path
stringlengths
9
117
type
stringclasses
2 values
project
stringclasses
10 values
commit_hash
stringlengths
40
40
commit_message
stringlengths
1
137
ground_truth
stringlengths
0
2.74k
main_code
stringlengths
102
3.37k
context
stringlengths
0
14.7k
dalle_mini.model.modeling/GLU.__call__
Modified
borisdayma~dalle-mini
f139b0be7c3b03f0520c106b12540b3fbd8e6e82
feat: add sinkformer + custom final ln + pre-ln (#151)
<4>:<add> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <del> if self.config.ln_positions in ["normformer", "cogview"]:
# module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: <0> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <1> self.config <2> ) <3> <4> if self.config.ln_positions in ["normformer", "cogview"]: <5> x = norm( <6> self.config.ln_type, <7> dtype=self.dtype, <8> epsilon=1e-05, <9> use_scale=self.config.force_ln_scale, <10> )(x) <11> w = nn.Dense( <12> self.ffn_dim, <13> dtype=self.dtype, <14> use_bias=False, <15> kernel_init=deepnet_init(gain) <16> if self.config.use_deepnet_scaling <17> else jax.nn.initializers.normal(self.config.init_std), <18> )(x) <19> w = ACT2FN[self.config.activation_function](w) <20> v = nn.Dense( <21> self.ffn_dim, <22> dtype=self.dtype, <23> use_bias=False, <24> kernel_init=deepnet_init(gain) <25> if self.config.use_deepnet_scaling <26> else jax.nn.initializers.normal(self.config.init_std), <27> )(x) <28> x = w * v <29> if self.config.ln_positions in ["normformer"]: <30> x = norm( <31> self.config.ln_type, <32> dtype=self.dtype, <33> epsilon=1e-05, <34> use_scale=self.config.force_ln_scale, <35> )(x) <36> x = nn.Dropout(rate=self.config.activation_dropout)( <37> x, deterministic=deterministic <38> ) <39> <40> x</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.GLU config: DalleBartConfig ffn_dim: int embed_dim: int dtype: jnp.dtype = jnp.float32 is_encoder: bool = False at: transformers.modeling_flax_utils ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } ===========changed ref 0=========== <s> query: Any, + key: Any, + bias: Optional[Any] = None, + mask: Optional[Any] = None, + broadcast_dropout: bool = True, + dropout_rng: Optional[PRNGKey] = None, + dropout_rate: float = 0.0, + deterministic: bool = False, + dtype: Any = jnp.float32, + precision: PrecisionLike = None, + sinkhorn_iters: int = 1, + ): + """ + Computes dot-product attention weights given query and key. + + Adapted from flax.linen.attention.dot_product_attention_weights" + """ + assert query.ndim == key.ndim, "q, k must have same rank." + assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match." + assert query.shape[-2] == key.shape[-2], "q, k num_heads must match." + assert query.shape[-1] == key.shape[-1], "q, k depths must match." + + # calculate attention matrix + depth = query.shape[-1] + query = query / jnp.sqrt(depth).astype(dtype) + # attn weight shape is (batch..., num_heads, q_length, kv_length) + attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision) + + # apply attention bias: masking, dropout, proximity bias, etc. + if bias is not None: + attn_weights = attn_weights + bias + # apply attention mask + if mask is not None: + big_neg = jnp.finfo(dtype).min + attn_weights = jnp.where(mask, attn_weights, big_neg) + + # normalize the attention weights + attn_weights = jax.nn.softmax(attn_weights).astype(dtype) </s> ===========changed ref 1=========== <s> + key: Any, + bias: Optional[Any] = None, + mask: Optional[Any] = None, + broadcast_dropout: bool = True, + dropout_rng: Optional[PRNGKey] = None, + dropout_rate: float = 0.0, + deterministic: bool = False, + dtype: Any = jnp.float32, + precision: PrecisionLike = None, + sinkhorn_iters: int = 1, + ): # offset: 1 <s> normalize the attention weights + attn_weights = jax.nn.softmax(attn_weights).astype(dtype) + for i in range(sinkhorn_iters - 1): + axis = -2 if i % 2 == 0 else -1 + attn_weights /= 1e-8 + jnp.sum(attn_weights, axis=axis, keepdims=True) + + # apply attention dropout + if not deterministic and dropout_rate > 0.0: + keep_prob = 1.0 - dropout_rate + if broadcast_dropout: + # dropout is broadcast across the batch + head dimensions + dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:] + keep = jax.random.bernoulli(dropout_rng, keep_prob, dropout_shape) + else: + keep = jax.random.bernoulli(dropout_rng, keep_prob, attn_weights.shape) + multiplier = keep.astype(attn_weights.dtype) / jnp.asarray( + keep_prob, dtype=dtype + ) + attn_weights = attn_weights * multiplier + + return attn_weights +
dalle_mini.model.modeling/FFN.__call__
Modified
borisdayma~dalle-mini
f139b0be7c3b03f0520c106b12540b3fbd8e6e82
feat: add sinkformer + custom final ln + pre-ln (#151)
<3>:<add> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <del> if self.config.ln_positions in ["normformer", "cogview"]:
# module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: <0> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <1> self.config <2> ) <3> if self.config.ln_positions in ["normformer", "cogview"]: <4> x = norm( <5> self.config.ln_type, <6> dtype=self.dtype, <7> epsilon=1e-05, <8> use_scale=self.config.force_ln_scale, <9> )(x) <10> x = nn.Dense( <11> self.ffn_dim, <12> dtype=self.dtype, <13> use_bias=False, <14> kernel_init=deepnet_init(gain) <15> if self.config.use_deepnet_scaling <16> else jax.nn.initializers.normal(self.config.init_std), <17> )(x) <18> x = ACT2FN[self.config.activation_function](x) <19> if self.config.ln_positions in ["normformer"]: <20> x = norm( <21> self.config.ln_type, <22> dtype=self.dtype, <23> epsilon=1e-05, <24> use_scale=self.config.force_ln_scale, <25> )(x) <26> x = nn.Dropout(rate=self.config.activation_dropout)( <27> x, deterministic=deterministic <28> ) <29> x = nn.Dense( <30> self.embed_dim, <31> dtype=self.dtype, <32> use_bias=False, <33> kernel_init=deepnet_init(gain) <34> if self.config.use_deepnet_scaling <35> else jax.nn.initializers.normal(self.config.init_std), <36> )(x) <37> if self.config.ln_positions in ["swinv2",</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FFN config: DalleBartConfig ffn_dim: int embed_dim: int dtype: jnp.dtype = jnp.float32 is_encoder: bool = False at: transformers.modeling_flax_utils ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } ===========changed ref 0=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) + if self.config.ln_positions in ["normformer", "cogview", "preln"]: - if self.config.ln_positions in ["normformer", "cogview"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) w = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) w = ACT2FN[self.config.activation_function](w) v = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = w * v if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim,</s> ===========changed ref 1=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s> x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========changed ref 2=========== <s> query: Any, + key: Any, + bias: Optional[Any] = None, + mask: Optional[Any] = None, + broadcast_dropout: bool = True, + dropout_rng: Optional[PRNGKey] = None, + dropout_rate: float = 0.0, + deterministic: bool = False, + dtype: Any = jnp.float32, + precision: PrecisionLike = None, + sinkhorn_iters: int = 1, + ): + """ + Computes dot-product attention weights given query and key. + + Adapted from flax.linen.attention.dot_product_attention_weights" + """ + assert query.ndim == key.ndim, "q, k must have same rank." + assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match." + assert query.shape[-2] == key.shape[-2], "q, k num_heads must match." + assert query.shape[-1] == key.shape[-1], "q, k depths must match." + + # calculate attention matrix + depth = query.shape[-1] + query = query / jnp.sqrt(depth).astype(dtype) + # attn weight shape is (batch..., num_heads, q_length, kv_length) + attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision) + + # apply attention bias: masking, dropout, proximity bias, etc. + if bias is not None: + attn_weights = attn_weights + bias + # apply attention mask + if mask is not None: + big_neg = jnp.finfo(dtype).min + attn_weights = jnp.where(mask, attn_weights, big_neg) + + # normalize the attention weights + attn_weights = jax.nn.softmax(attn_weights).astype(dtype) </s>
dalle_mini.model.modeling/FlaxBartEncoderLayer.__call__
Modified
borisdayma~dalle-mini
f139b0be7c3b03f0520c106b12540b3fbd8e6e82
feat: add sinkformer + custom final ln + pre-ln (#151)
<8>:<add> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <del> if self.config.ln_positions in ["normformer", "cogview"]:
# module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> res_gain = ( <1> deepnet_gain["encoder"]["alpha"](self.config) <2> if self.config.use_deepnet_scaling <3> else 1 <4> ) <5> <6> embed_dim = self.config.d_model <7> residual = hidden_states <8> if self.config.ln_positions in ["normformer", "cogview"]: <9> hidden_states = norm( <10> self.config.ln_type, <11> dtype=self.dtype, <12> epsilon=1e-05, <13> use_scale=self.config.force_ln_scale, <14> )(hidden_states) <15> hidden_states, attn_weights = FlaxBartAttention( <16> config=self.config, <17> embed_dim=embed_dim, <18> num_heads=self.config.encoder_attention_heads, <19> dropout=self.config.attention_dropout, <20> bias=False, <21> dtype=self.dtype, <22> is_encoder=True, <23> )(hidden_states=hidden_states, attention_mask=attention_mask) <24> <25> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: <26> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <27> hidden_states <28> ) <29> hidden_states = nn.Dropout(rate=self.config.dropout)( <30> hidden_states, deterministic=deterministic <31> ) <32> hidden_states = residual * res_gain + hidden_states <33> if self.config.ln_positions in ["postln"]: <34> </s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 hidden_states ) residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["postln"]: use_scale = ( self.use_scale or self.config.ln_positions == "postln" or self.config.force_ln_scale ) hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartEncoderLayer config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = True at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') ===========changed ref 0=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) + if self.config.ln_positions in ["normformer", "cogview", "preln"]: - if self.config.ln_positions in ["normformer", "cogview"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = ACT2FN[self.config.activation_function](x) if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm</s> ===========changed ref 1=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s>(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========changed ref 2=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) + if self.config.ln_positions in ["normformer", "cogview", "preln"]: - if self.config.ln_positions in ["normformer", "cogview"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) w = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) w = ACT2FN[self.config.activation_function](w) v = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = w * v if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim,</s>
dalle_mini.model.modeling/FlaxBartDecoderLayer.__call__
Modified
borisdayma~dalle-mini
f139b0be7c3b03f0520c106b12540b3fbd8e6e82
feat: add sinkformer + custom final ln + pre-ln (#151)
<10>:<add> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <del> if self.config.ln_positions in ["normformer", "cogview"]:
<s> FlaxBartDecoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> res_gain = ( <1> deepnet_gain["decoder"]["alpha"](self.config) <2> if self.config.use_deepnet_scaling <3> else 1 <4> ) <5> <6> embed_dim = self.config.d_model <7> residual = hidden_states <8> <9> # Self Attention <10> if self.config.ln_positions in ["normformer", "cogview"]: <11> hidden_states = norm( <12> self.config.ln_type, <13> dtype=self.dtype, <14> epsilon=1e-05, <15> use_scale=self.config.force_ln_scale, <16> )(hidden_states) <17> hidden_states, attn_weights = FlaxBartAttention( <18> config=self.config, <19> embed_dim=embed_dim, <20> num_heads=self.config.decoder_attention_heads, <21> dropout=self.config.attention_dropout, <22> causal=True, <23> bias=False, <24> dtype=self.dtype, <25> is_encoder=False, <26> )( <27> hidden_states=hidden_states, <28> attention_mask=attention_mask, <29> init_cache=init_cache, <30> ) <31> <32> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: <33> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <34> hidden_states <35> )</s>
===========below chunk 0=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) # Cross Attention cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states if self.config.ln_positions in ["normformer", "cogview"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(hidden_states) hidden_states, cross_attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, bias=False, dtype=self.dtype, is_encoder=False, )( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-</s> ===========below chunk 1=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s>: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) # Feed forward residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["post</s> ===========below chunk 2=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>: use_scale = ( self.use_scale or self.config.ln_positions == "postln" or self.config.force_ln_scale ) hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights, cross_attn_weights) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartDecoderLayer config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = False at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')
dalle_mini.model.modeling/FlaxBartEncoderLayerCollection.__call__
Modified
borisdayma~dalle-mini
f139b0be7c3b03f0520c106b12540b3fbd8e6e82
feat: add sinkformer + custom final ln + pre-ln (#151)
<14>:<del> # not needed for other models which use layernorm before x-attention <15>:<del> # ignored args for deepnet which always add a norm with scale <16>:<del> add_norm = self.config.force_final_ln_encoder or ( <17>:<add> add_norm = ( <add> self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) <del> self.config.ln_positions == "swinv2" <18>:<del> and ((i == n_layers - 1) or ((i + 1) % 6 == 0)) <19>:<del> ) <20>:<add> ) or (self.config.use_final_ln_encoder and (i == n_layers - 1))
# module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): <0> all_hidden_states = () if output_hidden_states else None <1> all_self_attns = () if output_attentions else None <2> <3> n_layers = self.config.encoder_layers <4> layer = ( <5> remat(FlaxBartEncoderLayer, static_argnums=(2, 3)) <6> if self.config.gradient_checkpointing <7> else FlaxBartEncoderLayer <8> ) <9> for i in range(n_layers): <10> if output_hidden_states: <11> all_hidden_states += (hidden_states,) <12> # final layernorm on the output of the last layer <13> # or every 6 layers for Swin v2 <14> # not needed for other models which use layernorm before x-attention <15> # ignored args for deepnet which always add a norm with scale <16> add_norm = self.config.force_final_ln_encoder or ( <17> self.config.ln_positions == "swinv2" <18> and ((i == n_layers - 1) or ((i + 1) % 6 == 0)) <19> ) <20> # we don't need to scale the norm for the last layer <21> use_scale = i != n_layers - 1 <22> layer_outputs = layer( <23> self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale <24> )( <25> hidden_states, <26> attention_mask, <27> output_attentions, <28> deterministic, <29> ) <30> hidden_states = layer_outputs[0] <31> if output_attentions: <32> all_self_attns += (layer_outputs[1</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 1 # add hidden states from the last layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [ hidden_states, all_hidden_states, all_self_attns, ] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, ) ===========unchanged ref 0=========== at: dalle_mini.model.modeling remat = nn_partitioning.remat at: dalle_mini.model.modeling.FlaxBartEncoderLayerCollection config: DalleBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation at: transformers.modeling_flax_outputs FlaxBaseModelOutput(**kwargs: _VT) FlaxBaseModelOutput(iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) FlaxBaseModelOutput(map: Mapping[_KT, _VT], **kwargs: _VT) ===========changed ref 0=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) + if self.config.ln_positions in ["normformer", "cogview", "preln"]: - if self.config.ln_positions in ["normformer", "cogview"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = ACT2FN[self.config.activation_function](x) if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm</s> ===========changed ref 1=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s>(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========changed ref 2=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) + if self.config.ln_positions in ["normformer", "cogview", "preln"]: - if self.config.ln_positions in ["normformer", "cogview"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) w = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) w = ACT2FN[self.config.activation_function](w) v = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = w * v if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim,</s> ===========changed ref 3=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s> x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x
dalle_mini.model.modeling/FlaxBartDecoderLayerCollection.__call__
Modified
borisdayma~dalle-mini
f139b0be7c3b03f0520c106b12540b3fbd8e6e82
feat: add sinkformer + custom final ln + pre-ln (#151)
<18>:<add> add_norm = ( <del> add_norm = (i == n_layers - 1) or ( <19>:<add> self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) <del> (self.config.ln_positions == "swinv2") and ((i + 1) % 6 == 0) <20>:<add> ) or (self.config.use_final_ln_decoder and (i == n_layers - 1)) <del> )
<s>Collection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): <0> # decoder layers <1> all_hidden_states = () if output_hidden_states else None <2> all_self_attns = () if output_attentions else None <3> all_cross_attentions = ( <4> () if (output_attentions and encoder_hidden_states is not None) else None <5> ) <6> <7> n_layers = self.config.decoder_layers <8> layer = ( <9> remat(FlaxBartDecoderLayer, static_argnums=(4, 5, 6)) <10> if self.config.gradient_checkpointing <11> else FlaxBartDecoderLayer <12> ) <13> for i in range(n_layers): <14> if output_hidden_states: <15> all_hidden_states += (hidden_states,) <16> # final layernorm on the output of the last layer <17> # or every 6 layers for Swin v2 <18> add_norm = (i == n_layers - 1) or ( <19> (self.config.ln_positions == "swinv2") and ((i + 1) % 6 == 0) <20> ) <21> # we don't need to scale the norm for the last layer <22> use_scale = i != n_layers - 1 <23> layer_outputs = layer( <24> self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale <25> )( <26> hidden_states, <27> attention_mask, <28> encoder_hidden_states, <29> encoder_attention_mask, <30> init_cache, <31> output_att</s>
===========below chunk 0=========== <s>): @nn.compact def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 1 deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [ hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, ] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) ===========unchanged ref 0=========== at: dalle_mini.model.modeling remat = nn_partitioning.remat at: dalle_mini.model.modeling.FlaxBartDecoderLayerCollection config: DalleBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation at: transformers.modeling_flax_outputs FlaxBaseModelOutputWithPastAndCrossAttentions(**kwargs: _VT) FlaxBaseModelOutputWithPastAndCrossAttentions(map: Mapping[_KT, _VT], **kwargs: _VT) FlaxBaseModelOutputWithPastAndCrossAttentions(iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None n_layers = self.config.encoder_layers layer = ( remat(FlaxBartEncoderLayer, static_argnums=(2, 3)) if self.config.gradient_checkpointing else FlaxBartEncoderLayer ) for i in range(n_layers): if output_hidden_states: all_hidden_states += (hidden_states,) # final layernorm on the output of the last layer # or every 6 layers for Swin v2 - # not needed for other models which use layernorm before x-attention - # ignored args for deepnet which always add a norm with scale - add_norm = self.config.force_final_ln_encoder or ( + add_norm = ( + self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) - self.config.ln_positions == "swinv2" - and ((i == n_layers - 1) or ((i + 1) % 6 == 0)) - ) + ) or (self.config.use_final_ln_encoder and (i == n_layers - 1)) # we don't need to scale the norm for the last layer use_scale = i != n_layers - 1 layer_outputs = layer( self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale )( hidden_states, attention_mask, output_attentions, deterministic, )</s> ===========changed ref 1=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 1 <s> )( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) # add hidden states from the last layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [ hidden_states, all_hidden_states, all_self_attns, ] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, ) ===========changed ref 2=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) + if self.config.ln_positions in ["normformer", "cogview", "preln"]: - if self.config.ln_positions in ["normformer", "cogview"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = ACT2FN[self.config.activation_function](x) if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm</s>
tools.train.train/ModelArguments.get_opt_state
Modified
borisdayma~dalle-mini
02b2308f9fdfc64ab539761175f346b428d41ff7
feat(train): google-cloud-storage is optional
<20>:<add> assert ( <add> storage is not None <add> ), 'Could not find google.storage. Install with "pip install google-cloud-storage"'
# module: tools.train.train @dataclass class ModelArguments: def get_opt_state(self): <0> with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies <1> if self.restore_state is True: <2> # wandb artifact <3> state_artifact = self.model_name_or_path.replace( <4> "/model-", "/state-", 1 <5> ) <6> if jax.process_index() == 0: <7> artifact = wandb.run.use_artifact(state_artifact) <8> else: <9> artifact = wandb.Api().artifact(state_artifact) <10> if artifact.metadata.get("bucket_path"): <11> # we will read directly file contents <12> self.restore_state = artifact.metadata["bucket_path"] <13> else: <14> artifact_dir = artifact.download(tmp_dir) <15> self.restore_state = str(Path(artifact_dir) / "opt_state.msgpack") <16> <17> if self.restore_state.startswith("gs://"): <18> bucket_path = Path(self.restore_state[5:]) / "opt_state.msgpack" <19> bucket, blob_name = str(bucket_path).split("/", 1) <20> client = storage.Client() <21> bucket = client.bucket(bucket) <22> blob = bucket.blob(blob_name) <23> return blob.download_as_bytes() <24> <25> with Path(self.restore_state).open("rb") as f: <26> return f.read() <27>
===========unchanged ref 0=========== at: pathlib Path() at: tempfile TemporaryDirectory(suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=...) at: tools.train.train.ModelArguments model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch. " "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." }, ) config_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained config name or path if not the same as model_name_or_path" }, ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path" }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." }, ) restore_state: Optional[bool] = field( default=False, metadata={ "help": "Restore optimizer and training state. Can be True (will retrieve associated wandb artifact), a local directory or a Google bucket path." }, ) at: tools.train.train.ModelArguments.get_metadata artifact = wandb.run.use_artifact(self.model_name_or_path) artifact = wandb.Api().artifact(self.model_name_or_path) at: wandb Api = PublicApi run: Optional["wandb_sdk.wandb_run.Run"] = None ===========unchanged ref 1=========== at: wandb.apis.public.Api _HTTP_TIMEOUT = env.get_http_timeout(9) VIEWER_QUERY = gql( """ query Viewer{ viewer { id flags entity username email admin apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } """ ) USERS_QUERY = gql( """ query SearchUsers($query: String) { users(query: $query) { edges { node { id flags entity admin email deletedAt username apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } } } """ ) CREATE_PROJECT = gql( """ mutation upsertModel( $description: String $entityName: String $id: String $name: String $framework: String $access: String $views: JSONString ) { upsertModel( input: { description: $description entityName: $entityName id: $id name: $name framework: $framework access: $access views: $views } ) { project { id name entityName description access views } model { id name entityName description access views } inserted } } """ ) artifact(name, type=None) ===========unchanged ref 2=========== at: wandb.apis.public.Artifact QUERY = gql( """ query ArtifactWithCurrentManifest( $id: ID!, ) { artifact(id: $id) { currentManifest { id file { id directUrl } } ...ArtifactFragment } } %s """ % ARTIFACT_FRAGMENT ) at: wandb.sdk.wandb_run.Run _telemetry_obj: telemetry.TelemetryRecord _telemetry_obj_active: bool _telemetry_obj_dirty: bool _telemetry_obj_flushed: bytes _teardown_hooks: List[TeardownHook] _tags: Optional[Tuple[Any, ...]] _entity: Optional[str] _project: Optional[str] _group: Optional[str] _job_type: Optional[str] _name: Optional[str] _notes: Optional[str] _run_obj: Optional[RunRecord] _run_obj_offline: Optional[RunRecord] _backend: Optional["wandb.sdk.backend.backend.Backend"] _internal_run_interface: Optional[ Union[ "wandb.sdk.interface.interface_queue.InterfaceQueue", "wandb.sdk.interface.interface_grpc.InterfaceGrpc", ] ] _wl: Optional[_WandbSetup] _out_redir: Optional[redirect.RedirectBase] _err_redir: Optional[redirect.RedirectBase] _redirect_cb: Optional[Callable[[str, str], None]] _redirect_raw_cb: Optional[Callable[[str, str], None]] _output_writer: Optional["filesystem.CRDedupedFile"] _quiet: Optional[bool] _atexit_cleanup_called: bool _hooks: Optional[ExitHooks] ===========unchanged ref 3=========== _exit_code: Optional[int] _run_status_checker: Optional[RunStatusChecker] _check_version: Optional["CheckVersionResponse"] _sampled_history: Optional["SampledHistoryResponse"] _final_summary: Optional["GetSummaryResponse"] _poll_exit_handle: Optional[MailboxHandle] _poll_exit_response: Optional[PollExitResponse] _server_info_response: Optional[ServerInfoResponse] _stdout_slave_fd: Optional[int] _stderr_slave_fd: Optional[int] _artifact_slots: List[str] _init_pid: int _attach_pid: int _iface_pid: Optional[int] _iface_port: Optional[int] _attach_id: Optional[str] _is_attached: bool _settings: Settings _launch_artifacts: Optional[Dict[str, Any]] _printer: Union["PrinterTerm", "PrinterJupyter"] use_artifact(self, artifact_or_name: Union[str, public.Artifact, Artifact], type: Optional[str]=None, aliases: Optional[List[str]]=None, use_as: Optional[str]=None) -> Union[public.Artifact, Artifact] ===========changed ref 0=========== # module: tools.train.train + try: + from google.cloud import storage + except: + storage = None + cc.initialize_cache("./jax_cache", max_cache_size_bytes=10 * 2**30) logger = logging.getLogger(__name__)
tools.train.train/TrainingArguments.__post_init__
Modified
borisdayma~dalle-mini
02b2308f9fdfc64ab539761175f346b428d41ff7
feat(train): google-cloud-storage is optional
<4>:<add> if self.output_dir.startswith("gs://"): <add> assert ( <add> storage is not None <add> ), 'Could not find google.storage. Install with "pip install google-cloud-storage"'
# module: tools.train.train @dataclass class TrainingArguments: def __post_init__(self): <0> if self.assert_TPU_available: <1> assert ( <2> jax.local_device_count() == 8 <3> ), "TPUs in use, please check running processes" <4> assert self.optim in [ <5> "distributed_shampoo", <6> "adam", <7> "adafactor", <8> ], f"Selected optimizer not supported: {self.optim}" <9> assert self.graft_type in [ <10> "rmsprop_normalized", <11> "rmsprop", <12> "adagrad", <13> "adagrad_normalized", <14> "sgd", <15> "sqrt_n", <16> ], f"Selected graft type not supported: {self.graft_type}" <17> assert self.lr_decay in [ <18> None, <19> "linear", <20> "exponential", <21> ], f"Selected learning rate decay not supported: {self.lr_decay}" <22> if self.per_device_eval_batch_size is None: <23> self.per_device_eval_batch_size = self.per_device_train_batch_size <24> if self.log_norm_steps is True: <25> self.log_norm_steps = self.logging_steps <26> if ( <27> os.path.exists(self.output_dir) <28> and os.listdir(self.output_dir) <29> and self.do_train <30> and not self.overwrite_output_dir <31> ): <32> raise ValueError( <33> f"Output directory ({self.output_dir}) already exists and is not empty." <34> "Use --overwrite_output_dir to overcome." <35> ) <36> assert ( <37> self.mp_devices > 0 <38> ), f"Number of devices for model parallelism must be > 0" <39> assert ( <40> jax.device_count() % self.mp_devices == 0 <41> ), f"Number of available devices ({jax.device_</s>
===========below chunk 0=========== # module: tools.train.train @dataclass class TrainingArguments: def __post_init__(self): # offset: 1 self.dp_devices = jax.device_count() // self.mp_devices ===========unchanged ref 0=========== at: os listdir(path: bytes) -> List[bytes] listdir(path: int) -> List[str] listdir(path: Optional[str]=...) -> List[str] listdir(path: _PathLike[str]) -> List[str] at: os.path exists(path: Union[AnyStr, _PathLike[AnyStr]]) -> bool ===========changed ref 0=========== # module: tools.train.train + try: + from google.cloud import storage + except: + storage = None + cc.initialize_cache("./jax_cache", max_cache_size_bytes=10 * 2**30) logger = logging.getLogger(__name__) ===========changed ref 1=========== # module: tools.train.train @dataclass class ModelArguments: def get_opt_state(self): with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies if self.restore_state is True: # wandb artifact state_artifact = self.model_name_or_path.replace( "/model-", "/state-", 1 ) if jax.process_index() == 0: artifact = wandb.run.use_artifact(state_artifact) else: artifact = wandb.Api().artifact(state_artifact) if artifact.metadata.get("bucket_path"): # we will read directly file contents self.restore_state = artifact.metadata["bucket_path"] else: artifact_dir = artifact.download(tmp_dir) self.restore_state = str(Path(artifact_dir) / "opt_state.msgpack") if self.restore_state.startswith("gs://"): bucket_path = Path(self.restore_state[5:]) / "opt_state.msgpack" bucket, blob_name = str(bucket_path).split("/", 1) + assert ( + storage is not None + ), 'Could not find google.storage. Install with "pip install google-cloud-storage"' client = storage.Client() bucket = client.bucket(bucket) blob = bucket.blob(blob_name) return blob.download_as_bytes() with Path(self.restore_state).open("rb") as f: return f.read()
dalle_mini.model.configuration/DalleBartConfig.__init__
Modified
borisdayma~dalle-mini
361a994d86d90f758a35b8f94b5588e58b7a52e2
feat(model): allow bias (#152)
<4>:<add> self.use_bias = use_bias <del> self.use_head_scale = use_head_scale # per Normformer <19>:<add> self.use_head_scale = use_head_scale
<s>, # from "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=False, # final layer normalization in encoder use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): <0> # text normalizer <1> self.normalize_text = normalize_text <2> <3> # transformer variants <4> self.use_head_scale = use_head_scale # per Normformer <5> assert ln_type in [ <6> "rmsnorm", <7> "layernorm", <8> ], "ln_type must be 'rmsnorm' or 'layernorm'" <9> self.ln_type = ln_type <10> if ln_positions == "deepnet": <11> ln_positions = "postln" <12> assert ln_positions in [ <13> "normformer", <14> "swinv2", <15> "cogview", <16> "postln", <17> "preln", <18> ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'" <19> assert use_alibi is False, "use_alibi is not supported yet" <20> self.ln_positions = ln_positions <21> self.use_cosine_attention = use_cosine_attention <22> self.tau_init = tau_init <23> self.use_deepnet_scaling = use_deepnet_scaling <24> self.use_glu = use_glu <25> self.use_alibi = use_alibi <26> self.sinkhorn_iters = sinkhorn_iters <27> if ln_positions == "postln": <28> assert ( <29> use_final_ln_encoder <30> ), "use_final_ln_encoder must be True when ln_positions is 'postln</s>
===========below chunk 0=========== <s>Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=False, # final layer normalization in encoder use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 1 assert ( use_final_ln_decoder ), "use_final_ln_decoder must be True when ln_positions is 'postln'" self.use_final_ln_encoder = use_final_ln_encoder self.use_final_ln_decoder = use_final_ln_decoder self.force_ln_scale = force_ln_scale # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("</s> ===========below chunk 1=========== <s>Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=False, # final layer normalization in encoder use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 2 <s> ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length + 1) max_length = kwargs.pop("max_length", image_length + 1) super().__init__( # args required in parent class is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_embeddings, forced_eos_token_id=forced_eos_token_id, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, min_length=min_length, max_length=max_length, do_sample=do_sample, **kwargs, ) # ensure</s> ===========below chunk 2=========== <s>Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=False, # final layer normalization in encoder use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 3 <s> for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." ) ===========unchanged ref 0=========== at: _warnings warn(message: str, category: Optional[Type[Warning]]=..., stacklevel: int=..., source: Optional[Any]=...) -> None warn(message: Warning, category: Any=..., stacklevel: int=..., source: Optional[Any]=...) -> None at: transformers.configuration_utils.PretrainedConfig model_type: str = "" is_composition: bool = False attribute_map: Dict[str, str] = {} _auto_class: Optional[str] = None __init__(**kwargs) __init__(self, **kwargs) at: transformers.configuration_utils.PretrainedConfig.__init__ self.bos_token_id = kwargs.pop("bos_token_id", None) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] at: typing.MutableMapping pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T] pop(key: _KT) -> _VT ===========changed ref 0=========== # module: dalle_mini + __version__ = "0.0.4" - __version__ = "0.0.3"
dalle_mini.model.modeling/GLU.__call__
Modified
borisdayma~dalle-mini
361a994d86d90f758a35b8f94b5588e58b7a52e2
feat(model): allow bias (#152)
<14>:<add> use_bias=self.config.use_bias, <del> use_bias=False, <23>:<add> use_bias=self.config.use_bias, <del> use_bias=False,
# module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: <0> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <1> self.config <2> ) <3> <4> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <5> x = norm( <6> self.config.ln_type, <7> dtype=self.dtype, <8> epsilon=1e-05, <9> use_scale=self.config.force_ln_scale, <10> )(x) <11> w = nn.Dense( <12> self.ffn_dim, <13> dtype=self.dtype, <14> use_bias=False, <15> kernel_init=deepnet_init(gain) <16> if self.config.use_deepnet_scaling <17> else jax.nn.initializers.normal(self.config.init_std), <18> )(x) <19> w = ACT2FN[self.config.activation_function](w) <20> v = nn.Dense( <21> self.ffn_dim, <22> dtype=self.dtype, <23> use_bias=False, <24> kernel_init=deepnet_init(gain) <25> if self.config.use_deepnet_scaling <26> else jax.nn.initializers.normal(self.config.init_std), <27> )(x) <28> x = w * v <29> if self.config.ln_positions in ["normformer"]: <30> x = norm( <31> self.config.ln_type, <32> dtype=self.dtype, <33> epsilon=1e-05, <34> use_scale=self.config.force_ln_scale, <35> )(x) <36> x = nn.Dropout(rate=self.config.activation_dropout)( <37> x, deterministic=deterministic <38> ) <39> </s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.GLU config: DalleBartConfig ffn_dim: int embed_dim: int dtype: jnp.dtype = jnp.float32 is_encoder: bool = False at: transformers.modeling_flax_utils ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } ===========changed ref 0=========== # module: dalle_mini + __version__ = "0.0.4" - __version__ = "0.0.3" ===========changed ref 1=========== <s>, # from "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=False, # final layer normalization in encoder use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # text normalizer self.normalize_text = normalize_text # transformer variants + self.use_bias = use_bias - self.use_head_scale = use_head_scale # per Normformer assert ln_type in [ "rmsnorm", "layernorm", ], "ln_type must be 'rmsnorm' or 'layernorm'" self.ln_type = ln_type if ln_positions == "deepnet": ln_positions = "postln" assert ln_positions in [ "normformer", "swinv2", "cogview", "postln", "preln", ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'" + self.use_head_scale = use_head_scale assert use_alibi is False, "use_alibi is not supported yet" self.ln_positions = ln_positions self.use_cosine_attention = use_cosine_attention self.tau_init = tau_init self.use_deepnet_scaling = use_deepnet_scaling self.use_glu = use_glu self.use_alibi = use_alibi self.sinkhorn_iters = sinkhorn_iters if ln_positions == "postln": assert ( use_final_ln_encoder ), "use_final_ln_encoder must be True when ln_positions is 'postln'" </s> ===========changed ref 2=========== <s>Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=False, # final layer normalization in encoder use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 1 <s>final_ln_encoder ), "use_final_ln_encoder must be True when ln_positions is 'postln'" assert ( use_final_ln_decoder ), "use_final_ln_decoder must be True when ln_positions is 'postln'" self.use_final_ln_encoder = use_final_ln_encoder self.use_final_ln_decoder = use_final_ln_decoder self.force_ln_scale = force_ln_scale # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache self.gradient_checkpointing = gradient</s>
dalle_mini.model.modeling/FFN.__call__
Modified
borisdayma~dalle-mini
361a994d86d90f758a35b8f94b5588e58b7a52e2
feat(model): allow bias (#152)
<13>:<add> use_bias=self.config.use_bias, <del> use_bias=False, <32>:<add> use_bias=self.config.use_bias, <del> use_bias=False,
# module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: <0> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <1> self.config <2> ) <3> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <4> x = norm( <5> self.config.ln_type, <6> dtype=self.dtype, <7> epsilon=1e-05, <8> use_scale=self.config.force_ln_scale, <9> )(x) <10> x = nn.Dense( <11> self.ffn_dim, <12> dtype=self.dtype, <13> use_bias=False, <14> kernel_init=deepnet_init(gain) <15> if self.config.use_deepnet_scaling <16> else jax.nn.initializers.normal(self.config.init_std), <17> )(x) <18> x = ACT2FN[self.config.activation_function](x) <19> if self.config.ln_positions in ["normformer"]: <20> x = norm( <21> self.config.ln_type, <22> dtype=self.dtype, <23> epsilon=1e-05, <24> use_scale=self.config.force_ln_scale, <25> )(x) <26> x = nn.Dropout(rate=self.config.activation_dropout)( <27> x, deterministic=deterministic <28> ) <29> x = nn.Dense( <30> self.embed_dim, <31> dtype=self.dtype, <32> use_bias=False, <33> kernel_init=deepnet_init(gain) <34> if self.config.use_deepnet_scaling <35> else jax.nn.initializers.normal(self.config.init_std), <36> )(x) <37> if self.config.ln_positions in ["</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FFN config: DalleBartConfig ffn_dim: int embed_dim: int dtype: jnp.dtype = jnp.float32 is_encoder: bool = False at: transformers.modeling_flax_utils ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } ===========changed ref 0=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) if self.config.ln_positions in ["normformer", "cogview", "preln"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) w = nn.Dense( self.ffn_dim, dtype=self.dtype, + use_bias=self.config.use_bias, - use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) w = ACT2FN[self.config.activation_function](w) v = nn.Dense( self.ffn_dim, dtype=self.dtype, + use_bias=self.config.use_bias, - use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = w * v if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense</s> ===========changed ref 1=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s>=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, + use_bias=self.config.use_bias, - use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========changed ref 2=========== # module: dalle_mini + __version__ = "0.0.4" - __version__ = "0.0.3" ===========changed ref 3=========== <s>, # from "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=False, # final layer normalization in encoder use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # text normalizer self.normalize_text = normalize_text # transformer variants + self.use_bias = use_bias - self.use_head_scale = use_head_scale # per Normformer assert ln_type in [ "rmsnorm", "layernorm", ], "ln_type must be 'rmsnorm' or 'layernorm'" self.ln_type = ln_type if ln_positions == "deepnet": ln_positions = "postln" assert ln_positions in [ "normformer", "swinv2", "cogview", "postln", "preln", ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'" + self.use_head_scale = use_head_scale assert use_alibi is False, "use_alibi is not supported yet" self.ln_positions = ln_positions self.use_cosine_attention = use_cosine_attention self.tau_init = tau_init self.use_deepnet_scaling = use_deepnet_scaling self.use_glu = use_glu self.use_alibi = use_alibi self.sinkhorn_iters = sinkhorn_iters if ln_positions == "postln": assert ( use_final_ln_encoder ), "use_final_ln_encoder must be True when ln_positions is 'postln'" </s>
dalle_mini.model.modeling/FlaxBartEncoderLayer.__call__
Modified
borisdayma~dalle-mini
361a994d86d90f758a35b8f94b5588e58b7a52e2
feat(model): allow bias (#152)
<20>:<add> bias=self.config.use_bias, <del> bias=False,
# module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> res_gain = ( <1> deepnet_gain["encoder"]["alpha"](self.config) <2> if self.config.use_deepnet_scaling <3> else 1 <4> ) <5> <6> embed_dim = self.config.d_model <7> residual = hidden_states <8> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <9> hidden_states = norm( <10> self.config.ln_type, <11> dtype=self.dtype, <12> epsilon=1e-05, <13> use_scale=self.config.force_ln_scale, <14> )(hidden_states) <15> hidden_states, attn_weights = FlaxBartAttention( <16> config=self.config, <17> embed_dim=embed_dim, <18> num_heads=self.config.encoder_attention_heads, <19> dropout=self.config.attention_dropout, <20> bias=False, <21> dtype=self.dtype, <22> is_encoder=True, <23> )(hidden_states=hidden_states, attention_mask=attention_mask) <24> <25> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: <26> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <27> hidden_states <28> ) <29> hidden_states = nn.Dropout(rate=self.config.dropout)( <30> hidden_states, deterministic=deterministic <31> ) <32> hidden_states = residual * res_gain + hidden_states <33> if self.config.ln_positions in ["postln</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["postln"]: use_scale = ( self.use_scale or self.config.ln_positions == "postln" or self.config.force_ln_scale ) hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartEncoderLayer config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = True at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') ===========changed ref 0=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) if self.config.ln_positions in ["normformer", "cogview", "preln"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dense( self.ffn_dim, dtype=self.dtype, + use_bias=self.config.use_bias, - use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = ACT2FN[self.config.activation_function](x) if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, + use_bias=self.config.use_bias, - use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "c</s> ===========changed ref 1=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s>config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========changed ref 2=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) if self.config.ln_positions in ["normformer", "cogview", "preln"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) w = nn.Dense( self.ffn_dim, dtype=self.dtype, + use_bias=self.config.use_bias, - use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) w = ACT2FN[self.config.activation_function](w) v = nn.Dense( self.ffn_dim, dtype=self.dtype, + use_bias=self.config.use_bias, - use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = w * v if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense</s>
dalle_mini.model.modeling/FlaxBartDecoderLayer.__call__
Modified
borisdayma~dalle-mini
361a994d86d90f758a35b8f94b5588e58b7a52e2
feat(model): allow bias (#152)
<23>:<add> bias=self.config.use_bias, <del> bias=False,
<s> FlaxBartDecoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> res_gain = ( <1> deepnet_gain["decoder"]["alpha"](self.config) <2> if self.config.use_deepnet_scaling <3> else 1 <4> ) <5> <6> embed_dim = self.config.d_model <7> residual = hidden_states <8> <9> # Self Attention <10> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <11> hidden_states = norm( <12> self.config.ln_type, <13> dtype=self.dtype, <14> epsilon=1e-05, <15> use_scale=self.config.force_ln_scale, <16> )(hidden_states) <17> hidden_states, attn_weights = FlaxBartAttention( <18> config=self.config, <19> embed_dim=embed_dim, <20> num_heads=self.config.decoder_attention_heads, <21> dropout=self.config.attention_dropout, <22> causal=True, <23> bias=False, <24> dtype=self.dtype, <25> is_encoder=False, <26> )( <27> hidden_states=hidden_states, <28> attention_mask=attention_mask, <29> init_cache=init_cache, <30> ) <31> <32> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: <33> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <34> hidden_states</s>
===========below chunk 0=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) # Cross Attention cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states if self.config.ln_positions in ["normformer", "cogview", "preln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(hidden_states) hidden_states, cross_attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, bias=False, dtype=self.dtype, is_encoder=False, )( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states =</s> ===========below chunk 1=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) # Feed forward residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain</s> ===========below chunk 2=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>_states if self.add_norm or self.config.ln_positions in ["postln"]: use_scale = ( self.use_scale or self.config.ln_positions == "postln" or self.config.force_ln_scale ) hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights, cross_attn_weights) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartDecoderLayer config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = False at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')
dalle_mini.model.modeling/dot_product_attention_weights
Modified
borisdayma~dalle-mini
eed4896bca4400b4740117d2bfed6c018aa189b4
fix: sinkformer gradient
<s> def dot_product_attention_weights( query: Any, key: Any, bias: Optional[Any] = None, mask: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, ): <0> """ <1> Computes dot-product attention weights given query and key. <2> <3> Adapted from flax.linen.attention.dot_product_attention_weights" <4> """ <5> assert query.ndim == key.ndim, "q, k must have same rank." <6> assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match." <7> assert query.shape[-2] == key.shape[-2], "q, k num_heads must match." <8> assert query.shape[-1] == key.shape[-1], "q, k depths must match." <9> <10> # calculate attention matrix <11> depth = query.shape[-1] <12> query = query / jnp.sqrt(depth).astype(dtype) <13> # attn weight shape is (batch..., num_heads, q_length, kv_length) <14> attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision) <15> <16> # apply attention bias: masking, dropout, proximity bias, etc. <17> if bias is not None: <18> attn_weights = attn_weights + bias <19> # apply attention mask <20> if mask is not None: <21> big_neg = jnp.finfo(dtype).min <22> attn_weights = jnp.where(mask, attn_weights, big_neg) <23> <24> # normalize the attention weights <25> attn_weights = jax.nn.softmax(attn_weights).astype(dtype) </s>
===========below chunk 0=========== <s>_attention_weights( query: Any, key: Any, bias: Optional[Any] = None, mask: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, ): # offset: 1 axis = -2 if i % 2 == 0 else -1 attn_weights /= 1e-8 + jnp.sum(attn_weights, axis=axis, keepdims=True) # apply attention dropout if not deterministic and dropout_rate > 0.0: keep_prob = 1.0 - dropout_rate if broadcast_dropout: # dropout is broadcast across the batch + head dimensions dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:] keep = jax.random.bernoulli(dropout_rng, keep_prob, dropout_shape) else: keep = jax.random.bernoulli(dropout_rng, keep_prob, attn_weights.shape) multiplier = keep.astype(attn_weights.dtype) / jnp.asarray( keep_prob, dtype=dtype ) attn_weights = attn_weights * multiplier return attn_weights
dalle_mini.model.modeling/FlaxBartAttention.__call__
Modified
borisdayma~dalle-mini
eed4896bca4400b4740117d2bfed6c018aa189b4
fix: sinkformer gradient
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> """Input shape: Batch x Time x Channel""" <1> <2> # if key_value_states are provided this layer is used as a cross-attention layer <3> # for the decoder <4> is_cross_attention = key_value_states is not None <5> batch_size = hidden_states.shape[0] <6> <7> # get query proj <8> query_states = self.q_proj(hidden_states) <9> # get key, value proj <10> if is_cross_attention: <11> # cross_attentions <12> key_states = self.k_proj(key_value_states) <13> value_states = self.v_proj(key_value_states) <14> else: <15> # self_attention <16> key_states = self.k_proj(hidden_states) <17> value_states = self.v_proj(hidden_states) <18> <19> query_states = self._split_heads(query_states) <20> key_states = self._split_heads(key_states) <21> value_states = self._split_heads(value_states) <22> <23> # handle cache prepare causal attention mask <24> if self.causal: <25> query_length, key_length = query_states.shape[1], key_states.shape[1] <26> if self.has_variable("cache", "cached_key"): <27> mask_shift = self.variables["cache"]["cache_index"] <28> max_decoder_length = self.variables["cache"]["cached_key"].shape[1] <29> causal_mask = lax.dynamic_slice( </s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length), ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to( causal_mask, (batch_size,) + causal_mask.shape[1:] ) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to( jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape ) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of</s> ===========below chunk 1=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s> # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") if self.config.use_cosine_attention: # normalize q and k query_states = query_states / ( jnp.linalg.norm(query_states, axis=-1, keepdims=True) + 1e-8 ) key_states = key_states / ( jnp.linalg.norm(key_states, axis=-1, keepdims=True) + 1e-8 ) attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, sinkhorn_iters=self.config</s> ===========below chunk 2=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>horn_iters, ) if self.config.use_cosine_attention: # divide by tau attn_weights = attn_weights / jnp.maximum(self.tau, 0.01) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) if self.config.use_head_scale: # per Normformer attn_output = attn_output * self.head_scale attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights ===========unchanged ref 0=========== at: dalle_mini.model.modeling dot_product_attention_weights(query: Any, key: Any, bias: Optional[Any]=None, mask: Optional[Any]=None, broadcast_dropout: bool=True, dropout_rng: Optional[PRNGKey]=None, dropout_rate: float=0.0, deterministic: bool=False, dtype: Any=jnp.float32, precision: PrecisionLike=None, sinkhorn_iters: int=1) at: dalle_mini.model.modeling.FlaxBartAttention.setup self.q_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.k_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.v_proj = dense( kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) at: transformers.models.bart.modeling_flax_bart.FlaxBartAttention config: BartConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation _split_heads(hidden_states) _concatenate_to_cache(key, value, query, attention_mask) ===========unchanged ref 1=========== __call__(self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray]=None, attention_mask: Optional[jnp.ndarray]=None, init_cache: bool=False, deterministic: bool=True) -> Tuple[jnp.ndarray] at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')
dalle_mini.model.modeling/dot_product_attention_weights
Modified
borisdayma~dalle-mini
00d46610722aa97e6bdd505fdc237c4a8dea6c58
feat: sinkhorn in lse mode (#155)
<2>:<add> mask is included into the bias. <19>:<del> # apply attention mask <20>:<del> if mask is not None: <21>:<del> big_neg = jnp.finfo(dtype).min <22>:<del> attn_weights = jnp.where(mask, attn_weights, big_neg) <25>:<add> if causal or sinkhorn_iters == 1: <add> # sinkhorn does not work for causal (leaks info of future tokens into past) <add> attn_weights = jax.nn.softmax(attn_weights).astype(dtype) <del> attn_weights = jax.nn.softmax(attn_weights).astype(dtype)
<s> query: Any, key: Any, bias: Optional[Any] = None, mask: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, + causal: bool = False, ): <0> """ <1> Computes dot-product attention weights given query and key. <2> <3> Adapted from flax.linen.attention.dot_product_attention_weights" <4> """ <5> assert query.ndim == key.ndim, "q, k must have same rank." <6> assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match." <7> assert query.shape[-2] == key.shape[-2], "q, k num_heads must match." <8> assert query.shape[-1] == key.shape[-1], "q, k depths must match." <9> <10> # calculate attention matrix <11> depth = query.shape[-1] <12> query = query / jnp.sqrt(depth).astype(dtype) <13> # attn weight shape is (batch..., num_heads, q_length, kv_length) <14> attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision) <15> <16> # apply attention bias: masking, dropout, proximity bias, etc. <17> if bias is not None: <18> attn_weights = attn_weights + bias <19> # apply attention mask <20> if mask is not None: <21> big_neg = jnp.finfo(dtype).min <22> attn_weights = jnp.where(mask, attn_weights, big_neg) <23> <24> # normalize the attention weights <25> attn_weights = jax.nn.softmax(attn_weights).astype(dtype) </s>
===========below chunk 0=========== <s> key: Any, bias: Optional[Any] = None, mask: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, + causal: bool = False, ): # offset: 1 # TODO: this is unstable, requires lse space axis = -2 if i % 2 == 0 else -1 if mask is not None: attn_weights = jnp.where( mask > 0, attn_weights / ( 1e-5 + jax.lax.stop_gradient( jnp.sum(attn_weights, axis=axis, where=mask, keepdims=True) ) ), 0.0, ) else: attn_weights = attn_weights / ( 1e-5 + jax.lax.stop_gradient(jnp.sum(attn_weights, axis=axis, keepdims=True)) ) # apply attention dropout if not deterministic and dropout_rate > 0.0: keep_prob = 1.0 - dropout_rate if broadcast_dropout: # dropout is broadcast across the batch + head dimensions dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:] keep = jax.random.bernoulli(dropout_rng, keep_prob, dropout_shape) else: keep = jax.random.bernoulli(dropout_rng, keep_prob, attn_weights.shape) multiplier = keep.astype(attn_weights.dtype) / jnp.asarray( keep_prob, dtype=dtype ) attn_weights = attn_weights * multiplier return attn_weights
dalle_mini.model.modeling/FlaxBartAttention.__call__
Modified
borisdayma~dalle-mini
00d46610722aa97e6bdd505fdc237c4a8dea6c58
feat: sinkhorn in lse mode (#155)
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> """Input shape: Batch x Time x Channel""" <1> <2> # if key_value_states are provided this layer is used as a cross-attention layer <3> # for the decoder <4> is_cross_attention = key_value_states is not None <5> batch_size = hidden_states.shape[0] <6> <7> # get query proj <8> query_states = self.q_proj(hidden_states) <9> # get key, value proj <10> if is_cross_attention: <11> # cross_attentions <12> key_states = self.k_proj(key_value_states) <13> value_states = self.v_proj(key_value_states) <14> else: <15> # self_attention <16> key_states = self.k_proj(hidden_states) <17> value_states = self.v_proj(hidden_states) <18> <19> query_states = self._split_heads(query_states) <20> key_states = self._split_heads(key_states) <21> value_states = self._split_heads(value_states) <22> <23> # handle cache prepare causal attention mask <24> if self.causal: <25> query_length, key_length = query_states.shape[1], key_states.shape[1] <26> if self.has_variable("cache", "cached_key"): <27> mask_shift = self.variables["cache"]["cache_index"] <28> max_decoder_length = self.variables["cache"]["cached_key"].shape[1] <29> causal_mask = lax.dynamic_slice( </s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length), ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to( causal_mask, (batch_size,) + causal_mask.shape[1:] ) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to( jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape ) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of</s> ===========below chunk 1=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s> # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") if self.config.use_cosine_attention: # normalize q and k query_states = query_states / ( jnp.linalg.norm(query_states, axis=-1, keepdims=True) + 1e-8 ) key_states = key_states / ( jnp.linalg.norm(key_states, axis=-1, keepdims=True) + 1e-8 ) attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, mask=attention_mask, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, sink</s> ===========below chunk 2=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>_iters=self.config.sinkhorn_iters, ) if self.config.use_cosine_attention: # divide by tau attn_weights = attn_weights / jnp.maximum(self.tau, 0.01) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) if self.config.use_head_scale: # per Normformer attn_output = attn_output * self.head_scale attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights ===========unchanged ref 0=========== at: dalle_mini.model.modeling dot_product_attention_weights(query: Any, key: Any, bias: Optional[Any]=None, mask: Optional[Any]=None, broadcast_dropout: bool=True, dropout_rng: Optional[PRNGKey]=None, dropout_rate: float=0.0, deterministic: bool=False, dtype: Any=jnp.float32, precision: PrecisionLike=None, sinkhorn_iters: int=1, causal: bool=False) at: dalle_mini.model.modeling.FlaxBartAttention.setup self.q_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.k_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.v_proj = dense( kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" ) at: dalle_mini.model.modeling.GLU dtype: jnp.dtype = jnp.float32 is_encoder: bool = False at: transformers.models.bart.modeling_flax_bart.FlaxBartAttention config: BartConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation ===========unchanged ref 1=========== _split_heads(hidden_states) _concatenate_to_cache(key, value, query, attention_mask)
