tolist()
+ q.append(0)
+
+ gap = 256 - len(q)
+ for i in range(gap):
+ q.append(0)
+
+ q.sort()
+
+ q = Tensor(q)
+ q = q/q.abs().max()
+ return q
+
===========changed ref 19===========
# module: bitsandbytes.functional
def get_special_format_str():
if not torch.cuda.is_available(): return 'col_turing'
+ major, _minor = torch.cuda.get_device_capability()
- major, minor = torch.cuda.get_device_capability()
if major <= 7:
return "col_turing"
+ if major == 8:
- elif major == 8:
return "col_ampere"
- else:
+ return "col_turing"
- return "col_turing"
===========changed ref 20===========
# module: bitsandbytes.cuda_setup.main
+ def is_cublasLt_compatible(cc):
+ has_cublaslt = False
+ if cc is not None:
+ cc_major, cc_minor = cc.split('.')
+ if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
+ cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Proceeding to load CPU-only library...", is_warning=True)
+ else:
+ has_cublaslt = True
+ return has_cublaslt
+
|
bitsandbytes.optim.optimizer/Optimizer8bit.init_state
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> raise NotImplementedError("init_state method needs to be overridden")
<del> raise NotImplementedError(f"init_state method needs to be overidden")
|
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
<0> raise NotImplementedError(f"init_state method needs to be overidden")
<1>
|
===========changed ref 0===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 1===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __init__(self, params, defaults, optim_bits=32):
+ super().__init__(params, defaults)
- super(Optimizer8bit, self).__init__(params, defaults)
self.initialized = False
self.name2qmap = {}
self.mng = GlobalOptimManager.get_instance()
+ self.non_castable_tensor_keys = {
- self.non_castable_tensor_keys = set(
- [
"qmap1",
"qmap2",
"max1",
"max2",
"new_max1",
"new_max2",
"state1",
"state2",
"gnorm_vec",
"absmax1",
"absmax2",
"unorm_vec",
- ]
+ }
- )
if optim_bits == 8:
self.fill_qmap()
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 8===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 13===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 16===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 18===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 19===========
# module: bitsandbytes.functional
+ def create_quantile_map(A, total_bits=8):
+ q = estimate_quantiles(A, num_quantiles=2**total_bits-1)
+ q = q.tolist()
+ q.append(0)
+
+ gap = 256 - len(q)
+ for i in range(gap):
+ q.append(0)
+
+ q.sort()
+
+ q = Tensor(q)
+ q = q/q.abs().max()
+ return q
+
===========changed ref 20===========
# module: bitsandbytes.functional
def get_special_format_str():
if not torch.cuda.is_available(): return 'col_turing'
+ major, _minor = torch.cuda.get_device_capability()
- major, minor = torch.cuda.get_device_capability()
if major <= 7:
return "col_turing"
+ if major == 8:
- elif major == 8:
return "col_ampere"
- else:
+ return "col_turing"
- return "col_turing"
===========changed ref 21===========
# module: bitsandbytes.cuda_setup.main
+ def is_cublasLt_compatible(cc):
+ has_cublaslt = False
+ if cc is not None:
+ cc_major, cc_minor = cc.split('.')
+ if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
+ cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Proceeding to load CPU-only library...", is_warning=True)
+ else:
+ has_cublaslt = True
+ return has_cublaslt
+
|
bitsandbytes.optim.optimizer/Optimizer8bit.update_step
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<1>:<add> "The update_step method needs to be overridden"
<del> f"The update_step method needs to be overidden"
|
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
<0> raise NotImplementedError(
<1> f"The update_step method needs to be overidden"
<2> )
<3>
|
===========changed ref 0===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 1===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 2===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __init__(self, params, defaults, optim_bits=32):
+ super().__init__(params, defaults)
- super(Optimizer8bit, self).__init__(params, defaults)
self.initialized = False
self.name2qmap = {}
self.mng = GlobalOptimManager.get_instance()
+ self.non_castable_tensor_keys = {
- self.non_castable_tensor_keys = set(
- [
"qmap1",
"qmap2",
"max1",
"max2",
"new_max1",
"new_max2",
"state1",
"state2",
"gnorm_vec",
"absmax1",
"absmax2",
"unorm_vec",
- ]
+ }
- )
if optim_bits == 8:
self.fill_qmap()
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 9===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 14===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 17===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 19===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 20===========
# module: bitsandbytes.functional
+ def create_quantile_map(A, total_bits=8):
+ q = estimate_quantiles(A, num_quantiles=2**total_bits-1)
+ q = q.tolist()
+ q.append(0)
+
+ gap = 256 - len(q)
+ for i in range(gap):
+ q.append(0)
+
+ q.sort()
+
+ q = Tensor(q)
+ q = q/q.abs().max()
+ return q
+
===========changed ref 21===========
# module: bitsandbytes.functional
def get_special_format_str():
if not torch.cuda.is_available(): return 'col_turing'
+ major, _minor = torch.cuda.get_device_capability()
- major, minor = torch.cuda.get_device_capability()
if major <= 7:
return "col_turing"
+ if major == 8:
- elif major == 8:
return "col_ampere"
- else:
+ return "col_turing"
- return "col_turing"
===========changed ref 22===========
# module: bitsandbytes.cuda_setup.main
+ def is_cublasLt_compatible(cc):
+ has_cublaslt = False
+ if cc is not None:
+ cc_major, cc_minor = cc.split('.')
+ if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
+ cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Proceeding to load CPU-only library...", is_warning=True)
+ else:
+ has_cublaslt = True
+ return has_cublaslt
+
|
bitsandbytes.optim.optimizer/Optimizer2State.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<1>:<add> raise ValueError(f"Invalid learning rate: {lr}")
<del> raise ValueError("Invalid learning rate: {}".format(lr))
<3>:<add> raise ValueError(f"Invalid epsilon value: {eps}")
<del> raise ValueError("Invalid epsilon value: {}".format(eps))
<15>:<add> f"Invalid weight_decay value: {weight_decay}"
<del> "Invalid weight_decay value: {}".format(weight_decay)
<18>:<add> super().__init__(params, defaults, optim_bits)
<del> super(Optimizer2State, self).__init__(params, defaults, optim_bits)
|
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
<0> if not 0.0 <= lr:
<1> raise ValueError("Invalid learning rate: {}".format(lr))
<2> if not 0.0 <= eps:
<3> raise ValueError("Invalid epsilon value: {}".format(eps))
<4> if isinstance(betas, str):
<5> # format: '(beta1, beta2)'
<6> betas = betas.replace("(", "").replace(")", "").strip().split(",")
<7> betas = [float(b) for b in betas]
<8> for i in range(len(betas)):
<9> if not 0.0 <= betas[i] < 1.0:
<10> raise ValueError(
<11> f"Invalid beta parameter at index {i}: {betas[i]}"
<12> )
<13> if not 0.0 <= weight_decay:
<14> raise ValueError(
<15> "Invalid weight_decay value: {}".format(weight_decay)
<16> )
<17> defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
<18> super(Optimizer2State, self).__init__(params, defaults, optim_bits)
<19>
<20> if args is None:
<21> args = {}
<22> args["optim_bits"] = optim_bits
<23> args["percentile_clipping"] = 100
<24> args["min_8bit_size"] = min_8bit_size
<25> args["percentile_clipping"] = percentile_clipping
<26> args["block_wise"] = block_wise
<27> args["max_unorm"] = max_unorm
<28> args</s>
|
===========below chunk 0===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========unchanged ref 0===========
at: bitsandbytes.optim.optimizer
MockArgs(initial_data)
at: bitsandbytes.optim.optimizer.Optimizer8bit
__init__(params, defaults, optim_bits=32)
at: torch.autograd.grad_mode
no_grad()
===========changed ref 0===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __init__(self, params, defaults, optim_bits=32):
+ super().__init__(params, defaults)
- super(Optimizer8bit, self).__init__(params, defaults)
self.initialized = False
self.name2qmap = {}
self.mng = GlobalOptimManager.get_instance()
+ self.non_castable_tensor_keys = {
- self.non_castable_tensor_keys = set(
- [
"qmap1",
"qmap2",
"max1",
"max2",
"new_max1",
"new_max2",
"state1",
"state2",
"gnorm_vec",
"absmax1",
"absmax2",
"unorm_vec",
- ]
+ }
- )
if optim_bits == 8:
self.fill_qmap()
===========changed ref 1===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 2===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 3===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 10===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 15===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 18===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 19===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 20===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 21===========
# module: bitsandbytes.functional
+ def create_quantile_map(A, total_bits=8):
+ q = estimate_quantiles(A, num_quantiles=2**total_bits-1)
+ q = q.tolist()
+ q.append(0)
+
+ gap = 256 - len(q)
+ for i in range(gap):
+ q.append(0)
+
+ q.sort()
+
+ q = Tensor(q)
+ q = q/q.abs().max()
+ return q
+
|
bitsandbytes.optim.optimizer/Optimizer1State.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<1>:<add> raise ValueError(f"Invalid learning rate: {lr}")
<del> raise ValueError("Invalid learning rate: {}".format(lr))
<3>:<add> raise ValueError(f"Invalid epsilon value: {eps}")
<del> raise ValueError("Invalid epsilon value: {}".format(eps))
<11>:<add> f"Invalid weight_decay value: {weight_decay}"
<del> "Invalid weight_decay value: {}".format(weight_decay)
<14>:<add> super().__init__(params, defaults, optim_bits)
<del> super(Optimizer1State, self).__init__(params, defaults, optim_bits)
|
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
<0> if not 0.0 <= lr:
<1> raise ValueError("Invalid learning rate: {}".format(lr))
<2> if not 0.0 <= eps:
<3> raise ValueError("Invalid epsilon value: {}".format(eps))
<4> for i in range(len(betas)):
<5> if not 0.0 <= betas[i] < 1.0:
<6> raise ValueError(
<7> f"Invalid beta parameter at index {i}: {betas[i]}"
<8> )
<9> if not 0.0 <= weight_decay:
<10> raise ValueError(
<11> "Invalid weight_decay value: {}".format(weight_decay)
<12> )
<13> defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
<14> super(Optimizer1State, self).__init__(params, defaults, optim_bits)
<15>
<16> if args is None:
<17> args = {}
<18> args["optim_bits"] = optim_bits
<19> args["percentile_clipping"] = 100
<20> args["min_8bit_size"] = min_8bit_size
<21> args["percentile_clipping"] = percentile_clipping
<22> args["block_wise"] = block_wise
<23> args["max_unorm"] = max_unorm
<24> args["skip_zeros"] = skip_zeros
<25>
<26> self.args = MockArgs(args)
<27> else:
<28> self.args = args
<29>
<30> self.optimizer_name = optimizer_name
<31>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.optimizer
MockArgs(initial_data)
at: bitsandbytes.optim.optimizer.Optimizer8bit
__init__(params, defaults, optim_bits=32)
at: torch.autograd.grad_mode
no_grad()
===========changed ref 0===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __init__(self, params, defaults, optim_bits=32):
+ super().__init__(params, defaults)
- super(Optimizer8bit, self).__init__(params, defaults)
self.initialized = False
self.name2qmap = {}
self.mng = GlobalOptimManager.get_instance()
+ self.non_castable_tensor_keys = {
- self.non_castable_tensor_keys = set(
- [
"qmap1",
"qmap2",
"max1",
"max2",
"new_max1",
"new_max2",
"state1",
"state2",
"gnorm_vec",
"absmax1",
"absmax2",
"unorm_vec",
- ]
+ }
- )
if optim_bits == 8:
self.fill_qmap()
===========changed ref 1===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 2===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 3===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 4===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
if isinstance(betas, str):
# format: '(beta1, beta2)'
betas = betas.replace("(", "").replace(")", "").strip().split(",")
betas = [float(b) for b in betas]
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer2State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args</s>
===========changed ref 5===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s> args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 9===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 12===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 17===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
|
bitsandbytes.optim.adagrad/Adagrad.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<1>:<add> raise ValueError(f"Invalid learning rate: {lr}")
<del> raise ValueError("Invalid learning rate: {}".format(lr))
<4>:<add> f"Invalid weight_decay value: {weight_decay}"
<del> "Invalid weight_decay value: {}".format(weight_decay)
<7>:<add> raise ValueError(f"Invalid epsilon value: {eps}")
<del> raise ValueError("Invalid epsilon value: {}".format(eps))
<12>:<add> super().__init__(
<del> super(Adagrad, self).__init__(
|
<s>andbytes.optim.adagrad
class Adagrad(Optimizer1State):
def __init__(
self,
params,
lr=1e-2,
lr_decay=0,
weight_decay=0,
initial_accumulator_value=0,
eps=1e-10,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> if not 0.0 <= lr:
<1> raise ValueError("Invalid learning rate: {}".format(lr))
<2> if not 0.0 <= weight_decay:
<3> raise ValueError(
<4> "Invalid weight_decay value: {}".format(weight_decay)
<5> )
<6> if not 0.0 <= eps:
<7> raise ValueError("Invalid epsilon value: {}".format(eps))
<8> if initial_accumulator_value != 0.0:
<9> raise ValueError("Initial accumulator value != 0.0 not supported!")
<10> if lr_decay != 0.0:
<11> raise ValueError("Lr Decay != 0.0 not supported!")
<12> super(Adagrad, self).__init__(
<13> "adagrad",
<14> params,
<15> lr,
<16> (0.0, 0.0),
<17> eps,
<18> weight_decay,
<19> optim_bits,
<20> args,
<21> min_8bit_size,
<22> percentile_clipping,
<23> block_wise,
<24> )
<25>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.optimizer.Optimizer1State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer1State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s>_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 8===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 10===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 14===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 16===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
|
bitsandbytes.optim.adagrad/Adagrad8bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<1>:<add> raise ValueError(f"Invalid learning rate: {lr}")
<del> raise ValueError("Invalid learning rate: {}".format(lr))
<4>:<add> f"Invalid weight_decay value: {weight_decay}"
<del> "Invalid weight_decay value: {}".format(weight_decay)
<7>:<add> raise ValueError(f"Invalid epsilon value: {eps}")
<del> raise ValueError("Invalid epsilon value: {}".format(eps))
<13>:<add> super().__init__(
<del> super(Adagrad8bit, self).__init__(
|
<s>.optim.adagrad
class Adagrad8bit(Optimizer1State):
def __init__(
self,
params,
lr=1e-2,
lr_decay=0,
weight_decay=0,
initial_accumulator_value=0,
eps=1e-10,
optim_bits=8,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> if not 0.0 <= lr:
<1> raise ValueError("Invalid learning rate: {}".format(lr))
<2> if not 0.0 <= weight_decay:
<3> raise ValueError(
<4> "Invalid weight_decay value: {}".format(weight_decay)
<5> )
<6> if not 0.0 <= eps:
<7> raise ValueError("Invalid epsilon value: {}".format(eps))
<8> if initial_accumulator_value != 0.0:
<9> raise ValueError("Initial accumulator value != 0.0 not supported!")
<10> if lr_decay != 0.0:
<11> raise ValueError("Lr Decay != 0.0 not supported!")
<12> assert block_wise
<13> super(Adagrad8bit, self).__init__(
<14> "adagrad",
<15> params,
<16> lr,
<17> (0.0, 0.0),
<18> eps,
<19> weight_decay,
<20> 8,
<21> args,
<22> min_8bit_size,
<23> percentile_clipping,
<24> block_wise,
<25> )
<26>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.optimizer.Optimizer1State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer1State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s>_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
<s>andbytes.optim.adagrad
class Adagrad(Optimizer1State):
def __init__(
self,
params,
lr=1e-2,
lr_decay=0,
weight_decay=0,
initial_accumulator_value=0,
eps=1e-10,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
if initial_accumulator_value != 0.0:
raise ValueError("Initial accumulator value != 0.0 not supported!")
if lr_decay != 0.0:
raise ValueError("Lr Decay != 0.0 not supported!")
+ super().__init__(
- super(Adagrad, self).__init__(
"adagrad",
params,
lr,
(0.0, 0.0),
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 9===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 11===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
|
bitsandbytes.optim.adagrad/Adagrad32bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<1>:<add> raise ValueError(f"Invalid learning rate: {lr}")
<del> raise ValueError("Invalid learning rate: {}".format(lr))
<4>:<add> f"Invalid weight_decay value: {weight_decay}"
<del> "Invalid weight_decay value: {}".format(weight_decay)
<7>:<add> raise ValueError(f"Invalid epsilon value: {eps}")
<del> raise ValueError("Invalid epsilon value: {}".format(eps))
<12>:<add> super().__init__(
<del> super(Adagrad32bit, self).__init__(
|
<s>.optim.adagrad
class Adagrad32bit(Optimizer1State):
def __init__(
self,
params,
lr=1e-2,
lr_decay=0,
weight_decay=0,
initial_accumulator_value=0,
eps=1e-10,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> if not 0.0 <= lr:
<1> raise ValueError("Invalid learning rate: {}".format(lr))
<2> if not 0.0 <= weight_decay:
<3> raise ValueError(
<4> "Invalid weight_decay value: {}".format(weight_decay)
<5> )
<6> if not 0.0 <= eps:
<7> raise ValueError("Invalid epsilon value: {}".format(eps))
<8> if initial_accumulator_value != 0.0:
<9> raise ValueError("Initial accumulator value != 0.0 not supported!")
<10> if lr_decay != 0.0:
<11> raise ValueError("Lr Decay != 0.0 not supported!")
<12> super(Adagrad32bit, self).__init__(
<13> "adagrad",
<14> params,
<15> lr,
<16> (0.0, 0.0),
<17> eps,
<18> weight_decay,
<19> 32,
<20> args,
<21> min_8bit_size,
<22> percentile_clipping,
<23> block_wise,
<24> )
<25>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.optimizer.Optimizer1State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer1State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s>_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
<s>.optim.adagrad
class Adagrad8bit(Optimizer1State):
def __init__(
self,
params,
lr=1e-2,
lr_decay=0,
weight_decay=0,
initial_accumulator_value=0,
eps=1e-10,
optim_bits=8,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
if initial_accumulator_value != 0.0:
raise ValueError("Initial accumulator value != 0.0 not supported!")
if lr_decay != 0.0:
raise ValueError("Lr Decay != 0.0 not supported!")
assert block_wise
+ super().__init__(
- super(Adagrad8bit, self).__init__(
"adagrad",
params,
lr,
(0.0, 0.0),
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 3===========
<s>andbytes.optim.adagrad
class Adagrad(Optimizer1State):
def __init__(
self,
params,
lr=1e-2,
lr_decay=0,
weight_decay=0,
initial_accumulator_value=0,
eps=1e-10,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
if initial_accumulator_value != 0.0:
raise ValueError("Initial accumulator value != 0.0 not supported!")
if lr_decay != 0.0:
raise ValueError("Lr Decay != 0.0 not supported!")
+ super().__init__(
- super(Adagrad, self).__init__(
"adagrad",
params,
lr,
(0.0, 0.0),
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
|
bitsandbytes.optim.adamw/AdamW.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__(
<del> super(AdamW, self).__init__(
|
<s>adamw
class AdamW(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
amsgrad=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> super(AdamW, self).__init__(
<1> "adam",
<2> params,
<3> lr,
<4> betas,
<5> eps,
<6> weight_decay,
<7> optim_bits,
<8> args,
<9> min_8bit_size,
<10> percentile_clipping,
<11> block_wise,
<12> )
<13>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.adamw
AdamW(params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True)
at: bitsandbytes.optim.optimizer.Optimizer2State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
if isinstance(betas, str):
# format: '(beta1, beta2)'
betas = betas.replace("(", "").replace(")", "").strip().split(",")
betas = [float(b) for b in betas]
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer2State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s> args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 8===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 10===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 14===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 16===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
|
bitsandbytes.optim.adamw/AdamW8bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__(
<del> super(AdamW8bit, self).__init__(
|
<s> bitsandbytes.optim.adamw
class AdamW8bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> super(AdamW8bit, self).__init__(
<1> "adam",
<2> params,
<3> lr,
<4> betas,
<5> eps,
<6> weight_decay,
<7> 8,
<8> args,
<9> min_8bit_size,
<10> percentile_clipping,
<11> block_wise,
<12> )
<13>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.adamw
AdamW8bit(params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True)
at: bitsandbytes.optim.optimizer.Optimizer2State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
if isinstance(betas, str):
# format: '(beta1, beta2)'
betas = betas.replace("(", "").replace(")", "").strip().split(",")
betas = [float(b) for b in betas]
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer2State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s> args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
<s>adamw
class AdamW(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
amsgrad=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(AdamW, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 9===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 11===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 15===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
|
bitsandbytes.optim.adamw/AdamW32bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__(
<del> super(AdamW32bit, self).__init__(
|
<s> bitsandbytes.optim.adamw
class AdamW32bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> super(AdamW32bit, self).__init__(
<1> "adam",
<2> params,
<3> lr,
<4> betas,
<5> eps,
<6> weight_decay,
<7> 32,
<8> args,
<9> min_8bit_size,
<10> percentile_clipping,
<11> block_wise,
<12> )
<13>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.adamw
AdamW32bit(params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True)
at: bitsandbytes.optim.optimizer.Optimizer2State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
if isinstance(betas, str):
# format: '(beta1, beta2)'
betas = betas.replace("(", "").replace(")", "").strip().split(",")
betas = [float(b) for b in betas]
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer2State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s> args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
<s> bitsandbytes.optim.adamw
class AdamW8bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(AdamW8bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 3===========
<s>adamw
class AdamW(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
amsgrad=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(AdamW, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 10===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
|
bitsandbytes.optim.lars/LARS.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<2>:<add> "LARS without momentum is not supported!"
<del> f"LARS without momentum is not supported!"
<4>:<add> super().__init__(
<del> super(LARS, self).__init__(
|
# module: bitsandbytes.optim.lars
class LARS(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
<0> if momentum == 0:
<1> raise NotImplementedError(
<2> f"LARS without momentum is not supported!"
<3> )
<4> super(LARS, self).__init__(
<5> "lars",
<6> params,
<7> lr,
<8> (momentum, dampening),
<9> 0.0,
<10> weight_decay,
<11> optim_bits,
<12> args,
<13> min_8bit_size,
<14> percentile_clipping,
<15> max_unorm=max_unorm,
<16> block_wise=False,
<17> )
<18>
|
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 1===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 8===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 10===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 14===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 17===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 19===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 20===========
<s> bitsandbytes.optim.adamw
class AdamW32bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(AdamW32bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 21===========
<s> bitsandbytes.optim.adamw
class AdamW8bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(AdamW8bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 22===========
<s>adamw
class AdamW(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
amsgrad=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(AdamW, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
|
bitsandbytes.optim.lars/LARS8bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<2>:<add> "LARS without momentum is not supported!"
<del> f"LARS without momentum is not supported!"
<4>:<add> super().__init__(
<del> super(LARS8bit, self).__init__(
|
# module: bitsandbytes.optim.lars
class LARS8bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
<0> if momentum == 0:
<1> raise NotImplementedError(
<2> f"LARS without momentum is not supported!"
<3> )
<4> super(LARS8bit, self).__init__(
<5> "lars",
<6> params,
<7> lr,
<8> (momentum, dampening),
<9> 0.0,
<10> weight_decay,
<11> 8,
<12> args,
<13> min_8bit_size,
<14> percentile_clipping,
<15> max_unorm=max_unorm,
<16> block_wise=False,
<17> )
<18>
|
===========changed ref 0===========
# module: bitsandbytes.optim.lars
class LARS(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
+ "LARS without momentum is not supported!"
- f"LARS without momentum is not supported!"
)
+ super().__init__(
- super(LARS, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 2===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 9===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 11===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 15===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 18===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 19===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 20===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 21===========
<s> bitsandbytes.optim.adamw
class AdamW32bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(AdamW32bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
|
bitsandbytes.optim.lars/LARS32bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<2>:<add> "LARS without momentum is not supported!"
<del> f"LARS without momentum is not supported!"
<4>:<add> super().__init__(
<del> super(LARS32bit, self).__init__(
|
# module: bitsandbytes.optim.lars
class LARS32bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
<0> if momentum == 0:
<1> raise NotImplementedError(
<2> f"LARS without momentum is not supported!"
<3> )
<4> super(LARS32bit, self).__init__(
<5> "lars",
<6> params,
<7> lr,
<8> (momentum, dampening),
<9> 0.0,
<10> weight_decay,
<11> 32,
<12> args,
<13> min_8bit_size,
<14> percentile_clipping,
<15> max_unorm=max_unorm,
<16> block_wise=False,
<17> )
<18>
|
===========changed ref 0===========
# module: bitsandbytes.optim.lars
class LARS8bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
+ "LARS without momentum is not supported!"
- f"LARS without momentum is not supported!"
)
+ super().__init__(
- super(LARS8bit, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
===========changed ref 1===========
# module: bitsandbytes.optim.lars
class LARS(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
+ "LARS without momentum is not supported!"
- f"LARS without momentum is not supported!"
)
+ super().__init__(
- super(LARS, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 8===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 10===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 14===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 16===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 19===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 20===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 21===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
|
bitsandbytes.optim.lars/PytorchLARS.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<1>:<add> raise ValueError(f"Invalid learning rate: {lr}")
<del> raise ValueError("Invalid learning rate: {}".format(lr))
<3>:<add> raise ValueError(f"Invalid momentum value: {momentum}")
<del> raise ValueError("Invalid momentum value: {}".format(momentum))
<6>:<add> f"Invalid weight_decay value: {weight_decay}"
<del> "Invalid weight_decay value: {}".format(weight_decay)
<21>:<add> super().__init__(params, defaults)
<del> super(PytorchLARS, self).__init__(params, defaults)
|
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
def __init__(
self,
params,
lr=0.01,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
max_unorm=0.02,
):
<0> if lr < 0.0:
<1> raise ValueError("Invalid learning rate: {}".format(lr))
<2> if momentum < 0.0:
<3> raise ValueError("Invalid momentum value: {}".format(momentum))
<4> if weight_decay < 0.0:
<5> raise ValueError(
<6> "Invalid weight_decay value: {}".format(weight_decay)
<7> )
<8>
<9> defaults = dict(
<10> lr=lr,
<11> momentum=momentum,
<12> dampening=dampening,
<13> weight_decay=weight_decay,
<14> nesterov=nesterov,
<15> max_unorm=max_unorm,
<16> )
<17> if nesterov and (momentum <= 0 or dampening != 0):
<18> raise ValueError(
<19> "Nesterov momentum requires a momentum and zero dampening"
<20> )
<21> super(PytorchLARS, self).__init__(params, defaults)
<22>
|
===========changed ref 0===========
# module: bitsandbytes.optim.lars
class LARS32bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
+ "LARS without momentum is not supported!"
