path
stringlengths
9
117
type
stringclasses
2 values
project
stringclasses
10 values
commit_hash
stringlengths
40
40
commit_message
stringlengths
1
137
ground_truth
stringlengths
0
2.74k
main_code
stringlengths
102
3.37k
context
stringlengths
0
14.7k
dalle_mini.model.modeling/FlaxBartEncoderLayer.setup
Modified
borisdayma~dalle-mini
972bc8d2443eab9ccdae4c1a33fbd0ccb1083d7f
refactor(model): inherit from HF Flax & simplify
<6>:<add> bias=False, <8>:<add> self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) <del> self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype) <24>:<add> self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) <del> self.final_layer_norm = nn.LayerNorm(dtype=self.dtype)
# module: dalle_mini.model.modeling + class FlaxBartEncoderLayer(FlaxBartEncoderLayer): - class FlaxBartEncoderLayer(nn.Module): def setup(self) -> None: <0> self.embed_dim = self.config.d_model <1> self.self_attn = FlaxBartAttention( <2> config=self.config, <3> embed_dim=self.embed_dim, <4> num_heads=self.config.encoder_attention_heads, <5> dropout=self.config.attention_dropout, <6> dtype=self.dtype, <7> ) <8> self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype) <9> self.dropout_layer = nn.Dropout(rate=self.config.dropout) <10> self.activation_fn = ACT2FN[self.config.activation_function] <11> self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) <12> self.fc1 = nn.Dense( <13> self.config.encoder_ffn_dim, <14> dtype=self.dtype, <15> use_bias=False, <16> kernel_init=jax.nn.initializers.normal(self.config.init_std), <17> ) <18> self.fc2 = nn.Dense( <19> self.embed_dim, <20> dtype=self.dtype, <21> use_bias=False, <22> kernel_init=jax.nn.initializers.normal(self.config.init_std), <23> ) <24> self.final_layer_norm = nn.LayerNorm(dtype=self.dtype) <25>
===========unchanged ref 0=========== at: math sqrt(x: SupportsFloat, /) -> float at: transformers.configuration_utils.PretrainedConfig.__init__ self.pad_token_id = kwargs.pop("pad_token_id", None) at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.d_model = d_model self.dropout = dropout self.init_std = init_std self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True at: transformers.models.bart.modeling_flax_bart.FlaxBartDecoder config: BartConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) ===========changed ref 0=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayer(FlaxBartEncoderLayer): - class FlaxBartEncoderLayer(nn.Module): + """ + Edits: + - no bias + - use custom FlaxBartAttention + """ - config: DalleBartConfig - dtype: jnp.dtype = jnp.float32 ===========changed ref 1=========== # module: dalle_mini.model.modeling + class FlaxBartDecoder(FlaxBartDecoder): + """ + Edits: + - offset set to 0 (no padding token) + - use image_length + 1 (for BOS) instead of max_position_embeddings + - use custom FlaxBartDecoderLayerCollection + - embed_tokens cannot be None (issue at compile time) + """ + ===========changed ref 2=========== # module: dalle_mini.model.modeling + class FlaxBartEncoder(FlaxBartEncoder): + """ + Edits: + - offset set to 0 (no padding token) + - use max_text_length instead of max_position_embeddings + - use custom FlaxBartEncoderLayerCollection + - embed_tokens cannot be None (issue at compile time) + """ + ===========changed ref 3=========== # module: dalle_mini.model.modeling + class FlaxBartAttention(FlaxBartAttention): - class FlaxBartAttention(nn.Module): - def _merge_heads(self, hidden_states): - return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) - ===========changed ref 4=========== # module: dalle_mini.model.modeling + class FlaxBartAttention(FlaxBartAttention): - class FlaxBartAttention(nn.Module): - def _split_heads(self, hidden_states): - return hidden_states.reshape( - hidden_states.shape[:2] + (self.num_heads, self.head_dim) - ) - ===========changed ref 5=========== # module: dalle_mini.model.modeling + class FlaxBartEncoder(FlaxBartEncoder): + def setup(self): + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + + embed_dim = self.config.d_model + self.padding_idx = self.config.pad_token_id + self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 + + # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 0 + self.embed_positions = nn.Embed( + self.config.max_text_length + self.offset, + embed_dim, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) + self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + ===========changed ref 6=========== # module: dalle_mini.model.modeling + class FlaxBartAttention(FlaxBartAttention): - class FlaxBartAttention(nn.Module): - config: DalleBartConfig - embed_dim: int - num_heads: int - dropout: float = 0.0 - causal: bool = False - bias: bool = True - dtype: jnp.dtype = jnp.float32 # the dtype of the computation + """ + Edits: + - causal mask considers embed_dim instead of max_position_embeddings + """ ===========changed ref 7=========== # module: dalle_mini.model.modeling - def shift_tokens_right( - input_ids: np.array, pad_token_id: int, decoder_start_token_id: int - ) -> np.ndarray: - """ - Shift input ids one token to the right. - """ - shifted_input_ids = np.zeros_like(input_ids) - shifted_input_ids[:, 1:] = input_ids[:, :-1] - shifted_input_ids[:, 0] = decoder_start_token_id - - shifted_input_ids = np.where( - shifted_input_ids == -100, pad_token_id, shifted_input_ids - ) - return shifted_input_ids - ===========changed ref 8=========== # module: dalle_mini.model.modeling + class FlaxBartAttention(FlaxBartAttention): - class FlaxBartAttention(nn.Module): def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads - assert ( + if self.head_dim * self.num_heads != self.embed_dim: - self.head_dim * self.num_heads == self.embed_dim + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" - ), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})." + f" and `num_heads`: {self.num_heads})." + ) dense = partial( nn.Dense, self.embed_dim, + use_bias=self.bias, - use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.embed_dim), dtype="bool"), dtype="bool" )
dalle_mini.model.modeling/FlaxBartEncoderLayerCollection.setup
Modified
borisdayma~dalle-mini
972bc8d2443eab9ccdae4c1a33fbd0ccb1083d7f
refactor(model): inherit from HF Flax & simplify
<9>:<add> self.layerdrop = self.config.encoder_layerdrop
# module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): - class FlaxBartEncoderLayerCollection(nn.Module): def setup(self): <0> layer_module = ( <1> nn.remat(FlaxBartEncoderLayer) <2> if self.config.gradient_checkpointing <3> else FlaxBartEncoderLayer <4> ) <5> self.layers = [ <6> layer_module(self.config, name=str(i), dtype=self.dtype) <7> for i in range(self.config.encoder_layers) <8> ] <9>
===========unchanged ref 0=========== at: transformers.modeling_flax_utils.FlaxPreTrainedModel.__init__ self.params = random_params ===========changed ref 0=========== # module: dalle_mini.model.modeling + class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): + """ + Edits: + - added num_params property + """ + ===========changed ref 1=========== # module: dalle_mini.model.modeling + class FlaxBartModule(FlaxBartModule): + """ + Edits + - use custom FlaxBartEncoder & FlaxBartDecoder + - use separate embeddings for Encoder & Decoder + """ + ===========changed ref 2=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): - class FlaxBartEncoderLayerCollection(nn.Module): + """ + Edits: + - use custom FlaxBartEncoderLayer + - allow Gradient Checkpointing (nn.remat) + """ - config: DalleBartConfig - dtype: jnp.dtype = jnp.float32 # the dtype of the computation ===========changed ref 3=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayer(FlaxBartEncoderLayer): - class FlaxBartEncoderLayer(nn.Module): + """ + Edits: + - no bias + - use custom FlaxBartAttention + """ - config: DalleBartConfig - dtype: jnp.dtype = jnp.float32 ===========changed ref 4=========== # module: dalle_mini.model.modeling + class FlaxBartDecoder(FlaxBartDecoder): + """ + Edits: + - offset set to 0 (no padding token) + - use image_length + 1 (for BOS) instead of max_position_embeddings + - use custom FlaxBartDecoderLayerCollection + - embed_tokens cannot be None (issue at compile time) + """ + ===========changed ref 5=========== # module: dalle_mini.model.modeling + class FlaxBartEncoder(FlaxBartEncoder): + """ + Edits: + - offset set to 0 (no padding token) + - use max_text_length instead of max_position_embeddings + - use custom FlaxBartEncoderLayerCollection + - embed_tokens cannot be None (issue at compile time) + """ + ===========changed ref 6=========== # module: dalle_mini.model.modeling + class FlaxBartModule(FlaxBartModule): + def setup(self): + encoder_embed_tokens = nn.Embed( + self.config.encoder_vocab_size, + self.config.d_model, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) + decoder_embed_tokens = nn.Embed( + self.config.image_vocab_size + 1, # image vocab size + 1 for BOS + self.config.d_model, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) + + self.encoder = FlaxBartEncoder( + self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens + ) + self.decoder = FlaxBartDecoder( + self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens + ) + ===========changed ref 7=========== # module: dalle_mini.model.modeling + class FlaxBartAttention(FlaxBartAttention): - class FlaxBartAttention(nn.Module): - def _merge_heads(self, hidden_states): - return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) - ===========changed ref 8=========== # module: dalle_mini.model.modeling + class FlaxBartAttention(FlaxBartAttention): - class FlaxBartAttention(nn.Module): - def _split_heads(self, hidden_states): - return hidden_states.reshape( - hidden_states.shape[:2] + (self.num_heads, self.head_dim) - ) - ===========changed ref 9=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayer(FlaxBartEncoderLayer): - class FlaxBartEncoderLayer(nn.Module): - def __call__( - self, - hidden_states: jnp.ndarray, - attention_mask: jnp.ndarray, - deterministic: bool = True, - ) -> Tuple[jnp.ndarray]: - residual = hidden_states - hidden_states = self.self_attn( - hidden_states=hidden_states, attention_mask=attention_mask - ) - - hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) - hidden_states = residual + hidden_states - hidden_states = self.self_attn_layer_norm(hidden_states) - - residual = hidden_states - hidden_states = self.activation_fn(self.fc1(hidden_states)) - hidden_states = self.activation_dropout_layer( - hidden_states, deterministic=deterministic - ) - hidden_states = self.fc2(hidden_states) - hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) - hidden_states = residual + hidden_states - hidden_states = self.final_layer_norm(hidden_states) - - return hidden_states - ===========changed ref 10=========== # module: dalle_mini.model.modeling + class FlaxBartDecoder(FlaxBartDecoder): + def setup(self): + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + + embed_dim = self.config.d_model + self.padding_idx = self.config.pad_token_id + self.embed_scale = ( + math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 + ) + + # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 0 + self.embed_positions = nn.Embed( + self.config.image_length + 1 + self.offset, # image length + 1 for BOS + embed_dim, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) + + self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) + self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) +
dalle_mini.model.modeling/FlaxBartDecoderLayer.setup
Modified
borisdayma~dalle-mini
972bc8d2443eab9ccdae4c1a33fbd0ccb1083d7f
refactor(model): inherit from HF Flax & simplify
<7>:<add> bias=False, <13>:<add> self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) <del> self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype) <19>:<add> bias=False, <21>:<add> self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) <del> self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype) <34>:<add> self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) <del> self.final
# module: dalle_mini.model.modeling + class FlaxBartDecoderLayer(FlaxBartDecoderLayer): - class FlaxBartDecoderLayer(nn.Module): def setup(self) -> None: <0> self.embed_dim = self.config.d_model <1> self.self_attn = FlaxBartAttention( <2> config=self.config, <3> embed_dim=self.embed_dim, <4> num_heads=self.config.decoder_attention_heads, <5> dropout=self.config.attention_dropout, <6> causal=True, <7> dtype=self.dtype, <8> ) <9> self.dropout_layer = nn.Dropout(rate=self.config.dropout) <10> self.activation_fn = ACT2FN[self.config.activation_function] <11> self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) <12> <13> self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype) <14> self.encoder_attn = FlaxBartAttention( <15> config=self.config, <16> embed_dim=self.embed_dim, <17> num_heads=self.config.decoder_attention_heads, <18> dropout=self.config.attention_dropout, <19> dtype=self.dtype, <20> ) <21> self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype) <22> self.fc1 = nn.Dense( <23> self.config.encoder_ffn_dim, <24> dtype=self.dtype, <25> use_bias=False, <26> kernel_init=jax.nn.initializers.normal(self.config.init_std), <27> ) <28> self.fc2 = nn.Dense( <29> self.embed_dim, <30> dtype=self.dtype, <31> use_bias=False, <32> kernel_init=jax.nn.initializers.normal(self.config.init_std), <33> ) <34> self.final</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayer(FlaxBartDecoderLayer): - class FlaxBartDecoderLayer(nn.Module): def setup(self) -> None: # offset: 1 ===========unchanged ref 0=========== at: dalle_mini.model.modeling.FlaxBartForConditionalGenerationModule.setup self.model = FlaxBartModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.config.image_vocab_size + 1, # image vocab size + 1 for BOS use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) at: transformers.configuration_utils.PretrainedConfig.__init__ self.tie_word_embeddings = kwargs.pop( "tie_word_embeddings", True ) # Whether input and output word embeddings should be tied for all MLM, LM and Seq2Seq models. at: transformers.modeling_flax_outputs FlaxSeq2SeqLMOutput(**kwargs: _VT) FlaxSeq2SeqLMOutput(map: Mapping[_KT, _VT], **kwargs: _VT) FlaxSeq2SeqLMOutput(iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) at: transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule config: BartConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros ===========changed ref 0=========== # module: dalle_mini.model.modeling + class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): + """ + Edits: + - added num_params property + """ + ===========changed ref 1=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayer(FlaxBartDecoderLayer): - class FlaxBartDecoderLayer(nn.Module): + """ + Edits: + - no bias + - uses custom FlaxBartAttention + """ - config: DalleBartConfig - dtype: jnp.dtype = jnp.float32 ===========changed ref 2=========== # module: dalle_mini.model.modeling + class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule): + """ + Edits: + - no bias + - lm_head set to image_vocab_size + 1 (for BOS) + - uses custom FlaxBartModule + """ + ===========changed ref 3=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): - class FlaxBartEncoderLayerCollection(nn.Module): - def __call__( - self, - hidden_states, - attention_mask, - deterministic: bool = True, - ): - for encoder_layer in self.layers: - hidden_states = encoder_layer( - hidden_states, - attention_mask, - deterministic, - ) - - return FlaxBaseModelOutput(last_hidden_state=hidden_states) - ===========changed ref 4=========== # module: dalle_mini.model.modeling + class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): + @property + def num_params(self): + num_params = jax.tree_map( + lambda param: param.size, flatten_dict(unfreeze(self.params)) + ).values() + return sum(list(num_params)) + ===========changed ref 5=========== # module: dalle_mini.model.modeling + class FlaxBartModule(FlaxBartModule): + """ + Edits + - use custom FlaxBartEncoder & FlaxBartDecoder + - use separate embeddings for Encoder & Decoder + """ + ===========changed ref 6=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): - class FlaxBartEncoderLayerCollection(nn.Module): + """ + Edits: + - use custom FlaxBartEncoderLayer + - allow Gradient Checkpointing (nn.remat) + """ - config: DalleBartConfig - dtype: jnp.dtype = jnp.float32 # the dtype of the computation ===========changed ref 7=========== # module: dalle_mini.model.modeling + class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule): + def setup(self): + self.model = FlaxBartModule(config=self.config, dtype=self.dtype) + self.lm_head = nn.Dense( + self.config.image_vocab_size + 1, # image vocab size + 1 for BOS + use_bias=False, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + ===========changed ref 8=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): - class FlaxBartEncoderLayerCollection(nn.Module): def setup(self): layer_module = ( nn.remat(FlaxBartEncoderLayer) if self.config.gradient_checkpointing else FlaxBartEncoderLayer ) self.layers = [ layer_module(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] + self.layerdrop = self.config.encoder_layerdrop ===========changed ref 9=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayer(FlaxBartEncoderLayer): - class FlaxBartEncoderLayer(nn.Module): + """ + Edits: + - no bias + - use custom FlaxBartAttention + """ - config: DalleBartConfig - dtype: jnp.dtype = jnp.float32 ===========changed ref 10=========== # module: dalle_mini.model.modeling + class FlaxBartDecoder(FlaxBartDecoder): + """ + Edits: + - offset set to 0 (no padding token) + - use image_length + 1 (for BOS) instead of max_position_embeddings + - use custom FlaxBartDecoderLayerCollection + - embed_tokens cannot be None (issue at compile time) + """ + ===========changed ref 11=========== # module: dalle_mini.model.modeling + class FlaxBartEncoder(FlaxBartEncoder): + """ + Edits: + - offset set to 0 (no padding token) + - use max_text_length instead of max_position_embeddings + - use custom FlaxBartEncoderLayerCollection + - embed_tokens cannot be None (issue at compile time) + """ +
dalle_mini.model.modeling/FlaxBartDecoderLayerCollection.setup
Modified
borisdayma~dalle-mini
972bc8d2443eab9ccdae4c1a33fbd0ccb1083d7f
refactor(model): inherit from HF Flax & simplify
<9>:<add> self.layerdrop = self.config.decoder_layerdrop
# module: dalle_mini.model.modeling + class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): - class FlaxBartDecoderLayerCollection(nn.Module): def setup(self): <0> layer_module = ( <1> nn.remat(FlaxBartDecoderLayer) <2> if self.config.gradient_checkpointing <3> else FlaxBartDecoderLayer <4> ) <5> self.layers = [ <6> layer_module(self.config, name=str(i), dtype=self.dtype) <7> for i in range(self.config.decoder_layers) <8> ] <9>
===========changed ref 0=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): - class FlaxBartDecoderLayerCollection(nn.Module): + """ + Edits: + - use custom FlaxBartDecoderLayer + - allow Gradient Checkpointing (nn.remat) + """ - config: DalleBartConfig - dtype: jnp.dtype = jnp.float32 # the dtype of the computation ===========changed ref 1=========== # module: dalle_mini.model.modeling + class DalleBart(FlaxBartPreTrainedModel, FlaxBartForConditionalGeneration): + """ + Edits: + - renamed from FlaxBartForConditionalGeneration + - uses custom FlaxBartPreTrainedModel + - uses custom FlaxBartForConditionalGenerationModule + - no bias in decode method + """ + + module_class = FlaxBartForConditionalGenerationModule + ===========changed ref 2=========== # module: dalle_mini.model.modeling + class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): + """ + Edits: + - added num_params property + """ + ===========changed ref 3=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayer(FlaxBartDecoderLayer): - class FlaxBartDecoderLayer(nn.Module): + """ + Edits: + - no bias + - uses custom FlaxBartAttention + """ - config: DalleBartConfig - dtype: jnp.dtype = jnp.float32 ===========changed ref 4=========== # module: dalle_mini.model.modeling + class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule): + """ + Edits: + - no bias + - lm_head set to image_vocab_size + 1 (for BOS) + - uses custom FlaxBartModule + """ + ===========changed ref 5=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): - class FlaxBartEncoderLayerCollection(nn.Module): - def __call__( - self, - hidden_states, - attention_mask, - deterministic: bool = True, - ): - for encoder_layer in self.layers: - hidden_states = encoder_layer( - hidden_states, - attention_mask, - deterministic, - ) - - return FlaxBaseModelOutput(last_hidden_state=hidden_states) - ===========changed ref 6=========== # module: dalle_mini.model.modeling + class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): + @property + def num_params(self): + num_params = jax.tree_map( + lambda param: param.size, flatten_dict(unfreeze(self.params)) + ).values() + return sum(list(num_params)) + ===========changed ref 7=========== # module: dalle_mini.model.modeling + class FlaxBartModule(FlaxBartModule): + """ + Edits + - use custom FlaxBartEncoder & FlaxBartDecoder + - use separate embeddings for Encoder & Decoder + """ + ===========changed ref 8=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): - class FlaxBartEncoderLayerCollection(nn.Module): + """ + Edits: + - use custom FlaxBartEncoderLayer + - allow Gradient Checkpointing (nn.remat) + """ - config: DalleBartConfig - dtype: jnp.dtype = jnp.float32 # the dtype of the computation ===========changed ref 9=========== # module: dalle_mini.model.modeling + class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule): + def setup(self): + self.model = FlaxBartModule(config=self.config, dtype=self.dtype) + self.lm_head = nn.Dense( + self.config.image_vocab_size + 1, # image vocab size + 1 for BOS + use_bias=False, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + ===========changed ref 10=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): - class FlaxBartEncoderLayerCollection(nn.Module): def setup(self): layer_module = ( nn.remat(FlaxBartEncoderLayer) if self.config.gradient_checkpointing else FlaxBartEncoderLayer ) self.layers = [ layer_module(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] + self.layerdrop = self.config.encoder_layerdrop ===========changed ref 11=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayer(FlaxBartEncoderLayer): - class FlaxBartEncoderLayer(nn.Module): + """ + Edits: + - no bias + - use custom FlaxBartAttention + """ - config: DalleBartConfig - dtype: jnp.dtype = jnp.float32 ===========changed ref 12=========== # module: dalle_mini.model.modeling + class FlaxBartDecoder(FlaxBartDecoder): + """ + Edits: + - offset set to 0 (no padding token) + - use image_length + 1 (for BOS) instead of max_position_embeddings + - use custom FlaxBartDecoderLayerCollection + - embed_tokens cannot be None (issue at compile time) + """ + ===========changed ref 13=========== # module: dalle_mini.model.modeling + class FlaxBartEncoder(FlaxBartEncoder): + """ + Edits: + - offset set to 0 (no padding token) + - use max_text_length instead of max_position_embeddings + - use custom FlaxBartEncoderLayerCollection + - embed_tokens cannot be None (issue at compile time) + """ + ===========changed ref 14=========== # module: dalle_mini.model.modeling + class FlaxBartModule(FlaxBartModule): + def setup(self): + encoder_embed_tokens = nn.Embed( + self.config.encoder_vocab_size, + self.config.d_model, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) + decoder_embed_tokens = nn.Embed( + self.config.image_vocab_size + 1, # image vocab size + 1 for BOS + self.config.d_model, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) + + self.encoder = FlaxBartEncoder( + self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens + ) + self.decoder = FlaxBartDecoder( + self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens + ) + ===========changed ref 15=========== # module: dalle_mini.model.modeling + class FlaxBartAttention(FlaxBartAttention): - class FlaxBartAttention(nn.Module): - def _merge_heads(self, hidden_states): - return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) -
dalle_mini.model.configuration/DalleBartConfig.__init__
Modified
borisdayma~dalle-mini
972bc8d2443eab9ccdae4c1a33fbd0ccb1083d7f
refactor(model): inherit from HF Flax & simplify
<26>:<del> self.decoder_start_token_id = image_vocab_size # BOS appended to vocab
<s>.02, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, use_cache=True, - num_labels=3, is_encoder_decoder=True, forced_eos_token_id=None, + tie_word_embeddings=False, # different modalities and sizes - tie_word_embeddings=False, # don't tie for scaling reasons and due to different modalities and sizes **kwargs, ): <0> self.normalize_text = normalize_text <1> self.encoder_vocab_size = encoder_vocab_size <2> self.image_vocab_size = image_vocab_size <3> self.image_length = image_length <4> self.max_text_length = max_text_length <5> self.d_model = d_model <6> self.encoder_ffn_dim = encoder_ffn_dim <7> self.encoder_layers = encoder_layers <8> self.encoder_attention_heads = encoder_attention_heads <9> self.decoder_ffn_dim = decoder_ffn_dim <10> self.decoder_layers = decoder_layers <11> self.decoder_attention_heads = decoder_attention_heads <12> self.dropout = dropout <13> self.attention_dropout = attention_dropout <14> self.activation_dropout = activation_dropout <15> self.activation_function = activation_function <16> self.init_std = init_std <17> self.encoder_layerdrop = encoder_layerdrop <18> self.decoder_layerdrop = decoder_layerdrop <19> self.classifier_dropout = classifier_dropout <20> self.use_cache = use_cache <21> self.num_hidden_layers = encoder_layers <22> self.gradient_checkpointing = gradient_checkpointing <23> self.scale_embedding = ( <24> scale_embedding # scale factor will be sqrt(d_model) if True <25> ) <26> self.decoder_start_token_id = image_vocab_size # BOS appended to vocab <27> self.min_length = image_length</s>
===========below chunk 0=========== <s> classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, use_cache=True, - num_labels=3, is_encoder_decoder=True, forced_eos_token_id=None, + tie_word_embeddings=False, # different modalities and sizes - tie_word_embeddings=False, # don't tie for scaling reasons and due to different modalities and sizes **kwargs, ): # offset: 1 self.max_length = image_length + 1 # remove keys we are about to set to prevent errors for k in [ "bos_token_id", "eos_token_id", "pad_token_id", "decoder_start_token_id", "forced_eos_token_id", ]: kwargs.pop(k, None) super().__init__( num_labels=num_labels, pad_token_id=image_vocab_size + 1, # needed to avoid errors during generation (converted to jnp.array) bos_token_id=image_vocab_size + 1, # set to unreachable values eos_token_id=image_vocab_size + 1, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=self.decoder_start_token_id, forced_eos_token_id=forced_eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions."</s> ===========below chunk 1=========== <s> classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, use_cache=True, - num_labels=3, is_encoder_decoder=True, forced_eos_token_id=None, + tie_word_embeddings=False, # different modalities and sizes - tie_word_embeddings=False, # don't tie for scaling reasons and due to different modalities and sizes **kwargs, ): # offset: 2 <s>"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." ) ===========unchanged ref 0=========== at: _warnings warn(message: str, category: Optional[Type[Warning]]=..., stacklevel: int=..., source: Optional[Any]=...) -> None warn(message: Warning, category: Any=..., stacklevel: int=..., source: Optional[Any]=...) -> None at: transformers.configuration_utils.PretrainedConfig model_type: str = "" is_composition: bool = False attribute_map: Dict[str, str] = {} _auto_class: Optional[str] = None __init__(**kwargs) at: transformers.configuration_utils.PretrainedConfig.__init__ self.bos_token_id = kwargs.pop("bos_token_id", None) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] at: typing.MutableMapping pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T] pop(key: _KT) -> _VT ===========changed ref 0=========== # module: dalle_mini.model.modeling - class DalleBartModule(nn.Module): - def _get_decoder_module(self): - return self.decoder - ===========changed ref 1=========== # module: dalle_mini.model.modeling - class DalleBartModule(nn.Module): - def _get_encoder_module(self): - return self.encoder - ===========changed ref 2=========== # module: dalle_mini.model.modeling - class DalleBartForConditionalGenerationModule(nn.Module): - def _get_decoder_module(self): - return self.model.decoder - ===========changed ref 3=========== # module: dalle_mini.model.modeling - class DalleBartForConditionalGenerationModule(nn.Module): - def _get_encoder_module(self): - return self.model.encoder - ===========changed ref 4=========== # module: dalle_mini.model.modeling + class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): + """ + Edits: + - added num_params property + """ + ===========changed ref 5=========== # module: dalle_mini.model.modeling + class FlaxBartAttention(FlaxBartAttention): - class FlaxBartAttention(nn.Module): - def _merge_heads(self, hidden_states): - return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) - ===========changed ref 6=========== # module: dalle_mini.model.modeling - class DalleBartForConditionalGeneration(DalleBartPreTrainedModel): - module_class = DalleBartForConditionalGenerationModule - dtype: jnp.dtype = jnp.float32 - ===========changed ref 7=========== # module: dalle_mini.model.modeling - class DalleBartModule(nn.Module): - config: DalleBartConfig - dtype: jnp.dtype = jnp.float32 # the dtype of the computation - ===========changed ref 8=========== # module: dalle_mini.model.modeling - class DalleBartDecoder(nn.Module): - config: DalleBartConfig - dtype: jnp.dtype = jnp.float32 # the dtype of the computation - ===========changed ref 9=========== # module: dalle_mini.model.modeling - class DalleBartEncoder(nn.Module): - config: DalleBartConfig - dtype: jnp.dtype = jnp.float32 # the dtype of the computation - ===========changed ref 10=========== # module: dalle_mini.model.modeling + class FlaxBartModule(FlaxBartModule): + """ + Edits + - use custom FlaxBartEncoder & FlaxBartDecoder + - use separate embeddings for Encoder & Decoder + """ + ===========changed ref 11=========== # module: dalle_mini.model.modeling + class FlaxBartAttention(FlaxBartAttention): - class FlaxBartAttention(nn.Module): - def _split_heads(self, hidden_states): - return hidden_states.reshape( - hidden_states.shape[:2] + (self.num_heads, self.head_dim) - ) - ===========changed ref 12=========== # module: dalle_mini.model.modeling - class DalleBartPreTrainedModel(FlaxPreTrainedModel): - config_class = DalleBartConfig - base_model_prefix: str = "dallebart" - module_class: nn.Module = None - ===========changed ref 13=========== # module: dalle_mini.model.modeling - class DalleBartModule(nn.Module): - def setup(self): - self.encoder = DalleBartEncoder(self.config, dtype=self.dtype) - self.decoder = DalleBartDecoder(self.config, dtype=self.dtype) -
dalle_mini.model.modeling/FlaxBartAttention.setup
Modified
borisdayma~dalle-mini
8654dc998902b1979389bd7275caaa9927f27c16
fix: causal_mask based on image tokens
<21>:<add> # used only in decoder <22>:<add> jnp.ones((1, self.config.image_length + 1), dtype="bool"), dtype="bool" <del> jnp.ones((1, self.embed_dim), dtype="bool"), dtype="bool"
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: <0> self.head_dim = self.embed_dim // self.num_heads <1> if self.head_dim * self.num_heads != self.embed_dim: <2> raise ValueError( <3> f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" <4> f" and `num_heads`: {self.num_heads})." <5> ) <6> <7> dense = partial( <8> nn.Dense, <9> self.embed_dim, <10> use_bias=self.bias, <11> dtype=self.dtype, <12> kernel_init=jax.nn.initializers.normal(self.config.init_std), <13> ) <14> <15> self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() <16> self.out_proj = dense() <17> <18> self.dropout_layer = nn.Dropout(rate=self.dropout) <19> <20> if self.causal: <21> self.causal_mask = make_causal_mask( <22> jnp.ones((1, self.embed_dim), dtype="bool"), dtype="bool" <23> ) <24>
===========unchanged ref 0=========== at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.init_std = init_std at: transformers.models.bart.modeling_flax_bart.FlaxBartAttention config: BartConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) -> None
dalle_mini.model.configuration/DalleBartConfig.__init__
Modified
borisdayma~dalle-mini
eb24dbcf65d07edc8890f4c4194d24953b79cdf9
fix(config): set min/max for generation
<26>:<del> self.min_length = image_length + 1 <27>:<del> self.max_length = image_length + 1
<s>1024, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, use_cache=True, is_encoder_decoder=True, forced_eos_token_id=None, tie_word_embeddings=False, # different modalities and sizes **kwargs, ): <0> self.normalize_text = normalize_text <1> self.encoder_vocab_size = encoder_vocab_size <2> self.image_vocab_size = image_vocab_size <3> self.image_length = image_length <4> self.max_text_length = max_text_length <5> self.d_model = d_model <6> self.encoder_ffn_dim = encoder_ffn_dim <7> self.encoder_layers = encoder_layers <8> self.encoder_attention_heads = encoder_attention_heads <9> self.decoder_ffn_dim = decoder_ffn_dim <10> self.decoder_layers = decoder_layers <11> self.decoder_attention_heads = decoder_attention_heads <12> self.dropout = dropout <13> self.attention_dropout = attention_dropout <14> self.activation_dropout = activation_dropout <15> self.activation_function = activation_function <16> self.init_std = init_std <17> self.encoder_layerdrop = encoder_layerdrop <18> self.decoder_layerdrop = decoder_layerdrop <19> self.classifier_dropout = classifier_dropout <20> self.use_cache = use_cache <21> self.num_hidden_layers = encoder_layers <22> self.gradient_checkpointing = gradient_checkpointing <23> self.scale_embedding = ( <24> scale_embedding # scale factor will be sqrt(d_model) if True <25> ) <26> self.min_length = image_length + 1 <27> self.max_length = image_length + 1 <28> <29> # remove inferred keys</s>
===========below chunk 0=========== <s> dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, use_cache=True, is_encoder_decoder=True, forced_eos_token_id=None, tie_word_embeddings=False, # different modalities and sizes **kwargs, ): # offset: 1 for k in [ "pad_token_id", "bos_token_id", "eos_token_id", "decoder_start_token_id", ]: kwargs.pop(k, None) super().__init__( pad_token_id=image_vocab_size + 1, # needed to avoid errors during generation (converted to jnp.array) bos_token_id=image_vocab_size + 1, # set to unreachable values eos_token_id=image_vocab_size + 1, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=image_vocab_size, # BOS appended to vocab forced_eos_token_id=forced_eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." ) ===========unchanged ref 0=========== at: _warnings warn(message: str, category: Optional[Type[Warning]]=..., stacklevel: int=..., source: Optional[Any]=...) -> None warn(message: Warning, category: Any=..., stacklevel: int=..., source: Optional[Any]=...) -> None at: transformers.configuration_utils.PretrainedConfig model_type: str = "" is_composition: bool = False attribute_map: Dict[str, str] = {} _auto_class: Optional[str] = None __init__(**kwargs) __init__(self, **kwargs) at: transformers.configuration_utils.PretrainedConfig.__init__ self.bos_token_id = kwargs.pop("bos_token_id", None) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] at: typing.MutableMapping pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T] pop(key: _KT) -> _VT
dalle_mini.model.configuration/DalleBartConfig.__init__
Modified
borisdayma~dalle-mini
53dade7fd869d7f66821a7179e9f508655b9afd0
feat: minor improvements
<21>:<del> self.num_hidden_layers = encoder_layers
<s>1024, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, use_cache=True, is_encoder_decoder=True, forced_eos_token_id=None, tie_word_embeddings=False, # different modalities and sizes **kwargs, ): <0> self.normalize_text = normalize_text <1> self.encoder_vocab_size = encoder_vocab_size <2> self.image_vocab_size = image_vocab_size <3> self.image_length = image_length <4> self.max_text_length = max_text_length <5> self.d_model = d_model <6> self.encoder_ffn_dim = encoder_ffn_dim <7> self.encoder_layers = encoder_layers <8> self.encoder_attention_heads = encoder_attention_heads <9> self.decoder_ffn_dim = decoder_ffn_dim <10> self.decoder_layers = decoder_layers <11> self.decoder_attention_heads = decoder_attention_heads <12> self.dropout = dropout <13> self.attention_dropout = attention_dropout <14> self.activation_dropout = activation_dropout <15> self.activation_function = activation_function <16> self.init_std = init_std <17> self.encoder_layerdrop = encoder_layerdrop <18> self.decoder_layerdrop = decoder_layerdrop <19> self.classifier_dropout = classifier_dropout <20> self.use_cache = use_cache <21> self.num_hidden_layers = encoder_layers <22> self.gradient_checkpointing = gradient_checkpointing <23> self.scale_embedding = ( <24> scale_embedding # scale factor will be sqrt(d_model) if True <25> ) <26> <27> # remove inferred keys to prevent errors when loading config (passed as kwargs) <28> for k in [ <29> "pad_token_id",</s>
===========below chunk 0=========== <s> dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, use_cache=True, is_encoder_decoder=True, forced_eos_token_id=None, tie_word_embeddings=False, # different modalities and sizes **kwargs, ): # offset: 1 "eos_token_id", "decoder_start_token_id", "min_length", "max_length", ]: kwargs.pop(k, None) super().__init__( pad_token_id=image_vocab_size + 1, # needed to avoid errors during generation (converted to jnp.array) bos_token_id=image_vocab_size + 1, # set to unreachable values eos_token_id=image_vocab_size + 1, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=image_vocab_size, # BOS appended to vocab forced_eos_token_id=forced_eos_token_id, tie_word_embeddings=tie_word_embeddings, min_length=image_length + 1, max_length=image_length + 1, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." ) ===========unchanged ref 0=========== at: _warnings warn(message: str, category: Optional[Type[Warning]]=..., stacklevel: int=..., source: Optional[Any]=...) -> None warn(message: Warning, category: Any=..., stacklevel: int=..., source: Optional[Any]=...) -> None at: transformers.configuration_utils.PretrainedConfig model_type: str = "" is_composition: bool = False attribute_map: Dict[str, str] = {} _auto_class: Optional[str] = None __init__(**kwargs) __init__(self, **kwargs) at: transformers.configuration_utils.PretrainedConfig.__init__ self.bos_token_id = kwargs.pop("bos_token_id", None) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] at: typing.MutableMapping pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T] pop(key: _KT) -> _VT
dalle_mini.data/Dataset.__post_init__
Modified
borisdayma~dalle-mini
5ee6e60837d1ff5d9f822a15ef7a9f5c646bd80c
feat(data): accept braceexpand notation
<2>:<add> # accept braceexpand notation <add> for k in ["train_file", "validation_file"]: <add> f = getattr(self, k) <add> if isinstance(f, str): <add> setattr(self, k, list(braceexpand(f)))
# module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): <0> # define data_files <1> if self.train_file is not None or self.validation_file is not None: <2> data_files = { <3> "train": self.train_file, <4> "validation": self.validation_file, <5> } <6> else: <7> data_files = None <8> <9> # load dataset <10> dataset = load_dataset( <11> self.dataset_repo_or_path, <12> data_files=data_files, <13> streaming=self.streaming, <14> use_auth_token=self.use_auth_token, <15> ) <16> if self.do_train: <17> if "train" not in dataset: <18> raise ValueError("Training requires a training dataset") <19> self.train_dataset = dataset["train"] <20> if self.max_train_samples is not None: <21> self.train_dataset = ( <22> self.train_dataset.take(self.max_train_samples) <23> if self.streaming <24> else self.train_dataset.select(range(self.max_train_samples)) <25> ) <26> if self.do_eval: <27> if "validation" not in dataset: <28> raise ValueError("Evaluating requires a validation dataset") <29> self.eval_dataset = dataset["validation"] <30> if self.max_eval_samples is not None: <31> self.eval_dataset = ( <32> self.eval_dataset.take(self.max_eval_samples) <33> if self.streaming <34> else self.eval_dataset.select(range(self.max_eval_samples)) <35> ) <36>
===========unchanged ref 0=========== at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) at: dalle_mini.data.Dataset.preprocess self.train_dataset = self.train_dataset.shuffle(1000, self.seed_dataset) at: datasets.arrow_dataset.Dataset wrapper(*, keep_in_memory: bool=False, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) ===========unchanged ref 1=========== at: datasets.load load_dataset(path: str, name: Optional[str]=None, data_dir: Optional[str]=None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]]=None, split: Optional[Union[str, Split]]=None, cache_dir: Optional[str]=None, features: Optional[Features]=None, download_config: Optional[DownloadConfig]=None, download_mode: Optional[DownloadMode]=None, ignore_verifications: bool=False, keep_in_memory: Optional[bool]=None, save_infos: bool=False, revision: Optional[Union[str, Version]]=None, use_auth_token: Optional[Union[bool, str]]=None, task: Optional[Union[str, TaskTemplate]]=None, streaming: bool=False, num_proc: Optional[int]=None, *, num_process: int=1, process_id: int=0, seed: Optional[int]=None, experiment_id: Optional[str]=None, max_concurrent_cache_files: int=10000, timeout: Union[int, float]=100, base_path: Optional[str]=None, info: Optional[DatasetInfo]=None, repo_id: Optional[str]=None, **kwargs) -> Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset]
dalle_mini.data/Dataset.__post_init__
Modified
borisdayma~dalle-mini
ed93c8ab114018f3fb7b870b60e50ca4cccfcd1a
feat: split shards by host
<0>:<add> self.multi_hosts = jax.process_count > 1 <7>:<add> # for list of files, split training data shards by host <add> if isinstance(self.train_file, list) and self.multi_hosts: <add> self.train_file = self.train_file[ <add> jax.process_index() :: jax.process_count() <add> ]