dalle_mini.model.partitions/_get_partition_rules
Modified
borisdayma~dalle-mini
769d20ac4c8fa675067364e61a9a1c6898b7ba91
feat: allow relative position (#156)
<4>:<add> (("rel_bias", "embedding"), P(None, "mp")),
# module: dalle_mini.model.partitions def _get_partition_rules(): <0> return [ <1> # embeddings <2> (("embed_positions", "embedding"), P("mp", None)), <3> (("embed_tokens", "embedding"), P("mp", None)), <4> # attention <5> (("(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")), <6> (("out_proj", "kernel"), P("mp", None)), <7> # FFN <8> (("Dense_0", "kernel"), P(None, "mp")), <9> (("GLU.*", "Dense_1", "kernel"), P(None, "mp")), <10> (("GLU.*", "Dense_2", "kernel"), P("mp", None)), <11> (("FFN.*", "Dense_1", "kernel"), P("mp", None)), <12> # layer norms <13> (("(bias|scale)",), None), <14> (("lm_head", "kernel"), P(None, "mp")), <15> # head scale and tau <16> (("(head_scale|tau)",), None), <17> ] <18>
dalle_mini.model.configuration/DalleBartConfig.__init__
Modified
borisdayma~dalle-mini
769d20ac4c8fa675067364e61a9a1c6898b7ba91
feat: allow relative position (#156)
<24>:<add> self.use_absolute_position_embeddings = use_absolute_position_embeddings <add> self.use_swin_position_embeddings = use_swin_position_embeddings
<s>ers + use_final_ln_encoder=True, # final layer normalization in encoder - use_final_ln_encoder=False, # final layer normalization in encoder + use_final_ln_decoder=True, # final layer normalization in decoder - use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): <0> # text normalizer <1> self.normalize_text = normalize_text <2> <3> # transformer variants <4> self.use_bias = use_bias <5> assert ln_type in [ <6> "rmsnorm", <7> "layernorm", <8> ], "ln_type must be 'rmsnorm' or 'layernorm'" <9> self.ln_type = ln_type <10> if ln_positions == "deepnet": <11> ln_positions = "postln" <12> assert ln_positions in [ <13> "normformer", <14> "swinv2", <15> "cogview", <16> "postln", <17> "preln", <18> ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'" <19> self.use_head_scale = use_head_scale <20> assert use_alibi is False, "use_alibi is not supported yet" <21> self.ln_positions = ln_positions <22> self.use_cosine_attention = use_cosine_attention <23> self.tau_init = tau_init <24> self.use_deepnet_scaling = use_deepnet_scaling <25> self.use_glu = use_glu <26> self.use_alibi = use_alibi <27> self.sinkhorn_iters = sinkhorn_iters <28> if ln_positions == "postln": <29> assert ( <30> use_final_ln_encoder <31> ), "use_final_ln_encoder must be True when</s>
===========below chunk 0=========== <s>_final_ln_encoder=True, # final layer normalization in encoder - use_final_ln_encoder=False, # final layer normalization in encoder + use_final_ln_decoder=True, # final layer normalization in decoder - use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 1 assert ( use_final_ln_decoder ), "use_final_ln_decoder must be True when ln_positions is 'postln'" self.use_final_ln_encoder = use_final_ln_encoder self.use_final_ln_decoder = use_final_ln_decoder self.force_ln_scale = force_ln_scale # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("</s> ===========below chunk 1=========== <s>_final_ln_encoder=True, # final layer normalization in encoder - use_final_ln_encoder=False, # final layer normalization in encoder + use_final_ln_decoder=True, # final layer normalization in decoder - use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 2 <s> ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length + 1) max_length = kwargs.pop("max_length", image_length + 1) super().__init__( # args required in parent class is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_embeddings, forced_eos_token_id=forced_eos_token_id, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, min_length=min_length, max_length=max_length, do_sample=do_sample, **kwargs, ) # ensure</s> ===========below chunk 2=========== <s>_final_ln_encoder=True, # final layer normalization in encoder - use_final_ln_encoder=False, # final layer normalization in encoder + use_final_ln_decoder=True, # final layer normalization in decoder - use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 3 <s> for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." ) ===========unchanged ref 0=========== at: transformers.configuration_utils.PretrainedConfig model_type: str = "" is_composition: bool = False attribute_map: Dict[str, str] = {} _auto_class: Optional[str] = None __init__(**kwargs) __init__(self, **kwargs) at: transformers.configuration_utils.PretrainedConfig.__init__ self.bos_token_id = kwargs.pop("bos_token_id", None) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] at: typing.MutableMapping pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T] pop(key: _KT) -> _VT ===========changed ref 0=========== # module: dalle_mini.model.partitions def _get_partition_rules(): return [ # embeddings (("embed_positions", "embedding"), P("mp", None)), (("embed_tokens", "embedding"), P("mp", None)), + (("rel_bias", "embedding"), P(None, "mp")), # attention (("(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")), (("out_proj", "kernel"), P("mp", None)), # FFN (("Dense_0", "kernel"), P(None, "mp")), (("GLU.*", "Dense_1", "kernel"), P(None, "mp")), (("GLU.*", "Dense_2", "kernel"), P("mp", None)), (("FFN.*", "Dense_1", "kernel"), P("mp", None)), # layer norms (("(bias|scale)",), None), (("lm_head", "kernel"), P(None, "mp")), # head scale and tau (("(head_scale|tau)",), None), ]
dalle_mini.model.modeling/dot_product_attention_weights
Modified
borisdayma~dalle-mini
769d20ac4c8fa675067364e61a9a1c6898b7ba91
feat: allow relative position (#156)
<20>:<add> <add> # add relative position <add> if embed_pos is not None: <add> attn_weights = attn_weights + embed_pos
<s> bias: Optional[Any] = None, mask: Optional[Any] = None, + embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, causal: bool = False, ): <0> """ <1> Computes dot-product attention weights given query and key. <2> mask is included into the bias. <3> <4> Adapted from flax.linen.attention.dot_product_attention_weights" <5> """ <6> assert query.ndim == key.ndim, "q, k must have same rank." <7> assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match." <8> assert query.shape[-2] == key.shape[-2], "q, k num_heads must match." <9> assert query.shape[-1] == key.shape[-1], "q, k depths must match." <10> <11> # calculate attention matrix <12> depth = query.shape[-1] <13> query = query / jnp.sqrt(depth).astype(dtype) <14> # attn weight shape is (batch..., num_heads, q_length, kv_length) <15> attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision) <16> <17> # apply attention bias: masking, dropout, proximity bias, etc. <18> if bias is not None: <19> attn_weights = attn_weights + bias <20> <21> # normalize the attention weights <22> if causal or sinkhorn_iters == 1: <23> # sinkhorn does not work for causal (leaks info of future tokens into past) <24> attn_weights = jax.nn.softmax(attn_weights).astype(dtype) <25> else: </s>
===========below chunk 0=========== <s>] = None, mask: Optional[Any] = None, + embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, causal: bool = False, ): # offset: 1 for i in range(sinkhorn_iters): # when causal, some attn_weights have been set to -inf through bias if i % 2 == 0: attn_weights -= jax.nn.logsumexp(attn_weights, axis=-1, keepdims=True) else: attn_weights -= jax.nn.logsumexp(attn_weights, axis=-2, keepdims=True) if mask is not None: attn_weights = jnp.where(mask, attn_weights, -jnp.inf) attn_weights = jnp.exp(attn_weights).astype(dtype) # apply attention dropout if not deterministic and dropout_rate > 0.0: keep_prob = 1.0 - dropout_rate if broadcast_dropout: # dropout is broadcast across the batch + head dimensions dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:] keep = jax.random.bernoulli(dropout_rng, keep_prob, dropout_shape) else: keep = jax.random.bernoulli(dropout_rng, keep_prob, attn_weights.shape) multiplier = keep.astype(attn_weights.dtype) / jnp.asarray( keep_prob, dtype=dtype ) attn_weights = attn_weights * multiplier return attn_weights ===========changed ref 0=========== # module: dalle_mini.model.partitions def _get_partition_rules(): return [ # embeddings (("embed_positions", "embedding"), P("mp", None)), (("embed_tokens", "embedding"), P("mp", None)), + (("rel_bias", "embedding"), P(None, "mp")), # attention (("(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")), (("out_proj", "kernel"), P("mp", None)), # FFN (("Dense_0", "kernel"), P(None, "mp")), (("GLU.*", "Dense_1", "kernel"), P(None, "mp")), (("GLU.*", "Dense_2", "kernel"), P("mp", None)), (("FFN.*", "Dense_1", "kernel"), P("mp", None)), # layer norms (("(bias|scale)",), None), (("lm_head", "kernel"), P(None, "mp")), # head scale and tau (("(head_scale|tau)",), None), ] ===========changed ref 1=========== <s>ers + use_final_ln_encoder=True, # final layer normalization in encoder - use_final_ln_encoder=False, # final layer normalization in encoder + use_final_ln_decoder=True, # final layer normalization in decoder - use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # text normalizer self.normalize_text = normalize_text # transformer variants self.use_bias = use_bias assert ln_type in [ "rmsnorm", "layernorm", ], "ln_type must be 'rmsnorm' or 'layernorm'" self.ln_type = ln_type if ln_positions == "deepnet": ln_positions = "postln" assert ln_positions in [ "normformer", "swinv2", "cogview", "postln", "preln", ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'" self.use_head_scale = use_head_scale assert use_alibi is False, "use_alibi is not supported yet" self.ln_positions = ln_positions self.use_cosine_attention = use_cosine_attention self.tau_init = tau_init + self.use_absolute_position_embeddings = use_absolute_position_embeddings + self.use_swin_position_embeddings = use_swin_position_embeddings self.use_deepnet_scaling = use_deepnet_scaling self.use_glu = use_glu self.use_alibi = use_alibi self.sinkhorn_iters = sinkhorn_iters if ln_positions == "postln": assert ( use_final_ln_encoder </s> ===========changed ref 2=========== <s>_final_ln_encoder=True, # final layer normalization in encoder - use_final_ln_encoder=False, # final layer normalization in encoder + use_final_ln_decoder=True, # final layer normalization in decoder - use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 1 <s>horn_iters if ln_positions == "postln": assert ( use_final_ln_encoder ), "use_final_ln_encoder must be True when ln_positions is 'postln'" assert ( use_final_ln_decoder ), "use_final_ln_decoder must be True when ln_positions is 'postln'" self.use_final_ln_encoder = use_final_ln_encoder self.use_final_ln_decoder = use_final_ln_decoder self.force_ln_scale = force_ln_scale # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init</s>
dalle_mini.model.modeling/FlaxBartAttention.setup
Modified
borisdayma~dalle-mini
769d20ac4c8fa675067364e61a9a1c6898b7ba91
feat: allow relative position (#156)
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: <0> self.head_dim = self.embed_dim // self.num_heads <1> if self.head_dim * self.num_heads != self.embed_dim: <2> raise ValueError( <3> f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" <4> f" and `num_heads`: {self.num_heads})." <5> ) <6> <7> dense = partial( <8> nn.Dense, <9> self.embed_dim, <10> use_bias=self.bias, <11> dtype=self.dtype, <12> ) <13> <14> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <15> self.config <16> ) <17> <18> self.q_proj = dense( <19> kernel_init=deepnet_init() <20> if self.config.use_deepnet_scaling <21> else jax.nn.initializers.normal(self.config.init_std) <22> ) <23> self.k_proj = dense( <24> kernel_init=deepnet_init() <25> if self.config.use_deepnet_scaling <26> else jax.nn.initializers.normal(self.config.init_std) <27> ) <28> self.v_proj = dense( <29> kernel_init=deepnet_init(gain) <30> if self.config.use_deepnet_scaling <31> else jax.nn.initializers.normal(self.config.init_std) <32> ) <33> self.out_proj = dense( <34> kernel_init=deepnet_init(gain) <35> if self.config.use_deepnet_scaling <36> else jax.nn.initializers.normal(self.config.init_std) <37> ) <38> self.dropout_layer = nn.Dropout(rate=self.dropout) <39> <40> if</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: # offset: 1 self.head_scale = self.param( "head_scale", jax.nn.initializers.ones, (1, 1, self.num_heads, 1) ) if self.config.use_cosine_attention: self.tau = self.param( "tau", jax.nn.initializers.constant(self.config.tau_init), (1, self.num_heads, 1, 1), ) if self.causal: # used only in decoder self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" ) ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } at: dalle_mini.model.modeling.FlaxBartAttention is_encoder: bool = False at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.init_std = init_std at: transformers.models.bart.modeling_flax_bart.FlaxBartAttention config: BartConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) -> None ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length - scale attention heads per NormFormer paper """ is_encoder: bool = False + q_length: int = None + k_length: int = None ===========changed ref 1=========== <s> bias: Optional[Any] = None, mask: Optional[Any] = None, + embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, causal: bool = False, ): """ Computes dot-product attention weights given query and key. mask is included into the bias. Adapted from flax.linen.attention.dot_product_attention_weights" """ assert query.ndim == key.ndim, "q, k must have same rank." assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match." assert query.shape[-2] == key.shape[-2], "q, k num_heads must match." assert query.shape[-1] == key.shape[-1], "q, k depths must match." # calculate attention matrix depth = query.shape[-1] query = query / jnp.sqrt(depth).astype(dtype) # attn weight shape is (batch..., num_heads, q_length, kv_length) attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision) # apply attention bias: masking, dropout, proximity bias, etc. if bias is not None: attn_weights = attn_weights + bias + + # add relative position + if embed_pos is not None: + attn_weights = attn_weights + embed_pos # normalize the attention weights if causal or sinkhorn_iters == 1: # sinkhorn does not work for causal (leaks info of future tokens into past) attn_weights = jax.nn.softmax(attn_weights).</s> ===========changed ref 2=========== <s>] = None, mask: Optional[Any] = None, + embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, causal: bool = False, ): # offset: 1 <s> (leaks info of future tokens into past) attn_weights = jax.nn.softmax(attn_weights).astype(dtype) else: # adapted from https://github.com/lucidrains/sinkhorn-transformer for i in range(sinkhorn_iters): # when causal, some attn_weights have been set to -inf through bias if i % 2 == 0: attn_weights -= jax.nn.logsumexp(attn_weights, axis=-1, keepdims=True) else: attn_weights -= jax.nn.logsumexp(attn_weights, axis=-2, keepdims=True) if mask is not None: attn_weights = jnp.where(mask, attn_weights, -jnp.inf) attn_weights = jnp.exp(attn_weights).astype(dtype) # apply attention dropout if not deterministic and dropout_rate > 0.0: keep_prob = 1.0 - dropout_rate if broadcast_dropout: # dropout is broadcast across the batch + head dimensions dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:] keep = jax.random.bernoulli(dropout_rng, keep_prob, dropout_shape) else: keep = jax.random.bernoulli(dropout_rng</s> ===========changed ref 3=========== <s>] = None, mask: Optional[Any] = None, + embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, causal: bool = False, ): # offset: 2 <s>_prob, attn_weights.shape) multiplier = keep.astype(attn_weights.dtype) / jnp.asarray( keep_prob, dtype=dtype ) attn_weights = attn_weights * multiplier return attn_weights
dalle_mini.model.modeling/FlaxBartAttention.__call__
Modified
borisdayma~dalle-mini
769d20ac4c8fa675067364e61a9a1c6898b7ba91
feat: allow relative position (#156)
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> """Input shape: Batch x Time x Channel""" <1> <2> # if key_value_states are provided this layer is used as a cross-attention layer <3> # for the decoder <4> is_cross_attention = key_value_states is not None <5> batch_size = hidden_states.shape[0] <6> <7> # get query proj <8> query_states = self.q_proj(hidden_states) <9> # get key, value proj <10> if is_cross_attention: <11> # cross_attentions <12> key_states = self.k_proj(key_value_states) <13> value_states = self.v_proj(key_value_states) <14> else: <15> # self_attention <16> key_states = self.k_proj(hidden_states) <17> value_states = self.v_proj(hidden_states) <18> <19> query_states = self._split_heads(query_states) <20> key_states = self._split_heads(key_states) <21> value_states = self._split_heads(value_states) <22> <23> # handle cache prepare causal attention mask <24> if self.causal: <25> query_length, key_length = query_states.shape[1], key_states.shape[1] <26> if self.has_variable("cache", "cached_key"): <27> mask_shift = self.variables["cache"]["cache_index"] <28> max_decoder_length = self.variables["cache"]["cached_key"].shape[1] <29> causal_mask = lax.dynamic_slice( </s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length), ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to( causal_mask, (batch_size,) + causal_mask.shape[1:] ) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to( jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape ) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of</s> ===========below chunk 1=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s> # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, -jnp.inf).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") if self.config.use_cosine_attention: # normalize q and k query_states = query_states / ( jnp.linalg.norm(query_states, axis=-1, keepdims=True) + 1e-8 ) key_states = key_states / ( jnp.linalg.norm(key_states, axis=-1, keepdims=True) + 1e-8 ) attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, mask=attention_mask, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, sink</s> ===========below chunk 2=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>_iters=self.config.sinkhorn_iters, causal=self.causal, ) if self.config.use_cosine_attention: # divide by tau attn_weights = attn_weights / jnp.maximum(self.tau, 0.01) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) if self.config.use_head_scale: # per Normformer attn_output = attn_output * self.head_scale attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights ===========unchanged ref 0=========== at: dalle_mini.model.modeling dot_product_attention_weights(query: Any, key: Any, bias: Optional[Any]=None, mask: Optional[Any]=None, broadcast_dropout: bool=True, dropout_rng: Optional[PRNGKey]=None, dropout_rate: float=0.0, deterministic: bool=False, dtype: Any=jnp.float32, precision: PrecisionLike=None, sinkhorn_iters: int=1, causal: bool=False) at: dalle_mini.model.modeling.FlaxBartAttention.setup self.q_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.k_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.v_proj = dense( kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" ) at: transformers.models.bart.modeling_flax_bart.FlaxBartAttention config: BartConfig dropout: float = 0.0 causal: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation _split_heads(hidden_states) _concatenate_to_cache(key, value, query, attention_mask) ===========unchanged ref 1=========== __call__(self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray]=None, attention_mask: Optional[jnp.ndarray]=None, init_cache: bool=False, deterministic: bool=True) -> Tuple[jnp.ndarray] at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')
dalle_mini.model.modeling/FlaxBartEncoderLayer.__call__
Modified
borisdayma~dalle-mini
769d20ac4c8fa675067364e61a9a1c6898b7ba91
feat: allow relative position (#156)
<23>:<add> q_length=self.config.max_text_length, <add> k_length=self.config.max_text_length,
# module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> res_gain = ( <1> deepnet_gain["encoder"]["alpha"](self.config) <2> if self.config.use_deepnet_scaling <3> else 1 <4> ) <5> <6> embed_dim = self.config.d_model <7> residual = hidden_states <8> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <9> hidden_states = norm( <10> self.config.ln_type, <11> dtype=self.dtype, <12> epsilon=1e-05, <13> use_scale=self.config.force_ln_scale, <14> )(hidden_states) <15> hidden_states, attn_weights = FlaxBartAttention( <16> config=self.config, <17> embed_dim=embed_dim, <18> num_heads=self.config.encoder_attention_heads, <19> dropout=self.config.attention_dropout, <20> bias=self.config.use_bias, <21> dtype=self.dtype, <22> is_encoder=True, <23> )(hidden_states=hidden_states, attention_mask=attention_mask) <24> <25> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: <26> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <27> hidden_states <28> ) <29> hidden_states = nn.Dropout(rate=self.config.dropout)( <30> hidden_states, deterministic=deterministic <31> ) <32> hidden_states = residual * res_gain + hidden_states <33> if self.config.ln</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["postln"]: use_scale = ( self.use_scale or self.config.ln_positions == "postln" or self.config.force_ln_scale ) hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartEncoderLayer config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = True at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length - scale attention heads per NormFormer paper """ is_encoder: bool = False + q_length: int = None + k_length: int = None ===========changed ref 1=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, ) gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) self.q_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.k_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.v_proj = dense( kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.out_proj = dense( kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.dropout_layer = nn.Dropout(rate=self.dropout) if self.config.use_head_scale: self.head_scale = self.param( "head_scale", jax.nn.initializers.ones, (1,</s> ===========changed ref 2=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: # offset: 1 <s> self.head_scale = self.param( "head_scale", jax.nn.initializers.ones, (1, 1, self.num_heads, 1) ) if self.config.use_cosine_attention: self.tau = self.param( "tau", jax.nn.initializers.constant(self.config.tau_init), (1, self.num_heads, 1, 1), ) + if self.config.use_swin_position_embeddings: + self.rel_bias = nn.Embed( + self.q_length, + self.k_length * self.num_heads, + embedding_init=deepnet_init() + if self.config.use_deepnet_scaling + else jax.nn.initializers.normal(self.config.init_std), + ) + if self.causal: # used only in decoder self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" )
dalle_mini.model.modeling/FlaxBartDecoderLayer.__call__
Modified
borisdayma~dalle-mini
769d20ac4c8fa675067364e61a9a1c6898b7ba91
feat: allow relative position (#156)
<26>:<add> q_length=self.config.image_length, <add> k_length=self.config.image_length,
<s> FlaxBartDecoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> res_gain = ( <1> deepnet_gain["decoder"]["alpha"](self.config) <2> if self.config.use_deepnet_scaling <3> else 1 <4> ) <5> <6> embed_dim = self.config.d_model <7> residual = hidden_states <8> <9> # Self Attention <10> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <11> hidden_states = norm( <12> self.config.ln_type, <13> dtype=self.dtype, <14> epsilon=1e-05, <15> use_scale=self.config.force_ln_scale, <16> )(hidden_states) <17> hidden_states, attn_weights = FlaxBartAttention( <18> config=self.config, <19> embed_dim=embed_dim, <20> num_heads=self.config.decoder_attention_heads, <21> dropout=self.config.attention_dropout, <22> causal=True, <23> bias=self.config.use_bias, <24> dtype=self.dtype, <25> is_encoder=False, <26> )( <27> hidden_states=hidden_states, <28> attention_mask=attention_mask, <29> init_cache=init_cache, <30> ) <31> <32> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: <33> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(</s>
===========below chunk 0=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 ) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) # Cross Attention cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states if self.config.ln_positions in ["normformer", "cogview", "preln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(hidden_states) hidden_states, cross_attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, bias=self.config.use_bias, dtype=self.dtype, is_encoder=False, )( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) if self.config.ln_positions in ["normformer", "swinv2", "cog</s> ===========below chunk 1=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s>attention_mask, ) if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) # Feed forward residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) </s> ===========below chunk 2=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["postln"]: use_scale = ( self.use_scale or self.config.ln_positions == "postln" or self.config.force_ln_scale ) hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights, cross_attn_weights) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartDecoderLayer config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = False at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length - scale attention heads per NormFormer paper """ is_encoder: bool = False + q_length: int = None + k_length: int = None
dalle_mini.model.modeling/FlaxBartEncoder.setup
Modified
borisdayma~dalle-mini
769d20ac4c8fa675067364e61a9a1c6898b7ba91
feat: allow relative position (#156)
<9>:<add> if self.config.use_absolute_position_embeddings: <add> self.embed_positions = nn.Embed( <del> self.embed_positions = nn.Embed( <10>:<add> self.config.max_text_length + self.offset, # image length for BOS <del> self.config.max_text_length + self.offset, <11>:<add> embed_dim, <del> embed_dim, <12>:<add> embedding_init=jax.nn.initializers.normal(self.config.init_std), <del> embedding_init=jax.nn.initializers.normal(self.config.init_std), <13>:<add> ) <del> )
# module: dalle_mini.model.modeling + class FlaxBartEncoder(nn.Module): - class FlaxBartEncoder(FlaxBartEncoder): def setup(self): <0> self.dropout_layer = nn.Dropout(rate=self.config.dropout) <1> <2> embed_dim = self.config.d_model <3> self.padding_idx = self.config.pad_token_id <4> self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 <5> <6> # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 <7> # and adjust num_embeddings appropriately. Other models don't have this hack <8> self.offset = 0 <9> self.embed_positions = nn.Embed( <10> self.config.max_text_length + self.offset, <11> embed_dim, <12> embedding_init=jax.nn.initializers.normal(self.config.init_std), <13> ) <14> self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) <15> self.layernorm_embedding = norm( <16> self.config.ln_type, dtype=self.dtype, epsilon=1e-05 <17> ) <18>
===========unchanged ref 0=========== at: dalle_mini.model.modeling norm(type, *args, **kwargs) at: math sqrt(x: SupportsFloat, /) -> float at: transformers.configuration_utils.PretrainedConfig.__init__ self.pad_token_id = kwargs.pop("pad_token_id", None) at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.d_model = d_model self.dropout = dropout self.init_std = init_std self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True at: transformers.models.bart.modeling_flax_bart.FlaxBartEncoder config: BartConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) ===========changed ref 0=========== # module: dalle_mini.model.modeling + class FlaxBartEncoder(nn.Module): - class FlaxBartEncoder(FlaxBartEncoder): + config: DalleBartConfig + embed_tokens: nn.Embed + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - offset set to 0 (no padding token) - use max_text_length instead of max_position_embeddings - use custom FlaxBartEncoderLayerCollection - embed_tokens cannot be None (issue at compile time) """ ===========changed ref 1=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length - scale attention heads per NormFormer paper """ is_encoder: bool = False + q_length: int = None + k_length: int = None ===========changed ref 2=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: res_gain = ( deepnet_gain["encoder"]["alpha"](self.config) if self.config.use_deepnet_scaling else 1 ) embed_dim = self.config.d_model residual = hidden_states if self.config.ln_positions in ["normformer", "cogview", "preln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(hidden_states) hidden_states, attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, bias=self.config.use_bias, dtype=self.dtype, is_encoder=True, + q_length=self.config.max_text_length, + k_length=self.config.max_text_length, )(hidden_states=hidden_states, attention_mask=attention_mask) if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln</s> ===========changed ref 3=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 <s>=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["postln"]: use_scale = ( self.use_scale or self.config.ln_positions == "postln" or self.config.force_ln_scale ) hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_</s> ===========changed ref 4=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s> outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs ===========changed ref 5=========== # module: dalle_mini.model.partitions def _get_partition_rules(): return [ # embeddings (("embed_positions", "embedding"), P("mp", None)), (("embed_tokens", "embedding"), P("mp", None)), + (("rel_bias", "embedding"), P(None, "mp")), # attention (("(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")), (("out_proj", "kernel"), P("mp", None)), # FFN (("Dense_0", "kernel"), P(None, "mp")), (("GLU.*", "Dense_1", "kernel"), P(None, "mp")), (("GLU.*", "Dense_2", "kernel"), P("mp", None)), (("FFN.*", "Dense_1", "kernel"), P("mp", None)), # layer norms (("(bias|scale)",), None), (("lm_head", "kernel"), P(None, "mp")), # head scale and tau (("(head_scale|tau)",), None), ]
dalle_mini.model.modeling/FlaxBartDecoder.setup
Modified
borisdayma~dalle-mini
769d20ac4c8fa675067364e61a9a1c6898b7ba91
feat: allow relative position (#156)
<11>:<add> if self.config.use_absolute_position_embeddings: <add> self.embed_positions = nn.Embed( <del> self.embed_positions = nn.Embed( <12>:<add> self.config.image_length + self.offset, # image length for BOS <del> self.config.image_length + self.offset, # image length for BOS <13>:<add> embed_dim, <del> embed_dim, <14>:<add> embedding_init=jax.nn.initializers.normal(self.config.init_std), <del> embedding_init=jax.nn.initializers.normal(self.config.init_std), <15>:<add> ) <del> )
# module: dalle_mini.model.modeling + class FlaxBartDecoder(nn.Module): - class FlaxBartDecoder(FlaxBartDecoder): def setup(self): <0> self.dropout_layer = nn.Dropout(rate=self.config.dropout) <1> <2> embed_dim = self.config.d_model <3> self.padding_idx = self.config.pad_token_id <4> self.embed_scale = ( <5> math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 <6> ) <7> <8> # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 <9> # and adjust num_embeddings appropriately. Other models don't have this hack <10> self.offset = 0 <11> self.embed_positions = nn.Embed( <12> self.config.image_length + self.offset, # image length for BOS <13> embed_dim, <14> embedding_init=jax.nn.initializers.normal(self.config.init_std), <15> ) <16> <17> self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) <18> self.layernorm_embedding = norm( <19> self.config.ln_type, dtype=self.dtype, epsilon=1e-05 <20> ) <21>
===========unchanged ref 0=========== at: dalle_mini.model.modeling norm(type, *args, **kwargs) at: math sqrt(x: SupportsFloat, /) -> float at: transformers.configuration_utils.PretrainedConfig.__init__ self.pad_token_id = kwargs.pop("pad_token_id", None) at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.d_model = d_model self.dropout = dropout self.init_std = init_std self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True at: transformers.models.bart.modeling_flax_bart.FlaxBartDecoder config: BartConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) ===========changed ref 0=========== # module: dalle_mini.model.modeling + class FlaxBartDecoder(nn.Module): - class FlaxBartDecoder(FlaxBartDecoder): + config: DalleBartConfig + embed_tokens: nn.Embed + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - offset set to 0 (no padding token) - use image_length instead of max_position_embeddings - use custom FlaxBartDecoderLayerCollection - embed_tokens cannot be None (issue at compile time) """ ===========changed ref 1=========== # module: dalle_mini.model.modeling + class FlaxBartEncoder(nn.Module): - class FlaxBartEncoder(FlaxBartEncoder): + config: DalleBartConfig + embed_tokens: nn.Embed + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - offset set to 0 (no padding token) - use max_text_length instead of max_position_embeddings - use custom FlaxBartEncoderLayerCollection - embed_tokens cannot be None (issue at compile time) """ ===========changed ref 2=========== # module: dalle_mini.model.modeling + class FlaxBartEncoder(nn.Module): - class FlaxBartEncoder(FlaxBartEncoder): def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 0 + if self.config.use_absolute_position_embeddings: + self.embed_positions = nn.Embed( - self.embed_positions = nn.Embed( + self.config.max_text_length + self.offset, # image length for BOS - self.config.max_text_length + self.offset, + embed_dim, - embed_dim, + embedding_init=jax.nn.initializers.normal(self.config.init_std), - embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) - ) self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 ) ===========changed ref 3=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length - scale attention heads per NormFormer paper """ is_encoder: bool = False + q_length: int = None + k_length: int = None ===========changed ref 4=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: res_gain = ( deepnet_gain["encoder"]["alpha"](self.config) if self.config.use_deepnet_scaling else 1 ) embed_dim = self.config.d_model residual = hidden_states if self.config.ln_positions in ["normformer", "cogview", "preln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(hidden_states) hidden_states, attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, bias=self.config.use_bias, dtype=self.dtype, is_encoder=True, + q_length=self.config.max_text_length, + k_length=self.config.max_text_length, )(hidden_states=hidden_states, attention_mask=attention_mask) if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln</s>
dalle_mini.model.modeling/dot_product_attention_weights
Modified
borisdayma~dalle-mini
2c583b3c03dfc59ff9b394639290fb9d1ed9eea8
fix: sinkformer
<26>:<add> if not is_encoder or sinkhorn_iters == 1: <del> if causal or sinkhorn_iters == 1:
<s> mask: Optional[Any] = None, embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, + is_encoder: bool = False, - causal: bool = False, ): <0> """ <1> Computes dot-product attention weights given query and key. <2> mask is included into the bias. <3> <4> Adapted from flax.linen.attention.dot_product_attention_weights" <5> """ <6> assert query.ndim == key.ndim, "q, k must have same rank." <7> assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match." <8> assert query.shape[-2] == key.shape[-2], "q, k num_heads must match." <9> assert query.shape[-1] == key.shape[-1], "q, k depths must match." <10> <11> # calculate attention matrix <12> depth = query.shape[-1] <13> query = query / jnp.sqrt(depth).astype(dtype) <14> # attn weight shape is (batch..., num_heads, q_length, kv_length) <15> attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision) <16> <17> # apply attention bias: masking, dropout, proximity bias, etc. <18> if bias is not None: <19> attn_weights = attn_weights + bias <20> <21> # add relative position <22> if embed_pos is not None: <23> attn_weights = attn_weights + embed_pos <24> <25> # normalize the attention weights <26> if causal or sinkhorn_iters == 1: <27> # sinkhorn does not work for causal (leaks info of</s>
===========below chunk 0=========== <s>] = None, embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, + is_encoder: bool = False, - causal: bool = False, ): # offset: 1 attn_weights = jax.nn.softmax(attn_weights).astype(dtype) else: # adapted from https://github.com/lucidrains/sinkhorn-transformer for i in range(sinkhorn_iters): # when causal, some attn_weights have been set to -inf through bias if i % 2 == 0: attn_weights -= jax.nn.logsumexp(attn_weights, axis=-1, keepdims=True) else: attn_weights -= jax.nn.logsumexp(attn_weights, axis=-2, keepdims=True) if mask is not None: attn_weights = jnp.where(mask, attn_weights, -jnp.inf) attn_weights = jnp.exp(attn_weights).astype(dtype) # apply attention dropout if not deterministic and dropout_rate > 0.0: keep_prob = 1.0 - dropout_rate if broadcast_dropout: # dropout is broadcast across the batch + head dimensions dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:] keep = jax.random.bernoulli(dropout_rng, keep_prob, dropout_shape) else: keep = jax.random.bernoulli(dropout_rng, keep_prob, attn_weights.shape) multiplier = keep.astype(attn_weights.dtype) / jnp.asarray( keep_prob, dtype=dtype </s> ===========below chunk 1=========== <s>] = None, embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, + is_encoder: bool = False, - causal: bool = False, ): # offset: 2 <s> = keep.astype(attn_weights.dtype) / jnp.asarray( keep_prob, dtype=dtype ) attn_weights = attn_weights * multiplier return attn_weights
dalle_mini.model.modeling/FlaxBartAttention.__call__
Modified
borisdayma~dalle-mini
2c583b3c03dfc59ff9b394639290fb9d1ed9eea8
fix: sinkformer
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> """Input shape: Batch x Time x Channel""" <1> <2> # if key_value_states are provided this layer is used as a cross-attention layer <3> # for the decoder <4> is_cross_attention = key_value_states is not None <5> batch_size = hidden_states.shape[0] <6> <7> # get query proj <8> query_states = self.q_proj(hidden_states) <9> # get key, value proj <10> if is_cross_attention: <11> # cross_attentions <12> key_states = self.k_proj(key_value_states) <13> value_states = self.v_proj(key_value_states) <14> else: <15> # self_attention <16> key_states = self.k_proj(hidden_states) <17> value_states = self.v_proj(hidden_states) <18> <19> query_states = self._split_heads(query_states) <20> key_states = self._split_heads(key_states) <21> value_states = self._split_heads(value_states) <22> <23> # handle cache prepare causal attention mask <24> if self.causal: <25> query_length, key_length = query_states.shape[1], key_states.shape[1] <26> if self.has_variable("cache", "cached_key"): <27> mask_shift = self.variables["cache"]["cache_index"] <28> max_decoder_length = self.variables["cache"]["cached_key"].shape[1] <29> causal_mask = lax.dynamic_slice( </s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length), ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to( causal_mask, (batch_size,) + causal_mask.shape[1:] ) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to( jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape ) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of</s> ===========below chunk 1=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s> # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, -jnp.inf).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") if self.config.use_cosine_attention: # normalize q and k query_states = query_states / ( jnp.linalg.norm(query_states, axis=-1, keepdims=True) + 1e-8 ) key_states = key_states / ( jnp.linalg.norm(key_states, axis=-1, keepdims=True) + 1e-8 ) # relative position embeddings if self.config.use_swin_position_embeddings: position_ids = jnp.arange(self.q_length) embed_pos = self.rel_bias(position_ids) embed_pos = rearrange(embed_pos, "q (k h) -> 1 h q k", h=self.num_heads) else: </s> ===========below chunk 2=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>_pos = None attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, mask=attention_mask, embed_pos=embed_pos, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, sinkhorn_iters=self.config.sinkhorn_iters, causal=self.causal, ) if self.config.use_cosine_attention: # divide by tau attn_weights = attn_weights / jnp.maximum(self.tau, 0.01) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) if self.config.use_head_scale: # per Normformer attn_output = attn_output * self.head_scale attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights ===========unchanged ref 0=========== at: dalle_mini.model.modeling dot_product_attention_weights(query: Any, key: Any, bias: Optional[Any]=None, mask: Optional[Any]=None, embed_pos: Optional[Any]=None, broadcast_dropout: bool=True, dropout_rng: Optional[PRNGKey]=None, dropout_rate: float=0.0, deterministic: bool=False, dtype: Any=jnp.float32, precision: PrecisionLike=None, sinkhorn_iters: int=1, is_encoder: bool=False) at: dalle_mini.model.modeling.FlaxBartAttention.setup self.q_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.k_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.v_proj = dense( kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" ) at: transformers.models.bart.modeling_flax_bart.FlaxBartAttention config: BartConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation _split_heads(hidden_states)
tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices/materialize_matrix_from_concat
Modified
borisdayma~dalle-mini
9ecdd3fbced469d4cbe5ffdd8ff5eff3416ce402
feat: update shampoo
<6>:<add> If not specified, it is inferred from the shape of block_rows_concat. <7>:<add> if num_blocks is None: <add> num_blocks = find_num_blocks(block_rows_concat) <add>
# module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices @functools.partial(jax.jit, static_argnames=("num_blocks")) def materialize_matrix_from_concat( block_rows_concat, + num_blocks=None, - num_blocks, ): <0> """Returns a materialized symmetric matrix from concatenated slices. <1> <2> Args: <3> block_rows_concat: The matrix represented as the concatenated <4> lower-triangular blocks. <5> num_blocks: The number of block-rows used to represent the symmetric matrix. <6> """ <7> block_size = block_rows_concat.shape[-2] <8> <9> block_rows = [ <10> block_rows_concat[ <11> Ellipsis, <12> (k * (k + 1)) <13> // 2 <14> * block_size : (((k + 1) * (k + 2)) // 2 + 1) <15> * block_size, <16> ] <17> for k in range(num_blocks) <18> ] <19> <20> return materialize_matrix(SlicedSymmetricMatrix(block_rows=block_rows)) <21>
===========unchanged ref 0=========== at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices block_rows = [ block_rows_concat[ Ellipsis, (k * (k + 1)) // 2 * block_size : (((k + 1) * (k + 2)) // 2 + 1) * block_size, ] for k in range(num_blocks) ] find_num_blocks(block_rows_concat)
tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices/find_num_blocks
Modified
borisdayma~dalle-mini
9ecdd3fbced469d4cbe5ffdd8ff5eff3416ce402
feat: update shampoo
<18>:<del> num_blocks = np.round((np.sqrt(8 * total_blocks + 1) - 1) / 2).astype(np.int32) <19>:<del> if num_blocks * (num_blocks + 1) / 2 != total_blocks: <20>:<del> raise ValueError( <21>:<del> "Could not determine an appropriate number of blocks for " <22>:<del> "the concatenated matrix." <23>:<del> ) <24>:<del> else: <25>:<del> return num_blocks <26>:<add> return num_blocks_from_total_blocks(total_blocks)
# module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices def find_num_blocks(block_rows_concat): <0> """Returns the number of (row) blocks representing the concatenated matrix. <1> <2> For example, an input with dimensions [256, 2560] represents 10 square blocks, <3> which matches 4 lower-triangular block rows (1+2+3+4). So this function will <4> return 4. <5> <6> Use ordinary numpy functions here so that the returned value is static. <7> <8> Args: <9> block_rows_concat: The concatenated block array. <10> <11> Raises: <12> ValueError: When the dimensions of the matrix do not correspond to a lower <13> triangular block representation. <14> """ <15> # Compute the number of square blocks used to represent the matrix. <16> total_blocks = block_rows_concat.shape[-1] / block_rows_concat.shape[-2] <17> # Determine the number of block rows by inverting y = x*(x+1)/2. <18> num_blocks = np.round((np.sqrt(8 * total_blocks + 1) - 1) / 2).astype(np.int32) <19> if num_blocks * (num_blocks + 1) / 2 != total_blocks: <20> raise ValueError( <21> "Could not determine an appropriate number of blocks for " <22> "the concatenated matrix." <23> ) <24> else: <25> return num_blocks <26>
===========unchanged ref 0=========== at: numpy int32 = signedinteger[_32Bit] sqrt: _UFunc_Nin1_Nout1[L['sqrt'], L[10], None] at: numpy.core.fromnumeric around(a: _ArrayLikeBool_co, decimals: SupportsIndex=..., out: None=...) -> NDArray[float16] around(a: _ArrayLikeComplex_co | _ArrayLikeObject_co, decimals: SupportsIndex=..., out: _ArrayType=...) -> _ArrayType around(a: _BoolLike_co, decimals: SupportsIndex=..., out: None=...) -> float16 around(a: _ComplexLike_co | object_, decimals: SupportsIndex=..., out: None=...) -> Any around(a: _ArrayLikeComplex_co | _ArrayLikeObject_co, decimals: SupportsIndex=..., out: None=...) -> NDArray[Any] around(a: _ArrayLike[_SCT_uifcO], decimals: SupportsIndex=..., out: None=...) -> NDArray[_SCT_uifcO] around(a: _SCT_uifcO, decimals: SupportsIndex=..., out: None=...) -> _SCT_uifcO at: numpy.generic astype(dtype: _DTypeLike[_ScalarType], order: _OrderKACF=..., casting: _CastingKind=..., subok: bool=..., copy: bool | _CopyMode=...) -> _ScalarType astype(dtype: DTypeLike, order: _OrderKACF=..., casting: _CastingKind=..., subok: bool=..., copy: bool | _CopyMode=...) -> Any ===========changed ref 0=========== # module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices @functools.partial(jax.jit, static_argnames=("num_blocks")) def materialize_matrix_from_concat( block_rows_concat, + num_blocks=None, - num_blocks, ): """Returns a materialized symmetric matrix from concatenated slices. Args: block_rows_concat: The matrix represented as the concatenated lower-triangular blocks. num_blocks: The number of block-rows used to represent the symmetric matrix. + If not specified, it is inferred from the shape of block_rows_concat. """ + if num_blocks is None: + num_blocks = find_num_blocks(block_rows_concat) + block_size = block_rows_concat.shape[-2] block_rows = [ block_rows_concat[ Ellipsis, (k * (k + 1)) // 2 * block_size : (((k + 1) * (k + 2)) // 2 + 1) * block_size, ] for k in range(num_blocks) ] return materialize_matrix(SlicedSymmetricMatrix(block_rows=block_rows))
tools.train.scalable_shampoo.distributed_shampoo/matrix_inverse_pth_root
Modified
borisdayma~dalle-mini
9ecdd3fbced469d4cbe5ffdd8ff5eff3416ce402
feat: update shampoo
<17>:<add> precision: precision XLA related flag, the available options are: a) <del> precision: precision XLA related flag, the available options are: <18>:<add> lax.Precision.DEFAULT (better step time, but not precise) b) <del> a) lax.Precision.DEFAULT (better step time, but not precise) <19>:<add> lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST <del> b) lax.Precision.HIGH (increased precision, slower) <20>:<add> (best possible precision, slowest) <del> c) lax.Precision.HIGHEST (best possible precision, slowest) <25>:<add> <add> # If the input is not square, materialize it from the concatenated form. <add> if matrix.shape[0] != matrix.shape[1]: <add> matrix = symmetric_matrices.materialize_matrix_from_concat(matrix)
# module: tools.train.scalable_shampoo.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): <0> """Computes `matrix^(-1/p)`, where `p` is a positive integer. <1> <2> This function uses the Coupled newton iterations algorithm for <3> the computation of a matrix's inverse pth root. <4> <5> <6> References: <7> [Functions of Matrices, Theory and Computation, <8> Nicholas J Higham, Pg 184, Eq 7.18]( <9> https://epubs.siam.org/doi/book/10.1137/1.9780898717778) <10> <11> Args: <12> matrix: the symmetric PSD matrix whose power it to be computed <13> p: exponent, for p a positive integer. <14> num_iters: Maximum number of iterations. <15> ridge_epsilon: Ridge epsilon added to make the matrix positive definite. <16> error_tolerance: Error indicator, useful for early termination. <17> precision: precision XLA related flag, the available options are: <18> a) lax.Precision.DEFAULT (better step time, but not precise) <19> b) lax.Precision.HIGH (increased precision, slower) <20> c) lax.Precision.HIGHEST (best possible precision, slowest) <21> <22> Returns: <23> matrix^(-1/p) <24> """ <25> <26> assert matrix.shape[0] == matrix.shape[1] <27> <28> # We use _MAT_INV_PTH_ROOT_DTYPE for the matrix inverse pth root. <29> # Switch to f64 if you have hardware that supports it. Enable the jax flag <30> # jax_enable_x64 for this to work. <31> matrix_size = matrix.shape[0] <32> orig_dtype = matrix.dtype <33> matrix = matrix</s>
===========below chunk 0=========== # module: tools.train.scalable_shampoo.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): # offset: 1 alpha = jnp.asarray(-1.0 / p, _MAT_INV_PTH_ROOT_DTYPE) identity = jnp.eye(matrix_size, dtype=_MAT_INV_PTH_ROOT_DTYPE) _, max_ev = power_iteration( matrix=matrix, num_iters=100, error_tolerance=1e-6, precision=precision ) ridge_epsilon = ridge_epsilon * jnp.maximum(max_ev, 1e-6) def _iter_condition(state): (i, unused_mat_m, unused_mat_h, unused_old_mat_h, error, run_step) = state error_above_threshold = jnp.logical_and(error > error_tolerance, run_step) return jnp.logical_and(i < num_iters, error_above_threshold) def _iter_body(state): (i, mat_m, mat_h, unused_old_mat_h, error, unused_run_step) = state mat_m_i = (1 - alpha) * identity + alpha * mat_m new_mat_m = jnp.matmul(mat_power(mat_m_i, p), mat_m, precision=precision) new_mat_h = jnp.matmul(mat_h, mat_m_i, precision=precision) new_error = jnp.max(jnp.abs(new_mat_m - identity)) # sometimes error increases after an iteration before decreasing and # converging. 1.2 factor is used to bound the maximal allowed increase. return (i + 1, new_mat_m, new_mat_h,</s> ===========below chunk 1=========== # module: tools.train.scalable_shampoo.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): # offset: 2 <s> is used to bound the maximal allowed increase. return (i + 1, new_mat_m, new_mat_h, mat_h, new_error, new_error < error * 1.2) if matrix_size == 1: resultant_mat_h = (matrix + ridge_epsilon) ** alpha error = 0 else: damped_matrix = matrix + ridge_epsilon * identity z = (1 + p) / (2 * jnp.linalg.norm(damped_matrix)) new_mat_m_0 = damped_matrix * z new_error = jnp.max(jnp.abs(new_mat_m_0 - identity)) new_mat_h_0 = identity * jnp.power(z, 1.0 / p) init_state = tuple([0, new_mat_m_0, new_mat_h_0, new_mat_h_0, new_error, True]) _, mat_m, mat_h, old_mat_h, error, convergence = lax.while_loop( _iter_condition, _iter_body, init_state ) error = jnp.max(jnp.abs(mat_m - identity)).astype(jnp.float32) is_converged = jnp.asarray(convergence, old_mat_h.dtype) resultant_mat_h = is_converged * mat_h + (1 - is_converged) * old_mat_h resultant_mat_h = ===========unchanged ref 0=========== at: tools.train.scalable_shampoo.distributed_shampoo _MAT_INV_PTH_ROOT_DTYPE = jnp.float64 power_iteration(matrix, num_iters=100, error_tolerance=1e-6, precision=lax.Precision.HIGHEST) mat_power(mat_m, p, precision=lax.Precision.HIGHEST) at: tools.train.scalable_shampoo.distributed_shampoo.mat_power power = jnp.eye(mat_m.shape[0], dtype=_MAT_INV_PTH_ROOT_DTYPE) _iter_condition(state) _iter_body(state) at: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices materialize_matrix_from_concat(block_rows_concat, num_blocks) ===========changed ref 0=========== # module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices @functools.partial(jax.jit, static_argnames=("num_blocks")) def materialize_matrix_from_concat( block_rows_concat, + num_blocks=None, - num_blocks, ): """Returns a materialized symmetric matrix from concatenated slices. Args: block_rows_concat: The matrix represented as the concatenated lower-triangular blocks. num_blocks: The number of block-rows used to represent the symmetric matrix. + If not specified, it is inferred from the shape of block_rows_concat. """ + if num_blocks is None: + num_blocks = find_num_blocks(block_rows_concat) + block_size = block_rows_concat.shape[-2] block_rows = [ block_rows_concat[ Ellipsis, (k * (k + 1)) // 2 * block_size : (((k + 1) * (k + 2)) // 2 + 1) * block_size, ] for k in range(num_blocks) ] return materialize_matrix(SlicedSymmetricMatrix(block_rows=block_rows)) ===========changed ref 1=========== # module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices + @functools.partial(jax.jit, static_argnames=("block_size")) + def slice_symmetric_matrix_concat( + mat, + block_size, + ): + """Returns the concatenated sliced row blocks. + + Args: + mat: A symmetric matrix. + block_size: The size of the row slices. + """ + sliced_symmetric_matrix = slice_symmetric_matrix(mat=mat, block_size=block_size) + return jnp.concatenate(sliced_symmetric_matrix.block_rows, axis=-1) + ===========changed ref 2=========== # module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices + def sliced_matrix_diag(mat): + """Returns the diagonal of the symmetric matrix. + + Args: + mat: The symmetric matrix represented in concatenated block form. + """ + rows, cols = mat.shape + total_blocks = cols // rows + num_blocks = num_blocks_from_total_blocks(total_blocks) + diags = [] + for i in range(num_blocks): + last_index = rows * ((i + 2) * (i + 1)) // 2 + first_index = last_index - rows + diags.append(jnp.diag(mat[Ellipsis, first_index:last_index])) + return jnp.concatenate(diags, axis=-1) +
dalle_mini.model.text/TextNormalizer.__call__
Modified
borisdayma~dalle-mini
7ef7bd9239040e63d9e0ec1a8330e91584085235
feat(text): support emojis (#154)
<4>:<add> # decode emojis (would be removed by unidecode) <add> t = emoji.demojize(t)
# module: dalle_mini.model.text class TextNormalizer: def __call__(self, t): <0> # fix some characters <1> t = ftfy.fix_text(t) <2> # fix html <3> t = fix_html(t) <4> # decode and simplify text: see unidecode library <5> t = unidecode(t) <6> # lower case <7> t = t.lower() <8> # replace <PERSON> (for CC12M) <9> t = replace_person_token(t) <10> # remove wiki reference (for WIT) <11> t = remove_wiki_ref(t) <12> # remove html tags <13> t = remove_html_tags(t) <14> # remove urls <15> t = remove_urls(t) <16> # remove commas in numbers <17> t = remove_comma_numbers(t) <18> # handle dots in numbers and quotes - Part 1 <19> t = pre_process_dot_numbers(t) <20> t = pre_process_quotes(t) <21> t = pre_process_dates(t) <22> # handle special characters <23> t = handle_special_chars(t) <24> # handle hashtags <25> t = expand_hashtags(t, self._hashtag_processor) <26> # ignore useless characters <27> t = ignore_chars(t) <28> # simplify quotes <29> t = simplify_quotes(t) <30> # all punctuation becomes commas <31> t = replace_punctuation_with_commas(t) <32> # handle dots in numbers and quotes - Part 2 <33> t = post_process_dot_numbers(t) <34> t = post_process_quotes(t) <35> t = post_process_dates(t) <36> # handle repeating characters <37> t = remove_repeating_chars(t) <38> # merge quotes <39> t = merge_quotes(t) <40> # merge commas <41> t = merge_commas(t) <42> # remove multiple spaces <43> t = remove_extra_spaces(t)</s>
===========below chunk 0=========== # module: dalle_mini.model.text class TextNormalizer: def __call__(self, t): # offset: 1 t = remove_first_last_commas(t) # always start with a space return f" {t}" ===========unchanged ref 0=========== at: dalle_mini.model.text replace_person_token(t) fix_html(t) replace_punctuation_with_commas(t) simplify_quotes(t) merge_quotes(t) remove_comma_numbers(t) pre_process_dot_numbers(t) post_process_dot_numbers(t) pre_process_quotes(t) post_process_quotes(t) pre_process_dates(t) post_process_dates(t) merge_commas(t) handle_special_chars(t) expand_hashtags(t, hashtag_processor) ignore_chars(t) remove_extra_spaces(t) remove_repeating_chars(t) remove_urls(t) remove_html_tags(t) remove_wiki_ref(t) at: dalle_mini.model.text.TextNormalizer.__init__ self._hashtag_processor = HashtagProcessor()
tools.train.train/TrainingArguments.__post_init__
Modified
borisdayma~dalle-mini
01996042a17f31230af032748a7583c5419dabcf
Merge pull request #162 from borisdayma/demo-improvements
<40>:<add> assert self.shard_shampoo_across in [ <add> "dp", <add> "mp", <add> "2d", <add> ], f"Shard shampoo across {self.shard_shampoo_across} not supported."