- f"LARS without momentum is not supported!"
)
+ super().__init__(
- super(LARS32bit, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
===========changed ref 1===========
# module: bitsandbytes.optim.lars
class LARS8bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
+ "LARS without momentum is not supported!"
- f"LARS without momentum is not supported!"
)
+ super().__init__(
- super(LARS8bit, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
===========changed ref 2===========
# module: bitsandbytes.optim.lars
class LARS(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
+ "LARS without momentum is not supported!"
- f"LARS without momentum is not supported!"
)
+ super().__init__(
- super(LARS, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 9===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 11===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 15===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 17===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 19===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 20===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
|
bitsandbytes.optim.lars/PytorchLARS.__setstate__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__setstate__(state)
<del> super(PytorchLARS, self).__setstate__(state)
|
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
def __setstate__(self, state):
<0> super(PytorchLARS, self).__setstate__(state)
<1> for group in self.param_groups:
<2> group.setdefault("nesterov", False)
<3>
|
===========changed ref 0===========
# module: bitsandbytes.optim.lars
class LARS32bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
+ "LARS without momentum is not supported!"
- f"LARS without momentum is not supported!"
)
+ super().__init__(
- super(LARS32bit, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
===========changed ref 1===========
# module: bitsandbytes.optim.lars
class LARS8bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
+ "LARS without momentum is not supported!"
- f"LARS without momentum is not supported!"
)
+ super().__init__(
- super(LARS8bit, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
===========changed ref 2===========
# module: bitsandbytes.optim.lars
class LARS(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
+ "LARS without momentum is not supported!"
- f"LARS without momentum is not supported!"
)
+ super().__init__(
- super(LARS, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
===========changed ref 3===========
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
def __init__(
self,
params,
lr=0.01,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
max_unorm=0.02,
):
if lr < 0.0:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
+ raise ValueError(f"Invalid momentum value: {momentum}")
- raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(
lr=lr,
momentum=momentum,
dampening=dampening,
weight_decay=weight_decay,
nesterov=nesterov,
max_unorm=max_unorm,
)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError(
"Nesterov momentum requires a momentum and zero dampening"
)
+ super().__init__(params, defaults)
- super(PytorchLARS, self).__init__(params, defaults)
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 10===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 14===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 16===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
|
bitsandbytes.optim.lars/PytorchLARS.step
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<29>:<add> d_p = d_p.add(p, alpha=weight_decay)
<del> d_p = d_p.add(param, alpha=weight_decay)
|
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
@torch.no_grad()
def step(self, closure=None):
<0> """Performs a single optimization step.
<1>
<2> Args:
<3> closure (callable, optional): A closure that reevaluates the model
<4> and returns the loss.
<5> """
<6> loss = None
<7> if closure is not None:
<8> with torch.enable_grad():
<9> loss = closure()
<10>
<11> for group in self.param_groups:
<12> params_with_grad = []
<13> d_p_list = []
<14> momentum_buffer_list = []
<15> weight_decay = group["weight_decay"]
<16> momentum = group["momentum"]
<17> dampening = group["dampening"]
<18> nesterov = group["nesterov"]
<19> max_unorm = group["max_unorm"]
<20> lr = group["lr"]
<21>
<22> for p in group["params"]:
<23> if p.grad is None:
<24> continue
<25>
<26> state = self.state[p]
<27> d_p = p.grad
<28> if weight_decay != 0:
<29> d_p = d_p.add(param, alpha=weight_decay)
<30>
<31> if momentum != 0:
<32> buf = state.get("momentum_buffer", None)
<33>
<34> if buf is None:
<35> buf = torch.clone(d_p).detach()
<36> state["momentum_buffer"] = buf
<37> else:
<38> buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
<39>
<40> if nesterov:
<41> update = d_p + buf * momentum
<42> else:
<43> update = buf
<44>
<45> update_scale = 1.0
<46> if max_unorm > 0.0:
<47> assert p.dtype == torch.float32
<48> pnorm = torch.norm(p.detach())
<49> unorm</s>
|
===========below chunk 0===========
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
@torch.no_grad()
def step(self, closure=None):
# offset: 1
if unorm > max_unorm * pnorm:
update_scale = max_unorm * pnorm / unorm
p.add_(update, alpha=-lr * update_scale)
return loss
===========changed ref 0===========
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(PytorchLARS, self).__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
===========changed ref 1===========
# module: bitsandbytes.optim.lars
class LARS32bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
+ "LARS without momentum is not supported!"
- f"LARS without momentum is not supported!"
)
+ super().__init__(
- super(LARS32bit, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
===========changed ref 2===========
# module: bitsandbytes.optim.lars
class LARS8bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
+ "LARS without momentum is not supported!"
- f"LARS without momentum is not supported!"
)
+ super().__init__(
- super(LARS8bit, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
===========changed ref 3===========
# module: bitsandbytes.optim.lars
class LARS(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(
+ "LARS without momentum is not supported!"
- f"LARS without momentum is not supported!"
)
+ super().__init__(
- super(LARS, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
===========changed ref 4===========
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
def __init__(
self,
params,
lr=0.01,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
max_unorm=0.02,
):
if lr < 0.0:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
+ raise ValueError(f"Invalid momentum value: {momentum}")
- raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(
lr=lr,
momentum=momentum,
dampening=dampening,
weight_decay=weight_decay,
nesterov=nesterov,
max_unorm=max_unorm,
)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError(
"Nesterov momentum requires a momentum and zero dampening"
)
+ super().__init__(params, defaults)
- super(PytorchLARS, self).__init__(params, defaults)
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 8===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 11===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 15===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
|
bitsandbytes.optim.sgd/SGD.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<1>:<add> raise NotImplementedError("SGD without momentum is not supported!")
<del> raise NotImplementedError(f"SGD without momentum is not supported!")
<2>:<add> super().__init__(
<del> super(SGD, self).__init__(
|
# module: bitsandbytes.optim.sgd
class SGD(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> if momentum == 0:
<1> raise NotImplementedError(f"SGD without momentum is not supported!")
<2> super(SGD, self).__init__(
<3> "momentum",
<4> params,
<5> lr,
<6> (momentum, dampening),
<7> 0.0,
<8> weight_decay,
<9> optim_bits,
<10> args,
<11> min_8bit_size,
<12> percentile_clipping,
<13> block_wise,
<14> )
<15>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.optimizer.Optimizer1State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer1State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s>_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 8===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 10===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 14===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 16===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
|
bitsandbytes.optim.sgd/SGD8bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<1>:<add> raise NotImplementedError("SGD without momentum is not supported!")
<del> raise NotImplementedError(f"SGD without momentum is not supported!")
<2>:<add> super().__init__(
<del> super(SGD8bit, self).__init__(
|
# module: bitsandbytes.optim.sgd
class SGD8bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> if momentum == 0:
<1> raise NotImplementedError(f"SGD without momentum is not supported!")
<2> super(SGD8bit, self).__init__(
<3> "momentum",
<4> params,
<5> lr,
<6> (momentum, dampening),
<7> 0.0,
<8> weight_decay,
<9> 8,
<10> args,
<11> min_8bit_size,
<12> percentile_clipping,
<13> block_wise,
<14> )
<15>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.optimizer.Optimizer1State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer1State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s>_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
# module: bitsandbytes.optim.sgd
class SGD(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if momentum == 0:
+ raise NotImplementedError("SGD without momentum is not supported!")
- raise NotImplementedError(f"SGD without momentum is not supported!")
+ super().__init__(
- super(SGD, self).__init__(
"momentum",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 9===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 11===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 15===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
|
bitsandbytes.optim.sgd/SGD32bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<1>:<add> raise NotImplementedError("SGD without momentum is not supported!")
<del> raise NotImplementedError(f"SGD without momentum is not supported!")
<2>:<add> super().__init__(
<del> super(SGD32bit, self).__init__(
|
# module: bitsandbytes.optim.sgd
class SGD32bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> if momentum == 0:
<1> raise NotImplementedError(f"SGD without momentum is not supported!")
<2> super(SGD32bit, self).__init__(
<3> "momentum",
<4> params,
<5> lr,
<6> (momentum, dampening),
<7> 0.0,
<8> weight_decay,
<9> 32,
<10> args,
<11> min_8bit_size,
<12> percentile_clipping,
<13> block_wise,
<14> )
<15>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.optimizer.Optimizer1State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer1State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s>_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
# module: bitsandbytes.optim.sgd
class SGD8bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if momentum == 0:
+ raise NotImplementedError("SGD without momentum is not supported!")
- raise NotImplementedError(f"SGD without momentum is not supported!")
+ super().__init__(
- super(SGD8bit, self).__init__(
"momentum",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 3===========
# module: bitsandbytes.optim.sgd
class SGD(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if momentum == 0:
+ raise NotImplementedError("SGD without momentum is not supported!")
- raise NotImplementedError(f"SGD without momentum is not supported!")
+ super().__init__(
- super(SGD, self).__init__(
"momentum",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 10===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 14===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
|
bitsandbytes.optim.rmsprop/RMSprop.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<2>:<add> "RMSprop with alpha==0.0 is not supported!"
<del> f"RMSprop with alpha==0.0 is not supported!"
<5>:<add> raise NotImplementedError("Centered RMSprop is not supported!")
<del> raise NotImplementedError(f"Centered RMSprop is not supported!")
<6>:<add> super().__init__(
<del> super(RMSprop, self).__init__(
|
<s>bytes.optim.rmsprop
class RMSprop(Optimizer1State):
def __init__(
self,
params,
lr=1e-2,
alpha=0.99,
eps=1e-8,
weight_decay=0,
momentum=0,
centered=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> if alpha == 0:
<1> raise NotImplementedError(
<2> f"RMSprop with alpha==0.0 is not supported!"
<3> )
<4> if centered:
<5> raise NotImplementedError(f"Centered RMSprop is not supported!")
<6> super(RMSprop, self).__init__(
<7> "rmsprop",
<8> params,
<9> lr,
<10> (alpha, momentum),
<11> eps,
<12> weight_decay,
<13> optim_bits,
<14> args,
<15> min_8bit_size,
<16> percentile_clipping,
<17> block_wise,
<18> )
<19>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.optimizer.Optimizer1State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer1State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s>_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 8===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 10===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 14===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 16===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
|
bitsandbytes.optim.rmsprop/RMSprop8bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<2>:<add> "RMSprop with alpha==0.0 is not supported!"
<del> f"RMSprop with alpha==0.0 is not supported!"
<5>:<add> raise NotImplementedError("Centered RMSprop is not supported!")
<del> raise NotImplementedError(f"Centered RMSprop is not supported!")
<6>:<add> super().__init__(
<del> super(RMSprop8bit, self).__init__(
|
# module: bitsandbytes.optim.rmsprop
class RMSprop8bit(Optimizer1State):
def __init__(
self,
params,
lr=1e-2,
alpha=0.99,
eps=1e-8,
weight_decay=0,
momentum=0,
centered=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> if alpha == 0:
<1> raise NotImplementedError(
<2> f"RMSprop with alpha==0.0 is not supported!"
<3> )
<4> if centered:
<5> raise NotImplementedError(f"Centered RMSprop is not supported!")
<6> super(RMSprop8bit, self).__init__(
<7> "rmsprop",
<8> params,
<9> lr,
<10> (alpha, momentum),
<11> eps,
<12> weight_decay,
<13> 8,
<14> args,
<15> min_8bit_size,
<16> percentile_clipping,
<17> block_wise,
<18> )
<19>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.optimizer.Optimizer1State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer1State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s>_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
<s>bytes.optim.rmsprop
class RMSprop(Optimizer1State):
def __init__(
self,
params,
lr=1e-2,
alpha=0.99,
eps=1e-8,
weight_decay=0,
momentum=0,
centered=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if alpha == 0:
raise NotImplementedError(
+ "RMSprop with alpha==0.0 is not supported!"
- f"RMSprop with alpha==0.0 is not supported!"
)
if centered:
+ raise NotImplementedError("Centered RMSprop is not supported!")
- raise NotImplementedError(f"Centered RMSprop is not supported!")
+ super().__init__(
- super(RMSprop, self).__init__(
"rmsprop",
params,
lr,
(alpha, momentum),
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 9===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 11===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 15===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
|
bitsandbytes.optim.rmsprop/RMSprop32bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<2>:<add> "RMSprop with alpha==0.0 is not supported!"
<del> f"RMSprop with alpha==0.0 is not supported!"
<5>:<add> raise NotImplementedError("Centered RMSprop is not supported!")
<del> raise NotImplementedError(f"Centered RMSprop is not supported!")
<6>:<add> super().__init__(
<del> super(RMSprop32bit, self).__init__(
|
# module: bitsandbytes.optim.rmsprop
class RMSprop32bit(Optimizer1State):
def __init__(
self,
params,
lr=1e-2,
alpha=0.99,
eps=1e-8,
weight_decay=0,
momentum=0,
centered=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> if alpha == 0:
<1> raise NotImplementedError(
<2> f"RMSprop with alpha==0.0 is not supported!"
<3> )
<4> if centered:
<5> raise NotImplementedError(f"Centered RMSprop is not supported!")
<6> super(RMSprop32bit, self).__init__(
<7> "rmsprop",
<8> params,
<9> lr,
<10> (alpha, momentum),
<11> eps,
<12> weight_decay,
<13> 32,
<14> args,
<15> min_8bit_size,
<16> percentile_clipping,
<17> block_wise,
<18> )
<19>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.optimizer.Optimizer1State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer1State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s>_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
# module: bitsandbytes.optim.rmsprop
class RMSprop8bit(Optimizer1State):
def __init__(
self,
params,
lr=1e-2,
alpha=0.99,
eps=1e-8,
weight_decay=0,
momentum=0,
centered=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if alpha == 0:
raise NotImplementedError(
+ "RMSprop with alpha==0.0 is not supported!"
- f"RMSprop with alpha==0.0 is not supported!"
)
if centered:
+ raise NotImplementedError("Centered RMSprop is not supported!")
- raise NotImplementedError(f"Centered RMSprop is not supported!")
+ super().__init__(
- super(RMSprop8bit, self).__init__(
"rmsprop",
params,
lr,
(alpha, momentum),
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 3===========
<s>bytes.optim.rmsprop
class RMSprop(Optimizer1State):
def __init__(
self,
params,
lr=1e-2,
alpha=0.99,
eps=1e-8,
weight_decay=0,
momentum=0,
centered=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if alpha == 0:
raise NotImplementedError(
+ "RMSprop with alpha==0.0 is not supported!"
- f"RMSprop with alpha==0.0 is not supported!"
)
if centered:
+ raise NotImplementedError("Centered RMSprop is not supported!")
- raise NotImplementedError(f"Centered RMSprop is not supported!")
+ super().__init__(
- super(RMSprop, self).__init__(
"rmsprop",
params,
lr,
(alpha, momentum),
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 10===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
|
bitsandbytes.optim.adam/Adam.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__(
<del> super(Adam, self).__init__(
|
<s>andbytes.optim.adam
class Adam(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> super(Adam, self).__init__(
<1> "adam",
<2> params,
<3> lr,
<4> betas,
<5> eps,
<6> weight_decay,
<7> optim_bits,
<8> args,
<9> min_8bit_size,
<10> percentile_clipping,
<11> block_wise,
<12> )
<13>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.adam
Adam(params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True)
at: bitsandbytes.optim.optimizer.Optimizer2State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
if isinstance(betas, str):
# format: '(beta1, beta2)'
betas = betas.replace("(", "").replace(")", "").strip().split(",")
betas = [float(b) for b in betas]
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer2State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s> args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 8===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 10===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 14===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 16===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
|
bitsandbytes.optim.adam/Adam8bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__(
<del> super(Adam8bit, self).__init__(
|
# module: bitsandbytes.optim.adam
class Adam8bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> super(Adam8bit, self).__init__(
<1> "adam",
<2> params,
<3> lr,
<4> betas,
<5> eps,
<6> weight_decay,
<7> 8,
<8> args,
<9> min_8bit_size,
<10> percentile_clipping,
<11> block_wise,
<12> )
<13>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.adam
Adam8bit(params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True)
at: bitsandbytes.optim.optimizer.Optimizer2State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
if isinstance(betas, str):
# format: '(beta1, beta2)'
betas = betas.replace("(", "").replace(")", "").strip().split(",")
betas = [float(b) for b in betas]
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer2State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s> args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
<s>andbytes.optim.adam
class Adam(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(Adam, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 9===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 11===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 15===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
|
bitsandbytes.optim.adam/Adam32bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__(
<del> super(Adam32bit, self).__init__(
|
# module: bitsandbytes.optim.adam
class Adam32bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
<0> super(Adam32bit, self).__init__(
<1> "adam",
<2> params,
<3> lr,
<4> betas,
<5> eps,
<6> weight_decay,
<7> 32,
<8> args,
<9> min_8bit_size,
<10> percentile_clipping,
<11> block_wise,
<12> )
<13>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.adam
Adam32bit(params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True)
at: bitsandbytes.optim.optimizer.Optimizer2State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
if isinstance(betas, str):
# format: '(beta1, beta2)'
betas = betas.replace("(", "").replace(")", "").strip().split(",")
betas = [float(b) for b in betas]
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer2State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s> args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
# module: bitsandbytes.optim.adam
class Adam8bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(Adam8bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 3===========
<s>andbytes.optim.adam
class Adam(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(Adam, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 10===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
|
bitsandbytes.optim.adam/AnalysisAdam.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<7>:<add> super().__init__(params, defaults)
<del> super(AnalysisAdam, self).__init__(params, defaults)
|
# module: bitsandbytes.optim.adam
class AnalysisAdam(torch.optim.Optimizer):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
bnb_analysis="dynamic-blockwise",
savedir=None,
):
<0> defaults = dict(
<1> lr=lr,
<2> betas=betas,
<3> eps=eps,
<4> weight_decay=weight_decay,
<5> amsgrad=amsgrad,
<6> )
<7> super(AnalysisAdam, self).__init__(params, defaults)
<8> self.analysis = bnb_analysis
<9> self.savedir = savedir
<10>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.adam
AnalysisAdam(params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, bnb_analysis="dynamic-blockwise", savedir=None)
at: torch.optim.optimizer.Optimizer
OptimizerPreHook: TypeAlias = Callable[[Self, Args, Kwargs], Optional[Tuple[Args, Kwargs]]] # type: ignore[misc]
OptimizerPostHook: TypeAlias = Callable[[Self, Args, Kwargs], None] # type: ignore[misc]
_optimizer_step_pre_hooks: Dict[int, OptimizerPreHook]
_optimizer_step_post_hooks: Dict[int, OptimizerPostHook]
_optimizer_state_dict_pre_hooks: 'OrderedDict[int, Callable[["Optimizer"], None]]'
_optimizer_state_dict_post_hooks: 'OrderedDict[int, Callable[["Optimizer", StateDict], Optional[StateDict]]]'
_optimizer_load_state_dict_pre_hooks: 'OrderedDict[int, Callable[["Optimizer", StateDict], Optional[StateDict]]]'
_optimizer_load_state_dict_post_hooks: 'OrderedDict[int, Callable[["Optimizer"], None]]'
__init__(self, params: params_t, defaults: Dict[str, Any]) -> None
__init__(params: params_t, defaults: Dict[str, Any]) -> None
===========changed ref 0===========
# module: bitsandbytes.optim.adam
class Adam32bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(Adam32bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 1===========
# module: bitsandbytes.optim.adam
class Adam8bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(Adam8bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 2===========
<s>andbytes.optim.adam
class Adam(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(Adam, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 9===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 11===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 15===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 17===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
|
bitsandbytes.optim.lamb/LAMB.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__(
<del> super(LAMB, self).__init__(
|
<s>,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
adam_w_mode=True,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=False,
max_unorm=1.0,
):
<0> super(LAMB, self).__init__(
<1> "lamb",
<2> params,
<3> lr,
<4> betas,
<5> eps,
<6> weight_decay,
<7> optim_bits,
<8> args,
<9> min_8bit_size,
<10> percentile_clipping,
<11> block_wise,
<12> max_unorm=1.0,
<13> )
<14>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.lamb
LAMB(params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, adam_w_mode=True, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=False, max_unorm=1.0)
at: bitsandbytes.optim.optimizer.Optimizer2State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
if isinstance(betas, str):
# format: '(beta1, beta2)'
betas = betas.replace("(", "").replace(")", "").strip().split(",")
betas = [float(b) for b in betas]
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer2State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s> args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 8===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 10===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 14===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 16===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
|
bitsandbytes.optim.lamb/LAMB8bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__(
<del> super(LAMB8bit, self).__init__(
|
<s>(
self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
adam_w_mode=True,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=False,
max_unorm=1.0,
):
<0> super(LAMB8bit, self).__init__(
<1> "lamb",
<2> params,
<3> lr,
<4> betas,
<5> eps,
<6> weight_decay,
<7> 8,
<8> args,
<9> min_8bit_size,
<10> percentile_clipping,
<11> block_wise,
<12> max_unorm=1.0,
<13> )
<14>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.lamb
LAMB8bit(params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, adam_w_mode=True, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=False, max_unorm=1.0)
at: bitsandbytes.optim.optimizer.Optimizer2State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
if isinstance(betas, str):
# format: '(beta1, beta2)'
betas = betas.replace("(", "").replace(")", "").strip().split(",")
betas = [float(b) for b in betas]
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer2State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s> args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
<s>,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
adam_w_mode=True,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=False,
max_unorm=1.0,
):
+ super().__init__(
- super(LAMB, self).__init__(
"lamb",
params,
lr,
betas,
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
max_unorm=1.0,
)
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 9===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 11===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
|
bitsandbytes.optim.lamb/LAMB32bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__(
<del> super(LAMB32bit, self).__init__(
|
<s>(
self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
adam_w_mode=True,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=False,
max_unorm=1.0,
):
<0> super(LAMB32bit, self).__init__(
<1> "lamb",
<2> params,
<3> lr,
<4> betas,
<5> eps,
<6> weight_decay,
<7> 32,
<8> args,
<9> min_8bit_size,
<10> percentile_clipping,
<11> block_wise,
<12> max_unorm=1.0,
<13> )
<14>
|
===========unchanged ref 0===========
at: bitsandbytes.optim.lamb
LAMB32bit(params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, adam_w_mode=True, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=False, max_unorm=1.0)
at: bitsandbytes.optim.optimizer.Optimizer2State
__init__(optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
__init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False)
===========changed ref 0===========
<s> __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
+ raise ValueError(f"Invalid learning rate: {lr}")
- raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
+ raise ValueError(f"Invalid epsilon value: {eps}")
- raise ValueError("Invalid epsilon value: {}".format(eps))
if isinstance(betas, str):
# format: '(beta1, beta2)'
betas = betas.replace("(", "").replace(")", "").strip().split(",")
betas = [float(b) for b in betas]
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
f"Invalid beta parameter at index {i}: {betas[i]}"
)
if not 0.0 <= weight_decay:
raise ValueError(
+ f"Invalid weight_decay value: {weight_decay}"
- "Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
+ super().__init__(params, defaults, optim_bits)
- super(Optimizer2State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args</s>
===========changed ref 1===========
<s> self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
# offset: 1
<s> args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
===========changed ref 2===========
<s>(
self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
adam_w_mode=True,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=False,
max_unorm=1.0,
):
+ super().__init__(
- super(LAMB8bit, self).__init__(
"lamb",
params,
lr,
betas,
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
max_unorm=1.0,
)
===========changed ref 3===========
<s>,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
adam_w_mode=True,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=False,
max_unorm=1.0,
):
+ super().__init__(
- super(LAMB, self).__init__(
"lamb",
params,
lr,
betas,
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
max_unorm=1.0,
)
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 10===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
|
bitsandbytes.nn.modules/StableEmbedding.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__(
<del> super(StableEmbedding, self).__init__(
|
<s>torch.nn.Embedding):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
device=None,
dtype=None,
) -> None:
<0> super(StableEmbedding, self).__init__(
<1> num_embeddings,
<2> embedding_dim,
<3> padding_idx,
<4> max_norm,
<5> norm_type,
<6> scale_grad_by_freq,
<7> sparse,
<8> _weight,
<9> device,
<10> dtype,
<11> )
<12> self.norm = torch.nn.LayerNorm(embedding_dim, device=device)
<13> GlobalOptimManager.get_instance().register_module_override(
<14> self, "weight", {"optim_bits": 32}
<15> )
<16>
|
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 1===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 8===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 10===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 14===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 17===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 18===========