# module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): <0> # define data_files <1> if self.train_file is not None or self.validation_file is not None: <2> # accept braceexpand notation <3> for k in ["train_file", "validation_file"]: <4> f = getattr(self, k) <5> if isinstance(f, str): <6> setattr(self, k, list(braceexpand(f))) <7> data_files = { <8> "train": self.train_file, <9> "validation": self.validation_file, <10> } <11> else: <12> data_files = None <13> <14> # load dataset <15> dataset = load_dataset( <16> self.dataset_repo_or_path, <17> data_files=data_files, <18> streaming=self.streaming, <19> use_auth_token=self.use_auth_token, <20> ) <21> if self.do_train: <22> if "train" not in dataset: <23> raise ValueError("Training requires a training dataset") <24> self.train_dataset = dataset["train"] <25> if self.max_train_samples is not None: <26> self.train_dataset = ( <27> self.train_dataset.take(self.max_train_samples) <28> if self.streaming <29> else self.train_dataset.select(range(self.max_train_samples)) <30> ) <31> if self.do_eval: <32> if "validation" not in dataset: <33> raise ValueError("Evaluating requires a validation dataset") <34> self.eval_dataset = dataset["validation"] <35> if self.max_eval_samples is not None: <36> self.eval_dataset = ( <37> self.eval_dataset.take(self.max_eval_samples) <38> if self.streaming <39> else self.eval_dataset.select(range(self.max_eval_samples)) <40> ) <41>
===========unchanged ref 0=========== at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) at: dalle_mini.data.Dataset.preprocess self.train_dataset = self.train_dataset.shuffle(1000, self.seed_dataset) at: datasets.arrow_dataset.Dataset wrapper(*, keep_in_memory: bool=False, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) ===========unchanged ref 1=========== at: datasets.load load_dataset(path: str, name: Optional[str]=None, data_dir: Optional[str]=None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]]=None, split: Optional[Union[str, Split]]=None, cache_dir: Optional[str]=None, features: Optional[Features]=None, download_config: Optional[DownloadConfig]=None, download_mode: Optional[DownloadMode]=None, ignore_verifications: bool=False, keep_in_memory: Optional[bool]=None, save_infos: bool=False, revision: Optional[Union[str, Version]]=None, use_auth_token: Optional[Union[bool, str]]=None, task: Optional[Union[str, TaskTemplate]]=None, streaming: bool=False, num_proc: Optional[int]=None, *, base_path: Optional[str]=None, info: Optional[DatasetInfo]=None, repo_id: Optional[str]=None, num_process: int=1, process_id: int=0, seed: Optional[int]=None, experiment_id: Optional[str]=None, max_concurrent_cache_files: int=10000, timeout: Union[int, float]=100, **kwargs) -> Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset] ===========changed ref 0=========== # module: dalle_mini.data @dataclass class Dataset: dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) + multi_hosts: bool = field(init=False)
dalle_mini.data/Dataset.dataloader
Modified
borisdayma~dalle-mini
ed93c8ab114018f3fb7b870b60e50ca4cccfcd1a
feat: split shards by host
<27>:<add> def _dataloader_datasets_streaming( <add> dataset: Dataset, batch_size: int, epoch: int <add> ): <add> # epoch is only use for multi-host <del> def _dataloader_datasets_streaming(dataset: Dataset, batch_size: int): <30>:<add> first_loop = True <add> while self.multi_hosts or first_loop: <add> # in multi-host, we run forever (no epoch) as hosts need to stop <add> # at same the time and we don't know how much data is on each host <add> if not first_loop: <add> # multi-host setting, we reshuffle shards <add> epoch += 1 <add> dataset.set_epoch(epoch) <add> for item in dataset: <del> for item in dataset: <31>:<add> for k, v in item.items(): <del> for k, v in item.items(): <32>:<add> batch[k].append(v) <del> batch[k].append(v) <33>:<add> if len(batch[keys[0]]) == batch_size: <del> if len(batch[keys[0]]) == batch_size: <34>:<add> batch = {k: jnp.array(v) for k
# module: dalle_mini.data @dataclass class Dataset: def dataloader(self, split, batch_size, epoch=None): <0> def _dataloader_datasets_non_streaming( <1> dataset: Dataset, <2> batch_size: int, <3> rng: jax.random.PRNGKey = None, <4> ): <5> """ <6> Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. <7> Shuffle batches if `shuffle` is `True`. <8> """ <9> steps_per_epoch = len(dataset) // batch_size <10> <11> if rng is not None: <12> batch_idx = jax.random.permutation(rng, len(dataset)) <13> else: <14> batch_idx = jnp.arange(len(dataset)) <15> <16> batch_idx = batch_idx[ <17> : steps_per_epoch * batch_size <18> ] # Skip incomplete batch. <19> batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) <20> <21> for idx in batch_idx: <22> batch = dataset[idx] <23> batch = {k: jnp.array(v) for k, v in batch.items()} <24> batch = shard(batch) <25> yield batch <26> <27> def _dataloader_datasets_streaming(dataset: Dataset, batch_size: int): <28> keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"] <29> batch = {k: [] for k in keys} <30> for item in dataset: <31> for k, v in item.items(): <32> batch[k].append(v) <33> if len(batch[keys[0]]) == batch_size: <34> batch = {k: jnp.array(v) for k, v in batch.items()} <35> batch = shard(batch) <36> yield batch <37> batch = {k: [] for k in keys} <38> <39> if split == "train": <40> ds = self.</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def dataloader(self, split, batch_size, epoch=None): # offset: 1 elif split == "eval": ds = self.eval_dataset else: raise ValueError(f'split must be "train" or "eval", got {split}') if self.streaming: if split == "train": ds.set_epoch(epoch) return _dataloader_datasets_streaming(ds, batch_size) else: if split == "train": self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) return _dataloader_datasets_non_streaming(ds, batch_size, input_rng) ===========unchanged ref 0=========== at: dalle_mini.data Dataset(dataset_repo_or_path: str, train_file: str=None, validation_file: str=None, streaming: bool=True, use_auth_token: bool=False, text_column: str="caption", encoding_column: str="encoding", max_train_samples: int=None, max_eval_samples: int=None, preprocessing_num_workers: int=None, overwrite_cache: bool=False, do_train: bool=False, do_eval: bool=True, seed_dataset: int=None, train_dataset: Dataset=field(init=False), eval_dataset: Dataset=field(init=False), rng_dataset: jnp.ndarray=field(init=False)) at: dalle_mini.data.Dataset preprocessing_num_workers: int = None overwrite_cache: bool = False at: dalle_mini.data.Dataset.__post_init__ self.multi_hosts = jax.process_count > 1 ===========changed ref 0=========== # module: dalle_mini.data @dataclass class Dataset: dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) + multi_hosts: bool = field(init=False) ===========changed ref 1=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): + self.multi_hosts = jax.process_count > 1 # define data_files if self.train_file is not None or self.validation_file is not None: # accept braceexpand notation for k in ["train_file", "validation_file"]: f = getattr(self, k) if isinstance(f, str): setattr(self, k, list(braceexpand(f))) + # for list of files, split training data shards by host + if isinstance(self.train_file, list) and self.multi_hosts: + self.train_file = self.train_file[ + jax.process_index() :: jax.process_count() + ] data_files = { "train": self.train_file, "validation": self.validation_file, } else: data_files = None # load dataset dataset = load_dataset( self.dataset_repo_or_path, data_files=data_files, streaming=self.streaming, use_auth_token=self.use_auth_token, ) if self.do_train: if "train" not in dataset: raise ValueError("Training requires a training dataset") self.train_dataset = dataset["train"] if self.max_train_samples is not None: self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) if self.do_eval: if "validation" not in dataset: raise ValueError("Evaluating requires a validation dataset") self.eval_dataset = dataset["validation"] if self.max_eval_samples is not None: self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self</s> ===========changed ref 2=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): # offset: 1 <s> self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) )
dalle_mini.data/Dataset.__post_init__
Modified
borisdayma~dalle-mini
c6ebb14483bbead46375186afc67af17dddf97b9
fix(data): type
<0>:<add> self.multi_hosts = jax.process_count() > 1 <del> self.multi_hosts = jax.process_count > 1
# module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): <0> self.multi_hosts = jax.process_count > 1 <1> # define data_files <2> if self.train_file is not None or self.validation_file is not None: <3> # accept braceexpand notation <4> for k in ["train_file", "validation_file"]: <5> f = getattr(self, k) <6> if isinstance(f, str): <7> setattr(self, k, list(braceexpand(f))) <8> # for list of files, split training data shards by host <9> if isinstance(self.train_file, list) and self.multi_hosts: <10> self.train_file = self.train_file[ <11> jax.process_index() :: jax.process_count() <12> ] <13> data_files = { <14> "train": self.train_file, <15> "validation": self.validation_file, <16> } <17> else: <18> data_files = None <19> <20> # load dataset <21> dataset = load_dataset( <22> self.dataset_repo_or_path, <23> data_files=data_files, <24> streaming=self.streaming, <25> use_auth_token=self.use_auth_token, <26> ) <27> if self.do_train: <28> if "train" not in dataset: <29> raise ValueError("Training requires a training dataset") <30> self.train_dataset = dataset["train"] <31> if self.max_train_samples is not None: <32> self.train_dataset = ( <33> self.train_dataset.take(self.max_train_samples) <34> if self.streaming <35> else self.train_dataset.select(range(self.max_train_samples)) <36> ) <37> if self.do_eval: <38> if "validation" not in dataset: <39> raise ValueError("Evaluating requires a validation dataset") <40> self.eval_dataset = dataset["validation"] <41> if self.max_eval_</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): # offset: 1 self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) ) ===========unchanged ref 0=========== at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) at: dalle_mini.data.Dataset.preprocess self.train_dataset = self.train_dataset.shuffle(1000, self.seed_dataset) at: datasets.arrow_dataset.Dataset wrapper(*, keep_in_memory: bool=False, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) ===========unchanged ref 1=========== at: datasets.load load_dataset(path: str, name: Optional[str]=None, data_dir: Optional[str]=None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]]=None, split: Optional[Union[str, Split]]=None, cache_dir: Optional[str]=None, features: Optional[Features]=None, download_config: Optional[DownloadConfig]=None, download_mode: Optional[DownloadMode]=None, ignore_verifications: bool=False, keep_in_memory: Optional[bool]=None, save_infos: bool=False, revision: Optional[Union[str, Version]]=None, use_auth_token: Optional[Union[bool, str]]=None, task: Optional[Union[str, TaskTemplate]]=None, streaming: bool=False, num_proc: Optional[int]=None, *, num_process: int=1, process_id: int=0, seed: Optional[int]=None, experiment_id: Optional[str]=None, max_concurrent_cache_files: int=10000, timeout: Union[int, float]=100, base_path: Optional[str]=None, info: Optional[DatasetInfo]=None, repo_id: Optional[str]=None, **kwargs) -> Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset]
dalle_mini.data/Dataset.__post_init__
Modified
borisdayma~dalle-mini
901ff720f5d802223efb7ea0358981b3cfecc90e
feat: shard by host is optional
<9>:<add> if ( <add> isinstance(self.train_file, list) <del> if isinstance(self.train_file, list) and self.multi_hosts: <10>:<add> and self.multi_hosts <add> and self.shard_by_host <add> ):
# module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): <0> self.multi_hosts = jax.process_count() > 1 <1> # define data_files <2> if self.train_file is not None or self.validation_file is not None: <3> # accept braceexpand notation <4> for k in ["train_file", "validation_file"]: <5> f = getattr(self, k) <6> if isinstance(f, str): <7> setattr(self, k, list(braceexpand(f))) <8> # for list of files, split training data shards by host <9> if isinstance(self.train_file, list) and self.multi_hosts: <10> self.train_file = self.train_file[ <11> jax.process_index() :: jax.process_count() <12> ] <13> data_files = { <14> "train": self.train_file, <15> "validation": self.validation_file, <16> } <17> else: <18> data_files = None <19> <20> # load dataset <21> dataset = load_dataset( <22> self.dataset_repo_or_path, <23> data_files=data_files, <24> streaming=self.streaming, <25> use_auth_token=self.use_auth_token, <26> ) <27> if self.do_train: <28> if "train" not in dataset: <29> raise ValueError("Training requires a training dataset") <30> self.train_dataset = dataset["train"] <31> if self.max_train_samples is not None: <32> self.train_dataset = ( <33> self.train_dataset.take(self.max_train_samples) <34> if self.streaming <35> else self.train_dataset.select(range(self.max_train_samples)) <36> ) <37> if self.do_eval: <38> if "validation" not in dataset: <39> raise ValueError("Evaluating requires a validation dataset") <40> self.eval_dataset = dataset["validation"] <41> if self.max_eval</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): # offset: 1 self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) ) ===========unchanged ref 0=========== at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) at: dalle_mini.data.Dataset.preprocess self.train_dataset = self.train_dataset.shuffle(1000, self.seed_dataset) at: datasets.arrow_dataset.Dataset wrapper(*, keep_in_memory: bool=False, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) ===========unchanged ref 1=========== at: datasets.load load_dataset(path: str, name: Optional[str]=None, data_dir: Optional[str]=None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]]=None, split: Optional[Union[str, Split]]=None, cache_dir: Optional[str]=None, features: Optional[Features]=None, download_config: Optional[DownloadConfig]=None, download_mode: Optional[DownloadMode]=None, ignore_verifications: bool=False, keep_in_memory: Optional[bool]=None, save_infos: bool=False, revision: Optional[Union[str, Version]]=None, use_auth_token: Optional[Union[bool, str]]=None, task: Optional[Union[str, TaskTemplate]]=None, streaming: bool=False, num_proc: Optional[int]=None, *, num_process: int=1, process_id: int=0, seed: Optional[int]=None, experiment_id: Optional[str]=None, max_concurrent_cache_files: int=10000, timeout: Union[int, float]=100, base_path: Optional[str]=None, info: Optional[DatasetInfo]=None, repo_id: Optional[str]=None, **kwargs) -> Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset] ===========changed ref 0=========== # module: dalle_mini.data @dataclass class Dataset: dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None + shard_by_host: bool = False train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False)
tools.train.train/MetricsLogger.get_all_train_metrics
Modified
borisdayma~dalle-mini
71435938622a32e5b67a5ae170b38e83db6b7c95
fix: weight decay Adam + speed logging
<10>:<add> if new_step > self.step: <add> time_per_step = (new_time - self.time) / (new_step - self.step) <del> time_per_step = (new_time - self.time) / (new_step - self.step) <11>:<add> self.step = new_step <del> self.step = new_step <12>:<add> self.time = new_time <del> self.time = new_time <13>:<add> state_dict["time_per_step"] = time_per_step <del> return {**metrics, **state_dict, "time_per_step": time_per_step} <14>:<add> return {**metrics, **state_dict}
# module: tools.train.train class MetricsLogger: def get_all_train_metrics(self, train_metrics, state): <0> """Make a dict of training metrics to be logged""" <1> metrics = unreplicate(train_metrics) <2> # get state parameters <3> state_dict = { <4> k.split("_")[-1]: unreplicate(getattr(state, k)) <5> for k in ["epoch", "train_time", "train_samples"] <6> } <7> # timing metrics <8> new_step = int(unreplicate(state.step)) <9> new_time = time.perf_counter() <10> time_per_step = (new_time - self.time) / (new_step - self.step) <11> self.step = new_step <12> self.time = new_time <13> return {**metrics, **state_dict, "time_per_step": time_per_step} <14>
===========unchanged ref 0=========== at: time perf_counter() -> float at: tools.train.train.MetricsLogger.__init__ self.step = state.step self.time = time.perf_counter()
tools.train.distributed_shampoo/power_iteration
Modified
borisdayma~dalle-mini
b90198c23bd1e1a94314c888686305f880c5d715
feat: update distributed_shampoo
# module: tools.train.distributed_shampoo def power_iteration( matrix, num_iters=100, error_tolerance=1e-6, precision=lax.Precision.HIGHEST): <0> r"""Power iteration algorithm. <1> <2> The power iteration algorithm takes a symmetric PSD matrix `A`, and produces <3> a scalar `\lambda` , which is the greatest (in absolute value) eigenvalue <4> of `A`, and a vector v, which is the corresponding eigenvector of `A`. <5> <6> References: <7> [Wikipedia, 2021](https://en.wikipedia.org/wiki/Power_iteration) <8> <9> Args: <10> matrix: the symmetric PSD matrix. <11> num_iters: Number of iterations. <12> error_tolerance: Iterative exit condition. <13> precision: precision XLA related flag, the available options are: <14> a) lax.Precision.DEFAULT (better step time, but not precise) <15> b) lax.Precision.HIGH (increased precision, slower) <16> c) lax.Precision.HIGHEST (best possible precision, slowest) <17> <18> Returns: <19> eigen vector, eigen value <20> """ <21> matrix_size = matrix.shape[-1] <22> def _iter_condition(state): <23> i, unused_v, unused_s, unused_s_v, run_step = state <24> return jnp.logical_and(i < num_iters, run_step) <25> <26> def _iter_body(state): <27> """One step of power iteration.""" <28> i, new_v, s, s_v, unused_run_step = state <29> new_v = new_v / jnp.linalg.norm(new_v) <30> <31> s_v = jnp.einsum('ij,j->i', matrix, new_v, precision=precision) <32> s_new = jnp.einsum('i,i->', new_v, s_v, precision=precision) <33> return (i + 1, s_v, s_</s>
===========below chunk 0=========== # module: tools.train.distributed_shampoo def power_iteration( matrix, num_iters=100, error_tolerance=1e-6, precision=lax.Precision.HIGHEST): # offset: 1 jnp.greater(jnp.abs(s_new - s), error_tolerance)) # Figure out how to use step as seed for random. v_0 = np.random.uniform(-1.0, 1.0, matrix_size).astype(matrix.dtype) init_state = tuple([0, v_0, jnp.zeros([], dtype=matrix.dtype), v_0, True]) _, v_out, s_out, _, _ = lax.while_loop( _iter_condition, _iter_body, init_state) v_out = v_out / jnp.linalg.norm(v_out) return v_out, s_out ===========unchanged ref 0=========== at: tools.train.distributed_shampoo QuantizedValue() at: tools.train.distributed_shampoo.QuantizedValue quantized: chex.Array diagonal: chex.Array # Diagonal (if extract_diagonal is set) bucket_size: chex.Array quantized_dtype: jnp.dtype = struct.field( pytree_node=False) # Dtype for the quantized value. extract_diagonal: bool = struct.field( pytree_node=False) # In case its centered. shape: Any = struct.field(pytree_node=False) # Shape of the tensor. at: tools.train.distributed_shampoo.QuantizedValue.quantize num_buckets = jnp.array(32767.0, dtype=float_dtype) num_buckets = jnp.array(127.0, dtype=float_dtype) diagonal_fvalue = [] at: typing List = _alias(list, 1, inst=False, name='List') NamedTuple(typename: str, fields: Iterable[Tuple[str, Any]]=..., **kwargs: Any) ===========changed ref 0=========== # module: tools.train.distributed_shampoo + # pylint:disable=no-value-for-parameter + @struct.dataclass + class QuantizedValue: + """State associated with quantized value.""" + quantized: chex.Array + diagonal: chex.Array # Diagonal (if extract_diagonal is set) + bucket_size: chex.Array + quantized_dtype: jnp.dtype = struct.field( + pytree_node=False) # Dtype for the quantized value. + extract_diagonal: bool = struct.field( + pytree_node=False) # In case its centered. + shape: Any = struct.field(pytree_node=False) # Shape of the tensor. + ===========changed ref 1=========== # module: tools.train.distributed_shampoo + # pylint:disable=no-value-for-parameter + @struct.dataclass + class QuantizedValue: + @classmethod + def from_float_value(cls, fvalue, quantized_dtype, extract_diagonal=False): + if isinstance(fvalue, list) and not fvalue: + return QuantizedValue([], [], [], quantized_dtype, extract_diagonal, []) + quantized, diagonal_fvalue, bucket_size = QuantizedValue.quantize( + fvalue, quantized_dtype, extract_diagonal) + return QuantizedValue(quantized, diagonal_fvalue, bucket_size, + quantized_dtype, extract_diagonal, + list(quantized.shape)) + ===========changed ref 2=========== # module: tools.train.distributed_shampoo # These are per-parameter local states; All statistics here mirror the parameter # Thus the sharding is copied over from the param specification. @struct.dataclass class LocalShardedParameterStats: """State associated to each parameter of the model being trained.""" + diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner - diagonal_statistics: chex.Array # Accumulator for diagonal preconditioner + diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner - diagonal_momentum: chex.Array # Momentum for the diagonal preconditioner + momentum: QuantizedValue # Momentum for the shampoo preconditioner - momentum: chex.Array # Momentum for the shampoo preconditioner index_start: np.int32 = struct.field( pytree_node=False) # Index into global statistics array sizes: Any = struct.field(pytree_node=False) # Sizes of the statistics. ===========changed ref 3=========== # module: tools.train.distributed_shampoo - # pylint:disable=no-value-for-parameter - - # Per parameter optimizer state used in data-parallel training. class ParameterStats(NamedTuple): """State associated to each parameter of the model being trained.""" + diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner - diagonal_statistics: chex.Array # Accumulator for diagonal preconditioner + statistics: List[Any] # Statistics (QuantizedValue, chex.Array) + preconditioners: List[Any] # Preconditioners (QuantizedValue, chex.Array) - statistics: chex.Array # Statistics - preconditioners: chex.Array # Preconditioners + diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner - diagonal_momentum: chex.Array # Momentum for the diagonal preconditioner + momentum: QuantizedValue # Momentum for the shampoo preconditioner - momentum: chex.Array # Momentum for the shampoo preconditioner ===========changed ref 4=========== # module: tools.train.distributed_shampoo + # pylint:disable=no-value-for-parameter + @struct.dataclass + class QuantizedValue: + # Quantization is from Lingvo JAX optimizers. + # We extend it for int16 quantization of PSD matrices. + @classmethod + def quantize(cls, fvalue, quantized_dtype, extract_diagonal=False): + """Returns quantized value and the bucket.""" + if quantized_dtype == jnp.float32: + return fvalue, [], [] + elif quantized_dtype == jnp.bfloat16: + return fvalue.astype(jnp.bfloat16), [], [] + + float_dtype = fvalue.dtype + if quantized_dtype == jnp.int8: + # value -128 is not used. + num_buckets = jnp.array(127.0, dtype=float_dtype) + elif quantized_dtype == jnp.int16: + # value -32768 is not used. + num_buckets = jnp.array(32767.0, dtype=float_dtype) + else: + raise ValueError(f'Quantized dtype {quantized_dtype} not supported.') + # max value is mapped to num_buckets + + if extract_diagonal and fvalue.ndim != 2: + raise ValueError( + f'Input array {fvalue} must be 2D to work with extract_diagonal.') + + diagonal_fvalue = [] + if extract_diagonal: + diagonal_fvalue = jnp.diag(fvalue) + # Remove the diagonal entries. + fvalue = fvalue - jnp.diag(diagonal_fvalue) + + # TODO(rohananil): Extend this by making use of information about the blocks + # SM3 style which will be useful for diagonal statistics + # We first decide the scale. + if fvalue.ndim < 1: + raise ValueError( + f'Input array {f</s>
dalle_mini.model.modeling/DalleBart.from_pretrained
Modified
borisdayma~dalle-mini
55a631d3e4bcadc2f30018266016985a13e391b4
Store resolved path after loading model.
<10>:<del> <11>:<del> return super(DalleBart, cls).from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
# module: dalle_mini.model.modeling class DalleBart(FlaxBartPreTrainedModel, FlaxBartForConditionalGeneration): @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): <0> """ <1> Initializes from a wandb artifact, or delegates loading to the superclass. <2> """ <3> if ':' in pretrained_model_name_or_path: <4> # wandb artifact <5> artifact = wandb.Api().artifact(pretrained_model_name_or_path) <6> <7> # we download everything, including opt_state, so we can resume training if needed <8> # see also: #120 <9> pretrained_model_name_or_path = artifact.download() <10> <11> return super(DalleBart, cls).from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) <12>
===========unchanged ref 0=========== at: dalle_mini.model.modeling DalleBart(config: DalleBartConfig, input_shape: Tuple[int]=(1, 1), seed: int=0, dtype: jnp.dtype=jnp.float32, abstract_init: bool=False, **kwargs) at: transformers.modeling_flax_utils.FlaxPreTrainedModel config_class = None base_model_prefix = "" main_input_name = "input_ids" _auto_class = None _missing_keys = set() from_pretrained(pretrained_model_name_or_path: Union[str, os.PathLike], dtype: jnp.dtype=jnp.float32, module: nn.Module, input_shape: Tuple=(1, 1), seed: int=0, dtype: jnp.dtype=jnp.float32, /, *, config: Optional[Union[PretrainedConfig, str, os.PathLike]]=None, cache_dir: Optional[Union[str, os.PathLike]]=None, ignore_mismatched_sizes: bool=False, force_download: bool=False, local_files_only: bool=False, token: Optional[Union[str, bool]]=None, revision: str="main", config_file_name: Optional[Union[str, os.PathLike]]=None, **kwargs) at: wandb Api = PublicApi at: wandb.apis.public.Api _HTTP_TIMEOUT = env.get_http_timeout(9) VIEWER_QUERY = gql( """ query Viewer{ viewer { id flags entity username email admin apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } """ ) ===========unchanged ref 1=========== USERS_QUERY = gql( """ query SearchUsers($query: String) { users(query: $query) { edges { node { id flags entity admin email deletedAt username apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } } } """ ) CREATE_PROJECT = gql( """ mutation upsertModel( $description: String $entityName: String $id: String $name: String $framework: String $access: String $views: JSONString ) { upsertModel( input: { description: $description entityName: $entityName id: $id name: $name framework: $framework access: $access views: $views } ) { project { id name entityName description access views } model { id name entityName description access views } inserted } } """ ) artifact(name, type=None) at: wandb.apis.public.Artifact QUERY = gql( """ query ArtifactWithCurrentManifest( $id: ID!, ) { artifact(id: $id) { currentManifest { id file { id directUrl } } ...ArtifactFragment } } %s """ % ARTIFACT_FRAGMENT ) download(root=None, recursive=False)
dalle_mini.model.modeling/DalleBart.from_pretrained
Modified
borisdayma~dalle-mini
08dd098784c1d209106bbb836689fd4b67ae78e2
Never consider local dirs as remote wandb references.
<3>:<add> if ':' in pretrained_model_name_or_path and not os.path.isdir(pretrained_model_name_or_path): <del> if ':' in pretrained_model_name_or_path:
# module: dalle_mini.model.modeling class DalleBart(FlaxBartPreTrainedModel, FlaxBartForConditionalGeneration): @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): <0> """ <1> Initializes from a wandb artifact, or delegates loading to the superclass. <2> """ <3> if ':' in pretrained_model_name_or_path: <4> # wandb artifact <5> artifact = wandb.Api().artifact(pretrained_model_name_or_path) <6> <7> # we download everything, including opt_state, so we can resume training if needed <8> # see also: #120 <9> pretrained_model_name_or_path = artifact.download() <10> <11> model = super(DalleBart, cls).from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) <12> model.config.resolved_name_or_path = pretrained_model_name_or_path <13> return model <14>
===========unchanged ref 0=========== at: dalle_mini.model.modeling DalleBart(config: DalleBartConfig, input_shape: Tuple[int]=(1, 1), seed: int=0, dtype: jnp.dtype=jnp.float32, abstract_init: bool=False, **kwargs) at: os.path isdir(s: AnyPath) -> bool at: transformers.modeling_flax_utils.FlaxPreTrainedModel config_class = None base_model_prefix = "" main_input_name = "input_ids" _auto_class = None _missing_keys = set() from_pretrained(pretrained_model_name_or_path: Union[str, os.PathLike], dtype: jnp.dtype=jnp.float32, module: nn.Module, input_shape: Tuple=(1, 1), seed: int=0, dtype: jnp.dtype=jnp.float32, /, *, config: Optional[Union[PretrainedConfig, str, os.PathLike]]=None, cache_dir: Optional[Union[str, os.PathLike]]=None, ignore_mismatched_sizes: bool=False, force_download: bool=False, local_files_only: bool=False, token: Optional[Union[str, bool]]=None, revision: str="main", config_file_name: Optional[Union[str, os.PathLike]]=None, **kwargs) at: wandb Api = PublicApi at: wandb.apis.public.Api _HTTP_TIMEOUT = env.get_http_timeout(9) VIEWER_QUERY = gql( """ query Viewer{ viewer { id flags entity username email admin apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } """ ) ===========unchanged ref 1=========== USERS_QUERY = gql( """ query SearchUsers($query: String) { users(query: $query) { edges { node { id flags entity admin email deletedAt username apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } } } """ ) CREATE_PROJECT = gql( """ mutation upsertModel( $description: String $entityName: String $id: String $name: String $framework: String $access: String $views: JSONString ) { upsertModel( input: { description: $description entityName: $entityName id: $id name: $name framework: $framework access: $access views: $views } ) { project { id name entityName description access views } model { id name entityName description access views } inserted } } """ ) artifact(name, type=None) at: wandb.apis.public.Artifact QUERY = gql( """ query ArtifactWithCurrentManifest( $id: ID!, ) { artifact(id: $id) { currentManifest { id file { id directUrl } } ...ArtifactFragment } } %s """ % ARTIFACT_FRAGMENT ) download(root=None, recursive=False)
dalle_mini.data/Dataset.dataloader
Modified
borisdayma~dalle-mini
f69b21b3d8906f5f5bdfcc58fe9d26f53cdcf560
Load from wandb artifact (#121)
<0>:<add> num_devices = jax.local_device_count() <add> <2>:<add> per_device_batch_size: int, <del> batch_size: int, <3>:<add> gradient_accumulation_steps: int, <7>:<add> Shuffle batches if rng is set. <del> Shuffle batches if `shuffle` is `True`. <9>:<add> batch_size = ( <add> per_device_batch_size * num_devices * gradient_accumulation_steps <add> ) <24>:<add> if gradient_accumulation_steps is not None: <add> batch = jax.tree_map( <add> lambda x: x.reshape((-1, per_device_batch_size) + x.shape[1:]), <add> batch, <add> ) <28>:<add> dataset: Dataset, <add> split: str, <add> per_device_batch_size: int, <add> gradient_accumulation_steps: int, <add> epoch: int, <del> dataset: Dataset, batch_size: int, epoch: int <30>:<del> # epoch is only use for multi-host <33>:<add> first_loop = True # stop after one loop in some cases <del> first_loop = True
# module: dalle_mini.data @dataclass class Dataset: + def dataloader( + self, split, per_device_batch_size, gradient_accumulation_steps=None, epoch=None + ): - def dataloader(self, split, batch_size, epoch=None): <0> def _dataloader_datasets_non_streaming( <1> dataset: Dataset, <2> batch_size: int, <3> rng: jax.random.PRNGKey = None, <4> ): <5> """ <6> Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. <7> Shuffle batches if `shuffle` is `True`. <8> """ <9> steps_per_epoch = len(dataset) // batch_size <10> <11> if rng is not None: <12> batch_idx = jax.random.permutation(rng, len(dataset)) <13> else: <14> batch_idx = jnp.arange(len(dataset)) <15> <16> batch_idx = batch_idx[ <17> : steps_per_epoch * batch_size <18> ] # Skip incomplete batch. <19> batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) <20> <21> for idx in batch_idx: <22> batch = dataset[idx] <23> batch = {k: jnp.array(v) for k, v in batch.items()} <24> batch = shard(batch) <25> yield batch <26> <27> def _dataloader_datasets_streaming( <28> dataset: Dataset, batch_size: int, epoch: int <29> ): <30> # epoch is only use for multi-host <31> keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"] <32> batch = {k: [] for k in keys} <33> first_loop = True <34> while self.multi_hosts or first_loop: <35> # in multi-host, we run forever (no epoch) as hosts need to stop <36> # at the same time and we don</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: + def dataloader( + self, split, per_device_batch_size, gradient_accumulation_steps=None, epoch=None + ): - def dataloader(self, split, batch_size, epoch=None): # offset: 1 if not first_loop: # multi-host setting, we reshuffle shards epoch += 1 dataset.set_epoch(epoch) for item in dataset: for k, v in item.items(): batch[k].append(v) if len(batch[keys[0]]) == batch_size: batch = {k: jnp.array(v) for k, v in batch.items()} batch = shard(batch) yield batch batch = {k: [] for k in keys} first_loop = False if split == "train": ds = self.train_dataset elif split == "eval": ds = self.eval_dataset else: raise ValueError(f'split must be "train" or "eval", got {split}') if self.streaming: if split == "train": ds.set_epoch(epoch) return _dataloader_datasets_streaming(ds, batch_size, epoch) else: if split == "train": self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) return _dataloader_datasets_non_streaming(ds, batch_size, input_rng) ===========unchanged ref 0=========== at: dalle_mini.data Dataset(dataset_repo_or_path: str, train_file: str=None, validation_file: str=None, streaming: bool=True, use_auth_token: bool=False, text_column: str="caption", encoding_column: str="encoding", max_train_samples: int=None, max_eval_samples: int=None, preprocessing_num_workers: int=None, overwrite_cache: bool=False, do_train: bool=False, do_eval: bool=True, seed_dataset: int=None, shard_by_host: bool=False, train_dataset: Dataset=field(init=False), eval_dataset: Dataset=field(init=False), rng_dataset: jnp.ndarray=field(init=False), multi_hosts: bool=field(init=False)) at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) at: dalle_mini.data.Dataset.__post_init__ self.multi_hosts = jax.process_count() > 1 ===========changed ref 0=========== # module: tools.train.train @dataclass class TrainingArguments: + def __post_init__(self): + assert self.optim in [ + "distributed_shampoo", + "adam", + "adafactor", + ], f"Selected optimizer not supported: {self.optim}" + if self.per_device_eval_batch_size is None: + self.per_device_eval_batch_size = self.per_device_train_batch_size + if self.weight_decay is None: + if self.optim in ["distributed_shampoo", "adam"]: + self.weight_decay = 0.0 + if ( + os.path.exists(self.output_dir) + and os.listdir(self.output_dir) + and self.do_train + and not self.overwrite_output_dir + ): + raise ValueError( + f"Output directory ({self.output_dir}) already exists and is not empty." + "Use --overwrite_output_dir to overcome." + ) + ===========changed ref 1=========== # module: tools.train.train - def create_learning_rate_fn( - num_warmup_steps: int, - learning_rate: float, - use_decay: bool, - num_train_steps: int = None, # used only with `use_decay`, typically train_size // batch_size * num_epochs - ) -> Callable[[int], jnp.array]: - """Returns a linear warmup, linear_decay learning rate function.""" - if use_decay: - assert ( - num_train_steps is not None - ), "Learning rate with decay requires number of training steps" - warmup_fn = optax.linear_schedule( - init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps - ) - if not use_decay: - return warmup_fn - decay_fn = optax.linear_schedule( - init_value=learning_rate, - end_value=0, - transition_steps=num_train_steps - num_warmup_steps, - ) - schedule_fn = optax.join_schedules( - schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps] - ) - return schedule_fn - ===========changed ref 2=========== # module: tools.train.train @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch. " "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." }, ) config_name: Optional[str] = field( default=None, metadata={ + "help": "Pretrained config name or path if not the same as model_name_or_path" - "help": "Pretrained config name or path if not the same as model_name" }, ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path" }, ) dtype: Optional[str] = field( default="float32", metadata={ + "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." - "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`." }, )
tools.train.train/TrainingArguments.__post_init__
Modified
borisdayma~dalle-mini
0081723a66509d60d116a8eda9c1ae27dada8e3a
feat(train): start pjit support
<7>:<del> if self.weight_decay is None: <8>:<del> if self.optim in ["distributed_shampoo", "adam"]: <9>:<del> self.weight_decay = 0.0 <20>:<add> assert ( <add> jax.device_count() % self.mp_devices == 0 <add> ), f"Number of available devices ({jax.device_count()} must be divisible by number of devices used for model parallelism ({self.mp_devices})." <add> self.dp_devices = jax.device_count() // self.mp_devices
# module: tools.train.train @dataclass class TrainingArguments: def __post_init__(self): <0> assert self.optim in [ <1> "distributed_shampoo", <2> "adam", <3> "adafactor", <4> ], f"Selected optimizer not supported: {self.optim}" <5> if self.per_device_eval_batch_size is None: <6> self.per_device_eval_batch_size = self.per_device_train_batch_size <7> if self.weight_decay is None: <8> if self.optim in ["distributed_shampoo", "adam"]: <9> self.weight_decay = 0.0 <10> if ( <11> os.path.exists(self.output_dir) <12> and os.listdir(self.output_dir) <13> and self.do_train <14> and not self.overwrite_output_dir <15> ): <16> raise ValueError( <17> f"Output directory ({self.output_dir}) already exists and is not empty." <18> "Use --overwrite_output_dir to overcome." <19> ) <20>
===========unchanged ref 0=========== at: dataclasses field(*, default_factory: Callable[[], _T], init: bool=..., repr: bool=..., hash: Optional[bool]=..., compare: bool=..., metadata: Optional[Mapping[str, Any]]=...) -> _T field(*, init: bool=..., repr: bool=..., hash: Optional[bool]=..., compare: bool=..., metadata: Optional[Mapping[str, Any]]=...) -> Any field(*, default: _T, init: bool=..., repr: bool=..., hash: Optional[bool]=..., compare: bool=..., metadata: Optional[Mapping[str, Any]]=...) -> _T at: tools.train.train.TrainingArguments output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU/CPU for training."} ) per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Batch size per GPU/TPU/CPU for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) ===========unchanged ref 1=========== learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, ) beta2: float = field( default=0.999, metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, ) adam_epsilon: float = field( default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} ) max_grad_norm: float = field( default=1.0, metadata={"help": "Max gradient norm for Adafactor."} ) block_size: int = field( default=1024, metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, ) preconditioning_compute_steps: int = field( default=10, metadata={"help": "Number of steps to update preconditioner."} ) skip_preconditioning_dim_size_gt: int = field( default=4096, metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, ) optim_quantized: bool = field( default=False, metadata={ "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." }, ) num_train_epochs: int = field( default=3, metadata={"help": "Total number of training epochs to perform."} ) ===========unchanged ref 2=========== warmup_steps: int = field( default=0, metadata={"help": "Linear warmup over warmup_steps."} ) lr_decay: str = field( default=None, metadata={ "help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential." }, ) lr_transition_steps: int = field( default=None, metadata={ "help": "Number of transition steps associated with learning rate decay when using exponential decay." }, ) lr_decay_rate: float = field( default=None, metadata={ "help": "Decay rate associated with learning rate when using exponential decay." }, ) lr_staircase: bool = field( default=False, metadata={ "help": "Whether to use staircase or continuous learning rate when using exponential decay." }, ) logging_steps: int = field( default=40, metadata={"help": "Log every X updates steps."} ) eval_steps: int = field( default=400, metadata={"help": "Run an evaluation every X steps."} ) save_steps: int = field( default=4000, metadata={"help": "Save checkpoint every X updates steps."} ) log_model: bool = field( default=False, metadata={"help": "Log model to wandb at `save_steps` frequency."}, ) seed_model: int = field( default=42, metadata={ "help": "Random seed for the model that will be set at the beginning of training." }, ) resume_from_checkpoint: Optional[str] = field( default=None, metadata={"help": "Reference to a wandb artifact for resuming training."}, ) ===========unchanged ref 3=========== wandb_entity: Optional[str] = field( default=None, metadata={"help": "The wandb entity to use (for teams)."}, ) wandb_project: str = field( default="dalle-mini", metadata={"help": "The name of the wandb project."}, ) wandb_job_type: str = field( default="Seq2Seq", metadata={"help": "The name of the wandb job type."}, )
tools.train.train/MetricsLogger.get_all_train_metrics
Modified
borisdayma~dalle-mini
49597a2091cfa137f599d76353f3a8b77a819a11
feat(train): progress on pjit
<1>:<add> metrics = train_metrics <del> metrics = unreplicate(train_metrics) <4>:<add> k.split("_")[-1]: getattr(state, k) <del> k.split("_")[-1]: unreplicate(getattr(state, k)) <8>:<add> new_step = int(state.step) <del> new_step = int(unreplicate(state.step))
# module: tools.train.train class MetricsLogger: def get_all_train_metrics(self, train_metrics, state): <0> """Make a dict of training metrics to be logged""" <1> metrics = unreplicate(train_metrics) <2> # get state parameters <3> state_dict = { <4> k.split("_")[-1]: unreplicate(getattr(state, k)) <5> for k in ["epoch", "train_time", "train_samples"] <6> } <7> # timing metrics <8> new_step = int(unreplicate(state.step)) <9> new_time = time.perf_counter() <10> if new_step > self.step: <11> time_per_step = (new_time - self.time) / (new_step - self.step) <12> self.step = new_step <13> self.time = new_time <14> state_dict["time_per_step"] = time_per_step <15> return {**metrics, **state_dict} <16>
===========unchanged ref 0=========== at: time perf_counter() -> float at: tools.train.train.MetricsLogger.__init__ self.step = state.step self.time = time.perf_counter()