# module: tools.train.train @dataclass class TrainingArguments: def __post_init__(self): <0> if self.assert_TPU_available: <1> assert ( <2> jax.local_device_count() == 8 <3> ), "TPUs in use, please check running processes" <4> if self.output_dir.startswith("gs://"): <5> assert ( <6> storage is not None <7> ), 'Could not find google.storage. Install with "pip install google-cloud-storage"' <8> assert self.optim in [ <9> "distributed_shampoo", <10> "adam", <11> "adafactor", <12> ], f"Selected optimizer not supported: {self.optim}" <13> assert self.graft_type in [ <14> "rmsprop_normalized", <15> "rmsprop", <16> "adagrad", <17> "adagrad_normalized", <18> "sgd", <19> "sqrt_n", <20> ], f"Selected graft type not supported: {self.graft_type}" <21> assert self.lr_decay in [ <22> None, <23> "linear", <24> "exponential", <25> ], f"Selected learning rate decay not supported: {self.lr_decay}" <26> if self.per_device_eval_batch_size is None: <27> self.per_device_eval_batch_size = self.per_device_train_batch_size <28> if self.log_norm_steps is True: <29> self.log_norm_steps = self.logging_steps <30> if ( <31> os.path.exists(self.output_dir) <32> and os.listdir(self.output_dir) <33> and self.do_train <34> and not self.overwrite_output_dir <35> ): <36> raise ValueError( <37> f"Output directory ({self.output_dir}) already exists and is not empty." <38> "Use --overwrite_output_dir to overcome." <39> ) <40> assert ( <41> self.mp_devices > 0 <42> )</s>
===========below chunk 0=========== # module: tools.train.train @dataclass class TrainingArguments: def __post_init__(self): # offset: 1 assert ( jax.device_count() % self.mp_devices == 0 ), f"Number of available devices ({jax.device_count()} must be divisible by number of devices used for model parallelism ({self.mp_devices})." self.dp_devices = jax.device_count() // self.mp_devices ===========unchanged ref 0=========== at: dataclasses field(*, default_factory: Callable[[], _T], init: bool=..., repr: bool=..., hash: Optional[bool]=..., compare: bool=..., metadata: Optional[Mapping[str, Any]]=...) -> _T field(*, init: bool=..., repr: bool=..., hash: Optional[bool]=..., compare: bool=..., metadata: Optional[Mapping[str, Any]]=...) -> Any field(*, default: _T, init: bool=..., repr: bool=..., hash: Optional[bool]=..., compare: bool=..., metadata: Optional[Mapping[str, Any]]=...) -> _T at: os listdir(path: bytes) -> List[bytes] listdir(path: int) -> List[str] listdir(path: Optional[str]=...) -> List[str] listdir(path: _PathLike[str]) -> List[str] at: os.path exists(path: Union[AnyStr, _PathLike[AnyStr]]) -> bool at: tools.train.train storage = None at: tools.train.train.TrainingArguments output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per data parallel device for training."}, ) ===========unchanged ref 1=========== per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) gradient_checkpointing: bool = field( default=False, metadata={"help": "Use gradient checkpointing."} ) learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, ) beta2: float = field( default=0.999, metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, ) adam_epsilon: float = field( default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} ) max_grad_norm: float = field( default=1.0, metadata={"help": "Max gradient norm for Adafactor."} ) block_size: int = field( default=1024, metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, ) preconditioning_compute_steps: int = field( default=10, metadata={"help": "Number of steps to update preconditioner."} ) ===========unchanged ref 2=========== skip_preconditioning_dim_size_gt: int = field( default=4096, metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, ) graft_type: str = field( default="rmsprop_normalized", metadata={ "help": "The type of grafting to use. Can be 'rmsprop_normalized' (default), 'rmsprop', 'adagrad', 'adagrad_normalized', 'sgd' or 'sqrt_n'" }, ) optim_quantized: bool = field( default=False, metadata={ "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." }, ) shard_shampoo_across: str = field( default="dp", metadata={ "help": "Whether to shard the optimizer across data devices (dp), model devices (mp) or both (2d)." }, ) num_train_epochs: int = field( default=3, metadata={"help": "Total number of training epochs to perform."} ) warmup_steps: int = field( default=0, metadata={"help": "Linear warmup over warmup_steps."} ) lr_decay: str = field( default=None, metadata={ "help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential." }, ) lr_transition_steps: int = field( default=None, metadata={ "help": "Number of transition steps associated with learning rate decay when using exponential decay." }, ) lr_decay_rate: float = field( default=None, metadata={ "help": "Decay rate associated with learning rate when using exponential decay." }, )
dalle_mini.data/Dataset.__post_init__
Modified
borisdayma~dalle-mini
01996042a17f31230af032748a7583c5419dabcf
Merge pull request #162 from borisdayma/demo-improvements
<3>:<add> # set numpy rng <add> self.np_rng = np.random.default_rng(self.seed_dataset)
# module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): <0> if self.seed_dataset is None: <1> # create a random seed <2> self.seed_dataset = random.randint(0, 2**32 - 1) <3> self.multi_hosts = jax.process_count() > 1 <4> # feed blank captions only in streaming mode for now <5> # otherwise dataset could be cached with same blanked captions <6> if self.blank_caption_prob: <7> assert ( <8> self.streaming is True <9> ), "blank_caption_prob can only be used in streaming mode" <10> # define data_files <11> if self.train_file is not None or self.validation_file is not None: <12> # accept braceexpand notation <13> for k in ["train_file", "validation_file"]: <14> f = getattr(self, k) <15> if isinstance(f, str): <16> setattr(self, k, list(braceexpand(f))) <17> # for list of files, split training data shards by host <18> if ( <19> isinstance(self.train_file, list) <20> and self.multi_hosts <21> and self.shard_by_host <22> ): <23> self.train_file = self.train_file[ <24> jax.process_index() :: jax.process_count() <25> ] <26> data_files = { <27> "train": self.train_file, <28> "validation": self.validation_file, <29> } <30> else: <31> data_files = None <32> <33> # load dataset <34> dataset = load_dataset( <35> self.dataset_repo_or_path, <36> data_files=data_files, <37> streaming=self.streaming, <38> use_auth_token=self.use_auth_token, <39> ) <40> if self.do_train: <41> if "train" not in dataset: <42> raise ValueError("Training requires a training dataset") <43> self.train_dataset =</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): # offset: 1 if self.max_train_samples is not None: self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) if self.do_eval: if "validation" not in dataset: raise ValueError("Evaluating requires a validation dataset") self.eval_dataset = dataset["validation"] if self.max_eval_samples is not None: self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) ) ===========unchanged ref 0=========== at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False blank_caption_prob: float = 0.0 clip_score_column: str = "clip_score" min_clip_score: float = None max_clip_score: float = None filter_column: str = None filter_value: str = None train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) at: dalle_mini.data.Dataset.preprocess self.train_dataset = ( self.train_dataset.map(partial_blank_caption_function) if self.streaming else self.train_dataset.map( partial_blank_caption_function, num_proc=None if self.seed_dataset else self.preprocessing_num_workers, load_from_cache_file=False, desc="Blanking some captions", ) ) self.train_dataset = self.train_dataset.shuffle( buffer_size=5000, seed=self.seed_dataset ) ===========unchanged ref 1=========== at: datasets.arrow_dataset.Dataset wrapper(*, keep_in_memory: bool=False, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) at: datasets.load load_dataset(path: str, name: Optional[str]=None, data_dir: Optional[str]=None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]]=None, split: Optional[Union[str, Split]]=None, cache_dir: Optional[str]=None, features: Optional[Features]=None, download_config: Optional[DownloadConfig]=None, download_mode: Optional[DownloadMode]=None, ignore_verifications: bool=False, keep_in_memory: Optional[bool]=None, save_infos: bool=False, revision: Optional[Union[str, Version]]=None, use_auth_token: Optional[Union[bool, str]]=None, task: Optional[Union[str, TaskTemplate]]=None, streaming: bool=False, num_proc: Optional[int]=None, *, num_process: int=1, process_id: int=0, seed: Optional[int]=None, experiment_id: Optional[str]=None, max_concurrent_cache_files: int=10000, timeout: Union[int, float]=100, base_path: Optional[str]=None, info: Optional[DatasetInfo]=None, repo_id: Optional[str]=None, **kwargs) -> Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset] at: numpy.random._generator default_rng(seed: None | _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator=...) -> Generator at: random randint = _inst.randint ===========changed ref 0=========== # module: tools.train.train @dataclass class TrainingArguments: def __post_init__(self): if self.assert_TPU_available: assert ( jax.local_device_count() == 8 ), "TPUs in use, please check running processes" if self.output_dir.startswith("gs://"): assert ( storage is not None ), 'Could not find google.storage. Install with "pip install google-cloud-storage"' assert self.optim in [ "distributed_shampoo", "adam", "adafactor", ], f"Selected optimizer not supported: {self.optim}" assert self.graft_type in [ "rmsprop_normalized", "rmsprop", "adagrad", "adagrad_normalized", "sgd", "sqrt_n", ], f"Selected graft type not supported: {self.graft_type}" assert self.lr_decay in [ None, "linear", "exponential", ], f"Selected learning rate decay not supported: {self.lr_decay}" if self.per_device_eval_batch_size is None: self.per_device_eval_batch_size = self.per_device_train_batch_size if self.log_norm_steps is True: self.log_norm_steps = self.logging_steps if ( os.path.exists(self.output_dir) and os.listdir(self.output_dir) and self.do_train and not self.overwrite_output_dir ): raise ValueError( f"Output directory ({self.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) + assert self.shard_shampoo_across in [ + "dp", + "mp", + "2d", + ], f"Shard shampoo across {self.shard_shampoo_across}</s> ===========changed ref 1=========== # module: tools.train.train @dataclass class TrainingArguments: def __post_init__(self): # offset: 1 <s> <add> "2d", + ], f"Shard shampoo across {self.shard_shampoo_across} not supported." assert ( self.mp_devices > 0 ), f"Number of devices for model parallelism must be > 0" assert ( jax.device_count() % self.mp_devices == 0 ), f"Number of available devices ({jax.device_count()} must be divisible by number of devices used for model parallelism ({self.mp_devices})." self.dp_devices = jax.device_count() // self.mp_devices
dalle_mini.data/Dataset.preprocess
Modified
borisdayma~dalle-mini
01996042a17f31230af032748a7583c5419dabcf
Merge pull request #162 from borisdayma/demo-improvements
# module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): <0> # get required config variables <1> decoder_start_token_id = config.decoder_start_token_id <2> normalize_text = config.normalize_text <3> max_length = config.max_text_length <4> <5> if self.streaming: <6> # we need to shuffle early in streaming mode <7> if hasattr(self, "train_dataset"): <8> self.train_dataset = self.train_dataset.shuffle( <9> buffer_size=5000, seed=self.seed_dataset <10> ) <11> else: <12> self.rng_dataset = jax.random.PRNGKey(self.seed_dataset) <13> <14> # filter data <15> partial_filter_function = partial( <16> filter_function, <17> filter_column=self.filter_column, <18> filter_value=self.filter_value, <19> clip_score_column=self.clip_score_column, <20> min_clip_score=self.min_clip_score, <21> max_clip_score=self.max_clip_score, <22> ) <23> for ds in ["train_dataset", "eval_dataset"]: <24> if hasattr(self, ds): <25> setattr( <26> self, <27> ds, <28> ( <29> getattr(self, ds).filter(partial_filter_function) <30> if self.streaming <31> else getattr(self, ds).filter( <32> partial_filter_function, <33> num_proc=self.preprocessing_num_workers, <34> load_from_cache_file=not self.overwrite_cache, <35> desc="Filtering datasets", <36> ) <37> ), <38> ) <39> <40> # normalize text <41> if normalize_text: <42> text_normalizer = TextNormalizer() <43> partial_normalize_function = partial( <44> normalize_function, <45> text_column=self.text_column, <46> text_normalizer=text_normalizer</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): # offset: 1 ) for ds in ["train_dataset", "eval_dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map(partial_normalize_function) if self.streaming else getattr(self, ds).map( partial_normalize_function, num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Normalizing datasets", ) ), ) # blank captions if self.blank_caption_prob: partial_blank_caption_function = partial( blank_caption_function, text_column=self.text_column, blank_caption_prob=self.blank_caption_prob, ) if hasattr(self, "train_dataset"): self.train_dataset = ( self.train_dataset.map(partial_blank_caption_function) if self.streaming else self.train_dataset.map( partial_blank_caption_function, num_proc=self.preprocessing_num_workers, load_from_cache_file=False, desc="Blanking some captions", ) ) # preprocess partial_preprocess_function = partial( preprocess_function, tokenizer=tokenizer, text_column=self.text_column, encoding_column=self.encoding_column, max_length=max_length, decoder_start_token_id=decoder_start_token_id, ) for ds in ["train_dataset", "eval_dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map( partial_preprocess_function, batched=True, remove_columns=[ self.text_column,</s> ===========below chunk 1=========== # module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): # offset: 2 <s>( partial_preprocess_function, batched=True, remove_columns=[ self.text_column, self.encoding_column, ], ) if self.streaming else getattr(self, ds).map( partial_preprocess_function, batched=True, remove_columns=getattr(ds, "column_names"), num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Preprocessing datasets", ) ), ) ===========unchanged ref 0=========== at: dalle_mini.data blank_caption_function(example, text_column, blank_caption_prob, rng=None) normalize_function(example, text_column, text_normalizer) filter_function(example, min_clip_score, max_clip_score, clip_score_column, filter_column, filter_value) preprocess_function(examples, tokenizer, text_column, encoding_column, max_length, decoder_start_token_id) at: dalle_mini.data.Dataset streaming: bool = True text_column: str = "caption" preprocessing_num_workers: int = None overwrite_cache: bool = False clip_score_column: str = "clip_score" min_clip_score: float = None max_clip_score: float = None filter_column: str = None filter_value: str = None at: dalle_mini.data.Dataset.__post_init__ self.seed_dataset = random.randint(0, 2**32 - 1) self.train_dataset = dataset["train"] self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) at: dalle_mini.data.Dataset.dataloader self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) at: datasets.arrow_dataset.Dataset wrapper(*, generator: Optional[np.random.Generator]=None, keep_in_memory: bool=False, load_from_cache_file: bool=True, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) ===========unchanged ref 1=========== at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() ===========changed ref 0=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): if self.seed_dataset is None: # create a random seed self.seed_dataset = random.randint(0, 2**32 - 1) + # set numpy rng + self.np_rng = np.random.default_rng(self.seed_dataset) self.multi_hosts = jax.process_count() > 1 # feed blank captions only in streaming mode for now # otherwise dataset could be cached with same blanked captions if self.blank_caption_prob: assert ( self.streaming is True ), "blank_caption_prob can only be used in streaming mode" # define data_files if self.train_file is not None or self.validation_file is not None: # accept braceexpand notation for k in ["train_file", "validation_file"]: f = getattr(self, k) if isinstance(f, str): setattr(self, k, list(braceexpand(f))) # for list of files, split training data shards by host if ( isinstance(self.train_file, list) and self.multi_hosts and self.shard_by_host ): self.train_file = self.train_file[ jax.process_index() :: jax.process_count() ] data_files = { "train": self.train_file, "validation": self.validation_file, } else: data_files = None # load dataset dataset = load_dataset( self.dataset_repo_or_path, data_files=data_files, streaming=self.streaming, use_auth_token=self.use_auth_token, ) if self.do_train: if "train" not in dataset: raise ValueError("Training requires a training dataset") self.train_dataset = dataset["train"] if self.max_train</s> ===========changed ref 1=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): # offset: 1 <s> raise ValueError("Training requires a training dataset") self.train_dataset = dataset["train"] if self.max_train_samples is not None: self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) if self.do_eval: if "validation" not in dataset: raise ValueError("Evaluating requires a validation dataset") self.eval_dataset = dataset["validation"] if self.max_eval_samples is not None: self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) )
dalle_mini.data/blank_caption_function
Modified
borisdayma~dalle-mini
01996042a17f31230af032748a7583c5419dabcf
Merge pull request #162 from borisdayma/demo-improvements
<0>:<add> if ( <add> blank_caption_prob <add> and (rng.random() if rng is not None else np.random.random()) <add> < blank_caption_prob <add> ): <del> if blank_caption_prob and np.random.rand() < blank_caption_prob:
# module: dalle_mini.data + def blank_caption_function(example, text_column, blank_caption_prob, rng=None): - def blank_caption_function(example, text_column, blank_caption_prob): <0> if blank_caption_prob and np.random.rand() < blank_caption_prob: <1> example[text_column] = "" <2> return example <3>
===========unchanged ref 0=========== at: dalle_mini.data.shift_tokens_right shifted_input_ids = np.zeros(input_ids.shape) shifted_input_ids[:, 0] = decoder_start_token_id shifted_input_ids[:, 1:] = input_ids[:, :-1] ===========changed ref 0=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): if self.seed_dataset is None: # create a random seed self.seed_dataset = random.randint(0, 2**32 - 1) + # set numpy rng + self.np_rng = np.random.default_rng(self.seed_dataset) self.multi_hosts = jax.process_count() > 1 # feed blank captions only in streaming mode for now # otherwise dataset could be cached with same blanked captions if self.blank_caption_prob: assert ( self.streaming is True ), "blank_caption_prob can only be used in streaming mode" # define data_files if self.train_file is not None or self.validation_file is not None: # accept braceexpand notation for k in ["train_file", "validation_file"]: f = getattr(self, k) if isinstance(f, str): setattr(self, k, list(braceexpand(f))) # for list of files, split training data shards by host if ( isinstance(self.train_file, list) and self.multi_hosts and self.shard_by_host ): self.train_file = self.train_file[ jax.process_index() :: jax.process_count() ] data_files = { "train": self.train_file, "validation": self.validation_file, } else: data_files = None # load dataset dataset = load_dataset( self.dataset_repo_or_path, data_files=data_files, streaming=self.streaming, use_auth_token=self.use_auth_token, ) if self.do_train: if "train" not in dataset: raise ValueError("Training requires a training dataset") self.train_dataset = dataset["train"] if self.max_train</s> ===========changed ref 1=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): # offset: 1 <s> raise ValueError("Training requires a training dataset") self.train_dataset = dataset["train"] if self.max_train_samples is not None: self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) if self.do_eval: if "validation" not in dataset: raise ValueError("Evaluating requires a validation dataset") self.eval_dataset = dataset["validation"] if self.max_eval_samples is not None: self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) ) ===========changed ref 2=========== # module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): # get required config variables decoder_start_token_id = config.decoder_start_token_id normalize_text = config.normalize_text max_length = config.max_text_length if self.streaming: # we need to shuffle early in streaming mode if hasattr(self, "train_dataset"): self.train_dataset = self.train_dataset.shuffle( buffer_size=5000, seed=self.seed_dataset ) else: self.rng_dataset = jax.random.PRNGKey(self.seed_dataset) # filter data partial_filter_function = partial( filter_function, filter_column=self.filter_column, filter_value=self.filter_value, clip_score_column=self.clip_score_column, min_clip_score=self.min_clip_score, max_clip_score=self.max_clip_score, ) for ds in ["train_dataset", "eval_dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).filter(partial_filter_function) if self.streaming else getattr(self, ds).filter( partial_filter_function, num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Filtering datasets", ) ), ) # normalize text if normalize_text: text_normalizer = TextNormalizer() partial_normalize_function = partial( normalize_function, text_column=self.text_column, text_normalizer=text_normalizer, ) for ds in ["train_dataset", "eval_dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr</s> ===========changed ref 3=========== # module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): # offset: 1 <s>dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map(partial_normalize_function) if self.streaming else getattr(self, ds).map( partial_normalize_function, num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Normalizing datasets", ) ), ) # blank captions if self.blank_caption_prob: partial_blank_caption_function = partial( blank_caption_function, text_column=self.text_column, blank_caption_prob=self.blank_caption_prob, + rng=self.np_rng, ) if hasattr(self, "train_dataset"): self.train_dataset = ( self.train_dataset.map(partial_blank_caption_function) if self.streaming else self.train_dataset.map( partial_blank_caption_function, + num_proc=None + if self.seed_dataset + else self.preprocessing_num_workers, - num_proc=self.preprocessing_num_workers, load_from_cache_file=False, desc="Blanking some captions", ) ) # preprocess partial_preprocess_function = partial( preprocess_function, tokenizer=tokenizer, text_column=self.text_column, encoding_column=self.encoding_column, max_length=max_length, decoder_start_token_id=decoder_start_token_id, ) for ds in ["train_dataset", "eval_dataset"]: </s>
dalle_mini.model.partitions/set_partitions
Modified
borisdayma~dalle-mini
07a6f9a7ae599755f4d97d9ff0932b15f6732a57
feat: scan layers + gradient checkpointing (#161)
<7>:<add> l = list(result.keys()) <add> if use_scan: <add> # add None dimension to scanned layers <add> result = { <add> k: (P(*(None,) + v) if v is not None else None) <add> if any(x in k for x in ["FlaxBartEncoderLayers", "FlaxBartDecoderLayers"]) <add> else v <add> for k, v in result.items() <add> }
# module: dalle_mini.model.partitions + def set_partitions(in_dict, use_scan): - def set_partitions(in_dict): <0> rules = _get_partition_rules() <1> replace = _replacement_rules(rules) <2> initd = {k: _unmatched for k in flatten_dict(in_dict)} <3> result = {k: replace(k, v) for k, v in initd.items()} <4> for k, v in result.items(): <5> if v == _unmatched: <6> print(f"Unmatched -> {k}") <7> assert _unmatched not in result.values(), "Incomplete partition spec." <8> return freeze(unflatten_dict(result)) <9>
===========unchanged ref 0=========== at: dalle_mini.model.partitions _unmatched = object() _replacement_rules(rules) _get_partition_rules() ===========changed ref 0=========== # module: tools.train.train class TrainState(train_state.TrainState): + @classmethod + def create(cls, *, apply_fn, params, tx, **kwargs): + opt_state = tx.init(cls.unscan(params)) + return cls( + step=0, + apply_fn=apply_fn, + params=params, + tx=tx, + opt_state=opt_state, + **kwargs, + ) + ===========changed ref 1=========== # module: tools.train.train class TrainState(train_state.TrainState): + @staticmethod + def unscan(params): + params = unfreeze(params) + for l in ["encoder", "decoder"]: + params["model"][l]["layers"] = jax.tree_map( + lambda x: {f"{i}": x[i] for i in range(len(x))}, + params["model"][l]["layers"], + ) + params = freeze(params) + return params + ===========changed ref 2=========== # module: tools.train.train class TrainState(train_state.TrainState): + @staticmethod + def rescan(params): + params = unfreeze(params) + for l in ["encoder", "decoder"]: + params["model"][l]["layers"] = jax.tree_map( + lambda x: jnp.stack([x[f"{i}"] for i in range(len(x))]), + params["model"][l]["layers"], + is_leaf=lambda x: "0" in x, + ) + params = freeze(params) + return params + ===========changed ref 3=========== # module: tools.train.train class TrainState(train_state.TrainState): + def apply_gradients(self, *, grads, **kwargs): + params = self.unscan(self.params) + updates, new_opt_state = self.tx.update( + self.unscan(grads), self.opt_state, params + ) + params = optax.apply_updates(params, updates) + return self.replace( + step=self.step + 1, + params=self.rescan(params), + opt_state=new_opt_state, + **kwargs, + ) + ===========changed ref 4=========== # module: tools.train.train def main(): # See all possible arguments by passing the --help flag to this script. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1]) ) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # check arguments if training_args.mp_devices > jax.local_device_count(): assert ( data_args.seed_dataset is not None ), "Seed dataset must be provided when model is split over multiple hosts" # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Load dataset dataset = Dataset( **asdict(data_args), do_train=training_args</s> ===========changed ref 5=========== # module: tools.train.train def main(): # offset: 1 <s> # Load dataset dataset = Dataset( **asdict(data_args), do_train=training_args.do_train, do_eval=training_args.do_eval, ) logger.info(f"Local TPUs: {jax.local_device_count()}") logger.info(f"Global TPUs: {jax.device_count()}") # Set up wandb run if jax.process_index() == 0: wandb.init( entity=training_args.wandb_entity, project=training_args.wandb_project, job_type=training_args.wandb_job_type, config=parser.parse_args(), ) # Set up our new model config if model_args.config_name: config = DalleBartConfig.from_pretrained(model_args.config_name) config.gradient_checkpointing = training_args.gradient_checkpointing else: config = None # Load or create new model if model_args.model_name_or_path: model = DalleBart.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed_model, dtype=getattr(jnp, model_args.dtype), abstract_init=True, # we overwrite them with loaded checkpoint gradient_checkpointing=training_args.gradient_checkpointing, ) else: model = DalleBart( config, seed=training_args.seed_model, dtype=getattr(jnp, model_args.dtype), abstract_init=True, ) # get model metadata model_metadata = model_args.get_metadata() # get PartitionSpec for</s>
dalle_mini.model.configuration/DalleBartConfig.__init__
Modified
borisdayma~dalle-mini
07a6f9a7ae599755f4d97d9ff0932b15f6732a57
feat: scan layers + gradient checkpointing (#161)
<s> implemented yet - from "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=True, # final layer normalization in encoder use_final_ln_decoder=True, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): <0> # text normalizer <1> self.normalize_text = normalize_text <2> <3> # transformer variants <4> self.use_bias = use_bias <5> assert ln_type in [ <6> "rmsnorm", <7> "layernorm", <8> ], "ln_type must be 'rmsnorm' or 'layernorm'" <9> self.ln_type = ln_type <10> if ln_positions == "deepnet": <11> ln_positions = "postln" <12> assert ln_positions in [ <13> "normformer", <14> "swinv2", <15> "cogview", <16> "postln", <17> "preln", <18> ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'" <19> self.use_head_scale = use_head_scale <20> assert use_alibi is False, "use_alibi is not supported yet" <21> self.ln_positions = ln_positions <22> self.use_cosine_attention = use_cosine_attention <23> self.tau_init = tau_init <24> self.use_absolute_position_embeddings = use_absolute_position_embeddings <25> self.use_swin_position_embeddings = use_swin_position_embeddings <26> self.use_deepnet_scaling = use_deepnet_scaling <27> self.use_glu = use_glu <28> self.use_alibi = use_alibi <29> self.sinkhorn_iters = sinkhorn</s>
===========below chunk 0=========== <s>Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=True, # final layer normalization in encoder use_final_ln_decoder=True, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 1 if ln_positions == "postln": assert ( use_final_ln_encoder ), "use_final_ln_encoder must be True when ln_positions is 'postln'" assert ( use_final_ln_decoder ), "use_final_ln_decoder must be True when ln_positions is 'postln'" self.use_final_ln_encoder = use_final_ln_encoder self.use_final_ln_decoder = use_final_ln_decoder self.force_ln_scale = force_ln_scale # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale</s> ===========below chunk 1=========== <s>Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=True, # final layer normalization in encoder use_final_ln_decoder=True, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 2 <s>cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length + 1) max_length = kwargs.pop("max_length", image_length + 1) super().__init__( # args required in parent class is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_embeddings, forced_eos_token_id=forced_eos_token_id, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos</s> ===========below chunk 2=========== <s>Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=True, # final layer normalization in encoder use_final_ln_decoder=True, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 3 <s>_id, min_length=min_length, max_length=max_length, do_sample=do_sample, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." ) ===========unchanged ref 0=========== at: dalle_mini.model.configuration.DalleBartConfig.__init__ self.forced_bos_token_id = self.bos_token_id at: transformers.configuration_utils.PretrainedConfig model_type: str = "" is_composition: bool = False attribute_map: Dict[str, str] = {} _auto_class: Optional[str] = None __init__(**kwargs) __init__(self, **kwargs) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] at: typing.MutableMapping pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T] pop(key: _KT) -> _VT ===========changed ref 0=========== # module: tools.train.train class TrainState(train_state.TrainState): + @classmethod + def create(cls, *, apply_fn, params, tx, **kwargs): + opt_state = tx.init(cls.unscan(params)) + return cls( + step=0, + apply_fn=apply_fn, + params=params, + tx=tx, + opt_state=opt_state, + **kwargs, + ) + ===========changed ref 1=========== # module: tools.train.train class TrainState(train_state.TrainState): + @staticmethod + def unscan(params): + params = unfreeze(params) + for l in ["encoder", "decoder"]: + params["model"][l]["layers"] = jax.tree_map( + lambda x: {f"{i}": x[i] for i in range(len(x))}, + params["model"][l]["layers"], + ) + params = freeze(params) + return params + ===========changed ref 2=========== # module: tools.train.train class TrainState(train_state.TrainState): + @staticmethod + def rescan(params): + params = unfreeze(params) + for l in ["encoder", "decoder"]: + params["model"][l]["layers"] = jax.tree_map( + lambda x: jnp.stack([x[f"{i}"] for i in range(len(x))]), + params["model"][l]["layers"], + is_leaf=lambda x: "0" in x, + ) + params = freeze(params) + return params +
dalle_mini.model.modeling/FlaxBartEncoderLayer.__call__
Modified
borisdayma~dalle-mini
07a6f9a7ae599755f4d97d9ff0932b15f6732a57
feat: scan layers + gradient checkpointing (#161)
<0>:<add> if self.config.use_scan: <add> hidden_states = hidden_states[0] <add>
# module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> res_gain = ( <1> deepnet_gain["encoder"]["alpha"](self.config) <2> if self.config.use_deepnet_scaling <3> else 1 <4> ) <5> <6> embed_dim = self.config.d_model <7> residual = hidden_states <8> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <9> hidden_states = norm( <10> self.config.ln_type, <11> dtype=self.dtype, <12> epsilon=1e-05, <13> use_scale=self.config.force_ln_scale, <14> )(hidden_states) <15> hidden_states, attn_weights = FlaxBartAttention( <16> config=self.config, <17> embed_dim=embed_dim, <18> num_heads=self.config.encoder_attention_heads, <19> dropout=self.config.attention_dropout, <20> bias=self.config.use_bias, <21> dtype=self.dtype, <22> is_encoder=True, <23> q_length=self.config.max_text_length, <24> k_length=self.config.max_text_length, <25> )(hidden_states=hidden_states, attention_mask=attention_mask) <26> <27> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: <28> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <29> hidden_states <30> ) <31> hidden_states = nn.Dropout(rate=self.config.dropout)( <32> hidden_states,</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["postln"]: use_scale = ( self.use_scale or self.config.ln_positions == "postln" or self.config.force_ln_scale ) hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs ===========below chunk 1=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s>hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartEncoderLayer config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = True at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') ===========changed ref 0=========== # module: tools.train.train class TrainState(train_state.TrainState): + @classmethod + def create(cls, *, apply_fn, params, tx, **kwargs): + opt_state = tx.init(cls.unscan(params)) + return cls( + step=0, + apply_fn=apply_fn, + params=params, + tx=tx, + opt_state=opt_state, + **kwargs, + ) + ===========changed ref 1=========== # module: tools.train.train class TrainState(train_state.TrainState): + @staticmethod + def unscan(params): + params = unfreeze(params) + for l in ["encoder", "decoder"]: + params["model"][l]["layers"] = jax.tree_map( + lambda x: {f"{i}": x[i] for i in range(len(x))}, + params["model"][l]["layers"], + ) + params = freeze(params) + return params + ===========changed ref 2=========== # module: tools.train.train class TrainState(train_state.TrainState): + @staticmethod + def rescan(params): + params = unfreeze(params) + for l in ["encoder", "decoder"]: + params["model"][l]["layers"] = jax.tree_map( + lambda x: jnp.stack([x[f"{i}"] for i in range(len(x))]), + params["model"][l]["layers"], + is_leaf=lambda x: "0" in x, + ) + params = freeze(params) + return params + ===========changed ref 3=========== # module: tools.train.train class TrainState(train_state.TrainState): + def apply_gradients(self, *, grads, **kwargs): + params = self.unscan(self.params) + updates, new_opt_state = self.tx.update( + self.unscan(grads), self.opt_state, params + ) + params = optax.apply_updates(params, updates) + return self.replace( + step=self.step + 1, + params=self.rescan(params), + opt_state=new_opt_state, + **kwargs, + ) + ===========changed ref 4=========== # module: dalle_mini.model.partitions + def set_partitions(in_dict, use_scan): - def set_partitions(in_dict): rules = _get_partition_rules() replace = _replacement_rules(rules) initd = {k: _unmatched for k in flatten_dict(in_dict)} result = {k: replace(k, v) for k, v in initd.items()} for k, v in result.items(): if v == _unmatched: print(f"Unmatched -> {k}") + l = list(result.keys()) + if use_scan: + # add None dimension to scanned layers + result = { + k: (P(*(None,) + v) if v is not None else None) + if any(x in k for x in ["FlaxBartEncoderLayers", "FlaxBartDecoderLayers"]) + else v + for k, v in result.items() + } assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(result))
dalle_mini.model.modeling/FlaxBartDecoderLayer.__call__
Modified
borisdayma~dalle-mini
07a6f9a7ae599755f4d97d9ff0932b15f6732a57
feat: scan layers + gradient checkpointing (#161)
<0>:<add> if self.config.use_scan: <add> hidden_states = hidden_states[0] <add>
<s> FlaxBartDecoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> res_gain = ( <1> deepnet_gain["decoder"]["alpha"](self.config) <2> if self.config.use_deepnet_scaling <3> else 1 <4> ) <5> <6> embed_dim = self.config.d_model <7> residual = hidden_states <8> <9> # Self Attention <10> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <11> hidden_states = norm( <12> self.config.ln_type, <13> dtype=self.dtype, <14> epsilon=1e-05, <15> use_scale=self.config.force_ln_scale, <16> )(hidden_states) <17> hidden_states, attn_weights = FlaxBartAttention( <18> config=self.config, <19> embed_dim=embed_dim, <20> num_heads=self.config.decoder_attention_heads, <21> dropout=self.config.attention_dropout, <22> causal=True, <23> bias=self.config.use_bias, <24> dtype=self.dtype, <25> is_encoder=False, <26> q_length=self.config.image_length, <27> k_length=self.config.image_length, <28> )( <29> hidden_states=hidden_states, <30> attention_mask=attention_mask, <31> init_cache=init_cache, <32> ) <33> <34> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]:</s>
===========below chunk 0=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 hidden_states ) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) # Cross Attention cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states if self.config.ln_positions in ["normformer", "cogview", "preln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(hidden_states) hidden_states, cross_attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, bias=self.config.use_bias, dtype=self.dtype, is_encoder=False, q_length=self.config.image_length, k_length=self.config.max_text_length, )( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention</s> ===========below chunk 1=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s> )( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) # Feed forward residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, </s> ===========below chunk 2=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>_encoder=False, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["postln"]: use_scale = ( self.use_scale or self.config.ln_positions == "postln" or self.config.force_ln_scale ) hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights, cross_attn_weights) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartDecoderLayer config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = False at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartDecoderLayer(nn.Module): """ Edits: - no bias - use custom FlaxBartAttention """ config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False + use_scale: bool = True - use_scale: bool = False
dalle_mini.model.modeling/FlaxBartEncoderLayerCollection.__call__
Modified
borisdayma~dalle-mini
07a6f9a7ae599755f4d97d9ff0932b15f6732a57
feat: scan layers + gradient checkpointing (#161)
<5>:<add> remat( <add> FlaxBartEncoderLayer, <add> static_argnums=(2, 3), <add> prevent_cse=not self.config.use_scan, <add> ) <del> remat(FlaxBartEncoderLayer, static_argnums=(2, 3)) <9>:<add> <add> if self.config.use_scan: <add> # all blocks are the same so we use nn.scan <add> assert not output_attentions, "cannot scan with output_attentions" <add> assert not output_hidden_states, "cannot scan with output_hidden_states" <del> for i in range(n_layers): <10>:<del> if output_hidden_states: <11>:<add> hidden_states = (hidden_states,) <del> all_hidden_states += (hidden_states,) <12>:<add> # we use a scale on all norms (even last layer) to allow scanning <add> hidden_states, _ = nn.scan( <add> layer, <add> variable_axes={"params": 0}, <add> split_rngs={"params": True, "dropout": True}, <add> in_axes=(nn.broadcast, nn.broadcast, nn.broadcast), <add> length=n_layers, <add> )( <add> self.config
# module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): <0> all_hidden_states = () if output_hidden_states else None <1> all_self_attns = () if output_attentions else None <2> <3> n_layers = self.config.encoder_layers <4> layer = ( <5> remat(FlaxBartEncoderLayer, static_argnums=(2, 3)) <6> if self.config.gradient_checkpointing <7> else FlaxBartEncoderLayer <8> ) <9> for i in range(n_layers): <10> if output_hidden_states: <11> all_hidden_states += (hidden_states,) <12> # final layernorm on the output of the last layer <13> # or every 6 layers for Swin v2 <14> add_norm = ( <15> self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) <16> ) or (self.config.use_final_ln_encoder and (i == n_layers - 1)) <17> # we don't need to scale the norm for the last layer <18> use_scale = i != n_layers - 1 <19> layer_outputs = layer( <20> self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale <21> )( <22> hidden_states, <23> attention_mask, <24> output_attentions, <25> deterministic, <26> ) <27> hidden_states = layer_outputs[0] <28> if output_attentions: <29> all_self_attns += (layer_outputs[1],) <30> <31> # add hidden states from the last layer <32> if output_hidden_states: <33> all_hidden_states += (</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 1 outputs = [ hidden_states, all_hidden_states, all_self_attns, ] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, ) ===========unchanged ref 0=========== at: dalle_mini.model.modeling remat = nn_partitioning.remat at: dalle_mini.model.modeling.FlaxBartEncoderLayerCollection config: DalleBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation at: transformers.modeling_flax_outputs FlaxBaseModelOutput(**kwargs: _VT) FlaxBaseModelOutput(iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) FlaxBaseModelOutput(map: Mapping[_KT, _VT], **kwargs: _VT) ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartDecoderLayer(nn.Module): """ Edits: - no bias - use custom FlaxBartAttention """ config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False + use_scale: bool = True - use_scale: bool = False ===========changed ref 1=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: + if self.config.use_scan: + hidden_states = hidden_states[0] + res_gain = ( deepnet_gain["encoder"]["alpha"](self.config) if self.config.use_deepnet_scaling else 1 ) embed_dim = self.config.d_model residual = hidden_states if self.config.ln_positions in ["normformer", "cogview", "preln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(hidden_states) hidden_states, attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, bias=self.config.use_bias, dtype=self.dtype, is_encoder=True, q_length=self.config.max_text_length, k_length=self.config.max_text_length, )(hidden_states=hidden_states, attention_mask=attention_mask) if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic </s> ===========changed ref 2=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 <s> hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states - if self.add_norm or self.config.ln_positions in ["postln"]: - use_scale = ( - self.use_scale - or self.config.ln_positions == "postln" + if self.add_norm: + use_scale = self.use_scale or self.config.force_ln_scale - or self</s> ===========changed ref 3=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s>.force_ln_scale - ) hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) + if self.config.use_scan: + outputs = (outputs, None) + return outputs ===========changed ref 4=========== # module: tools.train.train class TrainState(train_state.TrainState): + @classmethod + def create(cls, *, apply_fn, params, tx, **kwargs): + opt_state = tx.init(cls.unscan(params)) + return cls( + step=0, + apply_fn=apply_fn, + params=params, + tx=tx, + opt_state=opt_state, + **kwargs, + ) + ===========changed ref 5=========== # module: tools.train.train class TrainState(train_state.TrainState): + @staticmethod + def unscan(params): + params = unfreeze(params) + for l in ["encoder", "decoder"]: + params["model"][l]["layers"] = jax.tree_map( + lambda x: {f"{i}": x[i] for i in range(len(x))}, + params["model"][l]["layers"], + ) + params = freeze(params) + return params +
dalle_mini.model.modeling/FlaxBartDecoderLayerCollection.__call__
Modified
borisdayma~dalle-mini
07a6f9a7ae599755f4d97d9ff0932b15f6732a57
feat: scan layers + gradient checkpointing (#161)
<9>:<add> remat( <add> FlaxBartDecoderLayer, <add> static_argnums=(4, 5, 6), <add> prevent_cse=not self.config.use_scan, <add> ) <del> remat(FlaxBartDecoderLayer, static_argnums=(4, 5, 6)) <13>:<add> <add> if self.config.use_scan: <add> # all blocks are the same so we use nn.scan <add> assert not output_attentions, "cannot scan with output_attentions" <add> assert not output_hidden_states, "cannot scan with output_hidden_states" <del> for i in range(n_layers): <14>:<del> if output_hidden_states: <15>:<add> hidden_states = (hidden_states,) <del> all_hidden_states += (hidden_states,) <16>:<add> # we use a scale on all norms (even last layer) to allow scanning <add> hidden_states, _ = nn.scan( <add> layer, <add> variable_axes={"params": 0}, <add> split_rngs={"params": True, "dropout": True}, <add> in_axes=( <add> nn.broadcast, <add> nn.broadcast, <add> nn.broadcast, <add> nn.