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(PytorchLARS, self).__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
===========changed ref 19===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 20===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 21===========
# module: bitsandbytes.optim.adam
class Adam32bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(Adam32bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 22===========
# module: bitsandbytes.optim.adam
class Adam8bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(Adam8bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
|
bitsandbytes.nn.modules/Embedding.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__(
<del> super(Embedding, self).__init__(
|
<s> bitsandbytes.nn.modules
class Embedding(torch.nn.Embedding):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
) -> None:
<0> super(Embedding, self).__init__(
<1> num_embeddings,
<2> embedding_dim,
<3> padding_idx,
<4> max_norm,
<5> norm_type,
<6> scale_grad_by_freq,
<7> sparse,
<8> _weight,
<9> )
<10> GlobalOptimManager.get_instance().register_module_override(
<11> self, "weight", {"optim_bits": 32}
<12> )
<13>
|
===========changed ref 0===========
<s>torch.nn.Embedding):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
device=None,
dtype=None,
) -> None:
+ super().__init__(
- super(StableEmbedding, self).__init__(
num_embeddings,
embedding_dim,
padding_idx,
max_norm,
norm_type,
scale_grad_by_freq,
sparse,
_weight,
device,
dtype,
)
self.norm = torch.nn.LayerNorm(embedding_dim, device=device)
GlobalOptimManager.get_instance().register_module_override(
self, "weight", {"optim_bits": 32}
)
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 2===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 9===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 11===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 15===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 18===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 19===========
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(PytorchLARS, self).__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
===========changed ref 20===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 21===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 22===========
# module: bitsandbytes.optim.adam
class Adam32bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(Adam32bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
|
bitsandbytes.nn.modules/Linear8bitLt.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__(
<del> super(Linear8bitLt, self).__init__(
|
# module: bitsandbytes.nn.modules
class Linear8bitLt(nn.Linear):
def __init__(
self,
input_features,
output_features,
bias=True,
has_fp16_weights=True,
memory_efficient_backward=False,
threshold=0.0,
index=None,
):
<0> super(Linear8bitLt, self).__init__(
<1> input_features, output_features, bias
<2> )
<3> self.state = bnb.MatmulLtState()
<4> self.index = index
<5>
<6> self.state.threshold = threshold
<7> self.state.has_fp16_weights = has_fp16_weights
<8> self.state.memory_efficient_backward = memory_efficient_backward
<9> if threshold > 0.0 and not has_fp16_weights:
<10> self.state.use_pool = True
<11>
<12> self.weight = Int8Params(
<13> self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights
<14> )
<15>
|
===========changed ref 0===========
<s> bitsandbytes.nn.modules
class Embedding(torch.nn.Embedding):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
) -> None:
+ super().__init__(
- super(Embedding, self).__init__(
num_embeddings,
embedding_dim,
padding_idx,
max_norm,
norm_type,
scale_grad_by_freq,
sparse,
_weight,
)
GlobalOptimManager.get_instance().register_module_override(
self, "weight", {"optim_bits": 32}
)
===========changed ref 1===========
<s>torch.nn.Embedding):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
device=None,
dtype=None,
) -> None:
+ super().__init__(
- super(StableEmbedding, self).__init__(
num_embeddings,
embedding_dim,
padding_idx,
max_norm,
norm_type,
scale_grad_by_freq,
sparse,
_weight,
device,
dtype,
)
self.norm = torch.nn.LayerNorm(embedding_dim, device=device)
GlobalOptimManager.get_instance().register_module_override(
self, "weight", {"optim_bits": 32}
)
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 8===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 10===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 14===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 16===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 19===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 20===========
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(PytorchLARS, self).__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
===========changed ref 21===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 22===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
|
tests.test_functional/FFN.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__()
<del> super(FFN, self).__init__()
|
# module: tests.test_functional
class FFN(torch.nn.Module):
def __init__(self, input_features, hidden_size, bias=True):
<0> super(FFN, self).__init__()
<1> self.fc1 = torch.nn.Linear(input_features, hidden_size, bias=bias)
<2> self.fc2 = torch.nn.Linear(hidden_size, input_features, bias=bias)
<3>
<4> with torch.no_grad():
<5> torch.nn.init.xavier_uniform_(self.fc1.weight)
<6> torch.nn.init.xavier_uniform_(self.fc2.weight)
<7>
|
===========changed ref 0===========
# module: tests.test_functional
torch.set_printoptions(
+ precision=5, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
- precision=4, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
)
k = 20
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 2===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 9===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 11===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 15===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 18===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 19===========
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(PytorchLARS, self).__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
===========changed ref 20===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 21===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 22===========
# module: bitsandbytes.optim.adam
class Adam32bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(Adam32bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 23===========
# module: bitsandbytes.optim.adam
class Adam8bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(Adam8bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
|
tests.test_functional/Timer.tock
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<12>:<add> print(f"{name} took: {self.agg[name] / 1000.0:.5f}s")
<del> print("{0} took: {1:.5f}s".format(name, self.agg[name] / 1000.0))
|
# module: tests.test_functional
+ class Timer:
- class Timer(object):
def tock(self, name="default", evict=True, print_ms=True):
<0> if name in self.ends:
<1> self.ends[name].record()
<2> torch.cuda.synchronize()
<3> ms = self.starts[name].elapsed_time(self.ends[name])
<4> if name not in self.agg:
<5> self.agg[name] = 0.0
<6> self.agg[name] += ms
<7> if evict:
<8> self.starts.pop(name)
<9> self.ends.pop(name)
<10>
<11> if print_ms and name in self.agg:
<12> print("{0} took: {1:.5f}s".format(name, self.agg[name] / 1000.0))
<13>
<14> return self.agg[name]
<15>
|
===========changed ref 0===========
# module: tests.test_functional
torch.set_printoptions(
+ precision=5, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
- precision=4, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
)
k = 20
===========changed ref 1===========
# module: tests.test_functional
class FFN(torch.nn.Module):
def __init__(self, input_features, hidden_size, bias=True):
+ super().__init__()
- super(FFN, self).__init__()
self.fc1 = torch.nn.Linear(input_features, hidden_size, bias=bias)
self.fc2 = torch.nn.Linear(hidden_size, input_features, bias=bias)
with torch.no_grad():
torch.nn.init.xavier_uniform_(self.fc1.weight)
torch.nn.init.xavier_uniform_(self.fc2.weight)
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 8===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 10===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 14===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 16===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 19===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 20===========
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(PytorchLARS, self).__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
===========changed ref 21===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 22===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 23===========
# module: bitsandbytes.optim.adam
class Adam32bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(Adam32bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
|
tests.test_functional/test_dynamic_blockwise_quantization
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> #print('')
<add> for blocksize in [4096, 2048, 1024, 512]:
<add> diffs = []
<del> diffs = []
<1>:<add> reldiffs = []
<del> reldiffs = []
<2>:<add> for i in range(100):
<del> for i in range(100):
<3>:<add> A1 = torch.randn(1024, 1024, device="cuda")
<del> A1 = torch.randn(1024, 1024, device="cuda")
<4>:<add> C, S = F.quantize_blockwise(A1, blocksize=blocksize)
<del> C, S = F.quantize_blockwise(A1)
<5>:<add> A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
<del> A2 = F.dequantize_blockwise(C, S)
<6>:<add> diff = torch.abs(A1 - A2)
<del> diff = torch.abs(A1 - A2)
<7>:<add> reldiff = diff / torch.abs(A1 + 1e-8)
<del> reldiff = diff / torch.abs(A1 + 1e-8)
<8>:<add> diffs.append(diff.mean().item())
<del> diffs.append(diff.mean().item())
<9>:<add> reldiffs.append(reldiff.mean().item())
<del> reldiffs.append(reldiff.mean().item())
<10>:<add> abserr = sum(diffs)/len(diffs)
<add> relerr = sum(reldiffs)/len(reldiffs)
<add> assert abserr < 0.011
<del> assert diffs[-1] < 0.011
<11>:<add>
|
# module: tests.test_functional
def test_dynamic_blockwise_quantization():
<0> diffs = []
<1> reldiffs = []
<2> for i in range(100):
<3> A1 = torch.randn(1024, 1024, device="cuda")
<4> C, S = F.quantize_blockwise(A1)
<5> A2 = F.dequantize_blockwise(C, S)
<6> diff = torch.abs(A1 - A2)
<7> reldiff = diff / torch.abs(A1 + 1e-8)
<8> diffs.append(diff.mean().item())
<9> reldiffs.append(reldiff.mean().item())
<10> assert diffs[-1] < 0.011
<11> # print(sum(diffs)/len(diffs))
<12> # print(sum(reldiffs)/len(reldiffs))
<13>
<14> diffs = []
<15> for i in range(100):
<16> A1 = torch.rand(1024, 1024, device="cuda")
<17> C, S = F.quantize_blockwise(A1)
<18> A2 = F.dequantize_blockwise(C, S)
<19> diff = torch.abs(A1 - A2).mean().item()
<20> assert diff < 0.0033
<21> diffs.append(diff)
<22> torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
<23>
|
===========changed ref 0===========
# module: tests.test_functional
torch.set_printoptions(
+ precision=5, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
- precision=4, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
)
k = 20
===========changed ref 1===========
# module: tests.test_functional
class FFN(torch.nn.Module):
def __init__(self, input_features, hidden_size, bias=True):
+ super().__init__()
- super(FFN, self).__init__()
self.fc1 = torch.nn.Linear(input_features, hidden_size, bias=bias)
self.fc2 = torch.nn.Linear(hidden_size, input_features, bias=bias)
with torch.no_grad():
torch.nn.init.xavier_uniform_(self.fc1.weight)
torch.nn.init.xavier_uniform_(self.fc2.weight)
===========changed ref 2===========
# module: tests.test_functional
+ class Timer:
- class Timer(object):
def tock(self, name="default", evict=True, print_ms=True):
if name in self.ends:
self.ends[name].record()
torch.cuda.synchronize()
ms = self.starts[name].elapsed_time(self.ends[name])
if name not in self.agg:
self.agg[name] = 0.0
self.agg[name] += ms
if evict:
self.starts.pop(name)
self.ends.pop(name)
if print_ms and name in self.agg:
+ print(f"{name} took: {self.agg[name] / 1000.0:.5f}s")
- print("{0} took: {1:.5f}s".format(name, self.agg[name] / 1000.0))
return self.agg[name]
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 6===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 9===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 11===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 15===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 17===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 19===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 20===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 21===========
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(PytorchLARS, self).__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
===========changed ref 22===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 23===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
|
tests.test_functional/test_fp8_quant
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<16>:<add> #print(sum(abserr)/len(abserr))
<del> print(sum(abserr)/len(abserr))
<17>:<add> #print(sum(relerr)/len(relerr))
<del> print(sum(relerr)/len(relerr))
<30>:<add> #print(sum(abserr)/len(abserr))
<del> print(sum(abserr)/len(abserr))
<31>:<add> #print(sum(relerr)/len(relerr))
<del> print(sum(relerr)/len(relerr
|
# module: tests.test_functional
# print(sum(diffs)/len(diffs))
# print(sum(reldiffs)/len(reldiffs))
def test_fp8_quant():
<0> for e_bits in range(1, 7):
<1> p_bits = 7-e_bits
<2> code = F.create_fp8_map(True, e_bits, p_bits).cuda()
<3>
<4> print(e_bits, p_bits)
<5> abserr = []
<6> relerr = []
<7> for i in range(100):
<8> A1 = torch.randn(1024, 1024, device="cuda")
<9> C, SC = F.quantize_blockwise(A1, code=code)
<10> A2 = F.dequantize_blockwise(C, SC)
<11> diff = torch.abs(A1 - A2)
<12> reldiff = diff/torch.abs(A1+1e-8)
<13> abserr.append(diff.mean().item())
<14> relerr.append(reldiff.mean().item())
<15> #assert diff < 0.0075
<16> print(sum(abserr)/len(abserr))
<17> print(sum(relerr)/len(relerr))
<18>
<19> abserr = []
<20> relerr = []
<21> for i in range(100):
<22> A1 = torch.rand(1024, 1024, device="cuda")
<23> C, SC = F.quantize_blockwise(A1, code=code)
<24> A2 = F.dequantize_blockwise(C, SC)
<25> diff = torch.abs(A1 - A2)
<26> reldiff = diff/torch.abs(A1+1e-8)
<27> abserr.append(diff.mean().item())
<28> relerr.append(reldiff.mean().item())
<29> #assert diff < 0.0075
<30> print(sum(abserr)/len(abserr))
<31> print(sum(relerr)/len(relerr</s>
|
===========below chunk 0===========
# module: tests.test_functional
# print(sum(diffs)/len(diffs))
# print(sum(reldiffs)/len(reldiffs))
def test_fp8_quant():
# offset: 1
abserr = []
relerr = []
for i in range(100):
A1 = torch.randn(1024, 1024, device="cuda")
C, SC = F.quantize_blockwise(A1)
A2 = F.dequantize_blockwise(C, SC)
diff = torch.abs(A1 - A2)
reldiff = diff/torch.abs(A1+1e-8)
abserr.append(diff.mean().item())
relerr.append(reldiff.mean().item())
#assert diff < 0.0075
print(3, sum(abserr)/len(abserr))
print(3, sum(relerr)/len(relerr))
===========changed ref 0===========
# module: tests.test_functional
batch_size = 1
seqdim = 1
values = []
values.append((batch_size, seqdim, 768, 4 * 768))
# values.append((batch_size, seqdim, 1024, 4*1024))
# values.append((batch_size, seqdim, 1536, 4*1536))
# values.append((batch_size, seqdim, 2048, 4*2048))
# values.append((batch_size, seqdim, 2560, 4*2560))
# values.append((batch_size, seqdim, 4096, 4*4096))
# values.append((batch_size, seqdim, 5140, 4*5140))
#values.append((batch_size, seqdim, 12288, 4*12288))
names = [
+ "batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values
- "batch_{0}_seq_{1}_model_{2}_hidden_{3}".format(*vals) for vals in values
]
+ #print((time.time()-t0)/1e6)
+
===========changed ref 1===========
# module: tests.test_functional
n = 2
# dim1 = torch.randint(1,1*1024, size=(n,)).tolist()
# dim2 = torch.randint(1,4*1024, size=(n,)).tolist()
dim1 = [1 * 2048]
# dim2 = [12288]
dim2 = [2048]
# dim1 = [2]
# dim2 = [2]
dtype = [torch.int8]
values = list(product(dim1, dim2, dtype))
+ names = ["dim1_{}_dim2_{}_dtype_{}".format(*vals) for vals in values]
- names = ["dim1_{0}_dim2_{1}_dtype_{2}".format(*vals) for vals in values]
===========changed ref 2===========
<s>spmm_coo(cooA, Bt.t())
- # #out2 = F.spmm_coo(cooA, B)
- # #out2 = F.spmm_coo_very_sparse(cooA, B)
- # #out1 = torch.matmul(A, Bt.t())
-
- # torch.cuda.synchronize()
- # print(time.time() - t0)
-
-
- def test_layout():
- a1 = torch.rand(16, 64, device="cuda", dtype=torch.float16)
- a1 = torch.arange(16 * 64, device="cuda").reshape(16, 64).byte()
- a2, s2 = F.transform(a1, "col_turing")
- print(a2.shape)
-
- print(a1.flatten()[8 * 64 : 8 * 64 + 32])
- for i in range(4):
- print(a2.flatten()[i * 8 * 32 : i * 8 * 32 + 32], 0)
-
===========changed ref 3===========
# module: tests.test_functional
n = 2
dim1 = torch.randint(256, 1 * 1024, size=(n,)).tolist()
dim2 = torch.randint(256, 1 * 1024, size=(n,)).tolist()
values = list(product(dim1, dim2))
+ names = ["dim1_{}_dim2_{}".format(*vals) for vals in values]
- names = ["dim1_{0}_dim2_{1}".format(*vals) for vals in values]
===========changed ref 4===========
# module: tests.test_functional
n = 2
# dim1 = torch.randint(1,1*1024, size=(n,)).tolist()
# dim2 = torch.randint(1,4*1024, size=(n,)).tolist()
dim1 = [1 * 2048]
dim2 = [12288]
# dim1 = [32]
# dim2 = [32]
# dtype = [torch.float16, torch.int8]
dtype = [torch.float16]
out_function = ["zeros", "ones"]
values = list(product(dim1, dim2, dtype, out_function))
names = [
+ "dim1_{}_dim2_{}_dtype_{}_out_func_{}".format(*vals) for vals in values
- "dim1_{0}_dim2_{1}_dtype_{2}_out_func_{3}".format(*vals) for vals in values
]
===========changed ref 5===========
# module: tests.test_functional
n = 2
dim1 = torch.randint(1, 1 * 1024, size=(n,)).tolist()
dim2 = torch.randint(1, 1 * 1024, size=(n,)).tolist()
# dim1 = [7]
# dim2 = [11]
transposed_B = [False, True]
values = list(product(dim1, dim2, transposed_B))
+ names = ["dim1_{}_dim2_{}_transposed_B_{}".format(*vals) for vals in values]
- names = ["dim1_{0}_dim2_{1}_transposed_B_{2}".format(*vals) for vals in values]
===========changed ref 6===========
# module: tests.test_functional
n = 2
dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
dim2 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
# dim1 = [4]
# dim2 = [5]
values = list(product(dim1, dim2))
+ names = ["dim1_{}_dim2_{}".format(*vals) for vals in values]
- names = ["dim1_{0}_dim2_{1}".format(*vals) for vals in values]
===========changed ref 7===========
# module: tests.test_functional
n = 2
# dim1 = torch.randint(2,1024, size=(n,)).tolist()
# dim2 = torch.randint(2,1024, size=(n,)).tolist()
dim1 = [1]
dim2 = [33]
dtype = [torch.int8]
# a_order = ['col_turing', 'col_ampere']
a_order = ["col_turing"]
out_order = ["row"]
values = list(product(dim1, dim2, dtype, a_order, out_order))
names = [
+ "dim1_{}_dim2_{}_dtype_{}_orderA_{}_orderOut_{}".format(*vals)
- "dim1_{0}_dim2_{1}_dtype_{2}_orderA_{3}_orderOut_{4}".format(*vals)
for vals in values
]
===========changed ref 8===========
# module: tests.test_functional
dim1 = [1024, 2048]
inner = [12288 * 4, 4096 * 4]
dim4 = [12288, 4096]
values = list(zip(dim1, dim4, inner))
+ names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values]
- names = ["dim1_{0}_dim4_{1}_inner_{2}".format(*vals) for vals in values]
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
|
tests.test_optim/get_temp_dir
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> path = f"/tmp/autoswap/{str(uuid.uuid4())}"
<del> path = "/tmp/autoswap/{0}".format(str(uuid.uuid4()))
|
# module: tests.test_optim
def get_temp_dir():
<0> path = "/tmp/autoswap/{0}".format(str(uuid.uuid4()))
<1> os.makedirs(path, exist_ok=True)
<2> return path
<3>
|
===========changed ref 0===========
# module: tests.test_functional
-
-
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 2===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 9===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 11===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 15===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 18===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 19===========
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(PytorchLARS, self).__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
===========changed ref 20===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 21===========
# module: tests.test_functional
torch.set_printoptions(
+ precision=5, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
- precision=4, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
)
k = 20
===========changed ref 22===========
# module: bitsandbytes.autograd._functions
tensor = torch.Tensor
"""
This class pools outlier dimensions across layers.
+ This is particularly important for small models where outlier features
- This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
===========changed ref 23===========
# module: bitsandbytes.optim.adam
class Adam32bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(Adam32bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
===========changed ref 24===========
# module: bitsandbytes.optim.adam
class Adam8bit(Optimizer2State):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
+ super().__init__(
- super(Adam8bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
|
tests.test_modules/MLP8bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__()
<del> super(MLP8bit, self).__init__()
|
# module: tests.test_modules
class MLP8bit(torch.nn.Module):
def __init__(self, dim1, dim2, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0):
<0> super(MLP8bit, self).__init__()
<1> self.fc1 = bnb.nn.Linear8bitLt(
<2> dim1, dim2, has_fp16_weights=has_fp16_weights, memory_efficient_backward=memory_efficient_backward,
<3> threshold=threshold
<4> )
<5> self.fc2 = bnb.nn.Linear8bitLt(
<6> dim2, dim1, has_fp16_weights=has_fp16_weights, memory_efficient_backward=memory_efficient_backward,
<7> threshold=threshold
<8> )
<9>
|
===========unchanged ref 0===========
at: bitsandbytes.nn.modules
Linear8bitLt(input_features, output_features, bias=True, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0, index=None)
at: tests.test_modules
MLP8bit(dim1, dim2, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0)
at: torch.nn.modules.module.Module
dump_patches: bool = False
_version: int = 1
training: bool
_parameters: Dict[str, Optional[Parameter]]
_buffers: Dict[str, Optional[Tensor]]
_non_persistent_buffers_set: Set[str]
_backward_pre_hooks: Dict[int, Callable]
_backward_hooks: Dict[int, Callable]
_is_full_backward_hook: Optional[bool]
_forward_hooks: Dict[int, Callable]
_forward_hooks_with_kwargs: Dict[int, bool]
_forward_hooks_always_called: Dict[int, bool]
_forward_pre_hooks: Dict[int, Callable]
_forward_pre_hooks_with_kwargs: Dict[int, bool]
_state_dict_hooks: Dict[int, Callable]
_load_state_dict_pre_hooks: Dict[int, Callable]
_state_dict_pre_hooks: Dict[int, Callable]
_load_state_dict_post_hooks: Dict[int, Callable]
_modules: Dict[str, Optional['Module']]
call_super_init: bool = False
_compiled_call_impl : Optional[Callable] = None
__init__(self) -> None
__init__() -> None
forward: Callable[..., Any] = _forward_unimplemented
__call__ : Callable[..., Any] = _wrapped_call_impl
T_destination = TypeVar('T_destination', bound=Dict[str, Any])
===========changed ref 0===========
# module: tests.test_functional
-
-
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 2===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 4===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 5===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 7===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 8===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 9===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 10===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 11===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 12===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 13===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 14===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 15===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 16===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 18===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
===========changed ref 19===========
# module: bitsandbytes.optim.lars
class PytorchLARS(Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(PytorchLARS, self).__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
===========changed ref 20===========
# module: bitsandbytes.cuda_setup.main
+ def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
+ """
+ Searches a given environmental var for the CUDA runtime library,
+ i.e. `libcudart.so`.
+ """
+ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
+
===========changed ref 21===========
# module: tests.test_functional
torch.set_printoptions(
+ precision=5, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
- precision=4, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
)
k = 20
|
tests.test_modules/Linear8bit.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
9d353ca786c5dcf73d5fc9bd9a8104c30a73b97b
|
Merge pull request #87 from lostmsu/main
|
<0>:<add> super().__init__()
<del> super(Linear8bit, self).__init__()
|
# module: tests.test_modules
class Linear8bit(nn.Module):
def __init__(self, input_features, output_features, bias=True, args=None):
<0> super(Linear8bit, self).__init__()
<1> self.input_features = input_features
<2> self.output_features = output_features
<3> self.args = args
<4>
<5> self.weight = nn.Parameter(torch.empty(output_features, input_features))
<6> if bias:
<7> self.bias = nn.Parameter(torch.empty(output_features))
<8> else:
<9> self.register_parameter("bias", None)
<10>
<11> torch.nn.init.xavier_uniform_(self.weight)
<12> if self.bias is not None:
<13> torch.nn.init.zeros_(self.bias)
<14>
|
===========unchanged ref 0===========
at: tests.test_modules
Linear8bit(input_features, output_features, bias=True, args=None)
at: torch._C._VariableFunctions
empty(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], memory_format: Optional[memory_format]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
empty(*size: _int, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
empty(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], memory_format: Optional[memory_format]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
empty(size: Sequence[Union[_int, SymInt]], *, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
at: torch.nn.init
zeros_(tensor: Tensor) -> Tensor
xavier_uniform_(tensor: Tensor, gain: float=1.) -> Tensor
at: torch.nn.modules.module.Module
__init__(self) -> None
__init__() -> None
===========unchanged ref 1===========
register_parameter(name: str, param: Optional[Parameter]) -> None
at: torch.nn.parameter
Parameter(data: Tensor=..., requires_grad: builtins.bool=...)
===========changed ref 0===========
# module: tests.test_modules
class MLP8bit(torch.nn.Module):
def __init__(self, dim1, dim2, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0):
+ super().__init__()
- super(MLP8bit, self).__init__()
self.fc1 = bnb.nn.Linear8bitLt(
dim1, dim2, has_fp16_weights=has_fp16_weights, memory_efficient_backward=memory_efficient_backward,
threshold=threshold
)
self.fc2 = bnb.nn.Linear8bitLt(
dim2, dim1, has_fp16_weights=has_fp16_weights, memory_efficient_backward=memory_efficient_backward,
threshold=threshold
)
===========changed ref 1===========
# module: tests.test_functional
-
-
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ _instance = None
+
===========changed ref 3===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- _instance = None
-
===========changed ref 4===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def __init__(self):
+ raise RuntimeError("Call get_instance() instead")
+
===========changed ref 5===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
===========changed ref 6===========
# module: bitsandbytes.cuda_setup.main
+ CUDA_RUNTIME_LIB: str = "libcudart.so"
===========changed ref 7===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def add_log_entry(self, msg, is_warning=False):
+ self.cuda_setup_log.append((msg, is_warning))
+
===========changed ref 8===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def add_log_entry(self, msg, is_warning=False):
- self.cuda_setup_log.append((msg, is_warning))
-
===========changed ref 9===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def initialize(self):
+ self.has_printed = False
+ self.lib = None
+ self.initialized = False
+
===========changed ref 10===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def __setstate__(self, state):
+ super().__setstate__(state)
- super(Optimizer8bit, self).__setstate__(state)
===========changed ref 11===========
# module: bitsandbytes.cuda_setup.main
+ def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
+
===========changed ref 12===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def init_state(self, group, p, gindex, pindex):
+ raise NotImplementedError("init_state method needs to be overridden")
- raise NotImplementedError(f"init_state method needs to be overidden")
===========changed ref 13===========
# module: bitsandbytes.cuda_setup.main
+ def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
+ return get_cuda_runtime_lib_paths(
+ resolve_paths_list(paths_list_candidate)
+ )
+
===========changed ref 14===========
# module: bitsandbytes.optim.optimizer
class Optimizer8bit(torch.optim.Optimizer):
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
+ "The update_step method needs to be overridden"
- f"The update_step method needs to be overidden"
)
===========changed ref 15===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls.__new__(cls)
+ cls._instance.initialize()
+ return cls._instance
+
===========changed ref 16===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
===========changed ref 17===========
# module: bitsandbytes.cuda_setup.main
+ class CUDASetup:
+ def print_log_stack(self):
+ for msg, is_warning in self.cuda_setup_log:
+ if is_warning:
+ warn(msg)
+ else:
+ print(msg)
+
===========changed ref 18===========
# module: bitsandbytes.cuda_setup.main
+ def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
+ return {
+ path / CUDA_RUNTIME_LIB
+ for path in candidate_paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ }
+
===========changed ref 19===========
# module: bitsandbytes.cextension
- class CUDASetup(object):
- def print_log_stack(self):
- for msg, is_warning in self.cuda_setup_log:
- if is_warning:
- warn(msg)
- else:
- print(msg)
-
|
bitsandbytes.cuda_setup.main/CUDASetup.generate_instructions
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
81990491ff99425718810158d71233283096c734
|
Merge pull request #113 from Borzik/fix-warnings
|
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def generate_instructions(self):
<0> if self.cuda is None:
<1> self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA library was not detected.')