dalle_mini.data/Dataset.dataloader
Modified
borisdayma~dalle-mini
49597a2091cfa137f599d76353f3a8b77a819a11
feat(train): progress on pjit
<35>:<del> batch = shard(batch)
# module: dalle_mini.data @dataclass class Dataset: def dataloader( self, split, per_device_batch_size, gradient_accumulation_steps=None, epoch=None ): <0> num_devices = jax.local_device_count() <1> <2> def _dataloader_datasets_non_streaming( <3> dataset: Dataset, <4> per_device_batch_size: int, <5> gradient_accumulation_steps: int, <6> rng: jax.random.PRNGKey = None, <7> ): <8> """ <9> Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. <10> Shuffle batches if rng is set. <11> """ <12> batch_size = ( <13> per_device_batch_size * num_devices * gradient_accumulation_steps <14> ) <15> steps_per_epoch = len(dataset) // batch_size <16> <17> if rng is not None: <18> batch_idx = jax.random.permutation(rng, len(dataset)) <19> else: <20> batch_idx = jnp.arange(len(dataset)) <21> <22> batch_idx = batch_idx[ <23> : steps_per_epoch * batch_size <24> ] # Skip incomplete batch. <25> batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) <26> <27> for idx in batch_idx: <28> batch = dataset[idx] <29> batch = {k: jnp.array(v) for k, v in batch.items()} <30> if gradient_accumulation_steps is not None: <31> batch = jax.tree_map( <32> lambda x: x.reshape((-1, per_device_batch_size) + x.shape[1:]), <33> batch, <34> ) <35> batch = shard(batch) <36> yield batch <37> <38> def _dataloader_datasets_streaming( <39> dataset: Dataset, <40> split: str, <41> per_</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def dataloader( self, split, per_device_batch_size, gradient_accumulation_steps=None, epoch=None ): # offset: 1 gradient_accumulation_steps: int, epoch: int, ): keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"] batch = {k: [] for k in keys} first_loop = True # stop after one loop in some cases while (self.multi_hosts and split == "train") or first_loop: # in multi-host, we run forever (no epoch) as hosts need to stop # at the same time and training data may not be split equally # For validation data we put the entire set on each host as we could lose # too many samples on pods if epoch is not None: # reshuffle training data at each epoch (not applicable with validation set) dataset.set_epoch(epoch) epoch += 1 for item in dataset: for k, v in item.items(): batch[k].append(v) # batch = 5, devices = 8, accumulation = 2 / batch_size = 5 x 8 # (40, 3, 3) -> shard 8 x (5, 3, 3) # (16, 5, 3, 3) -> shard 8 x (2, 5, 3, 3) if len(batch[keys[0]]) == per_device_batch_size * num_devices * ( gradient_accumulation_steps if gradient_accumulation_steps is not None else 1 ): batch = {k: jnp.array(v) for k, v in batch.items()} if gradient_accumulation_steps is not None: batch = jax.tree_map( lambda x: x.reshape( (-1, per_device_batch_size) + x.shape[1:] ), batch, ) batch = shard(batch) </s> ===========below chunk 1=========== # module: dalle_mini.data @dataclass class Dataset: def dataloader( self, split, per_device_batch_size, gradient_accumulation_steps=None, epoch=None ): # offset: 2 <s>size) + x.shape[1:] ), batch, ) batch = shard(batch) yield batch batch = {k: [] for k in keys} first_loop = False if split == "train": ds = self.train_dataset elif split == "eval": ds = self.eval_dataset else: raise ValueError(f'split must be "train" or "eval", got {split}') if self.streaming: return _dataloader_datasets_streaming( ds, split, per_device_batch_size, gradient_accumulation_steps, epoch ) else: if split == "train": self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) return _dataloader_datasets_non_streaming( ds, per_device_batch_size, gradient_accumulation_steps, input_rng ) ===========unchanged ref 0=========== at: dalle_mini.data Dataset(dataset_repo_or_path: str, train_file: str=None, validation_file: str=None, streaming: bool=True, use_auth_token: bool=False, text_column: str="caption", encoding_column: str="encoding", max_train_samples: int=None, max_eval_samples: int=None, preprocessing_num_workers: int=None, overwrite_cache: bool=False, do_train: bool=False, do_eval: bool=True, seed_dataset: int=None, shard_by_host: bool=False, train_dataset: Dataset=field(init=False), eval_dataset: Dataset=field(init=False), rng_dataset: jnp.ndarray=field(init=False), multi_hosts: bool=field(init=False)) at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) at: dalle_mini.data.Dataset.__post_init__ self.multi_hosts = jax.process_count() > 1 ===========unchanged ref 1=========== self.train_dataset = dataset["train"] self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) self.eval_dataset = dataset["validation"] self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) ) at: dalle_mini.data.Dataset.preprocess self.train_dataset = self.train_dataset.shuffle(1000, self.seed_dataset) self.rng_dataset = jax.random.PRNGKey(self.seed_dataset) ===========changed ref 0=========== # module: tools.train.train class MetricsLogger: def get_all_train_metrics(self, train_metrics, state): """Make a dict of training metrics to be logged""" + metrics = train_metrics - metrics = unreplicate(train_metrics) # get state parameters state_dict = { + k.split("_")[-1]: getattr(state, k) - k.split("_")[-1]: unreplicate(getattr(state, k)) for k in ["epoch", "train_time", "train_samples"] } # timing metrics + new_step = int(state.step) - new_step = int(unreplicate(state.step)) new_time = time.perf_counter() if new_step > self.step: time_per_step = (new_time - self.time) / (new_step - self.step) self.step = new_step self.time = new_time state_dict["time_per_step"] = time_per_step return {**metrics, **state_dict}
dalle_mini.model.modeling/FlaxBartPreTrainedModel.__init__
Modified
borisdayma~dalle-mini
12f323d7f80887ac0be14c310630f4a26241724f
feat(model): clean way to load on cpu
<17>:<add> # init weights on CPU <add> if load_on_cpu: <add> init_fn = jax.jit(self.init_weights, static_argnums=(1,), backend="cpu") <add> else: <add> init_fn = self.init_weights <add> <22>:<add> init_fn = partial(init_fn, input_shape=input_shape) <del> init_fn = partial(self.init_weights, input_shape=input_shape) <25>:<add> random_params = init_fn(self.key, input_shape) <del> random_params = self.init_weights(self.key, input_shape)
# module: dalle_mini.model.modeling class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): def __init__( self, config: DalleBartConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, abstract_init: bool = False, + load_on_cpu: bool = True, **kwargs, ): <0> module = self.module_class(config=config, dtype=dtype, **kwargs) <1> <2> # adapted from HuggingFace FlaxPreTrainedModel <3> if config is None: <4> raise ValueError("config cannot be None") <5> <6> if module is None: <7> raise ValueError("module cannot be None") <8> <9> # Those are private to be exposed as typed property on derived classes. <10> self._config = config <11> self._module = module <12> <13> # Those are public as their type is generic to every derived classes. <14> self.key = PRNGKey(seed) <15> self.dtype = dtype <16> <17> # randomly initialized parameters <18> if abstract_init: <19> # init the model weights only abstractly, eval_shape will return a pytree <20> # with the structure as weights but without any actual values, this will just contain <21> # the shape information. Weights need to be loaded later. <22> init_fn = partial(self.init_weights, input_shape=input_shape) <23> random_params = jax.eval_shape(init_fn, self.key) <24> else: <25> random_params = self.init_weights(self.key, input_shape) <26> <27> # save required_params as set <28> self._required_params = set(flatten_dict(unfreeze(random_params)).keys()) <29> self.params = random_params <30>
===========unchanged ref 0=========== at: transformers.modeling_flax_utils.FlaxPreTrainedModel config_class = None base_model_prefix = "" main_input_name = "input_ids" _auto_class = None _missing_keys = set() at: transformers.models.bart.modeling_flax_bart.FlaxBartPreTrainedModel config_class = BartConfig base_model_prefix: str = "model" module_class: nn.Module = None __init__(self, config: BartConfig, input_shape: Tuple[int]=(1, 1), seed: int=0, dtype: jnp.dtype=jnp.float32, _do_init: bool=True, **kwargs) init_weights(rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict=None) -> FrozenDict at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') ===========changed ref 0=========== # module: tools.train.train def main(): # See all possible arguments by passing the --help flag to this script. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1]) ) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Load dataset dataset = Dataset( **asdict(data_args), do_train=training_args.do_train, do_eval=training_args.do_eval, ) logger.info(f"Local TPUs: {jax.local_device_count()}") logger.info(f"Global TPUs: {jax</s> ===========changed ref 1=========== # module: tools.train.train def main(): # offset: 1 <s>f"Local TPUs: {jax.local_device_count()}") logger.info(f"Global TPUs: {jax.device_count()}") if training_args.assert_TPU_available: assert ( jax.local_device_count() == 8 ), "TPUs in use, please check running processes" # Set up wandb run if jax.process_index() == 0: wandb.init( entity=training_args.wandb_entity, project=training_args.wandb_project, job_type=training_args.wandb_job_type, config=parser.parse_args(), ) if training_args.resume_from_checkpoint is not None: if jax.process_index() == 0: artifact = wandb.run.use_artifact(training_args.resume_from_checkpoint) else: artifact = wandb.Api().artifact(training_args.resume_from_checkpoint) artifact_dir = artifact.download() # load model model = DalleBart.from_pretrained( artifact_dir, dtype=getattr(jnp, model_args.dtype), abstract_init=True, ) # load tokenizer tokenizer = DalleBartTokenizer.from_pretrained( artifact_dir, use_fast=True, ) else: # Set up our new model config if model_args.config_name: config = DalleBartConfig.from_pretrained(model_args.config_name) else: config = None # Load or create new model if model_args.model_name_or_path: model = DalleBart.from_pretrained( model_args.model_name_or_path, </s> ===========changed ref 2=========== # module: tools.train.train def main(): # offset: 2 <s>=config, seed=training_args.seed_model, dtype=getattr(jnp, model_args.dtype), abstract_init=True, ) else: model = DalleBart( config, seed=training_args.seed_model, dtype=getattr(jnp, model_args.dtype), ) # Load tokenizer if model_args.tokenizer_name is not None: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, use_fast=True ) else: tokenizer = DalleBartTokenizer.from_pretrained( model_args.model_name_or_path, use_fast=True, ) # Preprocessing the datasets. # We need to normalize and tokenize inputs and targets. dataset.preprocess( tokenizer=tokenizer, decoder_start_token_id=model.config.decoder_start_token_id, normalize_text=model.config.normalize_text, max_length=model.config.max_text_length, ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed_model) rng, dropout_rng = jax.random.split(rng) # Store some constant num_epochs = training_args.num_train_epochs # batch size per node train_batch_size = ( training_args.per_device_train_batch_size * jax.local_device_count() ) batch_size_per_node = train_batch_size * training_args.gradient_accumulation_steps batch_size_per_step = batch_size_per_node * jax.process_count() eval_batch_size = ( training_args.per_device_eval_batch</s>
tools.train.distributed_shampoo/matrix_inverse_pth_root
Modified
borisdayma~dalle-mini
8a9e367d3653df65b41e872ca752ced50c671c9c
feat: update distributed_shampoo + fix None spec
<25>:<add> <add> assert matrix.shape[0] == matrix.shape[1]
# module: tools.train.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): <0> """Computes `matrix^(-1/p)`, where `p` is a positive integer. <1> <2> This function uses the Coupled newton iterations algorithm for <3> the computation of a matrix's inverse pth root. <4> <5> <6> References: <7> [Functions of Matrices, Theory and Computation, <8> Nicholas J Higham, Pg 184, Eq 7.18]( <9> https://epubs.siam.org/doi/book/10.1137/1.9780898717778) <10> <11> Args: <12> matrix: the symmetric PSD matrix whose power it to be computed <13> p: exponent, for p a positive integer. <14> num_iters: Maximum number of iterations. <15> ridge_epsilon: Ridge epsilon added to make the matrix positive definite. <16> error_tolerance: Error indicator, useful for early termination. <17> precision: precision XLA related flag, the available options are: <18> a) lax.Precision.DEFAULT (better step time, but not precise) <19> b) lax.Precision.HIGH (increased precision, slower) <20> c) lax.Precision.HIGHEST (best possible precision, slowest) <21> <22> Returns: <23> matrix^(-1/p) <24> """ <25> <26> # We use float32 for the matrix inverse pth root. <27> # Switch to f64 if you have hardware that supports it. <28> matrix_size = matrix.shape[0] <29> alpha = jnp.asarray(-1.0 / p, jnp.float32) <30> identity = jnp.eye(matrix_size, dtype=jnp.float32) <31> _, max_ev = power_iteration( <32> matrix=matrix, num_iters=100,</s>
===========below chunk 0=========== # module: tools.train.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): # offset: 1 ) ridge_epsilon = ridge_epsilon * jnp.maximum(max_ev, 1e-16) def _unrolled_mat_pow_1(mat_m): """Computes mat_m^1.""" return mat_m def _unrolled_mat_pow_2(mat_m): """Computes mat_m^2.""" return jnp.matmul(mat_m, mat_m, precision=precision) def _unrolled_mat_pow_4(mat_m): """Computes mat_m^4.""" mat_pow_2 = _unrolled_mat_pow_2(mat_m) return jnp.matmul(mat_pow_2, mat_pow_2, precision=precision) def _unrolled_mat_pow_8(mat_m): """Computes mat_m^4.""" mat_pow_4 = _unrolled_mat_pow_4(mat_m) return jnp.matmul(mat_pow_4, mat_pow_4, precision=precision) def mat_power(mat_m, p): """Computes mat_m^p, for p == 1, 2, 4 or 8. Args: mat_m: a square matrix p: a positive integer Returns: mat_m^p """ # We unrolled the loop for performance reasons. exponent = jnp.round(jnp.log2(p)) return lax.switch( jnp.asarray(exponent, jnp.int32), [ _unrolled_mat_pow_1, _unrolled_mat_pow_2, _unrolled_mat_pow_4,</s> ===========below chunk 1=========== # module: tools.train.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): # offset: 2 <s>mat_pow_1, _unrolled_mat_pow_2, _unrolled_mat_pow_4, _unrolled_mat_pow_8, ], (mat_m), ) def _iter_condition(state): (i, unused_mat_m, unused_mat_h, unused_old_mat_h, error, run_step) = state error_above_threshold = jnp.logical_and(error > error_tolerance, run_step) return jnp.logical_and(i < num_iters, error_above_threshold) def _iter_body(state): (i, mat_m, mat_h, unused_old_mat_h, error, unused_run_step) = state mat_m_i = (1 - alpha) * identity + alpha * mat_m new_mat_m = jnp.matmul(mat_power(mat_m_i, p), mat_m, precision=precision) new_mat_h = jnp.matmul(mat_h, mat_m_i, precision=precision) new_error = jnp.max(jnp.abs(new_mat_m - identity)) # sometimes error increases after an iteration before decreasing and # converging. 1.2 factor is used to bound the maximal allowed increase. return (i + 1, new_mat_m, new_mat_h, mat_h, new_error, new_error < error * 1.2) if matrix_size == 1: resultant_mat_h = (matrix + ridge_</s> ===========below chunk 2=========== # module: tools.train.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): # offset: 3 <s>) ** alpha error = 0 else: damped_matrix = matrix + ridge_epsilon * identity z = (1 + p) / (2 * jnp.linalg.norm(damped_matrix)) new_mat_m_0 = damped_matrix * z new_error = jnp.max(jnp.abs(new_mat_m_0 - identity)) new_mat_h_0 = identity * jnp.power(z, 1.0 / p) init_state = tuple([0, new_mat_m_0, new_mat_h_0, new_mat_h_0, new_error, True]) _, mat_m, mat_h, old_mat_h, error, convergence = lax.while_loop( _iter_condition, _iter_body, init_state ) error = jnp.max(jnp.abs(mat_m - identity)) is_converged = jnp.asarray(convergence, old_mat_h.dtype) resultant_mat_h = is_converged * mat_h + (1 - is_converged) * old_mat_h resultant_mat_h = jnp.asarray(resultant_mat_h, matrix.dtype) return resultant_mat_h, error ===========unchanged ref 0=========== at: numpy.ndarray __hash__: ClassVar[None] astype(dtype: DTypeLike, order: _OrderKACF=..., casting: _CastingKind=..., subok: bool=..., copy: bool | _CopyMode=...) -> NDArray[Any] astype(dtype: _DTypeLike[_ScalarType], order: _OrderKACF=..., casting: _CastingKind=..., subok: bool=..., copy: bool | _CopyMode=...) -> NDArray[_ScalarType] at: numpy.random.mtrand RandomState(seed: None | _ArrayLikeInt_co | BitGenerator=...) at: numpy.random.mtrand.RandomState _bit_generator: BitGenerator uniform(low: _ArrayLikeFloat_co=..., high: _ArrayLikeFloat_co=..., size: None | _ShapeLike=...) -> ndarray[Any, dtype[float64]] uniform(low: float=..., high: float=..., size: None=...) -> float at: tools.train.distributed_shampoo power_iteration(matrix, num_iters=100, error_tolerance=1e-6, precision=lax.Precision.HIGHEST) at: tools.train.distributed_shampoo.power_iteration matrix_size = matrix.shape[-1] _iter_condition(state) _iter_body(state) v_0 = ( np.random.RandomState(1729).uniform(-1.0, 1.0, matrix_size).astype(matrix.dtype) ) init_state = tuple([0, v_0, jnp.zeros([], dtype=matrix.dtype), v_0, True]) _, v_out, s_out, _, _ = lax.while_loop(_iter_condition, _iter_body, init_state) _, v_out, s_out, _, _ = lax.while_loop(_iter_condition, _iter_body, init_state) ===========unchanged ref 1=========== v_out = v_out / jnp.linalg.norm(v_out) _, v_out, s_out, _, _ = lax.while_loop(_iter_condition, _iter_body, init_state)
tools.train.distributed_shampoo/_convert_to_parameter_stats
Modified
borisdayma~dalle-mini
8a9e367d3653df65b41e872ca752ced50c671c9c
feat: update distributed_shampoo + fix None spec
<16>:<add> local_stat.training_metrics,
# module: tools.train.distributed_shampoo def _convert_to_parameter_stats(global_stats, local_stat): <0> """Creates parameter stats from sharded stats.""" <1> index_start = int(local_stat.index_start) <2> index_end = int(len(local_stat.sizes)) + index_start <3> statistics = global_stats.statistics[index_start:index_end, :, :] <4> preconditioners = global_stats.preconditioners[index_start:index_end, :, :] <5> new_statistics = [] <6> new_preconditioners = [] <7> for i, size in enumerate(local_stat.sizes): <8> new_statistics.append(statistics[i][:size, :size]) <9> new_preconditioners.append(preconditioners[i][:size, :size]) <10> return ParameterStats( <11> local_stat.diagonal_statistics, <12> new_statistics, <13> new_preconditioners, <14> local_stat.diagonal_momentum, <15> local_stat.momentum, <16> ) <17>
===========unchanged ref 0=========== at: tools.train.distributed_shampoo.BlockPartitioner partition(tensor) at: tools.train.distributed_shampoo.Preconditioner exponent_for_preconditioner(self) preconditioned_grad(self, grad, preconditioners) at: tools.train.distributed_shampoo.Preconditioner.__init__ self._transformed_shape = param.shape self._transformed_shape = merge_small_dims(self._original_shape, block_size) self._partitioner = BlockPartitioner(reshaped_param, block_size) at: tools.train.distributed_shampoo.Preconditioner.preconditioned_grad reshaped_grad = jnp.reshape(grad, self._transformed_shape) partitioned_grads = self._partitioner.partition(reshaped_grad) ===========changed ref 0=========== # module: tools.train.distributed_shampoo + class InitFnState(NamedTuple): + init_fn: Any + pspec_fn: Any + shape_and_dtype_fn: Any + ===========changed ref 1=========== # module: tools.train.distributed_shampoo + def init_training_metrics_pspec(num_statistics): + if num_statistics: + return TrainingMetrics(pjit.PartitionSpec()) + else: + return TrainingMetrics(None) + ===========changed ref 2=========== # module: tools.train.distributed_shampoo + def init_training_metrics_shapes(num_statistics): + if num_statistics: + return TrainingMetrics([[num_statistics], jnp.float32]) + else: + return TrainingMetrics([None, jnp.float32]) + ===========changed ref 3=========== # module: tools.train.distributed_shampoo + def init_training_metrics(num_statistics): + if num_statistics: + return TrainingMetrics(jnp.zeros([num_statistics], jnp.float32)) + else: + return TrainingMetrics([]) + ===========changed ref 4=========== # module: tools.train.distributed_shampoo # For training extremely large model; We keep a global state with a concatenated # statistics and preconditioner states for all vars. This is so that we can # annotate the leading axis to be sharded to save memory at the cost of # communication. @struct.dataclass class GlobalShardedParameterStats: statistics: chex.Array # Statistics preconditioners: chex.Array # Preconditioners + exponents: chex.Array # exponents ===========changed ref 5=========== # module: tools.train.distributed_shampoo + @struct.dataclass + class TrainingMetrics: + inverse_pth_root_errors: chex.Array # Error for inverse-pth roots. + ===========changed ref 6=========== # module: tools.train.distributed_shampoo # These are per-parameter local states; All statistics here mirror the parameter # Thus the sharding is copied over from the param specification. @struct.dataclass class LocalShardedParameterStats: """State associated to each parameter of the model being trained.""" diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner momentum: QuantizedValue # Momentum for the shampoo preconditioner + training_metrics: TrainingMetrics # Metrics (optional for training). index_start: np.int32 = struct.field( pytree_node=False ) # Index into global statistics array sizes: Any = struct.field(pytree_node=False) # Sizes of the statistics. ===========changed ref 7=========== # module: tools.train.distributed_shampoo + # TODO(rohananil): Add more important metrics to track during training. + + # Per parameter optimizer state used in data-parallel training. class ParameterStats(NamedTuple): """State associated to each parameter of the model being trained.""" diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner statistics: List[Any] # Statistics (QuantizedValue, chex.Array) preconditioners: List[Any] # Preconditioners (QuantizedValue, chex.Array) diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner momentum: QuantizedValue # Momentum for the shampoo preconditioner + training_metrics: TrainingMetrics # Metrics (optional for training). ===========changed ref 8=========== # module: tools.train.distributed_shampoo - """File copied from https://github.com/google-research/google-research/edit/master/scalable_shampoo/optax/distributed_shampoo.py""" - # coding=utf-8 + # Copyright 2022 The Google Research Authors. - # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # An implementation of distributed Shampoo optimizer from: # # Scalable Second Order Optimization for Deep Learning # Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer # Preprint Paper: https://arxiv.org/abs/2002.09018 # # This implementation moves computation of inverse pth root back to the # accelerator (if higher precision is available). # # Authors: Rohan Anil (rohananil at google dot com) # & Vineet Gupta (vineet at google dot com) # """Distributed Shampoo Implementation.""" ===========changed ref 9=========== # module: tools.train.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): """Computes `matrix^(-1/p)`, where `p` is a positive integer. This function uses the Coupled newton iterations algorithm for the computation of a matrix's inverse pth root. References: [Functions of Matrices, Theory and Computation, Nicholas J Higham, Pg 184, Eq 7.18]( https://epubs.siam.org/doi/book/10.1137/1.9780898717778) Args: matrix: the symmetric PSD matrix whose power it to be computed p: exponent, for p a positive integer. num_iters: Maximum number of iterations. ridge_epsilon: Ridge epsilon added to make the matrix positive definite. error_tolerance: Error indicator, useful for early termination. precision: precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) Returns: matrix^(-1/p) """ + + assert matrix.shape[0] == matrix.shape[1] # We use float32 for the matrix inverse pth root. # Switch to f64 if you have hardware that supports it. matrix_size = matrix.shape[0] alpha = jnp.asarray(-1.0 / p, jnp.float32) identity = jnp.eye(matrix_size, dtype=jnp.float32) _, max_ev = power_iteration( matrix=matrix, num_iters=100, error_tolerance=1e-6, precision=precision </s>
tools.train.distributed_shampoo/_convert_from_parameter_stats
Modified
borisdayma~dalle-mini
8a9e367d3653df65b41e872ca752ced50c671c9c
feat: update distributed_shampoo + fix None spec
<5>:<add> parameter_stats.training_metrics,
# module: tools.train.distributed_shampoo def _convert_from_parameter_stats(parameter_stats, local_stats): <0> """Creates sharded stats from paramter stats.""" <1> return LocalShardedParameterStats( <2> parameter_stats.diagonal_statistics, <3> parameter_stats.diagonal_momentum, <4> parameter_stats.momentum, <5> local_stats.index_start, <6> local_stats.sizes, <7> ) <8>
===========changed ref 0=========== # module: tools.train.distributed_shampoo def _convert_to_parameter_stats(global_stats, local_stat): """Creates parameter stats from sharded stats.""" index_start = int(local_stat.index_start) index_end = int(len(local_stat.sizes)) + index_start statistics = global_stats.statistics[index_start:index_end, :, :] preconditioners = global_stats.preconditioners[index_start:index_end, :, :] new_statistics = [] new_preconditioners = [] for i, size in enumerate(local_stat.sizes): new_statistics.append(statistics[i][:size, :size]) new_preconditioners.append(preconditioners[i][:size, :size]) return ParameterStats( local_stat.diagonal_statistics, new_statistics, new_preconditioners, local_stat.diagonal_momentum, local_stat.momentum, + local_stat.training_metrics, ) ===========changed ref 1=========== # module: tools.train.distributed_shampoo + class InitFnState(NamedTuple): + init_fn: Any + pspec_fn: Any + shape_and_dtype_fn: Any + ===========changed ref 2=========== # module: tools.train.distributed_shampoo + def init_training_metrics_pspec(num_statistics): + if num_statistics: + return TrainingMetrics(pjit.PartitionSpec()) + else: + return TrainingMetrics(None) + ===========changed ref 3=========== # module: tools.train.distributed_shampoo + def init_training_metrics_shapes(num_statistics): + if num_statistics: + return TrainingMetrics([[num_statistics], jnp.float32]) + else: + return TrainingMetrics([None, jnp.float32]) + ===========changed ref 4=========== # module: tools.train.distributed_shampoo + def init_training_metrics(num_statistics): + if num_statistics: + return TrainingMetrics(jnp.zeros([num_statistics], jnp.float32)) + else: + return TrainingMetrics([]) + ===========changed ref 5=========== # module: tools.train.distributed_shampoo # For training extremely large model; We keep a global state with a concatenated # statistics and preconditioner states for all vars. This is so that we can # annotate the leading axis to be sharded to save memory at the cost of # communication. @struct.dataclass class GlobalShardedParameterStats: statistics: chex.Array # Statistics preconditioners: chex.Array # Preconditioners + exponents: chex.Array # exponents ===========changed ref 6=========== # module: tools.train.distributed_shampoo + @struct.dataclass + class TrainingMetrics: + inverse_pth_root_errors: chex.Array # Error for inverse-pth roots. + ===========changed ref 7=========== # module: tools.train.distributed_shampoo # These are per-parameter local states; All statistics here mirror the parameter # Thus the sharding is copied over from the param specification. @struct.dataclass class LocalShardedParameterStats: """State associated to each parameter of the model being trained.""" diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner momentum: QuantizedValue # Momentum for the shampoo preconditioner + training_metrics: TrainingMetrics # Metrics (optional for training). index_start: np.int32 = struct.field( pytree_node=False ) # Index into global statistics array sizes: Any = struct.field(pytree_node=False) # Sizes of the statistics. ===========changed ref 8=========== # module: tools.train.distributed_shampoo + # TODO(rohananil): Add more important metrics to track during training. + + # Per parameter optimizer state used in data-parallel training. class ParameterStats(NamedTuple): """State associated to each parameter of the model being trained.""" diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner statistics: List[Any] # Statistics (QuantizedValue, chex.Array) preconditioners: List[Any] # Preconditioners (QuantizedValue, chex.Array) diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner momentum: QuantizedValue # Momentum for the shampoo preconditioner + training_metrics: TrainingMetrics # Metrics (optional for training). ===========changed ref 9=========== # module: tools.train.distributed_shampoo - """File copied from https://github.com/google-research/google-research/edit/master/scalable_shampoo/optax/distributed_shampoo.py""" - # coding=utf-8 + # Copyright 2022 The Google Research Authors. - # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # An implementation of distributed Shampoo optimizer from: # # Scalable Second Order Optimization for Deep Learning # Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer # Preprint Paper: https://arxiv.org/abs/2002.09018 # # This implementation moves computation of inverse pth root back to the # accelerator (if higher precision is available). # # Authors: Rohan Anil (rohananil at google dot com) # & Vineet Gupta (vineet at google dot com) # """Distributed Shampoo Implementation."""
dalle_mini.data/Dataset.dataloader
Modified
borisdayma~dalle-mini
b7c745860644e3a5e57a5b8c17ead787ee2d9778
fix(train): consider correct batch size
<1>:<add> total_batch_size = per_device_batch_size * num_devices <add> if gradient_accumulation_steps is not None: <add> total_batch_size *= gradient_accumulation_steps <4>:<del> per_device_batch_size: int, <5>:<del> gradient_accumulation_steps: int, <12>:<del> batch_size = ( <13>:<del> per_device_batch_size * num_devices * gradient_accumulation_steps <14>:<del> ) <15>:<add> steps_per_epoch = len(dataset) // total_batch_size <del> steps_per_epoch = len(dataset) // batch_size <23>:<add> : steps_per_epoch * total_batch_size <del> : steps_per_epoch * batch_size <25>:<add> batch_idx = batch_idx.reshape((steps_per_epoch, total_batch_size)) <del> batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) <32>:<add> lambda x: x.reshape( <add> (gradient_accumulation_steps, -1) + x.shape[1:] <add> ), <del> lambda x: x.reshape((-1, per_device_batch_size) + x.shape[1:]), <39>:<del> split: str, <40>:<del> per_device_batch_size: int,
# module: dalle_mini.data @dataclass class Dataset: def dataloader( self, split, per_device_batch_size, gradient_accumulation_steps=None, epoch=None ): <0> num_devices = jax.local_device_count() <1> <2> def _dataloader_datasets_non_streaming( <3> dataset: Dataset, <4> per_device_batch_size: int, <5> gradient_accumulation_steps: int, <6> rng: jax.random.PRNGKey = None, <7> ): <8> """ <9> Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. <10> Shuffle batches if rng is set. <11> """ <12> batch_size = ( <13> per_device_batch_size * num_devices * gradient_accumulation_steps <14> ) <15> steps_per_epoch = len(dataset) // batch_size <16> <17> if rng is not None: <18> batch_idx = jax.random.permutation(rng, len(dataset)) <19> else: <20> batch_idx = jnp.arange(len(dataset)) <21> <22> batch_idx = batch_idx[ <23> : steps_per_epoch * batch_size <24> ] # Skip incomplete batch. <25> batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) <26> <27> for idx in batch_idx: <28> batch = dataset[idx] <29> batch = {k: jnp.array(v) for k, v in batch.items()} <30> if gradient_accumulation_steps is not None: <31> batch = jax.tree_map( <32> lambda x: x.reshape((-1, per_device_batch_size) + x.shape[1:]), <33> batch, <34> ) <35> yield batch <36> <37> def _dataloader_datasets_streaming( <38> dataset: Dataset, <39> split: str, <40> per_device_batch_size: int, </s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def dataloader( self, split, per_device_batch_size, gradient_accumulation_steps=None, epoch=None ): # offset: 1 epoch: int, ): keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"] batch = {k: [] for k in keys} first_loop = True # stop after one loop in some cases while (self.multi_hosts and split == "train") or first_loop: # in multi-host, we run forever (no epoch) as hosts need to stop # at the same time and training data may not be split equally # For validation data we put the entire set on each host as we could lose # too many samples on pods if epoch is not None: # reshuffle training data at each epoch (not applicable with validation set) dataset.set_epoch(epoch) epoch += 1 for item in dataset: for k, v in item.items(): batch[k].append(v) # batch = 5, devices = 8, accumulation = 2 / batch_size = 5 x 8 # (40, 3, 3) -> shard 8 x (5, 3, 3) # (16, 5, 3, 3) -> shard 8 x (2, 5, 3, 3) if len(batch[keys[0]]) == per_device_batch_size * num_devices * ( gradient_accumulation_steps if gradient_accumulation_steps is not None else 1 ): batch = {k: jnp.array(v) for k, v in batch.items()} if gradient_accumulation_steps is not None: batch = jax.tree_map( lambda x: x.reshape( (-1, per_device_batch_size) + x.shape[1:] ), batch, ) yield batch batch = {k: [] for k in keys} first_loop</s> ===========below chunk 1=========== # module: dalle_mini.data @dataclass class Dataset: def dataloader( self, split, per_device_batch_size, gradient_accumulation_steps=None, epoch=None ): # offset: 2 <s>, batch, ) yield batch batch = {k: [] for k in keys} first_loop = False if split == "train": ds = self.train_dataset elif split == "eval": ds = self.eval_dataset else: raise ValueError(f'split must be "train" or "eval", got {split}') if self.streaming: return _dataloader_datasets_streaming( ds, split, per_device_batch_size, gradient_accumulation_steps, epoch ) else: if split == "train": self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) return _dataloader_datasets_non_streaming( ds, per_device_batch_size, gradient_accumulation_steps, input_rng ) ===========unchanged ref 0=========== at: dalle_mini.data Dataset(dataset_repo_or_path: str, train_file: str=None, validation_file: str=None, streaming: bool=True, use_auth_token: bool=False, text_column: str="caption", encoding_column: str="encoding", max_train_samples: int=None, max_eval_samples: int=None, preprocessing_num_workers: int=None, overwrite_cache: bool=False, do_train: bool=False, do_eval: bool=True, seed_dataset: int=None, shard_by_host: bool=False, train_dataset: Dataset=field(init=False), eval_dataset: Dataset=field(init=False), rng_dataset: jnp.ndarray=field(init=False), multi_hosts: bool=field(init=False)) at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) at: dalle_mini.data.Dataset.__post_init__ self.multi_hosts = jax.process_count() > 1 ===========unchanged ref 1=========== self.train_dataset = dataset["train"] self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) self.eval_dataset = dataset["validation"] self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) ) at: dalle_mini.data.Dataset.preprocess self.train_dataset = self.train_dataset.shuffle(1000, self.seed_dataset) self.rng_dataset = jax.random.PRNGKey(self.seed_dataset) ===========changed ref 0=========== # module: tools.train.train def main(): # See all possible arguments by passing the --help flag to this script. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1]) ) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Load dataset dataset = Dataset( **asdict(data_args), do_train=training_args.do_train, do_eval=training_args.do_eval, ) logger.info(f"Local TPUs: {jax.local_device_count()}") logger.info(f"Global TPUs: {jax</s>
dalle_mini.data/Dataset.dataloader
Modified
borisdayma~dalle-mini
f25405838c9ce3d1835819b6a006d4cd731867da
feat(train): improve pjit speed
<0>:<del> num_devices = jax.local_device_count() <1>:<del> total_batch_size = per_device_batch_size * num_devices <2>:<del> if gradient_accumulation_steps is not None: <3>:<del> total_batch_size *= gradient_accumulation_steps <4>:<del> <13>:<add> steps_per_epoch = len(dataset) // batch_size <del> steps_per_epoch = len(dataset) // total_batch_size <21>:<add> : steps_per_epoch * batch_size <del> : steps_per_epoch * total_batch_size <23>:<add> batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) <del> batch_idx = batch_idx.reshape((steps_per_epoch, total_batch_size)) <28>:<del> if gradient_accumulation_steps is not None: <29>:<del> batch = jax.tree_map( <30>:<del> lambda x: x.reshape( <31>:<del> (gradient_accumulation_steps, -1) + x.shape[1:] <32>:<del> ), <33>:<del> batch, <34>:<del> )
# module: dalle_mini.data @dataclass class Dataset: - def dataloader( - self, split, per_device_batch_size, gradient_accumulation_steps=None, epoch=None - ): + def dataloader(self, split, batch_size, epoch=None): <0> num_devices = jax.local_device_count() <1> total_batch_size = per_device_batch_size * num_devices <2> if gradient_accumulation_steps is not None: <3> total_batch_size *= gradient_accumulation_steps <4> <5> def _dataloader_datasets_non_streaming( <6> dataset: Dataset, <7> rng: jax.random.PRNGKey = None, <8> ): <9> """ <10> Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. <11> Shuffle batches if rng is set. <12> """ <13> steps_per_epoch = len(dataset) // total_batch_size <14> <15> if rng is not None: <16> batch_idx = jax.random.permutation(rng, len(dataset)) <17> else: <18> batch_idx = jnp.arange(len(dataset)) <19> <20> batch_idx = batch_idx[ <21> : steps_per_epoch * total_batch_size <22> ] # Skip incomplete batch. <23> batch_idx = batch_idx.reshape((steps_per_epoch, total_batch_size)) <24> <25> for idx in batch_idx: <26> batch = dataset[idx] <27> batch = {k: jnp.array(v) for k, v in batch.items()} <28> if gradient_accumulation_steps is not None: <29> batch = jax.tree_map( <30> lambda x: x.reshape( <31> (gradient_accumulation_steps, -1) + x.shape[1:] <32> ), <33> batch, <34> ) <35> yield batch <36> <37> def _dataloader_datasets_streaming(</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: - def dataloader( - self, split, per_device_batch_size, gradient_accumulation_steps=None, epoch=None - ): + def dataloader(self, split, batch_size, epoch=None): # offset: 1 epoch: int, ): keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"] batch = {k: [] for k in keys} first_loop = True # stop after one loop in some cases while (self.multi_hosts and split == "train") or first_loop: # in multi-host, we run forever (no epoch) as hosts need to stop # at the same time and training data may not be split equally # For validation data we put the entire set on each host as we could lose # too many samples on pods if epoch is not None: # reshuffle training data at each epoch (not applicable with validation set) dataset.set_epoch(epoch) epoch += 1 for item in dataset: for k, v in item.items(): batch[k].append(v) if len(batch[keys[0]]) == total_batch_size: batch = {k: jnp.array(v) for k, v in batch.items()} if gradient_accumulation_steps is not None: # training mode batch = jax.tree_map( lambda x: x.reshape( (gradient_accumulation_steps, -1) + x.shape[1:] ), batch, ) yield batch batch = {k: [] for k in keys} first_loop = False if split == "train": ds = self.train_dataset elif split == "eval": ds = self.eval_dataset else: raise ValueError(f'split must be "train" or "eval", got {split}') if self.streaming: return _d</s> ===========below chunk 1=========== # module: dalle_mini.data @dataclass class Dataset: - def dataloader( - self, split, per_device_batch_size, gradient_accumulation_steps=None, epoch=None - ): + def dataloader(self, split, batch_size, epoch=None): # offset: 2 <s>'split must be "train" or "eval", got {split}') if self.streaming: return _dataloader_datasets_streaming(ds, epoch) else: if split == "train": self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) return _dataloader_datasets_non_streaming(ds, input_rng) ===========unchanged ref 0=========== at: dalle_mini.data Dataset(dataset_repo_or_path: str, train_file: str=None, validation_file: str=None, streaming: bool=True, use_auth_token: bool=False, text_column: str="caption", encoding_column: str="encoding", max_train_samples: int=None, max_eval_samples: int=None, preprocessing_num_workers: int=None, overwrite_cache: bool=False, do_train: bool=False, do_eval: bool=True, seed_dataset: int=None, shard_by_host: bool=False, train_dataset: Dataset=field(init=False), eval_dataset: Dataset=field(init=False), rng_dataset: jnp.ndarray=field(init=False), multi_hosts: bool=field(init=False)) at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) at: dalle_mini.data.Dataset.__post_init__ self.multi_hosts = jax.process_count() > 1 ===========unchanged ref 1=========== self.train_dataset = dataset["train"] self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) self.eval_dataset = dataset["validation"] self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) ) at: dalle_mini.data.Dataset.preprocess self.train_dataset = self.train_dataset.shuffle(1000, self.seed_dataset) self.rng_dataset = jax.random.PRNGKey(self.seed_dataset) at: numpy.core._multiarray_umath array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, like=None, /) ===========changed ref 0=========== # module: tools.train.train def main(): # See all possible arguments by passing the --help flag to this script. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1]) ) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Load dataset dataset = Dataset( **asdict(data_args), do_train=training_args.do_train, do_eval=training_args.do_eval, ) logger.info(f"Local TPUs: {jax.local_device_count()}") logger.info(f"Global TPUs: {jax</s>
tools.train.train/MetricsLogger.__init__
Modified
borisdayma~dalle-mini
14abe8c827eb85ee4081efe0749eba2a6ee9d8b4
feat(train): another 25% faster
<0>:<add> self.step = int(state.step) <del> self.step = state.step
# module: tools.train.train class MetricsLogger: def __init__(self, state): <0> self.step = state.step <1> self.time = time.perf_counter() <2>
===========unchanged ref 0=========== at: time perf_counter() -> float at: tools.train.train.MetricsLogger.get_all_train_metrics self.step = new_step self.time = new_time
tools.train.train/ModelArguments.__post_init__
Modified
borisdayma~dalle-mini
225b6ff17f1736b6bf44580322a0c7e7b340003b
fix(train): opt_state_shape for distributed_shampoo
<7>:<del> raise ValueError("Need a dataset repository or path.")