<s>Collection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): <0> # decoder layers <1> all_hidden_states = () if output_hidden_states else None <2> all_self_attns = () if output_attentions else None <3> all_cross_attentions = ( <4> () if (output_attentions and encoder_hidden_states is not None) else None <5> ) <6> <7> n_layers = self.config.decoder_layers <8> layer = ( <9> remat(FlaxBartDecoderLayer, static_argnums=(4, 5, 6)) <10> if self.config.gradient_checkpointing <11> else FlaxBartDecoderLayer <12> ) <13> for i in range(n_layers): <14> if output_hidden_states: <15> all_hidden_states += (hidden_states,) <16> # final layernorm on the output of the last layer <17> # or every 6 layers for Swin v2 <18> add_norm = ( <19> self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) <20> ) or (self.config.use_final_ln_decoder and (i == n_layers - 1)) <21> # we don't need to scale the norm for the last layer <22> use_scale = i != n_layers - 1 <23> layer_outputs = layer( <24> self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale <25> )( <26> hidden_states, <27> attention_mask, <28> encoder_hidden_states, <29> encoder_attention_mask, </s>
===========below chunk 0=========== <s>): @nn.compact def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 1 output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [ hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, ] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) ===========unchanged ref 0=========== at: dalle_mini.model.modeling remat = nn_partitioning.remat at: dalle_mini.model.modeling.FlaxBartDecoderLayerCollection config: DalleBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation at: transformers.modeling_flax_outputs FlaxBaseModelOutputWithPastAndCrossAttentions(**kwargs: _VT) FlaxBaseModelOutputWithPastAndCrossAttentions(map: Mapping[_KT, _VT], **kwargs: _VT) FlaxBaseModelOutputWithPastAndCrossAttentions(iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartDecoderLayer(nn.Module): """ Edits: - no bias - use custom FlaxBartAttention """ config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False + use_scale: bool = True - use_scale: bool = False ===========changed ref 1=========== # module: tools.train.train class TrainState(train_state.TrainState): + @classmethod + def create(cls, *, apply_fn, params, tx, **kwargs): + opt_state = tx.init(cls.unscan(params)) + return cls( + step=0, + apply_fn=apply_fn, + params=params, + tx=tx, + opt_state=opt_state, + **kwargs, + ) + ===========changed ref 2=========== # module: tools.train.train class TrainState(train_state.TrainState): + @staticmethod + def unscan(params): + params = unfreeze(params) + for l in ["encoder", "decoder"]: + params["model"][l]["layers"] = jax.tree_map( + lambda x: {f"{i}": x[i] for i in range(len(x))}, + params["model"][l]["layers"], + ) + params = freeze(params) + return params + ===========changed ref 3=========== # module: tools.train.train class TrainState(train_state.TrainState): + @staticmethod + def rescan(params): + params = unfreeze(params) + for l in ["encoder", "decoder"]: + params["model"][l]["layers"] = jax.tree_map( + lambda x: jnp.stack([x[f"{i}"] for i in range(len(x))]), + params["model"][l]["layers"], + is_leaf=lambda x: "0" in x, + ) + params = freeze(params) + return params + ===========changed ref 4=========== # module: tools.train.train class TrainState(train_state.TrainState): + def apply_gradients(self, *, grads, **kwargs): + params = self.unscan(self.params) + updates, new_opt_state = self.tx.update( + self.unscan(grads), self.opt_state, params + ) + params = optax.apply_updates(params, updates) + return self.replace( + step=self.step + 1, + params=self.rescan(params), + opt_state=new_opt_state, + **kwargs, + ) + ===========changed ref 5=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: + if self.config.use_scan: + hidden_states = hidden_states[0] + res_gain = ( deepnet_gain["encoder"]["alpha"](self.config) if self.config.use_deepnet_scaling else 1 ) embed_dim = self.config.d_model residual = hidden_states if self.config.ln_positions in ["normformer", "cogview", "preln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(hidden_states) hidden_states, attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, bias=self.config.use_bias, dtype=self.dtype, is_encoder=True, q_length=self.config.max_text_length, k_length=self.config.max_text_length, )(hidden_states=hidden_states, attention_mask=attention_mask) if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic </s>
tools.train.train/TrainState.apply_gradients
Modified
borisdayma~dalle-mini
b993d27f4707b7fbff7c09c4ae897067f6751956
feat: vmap optimizer (#166)
<0>:<add> grads = split_params(grads) <add> params = split_params(self.params) <del> params = self.unscan(self.params) <1>:<add> opt_state = {} <add> # we loop over keys: "standard", "scanned_encoder", "scanned_decoder" <add> for k, param in params.items(): <add> update_fn = self.tx[k].update <add> if "scanned" in k: <add> update_fn = jax.vmap(update_fn, in_axes=(0, 0, 0), out_axes=(0, 0)) <add> updates, new_opt_state = update_fn(grads[k], self.opt_state[k], param) <del> updates, new_opt_state = self.tx.update( <2>:<del> self.unscan(grads), self.opt_state, params <3>:<del> ) <4>:<add> params[k] = optax.apply_updates(param, updates) <del> params = optax.apply_updates(params, updates) <5>:<add> opt_state[k] = new_opt_state <add> params = unsplit_params(params) <add> <7>:<add> params=params, <del> params=self.rescan(params), <8>:<add> opt_state=freeze(opt_state), <del> opt_state=new_opt_state,
# module: tools.train.train + class TrainState(struct.PyTreeNode): - class TrainState(train_state.TrainState): def apply_gradients(self, *, grads, **kwargs): <0> params = self.unscan(self.params) <1> updates, new_opt_state = self.tx.update( <2> self.unscan(grads), self.opt_state, params <3> ) <4> params = optax.apply_updates(params, updates) <5> return self.replace( <6> step=self.step + 1, <7> params=self.rescan(params), <8> opt_state=new_opt_state, <9> **kwargs, <10> ) <11>
===========changed ref 0=========== # module: tools.train.train + class TrainState(struct.PyTreeNode): - class TrainState(train_state.TrainState): + step: int + params: core.FrozenDict[str, Any] + opt_state: optax.OptState + apply_fn: Callable = struct.field(pytree_node=False) + tx: optax.GradientTransformation = struct.field(pytree_node=False) dropout_rng: jnp.ndarray = None epoch: int = 0 train_time: float = 0.0 # total time the model trained train_samples: int = 0 # number of samples seen ===========changed ref 1=========== # module: tools.train.train + def split_params(data): + """Split params between scanned and non-scanned""" + flat = traverse_util.flatten_dict(unfreeze(data)) + split = {"standard": {}, "scanned_encoder": {}, "scanned_decoder": {}} + for k, v in flat.items(): + if "FlaxBartEncoderLayers" in k: + split["scanned_encoder"][k] = v + elif "FlaxBartDecoderLayers" in k: + split["scanned_decoder"][k] = v + else: + split["standard"][k] = v + for k, v in split.items(): + split[k] = freeze(traverse_util.unflatten_dict(v)) + return split +
tools.train.train/TrainState.create
Modified
borisdayma~dalle-mini
b993d27f4707b7fbff7c09c4ae897067f6751956
feat: vmap optimizer (#166)
<0>:<add> opt_state = {} <add> for k, p in split_params(params).items(): <add> init_fn = tx[k].init <add> if "scanned" in k: <add> init_fn = jax.vmap(init_fn) <add> opt_state[k] = init_fn(p) <del> opt_state = tx.init(cls.unscan(params)) <6>:<add> opt_state=freeze(opt_state), <del> opt_state=opt_state,
# module: tools.train.train + class TrainState(struct.PyTreeNode): - class TrainState(train_state.TrainState): @classmethod def create(cls, *, apply_fn, params, tx, **kwargs): <0> opt_state = tx.init(cls.unscan(params)) <1> return cls( <2> step=0, <3> apply_fn=apply_fn, <4> params=params, <5> tx=tx, <6> opt_state=opt_state, <7> **kwargs, <8> ) <9>
===========unchanged ref 0=========== at: tools.train.train.TrainState train_time: float = 0.0 # total time the model trained train_samples: int = 0 # number of samples seen at: tools.train.train.unsplit_params flat = {} at: typing Callable = _CallableType(collections.abc.Callable, 2) ===========changed ref 0=========== # module: tools.train.train + def unsplit_params(data): + flat = {} + for k in ["standard", "scanned_encoder", "scanned_decoder"]: + flat.update(traverse_util.flatten_dict(unfreeze(data[k]))) + return freeze(traverse_util.unflatten_dict(flat)) + ===========changed ref 1=========== # module: tools.train.train + class TrainState(struct.PyTreeNode): - class TrainState(train_state.TrainState): + step: int + params: core.FrozenDict[str, Any] + opt_state: optax.OptState + apply_fn: Callable = struct.field(pytree_node=False) + tx: optax.GradientTransformation = struct.field(pytree_node=False) dropout_rng: jnp.ndarray = None epoch: int = 0 train_time: float = 0.0 # total time the model trained train_samples: int = 0 # number of samples seen ===========changed ref 2=========== # module: tools.train.train + def split_params(data): + """Split params between scanned and non-scanned""" + flat = traverse_util.flatten_dict(unfreeze(data)) + split = {"standard": {}, "scanned_encoder": {}, "scanned_decoder": {}} + for k, v in flat.items(): + if "FlaxBartEncoderLayers" in k: + split["scanned_encoder"][k] = v + elif "FlaxBartDecoderLayers" in k: + split["scanned_decoder"][k] = v + else: + split["standard"][k] = v + for k, v in split.items(): + split[k] = freeze(traverse_util.unflatten_dict(v)) + return split + ===========changed ref 3=========== # module: tools.train.train + class TrainState(struct.PyTreeNode): - class TrainState(train_state.TrainState): def apply_gradients(self, *, grads, **kwargs): + grads = split_params(grads) + params = split_params(self.params) - params = self.unscan(self.params) + opt_state = {} + # we loop over keys: "standard", "scanned_encoder", "scanned_decoder" + for k, param in params.items(): + update_fn = self.tx[k].update + if "scanned" in k: + update_fn = jax.vmap(update_fn, in_axes=(0, 0, 0), out_axes=(0, 0)) + updates, new_opt_state = update_fn(grads[k], self.opt_state[k], param) - updates, new_opt_state = self.tx.update( - self.unscan(grads), self.opt_state, params - ) + params[k] = optax.apply_updates(param, updates) - params = optax.apply_updates(params, updates) + opt_state[k] = new_opt_state + params = unsplit_params(params) + return self.replace( step=self.step + 1, + params=params, - params=self.rescan(params), + opt_state=freeze(opt_state), - opt_state=new_opt_state, **kwargs, )
dalle_mini.model.modeling/FlaxBartEncoderLayerCollection.__call__
Modified
borisdayma~dalle-mini
b993d27f4707b7fbff7c09c4ae897067f6751956
feat: vmap optimizer (#166)
# module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): <0> all_hidden_states = () if output_hidden_states else None <1> all_self_attns = () if output_attentions else None <2> <3> n_layers = self.config.encoder_layers <4> layer = ( <5> remat( <6> FlaxBartEncoderLayer, <7> static_argnums=(2, 3), <8> prevent_cse=not self.config.use_scan, <9> ) <10> if self.config.gradient_checkpointing <11> else FlaxBartEncoderLayer <12> ) <13> <14> if self.config.use_scan: <15> # all blocks are the same so we use nn.scan <16> assert not output_attentions, "cannot scan with output_attentions" <17> assert not output_hidden_states, "cannot scan with output_hidden_states" <18> hidden_states = (hidden_states,) <19> # we use a scale on all norms (even last layer) to allow scanning <20> hidden_states, _ = nn.scan( <21> layer, <22> variable_axes={"params": 0}, <23> split_rngs={"params": True, "dropout": True}, <24> in_axes=(nn.broadcast, nn.broadcast, nn.broadcast), <25> length=n_layers, <26> )( <27> self.config, <28> dtype=self.dtype, <29> add_norm=self.config.ln_positions == "postln", <30> name="FlaxBartEncoderLayers", <31> )( <32> hidden_states, <33> attention_mask, <34> output_attentions, <35> deterministic, <36> ) <37> hidden_states = hidden_</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 1 else: for i in range(n_layers): if output_hidden_states: all_hidden_states += (hidden_states,) # final layernorm on the output of the last layer # or every 6 layers for Swin v2 add_norm = self.config.ln_positions == "postln" or ( self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) and (i != n_layers - 1) ) # we don't need to scale the norm for the last layer use_scale = i != n_layers - 1 layer_outputs = layer( self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale, name=f"FlaxBartEncoderLayer_{i}", )( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) # add hidden states from the last layer if output_hidden_states: all_hidden_states += (hidden_states,) # postln is already applied in every layer if self.config.use_final_ln_encoder and self.config.ln_positions != "postln": hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, </s> ===========below chunk 1=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 2 <s>.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(hidden_states) outputs = [ hidden_states, all_hidden_states, all_self_attns, ] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, ) ===========unchanged ref 0=========== at: dalle_mini.model.modeling remat = nn_partitioning.remat at: dalle_mini.model.modeling.FlaxBartEncoderLayerCollection config: DalleBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation at: transformers.modeling_flax_outputs FlaxBaseModelOutput(**kwargs: _VT) FlaxBaseModelOutput(iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) FlaxBaseModelOutput(map: Mapping[_KT, _VT], **kwargs: _VT) ===========changed ref 0=========== # module: tools.train.train + def unsplit_params(data): + flat = {} + for k in ["standard", "scanned_encoder", "scanned_decoder"]: + flat.update(traverse_util.flatten_dict(unfreeze(data[k]))) + return freeze(traverse_util.unflatten_dict(flat)) + ===========changed ref 1=========== # module: tools.train.train + class TrainState(struct.PyTreeNode): - class TrainState(train_state.TrainState): - @staticmethod - def unscan(params): - params = unfreeze(params) - for l in ["encoder", "decoder"]: - params["model"][l]["layers"] = jax.tree_map( - lambda x: {f"{i}": x[i] for i in range(len(x))}, - params["model"][l]["layers"], - ) - params = freeze(params) - return params - ===========changed ref 2=========== # module: tools.train.train + class TrainState(struct.PyTreeNode): - class TrainState(train_state.TrainState): - @staticmethod - def rescan(params): - params = unfreeze(params) - for l in ["encoder", "decoder"]: - params["model"][l]["layers"] = jax.tree_map( - lambda x: jnp.stack([x[f"{i}"] for i in range(len(x))]), - params["model"][l]["layers"], - is_leaf=lambda x: "0" in x, - ) - params = freeze(params) - return params - ===========changed ref 3=========== # module: tools.train.train + class TrainState(struct.PyTreeNode): - class TrainState(train_state.TrainState): + step: int + params: core.FrozenDict[str, Any] + opt_state: optax.OptState + apply_fn: Callable = struct.field(pytree_node=False) + tx: optax.GradientTransformation = struct.field(pytree_node=False) dropout_rng: jnp.ndarray = None epoch: int = 0 train_time: float = 0.0 # total time the model trained train_samples: int = 0 # number of samples seen ===========changed ref 4=========== # module: tools.train.train + class TrainState(struct.PyTreeNode): - class TrainState(train_state.TrainState): @classmethod def create(cls, *, apply_fn, params, tx, **kwargs): + opt_state = {} + for k, p in split_params(params).items(): + init_fn = tx[k].init + if "scanned" in k: + init_fn = jax.vmap(init_fn) + opt_state[k] = init_fn(p) - opt_state = tx.init(cls.unscan(params)) return cls( step=0, apply_fn=apply_fn, params=params, tx=tx, + opt_state=freeze(opt_state), - opt_state=opt_state, **kwargs, ) ===========changed ref 5=========== # module: tools.train.train + def split_params(data): + """Split params between scanned and non-scanned""" + flat = traverse_util.flatten_dict(unfreeze(data)) + split = {"standard": {}, "scanned_encoder": {}, "scanned_decoder": {}} + for k, v in flat.items(): + if "FlaxBartEncoderLayers" in k: + split["scanned_encoder"][k] = v + elif "FlaxBartDecoderLayers" in k: + split["scanned_decoder"][k] = v + else: + split["standard"][k] = v + for k, v in split.items(): + split[k] = freeze(traverse_util.unflatten_dict(v)) + return split +
dalle_mini.model.modeling/FlaxBartDecoderLayerCollection.__call__
Modified
borisdayma~dalle-mini
b993d27f4707b7fbff7c09c4ae897067f6751956
feat: vmap optimizer (#166)
<s>Collection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): <0> # decoder layers <1> all_hidden_states = () if output_hidden_states else None <2> all_self_attns = () if output_attentions else None <3> all_cross_attentions = ( <4> () if (output_attentions and encoder_hidden_states is not None) else None <5> ) <6> <7> n_layers = self.config.decoder_layers <8> layer = ( <9> remat( <10> FlaxBartDecoderLayer, <11> static_argnums=(4, 5, 6), <12> prevent_cse=not self.config.use_scan, <13> ) <14> if self.config.gradient_checkpointing <15> else FlaxBartDecoderLayer <16> ) <17> <18> if self.config.use_scan: <19> # all blocks are the same so we use nn.scan <20> assert not output_attentions, "cannot scan with output_attentions" <21> assert not output_hidden_states, "cannot scan with output_hidden_states" <22> hidden_states = (hidden_states,) <23> # we use a scale on all norms (even last layer) to allow scanning <24> hidden_states, _ = nn.scan( <25> layer, <26> variable_axes={"params": 0}, <27> split_rngs={"params": True, "dropout": True}, <28> in_axes=( <29> nn.broadcast, <30> nn.broadcast, <31> nn.broadcast, <32> nn.broadcast, <33> nn.broadcast, <34> nn.broadcast, <35> ),</s>
===========below chunk 0=========== <s>): @nn.compact def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 1 )( self.config, dtype=self.dtype, add_norm=self.config.ln_positions == "postln", name="FlaxBartEncoderLayers", )( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, init_cache, output_attentions, deterministic, ) hidden_states = hidden_states[0] else: for i in range(n_layers): if output_hidden_states: all_hidden_states += (hidden_states,) # final layernorm on the output of the last layer # or every 6 layers for Swin v2 add_norm = self.config.ln_positions == "postln" or ( self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) and (i != n_layers - 1) ) # we don't need to scale the norm for the last layer use_scale = i != n_layers - 1 layer_outputs = layer( self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale, name=f"FlaxBartDecoderLayer_{i}", )( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, init_cache, output_attentions, deterministic, ) hidden_states = layer</s> ===========below chunk 1=========== <s>): @nn.compact def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 2 <s>mask, init_cache, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) # postln is already applied in every layer if self.config.use_final_ln_decoder and self.config.ln_positions != "postln": hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(hidden_states) outputs = [ hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, ] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_ ===========unchanged ref 0=========== at: dalle_mini.model.modeling remat = nn_partitioning.remat at: dalle_mini.model.modeling.FlaxBartDecoderLayerCollection config: DalleBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation at: transformers.modeling_flax_outputs FlaxBaseModelOutputWithPastAndCrossAttentions(**kwargs: _VT) FlaxBaseModelOutputWithPastAndCrossAttentions(map: Mapping[_KT, _VT], **kwargs: _VT) FlaxBaseModelOutputWithPastAndCrossAttentions(iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None n_layers = self.config.encoder_layers layer = ( remat( FlaxBartEncoderLayer, static_argnums=(2, 3), prevent_cse=not self.config.use_scan, ) if self.config.gradient_checkpointing else FlaxBartEncoderLayer ) if self.config.use_scan: # all blocks are the same so we use nn.scan assert not output_attentions, "cannot scan with output_attentions" assert not output_hidden_states, "cannot scan with output_hidden_states" hidden_states = (hidden_states,) # we use a scale on all norms (even last layer) to allow scanning hidden_states, _ = nn.scan( layer, variable_axes={"params": 0}, split_rngs={"params": True, "dropout": True}, in_axes=(nn.broadcast, nn.broadcast, nn.broadcast), length=n_layers, )( self.config, dtype=self.dtype, add_norm=self.config.ln_positions == "postln", name="FlaxBartEncoderLayers", )( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = hidden_states[0] else: for i in range(n_layers): if output_hidden_states: all_hidden_states += (hidden</s>
dalle_mini.model.modeling/FlaxBartEncoder.__call__
Modified
borisdayma~dalle-mini
b993d27f4707b7fbff7c09c4ae897067f6751956
feat: vmap optimizer (#166)
<21>:<add> if self.final_ln is None: <add> final_output = outputs[0] <add> else: <add> final_output = self.final_ln(outputs[0]) <add> <22>:<add> return (final_output,) + outputs[1:] <del> return outputs <25>:<add> last_hidden_state=final_output, <del> last_hidden_state=outputs.last_hidden_state,
# module: dalle_mini.model.modeling class FlaxBartEncoder(nn.Module): def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): <0> input_shape = input_ids.shape <1> input_ids = input_ids.reshape(-1, input_shape[-1]) <2> <3> hidden_states = self.embed_tokens(input_ids) * self.embed_scale <4> <5> if self.config.use_absolute_position_embeddings: <6> embed_pos = self.embed_positions(position_ids + self.offset) <7> hidden_states = hidden_states + embed_pos <8> <9> hidden_states = self.layernorm_embedding(hidden_states) <10> hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) <11> <12> outputs = self.layers( <13> hidden_states, <14> attention_mask, <15> deterministic=deterministic, <16> output_attentions=output_attentions, <17> output_hidden_states=output_hidden_states, <18> return_dict=return_dict, <19> ) <20> <21> if not return_dict: <22> return outputs <23> <24> return FlaxBaseModelOutput( <25> last_hidden_state=outputs.last_hidden_state, <26> hidden_states=outputs.hidden_states, <27> attentions=outputs.attentions, <28> ) <29>
===========unchanged ref 0=========== at: dalle_mini.model.modeling.FlaxBartEncoder config: DalleBartConfig embed_tokens: nn.Embed at: dalle_mini.model.modeling.FlaxBartEncoder.setup self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 self.offset = 0 self.embed_positions = nn.Embed( self.config.max_text_length + self.offset, # image length for BOS embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 ) self.final_ln = None self.final_ln = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, ) at: transformers.modeling_flax_outputs FlaxBaseModelOutput(**kwargs: _VT) FlaxBaseModelOutput(iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) FlaxBaseModelOutput(map: Mapping[_KT, _VT], **kwargs: _VT) at: transformers.modeling_flax_outputs.FlaxBaseModelOutput last_hidden_state: jnp.ndarray = None hidden_states: Optional[Tuple[jnp.ndarray]] = None attentions: Optional[Tuple[jnp.ndarray]] = None ===========changed ref 0=========== # module: tools.train.train + def unsplit_params(data): + flat = {} + for k in ["standard", "scanned_encoder", "scanned_decoder"]: + flat.update(traverse_util.flatten_dict(unfreeze(data[k]))) + return freeze(traverse_util.unflatten_dict(flat)) + ===========changed ref 1=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None n_layers = self.config.encoder_layers layer = ( remat( FlaxBartEncoderLayer, static_argnums=(2, 3), prevent_cse=not self.config.use_scan, ) if self.config.gradient_checkpointing else FlaxBartEncoderLayer ) if self.config.use_scan: # all blocks are the same so we use nn.scan assert not output_attentions, "cannot scan with output_attentions" assert not output_hidden_states, "cannot scan with output_hidden_states" hidden_states = (hidden_states,) # we use a scale on all norms (even last layer) to allow scanning hidden_states, _ = nn.scan( layer, variable_axes={"params": 0}, split_rngs={"params": True, "dropout": True}, in_axes=(nn.broadcast, nn.broadcast, nn.broadcast), length=n_layers, )( self.config, dtype=self.dtype, add_norm=self.config.ln_positions == "postln", name="FlaxBartEncoderLayers", )( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = hidden_states[0] else: for i in range(n_layers): if output_hidden_states: all_hidden_states += (hidden</s> ===========changed ref 2=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 1 <s> for i in range(n_layers): if output_hidden_states: all_hidden_states += (hidden_states,) # final layernorm on the output of the last layer # or every 6 layers for Swin v2 add_norm = self.config.ln_positions == "postln" or ( self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) and (i != n_layers - 1) ) # we don't need to scale the norm for the last layer use_scale = i != n_layers - 1 layer_outputs = layer( self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale, name=f"FlaxBartEncoderLayer_{i}", )( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) # add hidden states from the last layer if output_hidden_states: all_hidden_states += (hidden_states,) - # postln is already applied in every layer - if self.config.use_final_ln_encoder and self.config.ln_positions != "postln": - hidden_states = norm( - self.config.ln_type, </s> ===========changed ref 3=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 2 <s> dtype=self.dtype, - epsilon=1e-05, - use_scale=self.config.force_ln_scale, - )(hidden_states) - outputs = [ hidden_states, all_hidden_states, all_self_attns, ] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, ) ===========changed ref 4=========== # module: tools.train.train + class TrainState(struct.PyTreeNode): - class TrainState(train_state.TrainState): - @staticmethod - def unscan(params): - params = unfreeze(params) - for l in ["encoder", "decoder"]: - params["model"][l]["layers"] = jax.tree_map( - lambda x: {f"{i}": x[i] for i in range(len(x))}, - params["model"][l]["layers"], - ) - params = freeze(params) - return params -
dalle_mini.model.modeling/FlaxBartDecoder.__call__
Modified
borisdayma~dalle-mini
b993d27f4707b7fbff7c09c4ae897067f6751956
feat: vmap optimizer (#166)
<24>:<add> if self.final_ln is None: <add> final_output = outputs[0] <add> else: <add> final_output = self.final_ln(outputs[0]) <add> <25>:<add> return (final_output,) + outputs[1:] <del> return outputs <28>:<add> last_hidden_state=final_output, <del> last_hidden_state=outputs.last_hidden_state,
<s>Decoder(nn.Module): def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): <0> input_shape = input_ids.shape <1> input_ids = input_ids.reshape(-1, input_shape[-1]) <2> <3> hidden_states = self.embed_tokens(input_ids) * self.embed_scale <4> <5> if self.config.use_absolute_position_embeddings: <6> embed_pos = self.embed_positions(position_ids + self.offset) <7> hidden_states = hidden_states + embed_pos <8> <9> hidden_states = self.layernorm_embedding(hidden_states) <10> hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) <11> <12> outputs = self.layers( <13> hidden_states, <14> attention_mask, <15> encoder_hidden_states, <16> encoder_attention_mask, <17> deterministic=deterministic, <18> init_cache=init_cache, <19> output_attentions=output_attentions, <20> output_hidden_states=output_hidden_states, <21> return_dict=return_dict, <22> ) <23> <24> if not return_dict: <25> return outputs <26> <27> return FlaxBaseModelOutputWithPastAndCrossAttentions( <28> last_hidden_state=outputs.last_hidden_state, <29> hidden_states=outputs.hidden_states, <30> attentions=outputs.attentions, <31> cross_attentions=outputs.cross_attentions, <32> ) <33>
===========unchanged ref 0=========== at: dalle_mini.model.modeling norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartDecoder config: DalleBartConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation at: dalle_mini.model.modeling.FlaxBartDecoder.setup self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.embed_scale = ( math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 ) self.offset = 0 self.embed_positions = nn.Embed( self.config.image_length + self.offset, # image length for BOS embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 ) ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoder(nn.Module): def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) hidden_states = self.embed_tokens(input_ids) * self.embed_scale if self.config.use_absolute_position_embeddings: embed_pos = self.embed_positions(position_ids + self.offset) hidden_states = hidden_states + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) + if self.final_ln is None: + final_output = outputs[0] + else: + final_output = self.final_ln(outputs[0]) + if not return_dict: + return (final_output,) + outputs[1:] - return outputs return FlaxBaseModelOutput( + last_hidden_state=final_output, - last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) ===========changed ref 1=========== # module: tools.train.train + def unsplit_params(data): + flat = {} + for k in ["standard", "scanned_encoder", "scanned_decoder"]: + flat.update(traverse_util.flatten_dict(unfreeze(data[k]))) + return freeze(traverse_util.unflatten_dict(flat)) + ===========changed ref 2=========== # module: tools.train.train + class TrainState(struct.PyTreeNode): - class TrainState(train_state.TrainState): - @staticmethod - def unscan(params): - params = unfreeze(params) - for l in ["encoder", "decoder"]: - params["model"][l]["layers"] = jax.tree_map( - lambda x: {f"{i}": x[i] for i in range(len(x))}, - params["model"][l]["layers"], - ) - params = freeze(params) - return params - ===========changed ref 3=========== # module: tools.train.train + class TrainState(struct.PyTreeNode): - class TrainState(train_state.TrainState): - @staticmethod - def rescan(params): - params = unfreeze(params) - for l in ["encoder", "decoder"]: - params["model"][l]["layers"] = jax.tree_map( - lambda x: jnp.stack([x[f"{i}"] for i in range(len(x))]), - params["model"][l]["layers"], - is_leaf=lambda x: "0" in x, - ) - params = freeze(params) - return params - ===========changed ref 4=========== # module: tools.train.train + class TrainState(struct.PyTreeNode): - class TrainState(train_state.TrainState): + step: int + params: core.FrozenDict[str, Any] + opt_state: optax.OptState + apply_fn: Callable = struct.field(pytree_node=False) + tx: optax.GradientTransformation = struct.field(pytree_node=False) dropout_rng: jnp.ndarray = None epoch: int = 0 train_time: float = 0.0 # total time the model trained train_samples: int = 0 # number of samples seen ===========changed ref 5=========== # module: tools.train.train + class TrainState(struct.PyTreeNode): - class TrainState(train_state.TrainState): @classmethod def create(cls, *, apply_fn, params, tx, **kwargs): + opt_state = {} + for k, p in split_params(params).items(): + init_fn = tx[k].init + if "scanned" in k: + init_fn = jax.vmap(init_fn) + opt_state[k] = init_fn(p) - opt_state = tx.init(cls.unscan(params)) return cls( step=0, apply_fn=apply_fn, params=params, tx=tx, + opt_state=freeze(opt_state), - opt_state=opt_state, **kwargs, )
app.streamlit.backend/get_images_from_backend
Modified
borisdayma~dalle-mini
d6e9f876a356a7684701216b859956581ae4fab3
Half the number of requests.
<2>:<add> json = r.json() <add> images = json["images"] <del> images = r.json()["images"] <4>:<add> version = json.get("version", "unknown") <add> return {"images": images, "version": version} <del> return images
# module: app.streamlit.backend def get_images_from_backend(prompt, backend_url): <0> r = requests.post(backend_url, json={"prompt": prompt}) <1> if r.status_code == 200: <2> images = r.json()["images"] <3> images = [Image.open(BytesIO(base64.b64decode(img))) for img in images] <4> return images <5> else: <6> raise ServiceError(r.status_code) <7>
===========unchanged ref 0=========== at: PIL.Image open(fp, mode="r", formats=None) at: base64 b64decode(s: _decodable, altchars: Optional[bytes]=..., validate: bool=...) -> bytes at: io BytesIO(initial_bytes: bytes=...) at: requests.api post(url: Union[Text, bytes], data: _Data=..., json=..., **kwargs) -> Response at: requests.models.Response __attrs__ = [ "_content", "status_code", "headers", "url", "history", "encoding", "reason", "cookies", "elapsed", "request", ] json(**kwargs) -> Any at: requests.models.Response.__init__ self.status_code = None
tools.train.train/split_params
Modified
borisdayma~dalle-mini
209ade7a3a5e94205f8c4f19289890de43da74d4
Merge pull request #171 from borisdayma/reduced-requests
<10>:<add> # remove empty keys <add> split = {k: v for k, v in split.items() if v}
# module: tools.train.train def split_params(data): <0> """Split params between scanned and non-scanned""" <1> flat = traverse_util.flatten_dict(unfreeze(data)) <2> split = {"standard": {}, "scanned_encoder": {}, "scanned_decoder": {}} <3> for k, v in flat.items(): <4> if "FlaxBartEncoderLayers" in k: <5> split["scanned_encoder"][k] = v <6> elif "FlaxBartDecoderLayers" in k: <7> split["scanned_decoder"][k] = v <8> else: <9> split["standard"][k] = v <10> for k, v in split.items(): <11> split[k] = freeze(traverse_util.unflatten_dict(v)) <12> return split <13>
===========unchanged ref 0=========== at: tools.train.train.TrainingArguments output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per data parallel device for training."}, ) per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) gradient_checkpointing: bool = field( default=False, metadata={"help": "Use gradient checkpointing."} ) learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, ) ===========unchanged ref 1=========== beta2: float = field( default=0.999, metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, ) adam_epsilon: float = field( default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} ) max_grad_norm: float = field( default=1.0, metadata={"help": "Max gradient norm for Adafactor."} ) block_size: int = field( default=1024, metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, ) preconditioning_compute_steps: int = field( default=10, metadata={"help": "Number of steps to update preconditioner."} ) skip_preconditioning_dim_size_gt: int = field( default=4096, metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, ) graft_type: str = field( default="rmsprop_normalized", metadata={ "help": "The type of grafting to use. Can be 'rmsprop_normalized' (default), 'rmsprop', 'adagrad', 'adagrad_normalized', 'sgd' or 'sqrt_n'" }, ) optim_quantized: bool = field( default=False, metadata={ "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." }, ) shard_shampoo_across: str = field( default="dp", metadata={ "help": "Whether to shard the optimizer across data devices (dp), model devices (mp) or both (2d)." }, ) num_train_epochs: int = field( default=3, metadata={"help": "Total number of training epochs to perform."} ) ===========unchanged ref 2=========== warmup_steps: int = field( default=0, metadata={"help": "Linear warmup over warmup_steps."} ) lr_decay: str = field( default=None, metadata={ "help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential." }, ) lr_transition_steps: int = field( default=None, metadata={ "help": "Number of transition steps associated with learning rate decay when using exponential decay." }, ) lr_decay_rate: float = field( default=None, metadata={ "help": "Decay rate associated with learning rate when using exponential decay." }, ) lr_staircase: bool = field( default=False, metadata={ "help": "Whether to use staircase or continuous learning rate when using exponential decay." }, ) lr_resume_offset: bool = field( default=False, metadata={ "help": "Whether to offset the learning rate function with current step when resuming a run." }, ) logging_steps: int = field( default=40, metadata={"help": "Log every X updates steps."} ) eval_steps: int = field( default=400, metadata={"help": "Run an evaluation every X steps."} ) save_steps: int = field( default=4000, metadata={"help": "Save checkpoint every X updates steps."} ) log_model: bool = field( default=False, metadata={"help": "Log model to wandb at `save_steps` frequency."}, ) log_norm_steps: int = field( default=True, metadata={"help": "Log parameters and gradients norm at this frequency."}, ) ===========unchanged ref 3=========== log_histogram_steps: int = field( default=False, metadata={ "help": "Log parameters and gradients histograms at this frequency. Slows down training." }, ) seed_model: int = field( default=42, metadata={ "help": "Random seed for the model that will be set at the beginning of training." }, ) wandb_entity: Optional[str] = field( default=None, metadata={"help": "The wandb entity to use (for teams)."}, ) wandb_project: str = field( default="dalle-mini", metadata={"help": "The name of the wandb project."}, ) wandb_job_type: str = field( default="Seq2Seq", metadata={"help": "The name of the wandb job type."}, ) assert_TPU_available: bool = field( default=False, metadata={"help": "Verify that TPU is not in use."}, ) use_vmap_trick: bool = field( default=True, metadata={"help": "Verify that TPU is not in use."}, ) mp_devices: Optional[int] = field( default=1, metadata={ "help": "Number of devices required for model parallelism. The other dimension of available devices is used for data parallelism." }, ) dp_devices: int = field(init=False) ===========changed ref 0=========== # module: dalle_mini + __version__ = "0.0.5" - __version__ = "0.0.4"
tools.train.train/unsplit_params
Modified
borisdayma~dalle-mini
209ade7a3a5e94205f8c4f19289890de43da74d4
Merge pull request #171 from borisdayma/reduced-requests
<2>:<add> if k in data: <add> flat.update(traverse_util.flatten_dict(unfreeze(data[k]))) <del> flat.update(traverse_util.flatten_dict(unfreeze(data[k])))
# module: tools.train.train def unsplit_params(data): <0> flat = {} <1> for k in ["standard", "scanned_encoder", "scanned_decoder"]: <2> flat.update(traverse_util.flatten_dict(unfreeze(data[k]))) <3> return freeze(traverse_util.unflatten_dict(flat)) <4>
===========changed ref 0=========== # module: tools.train.train def split_params(data): """Split params between scanned and non-scanned""" flat = traverse_util.flatten_dict(unfreeze(data)) split = {"standard": {}, "scanned_encoder": {}, "scanned_decoder": {}} for k, v in flat.items(): if "FlaxBartEncoderLayers" in k: split["scanned_encoder"][k] = v elif "FlaxBartDecoderLayers" in k: split["scanned_decoder"][k] = v else: split["standard"][k] = v + # remove empty keys + split = {k: v for k, v in split.items() if v} for k, v in split.items(): split[k] = freeze(traverse_util.unflatten_dict(v)) return split ===========changed ref 1=========== # module: dalle_mini + __version__ = "0.0.5" - __version__ = "0.0.4" ===========changed ref 2=========== # module: tools.train.train @dataclass class TrainingArguments: """ Arguments pertaining to training parameters. """ output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per data parallel device for training."}, ) per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) gradient_checkpointing: bool = field( default=False, metadata={"help": "Use gradient checkpointing."} ) learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for</s> ===========changed ref 3=========== # module: tools.train.train @dataclass class TrainingArguments: # offset: 1 <s> ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, ) beta2: float = field( default=0.999, metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, ) adam_epsilon: float = field( default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} ) max_grad_norm: float = field( default=1.0, metadata={"help": "Max gradient norm for Adafactor."} ) block_size: int = field( default=1024, metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, ) preconditioning_compute_steps: int = field( default=10, metadata={"help": "Number of steps to update preconditioner."} ) skip_preconditioning_dim_size_gt: int = field( default=4096, metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, ) graft_type: str = field( default="rmsprop_normalized", metadata={ "help": "The type of grafting to use. Can be 'rmsprop_normalized' (default), 'rmsprop', 'adagrad', 'adagrad_normalized', 'sgd' or 'sqrt_n'" }, ) optim_quantized: bool = field( default=False, metadata={ "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." }, ) shard_shampoo_across: str = field( default="dp", metadata={ "help": "Whether to shard the optimizer across data</s> ===========changed ref 4=========== # module: tools.train.train @dataclass class TrainingArguments: # offset: 2 <s>dp), model devices (mp) or both (2d)." }, ) num_train_epochs: int = field( default=3, metadata={"help": "Total number of training epochs to perform."} ) warmup_steps: int = field( default=0, metadata={"help": "Linear warmup over warmup_steps."} ) lr_decay: str = field( default=None, metadata={ "help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential." }, ) lr_transition_steps: int = field( default=None, metadata={ "help": "Number of transition steps associated with learning rate decay when using exponential decay." }, ) lr_decay_rate: float = field( default=None, metadata={ "help": "Decay rate associated with learning rate when using exponential decay." }, ) lr_staircase: bool = field( default=False, metadata={ "help": "Whether to use staircase or continuous learning rate when using exponential decay." }, ) + lr_resume_offset: bool = field( + default=False, + metadata={ + "help": "Whether to offset the learning rate function with current step when resuming a run." + }, + ) - logging_steps: int = field( default=40, metadata={"help": "Log every X updates steps."} ) eval_steps: int = field( default=400, metadata={"help": "Run an evaluation every X steps."} ) save_steps: int = field( default=4000, metadata={"help": "Save checkpoint every X updates steps."} ) log_model: bool = field</s>
dalle_mini.model.modeling/FlaxBartEncoderLayerCollection.__call__
Modified
borisdayma~dalle-mini
209ade7a3a5e94205f8c4f19289890de43da74d4
Merge pull request #171 from borisdayma/reduced-requests
<22>:<add> variable_axes={"params": 0, "cache": 0}, <del> variable_axes={"params": 0},
# module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): <0> all_hidden_states = () if output_hidden_states else None <1> all_self_attns = () if output_attentions else None <2> <3> n_layers = self.config.encoder_layers <4> layer = ( <5> remat( <6> FlaxBartEncoderLayer, <7> static_argnums=(2, 3), <8> prevent_cse=not self.config.use_scan, <9> ) <10> if self.config.gradient_checkpointing <11> else FlaxBartEncoderLayer <12> ) <13> <14> if self.config.use_scan: <15> # all blocks are the same so we use nn.scan <16> assert not output_attentions, "cannot scan with output_attentions" <17> assert not output_hidden_states, "cannot scan with output_hidden_states" <18> hidden_states = (hidden_states,) <19> # we use a scale on all norms (even last layer) to allow scanning <20> hidden_states, _ = nn.scan( <21> layer, <22> variable_axes={"params": 0}, <23> split_rngs={"params": True, "dropout": True}, <24> in_axes=(nn.broadcast, nn.broadcast, nn.broadcast), <25> length=n_layers, <26> )( <27> self.config, <28> dtype=self.dtype, <29> add_norm=self.config.ln_positions == "postln", <30> name="FlaxBartEncoderLayers", <31> )( <32> hidden_states, <33> attention_mask, <34> output_attentions, <35> deterministic, <36> ) <37> hidden_states = hidden_</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 1 else: for i in range(n_layers): if output_hidden_states: all_hidden_states += (hidden_states,) # final layernorm on the output of the last layer # or every 6 layers for Swin v2 add_norm = self.config.ln_positions == "postln" or ( self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) and (i != n_layers - 1) ) # we don't need to scale the norm for the last layer use_scale = i != n_layers - 1 layer_outputs = layer( self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale, name=f"FlaxBartEncoderLayer_{i}", )( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) # add hidden states from the last layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [ hidden_states, all_hidden_states, all_self_attns, ] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, </s> ===========below chunk 1=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 2 <s>axBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, ) ===========unchanged ref 0=========== at: dalle_mini.model.modeling remat = nn_partitioning.remat at: dalle_mini.model.modeling.FlaxBartEncoderLayerCollection config: DalleBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation at: transformers.modeling_flax_outputs FlaxBaseModelOutput(**kwargs: _VT) FlaxBaseModelOutput(iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) FlaxBaseModelOutput(map: Mapping[_KT, _VT], **kwargs: _VT) ===========changed ref 0=========== # module: dalle_mini + __version__ = "0.0.5" - __version__ = "0.0.4" ===========changed ref 1=========== # module: tools.train.train def unsplit_params(data): flat = {} for k in ["standard", "scanned_encoder", "scanned_decoder"]: + if k in data: + flat.update(traverse_util.flatten_dict(unfreeze(data[k]))) - flat.update(traverse_util.flatten_dict(unfreeze(data[k]))) return freeze(traverse_util.unflatten_dict(flat)) ===========changed ref 2=========== # module: tools.train.train def split_params(data): """Split params between scanned and non-scanned""" flat = traverse_util.flatten_dict(unfreeze(data)) split = {"standard": {}, "scanned_encoder": {}, "scanned_decoder": {}} for k, v in flat.items(): if "FlaxBartEncoderLayers" in k: split["scanned_encoder"][k] = v elif "FlaxBartDecoderLayers" in k: split["scanned_decoder"][k] = v else: split["standard"][k] = v + # remove empty keys + split = {k: v for k, v in split.items() if v} for k, v in split.items(): split[k] = freeze(traverse_util.unflatten_dict(v)) return split ===========changed ref 3=========== # module: tools.train.train @dataclass class TrainingArguments: """ Arguments pertaining to training parameters. """ output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per data parallel device for training."}, ) per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) gradient_checkpointing: bool = field( default=False, metadata={"help": "Use gradient checkpointing."} ) learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for</s>
dalle_mini.model.modeling/FlaxBartDecoderLayerCollection.__call__
Modified
borisdayma~dalle-mini
209ade7a3a5e94205f8c4f19289890de43da74d4
Merge pull request #171 from borisdayma/reduced-requests
<26>:<add> variable_axes={"params": 0, "cache": 0}, <del> variable_axes={"params": 0},
<s>Collection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): <0> # decoder layers <1> all_hidden_states = () if output_hidden_states else None <2> all_self_attns = () if output_attentions else None <3> all_cross_attentions = ( <4> () if (output_attentions and encoder_hidden_states is not None) else None <5> ) <6> <7> n_layers = self.config.decoder_layers <8> layer = ( <9> remat( <10> FlaxBartDecoderLayer, <11> static_argnums=(4, 5, 6), <12> prevent_cse=not self.config.use_scan, <13> ) <14> if self.config.gradient_checkpointing <15> else FlaxBartDecoderLayer <16> ) <17> <18> if self.config.use_scan: <19> # all blocks are the same so we use nn.scan <20> assert not output_attentions, "cannot scan with output_attentions" <21> assert not output_hidden_states, "cannot scan with output_hidden_states" <22> hidden_states = (hidden_states,) <23> # we use a scale on all norms (even last layer) to allow scanning <24> hidden_states, _ = nn.scan( <25> layer, <26> variable_axes={"params": 0}, <27> split_rngs={"params": True, "dropout": True}, <28> in_axes=( <29> nn.broadcast, <30> nn.broadcast, <31> nn.broadcast, <32> nn.broadcast, <33> nn.broadcast, <34> nn.broadcast, <35> ),</s>
===========below chunk 0=========== <s>): @nn.compact def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 1 )( self.config, dtype=self.dtype, add_norm=self.config.ln_positions == "postln", name="FlaxBartDecoderLayers", )( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, init_cache, output_attentions, deterministic, ) hidden_states = hidden_states[0] else: for i in range(n_layers): if output_hidden_states: all_hidden_states += (hidden_states,) # final layernorm on the output of the last layer # or every 6 layers for Swin v2 add_norm = self.config.ln_positions == "postln" or ( self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) and (i != n_layers - 1) ) # we don't need to scale the norm for the last layer use_scale = i != n_layers - 1 layer_outputs = layer( self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale, name=f"FlaxBartDecoderLayer_{i}", )( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, init_cache, output_attentions, deterministic, ) hidden_states = layer</s> ===========below chunk 1=========== <s>): @nn.compact def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 2 <s>mask, init_cache, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [ hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, ] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) ===========unchanged ref 0=========== at: dalle_mini.model.modeling remat = nn_partitioning.remat at: dalle_mini.model.modeling.FlaxBartDecoderLayerCollection config: DalleBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation at: transformers.modeling_flax_outputs FlaxBaseModelOutputWithPastAndCrossAttentions(**kwargs: _VT) FlaxBaseModelOutputWithPastAndCrossAttentions(map: Mapping[_KT, _VT], **kwargs: _VT) FlaxBaseModelOutputWithPastAndCrossAttentions(iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None n_layers = self.config.encoder_layers layer = ( remat( FlaxBartEncoderLayer, static_argnums=(2, 3), prevent_cse=not self.config.use_scan, ) if self.config.gradient_checkpointing else FlaxBartEncoderLayer ) if self.config.use_scan: # all blocks are the same so we use nn.scan assert not output_attentions, "cannot scan with output_attentions" assert not output_hidden_states, "cannot scan with output_hidden_states" hidden_states = (hidden_states,) # we use a scale on all norms (even last layer) to allow scanning hidden_states, _ = nn.scan( layer, + variable_axes={"params": 0, "cache": 0}, - variable_axes={"params": 0}, split_rngs={"params": True, "dropout": True}, in_axes=(nn.broadcast, nn.broadcast, nn.broadcast), length=n_layers, )( self.config, dtype=self.dtype, add_norm=self.config.ln_positions == "postln", name="FlaxBartEncoderLayers", )( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = hidden_states[0] else: for i in range(n_layers): </s>
dalle_mini.model.modeling/FlaxBartPreTrainedModel.num_params
Modified
borisdayma~dalle-mini
6b841551e3cbc1956cc499821081f56af53f0b1a
feat(train): use new HF _do_init api
<0>:<add> if params is None: <add> params = self.params <1>:<add> lambda param: param.size, flatten_dict(unfreeze(params)) <del> lambda param: param.size, flatten_dict(unfreeze(self.params))