<2> self.add_log_entry('CUDA SETUP: Solution 1): Your paths are probably not up-to-date. You can update them via: sudo ldconfig.')
<3> self.add_log_entry('CUDA SETUP: Solution 2): If you do not have sudo rights, you can do the following:')
<4> self.add_log_entry('CUDA SETUP: Solution 2a): Find the cuda library via: find / -name libcuda.so 2>/dev/null')
<5> self.add_log_entry('CUDA SETUP: Solution 2b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_2a')
<6> self.add_log_entry('CUDA SETUP: Solution 2c): For a permanent solution add the export from 2b into your .bashrc file, located at ~/.bashrc')
<7> return
<8>
<9> if self.cudart_path is None:
<10> self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA runtime library was not detected.')
<11> self.add_log_entry('CUDA SETUP: Solution 1: To solve the issue the libcudart.so location needs to be added to the LD_LIBRARY_PATH variable')
<12> self.add_log_entry('CUDA SETUP: Solution 1a): Find the cuda runtime library via: find / -name libcudart.so 2>/dev/null')
<13> self.add_log_entry('CUDA SETUP: Solution 1b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a')
<14> self.add_log_entry('CUDA</s>
|
===========below chunk 0===========
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def generate_instructions(self):
# offset: 1
self.add_log_entry('CUDA SETUP: Solution 2: If no library was found in step 1a) you need to install CUDA.')
self.add_log_entry('CUDA SETUP: Solution 2a): Download CUDA install script: wget https://github.com/TimDettmers/bitsandbytes/blob/main/cuda_install.sh')
self.add_log_entry('CUDA SETUP: Solution 2b): Install desired CUDA version to desired location. The syntax is bash cuda_install.sh CUDA_VERSION PATH_TO_INSTALL_INTO.')
self.add_log_entry('CUDA SETUP: Solution 2b): For example, "bash cuda_install.sh 113 ~/local/" will download CUDA 11.3 and install into the folder ~/local')
return
make_cmd = f'CUDA_VERSION={self.cuda_version_string}'
if len(self.cuda_version_string) < 3:
make_cmd += ' make cuda92'
elif self.cuda_version_string == '110':
make_cmd += ' make cuda110'
elif self.cuda_version_string[:2] == '11' and int(self.cuda_version_string[2]) > 0:
make_cmd += ' make cuda11x'
has_cublaslt = is_cublasLt_compatible(self.cc)
if not has_cublaslt:
make_cmd += '_nomatmul'
self.add_log_entry('CUDA SETUP: Something unexpected happened. Please compile from source:')
self.add_log_entry('git clone [email protected]:TimDettmers/bitsandbytes.git')
self.add_log_entry('cd bitsandbytes')
self.add_log_entry(make_cmd)
self.add_log_entry('python setup.py install')
|
|
bitsandbytes.cuda_setup.main/get_cuda_version
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
81990491ff99425718810158d71233283096c734
|
Merge pull request #113 from Borzik/fix-warnings
|
<9>:<add> try:
<add> check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ct.byref(version)))
<del> check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ct.byref(version)))
<10>:<add> except AttributeError as e:
<add> CUDASetup.get_instance().add_log_entry(f'ERROR: {str(e)}')
<add> CUDASetup.get_instance().add_log_entry(f'CUDA SETUP: libcudart.so path is {cudart_path}')
<add> CUDASetup.get_instance().add_log_entry(f'CUDA SETUP: Is seems that your cuda installation is not in your path. See https://github.com/TimDettmers/bitsandbytes/issues/85 for more information.')
|
# module: bitsandbytes.cuda_setup.main
# https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
def get_cuda_version(cuda, cudart_path):
<0> if cuda is None: return None
<1>
<2> try:
<3> cudart = ct.CDLL(cudart_path)
<4> except OSError:
<5> CUDASetup.get_instance().add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
<6> return None
<7>
<8> version = ct.c_int()
<9> check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ct.byref(version)))
<10> version = int(version.value)
<11> major = version//1000
<12> minor = (version-(major*1000))//10
<13>
<14> if major < 11:
<15> CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currently not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
<16>
<17> return f'{major}{minor}'
<18>
|
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def generate_instructions(self):
if self.cuda is None:
self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA library was not detected.')
self.add_log_entry('CUDA SETUP: Solution 1): Your paths are probably not up-to-date. You can update them via: sudo ldconfig.')
self.add_log_entry('CUDA SETUP: Solution 2): If you do not have sudo rights, you can do the following:')
self.add_log_entry('CUDA SETUP: Solution 2a): Find the cuda library via: find / -name libcuda.so 2>/dev/null')
self.add_log_entry('CUDA SETUP: Solution 2b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_2a')
self.add_log_entry('CUDA SETUP: Solution 2c): For a permanent solution add the export from 2b into your .bashrc file, located at ~/.bashrc')
return
if self.cudart_path is None:
self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA runtime library was not detected.')
self.add_log_entry('CUDA SETUP: Solution 1: To solve the issue the libcudart.so location needs to be added to the LD_LIBRARY_PATH variable')
self.add_log_entry('CUDA SETUP: Solution 1a): Find the cuda runtime library via: find / -name libcudart.so 2>/dev/null')
self.add_log_entry('CUDA SETUP: Solution 1b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a')
self.add_log_entry('CUDA SETUP: Solution 1c): For a permanent solution add the export from</s>
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def generate_instructions(self):
# offset: 1
<s>1a')
self.add_log_entry('CUDA SETUP: Solution 1c): For a permanent solution add the export from 1b into your .bashrc file, located at ~/.bashrc')
self.add_log_entry('CUDA SETUP: Solution 2: If no library was found in step 1a) you need to install CUDA.')
self.add_log_entry('CUDA SETUP: Solution 2a): Download CUDA install script: wget https://github.com/TimDettmers/bitsandbytes/blob/main/cuda_install.sh')
self.add_log_entry('CUDA SETUP: Solution 2b): Install desired CUDA version to desired location. The syntax is bash cuda_install.sh CUDA_VERSION PATH_TO_INSTALL_INTO.')
self.add_log_entry('CUDA SETUP: Solution 2b): For example, "bash cuda_install.sh 113 ~/local/" will download CUDA 11.3 and install into the folder ~/local')
return
make_cmd = f'CUDA_VERSION={self.cuda_version_string}'
if len(self.cuda_version_string) < 3:
make_cmd += ' make cuda92'
elif self.cuda_version_string == '110':
make_cmd += ' make cuda110'
elif self.cuda_version_string[:2] == '11' and int(self.cuda_version_string[2]) > 0:
make_cmd += ' make cuda11x'
+ elif self.cuda_version_string == '100':
+ self.add_log_entry('CUDA SETUP: CUDA 10.0 not supported. Please use a different CUDA version.')
+ self.add_log_entry('CUDA SETUP: Before you try again running bitsandbytes, make sure old CUDA 10</s>
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def generate_instructions(self):
# offset: 2
<s> versions are uninstalled and removed from $LD_LIBRARY_PATH variables.')
+ return
+
has_cublaslt = is_cublasLt_compatible(self.cc)
if not has_cublaslt:
make_cmd += '_nomatmul'
self.add_log_entry('CUDA SETUP: Something unexpected happened. Please compile from source:')
self.add_log_entry('git clone [email protected]:TimDettmers/bitsandbytes.git')
self.add_log_entry('cd bitsandbytes')
self.add_log_entry(make_cmd)
self.add_log_entry('python setup.py install')
|
bitsandbytes.cuda_setup.main/check_cuda_result
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
b3de19218e118b18dd1139bcd83e965733d701f4
|
Added error message for unexpected CUDA exception.
|
<4>:<add> if error_str.value is not None:
<add> CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
<del> CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
<5>:<add> else:
<add> CUDASetup.get_instance().add_log_entry(f"Unknown CUDA exception! Please check your CUDA install. It might also be that your GPU is too old.")
|
# module: bitsandbytes.cuda_setup.main
def check_cuda_result(cuda, result_val):
<0> # 3. Check for CUDA errors
<1> if result_val != 0:
<2> error_str = ct.c_char_p()
<3> cuda.cuGetErrorString(result_val, ct.byref(error_str))
<4> CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
<5>
| |
bitsandbytes.autograd._functions/MatMul8bitLt.forward
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
de535889348c5406eb34d9f7e0c362cadb113be5
|
Added Int8 matmul support for all GPUs. Full backward support.
|
<0>:<add> using_igemmlt = torch.cuda.get_device_capability(device=A.device) >= (7, 5) and not state.force_no_igemmlt
<add> # default of pytorch behavior if inputs are empty
<del> # default to pytorch behavior if inputs are empty
<8>:<add> return torch.empty(A.shape[:-1] + B.shape[1:], dtype=A.dtype, device=A.device)
<del> return torch.empty(A.shape[:-1]+B.shape[1:], dtype=A.dtype, device=A.device)
<10>:<add> return torch.empty(A.shape[:-1] + B.shape[:1], dtype=A.dtype, device=A.device)
<del> return torch.empty(A.shape[:-1]+B.shape[:1], dtype=A.dtype, device=A.device)
<29>:<del> CA, CAt, SCA, SCAt, coo_tensorA = F
|
<s> MatMul8bitLt(torch.autograd.Function):
+ # forward is the same, but we added the fallback for pre-turing GPUs
+ # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
+
@staticmethod
+ def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState):
- def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState()):
<0> # default to pytorch behavior if inputs are empty
<1> ctx.is_empty = False
<2> if prod(A.shape) == 0:
<3> ctx.is_empty = True
<4> ctx.A = A
<5> ctx.B = B
<6> ctx.bias = bias
<7> if A.shape[-1] == B.shape[0]:
<8> return torch.empty(A.shape[:-1]+B.shape[1:], dtype=A.dtype, device=A.device)
<9> else:
<10> return torch.empty(A.shape[:-1]+B.shape[:1], dtype=A.dtype, device=A.device)
<11>
<12> # 1. Quantize A
<13> # 2. Quantize B
<14> # 3. Matmul
<15> # 4. Mixed-precision decomposition matmul
<16> # 5. Save state
<17> formatB = state.formatB
<18> input_shape = A.shape
<19> if state.outlier_pool is None:
<20> state.outlier_pool = GlobalOutlierPooler.get_instance()
<21>
<22> # Cast A to fp16
<23> if A.dtype != torch.float16:
<24> warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
<25>
<26> # 1. Quantize A
<27> if len(A.shape) == 3:
<28> A = A.view(-1, A.shape[-1]).contiguous()
<29> CA, CAt, SCA, SCAt, coo_tensorA = F</s>
|
===========below chunk 0===========
<s>(torch.autograd.Function):
+ # forward is the same, but we added the fallback for pre-turing GPUs
+ # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
+
@staticmethod
+ def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState):
- def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState()):
# offset: 1
A.to(torch.float16), threshold=state.threshold
)
if state.threshold > 0.0 and coo_tensorA is not None:
if state.has_fp16_weights:
idx = torch.unique(coo_tensorA.colidx).long()
CA[:, idx] = 0
CAt[:, idx] = 0
subA = A[:, idx]
state.subB = B[:, idx].t().contiguous()
state.idx = idx
else:
if state.CxB is None:
# B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions
# we also need to convert it to the turing/ampere format
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
else:
if not state.has_fp16_weights and state.CxB is None:
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
subA = None
# 2. Quantize B
if state.has_fp16_weights:
has_grad = True if (getattr(B, "grad", None) is not None) else False
is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1)
if is_transposed:
B = B.contiguous()
if (state.is_training and not has_grad) or state.CxB is None:
state.</s>
===========below chunk 1===========
<s>(torch.autograd.Function):
+ # forward is the same, but we added the fallback for pre-turing GPUs
+ # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
+
@staticmethod
+ def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState):
- def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState()):
# offset: 2
<s>contiguous()
if (state.is_training and not has_grad) or state.CxB is None:
state.reset_grads()
(
CB,
state.CBt,
state.SCB,
state.SCBt,
coo_tensorB,
) = F.double_quant(B.to(torch.float16))
state.CxB, state.SB = F.transform(CB, to_order=formatB)
else:
has_grad = False
if coo_tensorA is not None and not state.has_fp16_weights:
# extract outliers
outlier_idx = torch.unique(coo_tensorA.colidx)
state.idx = outlier_idx
# state.outlier_pool.add_outliers(outlier_idx, A.shape[-1])
# if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]:
# # do not use pool for 2nd FFN layer
# state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device)
# else:
# state.idx = outlier_idx
outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int())
state.subB = (
(outliers * state.SCB.view(-1,</s>
===========below chunk 2===========
<s>(torch.autograd.Function):
+ # forward is the same, but we added the fallback for pre-turing GPUs
+ # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
+
@staticmethod
+ def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState):
- def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState()):
# offset: 3
<s> / 127.0)
.t()
.contiguous()
.to(A.dtype)
)
CA[:, state.idx.long()] = 0
CAt[:, state.idx.long()] = 0
subA = A[:, state.idx.long()]
shapeB = state.SB[0]
if len(input_shape) == 3:
output_shape = (input_shape[0], input_shape[1], shapeB[0])
else:
output_shape = (input_shape[0], shapeB[0])
# 3. Matmul
C32A, SA = F.transform(CA, "col32")
out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB)
# we apply the fused bias here
if bias is None or bias.dtype == torch.float16:
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias)
output = output.to(A.dtype)
else: # apply bias separately
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=None)
output = output.to(A.dtype).add_(bias)
# 4. Mixed-precision decomposition matmul
if coo_tensorA is not None and subA is</s>
===========below chunk 3===========
<s>(torch.autograd.Function):
+ # forward is the same, but we added the fallback for pre-turing GPUs
+ # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
+
@staticmethod
+ def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState):
- def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState()):
# offset: 4
<s>:
output += torch.matmul(subA, state.subB)
# 5. Save state
ctx.state = state
ctx.formatB = formatB
ctx.grad_shape = input_shape
ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype
if any(ctx.needs_input_grad[:2]):
ctx.tensors = (CAt, subA)
ctx.tensor_states = (SCAt, state.idx)
else:
ctx.tensors = [None, None]
ctx.tensor_states = (None, None)
ctx.save_for_backward(None, None)
clone_func = torch.clone if len(output_shape) == 3 else lambda x : x
return clone_func(output.view(output_shape))
|
bitsandbytes.autograd._functions/MatMul8bitLt.backward
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
de535889348c5406eb34d9f7e0c362cadb113be5
|
Added Int8 matmul support for all GPUs. Full backward support.
|
<1>:<add> bias_grad = None if ctx.bias is None else torch.zeros_like(ctx.bias)
<del> bias_grad = (None if ctx.bias is None else torch.zeros_like(ctx.bias))
<16>:<del> grad_output = grad_output.reshape(
<17>:<del> -1, grad_output.shape[-1]
<18>:<del> ).contiguous()
<19>:<add> grad_output = grad_output.reshape(-1, grad_output.shape[-1]).contiguous()
|
# module: bitsandbytes.autograd._functions
class MatMul8bitLt(torch.autograd.Function):
@staticmethod
def backward(ctx, grad_output):
<0> if ctx.is_empty:
<1> bias_grad = (None if ctx.bias is None else torch.zeros_like(ctx.bias))
<2> return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
<3> req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad
<4> CAt, subA = ctx.tensors
<5> SCAt, idx = ctx.tensor_states
<6> formatB = ctx.formatB
<7> state = ctx.state
<8> grad_A = grad_B = grad_bias = None
<9>
<10> if req_gradBias:
<11> # compute grad_bias first before changing grad_output dtype
<12> grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias)
<13>
<14> # Cast grad_output to fp16
<15> if len(grad_output.shape) == 3:
<16> grad_output = grad_output.reshape(
<17> -1, grad_output.shape[-1]
<18> ).contiguous()
<19>
<20> Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16))
<21> if req_gradB:
<22> CxAt, SAt = F.transform(CAt, formatB, transpose=True)
<23> C32grad, Sgrad = F.transform(Cgradt, "col32", transpose=True)
<24> gradB32, SgradB32 = F.igemmlt(C32grad, CxAt, Sgrad, SAt)
<25> grad_B = F.mm_dequant(gradB32, SgradB32, SCgradt, SCAt)
<26> if state.threshold > 0.0 and subA is not None:
<27> grad_B[:, idx] += torch.matmul(</s>
|
===========below chunk 0===========
# module: bitsandbytes.autograd._functions
class MatMul8bitLt(torch.autograd.Function):
@staticmethod
def backward(ctx, grad_output):
# offset: 1
if req_gradA:
if state.CBt is not None:
C32grad, Sgrad = F.transform(Cgrad, "col32")
if state.CxBt is None:
state.CxBt, state.SBt = F.transform(
state.CBt, to_order=formatB, transpose=True
)
gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt)
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape).to(ctx.dtype_A)
elif state.CB is not None:
CB = state.CB.to(ctx.dtype_A, copy=True).mul_(state.SCB.unsqueeze(1).mul(1. / 127.0))
grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A)
else:
raise Exception('State must contain either CBt or CB matrix for backward')
return grad_A, grad_B, None, grad_bias, None
===========changed ref 0===========
# module: bitsandbytes.autograd._functions
@dataclass
class MatmulLtState:
+ def get_tile_size(self):
+ assert self.formatB in (
+ "col_turing",
+ "col_ampere",
+ ), f"please find this assert and manually enter tile size for {self.formatB}"
+ return (8, 32) if self.formatB == "col_turing" else (32, 32)
+
===========changed ref 1===========
# module: bitsandbytes.autograd._functions
@dataclass
class MatmulLtState:
+ tile_indices: Optional[torch.Tensor] = None
+ force_no_igemmlt: bool = False
CB = None
CxB = None
SB = None
SCB = None
CxBt = None
SBt = None
CBt = None
subB = None
outlier_pool = None
has_accumulated_gradients = False
threshold = 0.0
idx = None
is_training = True
has_fp16_weights = True
memory_efficient_backward = False
use_pool = False
formatB = F.get_special_format_str()
===========changed ref 2===========
# module: bitsandbytes.autograd._functions
+ def undo_layout(permuted_tensor: torch.Tensor, tile_indices: torch.LongTensor) -> torch.Tensor:
+ """
+ Undo a tiled permutation such as turing or ampere layout
+
+ :param permuted_tensor: torch tensor in a permuted layout
+ :param tile_indices: reverse transformation indices, from get_inverse_transform_indices
+ :return: contiguous row-major tensor
+ """
+ (rows, cols), (tile_rows, tile_cols) = permuted_tensor.shape, tile_indices.shape
+ assert rows % tile_rows == cols % tile_cols == 0, "tensor must contain a whole number of tiles"
+ tensor = permuted_tensor.reshape(-1, tile_indices.numel()).t()
+ outputs = torch.empty_like(tensor) # note: not using .index_copy because it was slower on cuda
+ outputs[tile_indices.flatten()] = tensor
+ outputs = outputs.reshape(tile_rows, tile_cols, cols // tile_cols, rows // tile_rows)
+ outputs = outputs.permute(3, 0, 2, 1) # (rows // tile_rows, tile_rows), (cols // tile_cols, tile_cols)
+ return outputs.reshape(rows, cols).contiguous()
+
===========changed ref 3===========
# module: bitsandbytes.autograd._functions
+ def get_inverse_transform_indices(transform_tile: callable, tile_size: Tuple[int, int]):
+ """
+ Compute a permutation of indices that invert the specified (tiled) matrix transformation
+
+ :param transform_tile: a function that applies forward transform to a tensor of shape [dim1, dim2]
+ :param tile_size: higher-level tile dimensions, i.e. (8, 32) for Turing and (32, 32) for Ampere
+ :note: we assume that tile_transform applies to a cpu-based int8 tensor of shape tile_size
+ :example: transform_tile function for the turing layout (bitsandbytes.functional as F)
+ :returns: indices
+ """
+ d1, d2 = tile_size
+ assert 0 < d1 * d2 < 2**64
+ tile_indices = torch.arange(d1 * d2, dtype=torch.int64).view(d1, d2)
+ # encode each position in tile as a tuple of <= 8 unique bytes
+ permuted_tile_indices = torch.zeros_like(tile_indices)
+ for i in range(8):
+ # select i-th byte, apply transformation and trace where each index ended up
+ ith_dim_indices = torch.div(tile_indices, 256**i, rounding_mode="trunc") % 256
+ sample_tile_i = (ith_dim_indices - 128).to(torch.int8).contiguous()
+ assert torch.all(sample_tile_i.int() + 128 == ith_dim_indices), "int overflow"
+ permuted_tile_i = transform_tile(sample_tile_i)
+ ith_permuted_indices = permuted_tile_i.to(tile_indices.dtype) + 128
+ permuted_tile_indices += ith_permuted_indices * (256**i)
+ if d1 * d2 < 256**i:
+ break # if all indices fit in i bytes, stop early
+ return perm</s>
===========changed ref 4===========
# module: bitsandbytes.autograd._functions
+ def get_inverse_transform_indices(transform_tile: callable, tile_size: Tuple[int, int]):
# offset: 1
<s>1 * d2 < 256**i:
+ break # if all indices fit in i bytes, stop early
+ return permuted_tile_indices
+
|
bitsandbytes.nn.modules/Linear8bitLt.__init__
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
de535889348c5406eb34d9f7e0c362cadb113be5
|
Added Int8 matmul support for all GPUs. Full backward support.
|
<0>:<del> super().__init__(
<1>:<add> super().__init__(input_features, output_features, bias)
<del> input_features, output_features, bias
<2>:<add> assert not memory_efficient_backward, "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
<del> )
<12>:<del> self.weight = Int8Params(
<13>:<add> self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights)
<del> self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights
<14>:<del> )
|
<s> __init__(
- self,
- input_features,
- output_features,
- bias=True,
- has_fp16_weights=True,
- memory_efficient_backward=False,
- threshold=0.0,
- index=None,
- ):
+ def __init__(self, input_features, output_features, bias=True, has_fp16_weights=True,
+ memory_efficient_backward=False, threshold=0.0, index=None):
<0> super().__init__(
<1> input_features, output_features, bias
<2> )
<3> self.state = bnb.MatmulLtState()
<4> self.index = index
<5>
<6> self.state.threshold = threshold
<7> self.state.has_fp16_weights = has_fp16_weights
<8> self.state.memory_efficient_backward = memory_efficient_backward
<9> if threshold > 0.0 and not has_fp16_weights:
<10> self.state.use_pool = True
<11>
<12> self.weight = Int8Params(
<13> self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights
<14> )
<15>
|
===========unchanged ref 0===========
at: bitsandbytes.autograd._functions
MatmulLtState()
at: bitsandbytes.autograd._functions.MatmulLtState
CB = None
CxB = None
SB = None
SCB = None
CxBt = None
SBt = None
CBt = None
subB = None
outlier_pool = None
has_accumulated_gradients = False
threshold = 0.0
idx = None
is_training = True
has_fp16_weights = True
memory_efficient_backward = False
use_pool = False
formatB = F.get_special_format_str()
at: bitsandbytes.nn.modules
Int8Params(data: Tensor=..., requires_grad: builtins.bool=...)
at: bitsandbytes.nn.modules.Int8Params.cuda
self.data = CB
at: torch.nn.modules.linear.Linear
__constants__ = ['in_features', 'out_features']
in_features: int
out_features: int
weight: Tensor
__init__(in_features: int, out_features: int, bias: bool=True, device=None, dtype=None) -> None
__init__(self, in_features: int, out_features: int, bias: bool=True, device=None, dtype=None) -> None
===========changed ref 0===========
# module: bitsandbytes.autograd._functions
@dataclass
class MatmulLtState:
+ tile_indices: Optional[torch.Tensor] = None
+ force_no_igemmlt: bool = False
CB = None
CxB = None
SB = None
SCB = None
CxBt = None
SBt = None
CBt = None
subB = None
outlier_pool = None
has_accumulated_gradients = False
threshold = 0.0
idx = None
is_training = True
has_fp16_weights = True
memory_efficient_backward = False
use_pool = False
formatB = F.get_special_format_str()
===========changed ref 1===========
# module: bitsandbytes.autograd._functions
@dataclass
class MatmulLtState:
+ def get_tile_size(self):
+ assert self.formatB in (
+ "col_turing",
+ "col_ampere",
+ ), f"please find this assert and manually enter tile size for {self.formatB}"
+ return (8, 32) if self.formatB == "col_turing" else (32, 32)
+
===========changed ref 2===========
# module: bitsandbytes.autograd._functions
+ def undo_layout(permuted_tensor: torch.Tensor, tile_indices: torch.LongTensor) -> torch.Tensor:
+ """
+ Undo a tiled permutation such as turing or ampere layout
+
+ :param permuted_tensor: torch tensor in a permuted layout
+ :param tile_indices: reverse transformation indices, from get_inverse_transform_indices
+ :return: contiguous row-major tensor
+ """
+ (rows, cols), (tile_rows, tile_cols) = permuted_tensor.shape, tile_indices.shape
+ assert rows % tile_rows == cols % tile_cols == 0, "tensor must contain a whole number of tiles"
+ tensor = permuted_tensor.reshape(-1, tile_indices.numel()).t()
+ outputs = torch.empty_like(tensor) # note: not using .index_copy because it was slower on cuda
+ outputs[tile_indices.flatten()] = tensor
+ outputs = outputs.reshape(tile_rows, tile_cols, cols // tile_cols, rows // tile_rows)
+ outputs = outputs.permute(3, 0, 2, 1) # (rows // tile_rows, tile_rows), (cols // tile_cols, tile_cols)
+ return outputs.reshape(rows, cols).contiguous()
+
===========changed ref 3===========
# module: bitsandbytes.autograd._functions
+ def get_inverse_transform_indices(transform_tile: callable, tile_size: Tuple[int, int]):
+ """
+ Compute a permutation of indices that invert the specified (tiled) matrix transformation
+
+ :param transform_tile: a function that applies forward transform to a tensor of shape [dim1, dim2]
+ :param tile_size: higher-level tile dimensions, i.e. (8, 32) for Turing and (32, 32) for Ampere
+ :note: we assume that tile_transform applies to a cpu-based int8 tensor of shape tile_size
+ :example: transform_tile function for the turing layout (bitsandbytes.functional as F)
+ :returns: indices
+ """
+ d1, d2 = tile_size
+ assert 0 < d1 * d2 < 2**64
+ tile_indices = torch.arange(d1 * d2, dtype=torch.int64).view(d1, d2)
+ # encode each position in tile as a tuple of <= 8 unique bytes
+ permuted_tile_indices = torch.zeros_like(tile_indices)
+ for i in range(8):
+ # select i-th byte, apply transformation and trace where each index ended up
+ ith_dim_indices = torch.div(tile_indices, 256**i, rounding_mode="trunc") % 256
+ sample_tile_i = (ith_dim_indices - 128).to(torch.int8).contiguous()
+ assert torch.all(sample_tile_i.int() + 128 == ith_dim_indices), "int overflow"
+ permuted_tile_i = transform_tile(sample_tile_i)
+ ith_permuted_indices = permuted_tile_i.to(tile_indices.dtype) + 128
+ permuted_tile_indices += ith_permuted_indices * (256**i)
+ if d1 * d2 < 256**i:
+ break # if all indices fit in i bytes, stop early
+ return perm</s>
===========changed ref 4===========
# module: bitsandbytes.autograd._functions
+ def get_inverse_transform_indices(transform_tile: callable, tile_size: Tuple[int, int]):
# offset: 1
<s>1 * d2 < 256**i:
+ break # if all indices fit in i bytes, stop early
+ return permuted_tile_indices
+
|
bitsandbytes.nn.modules/Linear8bitLt.forward
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
de535889348c5406eb34d9f7e0c362cadb113be5
|
Added Int8 matmul support for all GPUs. Full backward support.
|
<1>:<del>
<6>:<add> if self.bias is not None and self.bias.dtype != x.dtype:
<del> if self.bias is not None and self.bias.dtype != torch.float16:
<7>:<add> self.bias.data = self.bias.data.to(x.dtype)
<del> self.bias.data = self.bias.data.half()
<10>:<del>
<12>:<add> if self.state.CB is not None and self.state.CxB is not None:
<del> if not self.state.memory_efficient_backward and self.state.CB is not None:
<17>:<del> elif self.state.memory_efficient_backward and self.state.CxB is not None:
<18>:<del> # For memory efficient backward, we convert 8-bit row major to turing/ampere format at each inference pass.