# module: tools.train.train @dataclass class ModelArguments: def __post_init__(self): <0> if self.restore_state: <1> assert ( <2> "/model-" in self.model_name_or_path <3> ), "Restoring state only available with W&B artifact reference" <4> self.state_artifact = self.model_name_or_path.replace( <5> "/model-", "/state-", 1 <6> ) <7> raise ValueError("Need a dataset repository or path.") <8>
===========unchanged ref 0=========== at: tools.train.train.ModelArguments model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch. " "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." }, ) config_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained config name or path if not the same as model_name_or_path" }, ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path" }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." }, ) restore_state: Optional[bool] = field( default=False, metadata={ "help": "Restore optimizer and training state associated with a wandb checkpoint." }, ) state_artifact: str = field(init=False)
tools.train.train/MetricsLogger.__init__
Modified
borisdayma~dalle-mini
5f28cd252597cb4b5c8ac16f7b47511f1beb8d35
feat(train): more custom x-axis
<0>:<add> self.step = step <del> self.step = int(state.step) <2>:<add> self.state_dict = {}
# module: tools.train.train class MetricsLogger: + def __init__(self, step): - def __init__(self, state): <0> self.step = int(state.step) <1> self.time = time.perf_counter() <2>
===========unchanged ref 0=========== at: time perf_counter() -> float at: tools.train.train.MetricsLogger.update_state_metrics self.step = new_step self.time = new_time
tools.train.train/MetricsLogger.log
Modified
borisdayma~dalle-mini
5f28cd252597cb4b5c8ac16f7b47511f1beb8d35
feat(train): more custom x-axis
<5>:<del> if step is not None: <6>:<del> log_metrics["train/step"] = step <7>:<del> wandb.log(log_metrics) <8>:<add> wandb.log({**log_metrics, **self.state_dict})
# module: tools.train.train class MetricsLogger: - @staticmethod + def log(self, metrics, prefix=None): - def log(metrics, step=None, prefix=None): <0> if jax.process_index() == 0: <1> log_metrics = { <2> f"{prefix}/{k}" if prefix is not None else k: v <3> for k, v in metrics.items() <4> } <5> if step is not None: <6> log_metrics["train/step"] = step <7> wandb.log(log_metrics) <8>
===========unchanged ref 0=========== at: tools.train.train.MetricsLogger.__init__ self.state_dict = {} at: tools.train.train.MetricsLogger.update_state_metrics self.state_dict = { f'train/{k.split("_")[-1]}': getattr(state, k) for k in ["step", "epoch", "train_time", "train_samples"] } at: transformers.hf_argparser HfArgumentParser(dataclass_types: Union[DataClassType, Iterable[DataClassType]], *, prog: Optional[str]=..., usage: Optional[str]=..., description: Optional[str]=..., epilog: Optional[str]=..., parents: Sequence[ArgumentParser]=..., formatter_class: _FormatterClass=..., prefix_chars: str=..., fromfile_prefix_chars: Optional[str]=..., argument_default: Any=..., conflict_handler: str=..., add_help: bool=..., allow_abbrev: bool=...) at: wandb log = _preinit.PreInitCallable("wandb.log", wandb_sdk.wandb_run.Run.log) ===========changed ref 0=========== # module: tools.train.train class MetricsLogger: + def __init__(self, step): - def __init__(self, state): + self.step = step - self.step = int(state.step) self.time = time.perf_counter() + self.state_dict = {} ===========changed ref 1=========== # module: tools.train.train class MetricsLogger: + def update_state_metrics(self, state): + """Update internal state metrics (logged at each call to be used as x-axis)""" + self.state_dict = { + f'train/{k.split("_")[-1]}': getattr(state, k) + for k in ["step", "epoch", "train_time", "train_samples"] + } + # timing metrics + new_step = int(state.step) + new_time = time.perf_counter() + if new_step > self.step: + time_per_step = (new_time - self.time) / (new_step - self.step) + self.step = new_step + self.time = new_time + self.state_dict["train/time_per_step"] = time_per_step + ===========changed ref 2=========== # module: tools.train.train class MetricsLogger: - def get_all_train_metrics(self, train_metrics, state): - """Make a dict of training metrics to be logged""" - metrics = train_metrics - # get state parameters - state_dict = { - k.split("_")[-1]: getattr(state, k) - for k in ["epoch", "train_time", "train_samples"] - } - # timing metrics - new_step = int(state.step) - new_time = time.perf_counter() - if new_step > self.step: - time_per_step = (new_time - self.time) / (new_step - self.step) - self.step = new_step - self.time = new_time - state_dict["time_per_step"] = time_per_step - return {**metrics, **state_dict} -
tools.train.train/ModelArguments.__post_init__
Modified
borisdayma~dalle-mini
1bb3269c4cf5276a7f81f58c8af78efc63ed0c9a
feat: handle model parallel
<1>:<add> assert self.model_name_or_path is not None and ( <del> assert (
# module: tools.train.train @dataclass class ModelArguments: def __post_init__(self): <0> if self.restore_state: <1> assert ( <2> "/model-" in self.model_name_or_path <3> ), "Restoring state only available with W&B artifact reference" <4> self.state_artifact = self.model_name_or_path.replace( <5> "/model-", "/state-", 1 <6> ) <7>
===========unchanged ref 0=========== at: tools.train.train.ModelArguments model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch. " "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." }, ) config_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained config name or path if not the same as model_name_or_path" }, ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path" }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." }, ) restore_state: Optional[bool] = field( default=False, metadata={ "help": "Restore optimizer and training state associated with a wandb checkpoint." }, ) state_artifact: str = field(init=False)
dalle_mini.model.configuration/DalleBartConfig.__init__
Modified
borisdayma~dalle-mini
1bb3269c4cf5276a7f81f58c8af78efc63ed0c9a
feat: handle model parallel
<26>:<del> # remove inferred keys to prevent errors when loading config (passed as kwargs) <27>:<del> for k in [ <28>:<del> "pad_token_id", <29>:<del> "bos_token_id", <30>:<del>
<s>1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, use_cache=True, is_encoder_decoder=True, forced_eos_token_id=None, tie_word_embeddings=False, # different modalities and sizes + do_sample=True, **kwargs, ): <0> self.normalize_text = normalize_text <1> self.encoder_vocab_size = encoder_vocab_size <2> self.image_vocab_size = image_vocab_size <3> self.image_length = image_length <4> self.max_text_length = max_text_length <5> self.d_model = d_model <6> self.encoder_ffn_dim = encoder_ffn_dim <7> self.encoder_layers = encoder_layers <8> self.encoder_attention_heads = encoder_attention_heads <9> self.decoder_ffn_dim = decoder_ffn_dim <10> self.decoder_layers = decoder_layers <11> self.decoder_attention_heads = decoder_attention_heads <12> self.dropout = dropout <13> self.attention_dropout = attention_dropout <14> self.activation_dropout = activation_dropout <15> self.activation_function = activation_function <16> self.init_std = init_std <17> self.encoder_layerdrop = encoder_layerdrop <18> self.decoder_layerdrop = decoder_layerdrop <19> self.classifier_dropout = classifier_dropout <20> self.use_cache = use_cache <21> self.gradient_checkpointing = gradient_checkpointing <22> self.scale_embedding = ( <23> scale_embedding # scale factor will be sqrt(d_model) if True <24> ) <25> <26> # remove inferred keys to prevent errors when loading config (passed as kwargs) <27> for k in [ <28> "pad_token_id", <29> "bos_token_id", <30> </s>
===========below chunk 0=========== <s>_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, use_cache=True, is_encoder_decoder=True, forced_eos_token_id=None, tie_word_embeddings=False, # different modalities and sizes + do_sample=True, **kwargs, ): # offset: 1 "decoder_start_token_id", "min_length", "max_length", ]: kwargs.pop(k, None) super().__init__( pad_token_id=image_vocab_size + 1, # needed to avoid errors during generation (converted to jnp.array) bos_token_id=image_vocab_size + 1, # set to unreachable values eos_token_id=image_vocab_size + 1, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=image_vocab_size, # BOS appended to vocab forced_eos_token_id=forced_eos_token_id, tie_word_embeddings=tie_word_embeddings, min_length=image_length + 1, max_length=image_length + 1, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." ) ===========unchanged ref 0=========== at: _warnings warn(message: str, category: Optional[Type[Warning]]=..., stacklevel: int=..., source: Optional[Any]=...) -> None warn(message: Warning, category: Any=..., stacklevel: int=..., source: Optional[Any]=...) -> None at: transformers.configuration_utils.PretrainedConfig model_type: str = "" is_composition: bool = False attribute_map: Dict[str, str] = {} _auto_class: Optional[str] = None __init__(**kwargs) __init__(self, **kwargs) at: transformers.configuration_utils.PretrainedConfig.__init__ self.bos_token_id = kwargs.pop("bos_token_id", None) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] at: typing.MutableMapping pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T] pop(key: _KT) -> _VT ===========changed ref 0=========== # module: tools.train.train @dataclass class ModelArguments: def __post_init__(self): if self.restore_state: + assert self.model_name_or_path is not None and ( - assert ( "/model-" in self.model_name_or_path ), "Restoring state only available with W&B artifact reference" self.state_artifact = self.model_name_or_path.replace( "/model-", "/state-", 1 ) ===========changed ref 1=========== # module: tools.train.train @dataclass class TrainingArguments: """ Arguments pertaining to training parameters. """ output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( + default=8, + metadata={"help": "Batch size per data parallel device for training."}, - default=8, metadata={"help": "Batch size per GPU/TPU/CPU for training."} ) per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ + "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." - "help": "Batch size per GPU/TPU/CPU for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) beta1</s> ===========changed ref 2=========== # module: tools.train.train @dataclass class TrainingArguments: # offset: 1 <s> "distributed_shampoo" (default), "adam" or "adafactor"' }, ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, ) beta2: float = field( default=0.999, metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, ) adam_epsilon: float = field( default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} ) max_grad_norm: float = field( default=1.0, metadata={"help": "Max gradient norm for Adafactor."} ) block_size: int = field( default=1024, metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, ) start_preconditioning_step: int = field( default=100, metadata={"help": "Number of steps before starting to update preconditioner."}, ) preconditioning_compute_steps: int = field( default=10, metadata={"help": "Number of steps to update preconditioner."} ) skip_preconditioning_dim_size_gt: int = field( default=4096, metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, ) optim_quantized: bool = field( default=False, metadata={ "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." }, ) num_train_epochs: int = field( default=3, metadata={"help": "Total number of training epochs to perform."} ) warmup_steps: int = field( default=</s>
dalle_mini.model.modeling/FlaxBartAttention.setup
Modified
borisdayma~dalle-mini
1bb3269c4cf5276a7f81f58c8af78efc63ed0c9a
feat: handle model parallel
<23>:<add> jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" <del> jnp.ones((1, self.config.image_length + 1), dtype="bool"), dtype="bool"
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: <0> self.head_dim = self.embed_dim // self.num_heads <1> if self.head_dim * self.num_heads != self.embed_dim: <2> raise ValueError( <3> f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" <4> f" and `num_heads`: {self.num_heads})." <5> ) <6> <7> dense = partial( <8> nn.Dense, <9> self.embed_dim, <10> use_bias=self.bias, <11> dtype=self.dtype, <12> kernel_init=jax.nn.initializers.normal(self.config.init_std), <13> ) <14> <15> self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() <16> self.out_proj = dense() <17> <18> self.dropout_layer = nn.Dropout(rate=self.dropout) <19> <20> if self.causal: <21> # used only in decoder <22> self.causal_mask = make_causal_mask( <23> jnp.ones((1, self.config.image_length + 1), dtype="bool"), dtype="bool" <24> ) <25>
===========unchanged ref 0=========== at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.init_std = init_std at: transformers.models.bart.modeling_flax_bart.FlaxBartAttention config: BartConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) -> None ===========changed ref 0=========== # module: tools.train.train @dataclass class ModelArguments: def __post_init__(self): if self.restore_state: + assert self.model_name_or_path is not None and ( - assert ( "/model-" in self.model_name_or_path ), "Restoring state only available with W&B artifact reference" self.state_artifact = self.model_name_or_path.replace( "/model-", "/state-", 1 ) ===========changed ref 1=========== <s>1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, use_cache=True, is_encoder_decoder=True, forced_eos_token_id=None, tie_word_embeddings=False, # different modalities and sizes + do_sample=True, **kwargs, ): self.normalize_text = normalize_text self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.classifier_dropout = classifier_dropout self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) - # remove inferred keys to prevent errors when loading config (passed as kwargs) - for k in [ - "pad_token_id", - "bos_token_id", - "eos_token_id", - "decoder_start_token_id", - "min_</s> ===========changed ref 2=========== <s>_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, use_cache=True, is_encoder_decoder=True, forced_eos_token_id=None, tie_word_embeddings=False, # different modalities and sizes + do_sample=True, **kwargs, ): # offset: 1 <s>", - "eos_token_id", - "decoder_start_token_id", - "min_length", - "max_length", - ]: - kwargs.pop(k, None) + # special token id's are appended to vocab if not provided + decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) + bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) + pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) + eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) + + # we generate to image_length + 1 (for bos) by default + min_length = kwargs.pop("min_length", image_length + 1) + max_length = kwargs.pop("max_length", image_length + 1) super().__init__( - pad_token_id=image_vocab_size - + 1, # needed to avoid errors during generation (converted to jnp.array) - bos_token_id=image_vocab_size + 1, # set to unreachable values - eos_token_id=image_vocab_size + 1, + # args required in parent class is_encoder_decoder=is_encoder_decoder,</s> ===========changed ref 3=========== <s>_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, use_cache=True, is_encoder_decoder=True, forced_eos_token_id=None, tie_word_embeddings=False, # different modalities and sizes + do_sample=True, **kwargs, ): # offset: 2 <s> tie_word_embeddings=tie_word_embeddings, - decoder_start_token_id=image_vocab_size, # BOS appended to vocab forced_eos_token_id=forced_eos_token_id, + decoder_start_token_id=decoder_start_token_id, + bos_token_id=bos_token_id, + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, - tie_word_embeddings=tie_word_embeddings, + min_length=min_length, - min_length=image_length + 1, + max_length=max_length, - max_length=image_length + 1, + do_sample=do_sample, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." )
dalle_mini.model.modeling/FlaxBartDecoder.setup
Modified
borisdayma~dalle-mini
1bb3269c4cf5276a7f81f58c8af78efc63ed0c9a
feat: handle model parallel
<12>:<add> self.config.image_length + self.offset, # image length for BOS <del> self.config.image_length + 1 + self.offset, # image length + 1 for BOS
# module: dalle_mini.model.modeling class FlaxBartDecoder(FlaxBartDecoder): def setup(self): <0> self.dropout_layer = nn.Dropout(rate=self.config.dropout) <1> <2> embed_dim = self.config.d_model <3> self.padding_idx = self.config.pad_token_id <4> self.embed_scale = ( <5> math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 <6> ) <7> <8> # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 <9> # and adjust num_embeddings appropriately. Other models don't have this hack <10> self.offset = 0 <11> self.embed_positions = nn.Embed( <12> self.config.image_length + 1 + self.offset, # image length + 1 for BOS <13> embed_dim, <14> embedding_init=jax.nn.initializers.normal(self.config.init_std), <15> ) <16> <17> self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) <18> self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) <19>
===========unchanged ref 0=========== at: math sqrt(x: SupportsFloat, /) -> float at: transformers.configuration_utils.PretrainedConfig.__init__ self.pad_token_id = kwargs.pop("pad_token_id", None) at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.d_model = d_model self.dropout = dropout self.init_std = init_std self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True at: transformers.models.bart.modeling_flax_bart.FlaxBartDecoder config: BartConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: # used only in decoder self.causal_mask = make_causal_mask( + jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" - jnp.ones((1, self.config.image_length + 1), dtype="bool"), dtype="bool" ) ===========changed ref 1=========== # module: tools.train.train @dataclass class ModelArguments: def __post_init__(self): if self.restore_state: + assert self.model_name_or_path is not None and ( - assert ( "/model-" in self.model_name_or_path ), "Restoring state only available with W&B artifact reference" self.state_artifact = self.model_name_or_path.replace( "/model-", "/state-", 1 ) ===========changed ref 2=========== <s>1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, use_cache=True, is_encoder_decoder=True, forced_eos_token_id=None, tie_word_embeddings=False, # different modalities and sizes + do_sample=True, **kwargs, ): self.normalize_text = normalize_text self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.classifier_dropout = classifier_dropout self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) - # remove inferred keys to prevent errors when loading config (passed as kwargs) - for k in [ - "pad_token_id", - "bos_token_id", - "eos_token_id", - "decoder_start_token_id", - "min_</s> ===========changed ref 3=========== <s>_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, use_cache=True, is_encoder_decoder=True, forced_eos_token_id=None, tie_word_embeddings=False, # different modalities and sizes + do_sample=True, **kwargs, ): # offset: 1 <s>", - "eos_token_id", - "decoder_start_token_id", - "min_length", - "max_length", - ]: - kwargs.pop(k, None) + # special token id's are appended to vocab if not provided + decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) + bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) + pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) + eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) + + # we generate to image_length + 1 (for bos) by default + min_length = kwargs.pop("min_length", image_length + 1) + max_length = kwargs.pop("max_length", image_length + 1) super().__init__( - pad_token_id=image_vocab_size - + 1, # needed to avoid errors during generation (converted to jnp.array) - bos_token_id=image_vocab_size + 1, # set to unreachable values - eos_token_id=image_vocab_size + 1, + # args required in parent class is_encoder_decoder=is_encoder_decoder,</s>
dalle_mini.data/Dataset.preprocess
Modified
borisdayma~dalle-mini
1bb3269c4cf5276a7f81f58c8af78efc63ed0c9a
feat: handle model parallel
<0>:<add> # get required config variables <add> decoder_start_token_id = config.decoder_start_token_id <add> normalize_text = config.normalize_text <add> max_length = config.max_text_length <add>
# module: dalle_mini.data @dataclass class Dataset: + def preprocess(self, tokenizer, config): - def preprocess(self, tokenizer, decoder_start_token_id, normalize_text, max_length): <0> if self.streaming: <1> # we need to shuffle early in streaming mode <2> if hasattr(self, "train_dataset"): <3> self.train_dataset = self.train_dataset.shuffle(1000, self.seed_dataset) <4> else: <5> # prepare rng for later shuffling <6> if self.seed_dataset is None: <7> self.seed_dataset = np.random.get_state()[1][0] <8> self.rng_dataset = jax.random.PRNGKey(self.seed_dataset) <9> <10> # normalize text <11> if normalize_text: <12> text_normalizer = TextNormalizer() <13> partial_normalize_function = partial( <14> normalize_function, <15> text_column=self.text_column, <16> text_normalizer=text_normalizer, <17> ) <18> for ds in ["train_dataset", "eval_dataset"]: <19> if hasattr(self, ds): <20> setattr( <21> self, <22> ds, <23> ( <24> getattr(self, ds).map(partial_normalize_function) <25> if self.streaming <26> else getattr(self, ds).map( <27> partial_normalize_function, <28> num_proc=self.preprocessing_num_workers, <29> load_from_cache_file=not self.overwrite_cache, <30> desc="Normalizing datasets", <31> ) <32> ), <33> ) <34> <35> # preprocess <36> partial_preprocess_function = partial( <37> preprocess_function, <38> tokenizer=tokenizer, <39> text_column=self.text_column, <40> encoding_column=self.encoding_column, <41> max_length=max_length, <42> decoder_start_token_id=decoder_start_token_id, <43> ) <44> for</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: + def preprocess(self, tokenizer, config): - def preprocess(self, tokenizer, decoder_start_token_id, normalize_text, max_length): # offset: 1 if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map( partial_preprocess_function, batched=True, ) if self.streaming else getattr(self, ds).map( partial_preprocess_function, batched=True, remove_columns=getattr(ds, "column_names"), num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Preprocessing datasets", ) ), ) ===========unchanged ref 0=========== at: dalle_mini.data normalize_function(example, text_column, text_normalizer) preprocess_function(examples, tokenizer, text_column, encoding_column, max_length, decoder_start_token_id) at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) at: dalle_mini.data.Dataset.__post_init__ self.train_dataset = dataset["train"] self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) at: dalle_mini.data.Dataset.dataloader self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) ===========unchanged ref 1=========== at: datasets.arrow_dataset.Dataset map(function: Optional[Callable]=None, with_indices: bool=False, with_rank: bool=False, input_columns: Optional[Union[str, List[str]]]=None, batched: bool=False, batch_size: Optional[int]=1000, drop_last_batch: bool=False, remove_columns: Optional[Union[str, List[str]]]=None, keep_in_memory: bool=False, load_from_cache_file: bool=None, cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, features: Optional[Features]=None, disable_nullable: bool=False, fn_kwargs: Optional[dict]=None, num_proc: Optional[int]=None, suffix_template: str="_{rank:05d}_of_{num_proc:05d}", new_fingerprint: Optional[str]=None, desc: Optional[str]=None) -> "Dataset" wrapper(*, generator: Optional[np.random.Generator]=None, keep_in_memory: bool=False, load_from_cache_file: bool=True, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) ===========unchanged ref 2=========== at: datasets.dataset_dict.DatasetDict map(function: Optional[Callable]=None, with_indices: bool=False, with_rank: bool=False, input_columns: Optional[Union[str, List[str]]]=None, batched: bool=False, batch_size: Optional[int]=1000, drop_last_batch: bool=False, remove_columns: Optional[Union[str, List[str]]]=None, keep_in_memory: bool=False, load_from_cache_file: bool=True, cache_file_names: Optional[Dict[str, Optional[str]]]=None, writer_batch_size: Optional[int]=1000, features: Optional[Features]=None, disable_nullable: bool=False, fn_kwargs: Optional[dict]=None, num_proc: Optional[int]=None, desc: Optional[str]=None) -> "DatasetDict" shuffle(seeds: Optional[Union[int, Dict[str, Optional[int]]]]=None, seed: Optional[int]=None, generators: Optional[Dict[str, np.random.Generator]]=None, keep_in_memory: bool=False, load_from_cache_file: bool=True, indices_cache_file_names: Optional[Dict[str, Optional[str]]]=None, writer_batch_size: Optional[int]=1000) -> "DatasetDict" at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: numpy.random.mtrand get_state = _rand.get_state ===========changed ref 0=========== # module: tools.train.train @dataclass class ModelArguments: def __post_init__(self): if self.restore_state: + assert self.model_name_or_path is not None and ( - assert ( "/model-" in self.model_name_or_path ), "Restoring state only available with W&B artifact reference" self.state_artifact = self.model_name_or_path.replace( "/model-", "/state-", 1 ) ===========changed ref 1=========== # module: dalle_mini.model.modeling class FlaxBartDecoder(FlaxBartDecoder): def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.embed_scale = ( math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 ) # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 0 self.embed_positions = nn.Embed( + self.config.image_length + self.offset, # image length for BOS - self.config.image_length + 1 + self.offset, # image length + 1 for BOS embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
dalle_mini.data/Dataset.preprocess
Modified
borisdayma~dalle-mini
0952927a241297ea6e4e242e49cb45d275f43eb1
feat(train) - handle multiple nodes (#130)
<8>:<add> self.train_dataset = self.train_dataset.shuffle(5000, self.seed_dataset) <del> self.train_dataset = self.train_dataset.shuffle(1000, self.seed_dataset)
# module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): <0> # get required config variables <1> decoder_start_token_id = config.decoder_start_token_id <2> normalize_text = config.normalize_text <3> max_length = config.max_text_length <4> <5> if self.streaming: <6> # we need to shuffle early in streaming mode <7> if hasattr(self, "train_dataset"): <8> self.train_dataset = self.train_dataset.shuffle(1000, self.seed_dataset) <9> else: <10> # prepare rng for later shuffling <11> if self.seed_dataset is None: <12> self.seed_dataset = np.random.get_state()[1][0] <13> self.rng_dataset = jax.random.PRNGKey(self.seed_dataset) <14> <15> # normalize text <16> if normalize_text: <17> text_normalizer = TextNormalizer() <18> partial_normalize_function = partial( <19> normalize_function, <20> text_column=self.text_column, <21> text_normalizer=text_normalizer, <22> ) <23> for ds in ["train_dataset", "eval_dataset"]: <24> if hasattr(self, ds): <25> setattr( <26> self, <27> ds, <28> ( <29> getattr(self, ds).map(partial_normalize_function) <30> if self.streaming <31> else getattr(self, ds).map( <32> partial_normalize_function, <33> num_proc=self.preprocessing_num_workers, <34> load_from_cache_file=not self.overwrite_cache, <35> desc="Normalizing datasets", <36> ) <37> ), <38> ) <39> <40> # preprocess <41> partial_preprocess_function = partial( <42> preprocess_function, <43> tokenizer=tokenizer, <44> text_column=self.text_column, <45> encoding_column=self.encoding_column, <46> max_length=max_</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): # offset: 1 decoder_start_token_id=decoder_start_token_id, ) for ds in ["train_dataset", "eval_dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map( partial_preprocess_function, batched=True, ) if self.streaming else getattr(self, ds).map( partial_preprocess_function, batched=True, remove_columns=getattr(ds, "column_names"), num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Preprocessing datasets", ) ), ) ===========unchanged ref 0=========== at: dalle_mini.data normalize_function(example, text_column, text_normalizer) preprocess_function(examples, tokenizer, text_column, encoding_column, max_length, decoder_start_token_id) at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) at: dalle_mini.data.Dataset.__post_init__ self.train_dataset = dataset["train"] self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) at: dalle_mini.data.Dataset.dataloader self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) ===========unchanged ref 1=========== at: datasets.arrow_dataset.Dataset map(function: Optional[Callable]=None, with_indices: bool=False, with_rank: bool=False, input_columns: Optional[Union[str, List[str]]]=None, batched: bool=False, batch_size: Optional[int]=1000, drop_last_batch: bool=False, remove_columns: Optional[Union[str, List[str]]]=None, keep_in_memory: bool=False, load_from_cache_file: bool=None, cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, features: Optional[Features]=None, disable_nullable: bool=False, fn_kwargs: Optional[dict]=None, num_proc: Optional[int]=None, suffix_template: str="_{rank:05d}_of_{num_proc:05d}", new_fingerprint: Optional[str]=None, desc: Optional[str]=None) -> "Dataset" wrapper(*, generator: Optional[np.random.Generator]=None, keep_in_memory: bool=False, load_from_cache_file: bool=True, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) ===========unchanged ref 2=========== at: datasets.dataset_dict.DatasetDict map(function: Optional[Callable]=None, with_indices: bool=False, with_rank: bool=False, input_columns: Optional[Union[str, List[str]]]=None, batched: bool=False, batch_size: Optional[int]=1000, drop_last_batch: bool=False, remove_columns: Optional[Union[str, List[str]]]=None, keep_in_memory: bool=False, load_from_cache_file: bool=True, cache_file_names: Optional[Dict[str, Optional[str]]]=None, writer_batch_size: Optional[int]=1000, features: Optional[Features]=None, disable_nullable: bool=False, fn_kwargs: Optional[dict]=None, num_proc: Optional[int]=None, desc: Optional[str]=None) -> "DatasetDict" shuffle(seeds: Optional[Union[int, Dict[str, Optional[int]]]]=None, seed: Optional[int]=None, generators: Optional[Dict[str, np.random.Generator]]=None, keep_in_memory: bool=False, load_from_cache_file: bool=True, indices_cache_file_names: Optional[Dict[str, Optional[str]]]=None, writer_batch_size: Optional[int]=1000) -> "DatasetDict" at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: numpy.random.mtrand get_state = _rand.get_state ===========changed ref 0=========== # module: tools.train.train def main(): # See all possible arguments by passing the --help flag to this script. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1]) ) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Load dataset dataset = Dataset( **asdict(data_args), do_train=training_args.do_train, do_eval=training_args.do_eval, ) logger.info(f"Local TPUs: {jax.local_device_count()}") logger.info(f"Global TPUs: {jax</s>
dalle_mini.model.modeling/FlaxBartPreTrainedModel.__init__
Modified
borisdayma~dalle-mini
fa72aa7214ca2e948e61cf153e4c47baf02574f3
feat(modeling): simplify abstract_init
<19>:<add> init_fn = jax.jit( <add> self.init_weights, static_argnames="input_shape", backend="cpu" <del> init_fn = jax.jit(self.init_weights, static_argnums=(1,), backend="cpu") <20>:<add> ) <28>:<del> init_fn = partial(init_fn, input_shape=input_shape) <29>:<add> random_params = jax.eval_shape( <del> random_params = jax.eval_shape(init_fn, self.key) <30>:<add> init_fn, rng=self.key, input_shape=input_shape <add> ) <31>:<add> random_params = init_fn(rng=self.key, input_shape=input_shape) <del> random_params = init_fn(self.key, input_shape)
# module: dalle_mini.model.modeling class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): def __init__( self, config: DalleBartConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, abstract_init: bool = False, load_on_cpu: bool = False, **kwargs, ): <0> module = self.module_class(config=config, dtype=dtype, **kwargs) <1> <2> # adapted from HuggingFace FlaxPreTrainedModel <3> if config is None: <4> raise ValueError("config cannot be None") <5> <6> if module is None: <7> raise ValueError("module cannot be None") <8> <9> # Those are private to be exposed as typed property on derived classes. <10> self._config = config <11> self._module = module <12> <13> # Those are public as their type is generic to every derived classes. <14> self.key = PRNGKey(seed) <15> self.dtype = dtype <16> <17> # init weights on CPU <18> if load_on_cpu: <19> init_fn = jax.jit(self.init_weights, static_argnums=(1,), backend="cpu") <20> else: <21> init_fn = self.init_weights <22> <23> # randomly initialized parameters <24> if abstract_init: <25> # init the model weights only abstractly, eval_shape will return a pytree <26> # with the structure as weights but without any actual values, this will just contain <27> # the shape information. Weights need to be loaded later. <28> init_fn = partial(init_fn, input_shape=input_shape) <29> random_params = jax.eval_shape(init_fn, self.key) <30> else: <31> random_params = init_fn(self.key, input_shape) <32> <33> # save required_params as set <34> self._required_params = set(</s>
===========below chunk 0=========== <s> dalle_mini.model.modeling class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): def __init__( self, config: DalleBartConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, abstract_init: bool = False, load_on_cpu: bool = False, **kwargs, ): # offset: 1 self.params = random_params ===========unchanged ref 0=========== at: transformers.modeling_flax_utils.FlaxPreTrainedModel config_class = None base_model_prefix = "" main_input_name = "input_ids" _auto_class = None _missing_keys = set() at: transformers.models.bart.modeling_flax_bart.FlaxBartPreTrainedModel config_class = BartConfig base_model_prefix: str = "model" module_class: nn.Module = None __init__(self, config: BartConfig, input_shape: Tuple[int]=(1, 1), seed: int=0, dtype: jnp.dtype=jnp.float32, _do_init: bool=True, **kwargs) init_weights(rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict=None) -> FrozenDict at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')
tools.train.distributed_shampoo/matrix_inverse_pth_root
Modified
borisdayma~dalle-mini
5996680850895aa267284ac17449c6a9604a9087
feat: update distributed_shampoo
# module: tools.train.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): <0> """Computes `matrix^(-1/p)`, where `p` is a positive integer. <1> <2> This function uses the Coupled newton iterations algorithm for <3> the computation of a matrix's inverse pth root. <4> <5> <6> References: <7> [Functions of Matrices, Theory and Computation, <8> Nicholas J Higham, Pg 184, Eq 7.18]( <9> https://epubs.siam.org/doi/book/10.1137/1.9780898717778) <10> <11> Args: <12> matrix: the symmetric PSD matrix whose power it to be computed <13> p: exponent, for p a positive integer. <14> num_iters: Maximum number of iterations. <15> ridge_epsilon: Ridge epsilon added to make the matrix positive definite. <16> error_tolerance: Error indicator, useful for early termination. <17> precision: precision XLA related flag, the available options are: <18> a) lax.Precision.DEFAULT (better step time, but not precise) <19> b) lax.Precision.HIGH (increased precision, slower) <20> c) lax.Precision.HIGHEST (best possible precision, slowest) <21> <22> Returns: <23> matrix^(-1/p) <24> """ <25> <26> assert matrix.shape[0] == matrix.shape[1] <27> <28> # We use float32 for the matrix inverse pth root. <29> # Switch to f64 if you have hardware that supports it. <30> matrix_size = matrix.shape[0] <31> alpha = jnp.asarray(-1.0 / p, jnp.float32) <32> identity = jnp.eye(matrix_size, dtype=jnp.float32) <33> _, max_</s>
===========below chunk 0=========== # module: tools.train.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): # offset: 1 matrix=matrix, num_iters=100, error_tolerance=1e-6, precision=precision ) ridge_epsilon = ridge_epsilon * jnp.maximum(max_ev, 1e-16) def _unrolled_mat_pow_1(mat_m): """Computes mat_m^1.""" return mat_m def _unrolled_mat_pow_2(mat_m): """Computes mat_m^2.""" return jnp.matmul(mat_m, mat_m, precision=precision) def _unrolled_mat_pow_4(mat_m): """Computes mat_m^4.""" mat_pow_2 = _unrolled_mat_pow_2(mat_m) return jnp.matmul(mat_pow_2, mat_pow_2, precision=precision) def _unrolled_mat_pow_8(mat_m): """Computes mat_m^4.""" mat_pow_4 = _unrolled_mat_pow_4(mat_m) return jnp.matmul(mat_pow_4, mat_pow_4, precision=precision) def mat_power(mat_m, p): """Computes mat_m^p, for p == 1, 2, 4 or 8. Args: mat_m: a square matrix p: a positive integer Returns: mat_m^p """ # We unrolled the loop for performance reasons. exponent = jnp.round(jnp.log2(p)) return lax.switch( jnp.asarray(exponent, jnp.int32), [ _unrolled_mat_pow_1,</s> ===========below chunk 1=========== # module: tools.train.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): # offset: 2 <s> jnp.asarray(exponent, jnp.int32), [ _unrolled_mat_pow_1, _unrolled_mat_pow_2, _unrolled_mat_pow_4, _unrolled_mat_pow_8, ], (mat_m), ) def _iter_condition(state): (i, unused_mat_m, unused_mat_h, unused_old_mat_h, error, run_step) = state error_above_threshold = jnp.logical_and(error > error_tolerance, run_step) return jnp.logical_and(i < num_iters, error_above_threshold) def _iter_body(state): (i, mat_m, mat_h, unused_old_mat_h, error, unused_run_step) = state mat_m_i = (1 - alpha) * identity + alpha * mat_m new_mat_m = jnp.matmul(mat_power(mat_m_i, p), mat_m, precision=precision) new_mat_h = jnp.matmul(mat_h, mat_m_i, precision=precision) new_error = jnp.max(jnp.abs(new_mat_m - identity)) # sometimes error increases after an iteration before decreasing and # converging. 1.2 factor is used to bound the maximal allowed increase. return (i + 1, new_mat_m, new_mat_h, mat_h, new_error, new_error < error * 1.2) </s> ===========below chunk 2=========== # module: tools.train.distributed_shampoo def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, ): # offset: 3 <s> if matrix_size == 1: resultant_mat_h = (matrix + ridge_epsilon) ** alpha error = 0 else: damped_matrix = matrix + ridge_epsilon * identity z = (1 + p) / (2 * jnp.linalg.norm(damped_matrix)) new_mat_m_0 = damped_matrix * z new_error = jnp.max(jnp.abs(new_mat_m_0 - identity)) new_mat_h_0 = identity * jnp.power(z, 1.0 / p) init_state = tuple([0, new_mat_m_0, new_mat_h_0, new_mat_h_0, new_error, True]) _, mat_m, mat_h, old_mat_h, error, convergence = lax.while_loop( _iter_condition, _iter_body, init_state ) error = jnp.max(jnp.abs(mat_m - identity)) is_converged = jnp.asarray(convergence, old_mat_h.dtype) resultant_mat_h = is_converged * mat_h + (1 - is_converged) * old_mat_h resultant_mat_h = jnp.asarray(resultant_mat_h, matrix.dtype) return resultant_mat_h, error ===========unchanged ref 0=========== at: tools.train.distributed_shampoo power_iteration(matrix, num_iters=100, error_tolerance=1e-6, precision=lax.Precision.HIGHEST) ===========changed ref 0=========== # module: tools.train.distributed_shampoo class GraftingType(enum.IntEnum): SGD = 1 ADAGRAD = 2 RMSPROP = 3 RMSPROP_NORMALIZED = 4 + SQRT_N = 5 + ADAGRAD_NORMALIZED = 5
dalle_mini.model.modeling/FlaxBartPreTrainedModel.__init__
Modified
borisdayma~dalle-mini
44b7c3e3b6ba100c285c6401d09cbb97c277e25d
fix: load from checkpoint
<19>:<add> # init weights on CPU <del> init_fn = jax.jit( <20>:<add> init_fn = jax.jit(self.init_weights, static_argnums=(1,), backend="cpu") <del> self.init_weights, static_argnames="input_shape", backend="cpu" <21>:<del> ) <23>:<add> init_fn = self.init_weigths <del> init_fn = self.init_weights <26>:<add> random_params = self.init_weights(self.key, input_shape) <27>:<del> # init the model weights only abstractly, eval_shape will return a pytree <28>:<del> # with the structure as weights but without any actual values, this will just contain <29>:<del> # the shape information. Weights need to be loaded later. <30>:<add> # only set shape and dtype, load parameters separately <add> init_fn = partial(init_fn, input_shape=input_shape) <add> random_params = jax.eval_shape(init_fn, self.key) <del> random_params = jax.eval_shape( <31>:<del> init_fn, rng=self.key, input_shape=input_shape <32>:<del> ) <34>:<add> random_params = init_fn(self.key, input_shape) <del> random_params = init_fn(rng=self.key, input_shape=input_shape)
# module: dalle_mini.model.modeling class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): def __init__( self, config: DalleBartConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, abstract_init: bool = False, load_on_cpu: bool = False, **kwargs, ): <0> module = self.module_class(config=config, dtype=dtype, **kwargs) <1> <2> # adapted from HuggingFace FlaxPreTrainedModel <3> if config is None: <4> raise ValueError("config cannot be None") <5> <6> if module is None: <7> raise ValueError("module cannot be None") <8> <9> # Those are private to be exposed as typed property on derived classes. <10> self._config = config <11> self._module = module <12> <13> # Those are public as their type is generic to every derived classes. <14> self.key = PRNGKey(seed) <15> self.dtype = dtype <16> <17> # init weights on CPU <18> if load_on_cpu: <19> init_fn = jax.jit( <20> self.init_weights, static_argnames="input_shape", backend="cpu" <21> ) <22> else: <23> init_fn = self.init_weights <24> <25> # randomly initialized parameters <26> if abstract_init: <27> # init the model weights only abstractly, eval_shape will return a pytree <28> # with the structure as weights but without any actual values, this will just contain <29> # the shape information. Weights need to be loaded later. <30> random_params = jax.eval_shape( <31> init_fn, rng=self.key, input_shape=input_shape <32> ) <33> else: <34> random_params = init_fn(rng=self.key, input_shape=input_shape) <35> <36> # save required_params as set <37> </s>
===========below chunk 0=========== <s> dalle_mini.model.modeling class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): def __init__( self, config: DalleBartConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, abstract_init: bool = False, load_on_cpu: bool = False, **kwargs, ): # offset: 1 self.params = random_params ===========unchanged ref 0=========== at: dalle_mini.model.modeling.FlaxBartPreTrainedModel config_class = DalleBartConfig at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: transformers.modeling_flax_utils.FlaxPreTrainedModel config_class = None base_model_prefix = "" main_input_name = "input_ids" _auto_class = None _missing_keys = set() at: transformers.models.bart.modeling_flax_bart.FlaxBartPreTrainedModel config_class = BartConfig base_model_prefix: str = "model" module_class: nn.Module = None __init__(self, config: BartConfig, input_shape: Tuple[int]=(1, 1), seed: int=0, dtype: jnp.dtype=jnp.float32, _do_init: bool=True, **kwargs) init_weights(rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict=None) -> FrozenDict at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')
dalle_mini.model.modeling/FlaxBartPreTrainedModel.__init__
Modified
borisdayma~dalle-mini
68cc185dfa4cb4d7e9125c1633a79e6326c95be0
fix: typo
<22>:<add> init_fn = self.init_weights <del> init_fn = self.init_weigths
# module: dalle_mini.model.modeling class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): def __init__( self, config: DalleBartConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, abstract_init: bool = False, load_on_cpu: bool = False, **kwargs, ): <0> module = self.module_class(config=config, dtype=dtype, **kwargs) <1> <2> # adapted from HuggingFace FlaxPreTrainedModel <3> if config is None: <4> raise ValueError("config cannot be None") <5> <6> if module is None: <7> raise ValueError("module cannot be None") <8> <9> # Those are private to be exposed as typed property on derived classes. <10> self._config = config <11> self._module = module <12> <13> # Those are public as their type is generic to every derived classes. <14> self.key = PRNGKey(seed) <15> self.dtype = dtype <16> <17> # init weights on CPU <18> if load_on_cpu: <19> # init weights on CPU <20> init_fn = jax.jit(self.init_weights, static_argnums=(1,), backend="cpu") <21> else: <22> init_fn = self.init_weigths <23> <24> # randomly initialized parameters <25> random_params = self.init_weights(self.key, input_shape) <26> if abstract_init: <27> # only set shape and dtype, load parameters separately <28> init_fn = partial(init_fn, input_shape=input_shape) <29> random_params = jax.eval_shape(init_fn, self.key) <30> else: <31> random_params = init_fn(self.key, input_shape) <32> <33> # save required_params as set <34> self._required_params = set(flatten_dict(unfreeze(random_params</s>
===========below chunk 0=========== <s> dalle_mini.model.modeling class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): def __init__( self, config: DalleBartConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, abstract_init: bool = False, load_on_cpu: bool = False, **kwargs, ): # offset: 1 self.params = random_params ===========unchanged ref 0=========== at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: transformers.modeling_flax_utils.FlaxPreTrainedModel config_class = None base_model_prefix = "" main_input_name = "input_ids" _auto_class = None _missing_keys = set() at: transformers.models.bart.modeling_flax_bart.FlaxBartPreTrainedModel config_class = BartConfig base_model_prefix: str = "model" module_class: nn.Module = None __init__(self, config: BartConfig, input_shape: Tuple[int]=(1, 1), seed: int=0, dtype: jnp.dtype=jnp.float32, _do_init: bool=True, **kwargs) init_weights(rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict=None) -> FrozenDict at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')
tools.train.train/ModelArguments.__post_init__
Modified
borisdayma~dalle-mini
4cb21dded0d29b16c33b79d51e8ead4a1848c4de
feat(train): simplify tokenizer loading
<0>:<add> if self.tokenizer_name is None: <add> self.tokenizer_name == self.model_name_or_path <add> assert ( <add> self.tokenizer_name is not None <add> ), "Tokenizer name or model name/path needs to be specified"
# module: tools.train.train @dataclass class ModelArguments: def __post_init__(self): <0> if self.restore_state: <1> assert self.model_name_or_path is not None and ( <2> "/model-" in self.model_name_or_path <3> ), "Restoring state only available with W&B artifact reference" <4> self.state_artifact = self.model_name_or_path.replace( <5> "/model-", "/state-", 1 <6> ) <7>
===========unchanged ref 0=========== at: tools.train.train.ModelArguments model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch. " "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." }, ) config_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained config name or path if not the same as model_name_or_path" }, ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path" }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." }, ) restore_state: Optional[bool] = field( default=False, metadata={ "help": "Restore optimizer and training state associated with a wandb checkpoint." }, ) state_artifact: str = field(init=False)
tools.train.train/ModelArguments.__post_init__
Modified
borisdayma~dalle-mini
34cf91cbbd16b3fedfff01ac01f7af4945ee37fb
feat: reduce artifact space + offset step
<9>:<del> self.state_artifact = self.model_name_or_path.replace( <10>:<del> "/model-", "/state-", 1 <11>:<del> )