# module: dalle_mini.model.modeling class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): - @property + def num_params(self, params=None): - def num_params(self): <0> num_params = jax.tree_map( <1> lambda param: param.size, flatten_dict(unfreeze(self.params)) <2> ).values() <3> return sum(list(num_params)) <4>
===========unchanged ref 0=========== at: dalle_mini.model.modeling.FlaxBartPreTrainedModel config_class = DalleBartConfig at: transformers.modeling_flax_utils.FlaxPreTrainedModel config_class = None base_model_prefix = "" main_input_name = "input_ids" _auto_class = None _missing_keys = set() at: transformers.modeling_flax_utils.FlaxPreTrainedModel.__init__ self.params = random_params ===========changed ref 0=========== # module: tools.train.train def main(): # See all possible arguments by passing the --help flag to this script. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1]) ) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # check arguments if training_args.mp_devices > jax.local_device_count(): assert ( data_args.seed_dataset is not None ), "Seed dataset must be provided when model is split over multiple hosts" # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Load dataset dataset = Dataset( **asdict(data_args), do_train=training_args</s> ===========changed ref 1=========== # module: tools.train.train def main(): # offset: 1 <s> # Load dataset dataset = Dataset( **asdict(data_args), do_train=training_args.do_train, do_eval=training_args.do_eval, ) logger.info(f"Local TPUs: {jax.local_device_count()}") logger.info(f"Global TPUs: {jax.device_count()}") # Set up wandb run if jax.process_index() == 0: wandb.init( entity=training_args.wandb_entity, project=training_args.wandb_project, job_type=training_args.wandb_job_type, config=parser.parse_args(), ) # Set up our new model config if model_args.config_name: config = DalleBartConfig.from_pretrained(model_args.config_name) config.gradient_checkpointing = training_args.gradient_checkpointing else: config = None # Load or create new model if model_args.model_name_or_path: + model, params = DalleBart.from_pretrained( - model = DalleBart.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed_model, dtype=getattr(jnp, model_args.dtype), + _do_init=False, # we overwrite them with loaded checkpoint - abstract_init=True, # we overwrite them with loaded checkpoint gradient_checkpointing=training_args.gradient_checkpointing, ) else: model = DalleBart( config, seed=training_args.seed_model, dtype=getattr(jnp, model_args.dtype), + </s> ===========changed ref 2=========== # module: tools.train.train def main(): # offset: 2 <s>_init=False, + ) + params = None + params_shape = model.params_shape_tree - abstract_init=True, - ) # get model metadata model_metadata = model_args.get_metadata() # get PartitionSpec for model params (required to be a dict) + param_spec = set_partitions(params_shape, model.config.use_scan) + params_shape = freeze(params_shape) + if params is not None: + params = freeze(params) - param_spec = set_partitions(model.params, model.config.use_scan) - - # convert params to frozen dict - model._params = freeze(model.params) # Load tokenizer tokenizer = DalleBartTokenizer.from_pretrained( model_args.tokenizer_name, use_fast=True ) # Preprocessing the datasets. # We need to normalize and tokenize inputs and targets. dataset.preprocess(tokenizer=tokenizer, config=model.config) # Initialize our training dropout_rng = jax.random.PRNGKey(training_args.seed_model) # Store some constant num_epochs = training_args.num_train_epochs # batch size batch_size_per_node_per_grad_step = ( training_args.per_device_train_batch_size * jax.local_device_count() // training_args.mp_devices ) batch_size_per_node = ( batch_size_per_node_per_grad_step * training_args.gradient_accumulation_steps ) batch_size_per_step = batch_size_per_node * jax.process_count() eval_batch_size_per_node = ( training_args.per_</s>
tools.train.train/TrainingArguments.__post_init__
Modified
borisdayma~dalle-mini
acc1a4a30516e13262c75d1fb0c800eb4d4ebbcd
feat: allow weight decay
<13>:<add> if self.optim == "adafactor" and self.weight_decay == 0: <add> self.weight_decay = None
# module: tools.train.train @dataclass class TrainingArguments: def __post_init__(self): <0> if self.assert_TPU_available: <1> assert ( <2> jax.local_device_count() == 8 <3> ), "TPUs in use, please check running processes" <4> if self.output_dir.startswith("gs://"): <5> assert ( <6> storage is not None <7> ), 'Could not find google.storage. Install with "pip install google-cloud-storage"' <8> assert self.optim in [ <9> "distributed_shampoo", <10> "adam", <11> "adafactor", <12> ], f"Selected optimizer not supported: {self.optim}" <13> assert self.graft_type in [ <14> "rmsprop_normalized", <15> "rmsprop", <16> "adagrad", <17> "adagrad_normalized", <18> "sgd", <19> "sqrt_n", <20> ], f"Selected graft type not supported: {self.graft_type}" <21> assert self.lr_decay in [ <22> None, <23> "linear", <24> "exponential", <25> ], f"Selected learning rate decay not supported: {self.lr_decay}" <26> if self.per_device_eval_batch_size is None: <27> self.per_device_eval_batch_size = self.per_device_train_batch_size <28> if self.log_norm_steps is True: <29> self.log_norm_steps = self.logging_steps <30> if ( <31> os.path.exists(self.output_dir) <32> and os.listdir(self.output_dir) <33> and self.do_train <34> and not self.overwrite_output_dir <35> ): <36> raise ValueError( <37> f"Output directory ({self.output_dir}) already exists and is not empty." <38> "Use --overwrite_output_dir to overcome." <39> ) <40> assert self.shard_shampoo_across in [ <41> </s>
===========below chunk 0=========== # module: tools.train.train @dataclass class TrainingArguments: def __post_init__(self): # offset: 1 "mp", "2d", ], f"Shard shampoo across {self.shard_shampoo_across} not supported." assert ( self.mp_devices > 0 ), f"Number of devices for model parallelism must be > 0" assert ( jax.device_count() % self.mp_devices == 0 ), f"Number of available devices ({jax.device_count()} must be divisible by number of devices used for model parallelism ({self.mp_devices})." self.dp_devices = jax.device_count() // self.mp_devices ===========unchanged ref 0=========== at: dataclasses field(*, default_factory: Callable[[], _T], init: bool=..., repr: bool=..., hash: Optional[bool]=..., compare: bool=..., metadata: Optional[Mapping[str, Any]]=...) -> _T field(*, init: bool=..., repr: bool=..., hash: Optional[bool]=..., compare: bool=..., metadata: Optional[Mapping[str, Any]]=...) -> Any field(*, default: _T, init: bool=..., repr: bool=..., hash: Optional[bool]=..., compare: bool=..., metadata: Optional[Mapping[str, Any]]=...) -> _T at: os listdir(path: bytes) -> List[bytes] listdir(path: int) -> List[str] listdir(path: Optional[str]=...) -> List[str] listdir(path: _PathLike[str]) -> List[str] at: os.path exists(path: Union[AnyStr, _PathLike[AnyStr]]) -> bool at: tools.train.train storage = None at: tools.train.train.TrainingArguments output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per data parallel device for training."}, ) ===========unchanged ref 1=========== per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) gradient_checkpointing: bool = field( default=False, metadata={"help": "Use gradient checkpointing."} ) learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) weight_decay: float = field( default=0.0, metadata={"help": "Weight decay applied to parameters."} ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, ) beta2: float = field( default=0.999, metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, ) adam_epsilon: float = field( default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} ) max_grad_norm: float = field( default=1.0, metadata={"help": "Max gradient norm for Adafactor."} ) block_size: int = field( default=1024, metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, ) ===========unchanged ref 2=========== preconditioning_compute_steps: int = field( default=10, metadata={"help": "Number of steps to update preconditioner."} ) skip_preconditioning_dim_size_gt: int = field( default=4096, metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, ) graft_type: str = field( default="rmsprop_normalized", metadata={ "help": "The type of grafting to use. Can be 'rmsprop_normalized' (default), 'rmsprop', 'adagrad', 'adagrad_normalized', 'sgd' or 'sqrt_n'" }, ) optim_quantized: bool = field( default=False, metadata={ "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." }, ) shard_shampoo_across: str = field( default="dp", metadata={ "help": "Whether to shard the optimizer across data devices (dp), model devices (mp) or both (2d)." }, ) num_train_epochs: int = field( default=3, metadata={"help": "Total number of training epochs to perform."} ) warmup_steps: int = field( default=0, metadata={"help": "Linear warmup over warmup_steps."} ) lr_decay: str = field( default=None, metadata={ "help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential." }, ) lr_transition_steps: int = field( default=None, metadata={ "help": "Number of transition steps associated with learning rate decay when using exponential decay." }, ) lr_decay_rate: float = field( default=None, metadata={ "help": "Decay rate associated with learning rate when using exponential decay." }, )
tools.train.scalable_shampoo.distributed_shampoo/init_training_metrics
Modified
borisdayma~dalle-mini
79a3849945dbe2c23d2376aa765c88a96ffbd666
feat: update shampoo
<2>:<add> if not num_statistics: <add> return TrainingMetrics(jnp.array(0, jnp.float32)) <add> else: <del> n = 1 if not num_statistics else num_statistics <3>:<add> return TrainingMetrics(jnp.zeros([num_statistics], jnp.float32)) <del> return TrainingMetrics(jnp.zeros([n], jnp.float32))
# module: tools.train.scalable_shampoo.distributed_shampoo def init_training_metrics(num_statistics): <0> # Since the downstream apis expect a jnp.array - we create a dummy one if <1> # num_statistics=0. <2> n = 1 if not num_statistics else num_statistics <3> return TrainingMetrics(jnp.zeros([n], jnp.float32)) <4>
===========unchanged ref 0=========== at: tools.train.scalable_shampoo.distributed_shampoo TrainingMetrics()
tools.train.scalable_shampoo.distributed_shampoo/init_training_metrics_shapes
Modified
borisdayma~dalle-mini
79a3849945dbe2c23d2376aa765c88a96ffbd666
feat: update shampoo
<2>:<add> if not num_statistics: <del> n = 1 if not num_statistics else num_statistics <3>:<add> return TrainingMetrics([[], jnp.float32]) <del> return TrainingMetrics([[n], jnp.float32]) <4>:<add> else: <add> return TrainingMetrics([[num_statistics], jnp.float32])
# module: tools.train.scalable_shampoo.distributed_shampoo def init_training_metrics_shapes(num_statistics): <0> # Since the downstream apis expect a jnp.array - we create a dummy one if <1> # num_statistics=0. <2> n = 1 if not num_statistics else num_statistics <3> return TrainingMetrics([[n], jnp.float32]) <4>
===========changed ref 0=========== # module: tools.train.scalable_shampoo.distributed_shampoo def init_training_metrics(num_statistics): # Since the downstream apis expect a jnp.array - we create a dummy one if # num_statistics=0. + if not num_statistics: + return TrainingMetrics(jnp.array(0, jnp.float32)) + else: - n = 1 if not num_statistics else num_statistics + return TrainingMetrics(jnp.zeros([num_statistics], jnp.float32)) - return TrainingMetrics(jnp.zeros([n], jnp.float32))
tools.train.scalable_shampoo.distributed_shampoo/matrix_inverse_pth_root
Modified
borisdayma~dalle-mini
79a3849945dbe2c23d2376aa765c88a96ffbd666
feat: update shampoo
# module: tools.train.scalable_shampoo.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): <0> """Computes `matrix^(-1/p)`, where `p` is a positive integer. <1> <2> This function uses the Coupled newton iterations algorithm for <3> the computation of a matrix's inverse pth root. <4> <5> <6> References: <7> [Functions of Matrices, Theory and Computation, <8> Nicholas J Higham, Pg 184, Eq 7.18]( <9> https://epubs.siam.org/doi/book/10.1137/1.9780898717778) <10> <11> Args: <12> matrix: the symmetric PSD matrix whose power it to be computed <13> p: exponent, for p a positive integer. <14> num_iters: Maximum number of iterations. <15> ridge_epsilon: Ridge epsilon added to make the matrix positive definite. <16> error_tolerance: Error indicator, useful for early termination. <17> precision: precision XLA related flag, the available options are: a) <18> lax.Precision.DEFAULT (better step time, but not precise) b) <19> lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST <20> (best possible precision, slowest) <21> <22> Returns: <23> matrix^(-1/p) <24> """ <25> <26> # If the input is not square, materialize it from the concatenated form. <27> if matrix.shape[0] != matrix.shape[1]: <28> matrix = symmetric_matrices.materialize_matrix_from_concat(matrix) <29> <30> assert matrix.shape[0] == matrix.shape[1] <31> <32> # We use _MAT_INV_PTH_ROOT_DTYPE for the matrix inverse pth root. <33> # Switch</s>
===========below chunk 0=========== # module: tools.train.scalable_shampoo.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): # offset: 1 # jax_enable_x64 for this to work. matrix_size = matrix.shape[0] orig_dtype = matrix.dtype matrix = matrix.astype(_MAT_INV_PTH_ROOT_DTYPE) alpha = jnp.asarray(-1.0 / p, _MAT_INV_PTH_ROOT_DTYPE) identity = jnp.eye(matrix_size, dtype=_MAT_INV_PTH_ROOT_DTYPE) _, max_ev = power_iteration( matrix=matrix, num_iters=100, error_tolerance=1e-6, precision=precision ) ridge_epsilon = ridge_epsilon * jnp.maximum(max_ev, 1e-6) def _iter_condition(state): (i, unused_mat_m, unused_mat_h, unused_old_mat_h, error, run_step) = state error_above_threshold = jnp.logical_and(error > error_tolerance, run_step) return jnp.logical_and(i < num_iters, error_above_threshold) def _iter_body(state): (i, mat_m, mat_h, unused_old_mat_h, error, unused_run_step) = state mat_m_i = (1 - alpha) * identity + alpha * mat_m new_mat_m = jnp.matmul(mat_power(mat_m_i, p), mat_m, precision=precision) new_mat_h = jnp.matmul(mat_h, mat_m_i, precision=precision) new_error = jnp.max(jnp.abs(new_mat_m -</s> ===========below chunk 1=========== # module: tools.train.scalable_shampoo.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): # offset: 2 <s>m_i, precision=precision) new_error = jnp.max(jnp.abs(new_mat_m - identity)) # sometimes error increases after an iteration before decreasing and # converging. 1.2 factor is used to bound the maximal allowed increase. return (i + 1, new_mat_m, new_mat_h, mat_h, new_error, new_error < error * 1.2) if matrix_size == 1: resultant_mat_h = (matrix + ridge_epsilon) ** alpha error = 0 else: damped_matrix = matrix + ridge_epsilon * identity z = (1 + p) / (2 * jnp.linalg.norm(damped_matrix)) new_mat_m_0 = damped_matrix * z new_error = jnp.max(jnp.abs(new_mat_m_0 - identity)) new_mat_h_0 = identity * jnp.power(z, 1.0 / p) init_state = tuple([0, new_mat_m_0, new_mat_h_0, new_mat_h_0, new_error, True]) _, mat_m, mat_h, old_mat_h, error, convergence = lax.while_loop( _iter_condition, _iter_body, init_state ) error = jnp.max(jnp.abs(mat_m - identity)).astype(jnp.float32) is_converged = jnp.as</s> ===========below chunk 2=========== # module: tools.train.scalable_shampoo.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): # offset: 3 <s>convergence, old_mat_h.dtype) resultant_mat_h = is_converged * mat_h + (1 - is_converged) * old_mat_h resultant_mat_h = jnp.asarray(resultant_mat_h, orig_dtype) return resultant_mat_h, error ===========unchanged ref 0=========== at: tools.train.scalable_shampoo.distributed_shampoo _MAT_INV_PTH_ROOT_DTYPE = jnp.float64 power_iteration(matrix, num_iters=100, error_tolerance=1e-6, precision=lax.Precision.HIGHEST) mat_power(mat_m, p, precision=lax.Precision.HIGHEST) at: tools.train.scalable_shampoo.distributed_shampoo.mat_power power = jnp.eye(mat_m.shape[0], dtype=_MAT_INV_PTH_ROOT_DTYPE) _iter_condition(state) _iter_body(state) at: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices materialize_matrix_from_concat(block_rows_concat, num_blocks=None) ===========changed ref 0=========== # module: tools.train.scalable_shampoo.distributed_shampoo def init_training_metrics_shapes(num_statistics): # Since the downstream apis expect a jnp.array - we create a dummy one if # num_statistics=0. + if not num_statistics: - n = 1 if not num_statistics else num_statistics + return TrainingMetrics([[], jnp.float32]) - return TrainingMetrics([[n], jnp.float32]) + else: + return TrainingMetrics([[num_statistics], jnp.float32]) ===========changed ref 1=========== # module: tools.train.scalable_shampoo.distributed_shampoo def init_training_metrics(num_statistics): # Since the downstream apis expect a jnp.array - we create a dummy one if # num_statistics=0. + if not num_statistics: + return TrainingMetrics(jnp.array(0, jnp.float32)) + else: - n = 1 if not num_statistics else num_statistics + return TrainingMetrics(jnp.zeros([num_statistics], jnp.float32)) - return TrainingMetrics(jnp.zeros([n], jnp.float32))
tools.train.scalable_shampoo.distributed_shampoo/_add_error_into_local_stats
Modified
borisdayma~dalle-mini
79a3849945dbe2c23d2376aa765c88a96ffbd666
feat: update shampoo
<3>:<add> if local_stat.sizes: <add> index_start = int(local_stat.index_start) <del> index_start = int(local_stat.index_start) <4>:<add> index_end = int(len(local_stat.sizes)) + index_start <del> index_end = int(len(local_stat.sizes)) + index_start <5>:<add> per_stat_error = errors[index_start:index_end] <del> per_stat_error = errors[index_start:index_end] <6>:<add> else: <add> per_stat_error = jnp.array(0, jnp.float32)
# module: tools.train.scalable_shampoo.distributed_shampoo def _add_error_into_local_stats(local_stats, errors, inverse_failure_threshold): <0> """Adds errors back into local statistics.""" <1> new_local_stats = [] <2> for local_stat in local_stats: <3> index_start = int(local_stat.index_start) <4> index_end = int(len(local_stat.sizes)) + index_start <5> per_stat_error = errors[index_start:index_end] <6> if local_stat.sizes: <7> per_stat_error = jnp.where( <8> jnp.logical_and( <9> per_stat_error > 0.0, per_stat_error != inverse_failure_threshold <10> ), <11> per_stat_error, <12> local_stat.training_metrics.inverse_pth_root_errors, <13> ) <14> new_local_stats.append( <15> LocalShardedParameterStats( <16> local_stat.diagonal_statistics, <17> local_stat.diagonal_momentum, <18> local_stat.momentum, <19> TrainingMetrics(per_stat_error), <20> local_stat.index_start, <21> local_stat.sizes, <22> ) <23> ) <24> return new_local_stats <25>
===========unchanged ref 0=========== at: tools.train.scalable_shampoo.distributed_shampoo LocalShardedParameterStats() at: tools.train.scalable_shampoo.distributed_shampoo.LocalShardedParameterStats diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner momentum: QuantizedValue # Momentum for the shampoo preconditioner training_metrics: TrainingMetrics # Metrics (optional for training). index_start: np.int32 = struct.field( pytree_node=False ) # Index into global statistics array sizes: Any = struct.field(pytree_node=False) # Sizes of the statistics. at: tools.train.scalable_shampoo.distributed_shampoo.TrainingMetrics inverse_pth_root_errors: chex.Array # Error for inverse-pth roots. ===========changed ref 0=========== # module: tools.train.scalable_shampoo.distributed_shampoo def init_training_metrics_shapes(num_statistics): # Since the downstream apis expect a jnp.array - we create a dummy one if # num_statistics=0. + if not num_statistics: - n = 1 if not num_statistics else num_statistics + return TrainingMetrics([[], jnp.float32]) - return TrainingMetrics([[n], jnp.float32]) + else: + return TrainingMetrics([[num_statistics], jnp.float32]) ===========changed ref 1=========== # module: tools.train.scalable_shampoo.distributed_shampoo def init_training_metrics(num_statistics): # Since the downstream apis expect a jnp.array - we create a dummy one if # num_statistics=0. + if not num_statistics: + return TrainingMetrics(jnp.array(0, jnp.float32)) + else: - n = 1 if not num_statistics else num_statistics + return TrainingMetrics(jnp.zeros([num_statistics], jnp.float32)) - return TrainingMetrics(jnp.zeros([n], jnp.float32)) ===========changed ref 2=========== # module: tools.train.scalable_shampoo.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): """Computes `matrix^(-1/p)`, where `p` is a positive integer. This function uses the Coupled newton iterations algorithm for the computation of a matrix's inverse pth root. References: [Functions of Matrices, Theory and Computation, Nicholas J Higham, Pg 184, Eq 7.18]( https://epubs.siam.org/doi/book/10.1137/1.9780898717778) Args: matrix: the symmetric PSD matrix whose power it to be computed p: exponent, for p a positive integer. num_iters: Maximum number of iterations. ridge_epsilon: Ridge epsilon added to make the matrix positive definite. error_tolerance: Error indicator, useful for early termination. precision: precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) Returns: matrix^(-1/p) """ # If the input is not square, materialize it from the concatenated form. if matrix.shape[0] != matrix.shape[1]: matrix = symmetric_matrices.materialize_matrix_from_concat(matrix) assert matrix.shape[0] == matrix.shape[1] # We use _MAT_INV_PTH_ROOT_DTYPE for the matrix inverse pth root. # Switch to f64 if you have hardware that supports it. Enable the jax flag # jax_enable_x64 for this to work. matrix_size</s> ===========changed ref 3=========== # module: tools.train.scalable_shampoo.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): # offset: 1 <s> you have hardware that supports it. Enable the jax flag # jax_enable_x64 for this to work. matrix_size = matrix.shape[0] orig_dtype = matrix.dtype matrix = matrix.astype(_MAT_INV_PTH_ROOT_DTYPE) alpha = jnp.asarray(-1.0 / p, _MAT_INV_PTH_ROOT_DTYPE) identity = jnp.eye(matrix_size, dtype=_MAT_INV_PTH_ROOT_DTYPE) _, max_ev = power_iteration( matrix=matrix, num_iters=100, error_tolerance=1e-6, precision=precision ) ridge_epsilon = ridge_epsilon * jnp.maximum(max_ev, 1e-6) def _iter_condition(state): (i, unused_mat_m, unused_mat_h, unused_old_mat_h, error, run_step) = state error_above_threshold = jnp.logical_and(error > error_tolerance, run_step) return jnp.logical_and(i < num_iters, error_above_threshold) def _iter_body(state): (i, mat_m, mat_h, unused_old_mat_h, error, unused_run_step) = state mat_m_i = (1 - alpha) * identity + alpha * mat_m new_mat_m = jnp.matmul(mat_power(mat_m_i, p), mat_m, precision=precision) new_mat</s>
tools.train.train/ModelArguments.get_metadata
Modified
borisdayma~dalle-mini
c3e93dfa329b1086d6c738ec5f2a36b4ccd77a46
feat: support LR offset (#174)
<0>:<add> if ":" in self.model_name_or_path: <del> if self.restore_state:
# module: tools.train.train @dataclass class ModelArguments: def get_metadata(self): <0> if self.restore_state: <1> if jax.process_index() == 0: <2> artifact = wandb.run.use_artifact(self.model_name_or_path) <3> else: <4> artifact = wandb.Api().artifact(self.model_name_or_path) <5> return artifact.metadata <6> else: <7> return dict() <8>
===========unchanged ref 0=========== at: tools.train.train.ModelArguments model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch. " "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." }, ) config_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained config name or path if not the same as model_name_or_path" }, ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path" }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." }, ) restore_state: Optional[bool] = field( default=False, metadata={ "help": "Restore optimizer and training state. Can be True (will retrieve associated wandb artifact), a local directory or a Google bucket path." }, ) at: wandb Api = PublicApi run: Optional["wandb_sdk.wandb_run.Run"] = None at: wandb.apis.public.Api _HTTP_TIMEOUT = env.get_http_timeout(9) ===========unchanged ref 1=========== VIEWER_QUERY = gql( """ query Viewer{ viewer { id flags entity username email admin apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } """ ) USERS_QUERY = gql( """ query SearchUsers($query: String) { users(query: $query) { edges { node { id flags entity admin email deletedAt username apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } } } """ ) CREATE_PROJECT = gql( """ mutation upsertModel( $description: String $entityName: String $id: String $name: String $framework: String $access: String $views: JSONString ) { upsertModel( input: { description: $description entityName: $entityName id: $id name: $name framework: $framework access: $access views: $views } ) { project { id name entityName description access views } model { id name entityName description access views } inserted } } """ ) artifact(name, type=None) ===========unchanged ref 2=========== at: wandb.apis.public.Artifact QUERY = gql( """ query ArtifactWithCurrentManifest( $id: ID!, ) { artifact(id: $id) { currentManifest { id file { id directUrl } } ...ArtifactFragment } } %s """ % ARTIFACT_FRAGMENT ) at: wandb.sdk.wandb_run.Run _telemetry_obj: telemetry.TelemetryRecord _telemetry_obj_active: bool _telemetry_obj_dirty: bool _telemetry_obj_flushed: bytes _teardown_hooks: List[TeardownHook] _tags: Optional[Tuple[Any, ...]] _entity: Optional[str] _project: Optional[str] _group: Optional[str] _job_type: Optional[str] _name: Optional[str] _notes: Optional[str] _run_obj: Optional[RunRecord] _run_obj_offline: Optional[RunRecord] _backend: Optional["wandb.sdk.backend.backend.Backend"] _internal_run_interface: Optional[ Union[ "wandb.sdk.interface.interface_queue.InterfaceQueue", "wandb.sdk.interface.interface_grpc.InterfaceGrpc", ] ] _wl: Optional[_WandbSetup] _out_redir: Optional[redirect.RedirectBase] _err_redir: Optional[redirect.RedirectBase] _redirect_cb: Optional[Callable[[str, str], None]] _redirect_raw_cb: Optional[Callable[[str, str], None]] _output_writer: Optional["filesystem.CRDedupedFile"] _quiet: Optional[bool] _atexit_cleanup_called: bool _hooks: Optional[ExitHooks] ===========unchanged ref 3=========== _exit_code: Optional[int] _run_status_checker: Optional[RunStatusChecker] _check_version: Optional["CheckVersionResponse"] _sampled_history: Optional["SampledHistoryResponse"] _final_summary: Optional["GetSummaryResponse"] _poll_exit_handle: Optional[MailboxHandle] _poll_exit_response: Optional[PollExitResponse] _server_info_response: Optional[ServerInfoResponse] _stdout_slave_fd: Optional[int] _stderr_slave_fd: Optional[int] _artifact_slots: List[str] _init_pid: int _attach_pid: int _iface_pid: Optional[int] _iface_port: Optional[int] _attach_id: Optional[str] _is_attached: bool _settings: Settings _launch_artifacts: Optional[Dict[str, Any]] _printer: Union["PrinterTerm", "PrinterJupyter"] use_artifact(self, artifact_or_name: Union[str, public.Artifact, Artifact], type: Optional[str]=None, aliases: Optional[List[str]]=None, use_as: Optional[str]=None) -> Union[public.Artifact, Artifact]
tools.train.train/TrainingArguments.__post_init__
Modified
borisdayma~dalle-mini
65bb95f06b74e4472a1d023c771d7a5748121c9d
feat: allow eval only
<32>:<add> if not self.do_train: <add> self.num_train_epochs = 1
# module: tools.train.train @dataclass class TrainingArguments: def __post_init__(self): <0> if self.assert_TPU_available: <1> assert ( <2> jax.local_device_count() == 8 <3> ), "TPUs in use, please check running processes" <4> if self.output_dir.startswith("gs://"): <5> assert ( <6> storage is not None <7> ), 'Could not find google.storage. Install with "pip install google-cloud-storage"' <8> assert self.optim in [ <9> "distributed_shampoo", <10> "adam", <11> "adafactor", <12> ], f"Selected optimizer not supported: {self.optim}" <13> if self.optim == "adafactor" and self.weight_decay == 0: <14> self.weight_decay = None <15> assert self.graft_type in [ <16> "rmsprop_normalized", <17> "rmsprop", <18> "adagrad", <19> "adagrad_normalized", <20> "sgd", <21> "sqrt_n", <22> ], f"Selected graft type not supported: {self.graft_type}" <23> assert self.lr_decay in [ <24> None, <25> "linear", <26> "exponential", <27> ], f"Selected learning rate decay not supported: {self.lr_decay}" <28> if self.per_device_eval_batch_size is None: <29> self.per_device_eval_batch_size = self.per_device_train_batch_size <30> if self.log_norm_steps is True: <31> self.log_norm_steps = self.logging_steps <32> if ( <33> os.path.exists(self.output_dir) <34> and os.listdir(self.output_dir) <35> and self.do_train <36> and not self.overwrite_output_dir <37> ): <38> raise ValueError( <39> f"Output directory ({self.output_dir}) already exists and is not empty." <40> "Use --overwrite</s>
===========below chunk 0=========== # module: tools.train.train @dataclass class TrainingArguments: def __post_init__(self): # offset: 1 ) assert self.shard_shampoo_across in [ "dp", "mp", "2d", ], f"Shard shampoo across {self.shard_shampoo_across} not supported." assert ( self.mp_devices > 0 ), f"Number of devices for model parallelism must be > 0" assert ( jax.device_count() % self.mp_devices == 0 ), f"Number of available devices ({jax.device_count()} must be divisible by number of devices used for model parallelism ({self.mp_devices})." self.dp_devices = jax.device_count() // self.mp_devices ===========unchanged ref 0=========== at: os listdir(path: bytes) -> List[bytes] listdir(path: int) -> List[str] listdir(path: Optional[str]=...) -> List[str] listdir(path: _PathLike[str]) -> List[str] at: os.path exists(path: Union[AnyStr, _PathLike[AnyStr]]) -> bool at: tools.train.train storage = None at: tools.train.train.TrainingArguments output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per data parallel device for training."}, ) per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) gradient_checkpointing: bool = field( default=False, metadata={"help": "Use gradient checkpointing."} ) learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) ===========unchanged ref 1=========== optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) weight_decay: float = field( default=0.0, metadata={"help": "Weight decay applied to parameters."} ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, ) beta2: float = field( default=0.999, metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, ) adam_epsilon: float = field( default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} ) max_grad_norm: float = field( default=1.0, metadata={"help": "Max gradient norm for Adafactor."} ) block_size: int = field( default=1024, metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, ) preconditioning_compute_steps: int = field( default=10, metadata={"help": "Number of steps to update preconditioner."} ) skip_preconditioning_dim_size_gt: int = field( default=4096, metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, ) graft_type: str = field( default="rmsprop_normalized", metadata={ "help": "The type of grafting to use. Can be 'rmsprop_normalized' (default), 'rmsprop', 'adagrad', 'adagrad_normalized', 'sgd' or 'sqrt_n'" }, ) ===========unchanged ref 2=========== nesterov: bool = field( default=False, metadata={"help": "Use Nesterov momentum for Distributed Shampoo."}, ) optim_quantized: bool = field( default=False, metadata={ "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." }, ) shard_shampoo_across: str = field( default="dp", metadata={ "help": "Whether to shard the optimizer across data devices (dp), model devices (mp) or both (2d)." }, ) num_train_epochs: int = field( default=3, metadata={"help": "Total number of training epochs to perform."} ) warmup_steps: int = field( default=0, metadata={"help": "Linear warmup over warmup_steps."} ) lr_decay: str = field( default=None, metadata={ "help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential." }, ) lr_transition_steps: int = field( default=None, metadata={ "help": "Number of transition steps associated with learning rate decay when using exponential decay." }, ) lr_decay_rate: float = field( default=None, metadata={ "help": "Decay rate associated with learning rate when using exponential decay." }, ) lr_staircase: bool = field( default=False, metadata={ "help": "Whether to use staircase or continuous learning rate when using exponential decay." }, ) lr_offset: int = field( default=0, metadata={"help": "Number of steps to offset learning rate and keep it at 0."}, ) logging_steps: int = field( default=40, metadata={"help": "Log every X updates steps."} )
tools.train.train/ModelArguments.get_metadata
Modified
borisdayma~dalle-mini
89bc9d4b7fe9715028880bb69d144563fffd660b
fix(train): overwrite dropout only when specified
<0>:<add> if self.model_name_or_path is not None and ":" in self.model_name_or_path: <del> if ":" in self.model_name_or_path:
# module: tools.train.train @dataclass class ModelArguments: def get_metadata(self): <0> if ":" in self.model_name_or_path: <1> if jax.process_index() == 0: <2> artifact = wandb.run.use_artifact(self.model_name_or_path) <3> else: <4> artifact = wandb.Api().artifact(self.model_name_or_path) <5> return artifact.metadata <6> else: <7> return dict() <8>
===========unchanged ref 0=========== at: tools.train.train.ModelArguments model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch. " "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." }, ) config_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained config name or path if not the same as model_name_or_path" }, ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path" }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." }, ) restore_state: Optional[bool] = field( default=False, metadata={ "help": "Restore optimizer and training state. Can be True (will retrieve associated wandb artifact), a local directory or a Google bucket path." }, ) dropout: Optional[float] = field( default=None, metadata={"help": "Dropout rate. Overwrites config."}, ) activation_dropout: Optional[float] = field( default=None, metadata={"help": "Activation dropout rate. Overwrites config."}, ) attention_dropout: Optional[float] = field( default=None, metadata={"help": "Attention dropout rate. Overwrites config."}, ) at: wandb Api = PublicApi run: Optional["wandb_sdk.wandb_run.Run"] = None ===========unchanged ref 1=========== at: wandb.apis.public.Api _HTTP_TIMEOUT = env.get_http_timeout(9) VIEWER_QUERY = gql( """ query Viewer{ viewer { id flags entity username email admin apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } """ ) USERS_QUERY = gql( """ query SearchUsers($query: String) { users(query: $query) { edges { node { id flags entity admin email deletedAt username apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } } } """ ) CREATE_PROJECT = gql( """ mutation upsertModel( $description: String $entityName: String $id: String $name: String $framework: String $access: String $views: JSONString ) { upsertModel( input: { description: $description entityName: $entityName id: $id name: $name framework: $framework access: $access views: $views } ) { project { id name entityName description access views } model { id name entityName description access views } inserted } } """ ) artifact(name, type=None) ===========unchanged ref 2=========== at: wandb.apis.public.Artifact QUERY = gql( """ query ArtifactWithCurrentManifest( $id: ID!, ) { artifact(id: $id) { currentManifest { id file { id directUrl } } ...ArtifactFragment } } %s """ % ARTIFACT_FRAGMENT ) at: wandb.sdk.wandb_run.Run _telemetry_obj: telemetry.TelemetryRecord _telemetry_obj_active: bool _telemetry_obj_dirty: bool _telemetry_obj_flushed: bytes _teardown_hooks: List[TeardownHook] _tags: Optional[Tuple[Any, ...]] _entity: Optional[str] _project: Optional[str] _group: Optional[str] _job_type: Optional[str] _name: Optional[str] _notes: Optional[str] _run_obj: Optional[RunRecord] _run_obj_offline: Optional[RunRecord] _backend: Optional["wandb.sdk.backend.backend.Backend"] _internal_run_interface: Optional[ Union[ "wandb.sdk.interface.interface_queue.InterfaceQueue", "wandb.sdk.interface.interface_grpc.InterfaceGrpc", ] ] _wl: Optional[_WandbSetup] _out_redir: Optional[redirect.RedirectBase] _err_redir: Optional[redirect.RedirectBase] _redirect_cb: Optional[Callable[[str, str], None]] _redirect_raw_cb: Optional[Callable[[str, str], None]] _output_writer: Optional["filesystem.CRDedupedFile"] _quiet: Optional[bool] _atexit_cleanup_called: bool _hooks: Optional[ExitHooks] ===========unchanged ref 3=========== _exit_code: Optional[int] _run_status_checker: Optional[RunStatusChecker] _check_version: Optional["CheckVersionResponse"] _sampled_history: Optional["SampledHistoryResponse"] _final_summary: Optional["GetSummaryResponse"] _poll_exit_handle: Optional[MailboxHandle] _poll_exit_response: Optional[PollExitResponse] _server_info_response: Optional[ServerInfoResponse] _stdout_slave_fd: Optional[int] _stderr_slave_fd: Optional[int] _artifact_slots: List[str] _init_pid: int _attach_pid: int _iface_pid: Optional[int] _iface_port: Optional[int] _attach_id: Optional[str] _is_attached: bool _settings: Settings _launch_artifacts: Optional[Dict[str, Any]] _printer: Union["PrinterTerm", "PrinterJupyter"] use_artifact(self, artifact_or_name: Union[str, public.Artifact, Artifact], type: Optional[str]=None, aliases: Optional[List[str]]=None, use_as: Optional[str]=None) -> Union[public.Artifact, Artifact]
dalle_mini.data/Dataset.__post_init__
Modified
borisdayma~dalle-mini
3109050d47c8c9db7963436519efdc6292d5d8a5
feat: support multi validation datasets (#192)
<35>:<add> # multiple validation datasets <add> if self.multi_eval_ds: <add> assert Path( <add> self.dataset_repo_or_path <add> ).is_dir(), f"{self.dataset_repo_or_path} is not a directory, required for multi_eval_ds" <add> data_files = { <add> split.name: [str(f) for f in split.glob("*.parquet")] <add> for split in Path(self.dataset_repo_or_path).glob("*") <add> } <add> # rename "valid" to "validation" if present for consistency <add> if "valid" in data_files: <add> data_files["validation"] = data_files["valid"] <add> del data_files["valid"] <add> self.dataset_repo_or_path = "parquet" <add>
# module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): <0> if self.seed_dataset is None: <1> # create a random seed <2> self.seed_dataset = random.randint(0, 2**32 - 1) <3> # set numpy rng <4> self.np_rng = np.random.default_rng(self.seed_dataset) <5> self.multi_hosts = jax.process_count() > 1 <6> # feed blank captions only in streaming mode for now <7> # otherwise dataset could be cached with same blanked captions <8> if self.blank_caption_prob: <9> assert ( <10> self.streaming is True <11> ), "blank_caption_prob can only be used in streaming mode" <12> # define data_files <13> if self.train_file is not None or self.validation_file is not None: <14> # accept braceexpand notation <15> for k in ["train_file", "validation_file"]: <16> f = getattr(self, k) <17> if isinstance(f, str): <18> setattr(self, k, list(braceexpand(f))) <19> # for list of files, split training data shards by host <20> if ( <21> isinstance(self.train_file, list) <22> and self.multi_hosts <23> and self.shard_by_host <24> ): <25> self.train_file = self.train_file[ <26> jax.process_index() :: jax.process_count() <27> ] <28> data_files = { <29> "train": self.train_file, <30> "validation": self.validation_file, <31> } <32> else: <33> data_files = None <34> <35> # load dataset <36> dataset = load_dataset( <37> self.dataset_repo_or_path, <38> data_files=data_files, <39> streaming=self.streaming, <40> use_auth_token=self.use_auth_token, <41> ) <42> if self.do_train:</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): # offset: 1 raise ValueError("Training requires a training dataset") self.train_dataset = dataset["train"] if self.max_train_samples is not None: self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) if self.do_eval: if "validation" not in dataset: raise ValueError("Evaluating requires a validation dataset") self.eval_dataset = dataset["validation"] if self.max_eval_samples is not None: self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) ) ===========unchanged ref 0=========== at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False blank_caption_prob: float = 0.0 clip_score_column: str = "clip_score" min_clip_score: float = None max_clip_score: float = None filter_column: str = None filter_value: str = None multi_eval_ds: bool = False train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) other_eval_datasets: list = field(init=False) at: dataclasses field(*, default_factory: Callable[[], _T], init: bool=..., repr: bool=..., hash: Optional[bool]=..., compare: bool=..., metadata: Optional[Mapping[str, Any]]=...) -> _T field(*, init: bool=..., repr: bool=..., hash: Optional[bool]=..., compare: bool=..., metadata: Optional[Mapping[str, Any]]=...) -> Any field(*, default: _T, init: bool=..., repr: bool=..., hash: Optional[bool]=..., compare: bool=..., metadata: Optional[Mapping[str, Any]]=...) -> _T ===========unchanged ref 1=========== at: datasets.load load_dataset(path: str, name: Optional[str]=None, data_dir: Optional[str]=None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]]=None, split: Optional[Union[str, Split]]=None, cache_dir: Optional[str]=None, features: Optional[Features]=None, download_config: Optional[DownloadConfig]=None, download_mode: Optional[DownloadMode]=None, ignore_verifications: bool=False, keep_in_memory: Optional[bool]=None, save_infos: bool=False, revision: Optional[Union[str, Version]]=None, use_auth_token: Optional[Union[bool, str]]=None, task: Optional[Union[str, TaskTemplate]]=None, streaming: bool=False, num_proc: Optional[int]=None, *, num_process: int=1, process_id: int=0, seed: Optional[int]=None, experiment_id: Optional[str]=None, max_concurrent_cache_files: int=10000, timeout: Union[int, float]=100, base_path: Optional[str]=None, info: Optional[DatasetInfo]=None, repo_id: Optional[str]=None, **kwargs) -> Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset] at: numpy.random._generator default_rng(seed: None | _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator=...) -> Generator at: pathlib Path() at: pathlib.Path __slots__ = () glob(pattern: str) -> Generator[_P, None, None] is_dir() -> bool at: pathlib.PurePath __slots__ = ( '_drv', '_root', '_parts', '_str', '_hash', '_pparts', '_cached_cparts', ) drive = property(attrgetter('_drv'), doc="""The drive prefix (letter or UNC path), if any.""") ===========unchanged ref 2=========== root = property(attrgetter('_root'), doc="""The root of the path, if any.""") at: random randint = _inst.randint ===========changed ref 0=========== # module: dalle_mini.data @dataclass class Dataset: dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False blank_caption_prob: float = 0.0 clip_score_column: str = "clip_score" min_clip_score: float = None max_clip_score: float = None filter_column: str = None filter_value: str = None + multi_eval_ds: bool = False train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) + other_eval_datasets: list = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False)
dalle_mini.data/Dataset.dataloader
Modified
borisdayma~dalle-mini
3109050d47c8c9db7963436519efdc6292d5d8a5
feat: support multi validation datasets (#192)
# module: dalle_mini.data @dataclass class Dataset: def dataloader(self, split, batch_size, epoch=None): <0> def _dataloader_datasets_non_streaming( <1> dataset: Dataset, <2> rng: jax.random.PRNGKey = None, <3> ): <4> """ <5> Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. <6> Shuffle batches if rng is set. <7> """ <8> steps_per_epoch = len(dataset) // batch_size <9> <10> if rng is not None: <11> batch_idx = jax.random.permutation(rng, len(dataset)) <12> else: <13> batch_idx = jnp.arange(len(dataset)) <14> <15> batch_idx = batch_idx[ <16> : steps_per_epoch * batch_size <17> ] # Skip incomplete batch. <18> batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) <19> <20> for idx in batch_idx: <21> batch = dataset[idx] <22> batch = {k: jnp.array(v) for k, v in batch.items()} <23> yield batch <24> <25> def _dataloader_datasets_streaming( <26> dataset: Dataset, <27> epoch: int, <28> ): <29> keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"] <30> batch = {k: [] for k in keys} <31> first_loop = True # stop after one loop in some cases <32> while (self.multi_hosts and split == "train") or first_loop: <33> # in multi-host, we run forever (no epoch) as hosts need to stop <34> # at the same time and training data may not be split equally <35> # For validation data we put the entire batch on each host and then <36> # keep only the one specific to each host (could be improved but not necessary) <37> if epoch is not None: <38> assert split == "train</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def dataloader(self, split, batch_size, epoch=None): # offset: 1 # reshuffle training data at each epoch dataset.set_epoch(epoch) epoch += 1 for item in dataset: for k in keys: batch[k].append(item[k]) if len(batch[keys[0]]) == batch_size: batch = {k: jnp.array(v) for k, v in batch.items()} yield batch batch = {k: [] for k in keys} first_loop = False if split == "train": ds = self.train_dataset elif split == "eval": ds = self.eval_dataset else: raise ValueError(f'split must be "train" or "eval", got {split}') if self.streaming: return _dataloader_datasets_streaming(ds, epoch) else: if split == "train": self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) return _dataloader_datasets_non_streaming(ds, input_rng) ===========unchanged ref 0=========== at: dalle_mini.data self.other_eval_datasets = { split: ( ds.map( partial_preprocess_function, batched=True, remove_columns=[ self.text_column, self.encoding_column, ], ) if self.streaming else ds.map( partial_preprocess_function, batched=True, remove_columns=getattr(ds, "column_names"), num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Preprocessing datasets", ) ) for split, ds in self.other_eval_datasets.items() } data_files = { split.name: [str(f) for f in split.glob("*.parquet")] for split in Path(self.dataset_repo_or_path).glob("*") } self.other_eval_datasets = { split: ( ds.map( partial_preprocess_function, batched=True, remove_columns=[ self.text_column, self.encoding_column, ], ) if self.streaming else ds.map( partial_preprocess_function, batched=True, remove_columns=getattr(ds, "column_names"), num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Preprocessing datasets", ) ) for split, ds in self.other_eval_datasets.items() } preprocess_function(examples, tokenizer, text_column, encoding_column, max_length, decoder_start_token_id) at: dalle_mini.data.Dataset streaming: bool = True text_column: str = "caption" encoding_column: str = "encoding" preprocessing_num_workers: int = None ===========unchanged ref 1=========== overwrite_cache: bool = False at: dalle_mini.data.Dataset.__post_init__ self.seed_dataset = random.randint(0, 2**32 - 1) self.np_rng = np.random.default_rng(self.seed_dataset) self.train_dataset = dataset["train"] self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) self.other_eval_datasets = { split: dataset[split] for split in other_eval_splits } at: dalle_mini.data.Dataset.preprocess decoder_start_token_id = config.decoder_start_token_id max_length = config.max_text_length partial_blank_caption_function = partial( blank_caption_function, text_column=self.text_column, blank_caption_prob=self.blank_caption_prob, rng=self.np_rng, ) ===========unchanged ref 2=========== at: datasets.arrow_dataset.Dataset map(function: Optional[Callable]=None, with_indices: bool=False, with_rank: bool=False, input_columns: Optional[Union[str, List[str]]]=None, batched: bool=False, batch_size: Optional[int]=1000, drop_last_batch: bool=False, remove_columns: Optional[Union[str, List[str]]]=None, keep_in_memory: bool=False, load_from_cache_file: bool=None, cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, features: Optional[Features]=None, disable_nullable: bool=False, fn_kwargs: Optional[dict]=None, num_proc: Optional[int]=None, suffix_template: str="_{rank:05d}_of_{num_proc:05d}", new_fingerprint: Optional[str]=None, desc: Optional[str]=None) -> "Dataset" at: datasets.dataset_dict.DatasetDict map(function: Optional[Callable]=None, with_indices: bool=False, with_rank: bool=False, input_columns: Optional[Union[str, List[str]]]=None, batched: bool=False, batch_size: Optional[int]=1000, drop_last_batch: bool=False, remove_columns: Optional[Union[str, List[str]]]=None, keep_in_memory: bool=False, load_from_cache_file: bool=True, cache_file_names: Optional[Dict[str, Optional[str]]]=None, writer_batch_size: Optional[int]=1000, features: Optional[Features]=None, disable_nullable: bool=False, fn_kwargs: Optional[dict]=None, num_proc: Optional[int]=None, desc: Optional[str]=None) -> "DatasetDict" at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() ===========changed ref 0=========== # module: dalle_mini.data @dataclass class Dataset: dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False blank_caption_prob: float = 0.0 clip_score_column: str = "clip_score" min_clip_score: float = None max_clip_score: float = None filter_column: str = None filter_value: str = None + multi_eval_ds: bool = False train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) + other_eval_datasets: list = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False)
dalle_mini.model.text/remove_html_tags
Modified
borisdayma~dalle-mini
f698aa3b9a7a645e0f103d583a8b3a69ce63a871
fix(processor): html tags should create a space
<0>:<add> return re.sub("<[^<]+?>", " ", t) <del> return re.sub("<[^<]+?>", "", t)
# module: dalle_mini.model.text def remove_html_tags(t): <0> return re.sub("<[^<]+?>", "", t) <1>
===========unchanged ref 0=========== at: re sub(pattern: AnyStr, repl: AnyStr, string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr sub(pattern: Pattern[AnyStr], repl: Callable[[Match[AnyStr]], AnyStr], string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr sub(pattern: AnyStr, repl: Callable[[Match[AnyStr]], AnyStr], string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr sub(pattern: Pattern[AnyStr], repl: AnyStr, string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr
dalle_mini.model.modeling/DalleBart.num_params
Modified
borisdayma~dalle-mini
dd740e6d84bbb24769878698b1800e1304d27800
feat: train embedding layers only (#291)
<2>:<add> num_params = jax.tree_util.tree_map( <del> num_params = jax.tree_map(
# module: dalle_mini.model.modeling class DalleBart(PretrainedFromWandbMixin, FlaxBartForConditionalGeneration): def num_params(self, params=None): <0> if params is None: <1> params = self.params <2> num_params = jax.tree_map( <3> lambda param: param.size, flatten_dict(unfreeze(params)) <4> ).values() <5> return sum(list(num_params)) <6>
===========unchanged ref 0=========== at: dalle_mini.model.modeling.DalleBart module_class = FlaxBartForConditionalGenerationModule config_class = DalleBartConfig at: transformers.modeling_flax_utils.FlaxPreTrainedModel config_class = None base_model_prefix = "" main_input_name = "input_ids" _auto_class = None _missing_keys = set() at: transformers.modeling_flax_utils.FlaxPreTrainedModel.__init__ self.params = random_params ===========changed ref 0=========== # module: tools.train.train try: from google.cloud import storage except: storage = None - cc.initialize_cache("./jax_cache", max_cache_size_bytes=10 * 2**30) - logger = logging.getLogger(__name__) + cc.initialize_cache("jax_cache") + ===========changed ref 1=========== # module: tools.train.train - class TrainState(struct.PyTreeNode): - step: int - params: core.FrozenDict[str, Any] - opt_state: optax.OptState - apply_fn: Callable = struct.field(pytree_node=False) - tx: optax.GradientTransformation = struct.field(pytree_node=False) - dropout_rng: jnp.ndarray = None - epoch: int = 0 - train_time: float = 0.0 # total time the model trained - train_samples: int = 0 # number of samples seen - ===========changed ref 2=========== # module: tools.train.train + def trainable_params(data, embeddings_only): + """Keep only trainable parameters""" + + if not embeddings_only: + return data + + data = unfreeze(data) + trainable = { + "lm_head": data["lm_head"], + "model": { + "decoder": { + layer: data["model"]["decoder"][layer] + for layer in [ + "embed_positions", + "embed_tokens", + "final_ln", + "layernorm_embedding", + ] + } + }, + } + return freeze(trainable) + ===========changed ref 3=========== # module: tools.train.train - class TrainState(struct.PyTreeNode): - @classmethod - def create(cls, *, apply_fn, params, tx, **kwargs): - opt_state = {} - for k, p in split_params(params).items(): - init_fn = tx[k].init - if "scanned" in k: - init_fn = jax.vmap(init_fn) - opt_state[k] = init_fn(p) - return cls( - step=0, - apply_fn=apply_fn, - params=params, - tx=tx, - opt_state=freeze(opt_state), - **kwargs, - ) - ===========changed ref 4=========== # module: tools.train.train + def init_embeddings(model, params): + """Reinitialize trainable embeddings""" + # Must match params in trainable_params() above + trainable_keypaths = [ + "lm_head.kernel", + "model.decoder.embed_positions.embedding", + "model.decoder.embed_tokens.embedding", + "model.decoder.final_ln.bias", + "model.decoder.layernorm_embedding.bias", + "model.decoder.layernorm_embedding.scale", + ] + + # Note: using private _missing_keys + init_keys = {tuple(k.split(".")) for k in trainable_keypaths} + model._missing_keys = init_keys + return model.init_weights(model.key, model.input_shape, params=params) + ===========changed ref 5=========== # module: tools.train.train - class TrainState(struct.PyTreeNode): - def apply_gradients(self, *, grads, **kwargs): - grads = split_params(grads) - params = split_params(self.params) - opt_state = {} - # we loop over keys: "standard", "scanned_encoder", "scanned_decoder" - for k, param in params.items(): - update_fn = self.tx[k].update - if "scanned" in k: - update_fn = jax.vmap(update_fn, in_axes=(0, 0, 0), out_axes=(0, 0)) - updates, new_opt_state = update_fn(grads[k], self.opt_state[k], param) - params[k] = optax.apply_updates(param, updates) - opt_state[k] = new_opt_state - params = unsplit_params(params) - - return self.replace( - step=self.step + 1, - params=params, - opt_state=freeze(opt_state), - **kwargs, - ) - ===========changed ref 6=========== # module: tools.train.train @dataclass class TrainingArguments: """ Arguments pertaining to training parameters. """ output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per data parallel device for training."}, ) per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) gradient_checkpointing: bool = field( default=False, metadata={"help": "Use gradient checkpointing."} ) learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) weight_decay: float = field( default=0.0, metadata={"help": "Weight decay applied to parameters</s>