<19>:<del> # Thus, we delete CxB from the state.
<20>:<del> del self.state.CxB
<21>:<del>
|
# module: bitsandbytes.nn.modules
class Linear8bitLt(nn.Linear):
+ def forward(self, x: torch.Tensor):
- def forward(self, x):
<0> self.state.is_training = self.training
<1>
<2> if self.weight.CB is not None:
<3> self.init_8bit_state()
<4>
<5> # weights are cast automatically as Int8Params, but the bias has to be cast manually
<6> if self.bias is not None and self.bias.dtype != torch.float16:
<7> self.bias.data = self.bias.data.half()
<8>
<9> out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
<10>
<11> if not self.state.has_fp16_weights:
<12> if not self.state.memory_efficient_backward and self.state.CB is not None:
<13> # we converted 8-bit row major to turing/ampere format in the first inference pass
<14> # we no longer need the row-major weight
<15> del self.state.CB
<16> self.weight.data = self.state.CxB
<17> elif self.state.memory_efficient_backward and self.state.CxB is not None:
<18> # For memory efficient backward, we convert 8-bit row major to turing/ampere format at each inference pass.
<19> # Thus, we delete CxB from the state.
<20> del self.state.CxB
<21>
<22> return out
<23>
|
===========unchanged ref 0===========
at: bitsandbytes.autograd._functions
matmul(A: tensor, B: tensor, out: tensor=None, state: MatmulLtState=None, threshold=0.0, bias=None)
at: bitsandbytes.autograd._functions.MatmulLtState
is_training = True
has_fp16_weights = True
memory_efficient_backward = False
at: bitsandbytes.autograd._functions.MatmulLtState.reset_grads
self.CB = None
self.CxB = None
at: bitsandbytes.nn.modules.Int8Params.__new__
cls.CB = None
at: bitsandbytes.nn.modules.Int8Params.cuda
self.data = CB
at: bitsandbytes.nn.modules.Linear8bitLt
init_8bit_state()
at: bitsandbytes.nn.modules.Linear8bitLt.__init__
self.state = bnb.MatmulLtState()
self.weight = Int8Params(
self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights
)
at: torch._C
float16: dtype = ...
at: torch._tensor.Tensor.__setstate__
self.data = state[0]
at: torch.nn.modules.linear.Linear
forward(self, input: Tensor) -> Tensor
at: torch.nn.modules.linear.Linear.__init__
self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
at: torch.nn.modules.module.Module.train
self.training = mode
===========changed ref 0===========
<s> __init__(
- self,
- input_features,
- output_features,
- bias=True,
- has_fp16_weights=True,
- memory_efficient_backward=False,
- threshold=0.0,
- index=None,
- ):
+ def __init__(self, input_features, output_features, bias=True, has_fp16_weights=True,
+ memory_efficient_backward=False, threshold=0.0, index=None):
- super().__init__(
+ super().__init__(input_features, output_features, bias)
- input_features, output_features, bias
+ assert not memory_efficient_backward, "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
- )
self.state = bnb.MatmulLtState()
self.index = index
self.state.threshold = threshold
self.state.has_fp16_weights = has_fp16_weights
self.state.memory_efficient_backward = memory_efficient_backward
if threshold > 0.0 and not has_fp16_weights:
self.state.use_pool = True
- self.weight = Int8Params(
+ self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights)
- self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights
- )
===========changed ref 1===========
# module: bitsandbytes.autograd._functions
@dataclass
class MatmulLtState:
+ def get_tile_size(self):
+ assert self.formatB in (
+ "col_turing",
+ "col_ampere",
+ ), f"please find this assert and manually enter tile size for {self.formatB}"
+ return (8, 32) if self.formatB == "col_turing" else (32, 32)
+
===========changed ref 2===========
# module: bitsandbytes.autograd._functions
@dataclass
class MatmulLtState:
+ tile_indices: Optional[torch.Tensor] = None
+ force_no_igemmlt: bool = False
CB = None
CxB = None
SB = None
SCB = None
CxBt = None
SBt = None
CBt = None
subB = None
outlier_pool = None
has_accumulated_gradients = False
threshold = 0.0
idx = None
is_training = True
has_fp16_weights = True
memory_efficient_backward = False
use_pool = False
formatB = F.get_special_format_str()
===========changed ref 3===========
# module: bitsandbytes.autograd._functions
+ def undo_layout(permuted_tensor: torch.Tensor, tile_indices: torch.LongTensor) -> torch.Tensor:
+ """
+ Undo a tiled permutation such as turing or ampere layout
+
+ :param permuted_tensor: torch tensor in a permuted layout
+ :param tile_indices: reverse transformation indices, from get_inverse_transform_indices
+ :return: contiguous row-major tensor
+ """
+ (rows, cols), (tile_rows, tile_cols) = permuted_tensor.shape, tile_indices.shape
+ assert rows % tile_rows == cols % tile_cols == 0, "tensor must contain a whole number of tiles"
+ tensor = permuted_tensor.reshape(-1, tile_indices.numel()).t()
+ outputs = torch.empty_like(tensor) # note: not using .index_copy because it was slower on cuda
+ outputs[tile_indices.flatten()] = tensor
+ outputs = outputs.reshape(tile_rows, tile_cols, cols // tile_cols, rows // tile_rows)
+ outputs = outputs.permute(3, 0, 2, 1) # (rows // tile_rows, tile_rows), (cols // tile_cols, tile_cols)
+ return outputs.reshape(rows, cols).contiguous()
+
===========changed ref 4===========
# module: bitsandbytes.autograd._functions
+ def get_inverse_transform_indices(transform_tile: callable, tile_size: Tuple[int, int]):
+ """
+ Compute a permutation of indices that invert the specified (tiled) matrix transformation
+
+ :param transform_tile: a function that applies forward transform to a tensor of shape [dim1, dim2]
+ :param tile_size: higher-level tile dimensions, i.e. (8, 32) for Turing and (32, 32) for Ampere
+ :note: we assume that tile_transform applies to a cpu-based int8 tensor of shape tile_size
+ :example: transform_tile function for the turing layout (bitsandbytes.functional as F)
+ :returns: indices
+ """
+ d1, d2 = tile_size
+ assert 0 < d1 * d2 < 2**64
+ tile_indices = torch.arange(d1 * d2, dtype=torch.int64).view(d1, d2)
+ # encode each position in tile as a tuple of <= 8 unique bytes
+ permuted_tile_indices = torch.zeros_like(tile_indices)
+ for i in range(8):
+ # select i-th byte, apply transformation and trace where each index ended up
+ ith_dim_indices = torch.div(tile_indices, 256**i, rounding_mode="trunc") % 256
+ sample_tile_i = (ith_dim_indices - 128).to(torch.int8).contiguous()
+ assert torch.all(sample_tile_i.int() + 128 == ith_dim_indices), "int overflow"
+ permuted_tile_i = transform_tile(sample_tile_i)
+ ith_permuted_indices = permuted_tile_i.to(tile_indices.dtype) + 128
+ permuted_tile_indices += ith_permuted_indices * (256**i)
+ if d1 * d2 < 256**i:
+ break # if all indices fit in i bytes, stop early
+ return perm</s>
|
bitsandbytes.cuda_setup.main/CUDASetup.initialize
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
0f5c3948709ae70cf733cefbd831aaea8a4e38c9
|
Added version 0.37.0.
|
<0>:<add> if not getattr(self, 'initialized', False):
<add> self.has_printed = False
<del> self.has_printed = False
<1>:<add> self.lib = None
<del> self.lib = None
<2>:<add> self.initialized = False
<del> self.initialized = False
|
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def initialize(self):
<0> self.has_printed = False
<1> self.lib = None
<2> self.initialized = False
<3>
| |
bitsandbytes.cuda_setup.main/CUDASetup.run_cuda_setup
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
0f5c3948709ae70cf733cefbd831aaea8a4e38c9
|
Added version 0.37.0.
|
<18>:<add> if not binary_path.exists() or torch.cuda.is_available():
<del> if not binary_path.exists():
<27>:<add> self.add_log_entry('CUDA SETUP: The CUDA version for the compile might depend on your conda install. Inspect CUDA version via `conda list | grep cuda`.')
|
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def run_cuda_setup(self):
<0> self.initialized = True
<1> self.cuda_setup_log = []
<2>
<3> binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup()
<4> self.cudart_path = cudart_path
<5> self.cuda = cuda
<6> self.cc = cc
<7> self.cuda_version_string = cuda_version_string
<8>
<9> package_dir = Path(__file__).parent.parent
<10> binary_path = package_dir / binary_name
<11>
<12> try:
<13> if not binary_path.exists():
<14> self.add_log_entry(f"CUDA SETUP: Required library version not found: {binary_name}. Maybe you need to compile it from source?")
<15> legacy_binary_name = "libbitsandbytes_cpu.so"
<16> self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...")
<17> binary_path = package_dir / legacy_binary_name
<18> if not binary_path.exists():
<19> self.add_log_entry('')
<20> self.add_log_entry('='*48 + 'ERROR' + '='*37)
<21> self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:')
<22> self.add_log_entry('1. CUDA driver not installed')
<23> self.add_log_entry('2. CUDA not installed')
<24> self.add_log_entry('3. You have multiple conflicting CUDA libraries')
<25> self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!')
<26> self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.')
<27> self.add_log_entry('='*</s>
|
===========below chunk 0===========
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def run_cuda_setup(self):
# offset: 1
self.add_log_entry('')
self.generate_instructions()
self.print_log_stack()
raise Exception('CUDA SETUP: Setup Failed!')
self.lib = ct.cdll.LoadLibrary(binary_path)
else:
self.add_log_entry(f"CUDA SETUP: Loading binary {binary_path}...")
self.lib = ct.cdll.LoadLibrary(binary_path)
except Exception as ex:
self.add_log_entry(str(ex))
self.print_log_stack()
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def initialize(self):
+ if not getattr(self, 'initialized', False):
+ self.has_printed = False
- self.has_printed = False
+ self.lib = None
- self.lib = None
+ self.initialized = False
- self.initialized = False
|
bitsandbytes.cuda_setup.main/is_cublasLt_compatible
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
0f5c3948709ae70cf733cefbd831aaea8a4e38c9
|
Added version 0.37.0.
|
<4>:<add> cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True)
<del> cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Proceeding to load CPU-only library...", is_warning=True)
|
# module: bitsandbytes.cuda_setup.main
def is_cublasLt_compatible(cc):
<0> has_cublaslt = False
<1> if cc is not None:
<2> cc_major, cc_minor = cc.split('.')
<3> if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
<4> cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Proceeding to load CPU-only library...", is_warning=True)
<5> else:
<6> has_cublaslt = True
<7> return has_cublaslt
<8>
|
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def initialize(self):
+ if not getattr(self, 'initialized', False):
+ self.has_printed = False
- self.has_printed = False
+ self.lib = None
- self.lib = None
+ self.initialized = False
- self.initialized = False
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def run_cuda_setup(self):
self.initialized = True
self.cuda_setup_log = []
binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup()
self.cudart_path = cudart_path
self.cuda = cuda
self.cc = cc
self.cuda_version_string = cuda_version_string
package_dir = Path(__file__).parent.parent
binary_path = package_dir / binary_name
try:
if not binary_path.exists():
self.add_log_entry(f"CUDA SETUP: Required library version not found: {binary_name}. Maybe you need to compile it from source?")
legacy_binary_name = "libbitsandbytes_cpu.so"
self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...")
binary_path = package_dir / legacy_binary_name
+ if not binary_path.exists() or torch.cuda.is_available():
- if not binary_path.exists():
self.add_log_entry('')
self.add_log_entry('='*48 + 'ERROR' + '='*37)
self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:')
self.add_log_entry('1. CUDA driver not installed')
self.add_log_entry('2. CUDA not installed')
self.add_log_entry('3. You have multiple conflicting CUDA libraries')
self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!')
self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.')
+ self.add_log_entry('CUDA SETUP: The CU</s>
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def run_cuda_setup(self):
# offset: 1
<s>, `make CUDA_VERSION=113`.')
+ self.add_log_entry('CUDA SETUP: The CUDA version for the compile might depend on your conda install. Inspect CUDA version via `conda list | grep cuda`.')
self.add_log_entry('='*80)
self.add_log_entry('')
self.generate_instructions()
self.print_log_stack()
raise Exception('CUDA SETUP: Setup Failed!')
self.lib = ct.cdll.LoadLibrary(binary_path)
else:
self.add_log_entry(f"CUDA SETUP: Loading binary {binary_path}...")
self.lib = ct.cdll.LoadLibrary(binary_path)
except Exception as ex:
self.add_log_entry(str(ex))
self.print_log_stack()
|
bitsandbytes.cuda_setup.main/evaluate_cuda_setup
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
0f5c3948709ae70cf733cefbd831aaea8a4e38c9
|
Added version 0.37.0.
|
<4>:<del> print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
|
# module: bitsandbytes.cuda_setup.main
def evaluate_cuda_setup():
<0> if 'BITSANDBYTES_NOWELCOME' not in os.environ or str(os.environ['BITSANDBYTES_NOWELCOME']) == '0':
<1> print('')
<2> print('='*35 + 'BUG REPORT' + '='*35)
<3> print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
<4> print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
<5> print('='*80)
<6> if not torch.cuda.is_available(): return 'libsbitsandbytes_cpu.so', None, None, None, None
<7>
<8> cuda_setup = CUDASetup.get_instance()
<9> cudart_path = determine_cuda_runtime_lib_path()
<10> cuda = get_cuda_lib_handle()
<11> cc = get_compute_capability(cuda)
<12> cuda_version_string = get_cuda_version(cuda, cudart_path)
<13>
<14> failure = False
<15> if cudart_path is None:
<16> failure = True
<17> cuda_setup.add_log_entry("WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!", is_warning=True)
<18> else:
<19> cuda_setup.add_log_entry(f"CUDA SETUP: CUDA runtime path found: {cudart_path}")
<20>
<21> if cc == '' or cc is None:
<22> failure = True
<23> cuda_setup.add_log_entry("WARNING: No GPU detected! Check your CUDA paths. Proceeding to load CPU-only</s>
|
===========below chunk 0===========
# module: bitsandbytes.cuda_setup.main
def evaluate_cuda_setup():
# offset: 1
else:
cuda_setup.add_log_entry(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}")
if cuda is None:
failure = True
else:
cuda_setup.add_log_entry(f'CUDA SETUP: Detected CUDA version {cuda_version_string}')
# 7.5 is the minimum CC vor cublaslt
has_cublaslt = is_cublasLt_compatible(cc)
# TODO:
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
# (2) Multiple CUDA versions installed
# we use ls -l instead of nvcc to determine the cuda version
# since most installations will have the libcudart.so installed, but not the compiler
if failure:
binary_name = "libbitsandbytes_cpu.so"
elif has_cublaslt:
binary_name = f"libbitsandbytes_cuda{cuda_version_string}.so"
else:
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so"
binary_name = f"libbitsandbytes_cuda{cuda_version_string}_nocublaslt.so"
return binary_name, cudart_path, cuda, cc, cuda_version_string
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def initialize(self):
+ if not getattr(self, 'initialized', False):
+ self.has_printed = False
- self.has_printed = False
+ self.lib = None
- self.lib = None
+ self.initialized = False
- self.initialized = False
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
def is_cublasLt_compatible(cc):
has_cublaslt = False
if cc is not None:
cc_major, cc_minor = cc.split('.')
if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
+ cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True)
- cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Proceeding to load CPU-only library...", is_warning=True)
else:
has_cublaslt = True
return has_cublaslt
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def run_cuda_setup(self):
self.initialized = True
self.cuda_setup_log = []
binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup()
self.cudart_path = cudart_path
self.cuda = cuda
self.cc = cc
self.cuda_version_string = cuda_version_string
package_dir = Path(__file__).parent.parent
binary_path = package_dir / binary_name
try:
if not binary_path.exists():
self.add_log_entry(f"CUDA SETUP: Required library version not found: {binary_name}. Maybe you need to compile it from source?")
legacy_binary_name = "libbitsandbytes_cpu.so"
self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...")
binary_path = package_dir / legacy_binary_name
+ if not binary_path.exists() or torch.cuda.is_available():
- if not binary_path.exists():
self.add_log_entry('')
self.add_log_entry('='*48 + 'ERROR' + '='*37)
self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:')
self.add_log_entry('1. CUDA driver not installed')
self.add_log_entry('2. CUDA not installed')
self.add_log_entry('3. You have multiple conflicting CUDA libraries')
self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!')
self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.')
+ self.add_log_entry('CUDA SETUP: The CU</s>
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.main
class CUDASetup:
def run_cuda_setup(self):
# offset: 1
<s>, `make CUDA_VERSION=113`.')
+ self.add_log_entry('CUDA SETUP: The CUDA version for the compile might depend on your conda install. Inspect CUDA version via `conda list | grep cuda`.')
self.add_log_entry('='*80)
self.add_log_entry('')
self.generate_instructions()
self.print_log_stack()
raise Exception('CUDA SETUP: Setup Failed!')
self.lib = ct.cdll.LoadLibrary(binary_path)
else:
self.add_log_entry(f"CUDA SETUP: Loading binary {binary_path}...")
self.lib = ct.cdll.LoadLibrary(binary_path)
except Exception as ex:
self.add_log_entry(str(ex))
self.print_log_stack()
|
tests.test_linear8bitlt/test_linear_no_igemmlt
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
58b09ee1b11c26344aaeee7ff648655f1d127202
|
[WIP] Implement proper serialization of Linear8bitLt
|
<15>:<add> linear_custom = linear_custom.cuda()
<del> linear = linear_custom.cuda()
|
# module: tests.test_linear8bitlt
@pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU")
def test_linear_no_igemmlt():
<0> linear = torch.nn.Linear(1024, 3072)
<1> x = torch.randn(3, 1024, dtype=torch.half)
<2> linear_custom = Linear8bitLt(
<3> linear.in_features,
<4> linear.out_features,
<5> linear.bias is not None,
<6> has_fp16_weights=False,
<7> threshold=6.0,
<8> )
<9> linear_custom.state.force_no_igemmlt = True
<10>
<11> linear_custom.weight = bnb.nn.Int8Params(
<12> linear.weight.data.clone(), requires_grad=False, has_fp16_weights=False
<13> ).to(linear.weight.dtype)
<14> linear_custom.bias = linear.bias
<15> linear = linear_custom.cuda()
<16> linear = linear.half().cuda()
<17>
<18> x_ref = x.clone().cuda().requires_grad_(True)
<19> x_ours = x.clone().cuda().requires_grad_(True)
<20> fx_ref = linear(x_ref).float()
<21> grad_proj = torch.randn_like(fx_ref)
<22> (fx_ref * grad_proj).mean().backward()
<23>
<24> fx_ours = linear_custom(x_ours).float()
<25> (fx_ours * grad_proj).mean().backward()
<26> assert torch.allclose(fx_ref, fx_ours, atol=0.02)
<27> assert torch.allclose(x_ref.grad, x_ours.grad, atol=0.01)
<28> assert not linear_custom.state.has_fp16_weights
<29> assert linear_custom.state.CB is not None
<30> assert linear_custom.state.CxB is None
<31>
|
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: _pytest.mark.structures.MarkGenerator
skip: _SkipMarkDecorator
skipif: _SkipifMarkDecorator
xfail: _XfailMarkDecorator
parametrize: _ParametrizeMarkDecorator
usefixtures: _UsefixturesMarkDecorator
filterwarnings: _FilterwarningsMarkDecorator
at: bitsandbytes.autograd._functions.MatmulLtState
tile_indices: Optional[torch.Tensor] = None
force_no_igemmlt: bool = False
CB = None
CxB = None
SB = None
SCB = None
CxBt = None
SBt = None
CBt = None
subB = None
outlier_pool = None
has_accumulated_gradients = False
threshold = 0.0
idx = None
is_training = True
has_fp16_weights = True
memory_efficient_backward = False
use_pool = False
formatB = F.get_special_format_str()
at: bitsandbytes.nn.modules
Int8Params(data: Tensor=..., requires_grad: builtins.bool=...)
Linear8bitLt(input_features, output_features, bias=True, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0, index=None)
at: bitsandbytes.nn.modules.Int8Params
to(device: Optional[Union[int, device]]=..., dtype: Optional[Union[dtype, str]]=..., non_blocking: bool=...) -> T
to(tensor: Tensor, non_blocking: bool=...) -> T
to(dtype: Union[dtype, str], non_blocking: bool=...) -> T
at: bitsandbytes.nn.modules.Linear8bitLt.__init__
self.state = bnb.MatmulLtState()
===========unchanged ref 1===========
self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights)
at: tests.test_linear8bitlt.test_layout_exact_match
x = (torch.randn(14336 * 3, 14336) * 10).to(torch.int8).cuda()
restored_x = undo_layout(cxb, tile_indices)
at: torch._C
half: dtype = ...
at: torch._C._VariableFunctions
all(input: Tensor, *, out: Optional[Tensor]=None) -> Tensor
all(input: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor
all(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor
allclose(input: Tensor, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> _bool
eq(input: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor
eq(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor]=None) -> Tensor
===========unchanged ref 2===========
randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
randn(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
randn(*size: _int, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
randn(*size: _int, generator: Optional[Generator], out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
randn(size: Sequence[Union[_int, SymInt]], *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device:</s>
===========unchanged ref 3===========
randn_like(input: Tensor, *, memory_format: Optional[memory_format]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
at: torch._tensor.Tensor.__setstate__
self.data = state[0]
at: torch.cuda
is_available() -> bool
at: torch.nn.modules.linear
Linear(in_features: int, out_features: int, bias: bool=True, device=None, dtype=None)
at: torch.nn.modules.linear.Linear.__init__
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs))
self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
at: torch.nn.modules.module.Module
dump_patches: bool = False
_version: int = 1
training: bool
_parameters: Dict[str, Optional[Parameter]]
_buffers: Dict[str, Optional[Tensor]]
_non_persistent_buffers_set: Set[str]
_backward_pre_hooks: Dict[int, Callable]
_backward_hooks: Dict[int, Callable]
_is_full_backward_hook: Optional[bool]
_forward_hooks: Dict[int, Callable]
_forward_hooks_with_kwargs: Dict[int, bool]
_forward_hooks_always_called: Dict[int, bool]
_forward_pre_hooks: Dict[int, Callable]
_forward_pre_hooks_with_kwargs: Dict[int, bool]
_state_dict_hooks: Dict[int, Callable]
_load_state_dict_pre_hooks: Dict[int, Callable]
|
tests.test_linear8bitlt/test_linear_serialization
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
ac3ab281e39cbc514ebef08823482d5b0cba42c1
|
Handle more cases in test_linear_serialization
|
<0>:<add> linear = torch.nn.Linear(32, 96)
<del> linear = torch.nn.Linear(16, 32)
<1>:<add> x = torch.randn(3, 32, dtype=torch.half)
<del> x = torch.randn(3, 16, dtype=torch.half)
<10>:<del> linear_custom.state.force_no_igemmlt = True
<12>:<add> linear.weight.data.clone(), requires_grad=has_fp16_weights, has_fp16_weights=has_fp16_weights
<del> linear.weight.data.clone(), requires_grad=False, has_fp16_weights=has_fp16_weights
<13>:<add> )
<del> ).to(linear.weight.dtype)
<16>:<add>
<add> if serialize_before_forward:
<add> state_dict_8bit = linear_custom.state_dict()
<22>:<add> if not serialize_before_forward:
<add> state_dict_8bit = linear_custom.state_dict()
<del> state_dict = deepcopy(linear_custom.state_dict())
<23>:<add>
<add> with TemporaryDirectory() as tmpdir:
<add> state_path_8bit = os.path.join(tmpdir, "state_8bit.pth")
<add> state_path = os.path.join(tmpdir, "state.pth")
<add>
<add> torch.save(linear.state_dict(), state_path)
<add> torch.save(state_dict_8bit,
|
<s>")
+ @pytest.mark.parametrize("has_fp16_weights, serialize_before_forward, deserialize_before_cuda",
+ list(product([False, True], [False, True], [False, True])))
+ def test_linear_serialization(has_fp16_weights, serialize_before_forward, deserialize_before_cuda):
- @pytest.mark.parametrize("has_fp16_weights", [False, True])
- def test_linear_serialization(has_fp16_weights):
<0> linear = torch.nn.Linear(16, 32)
<1> x = torch.randn(3, 16, dtype=torch.half)
<2>
<3> linear_custom = Linear8bitLt(
<4> linear.in_features,
<5> linear.out_features,
<6> linear.bias is not None,
<7> has_fp16_weights=has_fp16_weights,
<8> threshold=6.0,
<9> )
<10> linear_custom.state.force_no_igemmlt = True
<11> linear_custom.weight = bnb.nn.Int8Params(
<12> linear.weight.data.clone(), requires_grad=False, has_fp16_weights=has_fp16_weights
<13> ).to(linear.weight.dtype)
<14> linear_custom.bias = linear.bias
<15> linear_custom = linear_custom.cuda()
<16>
<17> x_first = x.clone().cuda().requires_grad_(True)
<18> fx_first = linear_custom(x_first).float()
<19> grad_proj = torch.randn_like(fx_first)
<20> (fx_first * grad_proj).mean().backward()
<21>
<22> state_dict = deepcopy(linear_custom.state_dict())
<23>
<24> new_linear_custom = Linear8bitLt(
<25> linear.in_features,
<26> linear.out_features,
<27> linear.bias is not None,
<28> has_fp16_weights=has_fp16_weights,
<29> threshold=6.0,
<30> )
<31> </s>
|
===========below chunk 0===========
<s>test.mark.parametrize("has_fp16_weights, serialize_before_forward, deserialize_before_cuda",
+ list(product([False, True], [False, True], [False, True])))
+ def test_linear_serialization(has_fp16_weights, serialize_before_forward, deserialize_before_cuda):
- @pytest.mark.parametrize("has_fp16_weights", [False, True])
- def test_linear_serialization(has_fp16_weights):
# offset: 1
new_linear_custom = new_linear_custom.cuda()
new_linear_custom.load_state_dict(state_dict, strict=True)
x_second = x.clone().cuda().requires_grad_(True)
fx_second = new_linear_custom(x_second).float()
(fx_second * grad_proj).mean().backward()
assert torch.allclose(fx_first, fx_second, atol=1e-5)
assert torch.allclose(x_first.grad, x_second.grad, atol=1e-5)
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: _pytest.mark.structures.MarkGenerator
skip: _SkipMarkDecorator
skipif: _SkipifMarkDecorator
xfail: _XfailMarkDecorator
parametrize: _ParametrizeMarkDecorator
usefixtures: _UsefixturesMarkDecorator
filterwarnings: _FilterwarningsMarkDecorator
at: bitsandbytes.autograd._functions.MatmulLtState.reset_grads
self.CxB = None
at: bitsandbytes.nn.modules
Int8Params(data: Tensor=..., requires_grad: builtins.bool=...)