# module: tools.train.train @dataclass class ModelArguments: def __post_init__(self): <0> if self.tokenizer_name is None: <1> self.tokenizer_name == self.model_name_or_path <2> assert ( <3> self.tokenizer_name is not None <4> ), "Tokenizer name or model name/path needs to be specified" <5> if self.restore_state: <6> assert self.model_name_or_path is not None and ( <7> "/model-" in self.model_name_or_path <8> ), "Restoring state only available with W&B artifact reference" <9> self.state_artifact = self.model_name_or_path.replace( <10> "/model-", "/state-", 1 <11> ) <12>
===========unchanged ref 0=========== at: tools.train.train.ModelArguments model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch. " "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." }, ) config_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained config name or path if not the same as model_name_or_path" }, ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path" }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." }, ) restore_state: Optional[bool] = field( default=False, metadata={ "help": "Restore optimizer and training state. Can be True (will retrieve associated wandb artifact), a local directory or a Google bucket path." }, ) at: tools.train.train.ModelArguments.get_opt_state self.restore_state = Path(artifact_dir) / "opt_state.msgpack" ===========changed ref 0=========== # module: tools.train.train @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch. " "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." }, ) config_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained config name or path if not the same as model_name_or_path" }, ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path" }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." }, ) restore_state: Optional[bool] = field( default=False, metadata={ + "help": "Restore optimizer and training state. Can be True (will retrieve associated wandb artifact), a local directory or a Google bucket path." - "help": "Restore optimizer and training state associated with a wandb checkpoint." }, ) - state_artifact: str = field(init=False) -
dalle_mini.model.utils/PretrainedFromWandbMixin.from_pretrained
Modified
borisdayma~dalle-mini
34cf91cbbd16b3fedfff01ac01f7af4945ee37fb
feat: reduce artifact space + offset step
<3>:<add> with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies <add> if ":" in pretrained_model_name_or_path and not os.path.isdir( <del> if ":" in pretrained_model_name_or_path and not os.path.isdir( <4>:<add> pretrained_model_name_or_path <del> pretrained_model_name_or_path <5>:<add> ): <del> ): <6>:<add> # wandb artifact <del> # wandb artifact <7>:<add> if wandb.run is not None: <del> if wandb.run is not None: <8>:<add> artifact = wandb.run.use_artifact(pretrained_model_name_or_path) <del> artifact = wandb.run.use_artifact(pretrained_model_name_or_path) <9>:<add> else: <del> else: <10>:<add> artifact = wandb.Api().artifact(pretrained_model_name_or_path) <del> artifact = wandb.Api().artifact(pretrained_model_name_or_path) <11>:<add> pretrained_model_name_or_path = artifact.download(tmp_dir) <del> pretrained_model_name_or_path = artifact.download() <13>:<add> return super(PretrainedFromWandbMixin, cls).from_pretrained( <del> return super(PretrainedFromWandbMixin, cls).from_pretrained( <14>:<add> pretrained_model_name_or_path, *model_args, **kwargs <del> pretrained_model_name_or_path, *model_args, **kwargs <15>:<add> ) <del> )
# module: dalle_mini.model.utils class PretrainedFromWandbMixin: @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): <0> """ <1> Initializes from a wandb artifact, or delegates loading to the superclass. <2> """ <3> if ":" in pretrained_model_name_or_path and not os.path.isdir( <4> pretrained_model_name_or_path <5> ): <6> # wandb artifact <7> if wandb.run is not None: <8> artifact = wandb.run.use_artifact(pretrained_model_name_or_path) <9> else: <10> artifact = wandb.Api().artifact(pretrained_model_name_or_path) <11> pretrained_model_name_or_path = artifact.download() <12> <13> return super(PretrainedFromWandbMixin, cls).from_pretrained( <14> pretrained_model_name_or_path, *model_args, **kwargs <15> ) <16>
===========unchanged ref 0=========== at: os.path isdir(s: AnyPath) -> bool at: tempfile TemporaryDirectory(suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=...) at: wandb Api = PublicApi run: Optional["wandb_sdk.wandb_run.Run"] = None at: wandb.apis.public.Api _HTTP_TIMEOUT = env.get_http_timeout(9) VIEWER_QUERY = gql( """ query Viewer{ viewer { id flags entity username email admin apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } """ ) USERS_QUERY = gql( """ query SearchUsers($query: String) { users(query: $query) { edges { node { id flags entity admin email deletedAt username apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } } } """ ) ===========unchanged ref 1=========== CREATE_PROJECT = gql( """ mutation upsertModel( $description: String $entityName: String $id: String $name: String $framework: String $access: String $views: JSONString ) { upsertModel( input: { description: $description entityName: $entityName id: $id name: $name framework: $framework access: $access views: $views } ) { project { id name entityName description access views } model { id name entityName description access views } inserted } } """ ) artifact(name, type=None) at: wandb.apis.public.Artifact QUERY = gql( """ query ArtifactWithCurrentManifest( $id: ID!, ) { artifact(id: $id) { currentManifest { id file { id directUrl } } ...ArtifactFragment } } %s """ % ARTIFACT_FRAGMENT ) download(root=None, recursive=False) at: wandb.sdk.wandb_run.Run _telemetry_obj: telemetry.TelemetryRecord _telemetry_obj_active: bool _telemetry_obj_dirty: bool _telemetry_obj_flushed: bytes _teardown_hooks: List[TeardownHook] _tags: Optional[Tuple[Any, ...]] _entity: Optional[str] _project: Optional[str] _group: Optional[str] _job_type: Optional[str] _name: Optional[str] _notes: Optional[str] _run_obj: Optional[RunRecord] _run_obj_offline: Optional[RunRecord] ===========unchanged ref 2=========== _backend: Optional["wandb.sdk.backend.backend.Backend"] _internal_run_interface: Optional[ Union[ "wandb.sdk.interface.interface_queue.InterfaceQueue", "wandb.sdk.interface.interface_grpc.InterfaceGrpc", ] ] _wl: Optional[_WandbSetup] _out_redir: Optional[redirect.RedirectBase] _err_redir: Optional[redirect.RedirectBase] _redirect_cb: Optional[Callable[[str, str], None]] _redirect_raw_cb: Optional[Callable[[str, str], None]] _output_writer: Optional["filesystem.CRDedupedFile"] _quiet: Optional[bool] _atexit_cleanup_called: bool _hooks: Optional[ExitHooks] _exit_code: Optional[int] _run_status_checker: Optional[RunStatusChecker] _check_version: Optional["CheckVersionResponse"] _sampled_history: Optional["SampledHistoryResponse"] _final_summary: Optional["GetSummaryResponse"] _poll_exit_handle: Optional[MailboxHandle] _poll_exit_response: Optional[PollExitResponse] _server_info_response: Optional[ServerInfoResponse] _stdout_slave_fd: Optional[int] _stderr_slave_fd: Optional[int] _artifact_slots: List[str] _init_pid: int _attach_pid: int _iface_pid: Optional[int] _iface_port: Optional[int] _attach_id: Optional[str] _is_attached: bool _settings: Settings _launch_artifacts: Optional[Dict[str, Any]] _printer: Union["PrinterTerm", "PrinterJupyter"] ===========unchanged ref 3=========== use_artifact(self, artifact_or_name: Union[str, public.Artifact, Artifact], type: Optional[str]=None, aliases: Optional[List[str]]=None, use_as: Optional[str]=None) -> Union[public.Artifact, Artifact] ===========changed ref 0=========== # module: tools.train.train @dataclass class ModelArguments: + def get_metadata(self): + if self.restore_state: + if jax.process_index() == 0: + artifact = wandb.run.use_artifact(self.model_name_or_path) + else: + artifact = wandb.Api().artifact(self.model_name_or_path) + return artifact.metadata + else: + return dict() + ===========changed ref 1=========== # module: tools.train.train @dataclass class ModelArguments: + def get_opt_state(self, tmp_dir): + if self.restore_state is True: + # wandb artifact + state_artifact = self.model_name_or_path.replace("/model-", "/state-", 1) + if jax.process_index() == 0: + artifact = wandb.run.use_artifact(state_artifact) + else: + artifact = wandb.Api().artifact(state_artifact) + artifact_dir = artifact.download(tmp_dir) + self.restore_state = Path(artifact_dir) / "opt_state.msgpack" + return Path(self.restore_state).open("rb") + ===========changed ref 2=========== # module: tools.train.train @dataclass class ModelArguments: def __post_init__(self): if self.tokenizer_name is None: self.tokenizer_name == self.model_name_or_path assert ( self.tokenizer_name is not None ), "Tokenizer name or model name/path needs to be specified" if self.restore_state: assert self.model_name_or_path is not None and ( "/model-" in self.model_name_or_path ), "Restoring state only available with W&B artifact reference" - self.state_artifact = self.model_name_or_path.replace( - "/model-", "/state-", 1 - )
tools.train.train/ModelArguments.get_opt_state
Modified
borisdayma~dalle-mini
50498e682e46e54fe1dfae8c205409f54ae68e89
feat(train): save to bucket
<0>:<add> with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies <add> if self.restore_state is True: <del> if self.restore_state is True: <1>:<add> # wandb artifact <del> # wandb artifact <2>:<add> state_artifact = self.model_name_or_path.replace( <del> state_artifact = self.model_name_or_path.replace("/model-", "/state-", 1) <3>:<add> "/model-", "/state-", 1 <add> ) <add> if jax.process_index() == 0: <del> if jax.process_index() == 0: <4>:<add> artifact = wandb.run.use_artifact(state_artifact) <del> artifact = wandb.run.use_artifact(state_artifact) <5>:<add> else: <del> else: <6>:<add> artifact = wandb.Api().artifact(state_artifact) <del> artifact = wandb.Api().artifact(state_artifact) <7>:<add> artifact_dir = artifact.download(tmp_dir) <del> artifact_dir = artifact.download(tmp_dir) <8>:<add> self.restore_state = Path(artifact_dir) / "opt_state.msgpack" <del> self.restore_state = Path(artifact_dir) / "opt_state.msgpack" <9>:<add> return Path(self.restore_state).open("rb") <del> return Path(self.restore_state).open("rb")
# module: tools.train.train @dataclass class ModelArguments: + def get_opt_state(self): - def get_opt_state(self, tmp_dir): <0> if self.restore_state is True: <1> # wandb artifact <2> state_artifact = self.model_name_or_path.replace("/model-", "/state-", 1) <3> if jax.process_index() == 0: <4> artifact = wandb.run.use_artifact(state_artifact) <5> else: <6> artifact = wandb.Api().artifact(state_artifact) <7> artifact_dir = artifact.download(tmp_dir) <8> self.restore_state = Path(artifact_dir) / "opt_state.msgpack" <9> return Path(self.restore_state).open("rb") <10>
===========unchanged ref 0=========== at: tempfile TemporaryDirectory(suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=...) at: tools.train.train.ModelArguments model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch. " "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." }, ) config_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained config name or path if not the same as model_name_or_path" }, ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path" }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." }, ) restore_state: Optional[bool] = field( default=False, metadata={ "help": "Restore optimizer and training state. Can be True (will retrieve associated wandb artifact), a local directory or a Google bucket path." }, ) at: tools.train.train.ModelArguments.get_opt_state self.restore_state = Path(artifact_dir) / "opt_state.msgpack" at: wandb Api = PublicApi run: Optional["wandb_sdk.wandb_run.Run"] = None at: wandb.apis.public.Api _HTTP_TIMEOUT = env.get_http_timeout(9) ===========unchanged ref 1=========== VIEWER_QUERY = gql( """ query Viewer{ viewer { id flags entity username email admin apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } """ ) USERS_QUERY = gql( """ query SearchUsers($query: String) { users(query: $query) { edges { node { id flags entity admin email deletedAt username apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } } } """ ) CREATE_PROJECT = gql( """ mutation upsertModel( $description: String $entityName: String $id: String $name: String $framework: String $access: String $views: JSONString ) { upsertModel( input: { description: $description entityName: $entityName id: $id name: $name framework: $framework access: $access views: $views } ) { project { id name entityName description access views } model { id name entityName description access views } inserted } } """ ) artifact(name, type=None) at: wandb.sdk.wandb_run.Run _telemetry_obj: telemetry.TelemetryRecord _telemetry_obj_active: bool ===========unchanged ref 2=========== _telemetry_obj_dirty: bool _telemetry_obj_flushed: bytes _teardown_hooks: List[TeardownHook] _tags: Optional[Tuple[Any, ...]] _entity: Optional[str] _project: Optional[str] _group: Optional[str] _job_type: Optional[str] _name: Optional[str] _notes: Optional[str] _run_obj: Optional[RunRecord] _run_obj_offline: Optional[RunRecord] _backend: Optional["wandb.sdk.backend.backend.Backend"] _internal_run_interface: Optional[ Union[ "wandb.sdk.interface.interface_queue.InterfaceQueue", "wandb.sdk.interface.interface_grpc.InterfaceGrpc", ] ] _wl: Optional[_WandbSetup] _out_redir: Optional[redirect.RedirectBase] _err_redir: Optional[redirect.RedirectBase] _redirect_cb: Optional[Callable[[str, str], None]] _redirect_raw_cb: Optional[Callable[[str, str], None]] _output_writer: Optional["filesystem.CRDedupedFile"] _quiet: Optional[bool] _atexit_cleanup_called: bool _hooks: Optional[ExitHooks] _exit_code: Optional[int] _run_status_checker: Optional[RunStatusChecker] _check_version: Optional["CheckVersionResponse"] _sampled_history: Optional["SampledHistoryResponse"] _final_summary: Optional["GetSummaryResponse"] _poll_exit_handle: Optional[MailboxHandle] _poll_exit_response: Optional[PollExitResponse] _server_info_response: Optional[ServerInfoResponse] _stdout_slave_fd: Optional[int] _stderr_slave_fd: Optional[int] ===========unchanged ref 3=========== _artifact_slots: List[str] _init_pid: int _attach_pid: int _iface_pid: Optional[int] _iface_port: Optional[int] _attach_id: Optional[str] _is_attached: bool _settings: Settings _launch_artifacts: Optional[Dict[str, Any]] _printer: Union["PrinterTerm", "PrinterJupyter"] use_artifact(self, artifact_or_name: Union[str, public.Artifact, Artifact], type: Optional[str]=None, aliases: Optional[List[str]]=None, use_as: Optional[str]=None) -> Union[public.Artifact, Artifact]
tools.train.train/ModelArguments.get_opt_state
Modified
borisdayma~dalle-mini
1c4e8392f382bd6fe8d26229d4f37c7d48cea337
feat: load from bucket
<11>:<add> if artifact.metadata.get("bucket_path"): <add> self.restore_state = artifact.metadata["bucket_path"] <add> else: <add> self.restore_state = Path(artifact_dir) / "opt_state.msgpack" <del> self.restore_state = Path(artifact_dir) / "opt_state.msgpack" <12>:<del> return Path(self.restore_state).open("rb")
# module: tools.train.train @dataclass class ModelArguments: def get_opt_state(self): <0> with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies <1> if self.restore_state is True: <2> # wandb artifact <3> state_artifact = self.model_name_or_path.replace( <4> "/model-", "/state-", 1 <5> ) <6> if jax.process_index() == 0: <7> artifact = wandb.run.use_artifact(state_artifact) <8> else: <9> artifact = wandb.Api().artifact(state_artifact) <10> artifact_dir = artifact.download(tmp_dir) <11> self.restore_state = Path(artifact_dir) / "opt_state.msgpack" <12> return Path(self.restore_state).open("rb") <13>
===========unchanged ref 0=========== at: tempfile TemporaryDirectory(suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=...) at: tools.train.train.ModelArguments model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch. " "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." }, ) config_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained config name or path if not the same as model_name_or_path" }, ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path" }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." }, ) restore_state: Optional[bool] = field( default=False, metadata={ "help": "Restore optimizer and training state. Can be True (will retrieve associated wandb artifact), a local directory or a Google bucket path." }, ) at: wandb Api = PublicApi run: Optional["wandb_sdk.wandb_run.Run"] = None at: wandb.apis.public.Api _HTTP_TIMEOUT = env.get_http_timeout(9) ===========unchanged ref 1=========== VIEWER_QUERY = gql( """ query Viewer{ viewer { id flags entity username email admin apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } """ ) USERS_QUERY = gql( """ query SearchUsers($query: String) { users(query: $query) { edges { node { id flags entity admin email deletedAt username apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } } } """ ) CREATE_PROJECT = gql( """ mutation upsertModel( $description: String $entityName: String $id: String $name: String $framework: String $access: String $views: JSONString ) { upsertModel( input: { description: $description entityName: $entityName id: $id name: $name framework: $framework access: $access views: $views } ) { project { id name entityName description access views } model { id name entityName description access views } inserted } } """ ) artifact(name, type=None) ===========unchanged ref 2=========== at: wandb.apis.public.Artifact QUERY = gql( """ query ArtifactWithCurrentManifest( $id: ID!, ) { artifact(id: $id) { currentManifest { id file { id directUrl } } ...ArtifactFragment } } %s """ % ARTIFACT_FRAGMENT ) download(root=None, recursive=False) at: wandb.sdk.wandb_run.Run _telemetry_obj: telemetry.TelemetryRecord _telemetry_obj_active: bool _telemetry_obj_dirty: bool _telemetry_obj_flushed: bytes _teardown_hooks: List[TeardownHook] _tags: Optional[Tuple[Any, ...]] _entity: Optional[str] _project: Optional[str] _group: Optional[str] _job_type: Optional[str] _name: Optional[str] _notes: Optional[str] _run_obj: Optional[RunRecord] _run_obj_offline: Optional[RunRecord] _backend: Optional["wandb.sdk.backend.backend.Backend"] _internal_run_interface: Optional[ Union[ "wandb.sdk.interface.interface_queue.InterfaceQueue", "wandb.sdk.interface.interface_grpc.InterfaceGrpc", ] ] _wl: Optional[_WandbSetup] _out_redir: Optional[redirect.RedirectBase] _err_redir: Optional[redirect.RedirectBase] _redirect_cb: Optional[Callable[[str, str], None]] _redirect_raw_cb: Optional[Callable[[str, str], None]] _output_writer: Optional["filesystem.CRDedupedFile"] _quiet: Optional[bool] _atexit_cleanup_called: bool ===========unchanged ref 3=========== _hooks: Optional[ExitHooks] _exit_code: Optional[int] _run_status_checker: Optional[RunStatusChecker] _check_version: Optional["CheckVersionResponse"] _sampled_history: Optional["SampledHistoryResponse"] _final_summary: Optional["GetSummaryResponse"] _poll_exit_handle: Optional[MailboxHandle] _poll_exit_response: Optional[PollExitResponse] _server_info_response: Optional[ServerInfoResponse] _stdout_slave_fd: Optional[int] _stderr_slave_fd: Optional[int] _artifact_slots: List[str] _init_pid: int _attach_pid: int _iface_pid: Optional[int] _iface_port: Optional[int] _attach_id: Optional[str] _is_attached: bool _settings: Settings _launch_artifacts: Optional[Dict[str, Any]] _printer: Union["PrinterTerm", "PrinterJupyter"] use_artifact(self, artifact_or_name: Union[str, public.Artifact, Artifact], type: Optional[str]=None, aliases: Optional[List[str]]=None, use_as: Optional[str]=None) -> Union[public.Artifact, Artifact]
dalle_mini.model.utils/PretrainedFromWandbMixin.from_pretrained
Modified
borisdayma~dalle-mini
1c4e8392f382bd6fe8d26229d4f37c7d48cea337
feat: load from bucket
<1>:<add> Initializes from a wandb artifact, google bucket path or delegates loading to the superclass. <del> Initializes from a wandb artifact, or delegates loading to the superclass. <4>:<add> if ( <del> if ":" in pretrained_model_name_or_path and not os.path.isdir( <5>:<add> ":" in pretrained_model_name_or_path <del> pretrained_model_name_or_path <6>:<add> and not os.path.isdir(pretrained_model_name_or_path) <add> and not pretrained_model_name_or_path.startswith("gs") <13>:<add> if artifact.metadata.get("bucket_path"): <add> pretrained_model_name_or_path = artifact.metadata["bucket_path"] <add> <add> if pretrained_model_name_or_path.startswith("gs://"): <add> copy_blobs(pretrained_model_name_or_path, tmp_dir) <add> pretrained_model_name_or_path = tmp_dir
# module: dalle_mini.model.utils class PretrainedFromWandbMixin: @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): <0> """ <1> Initializes from a wandb artifact, or delegates loading to the superclass. <2> """ <3> with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies <4> if ":" in pretrained_model_name_or_path and not os.path.isdir( <5> pretrained_model_name_or_path <6> ): <7> # wandb artifact <8> if wandb.run is not None: <9> artifact = wandb.run.use_artifact(pretrained_model_name_or_path) <10> else: <11> artifact = wandb.Api().artifact(pretrained_model_name_or_path) <12> pretrained_model_name_or_path = artifact.download(tmp_dir) <13> <14> return super(PretrainedFromWandbMixin, cls).from_pretrained( <15> pretrained_model_name_or_path, *model_args, **kwargs <16> ) <17>
===========unchanged ref 0=========== at: os.path isdir(s: AnyPath) -> bool at: tempfile TemporaryDirectory(suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=...) at: wandb Api = PublicApi run: Optional["wandb_sdk.wandb_run.Run"] = None at: wandb.apis.public.Api _HTTP_TIMEOUT = env.get_http_timeout(9) VIEWER_QUERY = gql( """ query Viewer{ viewer { id flags entity username email admin apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } """ ) USERS_QUERY = gql( """ query SearchUsers($query: String) { users(query: $query) { edges { node { id flags entity admin email deletedAt username apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } } } """ ) ===========unchanged ref 1=========== CREATE_PROJECT = gql( """ mutation upsertModel( $description: String $entityName: String $id: String $name: String $framework: String $access: String $views: JSONString ) { upsertModel( input: { description: $description entityName: $entityName id: $id name: $name framework: $framework access: $access views: $views } ) { project { id name entityName description access views } model { id name entityName description access views } inserted } } """ ) artifact(name, type=None) at: wandb.apis.public.Artifact QUERY = gql( """ query ArtifactWithCurrentManifest( $id: ID!, ) { artifact(id: $id) { currentManifest { id file { id directUrl } } ...ArtifactFragment } } %s """ % ARTIFACT_FRAGMENT ) download(root=None, recursive=False) at: wandb.sdk.wandb_run.Run _telemetry_obj: telemetry.TelemetryRecord _telemetry_obj_active: bool _telemetry_obj_dirty: bool _telemetry_obj_flushed: bytes _teardown_hooks: List[TeardownHook] _tags: Optional[Tuple[Any, ...]] _entity: Optional[str] _project: Optional[str] _group: Optional[str] _job_type: Optional[str] _name: Optional[str] _notes: Optional[str] _run_obj: Optional[RunRecord] _run_obj_offline: Optional[RunRecord] ===========unchanged ref 2=========== _backend: Optional["wandb.sdk.backend.backend.Backend"] _internal_run_interface: Optional[ Union[ "wandb.sdk.interface.interface_queue.InterfaceQueue", "wandb.sdk.interface.interface_grpc.InterfaceGrpc", ] ] _wl: Optional[_WandbSetup] _out_redir: Optional[redirect.RedirectBase] _err_redir: Optional[redirect.RedirectBase] _redirect_cb: Optional[Callable[[str, str], None]] _redirect_raw_cb: Optional[Callable[[str, str], None]] _output_writer: Optional["filesystem.CRDedupedFile"] _quiet: Optional[bool] _atexit_cleanup_called: bool _hooks: Optional[ExitHooks] _exit_code: Optional[int] _run_status_checker: Optional[RunStatusChecker] _check_version: Optional["CheckVersionResponse"] _sampled_history: Optional["SampledHistoryResponse"] _final_summary: Optional["GetSummaryResponse"] _poll_exit_handle: Optional[MailboxHandle] _poll_exit_response: Optional[PollExitResponse] _server_info_response: Optional[ServerInfoResponse] _stdout_slave_fd: Optional[int] _stderr_slave_fd: Optional[int] _artifact_slots: List[str] _init_pid: int _attach_pid: int _iface_pid: Optional[int] _iface_port: Optional[int] _attach_id: Optional[str] _is_attached: bool _settings: Settings _launch_artifacts: Optional[Dict[str, Any]] _printer: Union["PrinterTerm", "PrinterJupyter"] ===========unchanged ref 3=========== use_artifact(self, artifact_or_name: Union[str, public.Artifact, Artifact], type: Optional[str]=None, aliases: Optional[List[str]]=None, use_as: Optional[str]=None) -> Union[public.Artifact, Artifact] ===========changed ref 0=========== # module: tools.train.train @dataclass class ModelArguments: def get_opt_state(self): with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies if self.restore_state is True: # wandb artifact state_artifact = self.model_name_or_path.replace( "/model-", "/state-", 1 ) if jax.process_index() == 0: artifact = wandb.run.use_artifact(state_artifact) else: artifact = wandb.Api().artifact(state_artifact) artifact_dir = artifact.download(tmp_dir) + if artifact.metadata.get("bucket_path"): + self.restore_state = artifact.metadata["bucket_path"] + else: + self.restore_state = Path(artifact_dir) / "opt_state.msgpack" - self.restore_state = Path(artifact_dir) / "opt_state.msgpack" - return Path(self.restore_state).open("rb")
dalle_mini.model.modeling/FlaxBartEncoderLayerCollection.setup
Modified
borisdayma~dalle-mini
5173ec7ed53b9590bb7e893c22cb49f86bdbb6b2
feat: handle gradient checkpointing
<1>:<add> nn.remat(FlaxBartEncoderLayer, concrete=True) <del> nn.remat(FlaxBartEncoderLayer)
# module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): def setup(self): <0> layer_module = ( <1> nn.remat(FlaxBartEncoderLayer) <2> if self.config.gradient_checkpointing <3> else FlaxBartEncoderLayer <4> ) <5> self.layers = [ <6> layer_module(self.config, name=str(i), dtype=self.dtype) <7> for i in range(self.config.encoder_layers) <8> ] <9> self.layerdrop = self.config.encoder_layerdrop <10>
===========unchanged ref 0=========== at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.encoder_layers = encoder_layers self.encoder_layerdrop = encoder_layerdrop at: transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection config: BartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) ===========changed ref 0=========== # module: tools.train.train def main(): # See all possible arguments by passing the --help flag to this script. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1]) ) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Load dataset dataset = Dataset( **asdict(data_args), do_train=training_args.do_train, do_eval=training_args.do_eval, ) logger.info(f"Local TPUs: {jax.local_device_count()}") logger.info(f"Global TPUs: {jax</s> ===========changed ref 1=========== # module: tools.train.train def main(): # offset: 1 <s>f"Local TPUs: {jax.local_device_count()}") logger.info(f"Global TPUs: {jax.device_count()}") if training_args.assert_TPU_available: assert ( jax.local_device_count() == 8 ), "TPUs in use, please check running processes" # Set up wandb run if jax.process_index() == 0: wandb.init( entity=training_args.wandb_entity, project=training_args.wandb_project, job_type=training_args.wandb_job_type, config=parser.parse_args(), ) # Set up our new model config if model_args.config_name: config = DalleBartConfig.from_pretrained(model_args.config_name) + # initializing params with gradient checkpointing create issues + config.gradient_checkpointing = False else: config = None # Load or create new model if model_args.model_name_or_path: model = DalleBart.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed_model, dtype=getattr(jnp, model_args.dtype), abstract_init=True, load_on_cpu=True, ) else: model = DalleBart( config, seed=training_args.seed_model, dtype=getattr(jnp, model_args.dtype), load_on_cpu=True, ) # update model config per training args + # Done after initialization of weights to avoid issues with remat + # This is still considered correctly during training as function is pjitted model.config.gradient</s> ===========changed ref 2=========== # module: tools.train.train def main(): # offset: 2 <s>ing = training_args.gradient_checkpointing + + # eval model cannot use remat + eval_config = copy.deepcopy(model.config) + eval_config.gradient_checkpointing = False + + if training_args.gradient_checkpointing: + eval_model = DalleBart( + eval_config, + seed=training_args.seed_model, + dtype=getattr(jnp, model_args.dtype), + abstract_init=True, + load_on_cpu=True, + ) + del eval_model._params + eval_fn = eval_model.__call__ + else: + eval_fn = model.__call__ # get model metadata model_metadata = model_args.get_metadata() # get PartitionSpec for model params (required to be a dict) param_spec = set_partitions(model.params) # convert params to frozen dict model._params = freeze(model.params) # Load tokenizer tokenizer = DalleBartTokenizer.from_pretrained( model_args.tokenizer_name, use_fast=True ) # Preprocessing the datasets. # We need to normalize and tokenize inputs and targets. dataset.preprocess(tokenizer=tokenizer, config=model.config) # Initialize our training dropout_rng = jax.random.PRNGKey(training_args.seed_model) # Store some constant num_epochs = training_args.num_train_epochs # batch size batch_size_per_node_per_grad_step = ( training_args.per_device_train_batch_size * jax.local_device_count() // training_args.mp_devices ) batch_size_per_node = ( batch_size_</s>
dalle_mini.model.modeling/FlaxBartDecoderLayerCollection.setup
Modified
borisdayma~dalle-mini
5173ec7ed53b9590bb7e893c22cb49f86bdbb6b2
feat: handle gradient checkpointing
<1>:<add> nn.remat(FlaxBartDecoderLayer, concrete=True) <del> nn.remat(FlaxBartDecoderLayer)
# module: dalle_mini.model.modeling class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): def setup(self): <0> layer_module = ( <1> nn.remat(FlaxBartDecoderLayer) <2> if self.config.gradient_checkpointing <3> else FlaxBartDecoderLayer <4> ) <5> self.layers = [ <6> layer_module(self.config, name=str(i), dtype=self.dtype) <7> for i in range(self.config.decoder_layers) <8> ] <9> self.layerdrop = self.config.decoder_layerdrop <10>
===========unchanged ref 0=========== at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.decoder_layers = decoder_layers self.decoder_layerdrop = decoder_layerdrop at: transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection config: BartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): def setup(self): layer_module = ( + nn.remat(FlaxBartEncoderLayer, concrete=True) - nn.remat(FlaxBartEncoderLayer) if self.config.gradient_checkpointing else FlaxBartEncoderLayer ) self.layers = [ layer_module(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop ===========changed ref 1=========== # module: tools.train.train def main(): # See all possible arguments by passing the --help flag to this script. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1]) ) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Load dataset dataset = Dataset( **asdict(data_args), do_train=training_args.do_train, do_eval=training_args.do_eval, ) logger.info(f"Local TPUs: {jax.local_device_count()}") logger.info(f"Global TPUs: {jax</s> ===========changed ref 2=========== # module: tools.train.train def main(): # offset: 1 <s>f"Local TPUs: {jax.local_device_count()}") logger.info(f"Global TPUs: {jax.device_count()}") if training_args.assert_TPU_available: assert ( jax.local_device_count() == 8 ), "TPUs in use, please check running processes" # Set up wandb run if jax.process_index() == 0: wandb.init( entity=training_args.wandb_entity, project=training_args.wandb_project, job_type=training_args.wandb_job_type, config=parser.parse_args(), ) # Set up our new model config if model_args.config_name: config = DalleBartConfig.from_pretrained(model_args.config_name) + # initializing params with gradient checkpointing create issues + config.gradient_checkpointing = False else: config = None # Load or create new model if model_args.model_name_or_path: model = DalleBart.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed_model, dtype=getattr(jnp, model_args.dtype), abstract_init=True, load_on_cpu=True, ) else: model = DalleBart( config, seed=training_args.seed_model, dtype=getattr(jnp, model_args.dtype), load_on_cpu=True, ) # update model config per training args + # Done after initialization of weights to avoid issues with remat + # This is still considered correctly during training as function is pjitted model.config.gradient</s> ===========changed ref 3=========== # module: tools.train.train def main(): # offset: 2 <s>ing = training_args.gradient_checkpointing + + # eval model cannot use remat + eval_config = copy.deepcopy(model.config) + eval_config.gradient_checkpointing = False + + if training_args.gradient_checkpointing: + eval_model = DalleBart( + eval_config, + seed=training_args.seed_model, + dtype=getattr(jnp, model_args.dtype), + abstract_init=True, + load_on_cpu=True, + ) + del eval_model._params + eval_fn = eval_model.__call__ + else: + eval_fn = model.__call__ # get model metadata model_metadata = model_args.get_metadata() # get PartitionSpec for model params (required to be a dict) param_spec = set_partitions(model.params) # convert params to frozen dict model._params = freeze(model.params) # Load tokenizer tokenizer = DalleBartTokenizer.from_pretrained( model_args.tokenizer_name, use_fast=True ) # Preprocessing the datasets. # We need to normalize and tokenize inputs and targets. dataset.preprocess(tokenizer=tokenizer, config=model.config) # Initialize our training dropout_rng = jax.random.PRNGKey(training_args.seed_model) # Store some constant num_epochs = training_args.num_train_epochs # batch size batch_size_per_node_per_grad_step = ( training_args.per_device_train_batch_size * jax.local_device_count() // training_args.mp_devices ) batch_size_per_node = ( batch_size_</s>
tools.train.train/ModelArguments.get_opt_state
Modified
borisdayma~dalle-mini
d368fb6fb47e89a1dcb9d35dc7e038a5d4b8c89c
feat: add bucket reference to artifact
<10>:<del> artifact_dir = artifact.download(tmp_dir) <12>:<add> # we will read directly file contents <14>:<add> artifact_dir = artifact.download(tmp_dir) <add> self.restore_state = str(Path(artifact_dir) / "opt_state.msgpack") <del> self.restore_state = Path(artifact_dir) / "opt_state.msgpack"
# module: tools.train.train @dataclass class ModelArguments: def get_opt_state(self): <0> with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies <1> if self.restore_state is True: <2> # wandb artifact <3> state_artifact = self.model_name_or_path.replace( <4> "/model-", "/state-", 1 <5> ) <6> if jax.process_index() == 0: <7> artifact = wandb.run.use_artifact(state_artifact) <8> else: <9> artifact = wandb.Api().artifact(state_artifact) <10> artifact_dir = artifact.download(tmp_dir) <11> if artifact.metadata.get("bucket_path"): <12> self.restore_state = artifact.metadata["bucket_path"] <13> else: <14> self.restore_state = Path(artifact_dir) / "opt_state.msgpack" <15> <16> if self.restore_state.startswith("gs://"): <17> bucket_path = Path(self.restore_state[5:]) / "opt_state.msgpack" <18> bucket, blob_name = str(bucket_path).split("/", 1) <19> client = storage.Client() <20> bucket = client.bucket(bucket) <21> blob = bucket.blob(blob_name) <22> return blob.download_as_bytes() <23> <24> with Path(self.restore_state).open("rb") as f: <25> return f.read() <26>
===========unchanged ref 0=========== at: pathlib Path() at: pathlib.Path __slots__ = () open(mode: OpenBinaryMode, buffering: Literal[0], encoding: None=..., errors: None=..., newline: None=...) -> FileIO open(mode: OpenBinaryModeReading, buffering: Literal[-1, 1]=..., encoding: None=..., errors: None=..., newline: None=...) -> BufferedReader open(mode: OpenBinaryModeUpdating, buffering: Literal[-1, 1]=..., encoding: None=..., errors: None=..., newline: None=...) -> BufferedRandom open(mode: OpenBinaryMode, buffering: int, encoding: None=..., errors: None=..., newline: None=...) -> BinaryIO open(mode: str, buffering: int=..., encoding: Optional[str]=..., errors: Optional[str]=..., newline: Optional[str]=...) -> IO[Any] open(mode: OpenBinaryModeWriting, buffering: Literal[-1, 1]=..., encoding: None=..., errors: None=..., newline: None=...) -> BufferedWriter open(mode: OpenTextMode=..., buffering: int=..., encoding: Optional[str]=..., errors: Optional[str]=..., newline: Optional[str]=...) -> TextIOWrapper at: tempfile TemporaryDirectory(suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=...) at: tools.train.train.ModelArguments model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch. " "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." }, ) config_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained config name or path if not the same as model_name_or_path" }, ) ===========unchanged ref 1=========== tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path" }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." }, ) restore_state: Optional[bool] = field( default=False, metadata={ "help": "Restore optimizer and training state. Can be True (will retrieve associated wandb artifact), a local directory or a Google bucket path." }, ) at: wandb Api = PublicApi run: Optional["wandb_sdk.wandb_run.Run"] = None at: wandb.apis.public.Api _HTTP_TIMEOUT = env.get_http_timeout(9) VIEWER_QUERY = gql( """ query Viewer{ viewer { id flags entity username email admin apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } """ ) USERS_QUERY = gql( """ query SearchUsers($query: String) { users(query: $query) { edges { node { id flags entity admin email deletedAt username apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } } } """ ) ===========unchanged ref 2=========== CREATE_PROJECT = gql( """ mutation upsertModel( $description: String $entityName: String $id: String $name: String $framework: String $access: String $views: JSONString ) { upsertModel( input: { description: $description entityName: $entityName id: $id name: $name framework: $framework access: $access views: $views } ) { project { id name entityName description access views } model { id name entityName description access views } inserted } } """ ) artifact(name, type=None) at: wandb.apis.public.Artifact QUERY = gql( """ query ArtifactWithCurrentManifest( $id: ID!, ) { artifact(id: $id) { currentManifest { id file { id directUrl } } ...ArtifactFragment } } %s """ % ARTIFACT_FRAGMENT ) at: wandb.sdk.wandb_run.Run _telemetry_obj: telemetry.TelemetryRecord _telemetry_obj_active: bool _telemetry_obj_dirty: bool _telemetry_obj_flushed: bytes _teardown_hooks: List[TeardownHook] _tags: Optional[Tuple[Any, ...]] _entity: Optional[str] _project: Optional[str] _group: Optional[str] _job_type: Optional[str] _name: Optional[str] _notes: Optional[str] _run_obj: Optional[RunRecord] _run_obj_offline: Optional[RunRecord] ===========unchanged ref 3=========== _backend: Optional["wandb.sdk.backend.backend.Backend"] _internal_run_interface: Optional[ Union[ "wandb.sdk.interface.interface_queue.InterfaceQueue", "wandb.sdk.interface.interface_grpc.InterfaceGrpc", ] ] _wl: Optional[_WandbSetup] _out_redir: Optional[redirect.RedirectBase] _err_redir: Optional[redirect.RedirectBase] _redirect_cb: Optional[Callable[[str, str], None]] _redirect_raw_cb: Optional[Callable[[str, str], None]] _output_writer: Optional["filesystem.CRDedupedFile"] _quiet: Optional[bool] _atexit_cleanup_called: bool _hooks: Optional[ExitHooks] _exit_code: Optional[int] _run_status_checker: Optional[RunStatusChecker] _check_version: Optional["CheckVersionResponse"] _sampled_history: Optional["SampledHistoryResponse"] _final_summary: Optional["GetSummaryResponse"] _poll_exit_handle: Optional[MailboxHandle] _poll_exit_response: Optional[PollExitResponse] _server_info_response: Optional[ServerInfoResponse] _stdout_slave_fd: Optional[int] _stderr_slave_fd: Optional[int] _artifact_slots: List[str] _init_pid: int _attach_pid: int _iface_pid: Optional[int] _iface_port: Optional[int] _attach_id: Optional[str] _is_attached: bool _settings: Settings _launch_artifacts: Optional[Dict[str, Any]] _printer: Union["PrinterTerm", "PrinterJupyter"]
dalle_mini.model.utils/PretrainedFromWandbMixin.from_pretrained
Modified
borisdayma~dalle-mini
803ccbf4021a8dcfd7e3c5192b9573b4f6a50c64
feat: support pod (#139)
<15>:<del> if artifact.metadata.get("bucket_path"): <16>:<del> pretrained_model_name_or_path = artifact.metadata["bucket_path"] <17>:<del> <18>:<del> if pretrained_model_name_or_path.startswith("gs://"): <19>:<del> copy_blobs(pretrained_model_name_or_path, tmp_dir) <20>:<del> pretrained_model_name_or_path = tmp_dir
# module: dalle_mini.model.utils class PretrainedFromWandbMixin: @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): <0> """ <1> Initializes from a wandb artifact, google bucket path or delegates loading to the superclass. <2> """ <3> with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies <4> if ( <5> ":" in pretrained_model_name_or_path <6> and not os.path.isdir(pretrained_model_name_or_path) <7> and not pretrained_model_name_or_path.startswith("gs") <8> ): <9> # wandb artifact <10> if wandb.run is not None: <11> artifact = wandb.run.use_artifact(pretrained_model_name_or_path) <12> else: <13> artifact = wandb.Api().artifact(pretrained_model_name_or_path) <14> pretrained_model_name_or_path = artifact.download(tmp_dir) <15> if artifact.metadata.get("bucket_path"): <16> pretrained_model_name_or_path = artifact.metadata["bucket_path"] <17> <18> if pretrained_model_name_or_path.startswith("gs://"): <19> copy_blobs(pretrained_model_name_or_path, tmp_dir) <20> pretrained_model_name_or_path = tmp_dir <21> <22> return super(PretrainedFromWandbMixin, cls).from_pretrained( <23> pretrained_model_name_or_path, *model_args, **kwargs <24> ) <25>
===========unchanged ref 0=========== at: dalle_mini.model.utils PretrainedFromWandbMixin() at: os.path isdir(s: AnyPath) -> bool at: tempfile TemporaryDirectory(suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=...) at: wandb Api = PublicApi run: Optional["wandb_sdk.wandb_run.Run"] = None at: wandb.apis.public.Api _HTTP_TIMEOUT = env.get_http_timeout(9) VIEWER_QUERY = gql( """ query Viewer{ viewer { id flags entity username email admin apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } """ ) USERS_QUERY = gql( """ query SearchUsers($query: String) { users(query: $query) { edges { node { id flags entity admin email deletedAt username apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } } } """ ) ===========unchanged ref 1=========== CREATE_PROJECT = gql( """ mutation upsertModel( $description: String $entityName: String $id: String $name: String $framework: String $access: String $views: JSONString ) { upsertModel( input: { description: $description entityName: $entityName id: $id name: $name framework: $framework access: $access views: $views } ) { project { id name entityName description access views } model { id name entityName description access views } inserted } } """ ) artifact(name, type=None) at: wandb.apis.public.Artifact QUERY = gql( """ query ArtifactWithCurrentManifest( $id: ID!, ) { artifact(id: $id) { currentManifest { id file { id directUrl } } ...ArtifactFragment } } %s """ % ARTIFACT_FRAGMENT ) download(root=None, recursive=False) at: wandb.sdk.wandb_run.Run _telemetry_obj: telemetry.TelemetryRecord _telemetry_obj_active: bool _telemetry_obj_dirty: bool _telemetry_obj_flushed: bytes _teardown_hooks: List[TeardownHook] _tags: Optional[Tuple[Any, ...]] _entity: Optional[str] _project: Optional[str] _group: Optional[str] _job_type: Optional[str] _name: Optional[str] _notes: Optional[str] _run_obj: Optional[RunRecord] _run_obj_offline: Optional[RunRecord] ===========unchanged ref 2=========== _backend: Optional["wandb.sdk.backend.backend.Backend"] _internal_run_interface: Optional[ Union[ "wandb.sdk.interface.interface_queue.InterfaceQueue", "wandb.sdk.interface.interface_grpc.InterfaceGrpc", ] ] _wl: Optional[_WandbSetup] _out_redir: Optional[redirect.RedirectBase] _err_redir: Optional[redirect.RedirectBase] _redirect_cb: Optional[Callable[[str, str], None]] _redirect_raw_cb: Optional[Callable[[str, str], None]] _output_writer: Optional["filesystem.CRDedupedFile"] _quiet: Optional[bool] _atexit_cleanup_called: bool _hooks: Optional[ExitHooks] _exit_code: Optional[int] _run_status_checker: Optional[RunStatusChecker] _check_version: Optional["CheckVersionResponse"] _sampled_history: Optional["SampledHistoryResponse"] _final_summary: Optional["GetSummaryResponse"] _poll_exit_handle: Optional[MailboxHandle] _poll_exit_response: Optional[PollExitResponse] _server_info_response: Optional[ServerInfoResponse] _stdout_slave_fd: Optional[int] _stderr_slave_fd: Optional[int] _artifact_slots: List[str] _init_pid: int _attach_pid: int _iface_pid: Optional[int] _iface_port: Optional[int] _attach_id: Optional[str] _is_attached: bool _settings: Settings _launch_artifacts: Optional[Dict[str, Any]] _printer: Union["PrinterTerm", "PrinterJupyter"] ===========unchanged ref 3=========== use_artifact(self, artifact_or_name: Union[str, public.Artifact, Artifact], type: Optional[str]=None, aliases: Optional[List[str]]=None, use_as: Optional[str]=None) -> Union[public.Artifact, Artifact] ===========changed ref 0=========== + # module: tools.train.scalable_shampoo.quantization_utils + + ===========changed ref 1=========== + # module: tools.train.scalable_shampoo.quantization_utils + # pylint:disable=no-value-for-parameter + @struct.dataclass + class QuantizedValue: + @classmethod + def from_float_value(cls, fvalue, quantized_dtype, extract_diagonal=False): + if isinstance(fvalue, list) and not fvalue: + return QuantizedValue([], [], [], quantized_dtype, extract_diagonal, []) + quantized, diagonal_fvalue, bucket_size = QuantizedValue.quantize( + fvalue, quantized_dtype, extract_diagonal + ) + return QuantizedValue( + quantized, + diagonal_fvalue, + bucket_size, + quantized_dtype, + extract_diagonal, + list(quantized.shape), + ) + ===========changed ref 2=========== + # module: tools.train.scalable_shampoo.quantization_utils + # pylint:disable=no-value-for-parameter + @struct.dataclass + class QuantizedValue: + """State associated with quantized value.""" + + quantized: chex.Array + diagonal: chex.Array # Diagonal (if extract_diagonal is set) + bucket_size: chex.Array + quantized_dtype: jnp.dtype = struct.field( + pytree_node=False + ) # Dtype for the quantized value. + extract_diagonal: bool = struct.field(pytree_node=False) # In case its centered. + shape: Any = struct.field(pytree_node=False) # Shape of the tensor. +
dalle_mini.model.modeling/FlaxBartPreTrainedModel.__init__
Modified
borisdayma~dalle-mini
803ccbf4021a8dcfd7e3c5192b9573b4f6a50c64
feat: support pod (#139)
<17>:<add> if init_weights: <del> # init weights on CPU <18>:<del> if load_on_cpu: <19>:<del> # init weights on CPU <20>:<del> init_fn = jax.jit(self.init_weights, static_argnums=(1,), backend="cpu") <21>:<del> else: <22>:<add> # get shape of params only <add> random_params = self.init_weights( <del> init_fn = self.init_weights <23>:<add> self.key, <add> input_shape, <add> abstract_init=abstract_init, <add> load_on_cpu=load_on_cpu, <add> ) <24>:<del> # randomly initialized parameters <25>:<del> random_params = self.init_weights(self.key, input_shape) <26>:<del> if abstract_init: <27>:<del> # only set shape and dtype, load parameters separately <28>:<del> init_fn = partial(init_fn, input_shape=input_shape) <29>:<del> random_params = jax.eval_shape(init_fn, self.key) <30>:<del> else: <31>:<del> random_params = init_fn(self.key, input_shape) <32>:<add> # save required_params as set <add> self._required_params = set(flatten_dict(unfreeze(random_params)).keys()) <add> self.params = random_params <33>:<del> # save required_params as set <34>:<del> self._required_params = set(flatten_dict(unfreeze(random_params