dalle_mini.model.modeling/dot_product_attention_weights
Modified
borisdayma~dalle-mini
f05d82b9c474a27f9def742ce97c1d265a2952e4
fix: swin v2 scaling (thanks @lucidrains) (#297)
<11>:<del> # calculate attention matrix <12>:<del> depth = query.shape[-1] <13>:<del> query = query / jnp.sqrt(depth).astype(dtype) <16>:<add> <add> # divide by tau (used in Swin v2) <add> if tau is not None: <add> attn_weights = attn_weights / tau <add> else: <add> depth = query.shape[-1] <add> attn_weights = attn_weights / jnp.sqrt(depth).astype(dtype)
<s> = None, mask: Optional[Any] = None, embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, is_encoder: bool = False, + tau=None, ): <0> """ <1> Computes dot-product attention weights given query and key. <2> mask is included into the bias. <3> <4> Adapted from flax.linen.attention.dot_product_attention_weights" <5> """ <6> assert query.ndim == key.ndim, "q, k must have same rank." <7> assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match." <8> assert query.shape[-2] == key.shape[-2], "q, k num_heads must match." <9> assert query.shape[-1] == key.shape[-1], "q, k depths must match." <10> <11> # calculate attention matrix <12> depth = query.shape[-1] <13> query = query / jnp.sqrt(depth).astype(dtype) <14> # attn weight shape is (batch..., num_heads, q_length, kv_length) <15> attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision) <16> <17> # apply attention bias: masking, dropout, proximity bias, etc. <18> if bias is not None: <19> attn_weights = attn_weights + bias <20> <21> # add relative position <22> if embed_pos is not None: <23> attn_weights = attn_weights + embed_pos <24> <25> # normalize the attention weights <26> if not is_encoder or sinkhorn_iters == 1: <27> # sinkhorn does not work for causal (leaks info</s>
===========below chunk 0=========== <s> mask: Optional[Any] = None, embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, is_encoder: bool = False, + tau=None, ): # offset: 1 attn_weights = jax.nn.softmax(attn_weights).astype(dtype) else: # adapted from https://github.com/lucidrains/sinkhorn-transformer for i in range(sinkhorn_iters): # when causal, some attn_weights have been set to -inf through bias if i % 2 == 0: attn_weights -= jax.nn.logsumexp(attn_weights, axis=-1, keepdims=True) else: attn_weights -= jax.nn.logsumexp(attn_weights, axis=-2, keepdims=True) if mask is not None: attn_weights = jnp.where(mask, attn_weights, -jnp.inf) attn_weights = jnp.exp(attn_weights).astype(dtype) # apply attention dropout if not deterministic and dropout_rate > 0.0: keep_prob = 1.0 - dropout_rate if broadcast_dropout: # dropout is broadcast across the batch + head dimensions dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:] keep = jax.random.bernoulli(dropout_rng, keep_prob, dropout_shape) else: keep = jax.random.bernoulli(dropout_rng, keep_prob, attn_weights.shape) multiplier = keep.astype(attn_weights.dtype) / jnp.asarray( keep_prob, dtype=dtype </s> ===========below chunk 1=========== <s> mask: Optional[Any] = None, embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, is_encoder: bool = False, + tau=None, ): # offset: 2 <s> = keep.astype(attn_weights.dtype) / jnp.asarray( keep_prob, dtype=dtype ) attn_weights = attn_weights * multiplier return attn_weights
dalle_mini.model.modeling/FlaxBartAttention.setup
Modified
borisdayma~dalle-mini
f05d82b9c474a27f9def742ce97c1d265a2952e4
fix: swin v2 scaling (thanks @lucidrains) (#297)
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: <0> self.head_dim = self.embed_dim // self.num_heads <1> if self.head_dim * self.num_heads != self.embed_dim: <2> raise ValueError( <3> f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" <4> f" and `num_heads`: {self.num_heads})." <5> ) <6> <7> dense = partial( <8> nn.Dense, <9> self.embed_dim, <10> use_bias=self.bias, <11> dtype=self.dtype, <12> ) <13> <14> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <15> self.config <16> ) <17> <18> self.q_proj = dense( <19> kernel_init=deepnet_init() <20> if self.config.use_deepnet_scaling <21> else jax.nn.initializers.normal(self.config.init_std) <22> ) <23> self.k_proj = dense( <24> kernel_init=deepnet_init() <25> if self.config.use_deepnet_scaling <26> else jax.nn.initializers.normal(self.config.init_std) <27> ) <28> self.v_proj = dense( <29> kernel_init=deepnet_init(gain) <30> if self.config.use_deepnet_scaling <31> else jax.nn.initializers.normal(self.config.init_std) <32> ) <33> self.out_proj = dense( <34> kernel_init=deepnet_init(gain) <35> if self.config.use_deepnet_scaling <36> else jax.nn.initializers.normal(self.config.init_std) <37> ) <38> self.dropout_layer = nn.Dropout(rate=self.dropout) <39> <40> if</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: # offset: 1 self.head_scale = self.param( "head_scale", jax.nn.initializers.ones, (1, 1, self.num_heads, 1) ) if self.config.use_cosine_attention: self.tau = self.param( "tau", jax.nn.initializers.constant(self.config.tau_init), (1, self.num_heads, 1, 1), ) if self.config.use_swin_position_embeddings: self.rel_bias = nn.Embed( self.q_length, self.k_length * self.num_heads, embedding_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), ) if self.causal: # used only in decoder self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" ) ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.init_std = init_std at: transformers.models.bart.modeling_flax_bart.FlaxBartAttention config: BartConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) -> None ===========changed ref 0=========== <s> = None, mask: Optional[Any] = None, embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, is_encoder: bool = False, + tau=None, ): """ Computes dot-product attention weights given query and key. mask is included into the bias. Adapted from flax.linen.attention.dot_product_attention_weights" """ assert query.ndim == key.ndim, "q, k must have same rank." assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match." assert query.shape[-2] == key.shape[-2], "q, k num_heads must match." assert query.shape[-1] == key.shape[-1], "q, k depths must match." - # calculate attention matrix - depth = query.shape[-1] - query = query / jnp.sqrt(depth).astype(dtype) # attn weight shape is (batch..., num_heads, q_length, kv_length) attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision) + + # divide by tau (used in Swin v2) + if tau is not None: + attn_weights = attn_weights / tau + else: + depth = query.shape[-1] + attn_weights = attn_weights / jnp.sqrt(depth).astype(dtype) # apply attention bias: masking, dropout, proximity bias, etc. if bias is not None: attn_weights = attn_weights + bias # add relative position if embed_pos is not None: </s> ===========changed ref 1=========== <s> mask: Optional[Any] = None, embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, is_encoder: bool = False, + tau=None, ): # offset: 1 <s> attn_weights = attn_weights + bias # add relative position if embed_pos is not None: attn_weights = attn_weights + embed_pos # normalize the attention weights if not is_encoder or sinkhorn_iters == 1: # sinkhorn does not work for causal (leaks info of future tokens into past) attn_weights = jax.nn.softmax(attn_weights).astype(dtype) else: # adapted from https://github.com/lucidrains/sinkhorn-transformer for i in range(sinkhorn_iters): # when causal, some attn_weights have been set to -inf through bias if i % 2 == 0: attn_weights -= jax.nn.logsumexp(attn_weights, axis=-1, keepdims=True) else: attn_weights -= jax.nn.logsumexp(attn_weights, axis=-2, keepdims=True) if mask is not None: attn_weights = jnp.where(mask, attn_weights, -jnp.inf) attn_weights = jnp.exp(attn_weights).astype(dtype) # apply attention dropout if not deterministic and dropout_rate > 0.0: keep_prob = 1.0 - dropout_rate if broadcast_dropout: # dropout is broadcast across</s> ===========changed ref 2=========== <s> mask: Optional[Any] = None, embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, is_encoder: bool = False, + tau=None, ): # offset: 2 <s> + head dimensions dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:] keep = jax.random.bernoulli(dropout_rng, keep_prob, dropout_shape) else: keep = jax.random.bernoulli(dropout_rng, keep_prob, attn_weights.shape) multiplier = keep.astype(attn_weights.dtype) / jnp.asarray( keep_prob, dtype=dtype ) attn_weights = attn_weights * multiplier return attn_weights
dalle_mini.model.modeling/FlaxBartAttention.__call__
Modified
borisdayma~dalle-mini
f05d82b9c474a27f9def742ce97c1d265a2952e4
fix: swin v2 scaling (thanks @lucidrains) (#297)
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> """Input shape: Batch x Time x Channel""" <1> <2> # if key_value_states are provided this layer is used as a cross-attention layer <3> # for the decoder <4> is_cross_attention = key_value_states is not None <5> batch_size = hidden_states.shape[0] <6> <7> # get query proj <8> query_states = self.q_proj(hidden_states) <9> # get key, value proj <10> if is_cross_attention: <11> # cross_attentions <12> key_states = self.k_proj(key_value_states) <13> value_states = self.v_proj(key_value_states) <14> else: <15> # self_attention <16> key_states = self.k_proj(hidden_states) <17> value_states = self.v_proj(hidden_states) <18> <19> query_states = self._split_heads(query_states) <20> key_states = self._split_heads(key_states) <21> value_states = self._split_heads(value_states) <22> <23> # handle cache prepare causal attention mask <24> if self.causal: <25> query_length, key_length = query_states.shape[1], key_states.shape[1] <26> if self.has_variable("cache", "cached_key"): <27> mask_shift = self.variables["cache"]["cache_index"] <28> max_decoder_length = self.variables["cache"]["cached_key"].shape[1] <29> causal_mask = lax.dynamic_slice( </s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length), ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to( causal_mask, (batch_size,) + causal_mask.shape[1:] ) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to( jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape ) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of</s> ===========below chunk 1=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s> # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, -jnp.inf).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") if self.config.use_cosine_attention: # normalize q and k query_states = query_states / ( jnp.linalg.norm(query_states, axis=-1, keepdims=True) + 1e-8 ) key_states = key_states / ( jnp.linalg.norm(key_states, axis=-1, keepdims=True) + 1e-8 ) # relative position embeddings if self.config.use_swin_position_embeddings: position_ids = jnp.arange(self.q_length) embed_pos = self.rel_bias(position_ids) embed_pos = rearrange(embed_pos, "q (k h) -> 1 h q k", h=self.num_heads) else: </s> ===========below chunk 2=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>_pos = None attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, mask=attention_mask, embed_pos=embed_pos, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, sinkhorn_iters=self.config.sinkhorn_iters, is_encoder=self.is_encoder, ) if self.config.use_cosine_attention: # divide by tau attn_weights = attn_weights / jnp.maximum(self.tau, 0.01) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) if self.config.use_head_scale: # per Normformer attn_output = attn_output * self.head_scale attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights ===========unchanged ref 0=========== at: dalle_mini.model.modeling dot_product_attention_weights(query: Any, key: Any, bias: Optional[Any]=None, mask: Optional[Any]=None, embed_pos: Optional[Any]=None, broadcast_dropout: bool=True, dropout_rng: Optional[PRNGKey]=None, dropout_rate: float=0.0, deterministic: bool=False, dtype: Any=jnp.float32, precision: PrecisionLike=None, sinkhorn_iters: int=1, is_encoder: bool=False, tau=None) at: dalle_mini.model.modeling.FlaxBartAttention.setup self.q_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.k_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.v_proj = dense( kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" ) at: transformers.models.bart.modeling_flax_bart.FlaxBartAttention config: BartConfig dropout: float = 0.0 causal: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation _split_heads(hidden_states) _concatenate_to_cache(key, value, query, attention_mask)
tools.train.scalable_shampoo.sm3/sm3
Modified
borisdayma~dalle-mini
9952d4c883ad07c127f58108fae778badcd3c18f
feat: update shampoo
# module: tools.train.scalable_shampoo.sm3 def sm3( learning_rate, beta1=0.9, beta2=0.999, diagonal_epsilon=1e-10, normalize_grads=False ): <0> """SM3 optimizer. <1> <2> Memory-Efficient Adaptive Optimization, Rohan Anil, Vineet Gupta, Tomer Koren, <3> Yoram Singer <4> <5> https://arxiv.org/abs/1901.11150 <6> <7> Args: <8> learning_rate: the step size used to update the parameters. <9> beta1: momentum parameter. <10> beta2: second moment averaging parameter. <11> diagonal_epsilon: epsilon for sm3 <12> normalize_grads: Whether to normalize grads. Author finds it useful when <13> grads are high variance. <14> <15> Returns: <16> a GradientTransformation. <17> """ <18> <19> def _quantize_momentum(momentum_statistics): <20> return QuantizedValue.from_float_value(momentum_statistics, jnp.int8) <21> <22> def init_fn(params): <23> """Initialise the optimiser's state.""" <24> <25> def _init(param): <26> accumulators = [jnp.zeros([s]) for s in param.shape] <27> momentum = _quantize_momentum(jnp.zeros_like(param)) <28> return ParameterStats(accumulators, momentum) <29> <30> return SM3State( <31> count=jnp.zeros([], jnp.int32), stats=jax.tree_map(_init, params) <32> ) <33> <34> def _get_expanded_shape(shape, i): <35> rank = len(shape) <36> # Replaces a `shape` of [M, N, K] with 1 in all dimensions except for i. <37> # For eg: i = 1 returns [1, N, 1]. <38> return [1] * i + [shape[i]] + [1] * (rank - i - 1) </s>
===========below chunk 0=========== # module: tools.train.scalable_shampoo.sm3 def sm3( learning_rate, beta1=0.9, beta2=0.999, diagonal_epsilon=1e-10, normalize_grads=False ): # offset: 1 def _moving_averages(grad, accumulators): w = (1.0 - beta2) if beta2 != 1.0 else 1.0 if grad.ndim < 2: return beta2 * accumulators[0] + w * grad**2 else: min_accumulator = functools.reduce(jnp.minimum, accumulators) return beta2 * min_accumulator + w * grad**2 def _moving_averages_momentum(grad, momentum): w = (1.0 - beta1) if beta1 != 1.0 else 1.0 return beta1 * momentum.to_float() + w * grad def _sketch_diagonal_statistics(grad, updated_diagonal_statistics): all_diagonal_statistics = [] for i in range(grad.ndim): axes = list(range(i)) + list(range(i + 1, grad.ndim)) dim_diagonal_statistics = jnp.max(updated_diagonal_statistics, axis=axes) all_diagonal_statistics.append(dim_diagonal_statistics) if grad.ndim == 1: all_diagonal_statistics[0] = updated_diagonal_statistics return all_diagonal_statistics def update_fn(updates, state, params=None): del params stats = state.stats if normalize_grads: updates = jax.tree_map(lambda g: g / (jnp.linalg.norm(g) + 1e-16), updates) # Reshape all vectors into N-d tensors to compute min over them. # [n], [m] -> [n, 1], [1, m] expanded_diagonal_statistics = jax.tree_multimap( lambda grad, state: [ # pylint:disable=g-long-lambda jnp</s> ===========below chunk 1=========== # module: tools.train.scalable_shampoo.sm3 def sm3( learning_rate, beta1=0.9, beta2=0.999, diagonal_epsilon=1e-10, normalize_grads=False ): # offset: 2 <s> jax.tree_multimap( lambda grad, state: [ # pylint:disable=g-long-lambda jnp.reshape( state.diagonal_statistics[i], _get_expanded_shape(grad.shape, i) ) for i in range(grad.ndim) ], updates, stats, ) # Compute new diagonal statistics new_diagonal_statistics = jax.tree_multimap( _moving_averages, updates, expanded_diagonal_statistics ) # Compute preconditioners (1/sqrt(s)) where s is the statistics. new_preconditioners = jax.tree_map( lambda t: 1.0 / jnp.sqrt(t + diagonal_epsilon), new_diagonal_statistics ) preconditioned_grads = jax.tree_multimap( lambda g, p: g * p, updates, new_preconditioners ) # Compute updated momentum (also handle quantization) updated_momentum = jax.tree_multimap( lambda preconditioned_grad, state: _moving_averages_momentum( # pylint:disable=g-long-lambda preconditioned_grad, state.diagonal_momentum ), preconditioned_grads, stats, ) # Update diagonal statistics. updated_diagonal_statistics = jax.tree_multimap( _sketch_diagonal_statistics, updates, new_diagonal_statistics ) # Update momentum. new_sm3_stats = jax.tree_multimap( lambda momentum, diagonal_stats: ParameterStats( # pylint:disable=g-long-lambda </s> ===========below chunk 2=========== # module: tools.train.scalable_shampoo.sm3 def sm3( learning_rate, beta1=0.9, beta2=0.999, diagonal_epsilon=1e-10, normalize_grads=False ): # offset: 3 <s>stats, _quantize_momentum(momentum) ), updated_momentum, updated_diagonal_statistics, ) lr = learning_rate if callable(learning_rate): lr = learning_rate(state.count) new_updates = jax.tree_map(lambda pg: -lr * pg, updated_momentum) return new_updates, SM3State(count=state.count + 1, stats=new_sm3_stats) return optax.GradientTransformation(init_fn, update_fn) ===========unchanged ref 0=========== at: functools reduce(function, iterable, initial=None, /) -> value reduce(function: Callable[[_T, _S], _T], sequence: Iterable[_S], initial: _T) -> _T reduce(function: Callable[[_T, _T], _T], sequence: Iterable[_T]) -> _T at: tools.train.scalable_shampoo.quantization_utils QuantizedValue() at: tools.train.scalable_shampoo.quantization_utils.QuantizedValue quantized: chex.Array diagonal: chex.Array # Diagonal (if extract_diagonal is set) bucket_size: chex.Array quantized_dtype: jnp.dtype = struct.field( pytree_node=False ) # Dtype for the quantized value. extract_diagonal: bool = struct.field(pytree_node=False) # In case its centered. shape: Any = struct.field(pytree_node=False) # Shape of the tensor. from_float_value(fvalue, quantized_dtype, extract_diagonal=False) at: tools.train.scalable_shampoo.sm3 SM3State(typename: str, fields: Iterable[Tuple[str, Any]]=..., **kwargs: Any) ParameterStats(typename: str, fields: Iterable[Tuple[str, Any]]=..., **kwargs: Any)
tools.train.scalable_shampoo.distributed_shampoo/BlockPartitioner.__init__
Modified
borisdayma~dalle-mini
9952d4c883ad07c127f58108fae778badcd3c18f
feat: update shampoo
<16>:<del> self._num_splits = len(split_sizes) <17>:<del> self._preconditioner_shapes = [] <18>:<del> for t in itertools.product(*split_sizes): <19>:<del> self._preconditioner_shapes.extend([[d, d] for d in t]) <20>:<add> self._split_sizes = split_sizes
# module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: def __init__(self, param, block_size): <0> self._shape = param.shape <1> self._splits = [] <2> split_sizes = [] <3> # We split params into smaller blocks. Here we store the metadata to make <4> # that split. <5> for i, d in enumerate(param.shape): <6> if 0 < block_size < d: <7> # d-1, otherwise split appends a 0-size array. <8> nsplit = (d - 1) // block_size <9> indices = (np.arange(nsplit, dtype=np.int32) + 1) * block_size <10> sizes = np.ones(nsplit + 1, dtype=np.int32) * block_size <11> sizes[-1] = d - indices[-1] <12> self._splits.append((i, indices)) <13> split_sizes.append(sizes) <14> else: <15> split_sizes.append(np.array([d], dtype=np.int32)) <16> self._num_splits = len(split_sizes) <17> self._preconditioner_shapes = [] <18> for t in itertools.product(*split_sizes): <19> self._preconditioner_shapes.extend([[d, d] for d in t]) <20>
===========unchanged ref 0=========== at: itertools product(iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], iter4: Iterable[_T4], iter5: Iterable[_T5], iter6: Iterable[_T6]) -> Iterator[Tuple[_T1, _T2, _T3, _T4, _T5, _T6]] product(iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3]) -> Iterator[Tuple[_T1, _T2, _T3]] product(iter1: Iterable[_T1], iter2: Iterable[_T2]) -> Iterator[Tuple[_T1, _T2]] product(iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], iter4: Iterable[_T4]) -> Iterator[Tuple[_T1, _T2, _T3, _T4]] product(*iterables: Iterable[_T1], repeat: int) -> Iterator[Tuple[_T1, ...]] product(iter1: Iterable[_T1]) -> Iterator[Tuple[_T1]] product(*iterables: Iterable[Any], repeat: int=...) -> Iterator[Tuple[Any, ...]] product(iter1: Iterable[Any], iter2: Iterable[Any], iter3: Iterable[Any], iter4: Iterable[Any], iter5: Iterable[Any], iter6: Iterable[Any], iter7: Iterable[Any], *iterables: Iterable[Any]) -> Iterator[Tuple[Any, ...]] product(iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], iter4: Iterable[_T4], iter5: Iterable[_T5]) -> Iterator[Tuple[_T1, _T2, _T3, _T4, _T5]] at: numpy int32 = signedinteger[_32Bit] at: numpy.core._multiarray_umath arange(start=None, stop, step=None, , dtype=None, *, like=None, /) ===========unchanged ref 1=========== array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, like=None, /) _DTypeMeta(dtype, align=False, copy=False, metadata=None, /) at: numpy.core.numeric ones(shape: _ShapeLike, dtype: None=..., order: _OrderCF=..., *, like: _SupportsArrayFunc=...) -> NDArray[float64] ones(shape: _ShapeLike, dtype: DTypeLike, order: _OrderCF=..., *, like: _SupportsArrayFunc=...) -> NDArray[Any] ones(shape: _ShapeLike, dtype: _DTypeLike[_SCT], order: _OrderCF=..., *, like: _SupportsArrayFunc=...) -> NDArray[_SCT] ===========changed ref 0=========== # module: tools.train.scalable_shampoo.distributed_shampoo + class PreconditionerType(enum.IntEnum): + # Default, computes preconditioner for each dim + ALL = 1 + # One sided Shampoo, in this cases only on input dim. + # Assumes last dim is always the output dim and everything else input dim. + INPUT = 2 + ===========changed ref 1=========== # module: tools.train.scalable_shampoo.distributed_shampoo + def _pth_root_difference(w, alpha, beta, p): + """Computes (w+alpha)^(-1/p)-(w+beta)^(-1/p).""" + + a = w + alpha + b = w + beta + a_minus_b = alpha - beta + exp = -1 / p + + def _stable_subtract(b, a_minus_b): + # Mathematically identical to the target expression, with (w+beta)^(-1/p) + # term factored out and w cancellation in the subtraction. + return (b**exp) * jnp.expm1(exp * jnp.log1p(a_minus_b / b)) + + return jnp.where( + # Choose the branch with the best log1p approximation. + jnp.abs(a_minus_b / b) < jnp.abs(a_minus_b / a), + -_stable_subtract(a, -a_minus_b), + _stable_subtract(b, a_minus_b), + ) + ===========changed ref 2=========== # module: tools.train.scalable_shampoo.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, + relative_matrix_epsilon=True, + lobpcg_topk_precondition=0, + lobpcg_max_iter=0, ): """Computes `matrix^(-1/p)`, where `p` is a positive integer. This function uses the Coupled newton iterations algorithm for the computation of a matrix's inverse pth root. References: [Functions of Matrices, Theory and Computation, Nicholas J Higham, Pg 184, Eq 7.18]( https://epubs.siam.org/doi/book/10.1137/1.9780898717778) Args: matrix: the symmetric PSD matrix whose power it to be computed p: exponent, for p a positive integer. num_iters: Maximum number of iterations. ridge_epsilon: Ridge epsilon added to make the matrix positive definite. error_tolerance: Error indicator, useful for early termination. precision: precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) + relative_matrix_epsilon: Whether to use relative epsilon to the max eigen + value when computing inverse-pth root. + lobpcg_topk_precondition: If nonzero, specifies the number of top + eigenvectors to subtract out before performing LOBPCG. Note this makes + relative_matrix_epsilon essentially free. + lobpcg_max_iter: Maximum iteration count for LOBPCG, defaults to + `lobpcg_</s>
tools.train.scalable_shampoo.distributed_shampoo/Preconditioner.__init__
Modified
borisdayma~dalle-mini
9952d4c883ad07c127f58108fae778badcd3c18f
feat: update shampoo
<0>:<add> """Initializes the preconditioner. <add> <add> Args: <add> param: parameter to precondition. <add> block_size: Block size used to split param. <add> merge_small_dims_block_size: Block size for merging dims. <add> best_effort_shape_interpretation: Whether to collapse/merge dims together. <add> preconditioner_type: Type of preconditioner to use. <add> """ <3>:<add> self._transformed_shape = merge_small_dims( <del> self._transformed_shape = merge_small_dims(self._original_shape, block_size) <4>:<add> self._original_shape, merge_small_dims_block_size <add> ) <6>:<add> self._preconditioner_type = preconditioner_type
# module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: + def __init__( + self, + param, + block_size, + merge_small_dims_block_size, + best_effort_shape_interpretation, + preconditioner_type=PreconditionerType.ALL, + ): - def __init__(self, param, block_size, best_effort_shape_interpretation): <0> self._original_shape = param.shape <1> self._transformed_shape = param.shape <2> if best_effort_shape_interpretation: <3> self._transformed_shape = merge_small_dims(self._original_shape, block_size) <4> reshaped_param = jnp.reshape(param, self._transformed_shape) <5> self._partitioner = BlockPartitioner(reshaped_param, block_size) <6>
===========unchanged ref 0=========== at: tools.train.scalable_shampoo.distributed_shampoo merge_small_dims(shape_to_merge, max_dim) BlockPartitioner(param, block_size) ===========changed ref 0=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: - def num_splits(self): - return self._num_splits - ===========changed ref 1=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: - def shapes_for_preconditioners(self): - return self._preconditioner_shapes - ===========changed ref 2=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: def __init__(self, param, block_size): self._shape = param.shape self._splits = [] split_sizes = [] # We split params into smaller blocks. Here we store the metadata to make # that split. for i, d in enumerate(param.shape): if 0 < block_size < d: # d-1, otherwise split appends a 0-size array. nsplit = (d - 1) // block_size indices = (np.arange(nsplit, dtype=np.int32) + 1) * block_size sizes = np.ones(nsplit + 1, dtype=np.int32) * block_size sizes[-1] = d - indices[-1] self._splits.append((i, indices)) split_sizes.append(sizes) else: split_sizes.append(np.array([d], dtype=np.int32)) - self._num_splits = len(split_sizes) - self._preconditioner_shapes = [] - for t in itertools.product(*split_sizes): - self._preconditioner_shapes.extend([[d, d] for d in t]) + self._split_sizes = split_sizes ===========changed ref 3=========== # module: tools.train.scalable_shampoo.distributed_shampoo + class PreconditionerType(enum.IntEnum): + # Default, computes preconditioner for each dim + ALL = 1 + # One sided Shampoo, in this cases only on input dim. + # Assumes last dim is always the output dim and everything else input dim. + INPUT = 2 + ===========changed ref 4=========== # module: tools.train.scalable_shampoo.distributed_shampoo + def _pth_root_difference(w, alpha, beta, p): + """Computes (w+alpha)^(-1/p)-(w+beta)^(-1/p).""" + + a = w + alpha + b = w + beta + a_minus_b = alpha - beta + exp = -1 / p + + def _stable_subtract(b, a_minus_b): + # Mathematically identical to the target expression, with (w+beta)^(-1/p) + # term factored out and w cancellation in the subtraction. + return (b**exp) * jnp.expm1(exp * jnp.log1p(a_minus_b / b)) + + return jnp.where( + # Choose the branch with the best log1p approximation. + jnp.abs(a_minus_b / b) < jnp.abs(a_minus_b / a), + -_stable_subtract(a, -a_minus_b), + _stable_subtract(b, a_minus_b), + ) + ===========changed ref 5=========== # module: tools.train.scalable_shampoo.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, + relative_matrix_epsilon=True, + lobpcg_topk_precondition=0, + lobpcg_max_iter=0, ): """Computes `matrix^(-1/p)`, where `p` is a positive integer. This function uses the Coupled newton iterations algorithm for the computation of a matrix's inverse pth root. References: [Functions of Matrices, Theory and Computation, Nicholas J Higham, Pg 184, Eq 7.18]( https://epubs.siam.org/doi/book/10.1137/1.9780898717778) Args: matrix: the symmetric PSD matrix whose power it to be computed p: exponent, for p a positive integer. num_iters: Maximum number of iterations. ridge_epsilon: Ridge epsilon added to make the matrix positive definite. error_tolerance: Error indicator, useful for early termination. precision: precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) + relative_matrix_epsilon: Whether to use relative epsilon to the max eigen + value when computing inverse-pth root. + lobpcg_topk_precondition: If nonzero, specifies the number of top + eigenvectors to subtract out before performing LOBPCG. Note this makes + relative_matrix_epsilon essentially free. + lobpcg_max_iter: Maximum iteration count for LOBPCG, defaults to + `lobpcg_</s> ===========changed ref 6=========== <s>.scalable_shampoo.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, + relative_matrix_epsilon=True, + lobpcg_topk_precondition=0, + lobpcg_max_iter=0, ): # offset: 1 <s> + lobpcg_max_iter: Maximum iteration count for LOBPCG, defaults to + `lobpcg_topk_precondition`. Returns: + matrix^(-1/p) and the error - matrix^(-1/p) """ # If the input is not square, materialize it from the concatenated form. if matrix.shape[0] != matrix.shape[1]: matrix = symmetric_matrices.materialize_matrix_from_concat(matrix) assert matrix.shape[0] == matrix.shape[1] # We use _MAT_INV_PTH_ROOT_DTYPE for the matrix inverse pth root. # Switch to f64 if you have hardware that supports it. Enable the jax flag # jax_enable_x64 for this to work. matrix_size = matrix.shape[0] orig_dtype = matrix.dtype matrix = matrix.astype(_MAT_INV_PTH_ROOT_DTYPE) alpha = jnp.asarray(-1.0 / p, _MAT_INV_PTH_ROOT_DTYPE) identity = jnp.eye(matrix_size, dtype=_MAT_INV_PTH_ROOT_DTYPE) + original_matrix = matrix + + if lobpcg_topk_precondition > 0: + # TODO(vladf): reuse previous top-k as the initial search directions + pad_shape =</s>
tools.train.scalable_shampoo.distributed_shampoo/Preconditioner.shapes_for_preconditioners
Modified
borisdayma~dalle-mini
9952d4c883ad07c127f58108fae778badcd3c18f
feat: update shampoo
<1>:<add> split_sizes = self._partitioner.split_sizes() <add> rank = len(split_sizes) <add> # We ignore preconditioner types if rank == 1 <add> preconditioner_shapes = [] <add> for t in itertools.product(*split_sizes): <add> if self._preconditioner_type == PreconditionerType.ALL or rank <= 1: <add> preconditioner_shapes.extend([[d, d] for d in t]) <add> else: <add> preconditioner_shapes.extend([[d, d] for d in t[:-1]]) <add> return preconditioner_shapes <del> return self._partitioner.shapes_for_preconditioners()
# module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: def shapes_for_preconditioners(self): <0> """Returns shape from statistics.""" <1> return self._partitioner.shapes_for_preconditioners() <2>
===========unchanged ref 0=========== at: tools.train.scalable_shampoo.distributed_shampoo.BlockPartitioner shapes_for_preconditioners() at: tools.train.scalable_shampoo.distributed_shampoo.Preconditioner.__init__ self._partitioner = BlockPartitioner(reshaped_param, block_size) ===========changed ref 0=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: - def shapes_for_preconditioners(self): - return self._preconditioner_shapes - ===========changed ref 1=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: - def num_splits(self): - return self._num_splits - ===========changed ref 2=========== # module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: - def statistics_from_grad(self, grad): - """Compute statistics from gradients. - - Args: - grad: Gradient to compute statistics from. - - Returns: - A list of gradient statistics for each partition. - """ - reshaped_grad = jnp.reshape(grad, self._transformed_shape) - partitioned_grads = self._partitioner.partition(reshaped_grad) - stats = [] - for g in partitioned_grads: - g_stats = [] - rank = len(g.shape) - for i in range(rank): - axes = list(range(i)) + list(range(i + 1, rank)) - stat = jnp.tensordot(g, g, axes=(axes, axes)) - g_stats.append(stat) - stats.extend(g_stats) - return stats - ===========changed ref 3=========== # module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: + def __init__( + self, + param, + block_size, + merge_small_dims_block_size, + best_effort_shape_interpretation, + preconditioner_type=PreconditionerType.ALL, + ): - def __init__(self, param, block_size, best_effort_shape_interpretation): + """Initializes the preconditioner. + + Args: + param: parameter to precondition. + block_size: Block size used to split param. + merge_small_dims_block_size: Block size for merging dims. + best_effort_shape_interpretation: Whether to collapse/merge dims together. + preconditioner_type: Type of preconditioner to use. + """ self._original_shape = param.shape self._transformed_shape = param.shape if best_effort_shape_interpretation: + self._transformed_shape = merge_small_dims( - self._transformed_shape = merge_small_dims(self._original_shape, block_size) + self._original_shape, merge_small_dims_block_size + ) reshaped_param = jnp.reshape(param, self._transformed_shape) self._partitioner = BlockPartitioner(reshaped_param, block_size) + self._preconditioner_type = preconditioner_type ===========changed ref 4=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: def __init__(self, param, block_size): self._shape = param.shape self._splits = [] split_sizes = [] # We split params into smaller blocks. Here we store the metadata to make # that split. for i, d in enumerate(param.shape): if 0 < block_size < d: # d-1, otherwise split appends a 0-size array. nsplit = (d - 1) // block_size indices = (np.arange(nsplit, dtype=np.int32) + 1) * block_size sizes = np.ones(nsplit + 1, dtype=np.int32) * block_size sizes[-1] = d - indices[-1] self._splits.append((i, indices)) split_sizes.append(sizes) else: split_sizes.append(np.array([d], dtype=np.int32)) - self._num_splits = len(split_sizes) - self._preconditioner_shapes = [] - for t in itertools.product(*split_sizes): - self._preconditioner_shapes.extend([[d, d] for d in t]) + self._split_sizes = split_sizes ===========changed ref 5=========== # module: tools.train.scalable_shampoo.distributed_shampoo + class PreconditionerType(enum.IntEnum): + # Default, computes preconditioner for each dim + ALL = 1 + # One sided Shampoo, in this cases only on input dim. + # Assumes last dim is always the output dim and everything else input dim. + INPUT = 2 + ===========changed ref 6=========== # module: tools.train.scalable_shampoo.distributed_shampoo + def _pth_root_difference(w, alpha, beta, p): + """Computes (w+alpha)^(-1/p)-(w+beta)^(-1/p).""" + + a = w + alpha + b = w + beta + a_minus_b = alpha - beta + exp = -1 / p + + def _stable_subtract(b, a_minus_b): + # Mathematically identical to the target expression, with (w+beta)^(-1/p) + # term factored out and w cancellation in the subtraction. + return (b**exp) * jnp.expm1(exp * jnp.log1p(a_minus_b / b)) + + return jnp.where( + # Choose the branch with the best log1p approximation. + jnp.abs(a_minus_b / b) < jnp.abs(a_minus_b / a), + -_stable_subtract(a, -a_minus_b), + _stable_subtract(b, a_minus_b), + ) +
tools.train.scalable_shampoo.distributed_shampoo/Preconditioner.exponent_for_preconditioner
Modified
borisdayma~dalle-mini
9952d4c883ad07c127f58108fae778badcd3c18f
feat: update shampoo
<1>:<add> should_preconditioned_dims = self.should_precondition_dims() <add> num_preconditioners = sum(should_preconditioned_dims) <add> return 2 * num_preconditioners <del> return 2 * len(self._transformed_shape)
# module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: def exponent_for_preconditioner(self): <0> """Returns exponent to use for inverse-pth root M^{-1/p}.""" <1> return 2 * len(self._transformed_shape) <2>
===========unchanged ref 0=========== at: tools.train.scalable_shampoo.distributed_shampoo.Preconditioner.__init__ self._transformed_shape = param.shape self._transformed_shape = merge_small_dims(self._original_shape, block_size) ===========changed ref 0=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: - def num_splits(self): - return self._num_splits - ===========changed ref 1=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: - def shapes_for_preconditioners(self): - return self._preconditioner_shapes - ===========changed ref 2=========== # module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: def shapes_for_preconditioners(self): """Returns shape from statistics.""" + split_sizes = self._partitioner.split_sizes() + rank = len(split_sizes) + # We ignore preconditioner types if rank == 1 + preconditioner_shapes = [] + for t in itertools.product(*split_sizes): + if self._preconditioner_type == PreconditionerType.ALL or rank <= 1: + preconditioner_shapes.extend([[d, d] for d in t]) + else: + preconditioner_shapes.extend([[d, d] for d in t[:-1]]) + return preconditioner_shapes - return self._partitioner.shapes_for_preconditioners() ===========changed ref 3=========== # module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: - def statistics_from_grad(self, grad): - """Compute statistics from gradients. - - Args: - grad: Gradient to compute statistics from. - - Returns: - A list of gradient statistics for each partition. - """ - reshaped_grad = jnp.reshape(grad, self._transformed_shape) - partitioned_grads = self._partitioner.partition(reshaped_grad) - stats = [] - for g in partitioned_grads: - g_stats = [] - rank = len(g.shape) - for i in range(rank): - axes = list(range(i)) + list(range(i + 1, rank)) - stat = jnp.tensordot(g, g, axes=(axes, axes)) - g_stats.append(stat) - stats.extend(g_stats) - return stats - ===========changed ref 4=========== # module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: + def __init__( + self, + param, + block_size, + merge_small_dims_block_size, + best_effort_shape_interpretation, + preconditioner_type=PreconditionerType.ALL, + ): - def __init__(self, param, block_size, best_effort_shape_interpretation): + """Initializes the preconditioner. + + Args: + param: parameter to precondition. + block_size: Block size used to split param. + merge_small_dims_block_size: Block size for merging dims. + best_effort_shape_interpretation: Whether to collapse/merge dims together. + preconditioner_type: Type of preconditioner to use. + """ self._original_shape = param.shape self._transformed_shape = param.shape if best_effort_shape_interpretation: + self._transformed_shape = merge_small_dims( - self._transformed_shape = merge_small_dims(self._original_shape, block_size) + self._original_shape, merge_small_dims_block_size + ) reshaped_param = jnp.reshape(param, self._transformed_shape) self._partitioner = BlockPartitioner(reshaped_param, block_size) + self._preconditioner_type = preconditioner_type ===========changed ref 5=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: def __init__(self, param, block_size): self._shape = param.shape self._splits = [] split_sizes = [] # We split params into smaller blocks. Here we store the metadata to make # that split. for i, d in enumerate(param.shape): if 0 < block_size < d: # d-1, otherwise split appends a 0-size array. nsplit = (d - 1) // block_size indices = (np.arange(nsplit, dtype=np.int32) + 1) * block_size sizes = np.ones(nsplit + 1, dtype=np.int32) * block_size sizes[-1] = d - indices[-1] self._splits.append((i, indices)) split_sizes.append(sizes) else: split_sizes.append(np.array([d], dtype=np.int32)) - self._num_splits = len(split_sizes) - self._preconditioner_shapes = [] - for t in itertools.product(*split_sizes): - self._preconditioner_shapes.extend([[d, d] for d in t]) + self._split_sizes = split_sizes ===========changed ref 6=========== # module: tools.train.scalable_shampoo.distributed_shampoo + class PreconditionerType(enum.IntEnum): + # Default, computes preconditioner for each dim + ALL = 1 + # One sided Shampoo, in this cases only on input dim. + # Assumes last dim is always the output dim and everything else input dim. + INPUT = 2 + ===========changed ref 7=========== # module: tools.train.scalable_shampoo.distributed_shampoo + def _pth_root_difference(w, alpha, beta, p): + """Computes (w+alpha)^(-1/p)-(w+beta)^(-1/p).""" + + a = w + alpha + b = w + beta + a_minus_b = alpha - beta + exp = -1 / p + + def _stable_subtract(b, a_minus_b): + # Mathematically identical to the target expression, with (w+beta)^(-1/p) + # term factored out and w cancellation in the subtraction. + return (b**exp) * jnp.expm1(exp * jnp.log1p(a_minus_b / b)) + + return jnp.where( + # Choose the branch with the best log1p approximation. + jnp.abs(a_minus_b / b) < jnp.abs(a_minus_b / a), + -_stable_subtract(a, -a_minus_b), + _stable_subtract(b, a_minus_b), + ) +
tools.train.scalable_shampoo.distributed_shampoo/Preconditioner.preconditioned_grad
Modified
borisdayma~dalle-mini
9952d4c883ad07c127f58108fae778badcd3c18f
feat: update shampoo
<13>:<del> num_splits = self._partitioner.num_splits() <15>:<add> should_preconditioned_dims = self.should_precondition_dims() <add> num_preconditioners = sum(should_preconditioned_dims) <16>:<add> i * num_preconditioners : (i + 1) * num_preconditioners <del> i * num_splits : (i + 1) * num_splits <18>:<add> precond_g = g <19>:<add> for j, precondition in enumerate(should_preconditioned_dims): <add> if precondition: <del> precond_g = g <20>:<del> for j in range(rank): <21>:<add> precond_g = jnp.tensordot( <del> precond_g = jnp.tensordot( <22>:<add> precond_g, preconditioners_for_grad[j], axes=[[0], [0]] <del> precond_g, preconditioners_for_grad[j], axes=[[0], [0]] <23>:<add> ) <del> ) <24>:<add> else: <add> precond_g = jnp.transpose(precond_g, axes=(*range(1, rank), 0))
# module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: def preconditioned_grad(self, grad, preconditioners): <0> """Precondition the gradient. <1> <2> Args: <3> grad: A gradient tensor to precondition. <4> preconditioners: A list of preconditioners to apply. <5> <6> Returns: <7> A preconditioned gradient. <8> """ <9> <10> reshaped_grad = jnp.reshape(grad, self._transformed_shape) <11> partitioned_grads = self._partitioner.partition(reshaped_grad) <12> preconditioned_partitioned_grads = [] <13> num_splits = self._partitioner.num_splits() <14> for i, g in enumerate(partitioned_grads): <15> preconditioners_for_grad = preconditioners[ <16> i * num_splits : (i + 1) * num_splits <17> ] <18> rank = len(g.shape) <19> precond_g = g <20> for j in range(rank): <21> precond_g = jnp.tensordot( <22> precond_g, preconditioners_for_grad[j], axes=[[0], [0]] <23> ) <24> preconditioned_partitioned_grads.append(precond_g) <25> merged_grad = self._partitioner.merge_partitions( <26> preconditioned_partitioned_grads <27> ) <28> return jnp.reshape(merged_grad, self._original_shape) <29>
===========unchanged ref 0=========== at: tools.train.scalable_shampoo.distributed_shampoo.BlockPartitioner num_splits() partition(tensor) merge_partitions(partitions) at: tools.train.scalable_shampoo.distributed_shampoo.Preconditioner.__init__ self._original_shape = param.shape self._transformed_shape = param.shape self._transformed_shape = merge_small_dims(self._original_shape, block_size) self._partitioner = BlockPartitioner(reshaped_param, block_size) ===========changed ref 0=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: - def num_splits(self): - return self._num_splits - ===========changed ref 1=========== # module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: def exponent_for_preconditioner(self): """Returns exponent to use for inverse-pth root M^{-1/p}.""" + should_preconditioned_dims = self.should_precondition_dims() + num_preconditioners = sum(should_preconditioned_dims) + return 2 * num_preconditioners - return 2 * len(self._transformed_shape) ===========changed ref 2=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: - def shapes_for_preconditioners(self): - return self._preconditioner_shapes - ===========changed ref 3=========== # module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: def shapes_for_preconditioners(self): """Returns shape from statistics.""" + split_sizes = self._partitioner.split_sizes() + rank = len(split_sizes) + # We ignore preconditioner types if rank == 1 + preconditioner_shapes = [] + for t in itertools.product(*split_sizes): + if self._preconditioner_type == PreconditionerType.ALL or rank <= 1: + preconditioner_shapes.extend([[d, d] for d in t]) + else: + preconditioner_shapes.extend([[d, d] for d in t[:-1]]) + return preconditioner_shapes - return self._partitioner.shapes_for_preconditioners() ===========changed ref 4=========== # module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: - def statistics_from_grad(self, grad): - """Compute statistics from gradients. - - Args: - grad: Gradient to compute statistics from. - - Returns: - A list of gradient statistics for each partition. - """ - reshaped_grad = jnp.reshape(grad, self._transformed_shape) - partitioned_grads = self._partitioner.partition(reshaped_grad) - stats = [] - for g in partitioned_grads: - g_stats = [] - rank = len(g.shape) - for i in range(rank): - axes = list(range(i)) + list(range(i + 1, rank)) - stat = jnp.tensordot(g, g, axes=(axes, axes)) - g_stats.append(stat) - stats.extend(g_stats) - return stats - ===========changed ref 5=========== # module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: + def __init__( + self, + param, + block_size, + merge_small_dims_block_size, + best_effort_shape_interpretation, + preconditioner_type=PreconditionerType.ALL, + ): - def __init__(self, param, block_size, best_effort_shape_interpretation): + """Initializes the preconditioner. + + Args: + param: parameter to precondition. + block_size: Block size used to split param. + merge_small_dims_block_size: Block size for merging dims. + best_effort_shape_interpretation: Whether to collapse/merge dims together. + preconditioner_type: Type of preconditioner to use. + """ self._original_shape = param.shape self._transformed_shape = param.shape if best_effort_shape_interpretation: + self._transformed_shape = merge_small_dims( - self._transformed_shape = merge_small_dims(self._original_shape, block_size) + self._original_shape, merge_small_dims_block_size + ) reshaped_param = jnp.reshape(param, self._transformed_shape) self._partitioner = BlockPartitioner(reshaped_param, block_size) + self._preconditioner_type = preconditioner_type ===========changed ref 6=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: def __init__(self, param, block_size): self._shape = param.shape self._splits = [] split_sizes = [] # We split params into smaller blocks. Here we store the metadata to make # that split. for i, d in enumerate(param.shape): if 0 < block_size < d: # d-1, otherwise split appends a 0-size array. nsplit = (d - 1) // block_size indices = (np.arange(nsplit, dtype=np.int32) + 1) * block_size sizes = np.ones(nsplit + 1, dtype=np.int32) * block_size sizes[-1] = d - indices[-1] self._splits.append((i, indices)) split_sizes.append(sizes) else: split_sizes.append(np.array([d], dtype=np.int32)) - self._num_splits = len(split_sizes) - self._preconditioner_shapes = [] - for t in itertools.product(*split_sizes): - self._preconditioner_shapes.extend([[d, d] for d in t]) + self._split_sizes = split_sizes ===========changed ref 7=========== # module: tools.train.scalable_shampoo.distributed_shampoo + class PreconditionerType(enum.IntEnum): + # Default, computes preconditioner for each dim + ALL = 1 + # One sided Shampoo, in this cases only on input dim. + # Assumes last dim is always the output dim and everything else input dim. + INPUT = 2 + ===========changed ref 8=========== # module: tools.train.scalable_shampoo.distributed_shampoo + def _pth_root_difference(w, alpha, beta, p): + """Computes (w+alpha)^(-1/p)-(w+beta)^(-1/p).""" + + a = w + alpha + b = w + beta + a_minus_b = alpha - beta + exp = -1 / p + + def _stable_subtract(b, a_minus_b): + # Mathematically identical to the target expression, with (w+beta)^(-1/p) + # term factored out and w cancellation in the subtraction. + return (b**exp) * jnp.expm1(exp * jnp.log1p(a_minus_b / b)) + + return jnp.where( + # Choose the branch with the best log1p approximation. + jnp.abs(a_minus_b / b) < jnp.abs(a_minus_b / a), + -_stable_subtract(a, -a_minus_b), + _stable_subtract(b, a_minus_b), + ) +
tools.train.scalable_shampoo.distributed_shampoo/_convert_to_parameter_stats
Modified
borisdayma~dalle-mini
9952d4c883ad07c127f58108fae778badcd3c18f
feat: update shampoo
<10>:<add> if not convert_statistics: <add> new_statistics = None
# module: tools.train.scalable_shampoo.distributed_shampoo + def _convert_to_parameter_stats(global_stats, local_stat, convert_statistics=True): - def _convert_to_parameter_stats(global_stats, local_stat): <0> """Creates parameter stats from sharded stats.""" <1> index_start = int(local_stat.index_start) <2> index_end = int(len(local_stat.sizes)) + index_start <3> statistics = global_stats.statistics[index_start:index_end, :, :] <4> preconditioners = global_stats.preconditioners[index_start:index_end, :, :] <5> new_statistics = [] <6> new_preconditioners = [] <7> for i, size in enumerate(local_stat.sizes): <8> new_statistics.append(statistics[i][:size, :size]) <9> new_preconditioners.append(preconditioners[i][:size, :size]) <10> return ParameterStats( <11> local_stat.diagonal_statistics, <12> new_statistics, <13> new_preconditioners, <14> local_stat.diagonal_momentum, <15> local_stat.momentum, <16> local_stat.training_metrics, <17> ) <18>
===========unchanged ref 0=========== at: tools.train.scalable_shampoo.distributed_shampoo ParameterStats(typename: str, fields: Iterable[Tuple[str, Any]]=..., **kwargs: Any) ===========changed ref 0=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: + def split_sizes(self): + return self._split_sizes + ===========changed ref 1=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: - def num_splits(self): - return self._num_splits - ===========changed ref 2=========== # module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: def exponent_for_preconditioner(self): """Returns exponent to use for inverse-pth root M^{-1/p}.""" + should_preconditioned_dims = self.should_precondition_dims() + num_preconditioners = sum(should_preconditioned_dims) + return 2 * num_preconditioners - return 2 * len(self._transformed_shape) ===========changed ref 3=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: - def shapes_for_preconditioners(self): - return self._preconditioner_shapes - ===========changed ref 4=========== # module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: def shapes_for_preconditioners(self): """Returns shape from statistics.""" + split_sizes = self._partitioner.split_sizes() + rank = len(split_sizes) + # We ignore preconditioner types if rank == 1 + preconditioner_shapes = [] + for t in itertools.product(*split_sizes): + if self._preconditioner_type == PreconditionerType.ALL or rank <= 1: + preconditioner_shapes.extend([[d, d] for d in t]) + else: + preconditioner_shapes.extend([[d, d] for d in t[:-1]]) + return preconditioner_shapes - return self._partitioner.shapes_for_preconditioners() ===========changed ref 5=========== # module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: - def statistics_from_grad(self, grad): - """Compute statistics from gradients. - - Args: - grad: Gradient to compute statistics from. - - Returns: - A list of gradient statistics for each partition. - """ - reshaped_grad = jnp.reshape(grad, self._transformed_shape) - partitioned_grads = self._partitioner.partition(reshaped_grad) - stats = [] - for g in partitioned_grads: - g_stats = [] - rank = len(g.shape) - for i in range(rank): - axes = list(range(i)) + list(range(i + 1, rank)) - stat = jnp.tensordot(g, g, axes=(axes, axes)) - g_stats.append(stat) - stats.extend(g_stats) - return stats - ===========changed ref 6=========== # module: tools.train.scalable_shampoo.distributed_shampoo class Preconditioner: + def __init__( + self, + param, + block_size, + merge_small_dims_block_size, + best_effort_shape_interpretation, + preconditioner_type=PreconditionerType.ALL, + ): - def __init__(self, param, block_size, best_effort_shape_interpretation): + """Initializes the preconditioner. + + Args: + param: parameter to precondition. + block_size: Block size used to split param. + merge_small_dims_block_size: Block size for merging dims. + best_effort_shape_interpretation: Whether to collapse/merge dims together. + preconditioner_type: Type of preconditioner to use. + """ self._original_shape = param.shape self._transformed_shape = param.shape if best_effort_shape_interpretation: + self._transformed_shape = merge_small_dims( - self._transformed_shape = merge_small_dims(self._original_shape, block_size) + self._original_shape, merge_small_dims_block_size + ) reshaped_param = jnp.reshape(param, self._transformed_shape) self._partitioner = BlockPartitioner(reshaped_param, block_size) + self._preconditioner_type = preconditioner_type ===========changed ref 7=========== # module: tools.train.scalable_shampoo.distributed_shampoo class BlockPartitioner: def __init__(self, param, block_size): self._shape = param.shape self._splits = [] split_sizes = [] # We split params into smaller blocks. Here we store the metadata to make # that split. for i, d in enumerate(param.shape): if 0 < block_size < d: # d-1, otherwise split appends a 0-size array. nsplit = (d - 1) // block_size indices = (np.arange(nsplit, dtype=np.int32) + 1) * block_size sizes = np.ones(nsplit + 1, dtype=np.int32) * block_size sizes[-1] = d - indices[-1] self._splits.append((i, indices)) split_sizes.append(sizes) else: split_sizes.append(np.array([d], dtype=np.int32)) - self._num_splits = len(split_sizes) - self._preconditioner_shapes = [] - for t in itertools.product(*split_sizes): - self._preconditioner_shapes.extend([[d, d] for d in t]) + self._split_sizes = split_sizes