Linear8bitLt(input_features, output_features, bias=True, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0, index=None)
at: bitsandbytes.nn.modules.Linear8bitLt.__init__
self.state = bnb.MatmulLtState()
self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights)
===========unchanged ref 1===========
at: itertools
product(iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], iter4: Iterable[_T4], iter5: Iterable[_T5], iter6: Iterable[_T6]) -> Iterator[Tuple[_T1, _T2, _T3, _T4, _T5, _T6]]
product(iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3]) -> Iterator[Tuple[_T1, _T2, _T3]]
product(iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], iter4: Iterable[_T4]) -> Iterator[Tuple[_T1, _T2, _T3, _T4]]
product(iter1: Iterable[_T1], iter2: Iterable[_T2]) -> Iterator[Tuple[_T1, _T2]]
product(*iterables: Iterable[_T1], repeat: int) -> Iterator[Tuple[_T1, ...]]
product(iter1: Iterable[_T1]) -> Iterator[Tuple[_T1]]
product(*iterables: Iterable[Any], repeat: int=...) -> Iterator[Tuple[Any, ...]]
product(iter1: Iterable[Any], iter2: Iterable[Any], iter3: Iterable[Any], iter4: Iterable[Any], iter5: Iterable[Any], iter6: Iterable[Any], iter7: Iterable[Any], *iterables: Iterable[Any]) -> Iterator[Tuple[Any, ...]]
product(iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], iter4: Iterable[_T4], iter5: Iterable[_T5]) -> Iterator[Tuple[_T1, _T2, _T3, _T4, _T5]]
at: os.path
join(a: StrPath, *paths: StrPath) -> str
join(a: BytesPath, *paths: BytesPath) -> bytes
getsize(filename: AnyPath) -> int
===========unchanged ref 2===========
at: tempfile
TemporaryDirectory(suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=...)
at: tests.test_linear8bitlt.test_linear_no_igemmlt
linear_custom = linear_custom.cuda()
at: torch._C
half: dtype = ...
===========unchanged ref 3===========
at: torch._C._VariableFunctions
randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
randn(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
randn(*size: _int, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
randn(*size: _int, generator: Optional[Generator], out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
randn(size: Sequence[Union[_int, SymInt]], *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional</s>
|
bitsandbytes.nn.modules/Linear8bitLt._load_from_state_dict
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
cd4d904a4ccc80c444e460d3aef20705895d2051
|
Raise an error when loading a quantized checkpoint before quantization
|
<5>:<add> if self.weight.SCB is None:
<add> # buffers not yet initialized, can't call them directly without
<add> raise RuntimeError("Loading a quantized checkpoint into non-quantized Linear8bitLt is "
<add> "not supported. Please call module.cuda() before module.load_state_dict()")
<add>
|
# module: bitsandbytes.nn.modules
class Linear8bitLt(nn.Linear):
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
<0> super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
<1> error_msgs)
<2> for key in unexpected_keys:
<3> input_name = key[len(prefix):]
<4> if input_name == "SCB":
<5> input_param = state_dict[key]
<6> self.weight.SCB.copy_(input_param)
<7> unexpected_keys.remove(key)
<8>
|
===========unchanged ref 0===========
at: bitsandbytes.nn.modules.Int8Params.__new__
cls.SCB = None
at: bitsandbytes.nn.modules.Linear8bitLt.__init__
self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights)
at: torch.nn.modules.module.Module
dump_patches: bool = False
_version: int = 1
training: bool
_parameters: Dict[str, Optional[Parameter]]
_buffers: Dict[str, Optional[Tensor]]
_non_persistent_buffers_set: Set[str]
_backward_pre_hooks: Dict[int, Callable]
_backward_hooks: Dict[int, Callable]
_is_full_backward_hook: Optional[bool]
_forward_hooks: Dict[int, Callable]
_forward_hooks_with_kwargs: Dict[int, bool]
_forward_hooks_always_called: Dict[int, bool]
_forward_pre_hooks: Dict[int, Callable]
_forward_pre_hooks_with_kwargs: Dict[int, bool]
_state_dict_hooks: Dict[int, Callable]
_load_state_dict_pre_hooks: Dict[int, Callable]
_state_dict_pre_hooks: Dict[int, Callable]
_load_state_dict_post_hooks: Dict[int, Callable]
_modules: Dict[str, Optional['Module']]
call_super_init: bool = False
_compiled_call_impl : Optional[Callable] = None
forward: Callable[..., Any] = _forward_unimplemented
__call__ : Callable[..., Any] = _wrapped_call_impl
T_destination = TypeVar('T_destination', bound=Dict[str, Any])
===========unchanged ref 1===========
state_dict(self, *, prefix: str=..., keep_vars: bool=...) -> Dict[str, Any]
state_dict(self, *, destination: T_destination, prefix: str=..., keep_vars: bool=...) -> T_destination
_load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
_load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
bitsandbytes.nn.modules/Linear8bitLt._save_to_state_dict
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
cc608c04c292c906ff48223e386689c1c024f601
|
Revert the layout if weights were reordered
|
<0>:<add> if not self.state.has_fp16_weights and self.state.CB is None and self.state.CxB is not None:
<add> # reorder weight layout back from ampere/turing to row
<add> reorder_layout = True
<add> weight_clone = self.weight.data.clone()
<add> else:
<add> reorder_layout = False
<del> super()._save_to_state_dict(destination, prefix, keep_vars)
<2>:<add> try:
<add> if reorder_layout:
<add> if self.state.tile_indices is None:
<add> order, tile_size = self.state.formatB, self.state.get_tile_size()
<add> transform = lambda x: \
<add> bitsandbytes.functional.transform(x.to(self.weight.data.device), from_order="row",
<add> to_order=order)[0].to(x.device)
<add> with torch.no_grad():
<add> self.state.tile_indices = get_inverse_transform_indices(transform, tile_size).to(
<add> self.state.CxB.device)
<del> # we only need to save SCB as extra data, because CB for quantized weights is already stored in weight.data
<3>:<del> weight_name = "SCB"
<5>:<del> # case 1: .cuda was called, SCB is in self.weight
|
# module: bitsandbytes.nn.modules
class Linear8bitLt(nn.Linear):
def _save_to_state_dict(self, destination, prefix, keep_vars):
<0> super()._save_to_state_dict(destination, prefix, keep_vars)
<1>
<2> # we only need to save SCB as extra data, because CB for quantized weights is already stored in weight.data
<3> weight_name = "SCB"
<4>
<5> # case 1: .cuda was called, SCB is in self.weight
<6> param_from_weight = getattr(self.weight, weight_name)
<7> # case 2: self.init_8bit_state was called, SCB is in self.state
<8> param_from_state = getattr(self.state, weight_name)
<9>
<10> key_name = prefix + f"{weight_name}"
<11> if param_from_weight is not None:
<12> destination[key_name] = param_from_weight if keep_vars else param_from_weight.detach()
<13> elif not self.state.has_fp16_weights and param_from_state is not None:
<14> destination[key_name] = param_from_state if keep_vars else param_from_state.detach()
<15>
|
===========unchanged ref 0===========
at: bitsandbytes.autograd._functions.MatmulLtState
tile_indices: Optional[torch.Tensor] = None
force_no_igemmlt: bool = False
CB = None
CxB = None
SB = None
SCB = None
CxBt = None
SBt = None
CBt = None
subB = None
outlier_pool = None
has_accumulated_gradients = False
threshold = 0.0
idx = None
is_training = True
has_fp16_weights = True
memory_efficient_backward = False
use_pool = False
formatB = F.get_special_format_str()
get_tile_size()
at: bitsandbytes.autograd._functions.MatmulLtState.reset_grads
self.CB = None
self.CxB = None
at: bitsandbytes.functional
transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None)
at: bitsandbytes.nn.modules
Int8Params(data: Tensor=..., requires_grad: builtins.bool=...)
at: bitsandbytes.nn.modules.Int8Params.cuda
self.data = CB
at: bitsandbytes.nn.modules.Linear8bitLt.__init__
self.state = bnb.MatmulLtState()
at: torch.nn.modules.module.Module
dump_patches: bool = False
_version: int = 1
training: bool
_parameters: Dict[str, Optional[Parameter]]
_buffers: Dict[str, Optional[Tensor]]
_non_persistent_buffers_set: Set[str]
_backward_pre_hooks: Dict[int, Callable]
_backward_hooks: Dict[int, Callable]
_is_full_backward_hook: Optional[bool]
===========unchanged ref 1===========
_forward_hooks: Dict[int, Callable]
_forward_hooks_with_kwargs: Dict[int, bool]
_forward_hooks_always_called: Dict[int, bool]
_forward_pre_hooks: Dict[int, Callable]
_forward_pre_hooks_with_kwargs: Dict[int, bool]
_state_dict_hooks: Dict[int, Callable]
_load_state_dict_pre_hooks: Dict[int, Callable]
_state_dict_pre_hooks: Dict[int, Callable]
_load_state_dict_post_hooks: Dict[int, Callable]
_modules: Dict[str, Optional['Module']]
call_super_init: bool = False
_compiled_call_impl : Optional[Callable] = None
forward: Callable[..., Any] = _forward_unimplemented
__call__ : Callable[..., Any] = _wrapped_call_impl
_save_to_state_dict(self, destination, prefix, keep_vars)
T_destination = TypeVar('T_destination', bound=Dict[str, Any])
|
bitsandbytes.autograd._functions/MatMul8bitLt.backward
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
d15822a54b5a41e7b35c233616eb77cea337a06c
|
Refactor _tile_indices into a cached property, fix device bug
|
# module: bitsandbytes.autograd._functions
class MatMul8bitLt(torch.autograd.Function):
@staticmethod
def backward(ctx, grad_output):
<0> if ctx.is_empty:
<1> bias_grad = None if ctx.bias is None else torch.zeros_like(ctx.bias)
<2> return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
<3> req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad
<4> CAt, subA = ctx.tensors
<5> SCAt, idx = ctx.tensor_states
<6> formatB = ctx.formatB
<7> state = ctx.state
<8> grad_A = grad_B = grad_bias = None
<9>
<10> if req_gradBias:
<11> # compute grad_bias first before changing grad_output dtype
<12> grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias)
<13>
<14> # Cast grad_output to fp16
<15> if len(grad_output.shape) == 3:
<16> grad_output = grad_output.reshape(-1, grad_output.shape[-1]).contiguous()
<17>
<18> Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16))
<19> if req_gradB:
<20> CxAt, SAt = F.transform(CAt, formatB, transpose=True)
<21> C32grad, Sgrad = F.transform(Cgradt, "col32", transpose=True)
<22> gradB32, SgradB32 = F.igemmlt(C32grad, CxAt, Sgrad, SAt)
<23> grad_B = F.mm_dequant(gradB32, SgradB32, SCgradt, SCAt)
<24> if state.threshold > 0.0 and subA is not None:
<25> grad_B[:, idx] += torch.matmul(grad_output.t(), subA)</s>
|
===========below chunk 0===========
# module: bitsandbytes.autograd._functions
class MatMul8bitLt(torch.autograd.Function):
@staticmethod
def backward(ctx, grad_output):
# offset: 1
if req_gradA:
if state.CBt is not None:
C32grad, Sgrad = F.transform(Cgrad, "col32")
if state.CxBt is None:
state.CxBt, state.SBt = F.transform(state.CBt, to_order=formatB, transpose=True)
gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt)
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape).to(ctx.dtype_A)
elif state.CB is not None:
CB = state.CB.to(ctx.dtype_A, copy=True).mul_(state.SCB.unsqueeze(1).mul(1.0 / 127.0))
grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A)
elif state.CxB is not None:
if state.tile_indices is None:
order, tile_size = state.formatB, state.get_tile_size()
transform = lambda x: F.transform(x.cuda(), from_order="row", to_order=order)[0].to(x.device)
with torch.no_grad():
state.tile_indices = get_inverse_transform_indices(transform, tile_size).to(state.CxB.device)
CB = (
undo_layout(state.CxB, state.tile_indices)
.to(ctx.dtype_A)
.mul_(state.SCB.unsqueeze(1).mul(1.0 / 127.0))
)
grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).</s>
===========below chunk 1===========
# module: bitsandbytes.autograd._functions
class MatMul8bitLt(torch.autograd.Function):
@staticmethod
def backward(ctx, grad_output):
# offset: 2
<s>0))
)
grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A)
else:
raise Exception("State must contain either CBt or CB or CxB matrix for backward")
return grad_A, grad_B, None, grad_bias, None
===========unchanged ref 0===========
at: bitsandbytes.autograd._functions
undo_layout(permuted_tensor: torch.Tensor, tile_indices: torch.LongTensor) -> torch.Tensor
at: bitsandbytes.autograd._functions.MatMul8bitLt.forward
CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A.to(torch.float16), threshold=state.threshold)
output_shape = (input_shape[0], shapeB[0])
output_shape = (input_shape[0], input_shape[1], shapeB[0])
output = output.to(A.dtype)
output = output.mul_(state.SCB.unsqueeze(0).mul(1.0 / 127.0))
output += torch.matmul(subA, state.subB)
output = torch.nn.functional.linear(A_wo_outliers, state.CB.to(A.dtype))
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias)
at: bitsandbytes.autograd._functions.MatmulLtState
_tile_indices: Optional[torch.Tensor] = None
force_no_igemmlt: bool = False
CB = None
CxB = None
SB = None
SCB = None
CxBt = None
SBt = None
CBt = None
subB = None
outlier_pool = None
has_accumulated_gradients = False
threshold = 0.0
idx = None
is_training = True
has_fp16_weights = True
memory_efficient_backward = False
use_pool = False
formatB = F.get_special_format_str()
at: bitsandbytes.functional
igemmlt(A, B, SA, SB, out=None, Sout=None, dtype=torch.int32)
===========unchanged ref 1===========
mm_dequant(A, quant_state, row_stats, col_stats, out=None, new_row_stats=None, new_col_stats=None, bias=None)
double_quant(A, col_stats=None, row_stats=None, out_col=None, out_row=None, threshold=0.0)
transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None)
at: torch._C
float16: dtype = ...
at: torch._C._VariableFunctions
clone(input: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor
matmul(input: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor
zeros_like(input: Tensor, *, memory_format: Optional[memory_format]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor
at: torch.autograd.function._SingleLevelFunction
backward(ctx: Any, *grad_outputs: Any) -> Any
vjp = backward
===========changed ref 0===========
# module: bitsandbytes.autograd._functions
@dataclass
class MatmulLtState:
+ @property
+ def tile_indices(self):
+ if self._tile_indices is None:
+ device = self.CxB.device
+ transform = lambda x: F.transform(x.to(device), from_order="row", to_order=self.formatB)[0].to(x.device)
+ with torch.no_grad():
+ self._tile_indices = get_inverse_transform_indices(transform, self.get_tile_size()).to(device)
+ return self._tile_indices
+
===========changed ref 1===========
# module: bitsandbytes.autograd._functions
@dataclass
class MatmulLtState:
+ _tile_indices: Optional[torch.Tensor] = None
- tile_indices: Optional[torch.Tensor] = None
force_no_igemmlt: bool = False
CB = None
CxB = None
SB = None
SCB = None
CxBt = None
SBt = None
CBt = None
subB = None
outlier_pool = None
has_accumulated_gradients = False
threshold = 0.0
idx = None
is_training = True
has_fp16_weights = True
memory_efficient_backward = False
use_pool = False
formatB = F.get_special_format_str()
|
|
bitsandbytes.nn.modules/Linear8bitLt._save_to_state_dict
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
d15822a54b5a41e7b35c233616eb77cea337a06c
|
Refactor _tile_indices into a cached property, fix device bug
|
<9>:<del> if self.state.tile_indices is None:
<10>:<del> order, tile_size = self.state.formatB, self.state.get_tile_size()
<11>:<del> transform = lambda x: \
<12>:<del> bitsandbytes.functional.transform(x.to(self.weight.data.device), from_order="row",
<13>:<del> to_order=order)[0].to(x.device)
<14>:<del> with torch.no_grad():
<15>:<del> self.state.tile_indices = get_inverse_transform_indices(transform, tile_size).to(
<16>:<del> self.state.CxB.device)
<17>:<del>
<18>:<del> CB = (
<19>:<add> self.weight.data = undo_layout(self.state.CxB, self.state.tile_indices)
<del> undo_layout(self.state.CxB, self.state.tile_indices)
<20>:<del> )
<21>:<del>
<22>:<del> self.weight.data = CB
|
# module: bitsandbytes.nn.modules
class Linear8bitLt(nn.Linear):
def _save_to_state_dict(self, destination, prefix, keep_vars):
<0> if not self.state.has_fp16_weights and self.state.CB is None and self.state.CxB is not None:
<1> # reorder weight layout back from ampere/turing to row
<2> reorder_layout = True
<3> weight_clone = self.weight.data.clone()
<4> else:
<5> reorder_layout = False
<6>
<7> try:
<8> if reorder_layout:
<9> if self.state.tile_indices is None:
<10> order, tile_size = self.state.formatB, self.state.get_tile_size()
<11> transform = lambda x: \
<12> bitsandbytes.functional.transform(x.to(self.weight.data.device), from_order="row",
<13> to_order=order)[0].to(x.device)
<14> with torch.no_grad():
<15> self.state.tile_indices = get_inverse_transform_indices(transform, tile_size).to(
<16> self.state.CxB.device)
<17>
<18> CB = (
<19> undo_layout(self.state.CxB, self.state.tile_indices)
<20> )
<21>
<22> self.weight.data = CB
<23>
<24> super()._save_to_state_dict(destination, prefix, keep_vars)
<25>
<26> # we only need to save SCB as extra data, because CB for quantized weights is already stored in weight.data
<27> weight_name = "SCB"
<28>
<29> # case 1: .cuda was called, SCB is in self.weight
<30> param_from_weight = getattr(self.weight, weight_name)
<31> # case 2: self.init_8bit_state was called, SCB is in self.state
<32> param_from_state = getattr(self.state, weight_name)
<33>
<34> key_name = prefix + f"{weight_name}"
<35> if param_from</s>
|
===========below chunk 0===========
# module: bitsandbytes.nn.modules
class Linear8bitLt(nn.Linear):
def _save_to_state_dict(self, destination, prefix, keep_vars):
# offset: 1
destination[key_name] = param_from_weight if keep_vars else param_from_weight.detach()
elif not self.state.has_fp16_weights and param_from_state is not None:
destination[key_name] = param_from_state if keep_vars else param_from_state.detach()
finally:
if reorder_layout:
self.weight.data = weight_clone
===========unchanged ref 0===========
at: bitsandbytes.autograd._functions
undo_layout(permuted_tensor: torch.Tensor, tile_indices: torch.LongTensor) -> torch.Tensor
at: bitsandbytes.autograd._functions.MatmulLtState
_tile_indices: Optional[torch.Tensor] = None
force_no_igemmlt: bool = False
CB = None
CxB = None
SB = None
SCB = None
CxBt = None
SBt = None
CBt = None
subB = None
outlier_pool = None
has_accumulated_gradients = False
threshold = 0.0
idx = None
is_training = True
has_fp16_weights = True
memory_efficient_backward = False
use_pool = False
formatB = F.get_special_format_str()
at: bitsandbytes.autograd._functions.MatmulLtState.reset_grads
self.CB = None
self.CxB = None
at: bitsandbytes.nn.modules.Int8Params.__new__
cls.SCB = None
at: bitsandbytes.nn.modules.Int8Params.cuda
self.data = CB
at: bitsandbytes.nn.modules.Linear8bitLt.__init__
self.state = bnb.MatmulLtState()
self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights)
at: torch.nn.modules.module.Module
dump_patches: bool = False
_version: int = 1
training: bool
_parameters: Dict[str, Optional[Parameter]]
_buffers: Dict[str, Optional[Tensor]]
_non_persistent_buffers_set: Set[str]
_backward_pre_hooks: Dict[int, Callable]
_backward_hooks: Dict[int, Callable]
===========unchanged ref 1===========
_is_full_backward_hook: Optional[bool]
_forward_hooks: Dict[int, Callable]
_forward_hooks_with_kwargs: Dict[int, bool]
_forward_hooks_always_called: Dict[int, bool]
_forward_pre_hooks: Dict[int, Callable]
_forward_pre_hooks_with_kwargs: Dict[int, bool]
_state_dict_hooks: Dict[int, Callable]
_load_state_dict_pre_hooks: Dict[int, Callable]
_state_dict_pre_hooks: Dict[int, Callable]
_load_state_dict_post_hooks: Dict[int, Callable]
_modules: Dict[str, Optional['Module']]
call_super_init: bool = False
_compiled_call_impl : Optional[Callable] = None
forward: Callable[..., Any] = _forward_unimplemented
__call__ : Callable[..., Any] = _wrapped_call_impl
_save_to_state_dict(self, destination, prefix, keep_vars)
_save_to_state_dict(destination, prefix, keep_vars)
T_destination = TypeVar('T_destination', bound=Dict[str, Any])
state_dict(self, *, prefix: str=..., keep_vars: bool=...) -> Dict[str, Any]
state_dict(self, *, destination: T_destination, prefix: str=..., keep_vars: bool=...) -> T_destination
_load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
_load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
===========changed ref 0===========
# module: bitsandbytes.autograd._functions
@dataclass
class MatmulLtState:
+ @property
+ def tile_indices(self):
+ if self._tile_indices is None:
+ device = self.CxB.device
+ transform = lambda x: F.transform(x.to(device), from_order="row", to_order=self.formatB)[0].to(x.device)
+ with torch.no_grad():
+ self._tile_indices = get_inverse_transform_indices(transform, self.get_tile_size()).to(device)
+ return self._tile_indices
+
===========changed ref 1===========
# module: bitsandbytes.autograd._functions
@dataclass
class MatmulLtState:
+ _tile_indices: Optional[torch.Tensor] = None
- tile_indices: Optional[torch.Tensor] = None
force_no_igemmlt: bool = False
CB = None
CxB = None
SB = None
SCB = None
CxBt = None
SBt = None
CBt = None
subB = None
outlier_pool = None
has_accumulated_gradients = False
threshold = 0.0
idx = None
is_training = True
has_fp16_weights = True
memory_efficient_backward = False
use_pool = False
formatB = F.get_special_format_str()
===========changed ref 2===========
# module: bitsandbytes.autograd._functions
class MatMul8bitLt(torch.autograd.Function):
@staticmethod
def backward(ctx, grad_output):
if ctx.is_empty:
bias_grad = None if ctx.bias is None else torch.zeros_like(ctx.bias)
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad
CAt, subA = ctx.tensors
SCAt, idx = ctx.tensor_states
formatB = ctx.formatB
state = ctx.state
grad_A = grad_B = grad_bias = None
if req_gradBias:
# compute grad_bias first before changing grad_output dtype
grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias)
# Cast grad_output to fp16
if len(grad_output.shape) == 3:
grad_output = grad_output.reshape(-1, grad_output.shape[-1]).contiguous()
Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16))
if req_gradB:
CxAt, SAt = F.transform(CAt, formatB, transpose=True)
C32grad, Sgrad = F.transform(Cgradt, "col32", transpose=True)
gradB32, SgradB32 = F.igemmlt(C32grad, CxAt, Sgrad, SAt)
grad_B = F.mm_dequant(gradB32, SgradB32, SCgradt, SCAt)
if state.threshold > 0.0 and subA is not None:
grad_B[:, idx] += torch.matmul(grad_output.t(), subA)
if req_gradA:
if state.CBt is not None:
C32grad,</s>
|
tests.test_linear8bitlt/test_linear_serialization
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
dcecbb26cafc040052e78b09b1cbe06929a9b776
|
Add force_no_igemmlt to test params
|
<10>:<add> if force_no_igemmlt:
<add> linear_custom.state.force_no_igemmlt = True
<add>
|
<s>, deserialize_before_cuda",
+ list(product([False, True], [False, True], [False, True], [False, True])))
- list(product([False, True], [False, True], [False, True])))
+ def test_linear_serialization(has_fp16_weights, serialize_before_forward, deserialize_before_cuda, force_no_igemmlt):
- def test_linear_serialization(has_fp16_weights, serialize_before_forward, deserialize_before_cuda):
<0> linear = torch.nn.Linear(32, 96)
<1> x = torch.randn(3, 32, dtype=torch.half)
<2>
<3> linear_custom = Linear8bitLt(
<4> linear.in_features,
<5> linear.out_features,
<6> linear.bias is not None,
<7> has_fp16_weights=has_fp16_weights,
<8> threshold=6.0,
<9> )
<10> linear_custom.weight = bnb.nn.Int8Params(
<11> linear.weight.data.clone(), requires_grad=has_fp16_weights, has_fp16_weights=has_fp16_weights
<12> )
<13> linear_custom.bias = linear.bias
<14> linear_custom = linear_custom.cuda()
<15>
<16> if serialize_before_forward:
<17> state_dict_8bit = linear_custom.state_dict()
<18>
<19> x_first = x.clone().cuda().requires_grad_(True)
<20> fx_first = linear_custom(x_first).float()
<21> grad_proj = torch.randn_like(fx_first)
<22> (fx_first * grad_proj).mean().backward()
<23>
<24> if not serialize_before_forward:
<25> state_dict_8bit = linear_custom.state_dict()
<26>
<27> with TemporaryDirectory() as tmpdir:
<28> state_path_8bit = os.path.join(tmpdir, "state_8bit.pth")
<29> state_path = os.path.join(tmpdir, "state.</s>
|
===========below chunk 0===========
<s>cuda",
+ list(product([False, True], [False, True], [False, True], [False, True])))
- list(product([False, True], [False, True], [False, True])))
+ def test_linear_serialization(has_fp16_weights, serialize_before_forward, deserialize_before_cuda, force_no_igemmlt):
- def test_linear_serialization(has_fp16_weights, serialize_before_forward, deserialize_before_cuda):
# offset: 1
torch.save(linear.state_dict(), state_path)
torch.save(state_dict_8bit, state_path_8bit)
if not has_fp16_weights:
assert os.path.getsize(state_path_8bit) < 0.5 * os.path.getsize(state_path)
new_state_dict = torch.load(state_path_8bit)
new_linear_custom = Linear8bitLt(
linear.in_features,
linear.out_features,
linear.bias is not None,
has_fp16_weights=has_fp16_weights,
threshold=6.0,
)
if deserialize_before_cuda:
with nullcontext() if has_fp16_weights else pytest.raises(RuntimeError):
new_linear_custom.load_state_dict(new_state_dict, strict=True)
new_linear_custom = new_linear_custom.cuda()
if not deserialize_before_cuda:
new_linear_custom.load_state_dict(new_state_dict, strict=True)
x_second = x.clone().cuda().requires_grad_(True)
fx_second = new_linear_custom(x_second).float()
(fx_second * grad_proj).mean().backward()
# if 8-bit weights were loaded before .cuda, state is incorrect anyway and RuntimeError was raised
if has_fp16_weights or not deserialize_before_cuda:
assert torch.allclose(</s>
===========below chunk 1===========
<s>cuda",
+ list(product([False, True], [False, True], [False, True], [False, True])))
- list(product([False, True], [False, True], [False, True])))
+ def test_linear_serialization(has_fp16_weights, serialize_before_forward, deserialize_before_cuda, force_no_igemmlt):
- def test_linear_serialization(has_fp16_weights, serialize_before_forward, deserialize_before_cuda):
# offset: 2
<s> and RuntimeError was raised
if has_fp16_weights or not deserialize_before_cuda:
assert torch.allclose(fx_first, fx_second, atol=1e-5)
assert torch.allclose(x_first.grad, x_second.grad, atol=1e-5)
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: _pytest.mark.structures.MarkGenerator
skip: _SkipMarkDecorator
skipif: _SkipifMarkDecorator
xfail: _XfailMarkDecorator
parametrize: _ParametrizeMarkDecorator
usefixtures: _UsefixturesMarkDecorator
filterwarnings: _FilterwarningsMarkDecorator
at: _pytest.python_api
raises(expected_exception: Union[Type[E], Tuple[Type[E], ...]], func: Callable[..., Any], *args: Any, **kwargs: Any) -> _pytest._code.ExceptionInfo[E]
raises(expected_exception: Union[Type[E], Tuple[Type[E], ...]], *, match: Optional[Union[str, Pattern[str]]]=...) -> "RaisesContext[E]"
at: bitsandbytes.autograd._functions.MatmulLtState
_tile_indices: Optional[torch.Tensor] = None
force_no_igemmlt: bool = False
CB = None
CxB = None
SB = None
SCB = None
CxBt = None
SBt = None
CBt = None
subB = None
outlier_pool = None
has_accumulated_gradients = False
threshold = 0.0
idx = None
is_training = True
has_fp16_weights = True
memory_efficient_backward = False
use_pool = False
formatB = F.get_special_format_str()
at: bitsandbytes.nn.modules
Int8Params(data: Tensor=..., requires_grad: builtins.bool=...)