<s>model.modeling class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): def __init__( self, config: DalleBartConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, abstract_init: bool = False, load_on_cpu: bool = False, + init_weights: bool = True, **kwargs, ): <0> module = self.module_class(config=config, dtype=dtype, **kwargs) <1> <2> # adapted from HuggingFace FlaxPreTrainedModel <3> if config is None: <4> raise ValueError("config cannot be None") <5> <6> if module is None: <7> raise ValueError("module cannot be None") <8> <9> # Those are private to be exposed as typed property on derived classes. <10> self._config = config <11> self._module = module <12> <13> # Those are public as their type is generic to every derived classes. <14> self.key = PRNGKey(seed) <15> self.dtype = dtype <16> <17> # init weights on CPU <18> if load_on_cpu: <19> # init weights on CPU <20> init_fn = jax.jit(self.init_weights, static_argnums=(1,), backend="cpu") <21> else: <22> init_fn = self.init_weights <23> <24> # randomly initialized parameters <25> random_params = self.init_weights(self.key, input_shape) <26> if abstract_init: <27> # only set shape and dtype, load parameters separately <28> init_fn = partial(init_fn, input_shape=input_shape) <29> random_params = jax.eval_shape(init_fn, self.key) <30> else: <31> random_params = init_fn(self.key, input_shape) <32> <33> # save required_params as set <34> self._required_params = set(flatten_dict(unfreeze(random_params</s>
===========below chunk 0=========== <s>class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): def __init__( self, config: DalleBartConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, abstract_init: bool = False, load_on_cpu: bool = False, + init_weights: bool = True, **kwargs, ): # offset: 1 self.params = random_params ===========unchanged ref 0=========== at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: transformers.modeling_flax_utils.FlaxPreTrainedModel config_class = None base_model_prefix = "" main_input_name = "input_ids" _auto_class = None _missing_keys = set() at: transformers.models.bart.modeling_flax_bart.FlaxBartPreTrainedModel config_class = BartConfig base_model_prefix: str = "model" module_class: nn.Module = None __init__(self, config: BartConfig, input_shape: Tuple[int]=(1, 1), seed: int=0, dtype: jnp.dtype=jnp.float32, _do_init: bool=True, **kwargs) init_weights(rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict=None) -> FrozenDict at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') ===========changed ref 0=========== + # module: tools.train.scalable_shampoo.quantization_utils + + ===========changed ref 1=========== + # module: tools.train.scalable_shampoo.quantization_utils + # pylint:disable=no-value-for-parameter + @struct.dataclass + class QuantizedValue: + @classmethod + def from_float_value(cls, fvalue, quantized_dtype, extract_diagonal=False): + if isinstance(fvalue, list) and not fvalue: + return QuantizedValue([], [], [], quantized_dtype, extract_diagonal, []) + quantized, diagonal_fvalue, bucket_size = QuantizedValue.quantize( + fvalue, quantized_dtype, extract_diagonal + ) + return QuantizedValue( + quantized, + diagonal_fvalue, + bucket_size, + quantized_dtype, + extract_diagonal, + list(quantized.shape), + ) + ===========changed ref 2=========== + # module: tools.train.scalable_shampoo.quantization_utils + # pylint:disable=no-value-for-parameter + @struct.dataclass + class QuantizedValue: + """State associated with quantized value.""" + + quantized: chex.Array + diagonal: chex.Array # Diagonal (if extract_diagonal is set) + bucket_size: chex.Array + quantized_dtype: jnp.dtype = struct.field( + pytree_node=False + ) # Dtype for the quantized value. + extract_diagonal: bool = struct.field(pytree_node=False) # In case its centered. + shape: Any = struct.field(pytree_node=False) # Shape of the tensor. + ===========changed ref 3=========== + # module: tools.train.scalable_shampoo.quantization_utils + # pylint:disable=no-value-for-parameter + @struct.dataclass + class QuantizedValue: + def to_float(self): + """Returns the float value.""" + if isinstance(self.quantized, list) and not self.quantized: + return self.quantized + + if self.quantized_dtype == jnp.float32: + return self.quantized + + if self.quantized_dtype == jnp.bfloat16: + return self.quantized.astype(jnp.float32) + + float_dtype = self.bucket_size.dtype + bucket_size = self.bucket_size[jnp.newaxis, Ellipsis] + val = self.quantized.astype(float_dtype) * bucket_size + if self.extract_diagonal: + val += jnp.diag(self.diagonal) + return val + ===========changed ref 4=========== + # module: tools.train.scalable_shampoo.quantization_utils + # coding=utf-8 + # Copyright 2022 The Google Research Authors. + # + # Licensed under the Apache License, Version 2.0 (the "License"); + # you may not use this file except in compliance with the License. + # You may obtain a copy of the License at + # + # http://www.apache.org/licenses/LICENSE-2.0 + # + # Unless required by applicable law or agreed to in writing, software + # distributed under the License is distributed on an "AS IS" BASIS, + # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + # See the License for the specific language governing permissions and + # limitations under the License. + + """Helper routines for quantization.""" + ===========changed ref 5=========== # module: dalle_mini.model.utils class PretrainedFromWandbMixin: @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): """ Initializes from a wandb artifact, google bucket path or delegates loading to the superclass. """ with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies if ( ":" in pretrained_model_name_or_path and not os.path.isdir(pretrained_model_name_or_path) and not pretrained_model_name_or_path.startswith("gs") ): # wandb artifact if wandb.run is not None: artifact = wandb.run.use_artifact(pretrained_model_name_or_path) else: artifact = wandb.Api().artifact(pretrained_model_name_or_path) pretrained_model_name_or_path = artifact.download(tmp_dir) - if artifact.metadata.get("bucket_path"): - pretrained_model_name_or_path = artifact.metadata["bucket_path"] - - if pretrained_model_name_or_path.startswith("gs://"): - copy_blobs(pretrained_model_name_or_path, tmp_dir) - pretrained_model_name_or_path = tmp_dir return super(PretrainedFromWandbMixin, cls).from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs )
tools.train.train/TrainingArguments.__post_init__
Modified
borisdayma~dalle-mini
803ccbf4021a8dcfd7e3c5192b9573b4f6a50c64
feat: support pod (#139)
<0>:<add> if self.assert_TPU_available: <add> assert ( <add> jax.local_device_count() == 8 <add> ), "TPUs in use, please check running processes" <5>:<add> assert self.graft_type in [ <add> "rmsprop_normalized", <add> "rmsprop", <add> "adagrad", <add> "adagrad_normalized", <add> "sgd", <add> "sqrt_n", <add> ], f"Selected graft type not supported: {self.graft_type}" <add> assert self.lr_decay in [ <add> None, <add> "linear", <add> "exponential", <add> ], f"Selected learning rate decay not supported: {self.lr_decay}" <18>:<add> self.mp_devices > 0 <add> ), f"Number of devices for model parallelism must be > 0" <add> assert (
# module: tools.train.train @dataclass class TrainingArguments: def __post_init__(self): <0> assert self.optim in [ <1> "distributed_shampoo", <2> "adam", <3> "adafactor", <4> ], f"Selected optimizer not supported: {self.optim}" <5> if self.per_device_eval_batch_size is None: <6> self.per_device_eval_batch_size = self.per_device_train_batch_size <7> if ( <8> os.path.exists(self.output_dir) <9> and os.listdir(self.output_dir) <10> and self.do_train <11> and not self.overwrite_output_dir <12> ): <13> raise ValueError( <14> f"Output directory ({self.output_dir}) already exists and is not empty." <15> "Use --overwrite_output_dir to overcome." <16> ) <17> assert ( <18> jax.device_count() % self.mp_devices == 0 <19> ), f"Number of available devices ({jax.device_count()} must be divisible by number of devices used for model parallelism ({self.mp_devices})." <20> self.dp_devices = jax.device_count() // self.mp_devices <21>
===========unchanged ref 0=========== at: os listdir(path: bytes) -> List[bytes] listdir(path: int) -> List[str] listdir(path: Optional[str]=...) -> List[str] listdir(path: _PathLike[str]) -> List[str] at: os.path exists(path: Union[AnyStr, _PathLike[AnyStr]]) -> bool at: tools.train.train.TrainingArguments output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per data parallel device for training."}, ) per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) gradient_checkpointing: bool = field( default=False, metadata={"help": "Use gradient checkpointing."} ) learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) ===========unchanged ref 1=========== optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, ) beta2: float = field( default=0.999, metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, ) adam_epsilon: float = field( default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} ) max_grad_norm: float = field( default=1.0, metadata={"help": "Max gradient norm for Adafactor."} ) block_size: int = field( default=1024, metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, ) start_preconditioning_step: int = field( default=100, metadata={"help": "Number of steps before starting to update preconditioner."}, ) preconditioning_compute_steps: int = field( default=10, metadata={"help": "Number of steps to update preconditioner."} ) skip_preconditioning_dim_size_gt: int = field( default=4096, metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, ) optim_quantized: bool = field( default=False, metadata={ "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." }, ) num_train_epochs: int = field( default=3, metadata={"help": "Total number of training epochs to perform."} ) ===========unchanged ref 2=========== warmup_steps: int = field( default=0, metadata={"help": "Linear warmup over warmup_steps."} ) lr_decay: str = field( default=None, metadata={ "help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential." }, ) lr_transition_steps: int = field( default=None, metadata={ "help": "Number of transition steps associated with learning rate decay when using exponential decay." }, ) lr_decay_rate: float = field( default=None, metadata={ "help": "Decay rate associated with learning rate when using exponential decay." }, ) lr_staircase: bool = field( default=False, metadata={ "help": "Whether to use staircase or continuous learning rate when using exponential decay." }, ) logging_steps: int = field( default=40, metadata={"help": "Log every X updates steps."} ) eval_steps: int = field( default=400, metadata={"help": "Run an evaluation every X steps."} ) save_steps: int = field( default=4000, metadata={"help": "Save checkpoint every X updates steps."} ) log_model: bool = field( default=False, metadata={"help": "Log model to wandb at `save_steps` frequency."}, ) seed_model: int = field( default=42, metadata={ "help": "Random seed for the model that will be set at the beginning of training." }, ) wandb_entity: Optional[str] = field( default=None, metadata={"help": "The wandb entity to use (for teams)."}, ) ===========unchanged ref 3=========== wandb_project: str = field( default="dalle-mini", metadata={"help": "The name of the wandb project."}, ) wandb_job_type: str = field( default="Seq2Seq", metadata={"help": "The name of the wandb job type."}, ) assert_TPU_available: bool = field( default=False, metadata={"help": "Verify that TPU is not in use."}, ) mp_devices: Optional[int] = field( default=1, metadata={ "help": "Number of devices required for model parallelism. The other dimension of available devices is used for data parallelism." }, ) dp_devices: int = field(init=False) ===========changed ref 0=========== # module: tools.train.train + cc.initialize_cache("./jax_cache", max_cache_size_bytes=10 * 2**30) - cc.initialize_cache("./jax_cache", max_cache_size_bytes=5 * 2**30) logger = logging.getLogger(__name__) ===========changed ref 1=========== # module: tools.train.train #!/usr/bin/env python # coding=utf-8 + # Copyright 2021-2022 The HuggingFace & DALL·E Mini team. All rights reserved. - # Copyright 2021-2022 The HuggingFace & DALL·E Mini Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Training DALL·E Mini. Script adapted from run_summarization_flax.py """
dalle_mini.data/Dataset.__post_init__
Modified
borisdayma~dalle-mini
803ccbf4021a8dcfd7e3c5192b9573b4f6a50c64
feat: support pod (#139)
<1>:<add> # feed blank captions only in streaming mode for now <add> if self.blank_caption_prob: <add> assert ( <add> self.streaming is True <add> ), "blank_caption_prob can only be used in streaming mode"
# module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): <0> self.multi_hosts = jax.process_count() > 1 <1> # define data_files <2> if self.train_file is not None or self.validation_file is not None: <3> # accept braceexpand notation <4> for k in ["train_file", "validation_file"]: <5> f = getattr(self, k) <6> if isinstance(f, str): <7> setattr(self, k, list(braceexpand(f))) <8> # for list of files, split training data shards by host <9> if ( <10> isinstance(self.train_file, list) <11> and self.multi_hosts <12> and self.shard_by_host <13> ): <14> self.train_file = self.train_file[ <15> jax.process_index() :: jax.process_count() <16> ] <17> data_files = { <18> "train": self.train_file, <19> "validation": self.validation_file, <20> } <21> else: <22> data_files = None <23> <24> # load dataset <25> dataset = load_dataset( <26> self.dataset_repo_or_path, <27> data_files=data_files, <28> streaming=self.streaming, <29> use_auth_token=self.use_auth_token, <30> ) <31> if self.do_train: <32> if "train" not in dataset: <33> raise ValueError("Training requires a training dataset") <34> self.train_dataset = dataset["train"] <35> if self.max_train_samples is not None: <36> self.train_dataset = ( <37> self.train_dataset.take(self.max_train_samples) <38> if self.streaming <39> else self.train_dataset.select(range(self.max_train_samples)) <40> ) <41> if self.do_eval: <42> if "validation" not in dataset: <43> raise ValueError("Evaluating requires a validation dataset")</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): # offset: 1 if self.max_eval_samples is not None: self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) ) ===========unchanged ref 0=========== at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False blank_caption_prob: float = 0.0 train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) at: dalle_mini.data.Dataset.preprocess self.train_dataset = self.train_dataset.shuffle(5000, self.seed_dataset) self.train_dataset = ( self.train_dataset.map(partial_blank_caption_function) if self.streaming else self.train_dataset.map( partial_blank_caption_function, num_proc=self.preprocessing_num_workers, load_from_cache_file=False, desc="Blanking some captions", ) ) at: datasets.arrow_dataset.Dataset wrapper(*, keep_in_memory: bool=False, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) ===========unchanged ref 1=========== at: datasets.load load_dataset(path: str, name: Optional[str]=None, data_dir: Optional[str]=None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]]=None, split: Optional[Union[str, Split]]=None, cache_dir: Optional[str]=None, features: Optional[Features]=None, download_config: Optional[DownloadConfig]=None, download_mode: Optional[DownloadMode]=None, ignore_verifications: bool=False, keep_in_memory: Optional[bool]=None, save_infos: bool=False, revision: Optional[Union[str, Version]]=None, use_auth_token: Optional[Union[bool, str]]=None, task: Optional[Union[str, TaskTemplate]]=None, streaming: bool=False, num_proc: Optional[int]=None, *, num_process: int=1, process_id: int=0, seed: Optional[int]=None, experiment_id: Optional[str]=None, max_concurrent_cache_files: int=10000, timeout: Union[int, float]=100, base_path: Optional[str]=None, info: Optional[DatasetInfo]=None, repo_id: Optional[str]=None, **kwargs) -> Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset] ===========changed ref 0=========== # module: dalle_mini.data @dataclass class Dataset: dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False + blank_caption_prob: float = 0.0 train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) ===========changed ref 1=========== + # module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices + + ===========changed ref 2=========== + # module: tools.train.scalable_shampoo.quantization_utils + + ===========changed ref 3=========== # module: tools.train.train + cc.initialize_cache("./jax_cache", max_cache_size_bytes=10 * 2**30) - cc.initialize_cache("./jax_cache", max_cache_size_bytes=5 * 2**30) logger = logging.getLogger(__name__) ===========changed ref 4=========== + # module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices + def product_with_transpose( + mat1, + mat2, + precision=lax.Precision.DEFAULT, + ): + """Returns mat1 * mat2^T for two matrices (possibly batched). + + The rows and columns are the last two dimensions for each matrix. + + Args: + mat1: First matrix. + mat2: Second matrix. + precision: JAX precision to use for the multiplication. + """ + return jnp.einsum("...ij,...kj->...ik", mat1, mat2, precision=precision) + ===========changed ref 5=========== + # module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices + @struct.dataclass + class SlicedSymmetricMatrix: + """A symmetric matrix represented by lower-triangular block row slices. + + For example, the symmetric matrix M = [[a, b^T], [b, c]] would be represented + by the block rows a and [b, c]. + + The matrix may be batched, in which case each entry of block_rows may have + dimension greater than 2. The last two dimensions represent the rows and cols. + """ + + block_rows: List[jnp.ndarray] + ===========changed ref 6=========== + # module: tools.train.scalable_shampoo.quantization_utils + # pylint:disable=no-value-for-parameter + @struct.dataclass + class QuantizedValue: + @classmethod + def from_float_value(cls, fvalue, quantized_dtype, extract_diagonal=False): + if isinstance(fvalue, list) and not fvalue: + return QuantizedValue([], [], [], quantized_dtype, extract_diagonal, []) + quantized, diagonal_fvalue, bucket_size = QuantizedValue.quantize( + fvalue, quantized_dtype, extract_diagonal + ) + return QuantizedValue( + quantized, + diagonal_fvalue, + bucket_size, + quantized_dtype, + extract_diagonal, + list(quantized.shape), + ) +
dalle_mini.data/Dataset.preprocess
Modified
borisdayma~dalle-mini
803ccbf4021a8dcfd7e3c5192b9573b4f6a50c64
feat: support pod (#139)
<14>:<add> <add> # blank captions <add> if self.blank_caption_prob: <add> partial_blank_caption_function = partial( <add> blank_caption_function, <add> text_column=self.text_column, <add> blank_caption_prob=self.blank_caption_prob, <add> ) <add> if hasattr(self, "train_dataset"): <add> self.train_dataset = ( <add> self.train_dataset.map(partial_blank_caption_function) <add> if self.streaming <add> else self.train_dataset.map( <add> partial_blank_caption_function, <add> num_proc=self.preprocessing_num_workers, <add> load_from_cache_file=False, <add> desc="Blanking some captions", <add> ) <add> )
# module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): <0> # get required config variables <1> decoder_start_token_id = config.decoder_start_token_id <2> normalize_text = config.normalize_text <3> max_length = config.max_text_length <4> <5> if self.streaming: <6> # we need to shuffle early in streaming mode <7> if hasattr(self, "train_dataset"): <8> self.train_dataset = self.train_dataset.shuffle(5000, self.seed_dataset) <9> else: <10> # prepare rng for later shuffling <11> if self.seed_dataset is None: <12> self.seed_dataset = np.random.get_state()[1][0] <13> self.rng_dataset = jax.random.PRNGKey(self.seed_dataset) <14> <15> # normalize text <16> if normalize_text: <17> text_normalizer = TextNormalizer() <18> partial_normalize_function = partial( <19> normalize_function, <20> text_column=self.text_column, <21> text_normalizer=text_normalizer, <22> ) <23> for ds in ["train_dataset", "eval_dataset"]: <24> if hasattr(self, ds): <25> setattr( <26> self, <27> ds, <28> ( <29> getattr(self, ds).map(partial_normalize_function) <30> if self.streaming <31> else getattr(self, ds).map( <32> partial_normalize_function, <33> num_proc=self.preprocessing_num_workers, <34> load_from_cache_file=not self.overwrite_cache, <35> desc="Normalizing datasets", <36> ) <37> ), <38> ) <39> <40> # preprocess <41> partial_preprocess_function = partial( <42> preprocess_function, <43> tokenizer=tokenizer, <44> text_column=self.text_column, <45> encoding_column=self.encoding_column, <46> max_length=max</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): # offset: 1 decoder_start_token_id=decoder_start_token_id, ) for ds in ["train_dataset", "eval_dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map( partial_preprocess_function, batched=True, ) if self.streaming else getattr(self, ds).map( partial_preprocess_function, batched=True, remove_columns=getattr(ds, "column_names"), num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Preprocessing datasets", ) ), ) ===========unchanged ref 0=========== at: dalle_mini.data normalize_function(example, text_column, text_normalizer) preprocess_function(examples, tokenizer, text_column, encoding_column, max_length, decoder_start_token_id) blank_caption_function(example, text_column, blank_caption_prob) at: dalle_mini.data.Dataset streaming: bool = True text_column: str = "caption" max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False blank_caption_prob: float = 0.0 at: dalle_mini.data.Dataset.__post_init__ self.train_dataset = dataset["train"] self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) at: dalle_mini.data.Dataset.dataloader self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) ===========unchanged ref 1=========== at: datasets.arrow_dataset.Dataset map(function: Optional[Callable]=None, with_indices: bool=False, with_rank: bool=False, input_columns: Optional[Union[str, List[str]]]=None, batched: bool=False, batch_size: Optional[int]=1000, drop_last_batch: bool=False, remove_columns: Optional[Union[str, List[str]]]=None, keep_in_memory: bool=False, load_from_cache_file: bool=None, cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, features: Optional[Features]=None, disable_nullable: bool=False, fn_kwargs: Optional[dict]=None, num_proc: Optional[int]=None, suffix_template: str="_{rank:05d}_of_{num_proc:05d}", new_fingerprint: Optional[str]=None, desc: Optional[str]=None) -> "Dataset" wrapper(*, keep_in_memory: bool=False, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) wrapper(*, generator: Optional[np.random.Generator]=None, keep_in_memory: bool=False, load_from_cache_file: bool=True, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: numpy.random.mtrand get_state = _rand.get_state ===========changed ref 0=========== # module: dalle_mini.data @dataclass class Dataset: dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False + blank_caption_prob: float = 0.0 train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) ===========changed ref 1=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): self.multi_hosts = jax.process_count() > 1 + # feed blank captions only in streaming mode for now + if self.blank_caption_prob: + assert ( + self.streaming is True + ), "blank_caption_prob can only be used in streaming mode" # define data_files if self.train_file is not None or self.validation_file is not None: # accept braceexpand notation for k in ["train_file", "validation_file"]: f = getattr(self, k) if isinstance(f, str): setattr(self, k, list(braceexpand(f))) # for list of files, split training data shards by host if ( isinstance(self.train_file, list) and self.multi_hosts and self.shard_by_host ): self.train_file = self.train_file[ jax.process_index() :: jax.process_count() ] data_files = { "train": self.train_file, "validation": self.validation_file, } else: data_files = None # load dataset dataset = load_dataset( self.dataset_repo_or_path, data_files=data_files, streaming=self.streaming, use_auth_token=self.use_auth_token, ) if self.do_train: if "train" not in dataset: raise ValueError("Training requires a training dataset") self.train_dataset = dataset["train"] if self.max_train_samples is not None: self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) if self.do_eval: if "validation" not</s> ===========changed ref 2=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): # offset: 1 <s>(range(self.max_train_samples)) ) if self.do_eval: if "validation" not in dataset: raise ValueError("Evaluating requires a validation dataset") self.eval_dataset = dataset["validation"] if self.max_eval_samples is not None: self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) ) ===========changed ref 3=========== + # module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices + + ===========changed ref 4=========== + # module: tools.train.scalable_shampoo.quantization_utils + +
tools.train.train/ModelArguments.__post_init__
Modified
borisdayma~dalle-mini
793987480b7f78056df1a2903562c28b1f6214d3
feat(data): super conditioning (#141)
<1>:<add> self.tokenizer_name = self.model_name_or_path <del> self.tokenizer_name == self.model_name_or_path
# module: tools.train.train @dataclass class ModelArguments: def __post_init__(self): <0> if self.tokenizer_name is None: <1> self.tokenizer_name == self.model_name_or_path <2> assert ( <3> self.tokenizer_name is not None <4> ), "Tokenizer name or model name/path needs to be specified" <5> if self.restore_state: <6> assert self.model_name_or_path is not None and ( <7> "/model-" in self.model_name_or_path <8> ), "Restoring state only available with W&B artifact reference" <9>
===========unchanged ref 0=========== at: tools.train.train.ModelArguments model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch. " "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." }, ) config_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained config name or path if not the same as model_name_or_path" }, ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path" }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." }, ) restore_state: Optional[bool] = field( default=False, metadata={ "help": "Restore optimizer and training state. Can be True (will retrieve associated wandb artifact), a local directory or a Google bucket path." }, ) at: tools.train.train.ModelArguments.get_opt_state self.restore_state = str(Path(artifact_dir) / "opt_state.msgpack") self.restore_state = artifact.metadata["bucket_path"] ===========changed ref 0=========== # module: dalle_mini + __version__ = "0.0.3" - __version__ = "0.0.2" ===========changed ref 1=========== # module: dalle_mini.model.modeling + @flax.struct.dataclass + class SampleState: + cur_len: jnp.ndarray + sequences: jnp.ndarray + running_token: jnp.ndarray + is_sent_finished: jnp.ndarray + prng_key: jnp.ndarray + model_kwargs: Dict[str, jnp.ndarray] + model_kwargs_uncond: Dict[str, jnp.ndarray] + ===========changed ref 2=========== <s> <add> length_penalty: Optional[float] = None, + early_stopping: Optional[bool] = None, + trace: bool = True, + params: Optional[Dict[str, jnp.ndarray]] = None, + condition_scale: Optional[float] = 1.0, + input_ids_uncond: Optional[jnp.ndarray] = None, + attention_mask_uncond: Optional[jnp.ndarray] = None, + **model_kwargs, + ): + """Edit: Allow super conditioning.""" + + # set init values + max_length = max_length if max_length is not None else self.config.max_length + bos_token_id = ( + bos_token_id if bos_token_id is not None else self.config.bos_token_id + ) + pad_token_id = ( + pad_token_id if pad_token_id is not None else self.config.pad_token_id + ) + eos_token_id = ( + eos_token_id if eos_token_id is not None else self.config.eos_token_id + ) + decoder_start_token_id = ( + decoder_start_token_id + if decoder_start_token_id + else self.config.decoder_start_token_id + ) + prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) + + if decoder_start_token_id is None and self.config.is_encoder_decoder: + raise ValueError( + "`decoder_start_token_id` has to be defined for encoder-decoder generation." + ) + + do_sample = do_sample if do_sample is not None else self.config.do_sample + num_beams = num_beams if num_beams is not None else self.config.num_beams + + if self.config.is_encoder_</s> ===========changed ref 3=========== <s>alty: Optional[float] = None, + early_stopping: Optional[bool] = None, + trace: bool = True, + params: Optional[Dict[str, jnp.ndarray]] = None, + condition_scale: Optional[float] = 1.0, + input_ids_uncond: Optional[jnp.ndarray] = None, + attention_mask_uncond: Optional[jnp.ndarray] = None, + **model_kwargs, + ): # offset: 1 <s> num_beams is not None else self.config.num_beams + + if self.config.is_encoder_decoder: + # add encoder_outputs to model_kwargs + if model_kwargs.get("encoder_outputs") is None: + model_kwargs_input = dict(model_kwargs) + model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation( + input_ids, + params, + {"attention_mask": attention_mask, **model_kwargs_input}, + ) + if condition_scale != 1.0: + assert ( + input_ids_uncond is not None + ), "`input_ids_uncond` has to be defined for super conditioning." + assert ( + do_sample is True + ), "`do_sample` has to be True for super conditioning." + assert ( + num_beams == 1 + ), "`num_beams` has to be 1 for super conditioning." + model_kwargs_uncond = ( + self._prepare_encoder_decoder_kwargs_for_generation( + input_ids_uncond, + params, + { + "attention_mask": attention_mask_uncond, + **model_kwargs_input, + }, + ) + ) + else: + model_kwargs_uncond = None </s>
dalle_mini.data/Dataset.preprocess
Modified
borisdayma~dalle-mini
793987480b7f78056df1a2903562c28b1f6214d3
feat(data): super conditioning (#141)
<15>:<del> # blank captions <16>:<del> if self.blank_caption_prob: <17>:<add> # filter data <add> partial_filter_function = partial( <del> partial_blank_caption_function = partial( <18>:<add> filter_function, <del> blank_caption_function, <19>:<add> filter_column=self.filter_column, <del> text_column=self.text_column, <20>:<add> filter_value=self.filter_value, <add> clip_score_column=self.clip_score_column, <add> min_clip_score=self.min_clip_score, <add> max_clip_score=self.max_clip_score, <del> blank_caption_prob=self.blank_caption_prob, <21>:<add> ) <del> ) <22>:<add> for ds in ["train_dataset", "eval_dataset"]: <add> if hasattr(self, ds): <del> if hasattr(self, "train_dataset"): <23>:<add> setattr( <add> self, <add> ds, <add> ( <add> getattr(self, ds).filter(partial_filter_function) <del> self.train_dataset = ( <24>:<del> self.train_dataset.map(partial_blank_caption_function) <25>:<add> if self.streaming <del> if self.streaming <26>:<add> else getattr(self, ds).filter( <del> else self.train_dataset.map( <27>:<add> partial_filter_function, <del> partial_blank_caption_function, <28>:<add> num_proc=self.preprocessing_num_workers, <del> num_proc=self.preprocessing_num_workers,
# module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): <0> # get required config variables <1> decoder_start_token_id = config.decoder_start_token_id <2> normalize_text = config.normalize_text <3> max_length = config.max_text_length <4> <5> if self.streaming: <6> # we need to shuffle early in streaming mode <7> if hasattr(self, "train_dataset"): <8> self.train_dataset = self.train_dataset.shuffle(5000, self.seed_dataset) <9> else: <10> # prepare rng for later shuffling <11> if self.seed_dataset is None: <12> self.seed_dataset = np.random.get_state()[1][0] <13> self.rng_dataset = jax.random.PRNGKey(self.seed_dataset) <14> <15> # blank captions <16> if self.blank_caption_prob: <17> partial_blank_caption_function = partial( <18> blank_caption_function, <19> text_column=self.text_column, <20> blank_caption_prob=self.blank_caption_prob, <21> ) <22> if hasattr(self, "train_dataset"): <23> self.train_dataset = ( <24> self.train_dataset.map(partial_blank_caption_function) <25> if self.streaming <26> else self.train_dataset.map( <27> partial_blank_caption_function, <28> num_proc=self.preprocessing_num_workers, <29> load_from_cache_file=False, <30> desc="Blanking some captions", <31> ) <32> ) <33> <34> # normalize text <35> if normalize_text: <36> text_normalizer = TextNormalizer() <37> partial_normalize_function = partial( <38> normalize_function, <39> text_column=self.text_column, <40> text_normalizer=text_normalizer, <41> ) <42> for ds in ["train_dataset", "eval_dataset"]</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): # offset: 1 if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map(partial_normalize_function) if self.streaming else getattr(self, ds).map( partial_normalize_function, num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Normalizing datasets", ) ), ) # preprocess partial_preprocess_function = partial( preprocess_function, tokenizer=tokenizer, text_column=self.text_column, encoding_column=self.encoding_column, max_length=max_length, decoder_start_token_id=decoder_start_token_id, ) for ds in ["train_dataset", "eval_dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map( partial_preprocess_function, batched=True, remove_columns=[ self.text_column, self.encoding_column, ], ) if self.streaming else getattr(self, ds).map( partial_preprocess_function, batched=True, remove_columns=getattr(ds, "column_names"), num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Preprocessing datasets", ) ), ) ===========unchanged ref 0=========== at: dalle_mini.data blank_caption_function(example, text_column, blank_caption_prob) normalize_function(example, text_column, text_normalizer) filter_function(example, min_clip_score, max_clip_score, clip_score_column, filter_column, filter_value) at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False blank_caption_prob: float = 0.0 clip_score_column: str = "clip_score" min_clip_score: float = None max_clip_score: float = None filter_column: str = None filter_value: str = None train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) at: dalle_mini.data.Dataset.__post_init__ self.train_dataset = dataset["train"] self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) ===========unchanged ref 1=========== at: dalle_mini.data.Dataset.dataloader self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) at: datasets.arrow_dataset.Dataset wrapper(*, with_indices=False, input_columns: Optional[Union[str, List[str]]]=None, batched: bool=False, batch_size: Optional[int]=1000, keep_in_memory: bool=False, load_from_cache_file: bool=True, cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, fn_kwargs: Optional[dict]=None, num_proc: Optional[int]=None, suffix_template: str="_{rank:05d}_of_{num_proc:05d}", new_fingerprint: Optional[str]=None, desc: Optional[str]=None) wrapper(*, keep_in_memory: bool=False, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) wrapper(*, generator: Optional[np.random.Generator]=None, keep_in_memory: bool=False, load_from_cache_file: bool=True, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) at: datasets.dataset_dict.DatasetDict shuffle(seeds: Optional[Union[int, Dict[str, Optional[int]]]]=None, seed: Optional[int]=None, generators: Optional[Dict[str, np.random.Generator]]=None, keep_in_memory: bool=False, load_from_cache_file: bool=True, indices_cache_file_names: Optional[Dict[str, Optional[str]]]=None, writer_batch_size: Optional[int]=1000) -> "DatasetDict" ===========unchanged ref 2=========== at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: numpy.random.mtrand get_state = _rand.get_state ===========changed ref 0=========== # module: dalle_mini.data @dataclass class Dataset: dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False blank_caption_prob: float = 0.0 + clip_score_column: str = "clip_score" + min_clip_score: float = None + max_clip_score: float = None + filter_column: str = None + filter_value: str = None train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) ===========changed ref 1=========== # module: dalle_mini + __version__ = "0.0.3" - __version__ = "0.0.2" ===========changed ref 2=========== # module: dalle_mini.model.modeling + @flax.struct.dataclass + class SampleState: + cur_len: jnp.ndarray + sequences: jnp.ndarray + running_token: jnp.ndarray + is_sent_finished: jnp.ndarray + prng_key: jnp.ndarray + model_kwargs: Dict[str, jnp.ndarray] + model_kwargs_uncond: Dict[str, jnp.ndarray] +
dalle_mini.data/Dataset.dataloader
Modified
borisdayma~dalle-mini
793987480b7f78056df1a2903562c28b1f6214d3
feat(data): super conditioning (#141)
# module: dalle_mini.data @dataclass class Dataset: def dataloader(self, split, batch_size, epoch=None): <0> def _dataloader_datasets_non_streaming( <1> dataset: Dataset, <2> rng: jax.random.PRNGKey = None, <3> ): <4> """ <5> Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. <6> Shuffle batches if rng is set. <7> """ <8> steps_per_epoch = len(dataset) // batch_size <9> <10> if rng is not None: <11> batch_idx = jax.random.permutation(rng, len(dataset)) <12> else: <13> batch_idx = jnp.arange(len(dataset)) <14> <15> batch_idx = batch_idx[ <16> : steps_per_epoch * batch_size <17> ] # Skip incomplete batch. <18> batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) <19> <20> for idx in batch_idx: <21> batch = dataset[idx] <22> batch = {k: jnp.array(v) for k, v in batch.items()} <23> yield batch <24> <25> def _dataloader_datasets_streaming( <26> dataset: Dataset, <27> epoch: int, <28> ): <29> keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"] <30> batch = {k: [] for k in keys} <31> first_loop = True # stop after one loop in some cases <32> while (self.multi_hosts and split == "train") or first_loop: <33> # in multi-host, we run forever (no epoch) as hosts need to stop <34> # at the same time and training data may not be split equally <35> # For validation data we put the entire batch on each host and then <36> # keep only the one specific to each host (could be improved but not necessary) <37> if epoch is not None: <38> assert split == "train</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def dataloader(self, split, batch_size, epoch=None): # offset: 1 # reshuffle training data at each epoch dataset.set_epoch(epoch) epoch += 1 for item in dataset: for k, v in item.items(): batch[k].append(v) if len(batch[keys[0]]) == batch_size: batch = {k: jnp.array(v) for k, v in batch.items()} yield batch batch = {k: [] for k in keys} first_loop = False if split == "train": ds = self.train_dataset elif split == "eval": ds = self.eval_dataset else: raise ValueError(f'split must be "train" or "eval", got {split}') if self.streaming: return _dataloader_datasets_streaming(ds, epoch) else: if split == "train": self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) return _dataloader_datasets_non_streaming(ds, input_rng) ===========unchanged ref 0=========== at: dalle_mini.data Dataset(dataset_repo_or_path: str, train_file: str=None, validation_file: str=None, streaming: bool=True, use_auth_token: bool=False, text_column: str="caption", encoding_column: str="encoding", max_train_samples: int=None, max_eval_samples: int=None, preprocessing_num_workers: int=None, overwrite_cache: bool=False, do_train: bool=False, do_eval: bool=True, seed_dataset: int=None, shard_by_host: bool=False, blank_caption_prob: float=0.0, clip_score_column: str="clip_score", min_clip_score: float=None, max_clip_score: float=None, filter_column: str=None, filter_value: str=None, train_dataset: Dataset=field(init=False), eval_dataset: Dataset=field(init=False), rng_dataset: jnp.ndarray=field(init=False), multi_hosts: bool=field(init=False)) at: dalle_mini.data.Dataset.preprocess decoder_start_token_id = config.decoder_start_token_id max_length = config.max_text_length partial_preprocess_function = partial( preprocess_function, tokenizer=tokenizer, text_column=self.text_column, encoding_column=self.encoding_column, max_length=max_length, decoder_start_token_id=decoder_start_token_id, ) ===========changed ref 0=========== # module: dalle_mini.data @dataclass class Dataset: dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False blank_caption_prob: float = 0.0 + clip_score_column: str = "clip_score" + min_clip_score: float = None + max_clip_score: float = None + filter_column: str = None + filter_value: str = None train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) ===========changed ref 1=========== # module: dalle_mini + __version__ = "0.0.3" - __version__ = "0.0.2" ===========changed ref 2=========== # module: dalle_mini.model.modeling + @flax.struct.dataclass + class SampleState: + cur_len: jnp.ndarray + sequences: jnp.ndarray + running_token: jnp.ndarray + is_sent_finished: jnp.ndarray + prng_key: jnp.ndarray + model_kwargs: Dict[str, jnp.ndarray] + model_kwargs_uncond: Dict[str, jnp.ndarray] + ===========changed ref 3=========== # module: tools.train.train @dataclass class ModelArguments: def __post_init__(self): if self.tokenizer_name is None: + self.tokenizer_name = self.model_name_or_path - self.tokenizer_name == self.model_name_or_path assert ( self.tokenizer_name is not None ), "Tokenizer name or model name/path needs to be specified" if self.restore_state: assert self.model_name_or_path is not None and ( "/model-" in self.model_name_or_path ), "Restoring state only available with W&B artifact reference" ===========changed ref 4=========== # module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): # get required config variables decoder_start_token_id = config.decoder_start_token_id normalize_text = config.normalize_text max_length = config.max_text_length if self.streaming: # we need to shuffle early in streaming mode if hasattr(self, "train_dataset"): self.train_dataset = self.train_dataset.shuffle(5000, self.seed_dataset) else: # prepare rng for later shuffling if self.seed_dataset is None: self.seed_dataset = np.random.get_state()[1][0] self.rng_dataset = jax.random.PRNGKey(self.seed_dataset) - # blank captions - if self.blank_caption_prob: + # filter data + partial_filter_function = partial( - partial_blank_caption_function = partial( + filter_function, - blank_caption_function, + filter_column=self.filter_column, - text_column=self.text_column, + filter_value=self.filter_value, + clip_score_column=self.clip_score_column, + min_clip_score=self.min_clip_score, + max_clip_score=self.max_clip_score, - blank_caption_prob=self.blank_caption_prob, + ) - ) + for ds in ["train_dataset", "eval_dataset"]: + if hasattr(self, ds): - if hasattr(self, "train_dataset"): + setattr( + self, + ds, + ( + getattr(self, ds).filter(partial_filter_function) - self.train_dataset = ( - self.train_dataset.map(partial_blank_caption_function) + if self.streaming - if self.streaming </s>
tools.train.train/MetricsLogger.log
Modified
borisdayma~dalle-mini
b7b619a2ab6b9dec1812d074fbee7b5abafae158
feat(train): log norm and histograms (#143)
<1>:<add> log_metrics = {} <del> log_metrics = { <2>:<del> f"{prefix}/{k}" if prefix is not None else k: v <3>:<add> for k, v in metrics.items(): <del> for k, v in metrics.items() <4>:<add> if prefix is not None: <add> k = f"{prefix}/{k}" <add> if "_norm" in k: <add> log_metrics[f"{k}/"] = unfreeze(v) <add> elif "_hist" in k: <add> v = jax.tree_map(lambda x: jax.device_get(x), unfreeze(v)) <add> v = jax.tree_map( <add> lambda x: wandb.Histogram(np_histogram=x), <add> v, <add> is_leaf=lambda x: isinstance(x, tuple), <add> ) <add> log_metrics[f"{k}/"] = v <add> else: <add> log_metrics[k] = v <del> }
# module: tools.train.train class MetricsLogger: def log(self, metrics, prefix=None): <0> if jax.process_index() == 0: <1> log_metrics = { <2> f"{prefix}/{k}" if prefix is not None else k: v <3> for k, v in metrics.items() <4> } <5> wandb.log({**log_metrics, **self.state_dict}) <6>
===========unchanged ref 0=========== at: tools.train.train.MetricsLogger.__init__ self.step = step self.time = time.perf_counter() self.state_dict = {} at: tools.train.train.MetricsLogger.update_state_metrics self.state_dict = { f'train/{k.split("_")[-1]}': getattr(state, k) for k in ["step", "epoch", "train_time", "train_samples"] } new_step = int(state.step) new_time = time.perf_counter() ===========changed ref 0=========== # module: tools.train.train @dataclass class TrainingArguments: """ Arguments pertaining to training parameters. """ output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per data parallel device for training."}, ) per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) gradient_checkpointing: bool = field( default=False, metadata={"help": "Use gradient checkpointing."} ) learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for</s> ===========changed ref 1=========== # module: tools.train.train @dataclass class TrainingArguments: # offset: 1 <s> ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, ) beta2: float = field( default=0.999, metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, ) adam_epsilon: float = field( default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} ) max_grad_norm: float = field( default=1.0, metadata={"help": "Max gradient norm for Adafactor."} ) block_size: int = field( default=1024, metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, ) preconditioning_compute_steps: int = field( default=10, metadata={"help": "Number of steps to update preconditioner."} ) skip_preconditioning_dim_size_gt: int = field( default=4096, metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, ) graft_type: str = field( default="rmsprop_normalized", metadata={ "help": "The type of grafting to use. Can be 'rmsprop_normalized' (default), 'rmsprop', 'adagrad', 'adagrad_normalized', 'sgd' or 'sqrt_n'" }, ) optim_quantized: bool = field( default=False, metadata={ "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." }, ) num_train_epochs: int = field( default=3, metadata={"help": "Total number of training epochs to perform."} ) </s> ===========changed ref 2=========== # module: tools.train.train @dataclass class TrainingArguments: # offset: 2 <s> warmup_steps: int = field( default=0, metadata={"help": "Linear warmup over warmup_steps."} ) lr_decay: str = field( default=None, metadata={ "help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential." }, ) lr_transition_steps: int = field( default=None, metadata={ "help": "Number of transition steps associated with learning rate decay when using exponential decay." }, ) lr_decay_rate: float = field( default=None, metadata={ "help": "Decay rate associated with learning rate when using exponential decay." }, ) lr_staircase: bool = field( default=False, metadata={ "help": "Whether to use staircase or continuous learning rate when using exponential decay." }, ) logging_steps: int = field( default=40, metadata={"help": "Log every X updates steps."} ) eval_steps: int = field( default=400, metadata={"help": "Run an evaluation every X steps."} ) save_steps: int = field( default=4000, metadata={"help": "Save checkpoint every X updates steps."} ) log_model: bool = field( default=False, metadata={"help": "Log model to wandb at `save_steps` frequency."}, ) + log_histograms: bool = field( + default=False, + metadata={ + "help": "Log parameters and gradients histograms. Slows down training." + }, + ) seed_model: int = field( default=42, metadata={ "help": "Random seed for the model</s> ===========changed ref 3=========== # module: tools.train.train @dataclass class TrainingArguments: # offset: 3 <s> be set at the beginning of training." }, ) wandb_entity: Optional[str] = field( default=None, metadata={"help": "The wandb entity to use (for teams)."}, ) wandb_project: str = field( default="dalle-mini", metadata={"help": "The name of the wandb project."}, ) wandb_job_type: str = field( default="Seq2Seq", metadata={"help": "The name of the wandb job type."}, ) assert_TPU_available: bool = field( default=False, metadata={"help": "Verify that TPU is not in use."}, ) mp_devices: Optional[int] = field( default=1, metadata={ "help": "Number of devices required for model parallelism. The other dimension of available devices is used for data parallelism." }, ) dp_devices: int = field(init=False)
tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices/product_with_transpose
Modified
borisdayma~dalle-mini
b7b619a2ab6b9dec1812d074fbee7b5abafae158
feat(train): log norm and histograms (#143)
<7>:<add> axes: The axes over which to apply the product. <9>:<add> return jnp.tensordot(a=mat1, b=mat2, axes=axes, precision=precision) <del> return jnp.einsum("...ij,...kj->...ik", mat1, mat2, precision=precision)
# module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices def product_with_transpose( mat1, mat2, + axes, precision=lax.Precision.DEFAULT, ): <0> """Returns mat1 * mat2^T for two matrices (possibly batched). <1> <2> The rows and columns are the last two dimensions for each matrix. <3> <4> Args: <5> mat1: First matrix. <6> mat2: Second matrix. <7> precision: JAX precision to use for the multiplication. <8> """ <9> return jnp.einsum("...ij,...kj->...ik", mat1, mat2, precision=precision) <10>
===========changed ref 0=========== # module: tools.train.train class MetricsLogger: def log(self, metrics, prefix=None): if jax.process_index() == 0: + log_metrics = {} - log_metrics = { - f"{prefix}/{k}" if prefix is not None else k: v + for k, v in metrics.items(): - for k, v in metrics.items() + if prefix is not None: + k = f"{prefix}/{k}" + if "_norm" in k: + log_metrics[f"{k}/"] = unfreeze(v) + elif "_hist" in k: + v = jax.tree_map(lambda x: jax.device_get(x), unfreeze(v)) + v = jax.tree_map( + lambda x: wandb.Histogram(np_histogram=x), + v, + is_leaf=lambda x: isinstance(x, tuple), + ) + log_metrics[f"{k}/"] = v + else: + log_metrics[k] = v - } wandb.log({**log_metrics, **self.state_dict}) ===========changed ref 1=========== # module: tools.train.train @dataclass class TrainingArguments: """ Arguments pertaining to training parameters. """ output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per data parallel device for training."}, ) per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) gradient_checkpointing: bool = field( default=False, metadata={"help": "Use gradient checkpointing."} ) learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for</s> ===========changed ref 2=========== # module: tools.train.train @dataclass class TrainingArguments: # offset: 1 <s> ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, ) beta2: float = field( default=0.999, metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, ) adam_epsilon: float = field( default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} ) max_grad_norm: float = field( default=1.0, metadata={"help": "Max gradient norm for Adafactor."} ) block_size: int = field( default=1024, metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, ) preconditioning_compute_steps: int = field( default=10, metadata={"help": "Number of steps to update preconditioner."} ) skip_preconditioning_dim_size_gt: int = field( default=4096, metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, ) graft_type: str = field( default="rmsprop_normalized", metadata={ "help": "The type of grafting to use. Can be 'rmsprop_normalized' (default), 'rmsprop', 'adagrad', 'adagrad_normalized', 'sgd' or 'sqrt_n'" }, ) optim_quantized: bool = field( default=False, metadata={ "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." }, ) num_train_epochs: int = field( default=3, metadata={"help": "Total number of training epochs to perform."} ) </s> ===========changed ref 3=========== # module: tools.train.train @dataclass class TrainingArguments: # offset: 2 <s> warmup_steps: int = field( default=0, metadata={"help": "Linear warmup over warmup_steps."} ) lr_decay: str = field( default=None, metadata={ "help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential." }, ) lr_transition_steps: int = field( default=None, metadata={ "help": "Number of transition steps associated with learning rate decay when using exponential decay." }, ) lr_decay_rate: float = field( default=None, metadata={ "help": "Decay rate associated with learning rate when using exponential decay." }, ) lr_staircase: bool = field( default=False, metadata={ "help": "Whether to use staircase or continuous learning rate when using exponential decay." }, ) logging_steps: int = field( default=40, metadata={"help": "Log every X updates steps."} ) eval_steps: int = field( default=400, metadata={"help": "Run an evaluation every X steps."} ) save_steps: int = field( default=4000, metadata={"help": "Save checkpoint every X updates steps."} ) log_model: bool = field( default=False, metadata={"help": "Log model to wandb at `save_steps` frequency."}, ) + log_histograms: bool = field( + default=False, + metadata={ + "help": "Log parameters and gradients histograms. Slows down training." + }, + ) seed_model: int = field( default=42, metadata={ "help": "Random seed for the model</s>
tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices/sliced_transposed_product
Modified
borisdayma~dalle-mini
b7b619a2ab6b9dec1812d074fbee7b5abafae158
feat(train): log norm and histograms (#143)
<0>:<add> """Returns the blocked slices representing a symmetric contraction. <del> """Returns the blocked slices representing a symmetric matrix mat*mat^T. <1>:<add> <add> Specifically, the output is a contraction of the input mat with itself, in the <add> specified axes. <3>:<del> mat: The matrix for which we will compute mat*mat^T. It does not need to be <4>:<del> square, and may be batched. <5>:<add> mat: The matrix for which we will compute a contraction with itself. <6>:<add> axes: Axes to use for the contraction. <12>:<add> rank = len(mat.shape) <add> <add> def _make_axis_positive(ax): <add> assert -rank <= ax < rank <add> return ax + rank if ax < 0 else ax <add> <add> positive_axes = [_make_axis_positive(ax) for ax in axes] <add> assert len(positive_axes) == len(axes) <add> remaining_axes = set(range(rank)) - set(positive_axes) <add> assert len(remaining_axes) == 1 <add> remaining_ax = remaining_axes.pop() <add> <add> num_rows = mat.shape[remaining_ax] <del> num_rows = mat.shape[-2] <18>:<add> <add> block_rows =
<s>: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices + @functools.partial(jax.jit, static_argnames=("block_size", "axes", "precision")) - @functools.partial(jax.jit, static_argnames=("block_size", "precision")) def sliced_transposed_product( mat, block_size, + axes=(-1,), precision=lax.Precision.DEFAULT, ): <0> """Returns the blocked slices representing a symmetric matrix mat*mat^T. <1> <2> Args: <3> mat: The matrix for which we will compute mat*mat^T. It does not need to be <4> square, and may be batched. <5> block_size: The size of row blocks to compute. <6> precision: The precision to use in each computation. <7> <8> Raises: <9> ValueError: Raised when the specified block size does not evenly divide <10> the number of rows of the input mat. <11> """ <12> num_rows = mat.shape[-2] <13> if num_rows % block_size != 0: <14> raise ValueError( <15> "The row dimension must be divisible by block_size. " <16> f"Instead got row dimension={num_rows} and block_size={block_size}." <17> ) <18> block_rows = [ <19> product_with_transpose( <20> mat[Ellipsis, i * block_size : (i + 1) * block_size, :], <21> mat[Ellipsis, 0 : (i + 1) * block_size, :], <22> precision, <23> ) <24> for i in range(num_rows // block_size) <25> ] <26> return SlicedSymmetricMatrix(block_rows=block_rows) <27>
===========unchanged ref 0=========== at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() ===========changed ref 0=========== # module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices def product_with_transpose( mat1, mat2, + axes, precision=lax.Precision.DEFAULT, ): """Returns mat1 * mat2^T for two matrices (possibly batched). The rows and columns are the last two dimensions for each matrix. Args: mat1: First matrix. mat2: Second matrix. + axes: The axes over which to apply the product. precision: JAX precision to use for the multiplication. """ + return jnp.tensordot(a=mat1, b=mat2, axes=axes, precision=precision) - return jnp.einsum("...ij,...kj->...ik", mat1, mat2, precision=precision) ===========changed ref 1=========== # module: tools.train.train class MetricsLogger: def log(self, metrics, prefix=None): if jax.process_index() == 0: + log_metrics = {} - log_metrics = { - f"{prefix}/{k}" if prefix is not None else k: v + for k, v in metrics.items(): - for k, v in metrics.items() + if prefix is not None: + k = f"{prefix}/{k}" + if "_norm" in k: + log_metrics[f"{k}/"] = unfreeze(v) + elif "_hist" in k: + v = jax.tree_map(lambda x: jax.device_get(x), unfreeze(v)) + v = jax.tree_map( + lambda x: wandb.Histogram(np_histogram=x), + v, + is_leaf=lambda x: isinstance(x, tuple), + ) + log_metrics[f"{k}/"] = v + else: + log_metrics[k] = v - } wandb.log({**log_metrics, **self.state_dict}) ===========changed ref 2=========== # module: tools.train.train @dataclass class TrainingArguments: """ Arguments pertaining to training parameters. """ output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per data parallel device for training."}, ) per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) gradient_checkpointing: bool = field( default=False, metadata={"help": "Use gradient checkpointing."} ) learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for</s> ===========changed ref 3=========== # module: tools.train.train @dataclass class TrainingArguments: # offset: 1 <s> ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, ) beta2: float = field( default=0.999, metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, ) adam_epsilon: float = field( default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} ) max_grad_norm: float = field( default=1.0, metadata={"help": "Max gradient norm for Adafactor."} ) block_size: int = field( default=1024, metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, ) preconditioning_compute_steps: int = field( default=10, metadata={"help": "Number of steps to update preconditioner."} ) skip_preconditioning_dim_size_gt: int = field( default=4096, metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, ) graft_type: str = field( default="rmsprop_normalized", metadata={ "help": "The type of grafting to use. Can be 'rmsprop_normalized' (default), 'rmsprop', 'adagrad', 'adagrad_normalized', 'sgd' or 'sqrt_n'" }, ) optim_quantized: bool = field( default=False, metadata={ "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." }, ) num_train_epochs: int = field( default=3, metadata={"help": "Total number of training epochs to perform."} ) </s>
tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices/sliced_transposed_product_concat
Modified
borisdayma~dalle-mini
b7b619a2ab6b9dec1812d074fbee7b5abafae158
feat(train): log norm and histograms (#143)
<6>:<add> axes: Axes to use for the contraction. <13>:<add> mat=mat, block_size=block_size, axes=axes, precision=precision <del> mat=mat, block_size=block_size, precision=precision
<s>.train.scalable_shampoo.symmetric_matrices.symmetric_matrices + @functools.partial(jax.jit, static_argnames=("block_size", "axes", "precision")) - @functools.partial(jax.jit, static_argnames=("block_size", "precision")) def sliced_transposed_product_concat( mat, block_size, + axes=(-1,), precision=lax.Precision.DEFAULT, ): <0> """Returns the concatenated slices representing mat*mat^T. <1> <2> Args: <3> mat: The matrix for which we will compute mat*mat^T. It does not need to be <4> square, and may be batched. <5> block_size: The size of row blocks to compute. <6> precision: The precision to use in each computation. <7> <8> Raises: <9> ValueError: Raised when the specified block size does not evenly divide <10> the number of rows of the input mat. <11> """ <12> sliced_symmetric_matrix = sliced_transposed_product( <13> mat=mat, block_size=block_size, precision=precision <14> ) <15> return jnp.concatenate(sliced_symmetric_matrix.block_rows, axis=-1) <16>
===========unchanged ref 0=========== at: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices product_with_transpose(mat1, mat2, axes, precision=lax.Precision.DEFAULT) at: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices.sliced_transposed_product rank = len(mat.shape) remaining_axes = set(range(rank)) - set(positive_axes) ===========changed ref 0=========== # module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices def product_with_transpose( mat1, mat2, + axes, precision=lax.Precision.DEFAULT, ): """Returns mat1 * mat2^T for two matrices (possibly batched). The rows and columns are the last two dimensions for each matrix. Args: mat1: First matrix. mat2: Second matrix. + axes: The axes over which to apply the product. precision: JAX precision to use for the multiplication. """ + return jnp.tensordot(a=mat1, b=mat2, axes=axes, precision=precision) - return jnp.einsum("...ij,...kj->...ik", mat1, mat2, precision=precision) ===========changed ref 1=========== <s>: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices + @functools.partial(jax.jit, static_argnames=("block_size", "axes", "precision")) - @functools.partial(jax.jit, static_argnames=("block_size", "precision")) def sliced_transposed_product( mat, block_size, + axes=(-1,), precision=lax.Precision.DEFAULT, ): + """Returns the blocked slices representing a symmetric contraction. - """Returns the blocked slices representing a symmetric matrix mat*mat^T. + + Specifically, the output is a contraction of the input mat with itself, in the + specified axes. Args: - mat: The matrix for which we will compute mat*mat^T. It does not need to be - square, and may be batched. + mat: The matrix for which we will compute a contraction with itself. block_size: The size of row blocks to compute. + axes: Axes to use for the contraction. precision: The precision to use in each computation. Raises: ValueError: Raised when the specified block size does not evenly divide the number of rows of the input mat. """ + rank = len(mat.shape) + + def _make_axis_positive(ax): + assert -rank <= ax < rank + return ax + rank if ax < 0 else ax + + positive_axes = [_make_axis_positive(ax) for ax in axes] + assert len(positive_axes) == len(axes) + remaining_axes = set(range(rank)) - set(positive_axes) + assert len(remaining_axes) == 1 + remaining_ax = remaining_axes.pop() + + num_rows = mat.shape[remaining_ax] - num_rows = mat.shape[-2] if num_rows % block_size != 0: raise ValueError( "The row dimension must be div</s> ===========changed ref 2=========== <s>scalable_shampoo.symmetric_matrices.symmetric_matrices + @functools.partial(jax.jit, static_argnames=("block_size", "axes", "precision")) - @functools.partial(jax.jit, static_argnames=("block_size", "precision")) def sliced_transposed_product( mat, block_size, + axes=(-1,), precision=lax.Precision.DEFAULT, ): # offset: 1 <s>[-2] if num_rows % block_size != 0: raise ValueError( "The row dimension must be divisible by block_size. " f"Instead got row dimension={num_rows} and block_size={block_size}." ) + + block_rows = [] - block_rows = [ + for i in range(num_rows // block_size): + start_indices = [0] * rank + start_indices[remaining_ax] = i * block_size + + slice_sizes = list(mat.shape) + slice_sizes[remaining_ax] = block_size + + slice_sizes_full = list(mat.shape) + slice_sizes_full[remaining_ax] = (i + 1) * block_size + + block_rows.append( + product_with_transpose( - product_with_transpose( + lax.dynamic_slice( + mat, start_indices=start_indices, slice_sizes=slice_sizes + ), + lax.dynamic_slice( + mat, start_indices=[0] * rank, slice_sizes=slice_sizes_full + ), + axes=(axes, axes), - mat[Ellipsis, i * block_size : (i + 1) * block_size, :], - mat[Ellipsis, 0 : (i + 1)</s> ===========changed ref 3=========== <s>scalable_shampoo.symmetric_matrices.symmetric_matrices + @functools.partial(jax.jit, static_argnames=("block_size", "axes", "precision")) - @functools.partial(jax.jit, static_argnames=("block_size", "precision")) def sliced_transposed_product( mat, block_size, + axes=(-1,), precision=lax.Precision.DEFAULT, ): # offset: 2 <s>_size, :], + precision=precision, - precision, + ) ) - for i in range(num_rows // block_size) - ] + return SlicedSymmetricMatrix(block_rows=block_rows) ===========changed ref 4=========== # module: tools.train.train class MetricsLogger: def log(self, metrics, prefix=None): if jax.process_index() == 0: + log_metrics = {} - log_metrics = { - f"{prefix}/{k}" if prefix is not None else k: v + for k, v in metrics.items(): - for k, v in metrics.items() + if prefix is not None: + k = f"{prefix}/{k}" + if "_norm" in k: + log_metrics[f"{k}/"] = unfreeze(v) + elif "_hist" in k: + v = jax.tree_map(lambda x: jax.device_get(x), unfreeze(v)) + v = jax.tree_map( + lambda x: wandb.Histogram(np_histogram=x), + v, + is_leaf=lambda x: isinstance(x, tuple), + ) + log_metrics[f"{k}/"] = v + else: + log_metrics[k] = v - } wandb.log({**log_metrics, **self.state_dict})
tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices/update_sliced_rows
Modified
borisdayma~dalle-mini
b7b619a2ab6b9dec1812d074fbee7b5abafae158
feat(train): log norm and histograms (#143)
<11>:<add> axes: Axes to use for the contraction of the update. <16>:<add> sym_prod = sliced_transposed_product(mat=mat, block_size=block_size, axes=axes) <del> sym_prod = sliced_transposed_product(mat=mat, block_size=block_size)
# module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices + @functools.partial(jax.jit, static_argnames=("alpha", "beta", "axes")) - @functools.partial(jax.jit, static_argnames=("alpha", "beta")) def update_sliced_rows( symmetric_matrix, mat, alpha, beta, + axes=(-1,), ): <0> """Implements the blocked equivalent of SYRK. <1> <2> Specifically, the symmetric matrix (represented using lower-triangular block <3> rows) is updated using the sliced product of mat. <4> <5> Args: <6> symmetric_matrix: The symmetric matrix to update. <7> mat: The matrix to use for the update = mat * mat^T. The number of rows <8> should match that of symmetric_matrix. <9> alpha: The weight for the update. <10> beta: The weight for the original symmetric matrix. <11> <12> Returns: <13> The updated rows of alpha * mat * mat^T + beta * symmetric_matrix. <14> """ <15> block_size = symmetric_matrix.block_rows[0].shape[-2] <16> sym_prod = sliced_transposed_product(mat=mat, block_size=block_size) <17> return SlicedSymmetricMatrix( <18> block_rows=[ <19> update * alpha + row * beta <20> for update, row in zip(sym_prod.block_rows, symmetric_matrix.block_rows) <21> ] <22> ) <23>
===========unchanged ref 0=========== at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices block_rows = [ block_rows_concat[ Ellipsis, (k * (k + 1)) // 2 * block_size : (((k + 1) * (k + 2)) // 2 + 1) * block_size, ] for k in range(num_blocks) ] at: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices.materialize_matrix blocks = [ [ block_row[Ellipsis, i * block_size : (i + 1) * block_size] for i in range(k + 1) ] for k, block_row in enumerate(block_rows) ] off_diags = [[] for _ in range(num_blocks - 1)] ===========changed ref 0=========== # module: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices def product_with_transpose( mat1, mat2, + axes, precision=lax.Precision.DEFAULT, ): """Returns mat1 * mat2^T for two matrices (possibly batched). The rows and columns are the last two dimensions for each matrix. Args: mat1: First matrix. mat2: Second matrix. + axes: The axes over which to apply the product. precision: JAX precision to use for the multiplication. """ + return jnp.tensordot(a=mat1, b=mat2, axes=axes, precision=precision) - return jnp.einsum("...ij,...kj->...ik", mat1, mat2, precision=precision) ===========changed ref 1=========== <s>.train.scalable_shampoo.symmetric_matrices.symmetric_matrices + @functools.partial(jax.jit, static_argnames=("block_size", "axes", "precision")) - @functools.partial(jax.jit, static_argnames=("block_size", "precision")) def sliced_transposed_product_concat( mat, block_size, + axes=(-1,), precision=lax.Precision.DEFAULT, ): """Returns the concatenated slices representing mat*mat^T. Args: mat: The matrix for which we will compute mat*mat^T. It does not need to be square, and may be batched. block_size: The size of row blocks to compute. + axes: Axes to use for the contraction. precision: The precision to use in each computation. Raises: ValueError: Raised when the specified block size does not evenly divide the number of rows of the input mat. """ sliced_symmetric_matrix = sliced_transposed_product( + mat=mat, block_size=block_size, axes=axes, precision=precision - mat=mat, block_size=block_size, precision=precision ) return jnp.concatenate(sliced_symmetric_matrix.block_rows, axis=-1) ===========changed ref 2=========== <s>: tools.train.scalable_shampoo.symmetric_matrices.symmetric_matrices + @functools.partial(jax.jit, static_argnames=("block_size", "axes", "precision")) - @functools.partial(jax.jit, static_argnames=("block_size", "precision")) def sliced_transposed_product( mat, block_size, + axes=(-1,), precision=lax.Precision.DEFAULT, ): + """Returns the blocked slices representing a symmetric contraction. - """Returns the blocked slices representing a symmetric matrix mat*mat^T. + + Specifically, the output is a contraction of the input mat with itself, in the + specified axes. Args: - mat: The matrix for which we will compute mat*mat^T. It does not need to be - square, and may be batched. + mat: The matrix for which we will compute a contraction with itself. block_size: The size of row blocks to compute. + axes: Axes to use for the contraction. precision: The precision to use in each computation. Raises: ValueError: Raised when the specified block size does not evenly divide the number of rows of the input mat. """ + rank = len(mat.shape) + + def _make_axis_positive(ax): + assert -rank <= ax < rank + return ax + rank if ax < 0 else ax + + positive_axes = [_make_axis_positive(ax) for ax in axes] + assert len(positive_axes) == len(axes) + remaining_axes = set(range(rank)) - set(positive_axes) + assert len(remaining_axes) == 1 + remaining_ax = remaining_axes.pop() + + num_rows = mat.shape[remaining_ax] - num_rows = mat.shape[-2] if num_rows % block_size != 0: raise ValueError( "The row dimension must be div</s> ===========changed ref 3=========== <s>scalable_shampoo.symmetric_matrices.symmetric_matrices + @functools.partial(jax.jit, static_argnames=("block_size", "axes", "precision")) - @functools.partial(jax.jit, static_argnames=("block_size", "precision")) def sliced_transposed_product( mat, block_size, + axes=(-1,), precision=lax.Precision.DEFAULT, ): # offset: 1 <s>[-2] if num_rows % block_size != 0: raise ValueError( "The row dimension must be divisible by block_size. " f"Instead got row dimension={num_rows} and block_size={block_size}." ) + + block_rows = [] - block_rows = [ + for i in range(num_rows // block_size): + start_indices = [0] * rank + start_indices[remaining_ax] = i * block_size + + slice_sizes = list(mat.shape) + slice_sizes[remaining_ax] = block_size + + slice_sizes_full = list(mat.shape) + slice_sizes_full[remaining_ax] = (i + 1) * block_size + + block_rows.append( + product_with_transpose( - product_with_transpose( + lax.dynamic_slice( + mat, start_indices=start_indices, slice_sizes=slice_sizes + ), + lax.dynamic_slice( + mat, start_indices=[0] * rank, slice_sizes=slice_sizes_full + ), + axes=(axes, axes), - mat[Ellipsis, i * block_size : (i + 1) * block_size, :], - mat[Ellipsis, 0 : (i + 1)</s>
dalle_mini.model.configuration/DalleBartConfig.__init__
Modified
borisdayma~dalle-mini
542378c30e591b7d3e40e8bfbd716f7cc49fb6cd
feat: implement transformer variants (#144)
<0>:<add> # text normalizer <1>:<add> <add> # transformer variants <add> self.head_scale = head_scale # per Normformer <add> assert ln_type in [ <add> "rmsnorm", <add> "layernorm", <add> ], "ln_type must be 'rmsnorm' or 'layernorm'" <add> self.ln_type = ln_type <add> assert ln_positions in [ <add> "normformer", <add> "swinv2", <add> "deepnet", <add> ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" <add> self.ln_positions = ln_positions <add> self.use_cosine_attention = use_cosine_attention <add> self.tau_init = tau_init <add> self.use_deepnet_scaling = use_deepnet_scaling <add> self.use_glu = use_glu <add> <add> # common parameters <17>:<del> self.encoder_layerdrop = encoder_layerdrop <18>:<del> self.decoder_layerdrop = decoder_layerdrop <19>:<del> self.classifier_dropout = classifier_dropout
<s> ln_positions="deepnet", # layer normalization positions, "normformer", "swinv2", "deepnet" (same as post-ln) + use_cosine_attention=False, # used in Swin v2 + tau_init=0.05, # used only in cosine attention (Swin v2) + use_deepnet_scaling=False, # used in Deepnet + use_glu=False, # "GLU Variants Improve Transformer" **kwargs, ): <0> self.normalize_text = normalize_text <1> self.encoder_vocab_size = encoder_vocab_size <2> self.image_vocab_size = image_vocab_size <3> self.image_length = image_length <4> self.max_text_length = max_text_length <5> self.d_model = d_model <6> self.encoder_ffn_dim = encoder_ffn_dim <7> self.encoder_layers = encoder_layers <8> self.encoder_attention_heads = encoder_attention_heads <9> self.decoder_ffn_dim = decoder_ffn_dim <10> self.decoder_layers = decoder_layers <11> self.decoder_attention_heads = decoder_attention_heads <12> self.dropout = dropout <13> self.attention_dropout = attention_dropout <14> self.activation_dropout = activation_dropout <15> self.activation_function = activation_function <16> self.init_std = init_std <17> self.encoder_layerdrop = encoder_layerdrop <18> self.decoder_layerdrop = decoder_layerdrop <19> self.classifier_dropout = classifier_dropout <20> self.use_cache = use_cache <21> self.gradient_checkpointing = gradient_checkpointing <22> self.scale_embedding = ( <23> scale_embedding # scale factor will be sqrt(d_model) if True <24> ) <25> <26> # special token id's are appended to vocab if not provided <27> decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) <28> bos_</s>
===========below chunk 0=========== <s>net", # layer normalization positions, "normformer", "swinv2", "deepnet" (same as post-ln) + use_cosine_attention=False, # used in Swin v2 + tau_init=0.05, # used only in cosine attention (Swin v2) + use_deepnet_scaling=False, # used in Deepnet + use_glu=False, # "GLU Variants Improve Transformer" **kwargs, ): # offset: 1 pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length + 1) max_length = kwargs.pop("max_length", image_length + 1) super().__init__( # args required in parent class is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_embeddings, forced_eos_token_id=forced_eos_token_id, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, min_length=min_length, max_length=max_length, do_sample=do_sample, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_</s> ===========below chunk 1=========== <s>net", # layer normalization positions, "normformer", "swinv2", "deepnet" (same as post-ln) + use_cosine_attention=False, # used in Swin v2 + tau_init=0.05, # used only in cosine attention (Swin v2) + use_deepnet_scaling=False, # used in Deepnet + use_glu=False, # "GLU Variants Improve Transformer" **kwargs, ): # offset: 2 <s>.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." ) ===========unchanged ref 0=========== at: transformers.configuration_utils.PretrainedConfig model_type: str = "" is_composition: bool = False attribute_map: Dict[str, str] = {} _auto_class: Optional[str] = None __init__(**kwargs) __init__(self, **kwargs) at: typing.MutableMapping pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T] pop(key: _KT) -> _VT
dalle_mini.model.utils/PretrainedFromWandbMixin.from_pretrained
Modified
borisdayma~dalle-mini
542378c30e591b7d3e40e8bfbd716f7cc49fb6cd
feat: implement transformer variants (#144)
<1>:<add> Initializes from a wandb artifact or delegates loading to the superclass. <del> Initializes from a wandb artifact, google bucket path or delegates loading to the superclass. <4>:<add> if ":" in pretrained_model_name_or_path and not os.path.isdir( <del> if ( <5>:<add> pretrained_model_name_or_path <del> ":" in pretrained_model_name_or_path <6>:<del> and not os.path.isdir(pretrained_model_name_or_path) <7>:<del> and not pretrained_model_name_or_path.startswith("gs")
# module: dalle_mini.model.utils class PretrainedFromWandbMixin: @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): <0> """ <1> Initializes from a wandb artifact, google bucket path or delegates loading to the superclass. <2> """ <3> with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies <4> if ( <5> ":" in pretrained_model_name_or_path <6> and not os.path.isdir(pretrained_model_name_or_path) <7> and not pretrained_model_name_or_path.startswith("gs") <8> ): <9> # wandb artifact <10> if wandb.run is not None: <11> artifact = wandb.run.use_artifact(pretrained_model_name_or_path) <12> else: <13> artifact = wandb.Api().artifact(pretrained_model_name_or_path) <14> pretrained_model_name_or_path = artifact.download(tmp_dir) <15> <16> return super(PretrainedFromWandbMixin, cls).from_pretrained( <17> pretrained_model_name_or_path, *model_args, **kwargs <18> ) <19>
===========unchanged ref 0=========== at: dalle_mini.model.utils PretrainedFromWandbMixin() at: os.path isdir(s: AnyPath) -> bool at: tempfile TemporaryDirectory(suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=...) at: wandb Api = PublicApi run: Optional["wandb_sdk.wandb_run.Run"] = None at: wandb.apis.public.Api _HTTP_TIMEOUT = env.get_http_timeout(9) VIEWER_QUERY = gql( """ query Viewer{ viewer { id flags entity username email admin apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } """ ) USERS_QUERY = gql( """ query SearchUsers($query: String) { users(query: $query) { edges { node { id flags entity admin email deletedAt username apiKeys { edges { node { id name description } } } teams { edges { node { name } } } } } } } """ ) ===========unchanged ref 1=========== CREATE_PROJECT = gql( """ mutation upsertModel( $description: String $entityName: String $id: String $name: String $framework: String $access: String $views: JSONString ) { upsertModel( input: { description: $description entityName: $entityName id: $id name: $name framework: $framework access: $access views: $views } ) { project { id name entityName description access views } model { id name entityName description access views } inserted } } """ ) artifact(name, type=None) at: wandb.apis.public.Artifact QUERY = gql( """ query ArtifactWithCurrentManifest( $id: ID!, ) { artifact(id: $id) { currentManifest { id file { id directUrl } } ...ArtifactFragment } } %s """ % ARTIFACT_FRAGMENT ) download(root=None, recursive=False) at: wandb.sdk.wandb_run.Run _telemetry_obj: telemetry.TelemetryRecord _telemetry_obj_active: bool _telemetry_obj_dirty: bool _telemetry_obj_flushed: bytes _teardown_hooks: List[TeardownHook] _tags: Optional[Tuple[Any, ...]] _entity: Optional[str] _project: Optional[str] _group: Optional[str] _job_type: Optional[str] _name: Optional[str] _notes: Optional[str] _run_obj: Optional[RunRecord] _run_obj_offline: Optional[RunRecord] ===========unchanged ref 2=========== _backend: Optional["wandb.sdk.backend.backend.Backend"] _internal_run_interface: Optional[ Union[ "wandb.sdk.interface.interface_queue.InterfaceQueue", "wandb.sdk.interface.interface_grpc.InterfaceGrpc", ] ] _wl: Optional[_WandbSetup] _out_redir: Optional[redirect.RedirectBase] _err_redir: Optional[redirect.RedirectBase] _redirect_cb: Optional[Callable[[str, str], None]] _redirect_raw_cb: Optional[Callable[[str, str], None]] _output_writer: Optional["filesystem.CRDedupedFile"] _quiet: Optional[bool] _atexit_cleanup_called: bool _hooks: Optional[ExitHooks] _exit_code: Optional[int] _run_status_checker: Optional[RunStatusChecker] _check_version: Optional["CheckVersionResponse"] _sampled_history: Optional["SampledHistoryResponse"] _final_summary: Optional["GetSummaryResponse"] _poll_exit_handle: Optional[MailboxHandle] _poll_exit_response: Optional[PollExitResponse] _server_info_response: Optional[ServerInfoResponse] _stdout_slave_fd: Optional[int] _stderr_slave_fd: Optional[int] _artifact_slots: List[str] _init_pid: int _attach_pid: int _iface_pid: Optional[int] _iface_port: Optional[int] _attach_id: Optional[str] _is_attached: bool _settings: Settings _launch_artifacts: Optional[Dict[str, Any]] _printer: Union["PrinterTerm", "PrinterJupyter"] ===========unchanged ref 3=========== use_artifact(self, artifact_or_name: Union[str, public.Artifact, Artifact], type: Optional[str]=None, aliases: Optional[List[str]]=None, use_as: Optional[str]=None) -> Union[public.Artifact, Artifact] ===========changed ref 0=========== <s> ln_positions="deepnet", # layer normalization positions, "normformer", "swinv2", "deepnet" (same as post-ln) + use_cosine_attention=False, # used in Swin v2 + tau_init=0.05, # used only in cosine attention (Swin v2) + use_deepnet_scaling=False, # used in Deepnet + use_glu=False, # "GLU Variants Improve Transformer" **kwargs, ): + # text normalizer self.normalize_text = normalize_text + + # transformer variants + self.head_scale = head_scale # per Normformer + assert ln_type in [ + "rmsnorm", + "layernorm", + ], "ln_type must be 'rmsnorm' or 'layernorm'" + self.ln_type = ln_type + assert ln_positions in [ + "normformer", + "swinv2", + "deepnet", + ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" + self.ln_positions = ln_positions + self.use_cosine_attention = use_cosine_attention + self.tau_init = tau_init + self.use_deepnet_scaling = use_deepnet_scaling + self.use_glu = use_glu + + # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder</s>
dalle_mini.model.modeling/FlaxBartAttention.setup
Modified
borisdayma~dalle-mini
542378c30e591b7d3e40e8bfbd716f7cc49fb6cd
feat: implement transformer variants (#144)
<12>:<del> kernel_init=jax.nn.initializers.normal(self.config.init_std), <15>:<add> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <add> self.config <add> ) <del> self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() <16>:<del> self.out_proj = dense() <18>:<add> self.q_proj = dense( <add> kernel_init=deepnet_init() <add> if self.config.use_deepnet_scaling <add> else jax.nn.initializers.normal(self.config.init_std) <add> ) <add> self.k_proj = dense( <add> kernel_init=deepnet_init() <add> if self.config.use_deepnet_scaling <add> else jax.nn.initializers.normal(self.config.init_std) <add> ) <add> self.v_proj = dense( <add> kernel_init=deepnet_init(gain) <add> if self.config.use_deepnet_scaling <add> else jax.nn.initializers.normal(self.config.init_std) <add> ) <add> self.out_proj = dense
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: <0> self.head_dim = self.embed_dim // self.num_heads <1> if self.head_dim * self.num_heads != self.embed_dim: <2> raise ValueError( <3> f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" <4> f" and `num_heads`: {self.num_heads})." <5> ) <6> <7> dense = partial( <8> nn.Dense, <9> self.embed_dim, <10> use_bias=self.bias, <11> dtype=self.dtype, <12> kernel_init=jax.nn.initializers.normal(self.config.init_std), <13> ) <14> <15> self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() <16> self.out_proj = dense() <17> <18> self.dropout_layer = nn.Dropout(rate=self.dropout) <19> <20> if self.causal: <21> # used only in decoder <22> self.causal_mask = make_causal_mask( <23> jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" <24> ) <25>
===========unchanged ref 0=========== at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.init_std = init_std at: transformers.models.bart.modeling_flax_bart.FlaxBartAttention config: BartConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) -> None ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length + - scale attention heads per NormFormer paper """ ===========changed ref 1=========== # module: dalle_mini.model.modeling + # deepnet initialization + def deepnet_init(gain=1): + init = jax.nn.initializers.glorot_normal() + + def _init(*args, **kwargs): + return gain * init(*args, **kwargs) + + return _init + ===========changed ref 2=========== # module: dalle_mini.model.utils - def copy_blobs(source_path, dest_path): - assert source_path.startswith("gs://") - from google.cloud import storage - - bucket_path = Path(source_path[5:]) - bucket, dir_path = str(bucket_path).split("/", 1) - client = storage.Client() - bucket = client.bucket(bucket) - blobs = client.list_blobs(bucket, prefix=f"{dir_path}/") - for blob in blobs: - dest_name = str(Path(dest_path) / Path(blob.name).name) - blob.download_to_filename(dest_name) - ===========changed ref 3=========== # module: dalle_mini.model.utils class PretrainedFromWandbMixin: @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): """ + Initializes from a wandb artifact or delegates loading to the superclass. - Initializes from a wandb artifact, google bucket path or delegates loading to the superclass. """ with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies + if ":" in pretrained_model_name_or_path and not os.path.isdir( - if ( + pretrained_model_name_or_path - ":" in pretrained_model_name_or_path - and not os.path.isdir(pretrained_model_name_or_path) - and not pretrained_model_name_or_path.startswith("gs") ): # wandb artifact if wandb.run is not None: artifact = wandb.run.use_artifact(pretrained_model_name_or_path) else: artifact = wandb.Api().artifact(pretrained_model_name_or_path) pretrained_model_name_or_path = artifact.download(tmp_dir) return super(PretrainedFromWandbMixin, cls).from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs ) ===========changed ref 4=========== <s> ln_positions="deepnet", # layer normalization positions, "normformer", "swinv2", "deepnet" (same as post-ln) + use_cosine_attention=False, # used in Swin v2 + tau_init=0.05, # used only in cosine attention (Swin v2) + use_deepnet_scaling=False, # used in Deepnet + use_glu=False, # "GLU Variants Improve Transformer" **kwargs, ): + # text normalizer self.normalize_text = normalize_text + + # transformer variants + self.head_scale = head_scale # per Normformer + assert ln_type in [ + "rmsnorm", + "layernorm", + ], "ln_type must be 'rmsnorm' or 'layernorm'" + self.ln_type = ln_type + assert ln_positions in [ + "normformer", + "swinv2", + "deepnet", + ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" + self.ln_positions = ln_positions + self.use_cosine_attention = use_cosine_attention + self.tau_init = tau_init + self.use_deepnet_scaling = use_deepnet_scaling + self.use_glu = use_glu + + # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder</s> ===========changed ref 5=========== <s>net", # layer normalization positions, "normformer", "swinv2", "deepnet" (same as post-ln) + use_cosine_attention=False, # used in Swin v2 + tau_init=0.05, # used only in cosine attention (Swin v2) + use_deepnet_scaling=False, # used in Deepnet + use_glu=False, # "GLU Variants Improve Transformer" **kwargs, ): # offset: 1 <s>dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std - self.encoder_layerdrop = encoder_layerdrop - self.decoder_layerdrop = decoder_layerdrop - self.classifier_dropout = classifier_dropout self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length + 1) max_length = kwargs.pop("max_length</s>
dalle_mini.model.modeling/FlaxBartEncoder.setup
Modified
borisdayma~dalle-mini
542378c30e591b7d3e40e8bfbd716f7cc49fb6cd
feat: implement transformer variants (#144)
<12>:<add> embedding_init=deepnet_init() <add> if self.config.use_deepnet_scaling <add> else jax.nn.initializers.normal(self.config.init_std), <del> embedding_init=jax.nn.initializers.normal(self.config.init_std), <15>:<add> self.layernorm_embedding = norm( <add> self.config.ln_type, dtype=self.dtype, epsilon=1e-05 <add> ) <del> self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
# module: dalle_mini.model.modeling class FlaxBartEncoder(FlaxBartEncoder): def setup(self): <0> self.dropout_layer = nn.Dropout(rate=self.config.dropout) <1> <2> embed_dim = self.config.d_model <3> self.padding_idx = self.config.pad_token_id <4> self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 <5> <6> # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 <7> # and adjust num_embeddings appropriately. Other models don't have this hack <8> self.offset = 0 <9> self.embed_positions = nn.Embed( <10> self.config.max_text_length + self.offset, <11> embed_dim, <12> embedding_init=jax.nn.initializers.normal(self.config.init_std), <13> ) <14> self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) <15> self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) <16>
===========unchanged ref 0=========== at: math sqrt(x: SupportsFloat, /) -> float at: transformers.configuration_utils.PretrainedConfig.__init__ self.pad_token_id = kwargs.pop("pad_token_id", None) at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.d_model = d_model self.dropout = dropout self.init_std = init_std self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True at: transformers.models.bart.modeling_flax_bart.FlaxBartEncoder config: BartConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) ===========changed ref 0=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(nn.Module): - class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): + config: DalleBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartEncoderLayer - allow Gradient Checkpointing (nn.remat) """ ===========changed ref 1=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayerCollection(nn.Module): - class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): + config: DalleBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartDecoderLayer - allow Gradient Checkpointing (nn.remat) """ ===========changed ref 2=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayer(nn.Module): - class FlaxBartDecoderLayer(FlaxBartDecoderLayer): """ Edits: - no bias + - use custom FlaxBartAttention - - uses custom FlaxBartAttention """ ===========changed ref 3=========== # module: dalle_mini.model.modeling + def norm(type, *args, **kwargs): + if type == "rmsnorm": + return RMSNorm(*args, **kwargs) + elif type == "layernorm": + return nn.LayerNorm(*args, **kwargs) + else: + raise ValueError(f"Unknown norm type {type}") + ===========changed ref 4=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayerCollection(nn.Module): - class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): - def setup(self): - layer_module = ( - nn.remat(FlaxBartDecoderLayer, concrete=True) - if self.config.gradient_checkpointing - else FlaxBartDecoderLayer - ) - self.layers = [ - layer_module(self.config, name=str(i), dtype=self.dtype) - for i in range(self.config.decoder_layers) - ] - self.layerdrop = self.config.decoder_layerdrop - ===========changed ref 5=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + def _compute_rms_sq(self, x, axes): + x = jnp.asarray(x, jnp.promote_types(jnp.float32, jnp.result_type(x))) + rms_sq = jnp.mean(jax.lax.square(x), axes) + return rms_sq + ===========changed ref 6=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(nn.Module): - class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): - def setup(self): - layer_module = ( - nn.remat(FlaxBartEncoderLayer, concrete=True) - if self.config.gradient_checkpointing - else FlaxBartEncoderLayer - ) - self.layers = [ - layer_module(self.config, name=str(i), dtype=self.dtype) - for i in range(self.config.encoder_layers) - ] - self.layerdrop = self.config.encoder_layerdrop - ===========changed ref 7=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length + - scale attention heads per NormFormer paper """ ===========changed ref 8=========== # module: dalle_mini.model.modeling + # deepnet initialization + def deepnet_init(gain=1): + init = jax.nn.initializers.glorot_normal() + + def _init(*args, **kwargs): + return gain * init(*args, **kwargs) + + return _init + ===========changed ref 9=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + @nn.compact + def __call__(self, x): + reduction_axes = (-1,) + feature_axes = (-1,) + + rms_sq = self._compute_rms_sq(x, reduction_axes) + + return self._normalize( + self, + x, + rms_sq, + reduction_axes, + feature_axes, + self.dtype, + self.param_dtype, + self.epsilon, + self.use_scale, + self.scale_init, + ) + ===========changed ref 10=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + """ + From "Root Mean Square Layer Normalization" by https://arxiv.org/abs/1910.07467 + + Adapted from flax.linen.LayerNorm + """ + + epsilon: float = 1e-6 + dtype: Any = jnp.float32 + param_dtype: Any = jnp.float32 + use_scale: bool = True + scale_init: Any = jax.nn.initializers.ones + ===========changed ref 11=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + def _normalize( + self, + mdl, + x, + rms_sq, + reduction_axes, + feature_axes, + dtype, + param_dtype, + epsilon, + use_scale, + scale_init, + ): + reduction_axes = nn.normalization._canonicalize_axes(x.ndim, reduction_axes) + feature_axes = nn.normalization._canonicalize_axes(x.ndim, feature_axes) + stats_shape = list(x.shape) + for axis in reduction_axes: + stats_shape[axis] = 1 + rms_sq = rms_sq.reshape(stats_shape) + feature_shape = [1] * x.ndim + reduced_feature_shape = [] + for ax in feature_axes: + feature_shape[ax] = x.shape[ax] + reduced_feature_shape.append(x.shape[ax]) + mul = lax.rsqrt(rms_sq + epsilon) + if use_scale: + scale = mdl.param( + "scale", scale_init, reduced_feature_shape, param_dtype + ).reshape(feature_shape) + mul *= scale + y = mul * x + return jnp.asarray(y, dtype) +
dalle_mini.model.modeling/FlaxBartDecoder.setup
Modified
borisdayma~dalle-mini
542378c30e591b7d3e40e8bfbd716f7cc49fb6cd
feat: implement transformer variants (#144)
<14>:<add> embedding_init=deepnet_init() <add> if self.config.use_deepnet_scaling <add> else jax.nn.initializers.normal(self.config.init_std), <del> embedding_init=jax.nn.initializers.normal(self.config.init_std), <18>:<add> self.layernorm_embedding = norm( <add> self.config.ln_type, dtype=self.dtype, epsilon=1e-05 <add> ) <del> self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