dalle_mini.model.configuration/DalleBartConfig.__init__
Modified
borisdayma~dalle-mini
90e39c4f4fafdbbf0d9b3d37074f7f6c9199e3c9
feat: add magneto
<18>:<add> "subln", <add> ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln', 'subln'" <del> ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'" <27>:<add> self.use_subln_init = use_subln_init
<s> implemented yet - from "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=True, # final layer normalization in encoder use_final_ln_decoder=True, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): <0> # text normalizer <1> self.normalize_text = normalize_text <2> <3> # transformer variants <4> self.use_bias = use_bias <5> assert ln_type in [ <6> "rmsnorm", <7> "layernorm", <8> ], "ln_type must be 'rmsnorm' or 'layernorm'" <9> self.ln_type = ln_type <10> if ln_positions == "deepnet": <11> ln_positions = "postln" <12> assert ln_positions in [ <13> "normformer", <14> "swinv2", <15> "cogview", <16> "postln", <17> "preln", <18> ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'" <19> self.use_head_scale = use_head_scale <20> assert use_alibi is False, "use_alibi is not supported yet" <21> self.ln_positions = ln_positions <22> self.use_cosine_attention = use_cosine_attention <23> self.tau_init = tau_init <24> self.use_absolute_position_embeddings = use_absolute_position_embeddings <25> self.use_swin_position_embeddings = use_swin_position_embeddings <26> self.use_deepnet_scaling = use_deepnet_scaling <27> self.use_glu = use_glu <28> self.use_alibi = use_alibi <29> self.sinkhorn_iters = sinkhorn</s>
===========below chunk 0=========== <s>Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=True, # final layer normalization in encoder use_final_ln_decoder=True, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 1 if ln_positions == "postln": assert ( use_final_ln_encoder ), "use_final_ln_encoder must be True when ln_positions is 'postln'" assert ( use_final_ln_decoder ), "use_final_ln_decoder must be True when ln_positions is 'postln'" self.use_final_ln_encoder = use_final_ln_encoder self.use_final_ln_decoder = use_final_ln_decoder self.force_ln_scale = force_ln_scale # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing # all layers are the same in most configurations </s> ===========below chunk 1=========== <s>Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=True, # final layer normalization in encoder use_final_ln_decoder=True, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 2 <s>cache = use_cache self.gradient_checkpointing = gradient_checkpointing # all layers are the same in most configurations self.use_scan = use_scan if use_scan is not None else ln_positions != "swinv2" assert not ( self.use_scan and ln_positions == "swinv2" ), "scan cannot be used with 'swinv2'" self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length + 1) max_length = kwargs.pop("max_length", image_length + 1) super().__init__( # args required in parent class is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_embeddings, </s> ===========below chunk 2=========== <s>Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=True, # final layer normalization in encoder use_final_ln_decoder=True, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 3 <s>eos_token_id=forced_eos_token_id, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, min_length=min_length, max_length=max_length, do_sample=do_sample, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." ) ===========unchanged ref 0=========== at: _warnings warn(message: str, category: Optional[Type[Warning]]=..., stacklevel: int=..., source: Optional[Any]=...) -> None warn(message: Warning, category: Any=..., stacklevel: int=..., source: Optional[Any]=...) -> None at: transformers.configuration_utils.PretrainedConfig model_type: str = "" is_composition: bool = False attribute_map: Dict[str, str] = {} _auto_class: Optional[str] = None __init__(**kwargs) __init__(self, **kwargs) at: transformers.configuration_utils.PretrainedConfig.__init__ self.bos_token_id = kwargs.pop("bos_token_id", None) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] at: typing.MutableMapping pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T] pop(key: _KT) -> _VT
dalle_mini.model.modeling/deepnet_init
Modified
borisdayma~dalle-mini
90e39c4f4fafdbbf0d9b3d37074f7f6c9199e3c9
feat: add magneto
<0>:<add> init = jax.nn.initializers.normal(init_std) <del> init = jax.nn.initializers.glorot_normal()
# module: dalle_mini.model.modeling # deepnet initialization + def deepnet_init(init_std, gain=1): - def deepnet_init(gain=1): <0> init = jax.nn.initializers.glorot_normal() <1> <2> def _init(*args, **kwargs): <3> return gain * init(*args, **kwargs) <4> <5> return _init <6>
===========changed ref 0=========== <s> implemented yet - from "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=True, # final layer normalization in encoder use_final_ln_decoder=True, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # text normalizer self.normalize_text = normalize_text # transformer variants self.use_bias = use_bias assert ln_type in [ "rmsnorm", "layernorm", ], "ln_type must be 'rmsnorm' or 'layernorm'" self.ln_type = ln_type if ln_positions == "deepnet": ln_positions = "postln" assert ln_positions in [ "normformer", "swinv2", "cogview", "postln", "preln", + "subln", + ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln', 'subln'" - ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'" self.use_head_scale = use_head_scale assert use_alibi is False, "use_alibi is not supported yet" self.ln_positions = ln_positions self.use_cosine_attention = use_cosine_attention self.tau_init = tau_init self.use_absolute_position_embeddings = use_absolute_position_embeddings self.use_swin_position_embeddings = use_swin_position_embeddings self.use_deepnet_scaling = use_deepnet_scaling + self.use_subln_init = use_subln_init self.</s> ===========changed ref 1=========== <s>Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=True, # final layer normalization in encoder use_final_ln_decoder=True, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 1 <s> use_deepnet_scaling + self.use_subln_init = use_subln_init self.use_glu = use_glu self.use_alibi = use_alibi self.sinkhorn_iters = sinkhorn_iters if ln_positions == "postln": assert ( use_final_ln_encoder ), "use_final_ln_encoder must be True when ln_positions is 'postln'" assert ( use_final_ln_decoder ), "use_final_ln_decoder must be True when ln_positions is 'postln'" self.use_final_ln_encoder = use_final_ln_encoder self.use_final_ln_decoder = use_final_ln_decoder self.force_ln_scale = force_ln_scale # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_</s> ===========changed ref 2=========== <s>Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=True, # final layer normalization in encoder use_final_ln_decoder=True, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 2 <s> self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing # all layers are the same in most configurations self.use_scan = use_scan if use_scan is not None else ln_positions != "swinv2" assert not ( self.use_scan and ln_positions == "swinv2" ), "scan cannot be used with 'swinv2'" self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length +</s> ===========changed ref 3=========== <s>Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=True, # final layer normalization in encoder use_final_ln_decoder=True, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 3 <s> max_length = kwargs.pop("max_length", image_length + 1) super().__init__( # args required in parent class is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_embeddings, forced_eos_token_id=forced_eos_token_id, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, min_length=min_length, max_length=max_length, do_sample=do_sample, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." )
dalle_mini.model.modeling/FlaxBartAttention.setup
Modified
borisdayma~dalle-mini
90e39c4f4fafdbbf0d9b3d37074f7f6c9199e3c9
feat: add magneto
<14>:<add> if self.config.use_deepnet_scaling: <add> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <del> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <15>:<add> self.config <del> self.config <16>:<add> ) <del> ) <17>:<add> elif self.config.use_subln_init: <add> gain = subln_gain["encoder" if self.is_encoder else "decoder"](self.config) <19>:<del> kernel_init=deepnet_init() <20>:<del> if self.config.use_deepnet_scaling <21>:<add> kernel_init=jax.nn.initializers.normal(self.config.init_std) <del> else jax.nn.initializers.normal(self.config.init_std) <24>:<del> kernel_init=deepnet_init() <25>:<del> if self.config.use_deepnet_scaling <26>:<add> kernel_init=jax.nn.initializers.normal(self.config.init_std) <del> else jax.nn.initializers.normal(self.config.init_std) <29>:<add> kernel_init=deepnet_init(self.config.init_std, gain) <del> kernel_init=deepnet_init(gain) <30>:<add> if (self.config.use_deepnet_scaling or self.config.use_subln_init) <del> if self.config.use_deepnet_scaling <34>:<add> kernel_init=deepnet_init(self.config.init_
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: <0> self.head_dim = self.embed_dim // self.num_heads <1> if self.head_dim * self.num_heads != self.embed_dim: <2> raise ValueError( <3> f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" <4> f" and `num_heads`: {self.num_heads})." <5> ) <6> <7> dense = partial( <8> nn.Dense, <9> self.embed_dim, <10> use_bias=self.bias, <11> dtype=self.dtype, <12> ) <13> <14> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <15> self.config <16> ) <17> <18> self.q_proj = dense( <19> kernel_init=deepnet_init() <20> if self.config.use_deepnet_scaling <21> else jax.nn.initializers.normal(self.config.init_std) <22> ) <23> self.k_proj = dense( <24> kernel_init=deepnet_init() <25> if self.config.use_deepnet_scaling <26> else jax.nn.initializers.normal(self.config.init_std) <27> ) <28> self.v_proj = dense( <29> kernel_init=deepnet_init(gain) <30> if self.config.use_deepnet_scaling <31> else jax.nn.initializers.normal(self.config.init_std) <32> ) <33> self.out_proj = dense( <34> kernel_init=deepnet_init(gain) <35> if self.config.use_deepnet_scaling <36> else jax.nn.initializers.normal(self.config.init_std) <37> ) <38> self.dropout_layer = nn.Dropout(rate=self.dropout) <39> <40> if</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: # offset: 1 self.head_scale = self.param( "head_scale", jax.nn.initializers.ones, (1, 1, self.num_heads, 1) ) if self.config.use_cosine_attention: # TODO: try using a learnt scale, somehow it immediately diverges in my experiments self.tau = self.config.tau_init if self.config.use_swin_position_embeddings: self.rel_bias = nn.Embed( self.q_length, self.k_length * self.num_heads, embedding_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), ) if self.causal: # used only in decoder self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" ) ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } at: dalle_mini.model.modeling.FlaxBartAttention is_encoder: bool = False q_length: int = None k_length: int = None at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.init_std = init_std at: transformers.models.bart.modeling_flax_bart.FlaxBartAttention config: BartConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) -> None ===========changed ref 0=========== # module: dalle_mini.model.modeling # deepnet initialization + def deepnet_init(init_std, gain=1): - def deepnet_init(gain=1): + init = jax.nn.initializers.normal(init_std) - init = jax.nn.initializers.glorot_normal() def _init(*args, **kwargs): return gain * init(*args, **kwargs) return _init ===========changed ref 1=========== <s> implemented yet - from "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=True, # final layer normalization in encoder use_final_ln_decoder=True, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # text normalizer self.normalize_text = normalize_text # transformer variants self.use_bias = use_bias assert ln_type in [ "rmsnorm", "layernorm", ], "ln_type must be 'rmsnorm' or 'layernorm'" self.ln_type = ln_type if ln_positions == "deepnet": ln_positions = "postln" assert ln_positions in [ "normformer", "swinv2", "cogview", "postln", "preln", + "subln", + ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln', 'subln'" - ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'" self.use_head_scale = use_head_scale assert use_alibi is False, "use_alibi is not supported yet" self.ln_positions = ln_positions self.use_cosine_attention = use_cosine_attention self.tau_init = tau_init self.use_absolute_position_embeddings = use_absolute_position_embeddings self.use_swin_position_embeddings = use_swin_position_embeddings self.use_deepnet_scaling = use_deepnet_scaling + self.use_subln_init = use_subln_init self.</s> ===========changed ref 2=========== <s>Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" sinkhorn_iters=1, # used in SinkFormers use_final_ln_encoder=True, # final layer normalization in encoder use_final_ln_decoder=True, # final layer normalization in decoder # parameters that should not be necessary but could affect results force_ln_scale=False, # force scale in layernorm even when followed by dense layers **kwargs, ): # offset: 1 <s> use_deepnet_scaling + self.use_subln_init = use_subln_init self.use_glu = use_glu self.use_alibi = use_alibi self.sinkhorn_iters = sinkhorn_iters if ln_positions == "postln": assert ( use_final_ln_encoder ), "use_final_ln_encoder must be True when ln_positions is 'postln'" assert ( use_final_ln_decoder ), "use_final_ln_decoder must be True when ln_positions is 'postln'" self.use_final_ln_encoder = use_final_ln_encoder self.use_final_ln_decoder = use_final_ln_decoder self.force_ln_scale = force_ln_scale # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_</s>
dalle_mini.model.modeling/FlaxBartAttention.__call__
Modified
borisdayma~dalle-mini
90e39c4f4fafdbbf0d9b3d37074f7f6c9199e3c9
feat: add magneto
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> """Input shape: Batch x Time x Channel""" <1> <2> # if key_value_states are provided this layer is used as a cross-attention layer <3> # for the decoder <4> is_cross_attention = key_value_states is not None <5> batch_size = hidden_states.shape[0] <6> <7> # get query proj <8> query_states = self.q_proj(hidden_states) <9> # get key, value proj <10> if is_cross_attention: <11> # cross_attentions <12> key_states = self.k_proj(key_value_states) <13> value_states = self.v_proj(key_value_states) <14> else: <15> # self_attention <16> key_states = self.k_proj(hidden_states) <17> value_states = self.v_proj(hidden_states) <18> <19> query_states = self._split_heads(query_states) <20> key_states = self._split_heads(key_states) <21> value_states = self._split_heads(value_states) <22> <23> # handle cache prepare causal attention mask <24> if self.causal: <25> query_length, key_length = query_states.shape[1], key_states.shape[1] <26> if self.has_variable("cache", "cached_key"): <27> mask_shift = self.variables["cache"]["cache_index"] <28> max_decoder_length = self.variables["cache"]["cached_key"].shape[1] <29> causal_mask = lax.dynamic_slice( </s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length), ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to( causal_mask, (batch_size,) + causal_mask.shape[1:] ) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to( jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape ) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of</s> ===========below chunk 1=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s> # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, -jnp.inf).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") if self.config.use_cosine_attention: # normalize q and k query_states = query_states / ( jnp.linalg.norm(query_states, axis=-1, keepdims=True) + 1e-8 ) key_states = key_states / ( jnp.linalg.norm(key_states, axis=-1, keepdims=True) + 1e-8 ) # relative position embeddings if self.config.use_swin_position_embeddings: position_ids = jnp.arange(self.q_length) embed_pos = self.rel_bias(position_ids) embed_pos = rearrange(embed_pos, "q (k h) -> 1 h q k", h=self.num_heads) else: </s> ===========below chunk 2=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>_pos = None tau = self.tau if self.config.use_cosine_attention else None attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, mask=attention_mask, embed_pos=embed_pos, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, sinkhorn_iters=self.config.sinkhorn_iters, is_encoder=self.is_encoder, tau=tau, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) if self.config.use_head_scale: # per Normformer attn_output = attn_output * self.head_scale attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights ===========unchanged ref 0=========== at: dalle_mini.model.modeling dot_product_attention_weights(query: Any, key: Any, bias: Optional[Any]=None, mask: Optional[Any]=None, embed_pos: Optional[Any]=None, broadcast_dropout: bool=True, dropout_rng: Optional[PRNGKey]=None, dropout_rate: float=0.0, deterministic: bool=False, dtype: Any=jnp.float32, precision: PrecisionLike=None, sinkhorn_iters: int=1, is_encoder: bool=False, tau=None) at: dalle_mini.model.modeling.FlaxBartAttention q_length: int = None at: dalle_mini.model.modeling.FlaxBartAttention.setup self.q_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.k_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.v_proj = dense( kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.tau = self.config.tau_init self.rel_bias = nn.Embed( self.q_length, self.k_length * self.num_heads, embedding_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), ) self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" )
dalle_mini.model.modeling/GLU.__call__
Modified
borisdayma~dalle-mini
90e39c4f4fafdbbf0d9b3d37074f7f6c9199e3c9
feat: add magneto
<0>:<add> if self.config.use_deepnet_scaling: <add> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <del> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <1>:<add> self.config <del> self.config <2>:<add> ) <del> ) <3>:<add> elif self.config.use_subln_init: <add> gain = subln_gain["encoder" if self.is_encoder else "decoder"](self.config) <4>:<add> if self.config.ln_positions in ["normformer", "cogview", "preln", "subln"]: <del> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <15>:<add> kernel_init=deepnet_init(self.config.init_std, gain) <del> kernel_init=deepnet_init(gain) <16>:<add> if (self.config.use_deepnet_scaling or self.config.use_subln_init) <del> if self.config.use_deepnet_scaling <24>:<add> kernel_init=deepnet_init(self.config.init_std, gain) <del> kernel_init=deepnet_init(gain) <25>:<add> if (self.config.use_deepnet_scaling or self.config.use_subln_
# module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: <0> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <1> self.config <2> ) <3> <4> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <5> x = norm( <6> self.config.ln_type, <7> dtype=self.dtype, <8> epsilon=1e-05, <9> use_scale=self.config.force_ln_scale, <10> )(x) <11> w = nn.Dense( <12> self.ffn_dim, <13> dtype=self.dtype, <14> use_bias=self.config.use_bias, <15> kernel_init=deepnet_init(gain) <16> if self.config.use_deepnet_scaling <17> else jax.nn.initializers.normal(self.config.init_std), <18> )(x) <19> w = ACT2FN[self.config.activation_function](w) <20> v = nn.Dense( <21> self.ffn_dim, <22> dtype=self.dtype, <23> use_bias=self.config.use_bias, <24> kernel_init=deepnet_init(gain) <25> if self.config.use_deepnet_scaling <26> else jax.nn.initializers.normal(self.config.init_std), <27> )(x) <28> x = w * v <29> if self.config.ln_positions in ["normformer"]: <30> x = norm( <31> self.config.ln_type, <32> dtype=self.dtype, <33> epsilon=1e-05, <34> use_scale=self.config.force_ln_scale, <35> )(x) <36> x = nn.Dropout(rate=self.config.activation_dropout)( <37> x</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=self.config.use_bias, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.GLU config: DalleBartConfig ffn_dim: int embed_dim: int dtype: jnp.dtype = jnp.float32 is_encoder: bool = False at: transformers.modeling_flax_utils ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } ===========changed ref 0=========== # module: dalle_mini.model.modeling # deepnet initialization + def deepnet_init(init_std, gain=1): - def deepnet_init(gain=1): + init = jax.nn.initializers.normal(init_std) - init = jax.nn.initializers.glorot_normal() def _init(*args, **kwargs): return gain * init(*args, **kwargs) return _init ===========changed ref 1=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, ) + if self.config.use_deepnet_scaling: + gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( - gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( + self.config - self.config + ) - ) + elif self.config.use_subln_init: + gain = subln_gain["encoder" if self.is_encoder else "decoder"](self.config) self.q_proj = dense( - kernel_init=deepnet_init() - if self.config.use_deepnet_scaling + kernel_init=jax.nn.initializers.normal(self.config.init_std) - else jax.nn.initializers.normal(self.config.init_std) ) self.k_proj = dense( - kernel_init=deepnet_init() - if self.config.use_deepnet_scaling + kernel_init=jax.nn.initializers.normal(self.config.init_std) - else jax.nn.initializers.normal(self.config.init_std) ) self.v_proj = dense( + kernel_init=deepnet_init(self.config.init_std,</s> ===========changed ref 2=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: # offset: 1 <s> self.v_proj = dense( + kernel_init=deepnet_init(self.config.init_std, gain) - kernel_init=deepnet_init(gain) + if (self.config.use_deepnet_scaling or self.config.use_subln_init) - if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.out_proj = dense( + kernel_init=deepnet_init(self.config.init_std, gain) - kernel_init=deepnet_init(gain) + if (self.config.use_deepnet_scaling or self.config.use_subln_init) - if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.dropout_layer = nn.Dropout(rate=self.dropout) if self.config.use_head_scale: self.head_scale = self.param( "head_scale", jax.nn.initializers.ones, (1, 1, self.num_heads, 1) ) if self.config.use_cosine_attention: # TODO: try using a learnt scale, somehow it immediately diverges in my experiments self.tau = self.config.tau_init if self.config.use_swin_position_embeddings: self.rel_bias = nn.Embed( self.q_length, self.k_length * self.num_heads, - embedding_init=deepnet_init() - if self.config.use_deepnet_scaling + embedding_init</s> ===========changed ref 3=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: # offset: 2 <s>.nn.initializers.normal(self.config.init_std), - else jax.nn.initializers.normal(self.config.init_std), ) if self.causal: # used only in decoder self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" )
dalle_mini.model.modeling/FFN.__call__
Modified
borisdayma~dalle-mini
90e39c4f4fafdbbf0d9b3d37074f7f6c9199e3c9
feat: add magneto
<0>:<add> if self.config.use_deepnet_scaling: <add> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <del> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <1>:<add> self.config <del> self.config <2>:<add> ) <del> ) <3>:<add> elif self.config.use_subln_init: <add> gain = subln_gain["encoder" if self.is_encoder else "decoder"](self.config) <add> if self.config.ln_positions in ["normformer", "cogview", "preln", "subln"]: <del> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <14>:<add> kernel_init=deepnet_init(self.config.init_std, gain) <del> kernel_init=deepnet_init(gain) <15>:<add> if (self.config.use_deepnet_scaling or self.config.use_subln_init) <del> if self.config.use_deepnet_scaling <19>:<add> if self.config.ln_positions in ["normformer", "subln"]: <del> if self.config.ln_positions in ["normformer"]: <33>:<add> kernel_init=deepnet_init(self.config.init_
# module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: <0> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <1> self.config <2> ) <3> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <4> x = norm( <5> self.config.ln_type, <6> dtype=self.dtype, <7> epsilon=1e-05, <8> use_scale=self.config.force_ln_scale, <9> )(x) <10> x = nn.Dense( <11> self.ffn_dim, <12> dtype=self.dtype, <13> use_bias=self.config.use_bias, <14> kernel_init=deepnet_init(gain) <15> if self.config.use_deepnet_scaling <16> else jax.nn.initializers.normal(self.config.init_std), <17> )(x) <18> x = ACT2FN[self.config.activation_function](x) <19> if self.config.ln_positions in ["normformer"]: <20> x = norm( <21> self.config.ln_type, <22> dtype=self.dtype, <23> epsilon=1e-05, <24> use_scale=self.config.force_ln_scale, <25> )(x) <26> x = nn.Dropout(rate=self.config.activation_dropout)( <27> x, deterministic=deterministic <28> ) <29> x = nn.Dense( <30> self.embed_dim, <31> dtype=self.dtype, <32> use_bias=self.config.use_bias, <33> kernel_init=deepnet_init(gain) <34> if self.config.use_deepnet_scaling <35> else jax.nn.initializers.normal(self.config.init_std), <36> )(x) </s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FFN config: DalleBartConfig ffn_dim: int embed_dim: int dtype: jnp.dtype = jnp.float32 is_encoder: bool = False at: transformers.modeling_flax_utils ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } ===========changed ref 0=========== # module: dalle_mini.model.modeling # deepnet initialization + def deepnet_init(init_std, gain=1): - def deepnet_init(gain=1): + init = jax.nn.initializers.normal(init_std) - init = jax.nn.initializers.glorot_normal() def _init(*args, **kwargs): return gain * init(*args, **kwargs) return _init ===========changed ref 1=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: + if self.config.use_deepnet_scaling: + gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( - gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( + self.config - self.config + ) - ) + elif self.config.use_subln_init: + gain = subln_gain["encoder" if self.is_encoder else "decoder"](self.config) + if self.config.ln_positions in ["normformer", "cogview", "preln", "subln"]: - if self.config.ln_positions in ["normformer", "cogview", "preln"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) w = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=self.config.use_bias, + kernel_init=deepnet_init(self.config.init_std, gain) - kernel_init=deepnet_init(gain) + if (self.config.use_deepnet_scaling or self.config.use_subln_init) - if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) w = ACT2FN[self.config.activation_function](w) v = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=self.config.use_bias, + kernel_init=deep</s> ===========changed ref 2=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s> dtype=self.dtype, use_bias=self.config.use_bias, + kernel_init=deepnet_init(self.config.init_std, gain) - kernel_init=deepnet_init(gain) + if (self.config.use_deepnet_scaling or self.config.use_subln_init) - if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = w * v + if self.config.ln_positions in ["normformer", "subln"]: - if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=self.config.use_bias, + kernel_init=deepnet_init(self.config.init_std, gain) - kernel_init=deepnet_init(gain) + if (self.config.use_deepnet_scaling or self.config.use_subln_init) - if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv</s> ===========changed ref 3=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 2 <s> "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x
dalle_mini.model.modeling/FlaxBartEncoderLayer.__call__
Modified
borisdayma~dalle-mini
90e39c4f4fafdbbf0d9b3d37074f7f6c9199e3c9
feat: add magneto
<11>:<add> if self.config.ln_positions in ["normformer", "cogview", "preln", "subln"]: <del> if self.config.ln_positions in ["normformer", "cogview", "preln"]:
# module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> if self.config.use_scan: <1> hidden_states = hidden_states[0] <2> <3> res_gain = ( <4> deepnet_gain["encoder"]["alpha"](self.config) <5> if self.config.use_deepnet_scaling <6> else 1 <7> ) <8> <9> embed_dim = self.config.d_model <10> residual = hidden_states <11> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <12> hidden_states = norm( <13> self.config.ln_type, <14> dtype=self.dtype, <15> epsilon=1e-05, <16> use_scale=self.config.force_ln_scale, <17> )(hidden_states) <18> hidden_states, attn_weights = FlaxBartAttention( <19> config=self.config, <20> embed_dim=embed_dim, <21> num_heads=self.config.encoder_attention_heads, <22> dropout=self.config.attention_dropout, <23> bias=self.config.use_bias, <24> dtype=self.dtype, <25> is_encoder=True, <26> q_length=self.config.max_text_length, <27> k_length=self.config.max_text_length, <28> )(hidden_states=hidden_states, attention_mask=attention_mask) <29> <30> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: <31> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <32> hidden_states <33> )</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm: use_scale = self.use_scale or self.config.force_ln_scale hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) if self.config.use_scan: outputs = (outputs, None) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartEncoderLayer config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = True at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') ===========changed ref 0=========== # module: dalle_mini.model.modeling # deepnet initialization + def deepnet_init(init_std, gain=1): - def deepnet_init(gain=1): + init = jax.nn.initializers.normal(init_std) - init = jax.nn.initializers.glorot_normal() def _init(*args, **kwargs): return gain * init(*args, **kwargs) return _init ===========changed ref 1=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: + if self.config.use_deepnet_scaling: + gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( - gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( + self.config - self.config + ) - ) + elif self.config.use_subln_init: + gain = subln_gain["encoder" if self.is_encoder else "decoder"](self.config) + if self.config.ln_positions in ["normformer", "cogview", "preln", "subln"]: - if self.config.ln_positions in ["normformer", "cogview", "preln"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=self.config.use_bias, + kernel_init=deepnet_init(self.config.init_std, gain) - kernel_init=deepnet_init(gain) + if (self.config.use_deepnet_scaling or self.config.use_subln_init) - if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = ACT2FN[self.config.activation_function](x) + if self.config.ln_positions in ["normformer", "subln"]: - if self.config.ln_positions in ["normformer"]: x = norm( self.</s> ===========changed ref 2=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s>n"]: - if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=self.config.use_bias, + kernel_init=deepnet_init(self.config.init_std, gain) - kernel_init=deepnet_init(gain) + if (self.config.use_deepnet_scaling or self.config.use_subln_init) - if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x
dalle_mini.model.modeling/FlaxBartAttention.setup
Modified
borisdayma~dalle-mini
12c49e10cb33fe9d5149955a6433153172ae8145
fix: remove magneto cross-attn's ln and init (#311)
<18>:<add> elif self.config.use_subln_init and not self.is_cross_attention: <del> elif self.config.use_subln_init: <29>:<add> if ( <add> self.config.use_deepnet_scaling <add> or (self.config.use_subln_init and not self.is_cross_attention) <add> ) <del> if (self.config.use_deepnet_scaling or self.config.use_subln_init) <34>:<add> if ( <add> self.config.use_deepnet_scaling <add> or (self.config.use_subln_init and not self.is_cross_attention) <add> ) <del> if (self.config.use_deepnet_scaling or self.config.use_s
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: <0> self.head_dim = self.embed_dim // self.num_heads <1> if self.head_dim * self.num_heads != self.embed_dim: <2> raise ValueError( <3> f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" <4> f" and `num_heads`: {self.num_heads})." <5> ) <6> <7> dense = partial( <8> nn.Dense, <9> self.embed_dim, <10> use_bias=self.bias, <11> dtype=self.dtype, <12> ) <13> <14> if self.config.use_deepnet_scaling: <15> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <16> self.config <17> ) <18> elif self.config.use_subln_init: <19> gain = subln_gain["encoder" if self.is_encoder else "decoder"](self.config) <20> <21> self.q_proj = dense( <22> kernel_init=jax.nn.initializers.normal(self.config.init_std) <23> ) <24> self.k_proj = dense( <25> kernel_init=jax.nn.initializers.normal(self.config.init_std) <26> ) <27> self.v_proj = dense( <28> kernel_init=deepnet_init(self.config.init_std, gain) <29> if (self.config.use_deepnet_scaling or self.config.use_subln_init) <30> else jax.nn.initializers.normal(self.config.init_std) <31> ) <32> self.out_proj = dense( <33> kernel_init=deepnet_init(self.config.init_std, gain) <34> if (self.config.use_deepnet_scaling or self.config.use_s</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: # offset: 1 else jax.nn.initializers.normal(self.config.init_std) ) self.dropout_layer = nn.Dropout(rate=self.dropout) if self.config.use_head_scale: self.head_scale = self.param( "head_scale", jax.nn.initializers.ones, (1, 1, self.num_heads, 1) ) if self.config.use_cosine_attention: # TODO: try using a learnt scale, somehow it immediately diverges in my experiments self.tau = self.config.tau_init if self.config.use_swin_position_embeddings: self.rel_bias = nn.Embed( self.q_length, self.k_length * self.num_heads, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) if self.causal: # used only in decoder self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" ) if self.config.ln_positions in ["subln"]: self.mid_layernorm = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 ) ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(init_std, gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } subln_gain = { "encoder": lambda config: math.sqrt( 1.0 / 3.0 * math.log(3 * config.decoder_layers) * math.log(2 * config.encoder_layers) ), "decoder": lambda config: math.sqrt(math.log(3 * config.decoder_layers)), } at: dalle_mini.model.modeling.FlaxBartAttention is_encoder: bool = False is_cross_attention: bool = False q_length: int = None k_length: int = None at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.init_std = init_std at: transformers.models.bart.modeling_flax_bart.FlaxBartAttention config: BartConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation ===========unchanged ref 1=========== setup(self) -> None ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length - scale attention heads per NormFormer paper """ is_encoder: bool = False + is_cross_attention: bool = False q_length: int = None k_length: int = None
dalle_mini.model.modeling/FlaxBartAttention.__call__
Modified
borisdayma~dalle-mini
12c49e10cb33fe9d5149955a6433153172ae8145
fix: remove magneto cross-attn's ln and init (#311)
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> """Input shape: Batch x Time x Channel""" <1> <2> # if key_value_states are provided this layer is used as a cross-attention layer <3> # for the decoder <4> is_cross_attention = key_value_states is not None <5> batch_size = hidden_states.shape[0] <6> <7> # get query proj <8> query_states = self.q_proj(hidden_states) <9> # get key, value proj <10> if is_cross_attention: <11> # cross_attentions <12> key_states = self.k_proj(key_value_states) <13> value_states = self.v_proj(key_value_states) <14> else: <15> # self_attention <16> key_states = self.k_proj(hidden_states) <17> value_states = self.v_proj(hidden_states) <18> <19> query_states = self._split_heads(query_states) <20> key_states = self._split_heads(key_states) <21> value_states = self._split_heads(value_states) <22> <23> # handle cache prepare causal attention mask <24> if self.causal: <25> query_length, key_length = query_states.shape[1], key_states.shape[1] <26> if self.has_variable("cache", "cached_key"): <27> mask_shift = self.variables["cache"]["cache_index"] <28> max_decoder_length = self.variables["cache"]["cached_key"].shape[1] <29> causal_mask = lax.dynamic_slice( </s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length), ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to( causal_mask, (batch_size,) + causal_mask.shape[1:] ) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to( jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape ) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of</s> ===========below chunk 1=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s> # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, -jnp.inf).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") if self.config.use_cosine_attention: # normalize q and k query_states = query_states / ( jnp.linalg.norm(query_states, axis=-1, keepdims=True) + 1e-8 ) key_states = key_states / ( jnp.linalg.norm(key_states, axis=-1, keepdims=True) + 1e-8 ) # relative position embeddings if self.config.use_swin_position_embeddings: position_ids = jnp.arange(self.q_length) embed_pos = self.rel_bias(position_ids) embed_pos = rearrange(embed_pos, "q (k h) -> 1 h q k", h=self.num_heads) else: </s> ===========below chunk 2=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>_pos = None tau = self.tau if self.config.use_cosine_attention else None attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, mask=attention_mask, embed_pos=embed_pos, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, sinkhorn_iters=self.config.sinkhorn_iters, is_encoder=self.is_encoder, tau=tau, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) if self.config.use_head_scale: # per Normformer attn_output = attn_output * self.head_scale attn_output = self._merge_heads(attn_output) if self.config.ln_positions in ["subln"]: attn_output = self.mid_layernorm(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights ===========unchanged ref 0=========== at: dalle_mini.model.modeling norm(type, *args, **kwargs) dot_product_attention_weights(query: Any, key: Any, bias: Optional[Any]=None, mask: Optional[Any]=None, embed_pos: Optional[Any]=None, broadcast_dropout: bool=True, dropout_rng: Optional[PRNGKey]=None, dropout_rate: float=0.0, deterministic: bool=False, dtype: Any=jnp.float32, precision: PrecisionLike=None, sinkhorn_iters: int=1, is_encoder: bool=False, tau=None) at: dalle_mini.model.modeling.FlaxBartAttention is_cross_attention: bool = False q_length: int = None at: dalle_mini.model.modeling.FlaxBartAttention.setup self.q_proj = dense( kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.k_proj = dense( kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.v_proj = dense( kernel_init=deepnet_init(self.config.init_std, gain) if ( self.config.use_deepnet_scaling or (self.config.use_subln_init and not self.is_cross_attention) ) else jax.nn.initializers.normal(self.config.init_std) ) self.tau = self.config.tau_init self.rel_bias = nn.Embed( self.q_length, self.k_length * self.num_heads, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" )
dalle_mini.model.modeling/FlaxBartEncoderLayer.__call__
Modified
borisdayma~dalle-mini
12c49e10cb33fe9d5149955a6433153172ae8145
fix: remove magneto cross-attn's ln and init (#311)
<26>:<add> is_cross_attention=False,
# module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> if self.config.use_scan: <1> hidden_states = hidden_states[0] <2> <3> res_gain = ( <4> deepnet_gain["encoder"]["alpha"](self.config) <5> if self.config.use_deepnet_scaling <6> else 1 <7> ) <8> <9> embed_dim = self.config.d_model <10> residual = hidden_states <11> if self.config.ln_positions in ["normformer", "cogview", "preln", "subln"]: <12> hidden_states = norm( <13> self.config.ln_type, <14> dtype=self.dtype, <15> epsilon=1e-05, <16> use_scale=self.config.force_ln_scale, <17> )(hidden_states) <18> hidden_states, attn_weights = FlaxBartAttention( <19> config=self.config, <20> embed_dim=embed_dim, <21> num_heads=self.config.encoder_attention_heads, <22> dropout=self.config.attention_dropout, <23> bias=self.config.use_bias, <24> dtype=self.dtype, <25> is_encoder=True, <26> q_length=self.config.max_text_length, <27> k_length=self.config.max_text_length, <28> )(hidden_states=hidden_states, attention_mask=attention_mask) <29> <30> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: <31> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <32> hidden_</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 ) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm: use_scale = self.use_scale or self.config.force_ln_scale hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) if self.config.</s> ===========below chunk 1=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s>,) if output_attentions: outputs += (attn_weights,) if self.config.use_scan: outputs = (outputs, None) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length - scale attention heads per NormFormer paper """ is_encoder: bool = False + is_cross_attention: bool = False q_length: int = None k_length: int = None ===========changed ref 1=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, ) if self.config.use_deepnet_scaling: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) + elif self.config.use_subln_init and not self.is_cross_attention: - elif self.config.use_subln_init: gain = subln_gain["encoder" if self.is_encoder else "decoder"](self.config) self.q_proj = dense( kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.k_proj = dense( kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.v_proj = dense( kernel_init=deepnet_init(self.config.init_std, gain) + if ( + self.config.use_deepnet_scaling + or (self.config.use_subln_init and not self.is_cross_attention) + ) - if (self.config.use_deepnet_scaling or self.config.use_subln_init) else jax.nn.initializers.normal(self.config.init_std) ) self.out_proj = dense( kernel</s> ===========changed ref 2=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: # offset: 1 <s>.initializers.normal(self.config.init_std) ) self.out_proj = dense( kernel_init=deepnet_init(self.config.init_std, gain) + if ( + self.config.use_deepnet_scaling + or (self.config.use_subln_init and not self.is_cross_attention) + ) - if (self.config.use_deepnet_scaling or self.config.use_subln_init) else jax.nn.initializers.normal(self.config.init_std) ) self.dropout_layer = nn.Dropout(rate=self.dropout) if self.config.use_head_scale: self.head_scale = self.param( "head_scale", jax.nn.initializers.ones, (1, 1, self.num_heads, 1) ) if self.config.use_cosine_attention: # TODO: try using a learnt scale, somehow it immediately diverges in my experiments self.tau = self.config.tau_init if self.config.use_swin_position_embeddings: self.rel_bias = nn.Embed( self.q_length, self.k_length * self.num_heads, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) if self.causal: # used only in decoder self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" ) + if self.config.ln_positions in ["subln</s>
dalle_mini.model.modeling/FlaxBartDecoderLayer.__call__
Modified
borisdayma~dalle-mini
12c49e10cb33fe9d5149955a6433153172ae8145
fix: remove magneto cross-attn's ln and init (#311)
<29>:<add> is_cross_attention=False,
<s> FlaxBartDecoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> if self.config.use_scan: <1> hidden_states = hidden_states[0] <2> <3> res_gain = ( <4> deepnet_gain["decoder"]["alpha"](self.config) <5> if self.config.use_deepnet_scaling <6> else 1 <7> ) <8> <9> embed_dim = self.config.d_model <10> residual = hidden_states <11> <12> # Self Attention <13> if self.config.ln_positions in ["normformer", "cogview", "preln"]: <14> hidden_states = norm( <15> self.config.ln_type, <16> dtype=self.dtype, <17> epsilon=1e-05, <18> use_scale=self.config.force_ln_scale, <19> )(hidden_states) <20> hidden_states, attn_weights = FlaxBartAttention( <21> config=self.config, <22> embed_dim=embed_dim, <23> num_heads=self.config.decoder_attention_heads, <24> dropout=self.config.attention_dropout, <25> causal=True, <26> bias=self.config.use_bias, <27> dtype=self.dtype, <28> is_encoder=False, <29> q_length=self.config.image_length, <30> k_length=self.config.image_length, <31> )( <32> hidden_states=hidden_states, <33> attention_mask=attention_mask, <34> init_cache=init_cache, <35> ) <36> </s>
===========below chunk 0=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) # Cross Attention cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states if self.config.ln_positions in ["normformer", "cogview", "preln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(hidden_states) hidden_states, cross_attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, bias=self.config.use_bias, dtype=self.dtype, is_encoder=False, q_length=self.config.image_length, k_length=self.config.max_text_length, </s> ===========below chunk 1=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s> q_length=self.config.image_length, k_length=self.config.max_text_length, )( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) # Feed forward residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self</s> ===========below chunk 2=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm: use_scale = self.use_scale or self.config.force_ln_scale hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights, cross_attn_weights) if self.config.use_scan: outputs = (outputs, None) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length - scale attention heads per NormFormer paper """ is_encoder: bool = False + is_cross_attention: bool = False q_length: int = None k_length: int = None
aioquic.packet/QuicHeader.parse
Modified
aiortc~aioquic
3167b70e32c9e83ef7759a38e6328e4e70ad3708
[crypto] add encrypt_packet function
<5>:<add> if is_long_header(first_byte): <del> if first_byte & PACKET_LONG_HEADER:
# module: aioquic.packet @dataclass class QuicHeader: @classmethod def parse(cls, data): <0> datagram_length = len(data) <1> if datagram_length < 2: <2> raise ValueError('Packet is too short (%d bytes)' % datagram_length) <3> <4> first_byte = data[0] <5> if first_byte & PACKET_LONG_HEADER: <6> if datagram_length < 6: <7> raise ValueError('Long header is too short (%d bytes)' % datagram_length) <8> <9> version, cid_lengths = unpack_from('!LB', data, 1) <10> pos = 6 <11> <12> destination_cid_length = decode_cid_length(cid_lengths // 16) <13> destination_cid = data[pos:pos + destination_cid_length] <14> pos += destination_cid_length <15> <16> source_cid_length = decode_cid_length(cid_lengths % 16) <17> source_cid = data[pos:pos + source_cid_length] <18> pos += source_cid_length <19> <20> packet_type = first_byte & PACKET_TYPE_MASK <21> if packet_type == PACKET_TYPE_INITIAL: <22> token_length, pos = unpack_variable_length(data, pos) <23> token = data[pos:pos + token_length] <24> pos += token_length <25> <26> length, pos = unpack_variable_length(data, pos) <27> else: <28> raise ValueError('Long header packet type 0x%x is not supported' % packet_type) <29> <30> return QuicHeader( <31> version=version, <32> destination_cid=destination_cid, <33> source_cid=source_cid, <34> token=token) <35> else: <36> # short header packet <37> raise ValueError('Short header is not supported yet') <38>
===========unchanged ref 0=========== at: _struct unpack_from(format, /, buffer, offset=0) at: aioquic.packet PACKET_TYPE_INITIAL = PACKET_LONG_HEADER | PACKET_FIXED_BIT | 0x00 PACKET_TYPE_MASK = 0xf0 decode_cid_length(length) is_long_header(first_byte) unpack_variable_length(data, pos=0) QuicHeader(version: int, destination_cid: bytes, source_cid: bytes, token: bytes=b'') at: aioquic.packet.QuicHeader version: int ===========changed ref 0=========== # module: aioquic.packet + def is_long_header(first_byte): + return bool(first_byte & PACKET_LONG_HEADER) +
aioquic.crypto/encrypt_packet
Modified
aiortc~aioquic
d4983e27c5c2436be7aa820b24a45dbda38e0815
[crypto] add decrypt_packet function
<12>:<add> sample_offset = MAX_PN_SIZE - pn_length <del> sample_offset = 4 - pn_length
# module: aioquic.crypto def encrypt_packet(key, iv, hp, plain_header, plain_payload): <0> pn_length = (plain_header[0] & 0x03) + 1 <1> pn_offset = len(plain_header) - pn_length <2> pn = plain_header[pn_offset:pn_offset + pn_length] <3> <4> # payload protection <5> nonce = bytearray(len(iv) - pn_length) + bytearray(pn) <6> for i in range(len(iv)): <7> nonce[i] ^= iv[i] <8> aesgcm = aead.AESGCM(key) <9> protected_payload = aesgcm.encrypt(nonce, plain_payload, plain_header) <10> <11> # header protection <12> sample_offset = 4 - pn_length <13> sample = protected_payload[sample_offset:sample_offset + 16] <14> cipher = Cipher(algorithms.AES(hp), modes.ECB(), backend=backend) <15> encryptor = cipher.encryptor() <16> buf = bytearray(31) <17> encryptor.update_into(sample, buf) <18> mask = buf[:5] <19> <20> packet = bytearray(plain_header + protected_payload) <21> if is_long_header(packet[0]): <22> # long header <23> packet[0] ^= (mask[0] & 0x0f) <24> else: <25> # short header <26> packet[0] ^= (mask[0] & 0x1f) <27> <28> for i in range(pn_length): <29> packet[pn_offset + i] ^= mask[1 + i] <30> <31> return packet <32>
===========unchanged ref 0=========== at: aioquic.crypto backend = default_backend() MAX_PN_SIZE = 4 at: aioquic.packet is_long_header(first_byte) ===========changed ref 0=========== # module: aioquic.crypto algorithm = hashes.SHA256() backend = default_backend() INITIAL_SALT = binascii.unhexlify('ef4fb0abb47470c41befcf8031334fae485e09a0') + MAX_PN_SIZE = 4
tests.test_crypto/CryptoTest.test_encrypt_packet_client
Modified
aiortc~aioquic
d4983e27c5c2436be7aa820b24a45dbda38e0815
[crypto] add decrypt_packet function
<3>:<del> plain_header = binascii.unhexlify('c3ff000012508394c8f03e51570800449f00000002') <4>:<del> plain_payload = binascii.unhexlify( <5>:<del> '060040c4010000c003036660261ff947cea49cce6cfad687f457cf1b14531ba1' <6>:<del> '4131a0e8f309a1d0b9c4000006130113031302010000910000000b0009000006' <7>:<del> '736572766572ff01000100000a00140012001d00170018001901000101010201' <8>:<del> '03010400230000003300260024001d00204cfdfcd178b784bf328cae793b136f' <9>:<del> '2aedce005ff183d7bb1495207236647037002b0003020304000d0020001e0403' <10>:<del> '05030603020308040805080604010501060102010402050206020202002d0002' <11>:<del> '0101001c00024001') + bytes(963) <12>:<add> packet = encrypt_packet(key, iv, hp, CLIENT_PLAIN_HEADER, CLIENT_PLAIN_PAYLOAD) <add> self.assertEqual(packet, CLIENT_ENCRYPTED_PACKET) <13>:<del> packet = encrypt_packet(key, iv, hp, plain_header, plain_payload) <14>:<del> <15>:<del> self.assertEqual(packet, binascii.unhexlify( <16>:<del> 'c1ff000012508394c8f03e51570800449f0dbc195a0000f3a694c75775b4e546' <17>:<del> '172ce9e047cd0b5bee5181648c727adc87f7eae54473ec6cba6bdad4f5982317' <18>:<del> '4