Linear8bitLt(input_features, output_features, bias=True, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0, index=None)
===========unchanged ref 1===========
at: bitsandbytes.nn.modules.Linear8bitLt.__init__
self.state = bnb.MatmulLtState()
self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights)
at: contextlib
nullcontext(enter_result: _T) -> ContextManager[_T]
nullcontext() -> ContextManager[None]
===========unchanged ref 2===========
at: itertools
product(iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], iter4: Iterable[_T4], iter5: Iterable[_T5], iter6: Iterable[_T6]) -> Iterator[Tuple[_T1, _T2, _T3, _T4, _T5, _T6]]
product(iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3]) -> Iterator[Tuple[_T1, _T2, _T3]]
product(iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], iter4: Iterable[_T4]) -> Iterator[Tuple[_T1, _T2, _T3, _T4]]
product(iter1: Iterable[_T1], iter2: Iterable[_T2]) -> Iterator[Tuple[_T1, _T2]]
product(*iterables: Iterable[_T1], repeat: int) -> Iterator[Tuple[_T1, ...]]
product(iter1: Iterable[_T1]) -> Iterator[Tuple[_T1]]
product(*iterables: Iterable[Any], repeat: int=...) -> Iterator[Tuple[Any, ...]]
product(iter1: Iterable[Any], iter2: Iterable[Any], iter3: Iterable[Any], iter4: Iterable[Any], iter5: Iterable[Any], iter6: Iterable[Any], iter7: Iterable[Any], *iterables: Iterable[Any]) -> Iterator[Tuple[Any, ...]]
product(iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], iter4: Iterable[_T4], iter5: Iterable[_T5]) -> Iterator[Tuple[_T1, _T2, _T3, _T4, _T5]]
at: os.path
join(a: StrPath, *paths: StrPath) -> str
join(a: BytesPath, *paths: BytesPath) -> bytes
getsize(filename: AnyPath) -> int
===========unchanged ref 3===========
at: tempfile
TemporaryDirectory(suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=...)
at: torch._C
half: dtype = ...
|
bitsandbytes.cuda_setup.env_vars/to_be_ignored
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
ed6f3eb146d67d6a2618f85227048be1ba82725a
|
Merge pull request #159 from TimDettmers/serialize_8bit
|
<8>:<add> "XDG_GREETER_DATA_DIR", # XDG: Desktop environment stuff
|
# module: bitsandbytes.cuda_setup.env_vars
def to_be_ignored(env_var: str, value: str) -> bool:
<0> ignorable = {
<1> "PWD", # PWD: this is how the shell keeps track of the current working dir
<2> "OLDPWD",
<3> "SSH_AUTH_SOCK", # SSH stuff, therefore unrelated
<4> "SSH_TTY",
<5> "HOME", # Linux shell default
<6> "TMUX", # Terminal Multiplexer
<7> "XDG_DATA_DIRS", # XDG: Desktop environment stuff
<8> "XDG_RUNTIME_DIR",
<9> "MAIL", # something related to emails
<10> "SHELL", # binary for currently invoked shell
<11> "DBUS_SESSION_BUS_ADDRESS", # hardware related
<12> "PATH", # this is for finding binaries, not libraries
<13> "LESSOPEN", # related to the `less` command
<14> "LESSCLOSE",
<15> "_", # current Python interpreter
<16> }
<17> return env_var in ignorable
<18>
| |
bitsandbytes.cuda_setup.main/is_cublasLt_compatible
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
ed6f3eb146d67d6a2618f85227048be1ba82725a
|
Merge pull request #159 from TimDettmers/serialize_8bit
|
<4>:<add> CUDASetup.get_instance().add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True)
<del> cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True)
|
# module: bitsandbytes.cuda_setup.main
def is_cublasLt_compatible(cc):
<0> has_cublaslt = False
<1> if cc is not None:
<2> cc_major, cc_minor = cc.split('.')
<3> if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
<4> cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True)
<5> else:
<6> has_cublaslt = True
<7> return has_cublaslt
<8>
|
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.env_vars
def to_be_ignored(env_var: str, value: str) -> bool:
ignorable = {
"PWD", # PWD: this is how the shell keeps track of the current working dir
"OLDPWD",
"SSH_AUTH_SOCK", # SSH stuff, therefore unrelated
"SSH_TTY",
"HOME", # Linux shell default
"TMUX", # Terminal Multiplexer
"XDG_DATA_DIRS", # XDG: Desktop environment stuff
+ "XDG_GREETER_DATA_DIR", # XDG: Desktop environment stuff
"XDG_RUNTIME_DIR",
"MAIL", # something related to emails
"SHELL", # binary for currently invoked shell
"DBUS_SESSION_BUS_ADDRESS", # hardware related
"PATH", # this is for finding binaries, not libraries
"LESSOPEN", # related to the `less` command
"LESSCLOSE",
"_", # current Python interpreter
}
return env_var in ignorable
|
bitsandbytes.cuda_setup.main/evaluate_cuda_setup
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
ed6f3eb146d67d6a2618f85227048be1ba82725a
|
Merge pull request #159 from TimDettmers/serialize_8bit
|
<5>:<add> if not torch.cuda.is_available(): return 'libbitsandbytes_cpu.so', None, None, None, None
<del> if not torch.cuda.is_available(): return 'libsbitsandbytes_cpu.so', None, None, None, None
|
# module: bitsandbytes.cuda_setup.main
def evaluate_cuda_setup():
<0> if 'BITSANDBYTES_NOWELCOME' not in os.environ or str(os.environ['BITSANDBYTES_NOWELCOME']) == '0':
<1> print('')
<2> print('='*35 + 'BUG REPORT' + '='*35)
<3> print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
<4> print('='*80)
<5> if not torch.cuda.is_available(): return 'libsbitsandbytes_cpu.so', None, None, None, None
<6>
<7> cuda_setup = CUDASetup.get_instance()
<8> cudart_path = determine_cuda_runtime_lib_path()
<9> cuda = get_cuda_lib_handle()
<10> cc = get_compute_capability(cuda)
<11> cuda_version_string = get_cuda_version(cuda, cudart_path)
<12>
<13> failure = False
<14> if cudart_path is None:
<15> failure = True
<16> cuda_setup.add_log_entry("WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!", is_warning=True)
<17> else:
<18> cuda_setup.add_log_entry(f"CUDA SETUP: CUDA runtime path found: {cudart_path}")
<19>
<20> if cc == '' or cc is None:
<21> failure = True
<22> cuda_setup.add_log_entry("WARNING: No GPU detected! Check your CUDA paths. Proceeding to load CPU-only library...", is_warning=True)
<23> else:
<24> cuda_setup.add_log_entry(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}")
<25>
<26> if cuda is None:
<27> failure = True
<28> else:
<29> cuda_setup.add_log_entry(f'CUDA</s>
|
===========below chunk 0===========
# module: bitsandbytes.cuda_setup.main
def evaluate_cuda_setup():
# offset: 1
# 7.5 is the minimum CC vor cublaslt
has_cublaslt = is_cublasLt_compatible(cc)
# TODO:
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
# (2) Multiple CUDA versions installed
# we use ls -l instead of nvcc to determine the cuda version
# since most installations will have the libcudart.so installed, but not the compiler
if failure:
binary_name = "libbitsandbytes_cpu.so"
elif has_cublaslt:
binary_name = f"libbitsandbytes_cuda{cuda_version_string}.so"
else:
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so"
binary_name = f"libbitsandbytes_cuda{cuda_version_string}_nocublaslt.so"
return binary_name, cudart_path, cuda, cc, cuda_version_string
===========changed ref 0===========
# module: bitsandbytes.cuda_setup.main
def is_cublasLt_compatible(cc):
has_cublaslt = False
if cc is not None:
cc_major, cc_minor = cc.split('.')
if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
+ CUDASetup.get_instance().add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True)
- cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True)
else:
has_cublaslt = True
return has_cublaslt
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.env_vars
def to_be_ignored(env_var: str, value: str) -> bool:
ignorable = {
"PWD", # PWD: this is how the shell keeps track of the current working dir
"OLDPWD",
"SSH_AUTH_SOCK", # SSH stuff, therefore unrelated
"SSH_TTY",
"HOME", # Linux shell default
"TMUX", # Terminal Multiplexer
"XDG_DATA_DIRS", # XDG: Desktop environment stuff
+ "XDG_GREETER_DATA_DIR", # XDG: Desktop environment stuff
"XDG_RUNTIME_DIR",
"MAIL", # something related to emails
"SHELL", # binary for currently invoked shell
"DBUS_SESSION_BUS_ADDRESS", # hardware related
"PATH", # this is for finding binaries, not libraries
"LESSOPEN", # related to the `less` command
"LESSCLOSE",
"_", # current Python interpreter
}
return env_var in ignorable
|
bitsandbytes.autograd._functions/MatMul8bitLt.forward
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
ed6f3eb146d67d6a2618f85227048be1ba82725a
|
Merge pull request #159 from TimDettmers/serialize_8bit
|
<0>:<add> using_igemmlt = supports_igemmlt(A.device) and not state.force_no_igemmlt
<del> using_igemmlt = torch.cuda.get_device_capability(device=A.device) >= (7, 5) and not state.force_no_igemmlt
|
# module: bitsandbytes.autograd._functions
class MatMul8bitLt(torch.autograd.Function):
# forward is the same, but we added the fallback for pre-turing GPUs
# backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
@staticmethod
def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState):
<0> using_igemmlt = torch.cuda.get_device_capability(device=A.device) >= (7, 5) and not state.force_no_igemmlt
<1> # default of pytorch behavior if inputs are empty
<2> ctx.is_empty = False
<3> if prod(A.shape) == 0:
<4> ctx.is_empty = True
<5> ctx.A = A
<6> ctx.B = B
<7> ctx.bias = bias
<8> if A.shape[-1] == B.shape[0]:
<9> return torch.empty(A.shape[:-1] + B.shape[1:], dtype=A.dtype, device=A.device)
<10> else:
<11> return torch.empty(A.shape[:-1] + B.shape[:1], dtype=A.dtype, device=A.device)
<12>
<13> # 1. Quantize A
<14> # 2. Quantize B
<15> # 3. Matmul
<16> # 4. Mixed-precision decomposition matmul
<17> # 5. Save state
<18> formatB = state.formatB
<19> input_shape = A.shape
<20> if state.outlier_pool is None:
<21> state.outlier_pool = GlobalOutlierPooler.get_instance()
<22>
<23> # Cast A to fp16
<24> if A.dtype != torch.float16:
<25> warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
<26>
<27> # 1. Quantize A
<28> if len(A.shape) == 3:
<29> A = A.view(-1, A.</s>
|
===========below chunk 0===========
# module: bitsandbytes.autograd._functions
class MatMul8bitLt(torch.autograd.Function):
# forward is the same, but we added the fallback for pre-turing GPUs
# backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
@staticmethod
def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState):
# offset: 1
CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A.to(torch.float16), threshold=state.threshold)
if state.threshold > 0.0 and coo_tensorA is not None:
if state.has_fp16_weights:
idx = torch.unique(coo_tensorA.colidx).long()
CA[:, idx] = 0
CAt[:, idx] = 0
subA = A[:, idx]
state.subB = B[:, idx].t().contiguous()
state.idx = idx
else:
if state.CxB is None and using_igemmlt:
# B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions
# we also need to convert it to the turing/ampere format
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
else:
if not state.has_fp16_weights and state.CxB is None and using_igemmlt:
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
subA = None
# 2. Quantize B
if state.has_fp16_weights:
has_grad = True if (getattr(B, "grad", None) is not None) else False
is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1)
if is_transposed:
B = B.contiguous()
if (state.</s>
===========below chunk 1===========
# module: bitsandbytes.autograd._functions
class MatMul8bitLt(torch.autograd.Function):
# forward is the same, but we added the fallback for pre-turing GPUs
# backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
@staticmethod
def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState):
# offset: 2
<s> == B.stride(1)
if is_transposed:
B = B.contiguous()
if (state.is_training and not has_grad) or state.CxB is None:
state.reset_grads()
(
CB,
state.CBt,
state.SCB,
state.SCBt,
coo_tensorB,
) = F.double_quant(B.to(torch.float16))
if using_igemmlt:
state.CxB, state.SB = F.transform(CB, to_order=formatB)
else:
state.CB = CB
else:
has_grad = False
if coo_tensorA is not None and not state.has_fp16_weights:
# extract outliers
outlier_idx = torch.unique(coo_tensorA.colidx)
state.idx = outlier_idx
# state.outlier_pool.add_outliers(outlier_idx, A.shape[-1])
# if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]:
# # do not use pool for 2nd FFN layer
# state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device)
# else:
# state.idx = outlier_idx
if state.CxB is not None:
outliers = F.extract_outliers</s>
===========below chunk 2===========
# module: bitsandbytes.autograd._functions
class MatMul8bitLt(torch.autograd.Function):
# forward is the same, but we added the fallback for pre-turing GPUs
# backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
@staticmethod
def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState):
# offset: 3
<s>.CxB, state.SB, state.idx.int())
else:
outliers = state.CB[:, state.idx.long()].clone()
state.subB = (outliers * state.SCB.view(-1, 1) / 127.0).t().contiguous().to(A.dtype)
CA[:, state.idx.long()] = 0
CAt[:, state.idx.long()] = 0
subA = A[:, state.idx.long()]
shapeB = state.SB[0] if state.SB else B.shape
if len(input_shape) == 3:
output_shape = (input_shape[0], input_shape[1], shapeB[0])
else:
output_shape = (input_shape[0], shapeB[0])
# 3. Matmul
if using_igemmlt:
C32A, SA = F.transform(CA, "col32")
out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB)
if bias is None or bias.dtype == torch.float16:
# we apply the fused bias here
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias)
output = output.to(A.dtype)
else: # apply bias separately
output = F.mm_dequant(out32, Sout32, SCA, state.</s>
===========below chunk 3===========
# module: bitsandbytes.autograd._functions
class MatMul8bitLt(torch.autograd.Function):
# forward is the same, but we added the fallback for pre-turing GPUs
# backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
@staticmethod
def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState):
# offset: 4
<s>, bias=None)
output = output.to(A.dtype).add_(bias)
else:
A_wo_outliers = A.clone()
if state.idx is not None:
A_wo_outliers[:, state.idx.long()] = 0
output = torch.nn.functional.linear(A_wo_outliers, state.CB.to(A.dtype))
output = output.mul_(state.SCB.unsqueeze(0).mul(1.0 / 127.0))
if bias is not None:
output = output.add_(bias)
# 4. Mixed-precision decomposition matmul
if coo_tensorA is not None and subA is not None:
output += torch.matmul(subA, state.subB)
# 5. Save state
ctx.state = state
ctx.formatB = formatB
ctx.grad_shape = input_shape
ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype
if any(ctx.needs_input_grad[:2]):
ctx.tensors = (CAt, subA)
ctx.tensor_states = (SCAt, state.idx)
else:
ctx.tensors = [None, None]
ctx.tensor_states = (None, None)
ctx.save_for_backward(None, None)
clone_func = torch.
|
bitsandbytes.functional/quantize_no_absmax
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
ed6f3eb146d67d6a2618f85227048be1ba82725a
|
Merge pull request #159 from TimDettmers/serialize_8bit
|
<20>:<add> prev_device = pre_call(A.device)
<23>:<add> post_call(prev_device)
|
# module: bitsandbytes.functional
def quantize_no_absmax(A: Tensor, code: Tensor, out: Tensor = None) -> Tensor:
<0> '''
<1> Quantizes input tensor to 8-bit.
<2>
<3> Quantizes the 32-bit input tensor `A` to the 8-bit output tensor
<4> `out` using the quantization map `code`.
<5>
<6> Parameters
<7> ----------
<8> A : torch.Tensor
<9> The input tensor.
<10> code : torch.Tensor
<11> The quantization map.
<12> out : torch.Tensor, optional
<13> The output tensor. Needs to be of type byte.
<14>
<15> Returns
<16> -------
<17> torch.Tensor:
<18> Quantized 8-bit tensor.
<19> '''
<20> if out is None: out = torch.zeros_like(A, dtype=torch.uint8)
<21> is_on_gpu([A, out])
<22> lib.cquantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()))
<23> return out
<24>
|
===========changed ref 0===========
# module: bitsandbytes.autograd._functions
+ def supports_igemmlt(device: torch.device) -> bool:
+ """check if this device supports the optimized int8 kernel"""
+ if torch.cuda.get_device_capability(device=device) < (7, 5):
+ return False
+ device_name = torch.cuda.get_device_name(device=device)
+ nvidia16_models = ('GTX 1630', 'GTX 1650', 'GTX 1660') # https://en.wikipedia.org/wiki/GeForce_16_series
+ if any(model_name in device_name for model_name in nvidia16_models):
+ return False # these devices are technically cuda 7.5-capable, but they lack tensor cores
+ return True
+
===========changed ref 1===========
# module: bitsandbytes.cuda_setup.main
def is_cublasLt_compatible(cc):
has_cublaslt = False
if cc is not None:
cc_major, cc_minor = cc.split('.')
if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
+ CUDASetup.get_instance().add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True)
- cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True)
else:
has_cublaslt = True
return has_cublaslt
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.env_vars
def to_be_ignored(env_var: str, value: str) -> bool:
ignorable = {
"PWD", # PWD: this is how the shell keeps track of the current working dir
"OLDPWD",
"SSH_AUTH_SOCK", # SSH stuff, therefore unrelated
"SSH_TTY",
"HOME", # Linux shell default
"TMUX", # Terminal Multiplexer
"XDG_DATA_DIRS", # XDG: Desktop environment stuff
+ "XDG_GREETER_DATA_DIR", # XDG: Desktop environment stuff
"XDG_RUNTIME_DIR",
"MAIL", # something related to emails
"SHELL", # binary for currently invoked shell
"DBUS_SESSION_BUS_ADDRESS", # hardware related
"PATH", # this is for finding binaries, not libraries
"LESSOPEN", # related to the `less` command
"LESSCLOSE",
"_", # current Python interpreter
}
return env_var in ignorable
===========changed ref 3===========
# module: bitsandbytes.functional
name2qmap = {}
if COMPILED_WITH_CUDA:
"""C FUNCTIONS FOR OPTIMIZERS"""
str2optimizer32bit = {}
str2optimizer32bit["adam"] = (lib.cadam32bit_g32, lib.cadam32bit_g16)
str2optimizer32bit["momentum"] = (
lib.cmomentum32bit_g32,
lib.cmomentum32bit_g16,
)
str2optimizer32bit["rmsprop"] = (
lib.crmsprop32bit_g32,
lib.crmsprop32bit_g16,
+ )
+ str2optimizer32bit["lion"] = (
+ lib.clion32bit_g32,
+ lib.clion32bit_g16,
)
str2optimizer32bit["adagrad"] = (
lib.cadagrad32bit_g32,
lib.cadagrad32bit_g16,
)
str2optimizer32bit["lars"] = (
lib.cmomentum32bit_g32,
lib.cmomentum32bit_g16,
)
str2optimizer32bit["lamb"] = (lib.cadam32bit_g32, lib.cadam32bit_g16)
str2optimizer8bit = {}
str2optimizer8bit["adam"] = (
lib.cadam_static_8bit_g32,
lib.cadam_static_8bit_g16,
)
str2optimizer8bit["momentum"] = (
lib.cmomentum_static_8bit_g32,
lib.cmomentum_static_8bit_g16,
)
str2optimizer8bit["rmsprop"] = (
lib.crmsprop_static_8bit_g32,
lib.crmsprop_static_8bit_g16,
)
+ str2optimizer8bit["lion"] = (
+ lib.clion_static</s>
===========changed ref 4===========
# module: bitsandbytes.functional
# offset: 1
<s>_g16,
)
+ str2optimizer8bit["lion"] = (
+ lib.clion_static_8bit_g32,
+ lib.clion_static_8bit_g16,
+ )
str2optimizer8bit["lamb"] = (
lib.cadam_static_8bit_g32,
lib.cadam_static_8bit_g16,
)
str2optimizer8bit["lars"] = (
lib.cmomentum_static_8bit_g32,
lib.cmomentum_static_8bit_g16,
)
str2optimizer8bit_blockwise = {}
str2optimizer8bit_blockwise["adam"] = (
lib.cadam_8bit_blockwise_fp32,
lib.cadam_8bit_blockwise_fp16,
)
str2optimizer8bit_blockwise["momentum"] = (
lib.cmomentum_8bit_blockwise_fp32,
lib.cmomentum_8bit_blockwise_fp16,
)
str2optimizer8bit_blockwise["rmsprop"] = (
lib.crmsprop_8bit_blockwise_fp32,
lib.crmsprop_8bit_blockwise_fp16,
)
+ str2optimizer8bit_blockwise["lion"] = (
+ lib.clion_8bit_blockwise_fp32,
+ lib.clion_8bit_blockwise_fp16,
+ )
str2optimizer8bit_blockwise["adagrad"] = (
lib.cadagrad_8bit_blockwise_fp32,
lib.cadagrad_8bit_blockwise_fp16,
)
|
bitsandbytes.functional/dequantize_no_absmax
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
ed6f3eb146d67d6a2618f85227048be1ba82725a
|
Merge pull request #159 from TimDettmers/serialize_8bit
|
<20>:<add> prev_device = pre_call(A.device)
<23>:<add> post_call(prev_device)
|
# module: bitsandbytes.functional
def dequantize_no_absmax(A: Tensor, code: Tensor, out: Tensor = None) -> Tensor:
<0> '''
<1> Dequantizes the 8-bit tensor to 32-bit.
<2>
<3> Dequantizes the 8-bit tensor `A` to the 32-bit tensor `out` via
<4> the quantization map `code`.
<5>
<6> Parameters
<7> ----------
<8> A : torch.Tensor
<9> The 8-bit input tensor.
<10> code : torch.Tensor
<11> The quantization map.
<12> out : torch.Tensor
<13> The 32-bit output tensor.
<14>
<15> Returns
<16> -------
<17> torch.Tensor:
<18> 32-bit output tensor.
<19> '''
<20> if out is None: out = torch.zeros_like(A, dtype=torch.float32)
<21> is_on_gpu([code, A, out])
<22> lib.cdequantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()))
<23> return out
<24>
|
===========changed ref 0===========
# module: bitsandbytes.functional
def quantize_no_absmax(A: Tensor, code: Tensor, out: Tensor = None) -> Tensor:
'''
Quantizes input tensor to 8-bit.
Quantizes the 32-bit input tensor `A` to the 8-bit output tensor
`out` using the quantization map `code`.
Parameters
----------
A : torch.Tensor
The input tensor.
code : torch.Tensor
The quantization map.
out : torch.Tensor, optional
The output tensor. Needs to be of type byte.
Returns
-------
torch.Tensor:
Quantized 8-bit tensor.
'''
+ prev_device = pre_call(A.device)
if out is None: out = torch.zeros_like(A, dtype=torch.uint8)
is_on_gpu([A, out])
lib.cquantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()))
+ post_call(prev_device)
return out
===========changed ref 1===========
# module: bitsandbytes.autograd._functions
+ def supports_igemmlt(device: torch.device) -> bool:
+ """check if this device supports the optimized int8 kernel"""
+ if torch.cuda.get_device_capability(device=device) < (7, 5):
+ return False
+ device_name = torch.cuda.get_device_name(device=device)
+ nvidia16_models = ('GTX 1630', 'GTX 1650', 'GTX 1660') # https://en.wikipedia.org/wiki/GeForce_16_series
+ if any(model_name in device_name for model_name in nvidia16_models):
+ return False # these devices are technically cuda 7.5-capable, but they lack tensor cores
+ return True
+
===========changed ref 2===========
# module: bitsandbytes.cuda_setup.main
def is_cublasLt_compatible(cc):
has_cublaslt = False
if cc is not None:
cc_major, cc_minor = cc.split('.')
if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
+ CUDASetup.get_instance().add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True)
- cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True)
else:
has_cublaslt = True
return has_cublaslt
===========changed ref 3===========
# module: bitsandbytes.cuda_setup.env_vars
def to_be_ignored(env_var: str, value: str) -> bool:
ignorable = {
"PWD", # PWD: this is how the shell keeps track of the current working dir
"OLDPWD",
"SSH_AUTH_SOCK", # SSH stuff, therefore unrelated
"SSH_TTY",
"HOME", # Linux shell default
"TMUX", # Terminal Multiplexer
"XDG_DATA_DIRS", # XDG: Desktop environment stuff
+ "XDG_GREETER_DATA_DIR", # XDG: Desktop environment stuff
"XDG_RUNTIME_DIR",
"MAIL", # something related to emails
"SHELL", # binary for currently invoked shell
"DBUS_SESSION_BUS_ADDRESS", # hardware related
"PATH", # this is for finding binaries, not libraries
"LESSOPEN", # related to the `less` command
"LESSCLOSE",
"_", # current Python interpreter
}
return env_var in ignorable
===========changed ref 4===========
# module: bitsandbytes.functional
name2qmap = {}
if COMPILED_WITH_CUDA:
"""C FUNCTIONS FOR OPTIMIZERS"""
str2optimizer32bit = {}
str2optimizer32bit["adam"] = (lib.cadam32bit_g32, lib.cadam32bit_g16)
str2optimizer32bit["momentum"] = (
lib.cmomentum32bit_g32,
lib.cmomentum32bit_g16,
)
str2optimizer32bit["rmsprop"] = (
lib.crmsprop32bit_g32,
lib.crmsprop32bit_g16,
+ )
+ str2optimizer32bit["lion"] = (
+ lib.clion32bit_g32,
+ lib.clion32bit_g16,
)
str2optimizer32bit["adagrad"] = (
lib.cadagrad32bit_g32,
lib.cadagrad32bit_g16,
)
str2optimizer32bit["lars"] = (
lib.cmomentum32bit_g32,
lib.cmomentum32bit_g16,
)
str2optimizer32bit["lamb"] = (lib.cadam32bit_g32, lib.cadam32bit_g16)
str2optimizer8bit = {}
str2optimizer8bit["adam"] = (
lib.cadam_static_8bit_g32,
lib.cadam_static_8bit_g16,
)
str2optimizer8bit["momentum"] = (
lib.cmomentum_static_8bit_g32,
lib.cmomentum_static_8bit_g16,
)
str2optimizer8bit["rmsprop"] = (
lib.crmsprop_static_8bit_g32,
lib.crmsprop_static_8bit_g16,
)
+ str2optimizer8bit["lion"] = (
+ lib.clion_static</s>
===========changed ref 5===========
# module: bitsandbytes.functional
# offset: 1
<s>_g16,
)
+ str2optimizer8bit["lion"] = (
+ lib.clion_static_8bit_g32,
+ lib.clion_static_8bit_g16,
+ )
str2optimizer8bit["lamb"] = (
lib.cadam_static_8bit_g32,
lib.cadam_static_8bit_g16,
)
str2optimizer8bit["lars"] = (
lib.cmomentum_static_8bit_g32,
lib.cmomentum_static_8bit_g16,
)
str2optimizer8bit_blockwise = {}
str2optimizer8bit_blockwise["adam"] = (
lib.cadam_8bit_blockwise_fp32,
lib.cadam_8bit_blockwise_fp16,
)
str2optimizer8bit_blockwise["momentum"] = (
lib.cmomentum_8bit_blockwise_fp32,
lib.cmomentum_8bit_blockwise_fp16,
)
str2optimizer8bit_blockwise["rmsprop"] = (
lib.crmsprop_8bit_blockwise_fp32,
lib.crmsprop_8bit_blockwise_fp16,
)
+ str2optimizer8bit_blockwise["lion"] = (
+ lib.clion_8bit_blockwise_fp32,
+ lib.clion_8bit_blockwise_fp16,
+ )
str2optimizer8bit_blockwise["adagrad"] = (
lib.cadagrad_8bit_blockwise_fp32,
lib.cadagrad_8bit_blockwise_fp16,
)
|
tests.test_optim/test_optimizer8bit
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
792af5c8838568d47e6421fece9dcb7460b20adc
|
Fixed noisy tests for 8-bit Lion.
|
<29>:<add> # since Lion can have pretty noisy updates where things lie at the boundary
<add> # allow up to 5 errors for Lion
<add> assert_most_approx_close(p1, p2.float(), patol, prtol, max_error_count=5)
<del> torch.testing.assert_allclose(p1, p2.float(), atol=patol, rtol=prtol)
|
# module: tests.test_optim
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_optimizer8bit(dim1, dim2, gtype, optim_name):
<0> if dim1 == 1 and dim2 == 1:
<1> return
<2> p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1
<3> p2 = p1.clone()
<4> p1 = p1.float()
<5> blocksize = 2048
<6>
<7> torch_optimizer = str2optimizers[optim_name][0]([p1])
<8> bnb_optimizer = str2optimizers[optim_name][1]([p2])
<9>
<10> if gtype == torch.float32:
<11> atol, rtol = 3e-3, 1e-3
<12> patol, prtol = 1e-5, 1e-3
<13>
<14> else:
<15> atol, rtol = 3e-3, 1e-3
<16> patol, prtol = 1e-5, 1e-3
<17>
<18> errors = []
<19> relerrors = []
<20>
<21> for i in range(50):
<22> g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01
<23> p1.grad = g.clone().float()
<24> p2.grad = g.clone()
<25>
<26> bnb_optimizer.step()
<27> torch_optimizer.step()
<28>
<29> torch.testing.assert_allclose(p1, p2.float(), atol=patol, rtol=prtol)
<30>
<31> dequant_states = []
<32> for name1, name2, qmap, max_val in str2statenames[optim_name]:
<33> # print(bnb_optimizer.state[p2][max_val], name1)
<34> if "blockwise" in optim_name:
<35> s1 = F.dequantize_blockwise(
<36> code=bnb_optimizer.state</s>
|
===========below chunk 0===========
# module: tests.test_optim
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_optimizer8bit(dim1, dim2, gtype, optim_name):
# offset: 1
absmax=bnb_optimizer.state[p2][max_val],
A=bnb_optimizer.state[p2][name2],
blocksize=blocksize,
)
else:
s1 = F.dequantize(
code=bnb_optimizer.state[p2][qmap],
absmax=bnb_optimizer.state[p2][max_val],
A=bnb_optimizer.state[p2][name2],
)
num_not_close = (
torch.isclose(
torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol
)
== 0
)
assert num_not_close.sum().item() < 20
dequant_states.append(s1.clone())
err = torch.abs(p1 - p2)
relerr = err / torch.abs(p1)
assert err.mean() < 0.0001
assert relerr.mean() < 0.001
errors.append(err.mean().item())
relerrors.append(relerr.mean().item())
if i % 10 == 0 and i > 0:
for (name1, name2, qmap, max_val), s in zip(
str2statenames[optim_name], dequant_states
):
s1cpy = s.clone()
raws1cpy = bnb_optimizer.state[p2][name2].clone()
qmap1 = bnb_optimizer.state[p2][qmap].clone()
path = get_temp_dir()
torch.save(bnb_optimizer.state_dict(), join(path, "opt.pt"))
del bnb_optimizer
bnb_optimizer = None
bnb_optimizer = str2</s>
===========below chunk 1===========
# module: tests.test_optim
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_optimizer8bit(dim1, dim2, gtype, optim_name):
# offset: 2
<s> "opt.pt"))
del bnb_optimizer
bnb_optimizer = None
bnb_optimizer = str2optimizers[optim_name][1]([p2])
bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt")))
rm_path(path)
torch.testing.assert_allclose(
raws1cpy, bnb_optimizer.state[p2][name2]
)
torch.testing.assert_allclose(
qmap1, bnb_optimizer.state[p2][qmap]
)
if "blockwise" in optim_name:
s1 = F.dequantize_blockwise(
code=bnb_optimizer.state[p2][qmap],
absmax=bnb_optimizer.state[p2][max_val],
A=bnb_optimizer.state[p2][name2],
blocksize=blocksize,
)
else:
s1 = F.dequantize(
code=bnb_optimizer.state[p2][qmap],
absmax=bnb_optimizer.state[p2][max_val],
A=bnb_optimizer.state[p2][name2],
)
torch.testing.assert_allclose(s1cpy, s1)
num_not_close = (
torch.isclose(
torch_optimizer.state[p1][name1],
s1,
atol=atol,
rtol=rtol,
)
== 0
)
assert num_not_close.sum().item() < 20
torch.testing.</s>
===========below chunk 2===========
# module: tests.test_optim
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_optimizer8bit(dim1, dim2, gtype, optim_name):
# offset: 3
<s>allclose(
p1, p2.float(), atol=patol, rtol=prtol
)
# the parameters diverge quickly. Here we keep them close
# together so we can test against the Adam error
p1.data = p1.data.to(gtype).float()
p2.copy_(p1.data)
torch.testing.assert_allclose(p1.to(gtype), p2)
for (name1, name2, qmap, max_val), s in zip(
str2statenames[optim_name], dequant_states
):
torch_optimizer.state[p1][name1].copy_(s.data)
===========changed ref 0===========
# module: tests.test_optim
+ def assert_most_approx_close(a, b, rtol=1e-3, atol=1e-3, max_error_count=0):
+ idx = torch.isclose(a, b, rtol, atol)
+ error_count = (idx == 0).sum().item()
+ if error_count > max_error_count:
+ print(f"Too many values not close: assert {sumval} < {count}")
+ torch.testing.assert_allclose(a, b, rtol, atol)
+
|
bitsandbytes.optim.optimizer/Optimizer1State.update_step
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
2eb310835668f854c169953814f1d3b16a44346b
|
Fixed bug where beta2 was not passed into Lion 32-bit.
|
<26>:<add> config['betas'][1],
<del> 0.0,
|
# module: bitsandbytes.optim.optimizer
class Optimizer1State(Optimizer8bit):
@torch.no_grad()
def update_step(self, group, p, gindex, pindex):
<0> state = self.state[p]
<1> grad = p.grad
<2>
<3> config = self.get_config(gindex, pindex, group)
<4>
<5> state["step"] += 1
<6> step = state["step"]
<7>
<8> if config["percentile_clipping"] < 100:
<9> current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(
<10> grad, state["gnorm_vec"], step, config["percentile_clipping"]
<11> )
<12> else:
<13> gnorm_scale = 1.0
<14>
<15> if state["state1"].dtype == torch.float:
<16> F.optimizer_update_32bit(
<17> self.optimizer_name,
<18> grad,
<19> p,
<20> state["state1"],
<21> config["betas"][0],
<22> config["eps"],
<23> step,
<24> config["lr"],
<25> None,
<26> 0.0,
<27> config["weight_decay"],
<28> gnorm_scale,
<29> state["unorm_vec"] if config["max_unorm"] > 0.0 else None,
<30> max_unorm=config["max_unorm"],
<31> skip_zeros=config["skip_zeros"],
<32> )
<33>
<34> elif state["state1"].dtype == torch.uint8 and not config["block_wise"]:
<35> F.optimizer_update_8bit(
<36> self.optimizer_name,
<37> grad,
<38> p,
<39> state["state1"],
<40> None,
<41> config["betas"][0],
<42> config["betas"][1],
<43> config["eps"],
<44> step,
<45> config["lr"],
<46> state["qmap1"],
<47> None,
<48> state["max1"],
</s>
|
===========below chunk 0===========
# module: bitsandbytes.optim.optimizer
class Optimizer1State(Optimizer8bit):
@torch.no_grad()
def update_step(self, group, p, gindex, pindex):
# offset: 1
state["new_max1"],
None,
config["weight_decay"],
gnorm_scale,
state["unorm_vec"] if config["max_unorm"] > 0.0 else None,
max_unorm=config["max_unorm"],
)
state["max1"], state["new_max1"] = state["new_max1"], state["max1"]
elif state["state1"].dtype == torch.uint8 and config["block_wise"]:
F.optimizer_update_8bit_blockwise(
self.optimizer_name,
grad,
p,
state["state1"],
None,
config["betas"][0],
config["betas"][1],
config["eps"],
step,
config["lr"],
state["qmap1"],
None,
state["absmax1"],
None,
config["weight_decay"],
gnorm_scale=gnorm_scale,
skip_zeros=config["skip_zeros"],
)
===========unchanged ref 0===========
at: bitsandbytes.functional
optimizer_update_32bit(optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor=None, beta2: float=0.0, weight_decay: float=0.0, gnorm_scale: float=1.0, unorm_vec: Tensor=None, max_unorm: float=0.0, skip_zeros=False) -> None
optimizer_update_8bit(optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, state2: Tensor, beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, max1: Tensor, max2: Tensor, new_max1: Tensor, new_max2: Tensor, weight_decay: float=0.0, gnorm_scale: float=1.0, unorm_vec: Tensor=None, max_unorm: float=0.0) -> None
optimizer_update_8bit_blockwise(optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, state2: Tensor, beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, absmax1: Tensor, absmax2: Tensor, weight_decay: float=0.0, gnorm_scale: float=1.0, skip_zeros=False) -> None
percentile_clipping(grad: Tensor, gnorm_vec: Tensor, step: int, percentile: int=5)
at: bitsandbytes.optim.optimizer.Optimizer1State.__init__
self.optimizer_name = optimizer_name
at: bitsandbytes.optim.optimizer.Optimizer8bit
get_config(gindex, pindex, group)
update_step(self, group, p, gindex, pindex)
at: torch._C
float: dtype = ...
uint8: dtype = ...
===========unchanged ref 1===========
at: torch.autograd.grad_mode
no_grad()
at: torch.optim.optimizer.Optimizer.__init__
self.state: DefaultDict[torch.Tensor, Any] = defaultdict(dict)
|
tests.test_optim/assert_most_approx_close
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
2eb310835668f854c169953814f1d3b16a44346b
|
Fixed bug where beta2 was not passed into Lion 32-bit.
|
<3>:<add> print(f"Too many values not close: assert {error_count} < {max_error_count}")
<del> print(f"Too many values not close: assert {sumval} < {count}")
|
# module: tests.test_optim
def assert_most_approx_close(a, b, rtol=1e-3, atol=1e-3, max_error_count=0):
<0> idx = torch.isclose(a, b, rtol, atol)
<1> error_count = (idx == 0).sum().item()
<2> if error_count > max_error_count:
<3> print(f"Too many values not close: assert {sumval} < {count}")
<4> torch.testing.assert_allclose(a, b, rtol, atol)
<5>
|
===========changed ref 0===========
# module: bitsandbytes.optim.optimizer
class Optimizer1State(Optimizer8bit):
@torch.no_grad()
def update_step(self, group, p, gindex, pindex):
state = self.state[p]
grad = p.grad
config = self.get_config(gindex, pindex, group)
state["step"] += 1
step = state["step"]
if config["percentile_clipping"] < 100:
current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(
grad, state["gnorm_vec"], step, config["percentile_clipping"]
)
else:
gnorm_scale = 1.0
if state["state1"].dtype == torch.float:
F.optimizer_update_32bit(
self.optimizer_name,
grad,
p,
state["state1"],
config["betas"][0],
config["eps"],
step,
config["lr"],
None,
+ config['betas'][1],
- 0.0,
config["weight_decay"],
gnorm_scale,
state["unorm_vec"] if config["max_unorm"] > 0.0 else None,
max_unorm=config["max_unorm"],
skip_zeros=config["skip_zeros"],
)
elif state["state1"].dtype == torch.uint8 and not config["block_wise"]:
F.optimizer_update_8bit(
self.optimizer_name,
grad,
p,
state["state1"],
None,
config["betas"][0],
config["betas"][1],
config["eps"],
step,
config["lr"],
state["qmap1"],
None,
state["max1"],
None,
state["new_max1"],
None,
config["weight_decay"],
gnorm_scale,
state["</s>
===========changed ref 1===========
# module: bitsandbytes.optim.optimizer
class Optimizer1State(Optimizer8bit):
@torch.no_grad()
def update_step(self, group, p, gindex, pindex):
# offset: 1
<s>new_max1"],
None,
config["weight_decay"],
gnorm_scale,
state["unorm_vec"] if config["max_unorm"] > 0.0 else None,
max_unorm=config["max_unorm"],
)
state["max1"], state["new_max1"] = state["new_max1"], state["max1"]
elif state["state1"].dtype == torch.uint8 and config["block_wise"]:
F.optimizer_update_8bit_blockwise(
self.optimizer_name,
grad,
p,
state["state1"],
None,
config["betas"][0],
config["betas"][1],
config["eps"],
step,
config["lr"],
state["qmap1"],
None,
state["absmax1"],
None,
config["weight_decay"],
gnorm_scale=gnorm_scale,
skip_zeros=config["skip_zeros"],
)
|
tests.test_optim/test_optimizer32bit
|
Modified
|
bitsandbytes-foundation~bitsandbytes
|
2eb310835668f854c169953814f1d3b16a44346b
|
Fixed bug where beta2 was not passed into Lion 32-bit.
|
<22>:<add>
<30>:<add> # since Lion can have pretty noisy updates where things lie at the boundary
<add> # allow up to 10 errors for Lion
<add> assert_most_approx_close(p1, p2.float(), atol, rtol, max_error_count=10)
<del> torch.testing.assert_allclose(p1, p2.float(), atol=atol, rtol=rtol)
|
# module: tests.test_optim
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_optimizer32bit(dim1, dim2, gtype, optim_name):
<0> if dim1 == 1 and dim2 == 1:
<1> return
<2> p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1
<3> p2 = p1.clone()
<4> p1 = p1.float()
<5>
<6> torch_optimizer = str2optimizers[optim_name][0]([p1])
<7> bnb_optimizer = str2optimizers[optim_name][1]([p2])
<8>
<9> if gtype == torch.float32:
<10> atol, rtol = 1e-6, 1e-5
<11> else:
<12> atol, rtol = 1e-4, 1e-3
<13>
<14> for i in range(k):
<15> g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01
<16> p1.grad = g.clone().float()
<17> p2.grad = g.clone()
<18>
<19> bnb_optimizer.step()
<20> torch_optimizer.step()
<21>
<22> for name1, name2 in str2statenames[optim_name]:
<23> torch.testing.assert_allclose(
<24> torch_optimizer.state[p1][name1],
<25> bnb_optimizer.state[p2][name2],
<26> atol=atol,
<27> rtol=rtol,
<28> )
<29>
<30> torch.testing.assert_allclose(p1, p2.float(), atol=atol, rtol=rtol)
<31>
<32> if i % (k // 5) == 0 and i > 0:
<33> path = get_temp_dir()
<34> torch.save(bnb_optimizer.state_dict(), join(path, "opt.pt"))
<35> del bnb_optimizer
<36> bnb_optimizer</s>
|
===========below chunk 0===========
# module: tests.test_optim
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_optimizer32bit(dim1, dim2, gtype, optim_name):
# offset: 1
bnb_optimizer = str2optimizers[optim_name][1]([p2])
bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt")))
rm_path(path)
torch.testing.assert_allclose(p1, p2.float(), atol=atol, rtol=rtol)
for name1, name2 in str2statenames[optim_name]:
torch.testing.assert_allclose(
torch_optimizer.state[p1][name1],
bnb_optimizer.state[p2][name2],
atol=atol,
rtol=rtol,
)
if gtype == torch.float16:
# the adam buffers should also be close because they are 32-bit
# but the paramters can diverge because they are 16-bit
# the difference grow larger and larger with each update
# --> copy the state to keep weights close
p1.data = p1.data.half().float()
p2.copy_(p1.data)
torch.testing.assert_allclose(p1.half(), p2)
if optim_name in ["lars", "lamb"]:
assert bnb_optimizer.state[p2]["unorm_vec"] > 0.0
===========changed ref 0===========
# module: tests.test_optim
def assert_most_approx_close(a, b, rtol=1e-3, atol=1e-3, max_error_count=0):
idx = torch.isclose(a, b, rtol, atol)
error_count = (idx == 0).sum().item()
if error_count > max_error_count:
+ print(f"Too many values not close: assert {error_count} < {max_error_count}")
- print(f"Too many values not close: assert {sumval} < {count}")
torch.testing.assert_allclose(a, b, rtol, atol)
===========changed ref 1===========
# module: bitsandbytes.optim.optimizer
class Optimizer1State(Optimizer8bit):
@torch.no_grad()
def update_step(self, group, p, gindex, pindex):
state = self.state[p]
grad = p.grad
config = self.get_config(gindex, pindex, group)
state["step"] += 1
step = state["step"]
if config["percentile_clipping"] < 100:
current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(
grad, state["gnorm_vec"], step, config["percentile_clipping"]
)
else:
gnorm_scale = 1.0
if state["state1"].dtype == torch.float:
F.optimizer_update_32bit(
self.optimizer_name,
grad,
p,
state["state1"],
config["betas"][0],
config["eps"],
step,
config["lr"],
None,
+ config['betas'][1],
- 0.0,
config["weight_decay"],
gnorm_scale,
state["unorm_vec"] if config["max_unorm"] > 0.0 else None,
max_unorm=config["max_unorm"],
skip_zeros=config["skip_zeros"],
)
elif state["state1"].dtype == torch.uint8 and not config["block_wise"]:
F.optimizer_update_8bit(
self.optimizer_name,
grad,
p,
state["state1"],
None,
config["betas"][0],
config["betas"][1],
config["eps"],
step,
config["lr"],
state["qmap1"],
None,
state["max1"],
None,
state["new_max1"],
None,
config["weight_decay"],
gnorm_scale,
state["</s>
===========changed ref 2===========
# module: bitsandbytes.optim.optimizer
class Optimizer1State(Optimizer8bit):
@torch.no_grad()
def update_step(self, group, p, gindex, pindex):
# offset: 1
<s>new_max1"],
None,
config["weight_decay"],
gnorm_scale,
state["unorm_vec"] if config["max_unorm"] > 0.0 else None,
max_unorm=config["max_unorm"],
)
state["max1"], state["new_max1"] = state["new_max1"], state["max1"]
elif state["state1"].dtype == torch.uint8 and config["block_wise"]:
F.optimizer_update_8bit_blockwise(
self.optimizer_name,
grad,
p,
state["state1"],
None,
config["betas"][0],
config["betas"][1],
config["eps"],
step,
config["lr"],
state["qmap1"],
None,
state["absmax1"],
None,
config["weight_decay"],
gnorm_scale=gnorm_scale,
skip_zeros=config["skip_zeros"],
)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.