# module: tests.test_crypto class CryptoTest(TestCase): def test_encrypt_packet_client(self): <0> cid = binascii.unhexlify('8394c8f03e515708') <1> key, iv, hp = derive_keying_material(cid, is_client=True) <2> <3> plain_header = binascii.unhexlify('c3ff000012508394c8f03e51570800449f00000002') <4> plain_payload = binascii.unhexlify( <5> '060040c4010000c003036660261ff947cea49cce6cfad687f457cf1b14531ba1' <6> '4131a0e8f309a1d0b9c4000006130113031302010000910000000b0009000006' <7> '736572766572ff01000100000a00140012001d00170018001901000101010201' <8> '03010400230000003300260024001d00204cfdfcd178b784bf328cae793b136f' <9> '2aedce005ff183d7bb1495207236647037002b0003020304000d0020001e0403' <10> '05030603020308040805080604010501060102010402050206020202002d0002' <11> '0101001c00024001') + bytes(963) <12> <13> packet = encrypt_packet(key, iv, hp, plain_header, plain_payload) <14> <15> self.assertEqual(packet, binascii.unhexlify( <16> 'c1ff000012508394c8f03e51570800449f0dbc195a0000f3a694c75775b4e546' <17> '172ce9e047cd0b5bee5181648c727adc87f7eae54473ec6cba6bdad4f5982317' <18> '4</s>
===========below chunk 0=========== # module: tests.test_crypto class CryptoTest(TestCase): def test_encrypt_packet_client(self): # offset: 1 '8b5c88b9fd9279ffff3b0f4ecf95c4624db6d65d4113329ee9b0bf8cdd7c8a8d' '72806d55df25ecb66488bc119d7c9a29abaf99bb33c56b08ad8c26995f838bb3' 'b7a3d5c1858b8ec06b839db2dcf918d5ea9317f1acd6b663cc8925868e2f6a1b' 'da546695f3c3f33175944db4a11a346afb07e78489e509b02add51b7b203eda5' 'c330b03641179a31fbba9b56ce00f3d5b5e3d7d9c5429aebb9576f2f7eacbe27' 'bc1b8082aaf68fb69c921aa5d33ec0c8510410865a178d86d7e54122d55ef2c2' 'bbc040be46d7fece73fe8a1b24495ec160df2da9b20a7ba2f26dfa2a44366dbc' '63de5cd7d7c94c57172fe6d79c901f025c0010b02c89b395402c009f62dc053b' '8067a1e0ed0a1e0cf5087d7f78cbd94afe0c3dd55d2d4b1a5cfe2b68b86264e3' '51d1dcd858783a240f893f008ceed743d969b8f735a1677ead960b1fb1ecc5ac' '83c273b</s> ===========below chunk 1=========== # module: tests.test_crypto class CryptoTest(TestCase): def test_encrypt_packet_client(self): # offset: 2 <s>d969b8f735a1677ead960b1fb1ecc5ac' '83c273b49288d02d7286207e663c45e1a7baf50640c91e762941cf380ce8d79f' '3e86767fbbcd25b42ef70ec334835a3a6d792e170a432ce0cb7bde9aaa1e7563' '7c1c34ae5fef4338f53db8b13a4d2df594efbfa08784543815c9c0d487bddfa1' '539bc252cf43ec3686e9802d651cfd2a829a06a9f332a733a4a8aed80efe3478' '093fbc69c8608146b3f16f1a5c4eac9320da49f1afa5f538ddecbbe7888f4355' '12d0dd74fd9b8c99e3145ba84410d8ca9a36dd884109e76e5fb8222a52e1473d' 'a168519ce7a8a3c32e9149671b16724c6c5c51bb5cd64fb591e567fb78b10f9f' '6fee62c276f282a7df6bcf7c17747bc9a81e6c9c3b032fdd0e1c3ac9eaa5077d' 'e3ded18b2ed4faf328f49875af2e36ad5ce5f6cc99ef4b60e57b3b5b</s> ===========below chunk 2=========== # module: tests.test_crypto class CryptoTest(TestCase): def test_encrypt_packet_client(self): # offset: 3 <s>9fcbcd' '4cfb3975e70ce4c2506bcd71fef0e53592461504e3d42c885caab21b782e2629' '4c6a9d61118cc40a26f378441ceb48f31a362bf8502a723a36c63502229a462c' 'c2a3796279a5e3a7f81a68c7f81312c381cc16a4ab03513a51ad5b54306ec1d7' '8a5e47e2b15e5b7a1438e5b8b2882dbdad13d6a4a8c3558cae043501b68eb3b0' '40067152337c051c40b5af809aca2856986fd1c86a4ade17d254b6262ac1bc07' '7343b52bf89fa27d73e3c6f3118c9961f0bebe68a5c323c2d84b8c29a2807df6' '63635223242a2ce9828d4429ac270aab5f1841e8e49cf433b1547989f419caa3' 'c758fff96ded40cf3427f0761b678daa1a9e5554465d46b7a917493fc70f9ec5' 'e4e5d786ca501730898aaa1151dcd31829641e29428d90e6065511c24d3109f7' 'cba32225d4accfc54fec42</s> ===========below chunk 3=========== # module: tests.test_crypto class CryptoTest(TestCase): def test_encrypt_packet_client(self): # offset: 4 <s>33f9585252ee36fa5ea0c656934385b468eee245' '315146b8c047ed27c519b2c0a52d33efe72c186ffe0a230f505676c5324baa6a' 'e006a73e13aa8c39ab173ad2b2778eea0b34c46f2b3beae2c62a2c8db238bf58' 'fc7c27bdceb96c56d29deec87c12351bfd5962497418716a4b915d334ffb5b92' 'ca94ffe1e4f78967042638639a9de325357f5f08f6435061e5a274703936c06f' 'c56af92c420797499ca431a7abaa461863bca656facfad564e6274d4a741033a' 'ca1e31bf63200df41cdf41c10b912bec')) ===========unchanged ref 0=========== at: aioquic.crypto derive_keying_material(cid, is_client) at: binascii unhexlify(hexstr: _Ascii, /) -> bytes at: unittest.case TestCase(methodName: str=...) at: unittest.case.TestCase failureException: Type[BaseException] longMessage: bool maxDiff: Optional[int] _testMethodName: str _testMethodDoc: str assertEqual(first: Any, second: Any, msg: Any=...) -> None
tests.test_crypto/CryptoTest.test_encrypt_packet_server
Modified
aiortc~aioquic
d4983e27c5c2436be7aa820b24a45dbda38e0815
[crypto] add decrypt_packet function
<3>:<del> plain_header = binascii.unhexlify('c1ff00001205f067a5502a4262b50040740001') <4>:<del> plain_payload = binascii.unhexlify( <5>:<del> '0d0000000018410a020000560303eefce7f7b37ba1d1632e96677825ddf73988' <6>:<del> 'cfc79825df566dc5430b9a045a1200130100002e00330024001d00209d3c940d' <7>:<del> '89690b84d08a60993c144eca684d1081287c834d5311bcf32bb9da1a002b0002' <8>:<del> '0304') <9>:<add> packet = encrypt_packet(key, iv, hp, SERVER_PLAIN_HEADER, SERVER_PLAIN_PAYLOAD) <add> self.assertEqual(packet, SERVER_ENCRYPTED_PACKET) <10>:<del> packet = encrypt_packet(key, iv, hp, plain_header, plain_payload) <11>:<del> <12>:<del> self.assertEqual(packet, binascii.unhexlify( <13>:<del> 'c4ff00001205f067a5502a4262b5004074f7ed5f01c4c2a2303d297e3c519bf6' <14>:<del> 'b22386e3d0bd6dfc66121677298031041bb9a79c9f0f9d4c5877270a660f5da3' <15>:<del> '6207d98b73839b2fdf2ef8e7df5a51b17b8c68d864fd3e708c6c1b71a98a3318' <16>:<del> '15599ef5014ea38c44bdfd387c03b5275c35e009b6238f831420047c7271281c' <17>:<del> 'cb54df7884')) <18>:<del>
# module: tests.test_crypto class CryptoTest(TestCase): def test_encrypt_packet_server(self): <0> cid = binascii.unhexlify('8394c8f03e515708') <1> key, iv, hp = derive_keying_material(cid, is_client=False) <2> <3> plain_header = binascii.unhexlify('c1ff00001205f067a5502a4262b50040740001') <4> plain_payload = binascii.unhexlify( <5> '0d0000000018410a020000560303eefce7f7b37ba1d1632e96677825ddf73988' <6> 'cfc79825df566dc5430b9a045a1200130100002e00330024001d00209d3c940d' <7> '89690b84d08a60993c144eca684d1081287c834d5311bcf32bb9da1a002b0002' <8> '0304') <9> <10> packet = encrypt_packet(key, iv, hp, plain_header, plain_payload) <11> <12> self.assertEqual(packet, binascii.unhexlify( <13> 'c4ff00001205f067a5502a4262b5004074f7ed5f01c4c2a2303d297e3c519bf6' <14> 'b22386e3d0bd6dfc66121677298031041bb9a79c9f0f9d4c5877270a660f5da3' <15> '6207d98b73839b2fdf2ef8e7df5a51b17b8c68d864fd3e708c6c1b71a98a3318' <16> '15599ef5014ea38c44bdfd387c03b5275c35e009b6238f831420047c7271281c' <17> 'cb54df7884')) <18>
===========unchanged ref 0=========== at: aioquic.crypto derive_keying_material(cid, is_client) decrypt_packet(key, iv, hp, packet, encrypted_offset) at: binascii unhexlify(hexstr: _Ascii, /) -> bytes at: tests.test_crypto CLIENT_PLAIN_HEADER = binascii.unhexlify('c3ff000012508394c8f03e51570800449f00000002') CLIENT_PLAIN_PAYLOAD = binascii.unhexlify( '060040c4010000c003036660261ff947cea49cce6cfad687f457cf1b14531ba1' '4131a0e8f309a1d0b9c4000006130113031302010000910000000b0009000006' '736572766572ff01000100000a00140012001d00170018001901000101010201' '03010400230000003300260024001d00204cfdfcd178b784bf328cae793b136f' '2aedce005ff183d7bb1495207236647037002b0003020304000d0020001e0403' '05030603020308040805080604010501060102010402050206020202002d0002' '0101001c00024001') + bytes(963) ===========unchanged ref 1=========== CLIENT_ENCRYPTED_PACKET = binascii.unhexlify( 'c1ff000012508394c8f03e51570800449f0dbc195a0000f3a694c75775b4e546' '172ce9e047cd0b5bee5181648c727adc87f7eae54473ec6cba6bdad4f5982317' '4b769f12358abd292d4f3286934484fb8b239c38732e1f3bbbc6a003056487eb' '8b5c88b9fd9279ffff3b0f4ecf95c4624db6d65d4113329ee9b0bf8cdd7c8a8d' '72806d55df25ecb66488bc119d7c9a29abaf99bb33c56b08ad8c26995f838bb3' 'b7a3d5c1858b8ec06b839db2dcf918d5ea9317f1acd6b663cc8925868e2f6a1b' 'da546695f3c3f33175944db4a11a346afb07e78489e509b02add51b7b203eda5' 'c330b03641179a31fbba9b56ce00f3d5b5e3d7d9c5429aebb9576f2f7eacbe27' 'bc1b8082aaf68fb69c921aa5d33ec0c8510410865a178d86d7e54122d55ef2c2' 'bbc040be46d7fece73fe8a1b24495ec160df2da9b20a7ba2f26dfa2a44366dbc' '63de5cd7d7c94c57172fe6d79c901f025c0010b</s> ===========unchanged ref 2=========== at: unittest.case.TestCase assertEqual(first: Any, second: Any, msg: Any=...) -> None ===========changed ref 0=========== # module: aioquic.crypto + def decrypt_packet(key, iv, hp, packet, encrypted_offset): + packet = bytearray(packet) + + # header protection + sample_offset = encrypted_offset + MAX_PN_SIZE + sample = packet[sample_offset:sample_offset + 16] + cipher = Cipher(algorithms.AES(hp), modes.ECB(), backend=backend) + encryptor = cipher.encryptor() + buf = bytearray(31) + encryptor.update_into(sample, buf) + mask = buf[:5] + + if is_long_header(packet[0]): + # long header + packet[0] ^= (mask[0] & 0x0f) + else: + # short header + packet[0] ^= (mask[0] & 0x1f) + + pn_length = (packet[0] & 0x03) + 1 + for i in range(pn_length): + packet[encrypted_offset + i] ^= mask[1 + i] + pn = packet[encrypted_offset:encrypted_offset + pn_length] + plain_header = bytes(packet[:encrypted_offset + pn_length]) + + # payload protection + nonce = bytearray(len(iv) - pn_length) + bytearray(pn) + for i in range(len(iv)): + nonce[i] ^= iv[i] + aesgcm = aead.AESGCM(key) + payload = aesgcm.decrypt(nonce, bytes(packet[encrypted_offset + pn_length:]), plain_header) + + return plain_header, payload + ===========changed ref 1=========== # module: aioquic.crypto algorithm = hashes.SHA256() backend = default_backend() INITIAL_SALT = binascii.unhexlify('ef4fb0abb47470c41befcf8031334fae485e09a0') + MAX_PN_SIZE = 4 ===========changed ref 2=========== # module: aioquic.crypto def encrypt_packet(key, iv, hp, plain_header, plain_payload): pn_length = (plain_header[0] & 0x03) + 1 pn_offset = len(plain_header) - pn_length pn = plain_header[pn_offset:pn_offset + pn_length] # payload protection nonce = bytearray(len(iv) - pn_length) + bytearray(pn) for i in range(len(iv)): nonce[i] ^= iv[i] aesgcm = aead.AESGCM(key) protected_payload = aesgcm.encrypt(nonce, plain_payload, plain_header) # header protection + sample_offset = MAX_PN_SIZE - pn_length - sample_offset = 4 - pn_length sample = protected_payload[sample_offset:sample_offset + 16] cipher = Cipher(algorithms.AES(hp), modes.ECB(), backend=backend) encryptor = cipher.encryptor() buf = bytearray(31) encryptor.update_into(sample, buf) mask = buf[:5] packet = bytearray(plain_header + protected_payload) if is_long_header(packet[0]): # long header packet[0] ^= (mask[0] & 0x0f) else: # short header packet[0] ^= (mask[0] & 0x1f) for i in range(pn_length): packet[pn_offset + i] ^= mask[1 + i] return packet
aioquic.packet/QuicHeader.parse
Modified
aiortc~aioquic
3ec8b532ad398e0ccda2d43cd009044d01a8f263
[packet] check fixed bit is set both for short and long headers
<5>:<add> if not (first_byte & PACKET_FIXED_BIT): <add> raise ValueError('Packet fixed bit is zero') <add> <add> token = b'' <27>:<del> else: <28>:<del> raise ValueError('Long header packet type 0x%x is not supported' % packet_type) <34>:<add> encrypted_offset=pos,
# module: aioquic.packet @dataclass class QuicHeader: @classmethod def parse(cls, data): <0> datagram_length = len(data) <1> if datagram_length < 2: <2> raise ValueError('Packet is too short (%d bytes)' % datagram_length) <3> <4> first_byte = data[0] <5> if is_long_header(first_byte): <6> if datagram_length < 6: <7> raise ValueError('Long header is too short (%d bytes)' % datagram_length) <8> <9> version, cid_lengths = unpack_from('!LB', data, 1) <10> pos = 6 <11> <12> destination_cid_length = decode_cid_length(cid_lengths // 16) <13> destination_cid = data[pos:pos + destination_cid_length] <14> pos += destination_cid_length <15> <16> source_cid_length = decode_cid_length(cid_lengths % 16) <17> source_cid = data[pos:pos + source_cid_length] <18> pos += source_cid_length <19> <20> packet_type = first_byte & PACKET_TYPE_MASK <21> if packet_type == PACKET_TYPE_INITIAL: <22> token_length, pos = unpack_variable_length(data, pos) <23> token = data[pos:pos + token_length] <24> pos += token_length <25> <26> length, pos = unpack_variable_length(data, pos) <27> else: <28> raise ValueError('Long header packet type 0x%x is not supported' % packet_type) <29> <30> return QuicHeader( <31> version=version, <32> destination_cid=destination_cid, <33> source_cid=source_cid, <34> token=token) <35> else: <36> # short header packet <37> raise ValueError('Short header is not supported yet') <38>
===========unchanged ref 0=========== at: _struct unpack_from(format, /, buffer, offset=0) at: aioquic.packet PACKET_FIXED_BIT = 0x40 PACKET_TYPE_INITIAL = PACKET_LONG_HEADER | PACKET_FIXED_BIT | 0x00 PACKET_TYPE_MASK = 0xf0 decode_cid_length(length) is_long_header(first_byte) unpack_variable_length(data, pos=0) QuicHeader(version: int, destination_cid: bytes, source_cid: bytes, encrypted_offset: int, token: bytes=b'') at: aioquic.packet.QuicHeader version: int destination_cid: bytes source_cid: bytes encrypted_offset: int token: bytes = b'' ===========changed ref 0=========== # module: aioquic.packet @dataclass class QuicHeader: version: int destination_cid: bytes source_cid: bytes + encrypted_offset: int token: bytes = b''
tests.test_packet/PacketTest.test_parse_initial_client
Modified
aiortc~aioquic
3ec8b532ad398e0ccda2d43cd009044d01a8f263
[packet] check fixed bit is set both for short and long headers
<6>:<add> self.assertEqual(header.encrypted_offset, 17)
# module: tests.test_packet class PacketTest(TestCase): def test_parse_initial_client(self): <0> data = load('initial_client.bin') <1> header = QuicHeader.parse(data) <2> self.assertEqual(header.version, 0xff000011) <3> self.assertEqual(header.destination_cid, binascii.unhexlify('90ed1e1c7b04b5d3')) <4> self.assertEqual(header.source_cid, b'') <5> self.assertEqual(header.token, b'') <6>
===========unchanged ref 0=========== at: aioquic.packet QuicHeader(version: int, destination_cid: bytes, source_cid: bytes, encrypted_offset: int, token: bytes=b'') at: aioquic.packet.QuicHeader version: int destination_cid: bytes source_cid: bytes encrypted_offset: int token: bytes = b'' parse(data) at: binascii unhexlify(hexstr: _Ascii, /) -> bytes at: tests.utils load(name) at: unittest.case.TestCase failureException: Type[BaseException] longMessage: bool maxDiff: Optional[int] _testMethodName: str _testMethodDoc: str assertEqual(first: Any, second: Any, msg: Any=...) -> None ===========changed ref 0=========== # module: aioquic.packet @dataclass class QuicHeader: version: int destination_cid: bytes source_cid: bytes + encrypted_offset: int token: bytes = b'' ===========changed ref 1=========== # module: aioquic.packet @dataclass class QuicHeader: @classmethod def parse(cls, data): datagram_length = len(data) if datagram_length < 2: raise ValueError('Packet is too short (%d bytes)' % datagram_length) first_byte = data[0] + if not (first_byte & PACKET_FIXED_BIT): + raise ValueError('Packet fixed bit is zero') + + token = b'' if is_long_header(first_byte): if datagram_length < 6: raise ValueError('Long header is too short (%d bytes)' % datagram_length) version, cid_lengths = unpack_from('!LB', data, 1) pos = 6 destination_cid_length = decode_cid_length(cid_lengths // 16) destination_cid = data[pos:pos + destination_cid_length] pos += destination_cid_length source_cid_length = decode_cid_length(cid_lengths % 16) source_cid = data[pos:pos + source_cid_length] pos += source_cid_length packet_type = first_byte & PACKET_TYPE_MASK if packet_type == PACKET_TYPE_INITIAL: token_length, pos = unpack_variable_length(data, pos) token = data[pos:pos + token_length] pos += token_length length, pos = unpack_variable_length(data, pos) - else: - raise ValueError('Long header packet type 0x%x is not supported' % packet_type) return QuicHeader( version=version, destination_cid=destination_cid, source_cid=source_cid, + encrypted_offset=pos, token=token) else: # short header packet raise ValueError('Short header is not supported yet')
tests.test_packet/PacketTest.test_parse_initial_server
Modified
aiortc~aioquic
3ec8b532ad398e0ccda2d43cd009044d01a8f263
[packet] check fixed bit is set both for short and long headers
<6>:<add> self.assertEqual(header.encrypted_offset, 17)
# module: tests.test_packet class PacketTest(TestCase): def test_parse_initial_server(self): <0> data = load('initial_server.bin') <1> header = QuicHeader.parse(data) <2> self.assertEqual(header.version, 0xff000011) <3> self.assertEqual(header.destination_cid, b'') <4> self.assertEqual(header.source_cid, binascii.unhexlify('0fcee9852fde8780')) <5> self.assertEqual(header.token, b'') <6>
===========unchanged ref 0=========== at: aioquic.packet QuicHeader(version: int, destination_cid: bytes, source_cid: bytes, encrypted_offset: int, token: bytes=b'') at: aioquic.packet.QuicHeader version: int destination_cid: bytes parse(data) at: binascii unhexlify(hexstr: _Ascii, /) -> bytes at: tests.utils load(name) at: unittest.case.TestCase assertEqual(first: Any, second: Any, msg: Any=...) -> None ===========changed ref 0=========== # module: aioquic.packet @dataclass class QuicHeader: version: int destination_cid: bytes source_cid: bytes + encrypted_offset: int token: bytes = b'' ===========changed ref 1=========== # module: aioquic.packet @dataclass class QuicHeader: @classmethod def parse(cls, data): datagram_length = len(data) if datagram_length < 2: raise ValueError('Packet is too short (%d bytes)' % datagram_length) first_byte = data[0] + if not (first_byte & PACKET_FIXED_BIT): + raise ValueError('Packet fixed bit is zero') + + token = b'' if is_long_header(first_byte): if datagram_length < 6: raise ValueError('Long header is too short (%d bytes)' % datagram_length) version, cid_lengths = unpack_from('!LB', data, 1) pos = 6 destination_cid_length = decode_cid_length(cid_lengths // 16) destination_cid = data[pos:pos + destination_cid_length] pos += destination_cid_length source_cid_length = decode_cid_length(cid_lengths % 16) source_cid = data[pos:pos + source_cid_length] pos += source_cid_length packet_type = first_byte & PACKET_TYPE_MASK if packet_type == PACKET_TYPE_INITIAL: token_length, pos = unpack_variable_length(data, pos) token = data[pos:pos + token_length] pos += token_length length, pos = unpack_variable_length(data, pos) - else: - raise ValueError('Long header packet type 0x%x is not supported' % packet_type) return QuicHeader( version=version, destination_cid=destination_cid, source_cid=source_cid, + encrypted_offset=pos, token=token) else: # short header packet raise ValueError('Short header is not supported yet') ===========changed ref 2=========== # module: tests.test_packet class PacketTest(TestCase): def test_parse_initial_client(self): data = load('initial_client.bin') header = QuicHeader.parse(data) self.assertEqual(header.version, 0xff000011) self.assertEqual(header.destination_cid, binascii.unhexlify('90ed1e1c7b04b5d3')) self.assertEqual(header.source_cid, b'') self.assertEqual(header.token, b'') + self.assertEqual(header.encrypted_offset, 17)
tests.test_packet/PacketTest.test_parse_long_header_too_short
Modified
aiortc~aioquic
3ec8b532ad398e0ccda2d43cd009044d01a8f263
[packet] check fixed bit is set both for short and long headers
<1>:<add> QuicHeader.parse(b'\xc0\x00') <del> QuicHeader.parse(b'\x80\x00')
# module: tests.test_packet class PacketTest(TestCase): def test_parse_long_header_too_short(self): <0> with self.assertRaises(ValueError) as cm: <1> QuicHeader.parse(b'\x80\x00') <2> self.assertEqual(str(cm.exception), 'Long header is too short (2 bytes)') <3>
===========unchanged ref 0=========== at: aioquic.packet QuicHeader(version: int, destination_cid: bytes, source_cid: bytes, encrypted_offset: int, token: bytes=b'') at: aioquic.packet.QuicHeader parse(data) at: unittest.case.TestCase assertEqual(first: Any, second: Any, msg: Any=...) -> None assertRaises(expected_exception: Union[Type[_E], Tuple[Type[_E], ...]], msg: Any=...) -> _AssertRaisesContext[_E] assertRaises(expected_exception: Union[Type[BaseException], Tuple[Type[BaseException], ...]], callable: Callable[..., Any], *args: Any, **kwargs: Any) -> None at: unittest.case._AssertRaisesContext.__exit__ self.exception = exc_value.with_traceback(None) ===========changed ref 0=========== # module: aioquic.packet @dataclass class QuicHeader: version: int destination_cid: bytes source_cid: bytes + encrypted_offset: int token: bytes = b'' ===========changed ref 1=========== # module: aioquic.packet @dataclass class QuicHeader: @classmethod def parse(cls, data): datagram_length = len(data) if datagram_length < 2: raise ValueError('Packet is too short (%d bytes)' % datagram_length) first_byte = data[0] + if not (first_byte & PACKET_FIXED_BIT): + raise ValueError('Packet fixed bit is zero') + + token = b'' if is_long_header(first_byte): if datagram_length < 6: raise ValueError('Long header is too short (%d bytes)' % datagram_length) version, cid_lengths = unpack_from('!LB', data, 1) pos = 6 destination_cid_length = decode_cid_length(cid_lengths // 16) destination_cid = data[pos:pos + destination_cid_length] pos += destination_cid_length source_cid_length = decode_cid_length(cid_lengths % 16) source_cid = data[pos:pos + source_cid_length] pos += source_cid_length packet_type = first_byte & PACKET_TYPE_MASK if packet_type == PACKET_TYPE_INITIAL: token_length, pos = unpack_variable_length(data, pos) token = data[pos:pos + token_length] pos += token_length length, pos = unpack_variable_length(data, pos) - else: - raise ValueError('Long header packet type 0x%x is not supported' % packet_type) return QuicHeader( version=version, destination_cid=destination_cid, source_cid=source_cid, + encrypted_offset=pos, token=token) else: # short header packet raise ValueError('Short header is not supported yet') ===========changed ref 2=========== # module: tests.test_packet class PacketTest(TestCase): + def test_parse_long_header_no_fixed_bit(self): + with self.assertRaises(ValueError) as cm: + QuicHeader.parse(b'\x80\x00\x00\x00\x00\x00') + self.assertEqual(str(cm.exception), 'Packet fixed bit is zero') + ===========changed ref 3=========== # module: tests.test_packet class PacketTest(TestCase): - def test_parse_long_header_bad_packet_type(self): - with self.assertRaises(ValueError) as cm: - QuicHeader.parse(b'\x80\x00\x00\x00\x00\x00') - self.assertEqual(str(cm.exception), 'Long header packet type 0x80 is not supported') - ===========changed ref 4=========== # module: tests.test_packet class PacketTest(TestCase): def test_parse_initial_server(self): data = load('initial_server.bin') header = QuicHeader.parse(data) self.assertEqual(header.version, 0xff000011) self.assertEqual(header.destination_cid, b'') self.assertEqual(header.source_cid, binascii.unhexlify('0fcee9852fde8780')) self.assertEqual(header.token, b'') + self.assertEqual(header.encrypted_offset, 17) ===========changed ref 5=========== # module: tests.test_packet class PacketTest(TestCase): def test_parse_initial_client(self): data = load('initial_client.bin') header = QuicHeader.parse(data) self.assertEqual(header.version, 0xff000011) self.assertEqual(header.destination_cid, binascii.unhexlify('90ed1e1c7b04b5d3')) self.assertEqual(header.source_cid, b'') self.assertEqual(header.token, b'') + self.assertEqual(header.encrypted_offset, 17)
tests.test_packet/PacketTest.test_parse_short_header
Modified
aiortc~aioquic
3ec8b532ad398e0ccda2d43cd009044d01a8f263
[packet] check fixed bit is set both for short and long headers
<1>:<add> QuicHeader.parse(b'\x40\x00') <del> QuicHeader.parse(b'\x00\x00')
# module: tests.test_packet class PacketTest(TestCase): def test_parse_short_header(self): <0> with self.assertRaises(ValueError) as cm: <1> QuicHeader.parse(b'\x00\x00') <2> self.assertEqual(str(cm.exception), 'Short header is not supported yet') <3>
===========unchanged ref 0=========== at: aioquic.packet QuicHeader(version: int, destination_cid: bytes, source_cid: bytes, encrypted_offset: int, token: bytes=b'') at: aioquic.packet.QuicHeader parse(data) at: unittest.case.TestCase assertEqual(first: Any, second: Any, msg: Any=...) -> None assertRaises(expected_exception: Union[Type[_E], Tuple[Type[_E], ...]], msg: Any=...) -> _AssertRaisesContext[_E] assertRaises(expected_exception: Union[Type[BaseException], Tuple[Type[BaseException], ...]], callable: Callable[..., Any], *args: Any, **kwargs: Any) -> None at: unittest.case._AssertRaisesContext.__exit__ self.exception = exc_value.with_traceback(None) ===========changed ref 0=========== # module: aioquic.packet @dataclass class QuicHeader: version: int destination_cid: bytes source_cid: bytes + encrypted_offset: int token: bytes = b'' ===========changed ref 1=========== # module: aioquic.packet @dataclass class QuicHeader: @classmethod def parse(cls, data): datagram_length = len(data) if datagram_length < 2: raise ValueError('Packet is too short (%d bytes)' % datagram_length) first_byte = data[0] + if not (first_byte & PACKET_FIXED_BIT): + raise ValueError('Packet fixed bit is zero') + + token = b'' if is_long_header(first_byte): if datagram_length < 6: raise ValueError('Long header is too short (%d bytes)' % datagram_length) version, cid_lengths = unpack_from('!LB', data, 1) pos = 6 destination_cid_length = decode_cid_length(cid_lengths // 16) destination_cid = data[pos:pos + destination_cid_length] pos += destination_cid_length source_cid_length = decode_cid_length(cid_lengths % 16) source_cid = data[pos:pos + source_cid_length] pos += source_cid_length packet_type = first_byte & PACKET_TYPE_MASK if packet_type == PACKET_TYPE_INITIAL: token_length, pos = unpack_variable_length(data, pos) token = data[pos:pos + token_length] pos += token_length length, pos = unpack_variable_length(data, pos) - else: - raise ValueError('Long header packet type 0x%x is not supported' % packet_type) return QuicHeader( version=version, destination_cid=destination_cid, source_cid=source_cid, + encrypted_offset=pos, token=token) else: # short header packet raise ValueError('Short header is not supported yet') ===========changed ref 2=========== # module: tests.test_packet class PacketTest(TestCase): + def test_parse_long_header_no_fixed_bit(self): + with self.assertRaises(ValueError) as cm: + QuicHeader.parse(b'\x80\x00\x00\x00\x00\x00') + self.assertEqual(str(cm.exception), 'Packet fixed bit is zero') + ===========changed ref 3=========== # module: tests.test_packet class PacketTest(TestCase): def test_parse_long_header_too_short(self): with self.assertRaises(ValueError) as cm: + QuicHeader.parse(b'\xc0\x00') - QuicHeader.parse(b'\x80\x00') self.assertEqual(str(cm.exception), 'Long header is too short (2 bytes)') ===========changed ref 4=========== # module: tests.test_packet class PacketTest(TestCase): - def test_parse_long_header_bad_packet_type(self): - with self.assertRaises(ValueError) as cm: - QuicHeader.parse(b'\x80\x00\x00\x00\x00\x00') - self.assertEqual(str(cm.exception), 'Long header packet type 0x80 is not supported') - ===========changed ref 5=========== # module: tests.test_packet class PacketTest(TestCase): def test_parse_initial_server(self): data = load('initial_server.bin') header = QuicHeader.parse(data) self.assertEqual(header.version, 0xff000011) self.assertEqual(header.destination_cid, b'') self.assertEqual(header.source_cid, binascii.unhexlify('0fcee9852fde8780')) self.assertEqual(header.token, b'') + self.assertEqual(header.encrypted_offset, 17) ===========changed ref 6=========== # module: tests.test_packet class PacketTest(TestCase): def test_parse_initial_client(self): data = load('initial_client.bin') header = QuicHeader.parse(data) self.assertEqual(header.version, 0xff000011) self.assertEqual(header.destination_cid, binascii.unhexlify('90ed1e1c7b04b5d3')) self.assertEqual(header.source_cid, b'') self.assertEqual(header.token, b'') + self.assertEqual(header.encrypted_offset, 17)
tests.test_packet/PacketTest.test_parse_initial_client
Modified
aiortc~aioquic
8dd30bd437180a690be542a991317b89ccb70659
[tls] parse and serialize ClientHello and ServerHello
<0>:<add> buf = Buffer(data=load('initial_client.bin')) <del> data = load('initial_client.bin') <1>:<add> header = pull_quic_header(buf) <del> header = QuicHeader.parse(data)
# module: tests.test_packet class PacketTest(TestCase): def test_parse_initial_client(self): <0> data = load('initial_client.bin') <1> header = QuicHeader.parse(data) <2> self.assertEqual(header.version, 0xff000011) <3> self.assertEqual(header.destination_cid, binascii.unhexlify('90ed1e1c7b04b5d3')) <4> self.assertEqual(header.source_cid, b'') <5> self.assertEqual(header.token, b'') <6> self.assertEqual(header.encrypted_offset, 17) <7>
===========unchanged ref 0=========== at: aioquic.packet pull_quic_header(buf) at: aioquic.tls Buffer(capacity=None, data=None) at: unittest.case.TestCase failureException: Type[BaseException] longMessage: bool maxDiff: Optional[int] _testMethodName: str _testMethodDoc: str assertEqual(first: Any, second: Any, msg: Any=...) -> None assertRaises(expected_exception: Union[Type[_E], Tuple[Type[_E], ...]], msg: Any=...) -> _AssertRaisesContext[_E] assertRaises(expected_exception: Union[Type[BaseException], Tuple[Type[BaseException], ...]], callable: Callable[..., Any], *args: Any, **kwargs: Any) -> None at: unittest.case._AssertRaisesContext.__exit__ self.exception = exc_value.with_traceback(None) ===========changed ref 0=========== # module: aioquic.packet + def pull_quic_header(buf): + first_byte = pull_uint8(buf) + if not (first_byte & PACKET_FIXED_BIT): + raise ValueError('Packet fixed bit is zero') + + token = b'' + if is_long_header(first_byte): + version = pull_uint32(buf) + cid_lengths = pull_uint8(buf) + + destination_cid_length = decode_cid_length(cid_lengths // 16) + destination_cid = pull_bytes(buf, destination_cid_length) + + source_cid_length = decode_cid_length(cid_lengths % 16) + source_cid = pull_bytes(buf, source_cid_length) + + packet_type = first_byte & PACKET_TYPE_MASK + if packet_type == PACKET_TYPE_INITIAL: + token_length = pull_uint_var(buf) + token = pull_bytes(buf, token_length) + pull_uint_var(buf) + + return QuicHeader( + version=version, + destination_cid=destination_cid, + source_cid=source_cid, + encrypted_offset=buf._pos, + token=token) + else: + # short header packet + raise ValueError('Short header is not supported yet') + ===========changed ref 1=========== # module: tests.test_packet class PacketTest(TestCase): + def test_parse_empty(self): + buf = Buffer(data=b'') + with self.assertRaises(BufferReadError): + pull_quic_header(buf) + ===========changed ref 2=========== # module: tests.test_packet - class UtilTest(TestCase): - def test_unpack_variable_length(self): - # 1 byte - self.assertEqual(unpack_variable_length(b'\x00'), (0, 1)) - self.assertEqual(unpack_variable_length(b'\x01'), (1, 1)) - self.assertEqual(unpack_variable_length(b'\x25'), (37, 1)) - self.assertEqual(unpack_variable_length(b'\x3f'), (63, 1)) - - # 2 bytes - self.assertEqual(unpack_variable_length(b'\x7b\xbd'), (15293, 2)) - self.assertEqual(unpack_variable_length(b'\x7f\xff'), (16383, 2)) - - # 4 bytes - self.assertEqual(unpack_variable_length(b'\x9d\x7f\x3e\x7d'), (494878333, 4)) - self.assertEqual(unpack_variable_length(b'\xbf\xff\xff\xff'), (1073741823, 4)) - - # 8 bytes - self.assertEqual(unpack_variable_length(b'\xc2\x19\x7c\x5e\xff\x14\xe8\x8c'), - (151288809941952652, 8)) - self.assertEqual(unpack_variable_length(b'\xff\xff\xff\xff\xff\xff\xff\xff'), - (4611686018427387903, 8)) - ===========changed ref 3=========== + # module: aioquic.tls + + ===========changed ref 4=========== # module: aioquic.packet - - ===========changed ref 5=========== + # module: aioquic.tls + class BufferReadError(ValueError): + pass + ===========changed ref 6=========== + # module: aioquic.tls + class Buffer: + @property + def data(self): + return bytes(self._data[:self._pos]) + ===========changed ref 7=========== + # module: aioquic.tls + @contextmanager + def push_extension(buf, extension_type): + push_uint16(buf, extension_type) + with push_block(buf, 2): + yield + ===========changed ref 8=========== + # module: aioquic.tls + def push_tlv32(buf, param, value): + push_uint16(buf, param) + push_uint16(buf, 4) + push_uint32(buf, value) + ===========changed ref 9=========== + # module: aioquic.tls + def push_tlv16(buf, param, value): + push_uint16(buf, param) + push_uint16(buf, 2) + push_uint16(buf, value) + ===========changed ref 10=========== + # module: aioquic.tls + def push_tlv8(buf, param, value): + push_uint16(buf, param) + push_uint16(buf, 1) + push_uint8(buf, value) + ===========changed ref 11=========== + # module: aioquic.tls + def push_uint8(buf, v): + """ + Push an 8-bit unsigned integer. + """ + buf._data[buf._pos] = v + buf._pos += 1 + ===========changed ref 12=========== + # module: aioquic.tls + def push_key_share(buf, value): + push_uint16(buf, value[0]) + with push_block(buf, 2): + push_bytes(buf, value[1]) + ===========changed ref 13=========== + # module: aioquic.tls + def push_list(buf, capacity, func, values): + """ + Push a list of items. + """ + with push_block(buf, capacity): + for value in values: + func(buf, value) + ===========changed ref 14=========== + # module: aioquic.tls + def push_uint64(buf, v): + """ + Push a 64-bit unsigned integer. + """ + pack_into('!Q', buf._data, buf._pos, v) + buf._pos += 8 + ===========changed ref 15=========== + # module: aioquic.tls + def push_uint32(buf, v): + """ + Push a 32-bit unsigned integer. + """ + pack_into('!L', buf._data, buf._pos, v) + buf._pos += 4 + ===========changed ref 16=========== + # module: aioquic.tls + def push_uint16(buf, v): + """ + Push a 16-bit unsigned integer. + """ + pack_into('!H', buf._data, buf._pos, v) + buf._pos += 2 + ===========changed ref 17=========== + # module: aioquic.tls + def push_bytes(buf, v): + """ + Push bytes. + """ + length = len(v) + buf._data[buf._pos:buf._pos + length] = v + buf._pos += length + ===========changed ref 18=========== + # module: aioquic.tls + # KeyShareEntry + + + def pull_key_share(buf): + group = pull_uint16(buf) + data_length = pull_uint16(buf) + data = pull_bytes(buf, data_length) + return (group, data) +
tests.test_packet/PacketTest.test_parse_initial_server
Modified
aiortc~aioquic
8dd30bd437180a690be542a991317b89ccb70659
[tls] parse and serialize ClientHello and ServerHello
<0>:<add> buf = Buffer(data=load('initial_server.bin')) <del> data = load('initial_server.bin') <1>:<add> header = pull_quic_header(buf) <del> header = QuicHeader.parse(data)
# module: tests.test_packet class PacketTest(TestCase): def test_parse_initial_server(self): <0> data = load('initial_server.bin') <1> header = QuicHeader.parse(data) <2> self.assertEqual(header.version, 0xff000011) <3> self.assertEqual(header.destination_cid, b'') <4> self.assertEqual(header.source_cid, binascii.unhexlify('0fcee9852fde8780')) <5> self.assertEqual(header.token, b'') <6> self.assertEqual(header.encrypted_offset, 17) <7>
===========unchanged ref 0=========== at: aioquic.packet pull_quic_header(buf) at: aioquic.tls BufferReadError(*args: object) Buffer(capacity=None, data=None) at: tests.test_packet.PacketTest.test_parse_long_header_too_short buf = Buffer(data=b'\xc0\x00') at: unittest.case.TestCase assertEqual(first: Any, second: Any, msg: Any=...) -> None assertRaises(expected_exception: Union[Type[_E], Tuple[Type[_E], ...]], msg: Any=...) -> _AssertRaisesContext[_E] assertRaises(expected_exception: Union[Type[BaseException], Tuple[Type[BaseException], ...]], callable: Callable[..., Any], *args: Any, **kwargs: Any) -> None at: unittest.case._AssertRaisesContext.__exit__ self.exception = exc_value.with_traceback(None) ===========changed ref 0=========== + # module: aioquic.tls + class BufferReadError(ValueError): + pass + ===========changed ref 1=========== # module: aioquic.packet + def pull_quic_header(buf): + first_byte = pull_uint8(buf) + if not (first_byte & PACKET_FIXED_BIT): + raise ValueError('Packet fixed bit is zero') + + token = b'' + if is_long_header(first_byte): + version = pull_uint32(buf) + cid_lengths = pull_uint8(buf) + + destination_cid_length = decode_cid_length(cid_lengths // 16) + destination_cid = pull_bytes(buf, destination_cid_length) + + source_cid_length = decode_cid_length(cid_lengths % 16) + source_cid = pull_bytes(buf, source_cid_length) + + packet_type = first_byte & PACKET_TYPE_MASK + if packet_type == PACKET_TYPE_INITIAL: + token_length = pull_uint_var(buf) + token = pull_bytes(buf, token_length) + pull_uint_var(buf) + + return QuicHeader( + version=version, + destination_cid=destination_cid, + source_cid=source_cid, + encrypted_offset=buf._pos, + token=token) + else: + # short header packet + raise ValueError('Short header is not supported yet') + ===========changed ref 2=========== # module: tests.test_packet class PacketTest(TestCase): + def test_parse_empty(self): + buf = Buffer(data=b'') + with self.assertRaises(BufferReadError): + pull_quic_header(buf) + ===========changed ref 3=========== # module: tests.test_packet class PacketTest(TestCase): def test_parse_initial_client(self): + buf = Buffer(data=load('initial_client.bin')) - data = load('initial_client.bin') + header = pull_quic_header(buf) - header = QuicHeader.parse(data) self.assertEqual(header.version, 0xff000011) self.assertEqual(header.destination_cid, binascii.unhexlify('90ed1e1c7b04b5d3')) self.assertEqual(header.source_cid, b'') self.assertEqual(header.token, b'') self.assertEqual(header.encrypted_offset, 17) ===========changed ref 4=========== # module: tests.test_packet - class UtilTest(TestCase): - def test_unpack_variable_length(self): - # 1 byte - self.assertEqual(unpack_variable_length(b'\x00'), (0, 1)) - self.assertEqual(unpack_variable_length(b'\x01'), (1, 1)) - self.assertEqual(unpack_variable_length(b'\x25'), (37, 1)) - self.assertEqual(unpack_variable_length(b'\x3f'), (63, 1)) - - # 2 bytes - self.assertEqual(unpack_variable_length(b'\x7b\xbd'), (15293, 2)) - self.assertEqual(unpack_variable_length(b'\x7f\xff'), (16383, 2)) - - # 4 bytes - self.assertEqual(unpack_variable_length(b'\x9d\x7f\x3e\x7d'), (494878333, 4)) - self.assertEqual(unpack_variable_length(b'\xbf\xff\xff\xff'), (1073741823, 4)) - - # 8 bytes - self.assertEqual(unpack_variable_length(b'\xc2\x19\x7c\x5e\xff\x14\xe8\x8c'), - (151288809941952652, 8)) - self.assertEqual(unpack_variable_length(b'\xff\xff\xff\xff\xff\xff\xff\xff'), - (4611686018427387903, 8)) - ===========changed ref 5=========== + # module: aioquic.tls + + ===========changed ref 6=========== # module: aioquic.packet - - ===========changed ref 7=========== + # module: aioquic.tls + class Buffer: + @property + def data(self): + return bytes(self._data[:self._pos]) + ===========changed ref 8=========== + # module: aioquic.tls + @contextmanager + def push_extension(buf, extension_type): + push_uint16(buf, extension_type) + with push_block(buf, 2): + yield + ===========changed ref 9=========== + # module: aioquic.tls + def push_tlv32(buf, param, value): + push_uint16(buf, param) + push_uint16(buf, 4) + push_uint32(buf, value) + ===========changed ref 10=========== + # module: aioquic.tls + def push_tlv16(buf, param, value): + push_uint16(buf, param) + push_uint16(buf, 2) + push_uint16(buf, value) + ===========changed ref 11=========== + # module: aioquic.tls + def push_tlv8(buf, param, value): + push_uint16(buf, param) + push_uint16(buf, 1) + push_uint8(buf, value) + ===========changed ref 12=========== + # module: aioquic.tls + def push_uint8(buf, v): + """ + Push an 8-bit unsigned integer. + """ + buf._data[buf._pos] = v + buf._pos += 1 + ===========changed ref 13=========== + # module: aioquic.tls + def push_key_share(buf, value): + push_uint16(buf, value[0]) + with push_block(buf, 2): + push_bytes(buf, value[1]) + ===========changed ref 14=========== + # module: aioquic.tls + def push_list(buf, capacity, func, values): + """ + Push a list of items. + """ + with push_block(buf, capacity): + for value in values: + func(buf, value) + ===========changed ref 15=========== + # module: aioquic.tls + def push_uint64(buf, v): + """ + Push a 64-bit unsigned integer. + """ + pack_into('!Q', buf._data, buf._pos, v) + buf._pos += 8 + ===========changed ref 16=========== + # module: aioquic.tls + def push_uint32(buf, v): + """ + Push a 32-bit unsigned integer. + """ + pack_into('!L', buf._data, buf._pos, v) + buf._pos += 4 + ===========changed ref 17=========== + # module: aioquic.tls + def push_uint16(buf, v): + """ + Push a 16-bit unsigned integer. + """ + pack_into('!H', buf._data, buf._pos, v) + buf._pos += 2 +
tests.test_packet/PacketTest.test_parse_long_header_no_fixed_bit
Modified
aiortc~aioquic
8dd30bd437180a690be542a991317b89ccb70659
[tls] parse and serialize ClientHello and ServerHello
<0>:<add> buf = Buffer(data=b'\x80\x00\x00\x00\x00\x00') <1>:<add> pull_quic_header(buf) <del> QuicHeader.parse(b'\x80\x00\x00\x00\x00\x00')
# module: tests.test_packet class PacketTest(TestCase): def test_parse_long_header_no_fixed_bit(self): <0> with self.assertRaises(ValueError) as cm: <1> QuicHeader.parse(b'\x80\x00\x00\x00\x00\x00') <2> self.assertEqual(str(cm.exception), 'Packet fixed bit is zero') <3>
===========changed ref 0=========== # module: tests.test_packet class PacketTest(TestCase): + def test_parse_empty(self): + buf = Buffer(data=b'') + with self.assertRaises(BufferReadError): + pull_quic_header(buf) + ===========changed ref 1=========== # module: tests.test_packet class PacketTest(TestCase): def test_parse_initial_server(self): + buf = Buffer(data=load('initial_server.bin')) - data = load('initial_server.bin') + header = pull_quic_header(buf) - header = QuicHeader.parse(data) self.assertEqual(header.version, 0xff000011) self.assertEqual(header.destination_cid, b'') self.assertEqual(header.source_cid, binascii.unhexlify('0fcee9852fde8780')) self.assertEqual(header.token, b'') self.assertEqual(header.encrypted_offset, 17) ===========changed ref 2=========== # module: tests.test_packet class PacketTest(TestCase): def test_parse_initial_client(self): + buf = Buffer(data=load('initial_client.bin')) - data = load('initial_client.bin') + header = pull_quic_header(buf) - header = QuicHeader.parse(data) self.assertEqual(header.version, 0xff000011) self.assertEqual(header.destination_cid, binascii.unhexlify('90ed1e1c7b04b5d3')) self.assertEqual(header.source_cid, b'') self.assertEqual(header.token, b'') self.assertEqual(header.encrypted_offset, 17) ===========changed ref 3=========== # module: tests.test_packet - class UtilTest(TestCase): - def test_unpack_variable_length(self): - # 1 byte - self.assertEqual(unpack_variable_length(b'\x00'), (0, 1)) - self.assertEqual(unpack_variable_length(b'\x01'), (1, 1)) - self.assertEqual(unpack_variable_length(b'\x25'), (37, 1)) - self.assertEqual(unpack_variable_length(b'\x3f'), (63, 1)) - - # 2 bytes - self.assertEqual(unpack_variable_length(b'\x7b\xbd'), (15293, 2)) - self.assertEqual(unpack_variable_length(b'\x7f\xff'), (16383, 2)) - - # 4 bytes - self.assertEqual(unpack_variable_length(b'\x9d\x7f\x3e\x7d'), (494878333, 4)) - self.assertEqual(unpack_variable_length(b'\xbf\xff\xff\xff'), (1073741823, 4)) - - # 8 bytes - self.assertEqual(unpack_variable_length(b'\xc2\x19\x7c\x5e\xff\x14\xe8\x8c'), - (151288809941952652, 8)) - self.assertEqual(unpack_variable_length(b'\xff\xff\xff\xff\xff\xff\xff\xff'), - (4611686018427387903, 8)) - ===========changed ref 4=========== + # module: aioquic.tls + + ===========changed ref 5=========== # module: aioquic.packet - - ===========changed ref 6=========== + # module: aioquic.tls + class BufferReadError(ValueError): + pass + ===========changed ref 7=========== + # module: aioquic.tls + class Buffer: + @property + def data(self): + return bytes(self._data[:self._pos]) + ===========changed ref 8=========== + # module: aioquic.tls + @contextmanager + def push_extension(buf, extension_type): + push_uint16(buf, extension_type) + with push_block(buf, 2): + yield + ===========changed ref 9=========== + # module: aioquic.tls + def push_tlv32(buf, param, value): + push_uint16(buf, param) + push_uint16(buf, 4) + push_uint32(buf, value) + ===========changed ref 10=========== + # module: aioquic.tls + def push_tlv16(buf, param, value): + push_uint16(buf, param) + push_uint16(buf, 2) + push_uint16(buf, value) + ===========changed ref 11=========== + # module: aioquic.tls + def push_tlv8(buf, param, value): + push_uint16(buf, param) + push_uint16(buf, 1) + push_uint8(buf, value) + ===========changed ref 12=========== + # module: aioquic.tls + def push_uint8(buf, v): + """ + Push an 8-bit unsigned integer. + """ + buf._data[buf._pos] = v + buf._pos += 1 + ===========changed ref 13=========== + # module: aioquic.tls + def push_key_share(buf, value): + push_uint16(buf, value[0]) + with push_block(buf, 2): + push_bytes(buf, value[1]) + ===========changed ref 14=========== + # module: aioquic.tls + def push_list(buf, capacity, func, values): + """ + Push a list of items. + """ + with push_block(buf, capacity): + for value in values: + func(buf, value) + ===========changed ref 15=========== + # module: aioquic.tls + def push_uint64(buf, v): + """ + Push a 64-bit unsigned integer. + """ + pack_into('!Q', buf._data, buf._pos, v) + buf._pos += 8 + ===========changed ref 16=========== + # module: aioquic.tls + def push_uint32(buf, v): + """ + Push a 32-bit unsigned integer. + """ + pack_into('!L', buf._data, buf._pos, v) + buf._pos += 4 + ===========changed ref 17=========== + # module: aioquic.tls + def push_uint16(buf, v): + """ + Push a 16-bit unsigned integer. + """ + pack_into('!H', buf._data, buf._pos, v) + buf._pos += 2 + ===========changed ref 18=========== + # module: aioquic.tls + def push_bytes(buf, v): + """ + Push bytes. + """ + length = len(v) + buf._data[buf._pos:buf._pos + length] = v + buf._pos += length + ===========changed ref 19=========== + # module: aioquic.tls + # KeyShareEntry + + + def pull_key_share(buf): + group = pull_uint16(buf) + data_length = pull_uint16(buf) + data = pull_bytes(buf, data_length) + return (group, data) + ===========changed ref 20=========== + # module: aioquic.tls + # BLOCKS + + + @contextmanager + def pull_block(buf, capacity): + length = 0 + for b in pull_bytes(buf, capacity): + length = (length << 8) | b + end = buf._pos + length + yield end + assert buf._pos == end + ===========changed ref 21=========== # module: aioquic.packet - def unpack_variable_length(data, pos=0): - kind = data[pos] // 64 - length, fmt, mask = VARIABLE_LENGTH_FORMATS[kind] - return unpack_from(fmt, data, pos)[0] & mask, pos + length - ===========changed ref 22=========== + # module: aioquic.tls + class Buffer: + def __init__(self, capacity=None, data=None): + if data is not None: + self._data = data + self._length = len(data) + else: + self._data = bytearray(capacity) + self._length = capacity + self._pos = 0 +
tests.test_packet/PacketTest.test_parse_long_header_too_short
Modified
aiortc~aioquic
8dd30bd437180a690be542a991317b89ccb70659
[tls] parse and serialize ClientHello and ServerHello
<0>:<add> buf = Buffer(data=b'\xc0\x00') <add> with self.assertRaises(BufferReadError): <del> with self.assertRaises(ValueError) as cm: <1>:<del> QuicHeader.parse(b'\xc0\x00') <2>:<del> self.assertEqual(str(cm.exception), 'Long header is too short (2 bytes)') <3>:<add> pull_quic_header(buf)
# module: tests.test_packet class PacketTest(TestCase): def test_parse_long_header_too_short(self): <0> with self.assertRaises(ValueError) as cm: <1> QuicHeader.parse(b'\xc0\x00') <2> self.assertEqual(str(cm.exception), 'Long header is too short (2 bytes)') <3>
===========changed ref 0=========== # module: tests.test_packet class PacketTest(TestCase): + def test_parse_empty(self): + buf = Buffer(data=b'') + with self.assertRaises(BufferReadError): + pull_quic_header(buf) + ===========changed ref 1=========== # module: tests.test_packet class PacketTest(TestCase): def test_parse_long_header_no_fixed_bit(self): + buf = Buffer(data=b'\x80\x00\x00\x00\x00\x00') with self.assertRaises(ValueError) as cm: + pull_quic_header(buf) - QuicHeader.parse(b'\x80\x00\x00\x00\x00\x00') self.assertEqual(str(cm.exception), 'Packet fixed bit is zero') ===========changed ref 2=========== # module: tests.test_packet class PacketTest(TestCase): def test_parse_initial_server(self): + buf = Buffer(data=load('initial_server.bin')) - data = load('initial_server.bin') + header = pull_quic_header(buf) - header = QuicHeader.parse(data) self.assertEqual(header.version, 0xff000011) self.assertEqual(header.destination_cid, b'') self.assertEqual(header.source_cid, binascii.unhexlify('0fcee9852fde8780')) self.assertEqual(header.token, b'') self.assertEqual(header.encrypted_offset, 17) ===========changed ref 3=========== # module: tests.test_packet class PacketTest(TestCase): def test_parse_initial_client(self): + buf = Buffer(data=load('initial_client.bin')) - data = load('initial_client.bin') + header = pull_quic_header(buf) - header = QuicHeader.parse(data) self.assertEqual(header.version, 0xff000011) self.assertEqual(header.destination_cid, binascii.unhexlify('90ed1e1c7b04b5d3')) self.assertEqual(header.source_cid, b'') self.assertEqual(header.token, b'') self.assertEqual(header.encrypted_offset, 17) ===========changed ref 4=========== # module: tests.test_packet - class UtilTest(TestCase): - def test_unpack_variable_length(self): - # 1 byte - self.assertEqual(unpack_variable_length(b'\x00'), (0, 1)) - self.assertEqual(unpack_variable_length(b'\x01'), (1, 1)) - self.assertEqual(unpack_variable_length(b'\x25'), (37, 1)) - self.assertEqual(unpack_variable_length(b'\x3f'), (63, 1)) - - # 2 bytes - self.assertEqual(unpack_variable_length(b'\x7b\xbd'), (15293, 2)) - self.assertEqual(unpack_variable_length(b'\x7f\xff'), (16383, 2)) - - # 4 bytes - self.assertEqual(unpack_variable_length(b'\x9d\x7f\x3e\x7d'), (494878333, 4)) - self.assertEqual(unpack_variable_length(b'\xbf\xff\xff\xff'), (1073741823, 4)) - - # 8 bytes - self.assertEqual(unpack_variable_length(b'\xc2\x19\x7c\x5e\xff\x14\xe8\x8c'), - (151288809941952652, 8)) - self.assertEqual(unpack_variable_length(b'\xff\xff\xff\xff\xff\xff\xff\xff'), - (4611686018427387903, 8)) - ===========changed ref 5=========== + # module: aioquic.tls + + ===========changed ref 6=========== # module: aioquic.packet - - ===========changed ref 7=========== + # module: aioquic.tls + class BufferReadError(ValueError): + pass + ===========changed ref 8=========== + # module: aioquic.tls + class Buffer: + @property + def data(self): + return bytes(self._data[:self._pos]) + ===========changed ref 9=========== + # module: aioquic.tls + @contextmanager + def push_extension(buf, extension_type): + push_uint16(buf, extension_type) + with push_block(buf, 2): + yield + ===========changed ref 10=========== + # module: aioquic.tls + def push_tlv32(buf, param, value): + push_uint16(buf, param) + push_uint16(buf, 4) + push_uint32(buf, value) + ===========changed ref 11=========== + # module: aioquic.tls + def push_tlv16(buf, param, value): + push_uint16(buf, param) + push_uint16(buf, 2) + push_uint16(buf, value) + ===========changed ref 12=========== + # module: aioquic.tls + def push_tlv8(buf, param, value): + push_uint16(buf, param) + push_uint16(buf, 1) + push_uint8(buf, value) + ===========changed ref 13=========== + # module: aioquic.tls + def push_uint8(buf, v): + """ + Push an 8-bit unsigned integer. + """ + buf._data[buf._pos] = v + buf._pos += 1 + ===========changed ref 14=========== + # module: aioquic.tls + def push_key_share(buf, value): + push_uint16(buf, value[0]) + with push_block(buf, 2): + push_bytes(buf, value[1]) + ===========changed ref 15=========== + # module: aioquic.tls + def push_list(buf, capacity, func, values): + """ + Push a list of items. + """ + with push_block(buf, capacity): + for value in values: + func(buf, value) + ===========changed ref 16=========== + # module: aioquic.tls + def push_uint64(buf, v): + """ + Push a 64-bit unsigned integer. + """ + pack_into('!Q', buf._data, buf._pos, v) + buf._pos += 8 + ===========changed ref 17=========== + # module: aioquic.tls + def push_uint32(buf, v): + """ + Push a 32-bit unsigned integer. + """ + pack_into('!L', buf._data, buf._pos, v) + buf._pos += 4 + ===========changed ref 18=========== + # module: aioquic.tls + def push_uint16(buf, v): + """ + Push a 16-bit unsigned integer. + """ + pack_into('!H', buf._data, buf._pos, v) + buf._pos += 2 + ===========changed ref 19=========== + # module: aioquic.tls + def push_bytes(buf, v): + """ + Push bytes. + """ + length = len(v) + buf._data[buf._pos:buf._pos + length] = v + buf._pos += length + ===========changed ref 20=========== + # module: aioquic.tls + # KeyShareEntry + + + def pull_key_share(buf): + group = pull_uint16(buf) + data_length = pull_uint16(buf) + data = pull_bytes(buf, data_length) + return (group, data) + ===========changed ref 21=========== + # module: aioquic.tls + # BLOCKS + + + @contextmanager + def pull_block(buf, capacity): + length = 0 + for b in pull_bytes(buf, capacity): + length = (length << 8) | b + end = buf._pos + length + yield end + assert buf._pos == end +