# module: dalle_mini.model.modeling class FlaxBartDecoder(FlaxBartDecoder): def setup(self): <0> self.dropout_layer = nn.Dropout(rate=self.config.dropout) <1> <2> embed_dim = self.config.d_model <3> self.padding_idx = self.config.pad_token_id <4> self.embed_scale = ( <5> math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 <6> ) <7> <8> # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 <9> # and adjust num_embeddings appropriately. Other models don't have this hack <10> self.offset = 0 <11> self.embed_positions = nn.Embed( <12> self.config.image_length + self.offset, # image length for BOS <13> embed_dim, <14> embedding_init=jax.nn.initializers.normal(self.config.init_std), <15> ) <16> <17> self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) <18> self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) <19>
===========unchanged ref 0=========== at: math sqrt(x: SupportsFloat, /) -> float at: transformers.configuration_utils.PretrainedConfig.__init__ self.pad_token_id = kwargs.pop("pad_token_id", None) at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.d_model = d_model self.dropout = dropout self.init_std = init_std self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True at: transformers.models.bart.modeling_flax_bart.FlaxBartDecoder config: BartConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) ===========changed ref 0=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayerCollection(nn.Module): - class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): + config: DalleBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartDecoderLayer - allow Gradient Checkpointing (nn.remat) """ ===========changed ref 1=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayer(nn.Module): - class FlaxBartDecoderLayer(FlaxBartDecoderLayer): """ Edits: - no bias + - use custom FlaxBartAttention - - uses custom FlaxBartAttention """ ===========changed ref 2=========== # module: dalle_mini.model.modeling + def norm(type, *args, **kwargs): + if type == "rmsnorm": + return RMSNorm(*args, **kwargs) + elif type == "layernorm": + return nn.LayerNorm(*args, **kwargs) + else: + raise ValueError(f"Unknown norm type {type}") + ===========changed ref 3=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayerCollection(nn.Module): - class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): - def setup(self): - layer_module = ( - nn.remat(FlaxBartDecoderLayer, concrete=True) - if self.config.gradient_checkpointing - else FlaxBartDecoderLayer - ) - self.layers = [ - layer_module(self.config, name=str(i), dtype=self.dtype) - for i in range(self.config.decoder_layers) - ] - self.layerdrop = self.config.decoder_layerdrop - ===========changed ref 4=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(nn.Module): - class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): + config: DalleBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartEncoderLayer - allow Gradient Checkpointing (nn.remat) """ ===========changed ref 5=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + def _compute_rms_sq(self, x, axes): + x = jnp.asarray(x, jnp.promote_types(jnp.float32, jnp.result_type(x))) + rms_sq = jnp.mean(jax.lax.square(x), axes) + return rms_sq + ===========changed ref 6=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(nn.Module): - class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): - def setup(self): - layer_module = ( - nn.remat(FlaxBartEncoderLayer, concrete=True) - if self.config.gradient_checkpointing - else FlaxBartEncoderLayer - ) - self.layers = [ - layer_module(self.config, name=str(i), dtype=self.dtype) - for i in range(self.config.encoder_layers) - ] - self.layerdrop = self.config.encoder_layerdrop - ===========changed ref 7=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length + - scale attention heads per NormFormer paper """ ===========changed ref 8=========== # module: dalle_mini.model.modeling + # deepnet initialization + def deepnet_init(gain=1): + init = jax.nn.initializers.glorot_normal() + + def _init(*args, **kwargs): + return gain * init(*args, **kwargs) + + return _init + ===========changed ref 9=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + @nn.compact + def __call__(self, x): + reduction_axes = (-1,) + feature_axes = (-1,) + + rms_sq = self._compute_rms_sq(x, reduction_axes) + + return self._normalize( + self, + x, + rms_sq, + reduction_axes, + feature_axes, + self.dtype, + self.param_dtype, + self.epsilon, + self.use_scale, + self.scale_init, + ) + ===========changed ref 10=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + """ + From "Root Mean Square Layer Normalization" by https://arxiv.org/abs/1910.07467 + + Adapted from flax.linen.LayerNorm + """ + + epsilon: float = 1e-6 + dtype: Any = jnp.float32 + param_dtype: Any = jnp.float32 + use_scale: bool = True + scale_init: Any = jax.nn.initializers.ones + ===========changed ref 11=========== # module: dalle_mini.model.modeling class FlaxBartEncoder(FlaxBartEncoder): def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 0 self.embed_positions = nn.Embed( self.config.max_text_length + self.offset, embed_dim, + embedding_init=deepnet_init() + if self.config.use_deepnet_scaling + else jax.nn.initializers.normal(self.config.init_std), - embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) + self.layernorm_embedding = norm( + self.config.ln_type, dtype=self.dtype, epsilon=1e-05 + ) - self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
dalle_mini.model.modeling/FlaxBartModule.setup
Modified
borisdayma~dalle-mini
542378c30e591b7d3e40e8bfbd716f7cc49fb6cd
feat: implement transformer variants (#144)
<3>:<add> embedding_init=deepnet_init() <add> if self.config.use_deepnet_scaling <add> else jax.nn.initializers.normal(self.config.init_std), <del> embedding_init=jax.nn.initializers.normal(self.config.init_std), <8>:<add> embedding_init=deepnet_init() <add> if self.config.use_deepnet_scaling <add> else jax.nn.initializers.normal(self.config.init_std), <del> embedding_init=jax.nn.initializers.normal(self.config.init_std),
# module: dalle_mini.model.modeling class FlaxBartModule(FlaxBartModule): def setup(self): <0> encoder_embed_tokens = nn.Embed( <1> self.config.encoder_vocab_size, <2> self.config.d_model, <3> embedding_init=jax.nn.initializers.normal(self.config.init_std), <4> ) <5> decoder_embed_tokens = nn.Embed( <6> self.config.image_vocab_size + 1, # image vocab size + 1 for BOS <7> self.config.d_model, <8> embedding_init=jax.nn.initializers.normal(self.config.init_std), <9> ) <10> <11> self.encoder = FlaxBartEncoder( <12> self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens <13> ) <14> self.decoder = FlaxBartDecoder( <15> self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens <16> ) <17>
===========unchanged ref 0=========== at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.d_model = d_model self.init_std = init_std at: transformers.models.bart.modeling_flax_bart.FlaxBartModule config: BartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) ===========changed ref 0=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayerCollection(nn.Module): - class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): + config: DalleBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartDecoderLayer - allow Gradient Checkpointing (nn.remat) """ ===========changed ref 1=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayer(nn.Module): - class FlaxBartDecoderLayer(FlaxBartDecoderLayer): """ Edits: - no bias + - use custom FlaxBartAttention - - uses custom FlaxBartAttention """ ===========changed ref 2=========== # module: dalle_mini.model.modeling + def norm(type, *args, **kwargs): + if type == "rmsnorm": + return RMSNorm(*args, **kwargs) + elif type == "layernorm": + return nn.LayerNorm(*args, **kwargs) + else: + raise ValueError(f"Unknown norm type {type}") + ===========changed ref 3=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayerCollection(nn.Module): - class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): - def setup(self): - layer_module = ( - nn.remat(FlaxBartDecoderLayer, concrete=True) - if self.config.gradient_checkpointing - else FlaxBartDecoderLayer - ) - self.layers = [ - layer_module(self.config, name=str(i), dtype=self.dtype) - for i in range(self.config.decoder_layers) - ] - self.layerdrop = self.config.decoder_layerdrop - ===========changed ref 4=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(nn.Module): - class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): + config: DalleBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartEncoderLayer - allow Gradient Checkpointing (nn.remat) """ ===========changed ref 5=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + def _compute_rms_sq(self, x, axes): + x = jnp.asarray(x, jnp.promote_types(jnp.float32, jnp.result_type(x))) + rms_sq = jnp.mean(jax.lax.square(x), axes) + return rms_sq + ===========changed ref 6=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(nn.Module): - class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): - def setup(self): - layer_module = ( - nn.remat(FlaxBartEncoderLayer, concrete=True) - if self.config.gradient_checkpointing - else FlaxBartEncoderLayer - ) - self.layers = [ - layer_module(self.config, name=str(i), dtype=self.dtype) - for i in range(self.config.encoder_layers) - ] - self.layerdrop = self.config.encoder_layerdrop - ===========changed ref 7=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length + - scale attention heads per NormFormer paper """ ===========changed ref 8=========== # module: dalle_mini.model.modeling + # deepnet initialization + def deepnet_init(gain=1): + init = jax.nn.initializers.glorot_normal() + + def _init(*args, **kwargs): + return gain * init(*args, **kwargs) + + return _init + ===========changed ref 9=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + @nn.compact + def __call__(self, x): + reduction_axes = (-1,) + feature_axes = (-1,) + + rms_sq = self._compute_rms_sq(x, reduction_axes) + + return self._normalize( + self, + x, + rms_sq, + reduction_axes, + feature_axes, + self.dtype, + self.param_dtype, + self.epsilon, + self.use_scale, + self.scale_init, + ) + ===========changed ref 10=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + """ + From "Root Mean Square Layer Normalization" by https://arxiv.org/abs/1910.07467 + + Adapted from flax.linen.LayerNorm + """ + + epsilon: float = 1e-6 + dtype: Any = jnp.float32 + param_dtype: Any = jnp.float32 + use_scale: bool = True + scale_init: Any = jax.nn.initializers.ones + ===========changed ref 11=========== # module: dalle_mini.model.modeling class FlaxBartDecoder(FlaxBartDecoder): def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.embed_scale = ( math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 ) # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 0 self.embed_positions = nn.Embed( self.config.image_length + self.offset, # image length for BOS embed_dim, + embedding_init=deepnet_init() + if self.config.use_deepnet_scaling + else jax.nn.initializers.normal(self.config.init_std), - embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) + self.layernorm_embedding = norm( + self.config.ln_type, dtype=self.dtype, epsilon=1e-05 + ) - self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
dalle_mini.model.modeling/FlaxBartForConditionalGenerationModule.setup
Modified
borisdayma~dalle-mini
542378c30e591b7d3e40e8bfbd716f7cc49fb6cd
feat: implement transformer variants (#144)
<6>:<add> kernel_init=deepnet_init() <add> if self.config.use_deepnet_scaling <add> else jax.nn.initializers.normal(self.config.init_std), <del> kernel_init=jax.nn.initializers.normal(self.config.init_std),
# module: dalle_mini.model.modeling class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule): def setup(self): <0> self.model = FlaxBartModule(config=self.config, dtype=self.dtype) <1> self.lm_head = nn.Dense( <2> self.config.image_vocab_size <3> + 1, # image vocab size + 1 for BOS to have same size as decoder inputs (for sharding) <4> use_bias=False, <5> dtype=self.dtype, <6> kernel_init=jax.nn.initializers.normal(self.config.init_std), <7> ) <8>
===========unchanged ref 0=========== at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.init_std = init_std at: transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule config: BartConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros setup(self) ===========changed ref 0=========== # module: dalle_mini.model.modeling + class FFN(nn.Module): + """Simple FFN layer""" + + config: DalleBartConfig + ffn_dim: int + embed_dim: int + dtype: jnp.dtype = jnp.float32 + is_encoder: bool = False + ===========changed ref 1=========== # module: dalle_mini.model.modeling + class GLU(nn.Module): + """From "GLU Variants Improve Transformer" by https://arxiv.org/abs/2002.05202""" + + config: DalleBartConfig + ffn_dim: int + embed_dim: int + dtype: jnp.dtype = jnp.float32 + is_encoder: bool = False + ===========changed ref 2=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayerCollection(nn.Module): - class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): + config: DalleBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartDecoderLayer - allow Gradient Checkpointing (nn.remat) """ ===========changed ref 3=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayer(nn.Module): - class FlaxBartDecoderLayer(FlaxBartDecoderLayer): """ Edits: - no bias + - use custom FlaxBartAttention - - uses custom FlaxBartAttention """ ===========changed ref 4=========== # module: dalle_mini.model.modeling + def norm(type, *args, **kwargs): + if type == "rmsnorm": + return RMSNorm(*args, **kwargs) + elif type == "layernorm": + return nn.LayerNorm(*args, **kwargs) + else: + raise ValueError(f"Unknown norm type {type}") + ===========changed ref 5=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayerCollection(nn.Module): - class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): - def setup(self): - layer_module = ( - nn.remat(FlaxBartDecoderLayer, concrete=True) - if self.config.gradient_checkpointing - else FlaxBartDecoderLayer - ) - self.layers = [ - layer_module(self.config, name=str(i), dtype=self.dtype) - for i in range(self.config.decoder_layers) - ] - self.layerdrop = self.config.decoder_layerdrop - ===========changed ref 6=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(nn.Module): - class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): + config: DalleBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartEncoderLayer - allow Gradient Checkpointing (nn.remat) """ ===========changed ref 7=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + def _compute_rms_sq(self, x, axes): + x = jnp.asarray(x, jnp.promote_types(jnp.float32, jnp.result_type(x))) + rms_sq = jnp.mean(jax.lax.square(x), axes) + return rms_sq + ===========changed ref 8=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(nn.Module): - class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): - def setup(self): - layer_module = ( - nn.remat(FlaxBartEncoderLayer, concrete=True) - if self.config.gradient_checkpointing - else FlaxBartEncoderLayer - ) - self.layers = [ - layer_module(self.config, name=str(i), dtype=self.dtype) - for i in range(self.config.encoder_layers) - ] - self.layerdrop = self.config.encoder_layerdrop - ===========changed ref 9=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length + - scale attention heads per NormFormer paper """ ===========changed ref 10=========== # module: dalle_mini.model.modeling + # deepnet initialization + def deepnet_init(gain=1): + init = jax.nn.initializers.glorot_normal() + + def _init(*args, **kwargs): + return gain * init(*args, **kwargs) + + return _init + ===========changed ref 11=========== # module: dalle_mini.model.modeling + class FFN(nn.Module): + @nn.compact + def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: + gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( + self.config + ) + if self.config.ln_positions in ["normformer"]: + x = norm( + self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False + )(x) + x = nn.Dense( + self.ffn_dim, + dtype=self.dtype, + use_bias=False, + kernel_init=deepnet_init(gain) + if self.config.use_deepnet_scaling + else jax.nn.initializers.normal(self.config.init_std), + )(x) + x = ACT2FN[self.config.activation_function](x) + if self.config.ln_positions in ["normformer"]: + x = norm( + self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False + )(x) + x = nn.Dropout(rate=self.config.activation_dropout)( + x, deterministic=deterministic + ) + x = nn.Dense( + self.embed_dim, + dtype=self.dtype, + use_bias=False, + kernel_init=deepnet_init(gain) + if self.config.use_deepnet_scaling + else jax.nn.initializers.normal(self.config.init_std), + )(x) + if self.config.ln_positions in ["swinv2"]: + x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) + x = nn.</s> ===========changed ref 12=========== # module: dalle_mini.model.modeling + class FFN(nn.Module): + @nn.compact + def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s>self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) + x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) + return x +
tools.train.train/TrainingArguments.__post_init__
Modified
borisdayma~dalle-mini
542378c30e591b7d3e40e8bfbd716f7cc49fb6cd
feat: implement transformer variants (#144)
<24>:<add> if self.log_norm_steps is True: <add> self.log_norm_steps = self.logging_steps
# module: tools.train.train @dataclass class TrainingArguments: def __post_init__(self): <0> if self.assert_TPU_available: <1> assert ( <2> jax.local_device_count() == 8 <3> ), "TPUs in use, please check running processes" <4> assert self.optim in [ <5> "distributed_shampoo", <6> "adam", <7> "adafactor", <8> ], f"Selected optimizer not supported: {self.optim}" <9> assert self.graft_type in [ <10> "rmsprop_normalized", <11> "rmsprop", <12> "adagrad", <13> "adagrad_normalized", <14> "sgd", <15> "sqrt_n", <16> ], f"Selected graft type not supported: {self.graft_type}" <17> assert self.lr_decay in [ <18> None, <19> "linear", <20> "exponential", <21> ], f"Selected learning rate decay not supported: {self.lr_decay}" <22> if self.per_device_eval_batch_size is None: <23> self.per_device_eval_batch_size = self.per_device_train_batch_size <24> if ( <25> os.path.exists(self.output_dir) <26> and os.listdir(self.output_dir) <27> and self.do_train <28> and not self.overwrite_output_dir <29> ): <30> raise ValueError( <31> f"Output directory ({self.output_dir}) already exists and is not empty." <32> "Use --overwrite_output_dir to overcome." <33> ) <34> assert ( <35> self.mp_devices > 0 <36> ), f"Number of devices for model parallelism must be > 0" <37> assert ( <38> jax.device_count() % self.mp_devices == 0 <39> ), f"Number of available devices ({jax.device_count()} must be divisible by number of devices used for model parallelism ({self.mp_devices})." <40> self.dp_devices</s>
===========below chunk 0=========== # module: tools.train.train @dataclass class TrainingArguments: def __post_init__(self): # offset: 1 ===========unchanged ref 0=========== at: os listdir(path: bytes) -> List[bytes] listdir(path: int) -> List[str] listdir(path: Optional[str]=...) -> List[str] listdir(path: _PathLike[str]) -> List[str] at: os.path exists(path: Union[AnyStr, _PathLike[AnyStr]]) -> bool at: tools.train.train.TrainingArguments output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per data parallel device for training."}, ) per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) gradient_checkpointing: bool = field( default=False, metadata={"help": "Use gradient checkpointing."} ) learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) ===========unchanged ref 1=========== optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, ) beta2: float = field( default=0.999, metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, ) adam_epsilon: float = field( default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} ) max_grad_norm: float = field( default=1.0, metadata={"help": "Max gradient norm for Adafactor."} ) block_size: int = field( default=1024, metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, ) preconditioning_compute_steps: int = field( default=10, metadata={"help": "Number of steps to update preconditioner."} ) skip_preconditioning_dim_size_gt: int = field( default=4096, metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, ) graft_type: str = field( default="rmsprop_normalized", metadata={ "help": "The type of grafting to use. Can be 'rmsprop_normalized' (default), 'rmsprop', 'adagrad', 'adagrad_normalized', 'sgd' or 'sqrt_n'" }, ) optim_quantized: bool = field( default=False, metadata={ "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." }, ) ===========unchanged ref 2=========== num_train_epochs: int = field( default=3, metadata={"help": "Total number of training epochs to perform."} ) warmup_steps: int = field( default=0, metadata={"help": "Linear warmup over warmup_steps."} ) lr_decay: str = field( default=None, metadata={ "help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential." }, ) lr_transition_steps: int = field( default=None, metadata={ "help": "Number of transition steps associated with learning rate decay when using exponential decay." }, ) lr_decay_rate: float = field( default=None, metadata={ "help": "Decay rate associated with learning rate when using exponential decay." }, ) lr_staircase: bool = field( default=False, metadata={ "help": "Whether to use staircase or continuous learning rate when using exponential decay." }, ) logging_steps: int = field( default=40, metadata={"help": "Log every X updates steps."} ) eval_steps: int = field( default=400, metadata={"help": "Run an evaluation every X steps."} ) save_steps: int = field( default=4000, metadata={"help": "Save checkpoint every X updates steps."} ) log_model: bool = field( default=False, metadata={"help": "Log model to wandb at `save_steps` frequency."}, ) log_histograms: bool = field( default=False, metadata={ "help": "Log parameters and gradients histograms. Slows down training." }, ) ===========unchanged ref 3=========== seed_model: int = field( default=42, metadata={ "help": "Random seed for the model that will be set at the beginning of training." }, ) wandb_entity: Optional[str] = field( default=None, metadata={"help": "The wandb entity to use (for teams)."}, ) wandb_project: str = field( default="dalle-mini", metadata={"help": "The name of the wandb project."}, ) wandb_job_type: str = field( default="Seq2Seq", metadata={"help": "The name of the wandb job type."}, ) assert_TPU_available: bool = field( default=False, metadata={"help": "Verify that TPU is not in use."}, ) mp_devices: Optional[int] = field( default=1, metadata={ "help": "Number of devices required for model parallelism. The other dimension of available devices is used for data parallelism." }, ) dp_devices: int = field(init=False) ===========changed ref 0=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayer(nn.Module): - class FlaxBartDecoderLayer(FlaxBartDecoderLayer): """ Edits: - no bias + - use custom FlaxBartAttention - - uses custom FlaxBartAttention """ ===========changed ref 1=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length + - scale attention heads per NormFormer paper """
dalle_mini.data/Dataset.__post_init__
Modified
borisdayma~dalle-mini
542378c30e591b7d3e40e8bfbd716f7cc49fb6cd
feat: implement transformer variants (#144)
<0>:<add> if self.seed_dataset is None: <add> # create a random seed <add> self.seed_dataset = random.randint(0, 2**32 - 1)
# module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): <0> self.multi_hosts = jax.process_count() > 1 <1> # feed blank captions only in streaming mode for now <2> # otherwise dataset could be cached with same blanked captions <3> if self.blank_caption_prob: <4> assert ( <5> self.streaming is True <6> ), "blank_caption_prob can only be used in streaming mode" <7> # define data_files <8> if self.train_file is not None or self.validation_file is not None: <9> # accept braceexpand notation <10> for k in ["train_file", "validation_file"]: <11> f = getattr(self, k) <12> if isinstance(f, str): <13> setattr(self, k, list(braceexpand(f))) <14> # for list of files, split training data shards by host <15> if ( <16> isinstance(self.train_file, list) <17> and self.multi_hosts <18> and self.shard_by_host <19> ): <20> self.train_file = self.train_file[ <21> jax.process_index() :: jax.process_count() <22> ] <23> data_files = { <24> "train": self.train_file, <25> "validation": self.validation_file, <26> } <27> else: <28> data_files = None <29> <30> # load dataset <31> dataset = load_dataset( <32> self.dataset_repo_or_path, <33> data_files=data_files, <34> streaming=self.streaming, <35> use_auth_token=self.use_auth_token, <36> ) <37> if self.do_train: <38> if "train" not in dataset: <39> raise ValueError("Training requires a training dataset") <40> self.train_dataset = dataset["train"] <41> if self.max_train_samples is not None: <42> self.train_dataset = ( <43> self.train_dataset.take(self.</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): # offset: 1 if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) if self.do_eval: if "validation" not in dataset: raise ValueError("Evaluating requires a validation dataset") self.eval_dataset = dataset["validation"] if self.max_eval_samples is not None: self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) ) ===========unchanged ref 0=========== at: dalle_mini.data.Dataset dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False blank_caption_prob: float = 0.0 clip_score_column: str = "clip_score" min_clip_score: float = None max_clip_score: float = None filter_column: str = None filter_value: str = None train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) at: dalle_mini.data.Dataset.preprocess self.train_dataset = self.train_dataset.shuffle( buffer_size=5000, seed=self.seed_dataset ) self.train_dataset = ( self.train_dataset.map(partial_blank_caption_function) if self.streaming else self.train_dataset.map( partial_blank_caption_function, num_proc=self.preprocessing_num_workers, load_from_cache_file=False, desc="Blanking some captions", ) ) ===========unchanged ref 1=========== at: datasets.arrow_dataset.Dataset wrapper(*, keep_in_memory: bool=False, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) at: datasets.load load_dataset(path: str, name: Optional[str]=None, data_dir: Optional[str]=None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]]=None, split: Optional[Union[str, Split]]=None, cache_dir: Optional[str]=None, features: Optional[Features]=None, download_config: Optional[DownloadConfig]=None, download_mode: Optional[DownloadMode]=None, ignore_verifications: bool=False, keep_in_memory: Optional[bool]=None, save_infos: bool=False, revision: Optional[Union[str, Version]]=None, use_auth_token: Optional[Union[bool, str]]=None, task: Optional[Union[str, TaskTemplate]]=None, streaming: bool=False, num_proc: Optional[int]=None, *, num_process: int=1, process_id: int=0, seed: Optional[int]=None, experiment_id: Optional[str]=None, max_concurrent_cache_files: int=10000, timeout: Union[int, float]=100, base_path: Optional[str]=None, info: Optional[DatasetInfo]=None, repo_id: Optional[str]=None, **kwargs) -> Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset] at: random randint = _inst.randint ===========changed ref 0=========== # module: tools.train.train - class MetricsLogger: - def __init__(self, step): - self.step = step - self.time = time.perf_counter() - self.state_dict = {} - ===========changed ref 1=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayer(nn.Module): - class FlaxBartDecoderLayer(FlaxBartDecoderLayer): """ Edits: - no bias + - use custom FlaxBartAttention - - uses custom FlaxBartAttention """ ===========changed ref 2=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length + - scale attention heads per NormFormer paper """ ===========changed ref 3=========== # module: dalle_mini.model.modeling + # deepnet initialization + def deepnet_init(gain=1): + init = jax.nn.initializers.glorot_normal() + + def _init(*args, **kwargs): + return gain * init(*args, **kwargs) + + return _init + ===========changed ref 4=========== # module: dalle_mini.model.modeling + class FFN(nn.Module): + """Simple FFN layer""" + + config: DalleBartConfig + ffn_dim: int + embed_dim: int + dtype: jnp.dtype = jnp.float32 + is_encoder: bool = False + ===========changed ref 5=========== # module: dalle_mini.model.modeling + def norm(type, *args, **kwargs): + if type == "rmsnorm": + return RMSNorm(*args, **kwargs) + elif type == "layernorm": + return nn.LayerNorm(*args, **kwargs) + else: + raise ValueError(f"Unknown norm type {type}") + ===========changed ref 6=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + def _compute_rms_sq(self, x, axes): + x = jnp.asarray(x, jnp.promote_types(jnp.float32, jnp.result_type(x))) + rms_sq = jnp.mean(jax.lax.square(x), axes) + return rms_sq + ===========changed ref 7=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayerCollection(nn.Module): - class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): + config: DalleBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartDecoderLayer - allow Gradient Checkpointing (nn.remat) """ ===========changed ref 8=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(nn.Module): - class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): + config: DalleBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartEncoderLayer - allow Gradient Checkpointing (nn.remat) """ ===========changed ref 9=========== # module: dalle_mini.model.modeling + class GLU(nn.Module): + """From "GLU Variants Improve Transformer" by https://arxiv.org/abs/2002.05202""" + + config: DalleBartConfig + ffn_dim: int + embed_dim: int + dtype: jnp.dtype = jnp.float32 + is_encoder: bool = False +
dalle_mini.data/Dataset.preprocess
Modified
borisdayma~dalle-mini
542378c30e591b7d3e40e8bfbd716f7cc49fb6cd
feat: implement transformer variants (#144)
<8>:<add> self.train_dataset = self.train_dataset.shuffle( <del> self.train_dataset = self.train_dataset.shuffle(5000, self.seed_dataset) <9>:<add> buffer_size=5000, seed=self.seed_dataset <add> ) <10>:<del> # prepare rng for later shuffling <11>:<del> if self.seed_dataset is None: <12>:<del> self.seed_dataset = np.random.get_state()[1][0]
# module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): <0> # get required config variables <1> decoder_start_token_id = config.decoder_start_token_id <2> normalize_text = config.normalize_text <3> max_length = config.max_text_length <4> <5> if self.streaming: <6> # we need to shuffle early in streaming mode <7> if hasattr(self, "train_dataset"): <8> self.train_dataset = self.train_dataset.shuffle(5000, self.seed_dataset) <9> else: <10> # prepare rng for later shuffling <11> if self.seed_dataset is None: <12> self.seed_dataset = np.random.get_state()[1][0] <13> self.rng_dataset = jax.random.PRNGKey(self.seed_dataset) <14> <15> # filter data <16> partial_filter_function = partial( <17> filter_function, <18> filter_column=self.filter_column, <19> filter_value=self.filter_value, <20> clip_score_column=self.clip_score_column, <21> min_clip_score=self.min_clip_score, <22> max_clip_score=self.max_clip_score, <23> ) <24> for ds in ["train_dataset", "eval_dataset"]: <25> if hasattr(self, ds): <26> setattr( <27> self, <28> ds, <29> ( <30> getattr(self, ds).filter(partial_filter_function) <31> if self.streaming <32> else getattr(self, ds).filter( <33> partial_filter_function, <34> num_proc=self.preprocessing_num_workers, <35> load_from_cache_file=not self.overwrite_cache, <36> desc="Filtering datasets", <37> ) <38> ), <39> ) <40> <41> # normalize text <42> if normalize_text: <43> text_normalizer = TextNormalizer() <44> partial_normalize_function =</s>
===========below chunk 0=========== # module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): # offset: 1 normalize_function, text_column=self.text_column, text_normalizer=text_normalizer, ) for ds in ["train_dataset", "eval_dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map(partial_normalize_function) if self.streaming else getattr(self, ds).map( partial_normalize_function, num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Normalizing datasets", ) ), ) # blank captions if self.blank_caption_prob: partial_blank_caption_function = partial( blank_caption_function, text_column=self.text_column, blank_caption_prob=self.blank_caption_prob, ) if hasattr(self, "train_dataset"): self.train_dataset = ( self.train_dataset.map(partial_blank_caption_function) if self.streaming else self.train_dataset.map( partial_blank_caption_function, num_proc=self.preprocessing_num_workers, load_from_cache_file=False, desc="Blanking some captions", ) ) # preprocess partial_preprocess_function = partial( preprocess_function, tokenizer=tokenizer, text_column=self.text_column, encoding_column=self.encoding_column, max_length=max_length, decoder_start_token_id=decoder_start_token_id, ) for ds in ["train_dataset", "eval_dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map</s> ===========below chunk 1=========== # module: dalle_mini.data @dataclass class Dataset: def preprocess(self, tokenizer, config): # offset: 2 <s> hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map( partial_preprocess_function, batched=True, remove_columns=[ self.text_column, self.encoding_column, ], ) if self.streaming else getattr(self, ds).map( partial_preprocess_function, batched=True, remove_columns=getattr(ds, "column_names"), num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Preprocessing datasets", ) ), ) ===========unchanged ref 0=========== at: dalle_mini.data blank_caption_function(example, text_column, blank_caption_prob) normalize_function(example, text_column, text_normalizer) filter_function(example, min_clip_score, max_clip_score, clip_score_column, filter_column, filter_value) preprocess_function(examples, tokenizer, text_column, encoding_column, max_length, decoder_start_token_id) at: dalle_mini.data.Dataset streaming: bool = True text_column: str = "caption" max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False blank_caption_prob: float = 0.0 clip_score_column: str = "clip_score" min_clip_score: float = None max_clip_score: float = None filter_column: str = None filter_value: str = None at: dalle_mini.data.Dataset.__post_init__ self.seed_dataset = random.randint(0, 2**32 - 1) self.train_dataset = dataset["train"] self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) self.eval_dataset = dataset["validation"] self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) ) at: dalle_mini.data.Dataset.dataloader self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) ===========unchanged ref 1=========== at: datasets.arrow_dataset.Dataset wrapper(*, keep_in_memory: bool=False, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) wrapper(*, generator: Optional[np.random.Generator]=None, keep_in_memory: bool=False, load_from_cache_file: bool=True, indices_cache_file_name: Optional[str]=None, writer_batch_size: Optional[int]=1000, new_fingerprint: Optional[str]=None) at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() ===========changed ref 0=========== # module: dalle_mini.data @dataclass class Dataset: def __post_init__(self): + if self.seed_dataset is None: + # create a random seed + self.seed_dataset = random.randint(0, 2**32 - 1) self.multi_hosts = jax.process_count() > 1 # feed blank captions only in streaming mode for now # otherwise dataset could be cached with same blanked captions if self.blank_caption_prob: assert ( self.streaming is True ), "blank_caption_prob can only be used in streaming mode" # define data_files if self.train_file is not None or self.validation_file is not None: # accept braceexpand notation for k in ["train_file", "validation_file"]: f = getattr(self, k) if isinstance(f, str): setattr(self, k, list(braceexpand(f))) # for list of files, split training data shards by host if ( isinstance(self.train_file, list) and self.multi_hosts and self.shard_by_host ): self.train_file = self.train_file[ jax.process_index() :: jax.process_count() ] data_files = { "train": self.train_file, "validation": self.validation_file, } else: data_files = None # load dataset dataset = load_dataset( self.dataset_repo_or_path, data_files=data_files, streaming=self.streaming, use_auth_token=self.use_auth_token, ) if self.do_train: if "train" not in dataset: raise ValueError("Training requires a training dataset") self.train_dataset = dataset["train"] if self.max_train_samples is not None: self.train_dataset = ( self.train_dataset.take(self.max_</s>
dalle_mini.model.partitions/_get_partition_rules
Modified
borisdayma~dalle-mini
542378c30e591b7d3e40e8bfbd716f7cc49fb6cd
feat: implement transformer variants (#144)
<2>:<add> (("embed_positions", "embedding"), P("mp", None)), <del> ((r"embed_positions", "embedding"), P("mp", None)), <3>:<add> (("embed_tokens", "embedding"), P("mp", None)), <del> ((r"embed_tokens", "embedding"), P("mp", None)), <4>:<add> # attention <del> # self-attention <5>:<add> (("(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")), <del> ((r"self_attn", "(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")), <6>:<add> (("out_proj", "kernel"), P("mp", None)), <del> ((r"self_attn", "out_proj", "kernel"), P("mp", None)), <7>:<del> # enc-dec attention <8>:<del> ((r"encoder_attn", "(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")), <9>:<del> ((r"encoder_attn", "out_proj", "kernel"), P("mp", None)), <11>:<add> (("Dense_0", "kernel"), P(None, "mp")), <del> ((r"fc1", "kernel"), P(None, "mp")), <12>:<add> (("GLU.*", "Dense_1", "kernel"), P(None, "mp")), <add> (("GLU.*", "Dense_2", "kernel"), P("mp", None)), <del> ((r"fc2", "kernel"), P("mp", None)), <13>:<add> (("FFN.*", "Dense_1", "kernel"), P("mp", None)), <14>:<del> ((r"layernorm_embedding", "(bias|scale)"), None), <15>:<del> ((r"self_attn_layer_norm", "(bias|scale)"), None), <16>:<del> ((r"encoder_attn_layer_norm", "(bias|scale)"), None), <17>:<add> (("(bias|scale)",), None), <del> ((r"final_layer_norm", "(bias|scale)"), None), <18>:<add> (("lm_head", "kernel"),
# module: dalle_mini.model.partitions def _get_partition_rules(): <0> return [ <1> # embeddings <2> ((r"embed_positions", "embedding"), P("mp", None)), <3> ((r"embed_tokens", "embedding"), P("mp", None)), <4> # self-attention <5> ((r"self_attn", "(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")), <6> ((r"self_attn", "out_proj", "kernel"), P("mp", None)), <7> # enc-dec attention <8> ((r"encoder_attn", "(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")), <9> ((r"encoder_attn", "out_proj", "kernel"), P("mp", None)), <10> # FFN <11> ((r"fc1", "kernel"), P(None, "mp")), <12> ((r"fc2", "kernel"), P("mp", None)), <13> # layer norms <14> ((r"layernorm_embedding", "(bias|scale)"), None), <15> ((r"self_attn_layer_norm", "(bias|scale)"), None), <16> ((r"encoder_attn_layer_norm", "(bias|scale)"), None), <17> ((r"final_layer_norm", "(bias|scale)"), None), <18> ((r"lm_head", "kernel"), P(None, "mp")), <19> ] <20>
===========changed ref 0=========== # module: tools.train.train - class MetricsLogger: - def __init__(self, step): - self.step = step - self.time = time.perf_counter() - self.state_dict = {} - ===========changed ref 1=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayer(nn.Module): - class FlaxBartDecoderLayer(FlaxBartDecoderLayer): """ Edits: - no bias + - use custom FlaxBartAttention - - uses custom FlaxBartAttention """ ===========changed ref 2=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length + - scale attention heads per NormFormer paper """ ===========changed ref 3=========== # module: dalle_mini.model.modeling + # deepnet initialization + def deepnet_init(gain=1): + init = jax.nn.initializers.glorot_normal() + + def _init(*args, **kwargs): + return gain * init(*args, **kwargs) + + return _init + ===========changed ref 4=========== # module: dalle_mini.model.modeling + class FFN(nn.Module): + """Simple FFN layer""" + + config: DalleBartConfig + ffn_dim: int + embed_dim: int + dtype: jnp.dtype = jnp.float32 + is_encoder: bool = False + ===========changed ref 5=========== # module: dalle_mini.model.modeling + def norm(type, *args, **kwargs): + if type == "rmsnorm": + return RMSNorm(*args, **kwargs) + elif type == "layernorm": + return nn.LayerNorm(*args, **kwargs) + else: + raise ValueError(f"Unknown norm type {type}") + ===========changed ref 6=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + def _compute_rms_sq(self, x, axes): + x = jnp.asarray(x, jnp.promote_types(jnp.float32, jnp.result_type(x))) + rms_sq = jnp.mean(jax.lax.square(x), axes) + return rms_sq + ===========changed ref 7=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayerCollection(nn.Module): - class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): + config: DalleBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartDecoderLayer - allow Gradient Checkpointing (nn.remat) """ ===========changed ref 8=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(nn.Module): - class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): + config: DalleBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartEncoderLayer - allow Gradient Checkpointing (nn.remat) """ ===========changed ref 9=========== # module: dalle_mini.model.modeling + class GLU(nn.Module): + """From "GLU Variants Improve Transformer" by https://arxiv.org/abs/2002.05202""" + + config: DalleBartConfig + ffn_dim: int + embed_dim: int + dtype: jnp.dtype = jnp.float32 + is_encoder: bool = False + ===========changed ref 10=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + """ + From "Root Mean Square Layer Normalization" by https://arxiv.org/abs/1910.07467 + + Adapted from flax.linen.LayerNorm + """ + + epsilon: float = 1e-6 + dtype: Any = jnp.float32 + param_dtype: Any = jnp.float32 + use_scale: bool = True + scale_init: Any = jax.nn.initializers.ones + ===========changed ref 11=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + @nn.compact + def __call__(self, x): + reduction_axes = (-1,) + feature_axes = (-1,) + + rms_sq = self._compute_rms_sq(x, reduction_axes) + + return self._normalize( + self, + x, + rms_sq, + reduction_axes, + feature_axes, + self.dtype, + self.param_dtype, + self.epsilon, + self.use_scale, + self.scale_init, + ) + ===========changed ref 12=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayerCollection(nn.Module): - class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): - def setup(self): - layer_module = ( - nn.remat(FlaxBartDecoderLayer, concrete=True) - if self.config.gradient_checkpointing - else FlaxBartDecoderLayer - ) - self.layers = [ - layer_module(self.config, name=str(i), dtype=self.dtype) - for i in range(self.config.decoder_layers) - ] - self.layerdrop = self.config.decoder_layerdrop - ===========changed ref 13=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(nn.Module): - class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): - def setup(self): - layer_module = ( - nn.remat(FlaxBartEncoderLayer, concrete=True) - if self.config.gradient_checkpointing - else FlaxBartEncoderLayer - ) - self.layers = [ - layer_module(self.config, name=str(i), dtype=self.dtype) - for i in range(self.config.encoder_layers) - ] - self.layerdrop = self.config.encoder_layerdrop - ===========changed ref 14=========== # module: dalle_mini.model.utils - def copy_blobs(source_path, dest_path): - assert source_path.startswith("gs://") - from google.cloud import storage - - bucket_path = Path(source_path[5:]) - bucket, dir_path = str(bucket_path).split("/", 1) - client = storage.Client() - bucket = client.bucket(bucket) - blobs = client.list_blobs(bucket, prefix=f"{dir_path}/") - for blob in blobs: - dest_name = str(Path(dest_path) / Path(blob.name).name) - blob.download_to_filename(dest_name) - ===========changed ref 15=========== # module: dalle_mini.model.modeling + remat = nn_partitioning.remat + + # deepnet gain + deepnet_gain = { + "encoder": { + "alpha": lambda config: 0.81 + * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, + "beta": lambda config: 0.87 + * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, + }, + "decoder": { + "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, + "beta": lambda config: (12 * config.decoder_layers) ** -0.25, + }, + }
dalle_mini.model.partitions/set_partitions
Modified
borisdayma~dalle-mini
542378c30e591b7d3e40e8bfbd716f7cc49fb6cd
feat: implement transformer variants (#144)
<6>:<add> print(f"Unmatched -> {k}") <del> print(k)
# module: dalle_mini.model.partitions def set_partitions(in_dict): <0> rules = _get_partition_rules() <1> replace = _replacement_rules(rules) <2> initd = {k: _unmatched for k in flatten_dict(in_dict)} <3> result = {k: replace(k, v) for k, v in initd.items()} <4> for k, v in result.items(): <5> if v == _unmatched: <6> print(k) <7> assert _unmatched not in result.values(), "Incomplete partition spec." <8> return freeze(unflatten_dict(result)) <9>
===========unchanged ref 0=========== at: dalle_mini.model.partitions _unmatched = object() _replacement_rules(rules) at: dalle_mini.model.partitions.set_partitions rules = _get_partition_rules() ===========changed ref 0=========== # module: dalle_mini.model.partitions def _get_partition_rules(): return [ # embeddings + (("embed_positions", "embedding"), P("mp", None)), - ((r"embed_positions", "embedding"), P("mp", None)), + (("embed_tokens", "embedding"), P("mp", None)), - ((r"embed_tokens", "embedding"), P("mp", None)), + # attention - # self-attention + (("(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")), - ((r"self_attn", "(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")), + (("out_proj", "kernel"), P("mp", None)), - ((r"self_attn", "out_proj", "kernel"), P("mp", None)), - # enc-dec attention - ((r"encoder_attn", "(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")), - ((r"encoder_attn", "out_proj", "kernel"), P("mp", None)), # FFN + (("Dense_0", "kernel"), P(None, "mp")), - ((r"fc1", "kernel"), P(None, "mp")), + (("GLU.*", "Dense_1", "kernel"), P(None, "mp")), + (("GLU.*", "Dense_2", "kernel"), P("mp", None)), - ((r"fc2", "kernel"), P("mp", None)), + (("FFN.*", "Dense_1", "kernel"), P("mp", None)), # layer norms - ((r"layernorm_embedding", "(bias|scale)"), None), - ((r"self_attn_layer_norm", "(bias|scale)"), None), - ((r</s> ===========changed ref 1=========== # module: dalle_mini.model.partitions def _get_partition_rules(): # offset: 1 <s> None), - ((r"self_attn_layer_norm", "(bias|scale)"), None), - ((r"encoder_attn_layer_norm", "(bias|scale)"), None), + (("(bias|scale)",), None), - ((r"final_layer_norm", "(bias|scale)"), None), + (("lm_head", "kernel"), P(None, "mp")), - ((r"lm_head", "kernel"), P(None, "mp")), + # head scale and tau + (("(head_scale|tau)",), None), ] ===========changed ref 2=========== # module: tools.train.train - class MetricsLogger: - def __init__(self, step): - self.step = step - self.time = time.perf_counter() - self.state_dict = {} - ===========changed ref 3=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayer(nn.Module): - class FlaxBartDecoderLayer(FlaxBartDecoderLayer): """ Edits: - no bias + - use custom FlaxBartAttention - - uses custom FlaxBartAttention """ ===========changed ref 4=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length + - scale attention heads per NormFormer paper """ ===========changed ref 5=========== # module: dalle_mini.model.modeling + # deepnet initialization + def deepnet_init(gain=1): + init = jax.nn.initializers.glorot_normal() + + def _init(*args, **kwargs): + return gain * init(*args, **kwargs) + + return _init + ===========changed ref 6=========== # module: dalle_mini.model.modeling + class FFN(nn.Module): + """Simple FFN layer""" + + config: DalleBartConfig + ffn_dim: int + embed_dim: int + dtype: jnp.dtype = jnp.float32 + is_encoder: bool = False + ===========changed ref 7=========== # module: dalle_mini.model.modeling + def norm(type, *args, **kwargs): + if type == "rmsnorm": + return RMSNorm(*args, **kwargs) + elif type == "layernorm": + return nn.LayerNorm(*args, **kwargs) + else: + raise ValueError(f"Unknown norm type {type}") + ===========changed ref 8=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + def _compute_rms_sq(self, x, axes): + x = jnp.asarray(x, jnp.promote_types(jnp.float32, jnp.result_type(x))) + rms_sq = jnp.mean(jax.lax.square(x), axes) + return rms_sq + ===========changed ref 9=========== # module: dalle_mini.model.modeling + class FlaxBartDecoderLayerCollection(nn.Module): - class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): + config: DalleBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartDecoderLayer - allow Gradient Checkpointing (nn.remat) """ ===========changed ref 10=========== # module: dalle_mini.model.modeling + class FlaxBartEncoderLayerCollection(nn.Module): - class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): + config: DalleBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartEncoderLayer - allow Gradient Checkpointing (nn.remat) """ ===========changed ref 11=========== # module: dalle_mini.model.modeling + class GLU(nn.Module): + """From "GLU Variants Improve Transformer" by https://arxiv.org/abs/2002.05202""" + + config: DalleBartConfig + ffn_dim: int + embed_dim: int + dtype: jnp.dtype = jnp.float32 + is_encoder: bool = False + ===========changed ref 12=========== # module: dalle_mini.model.modeling + class RMSNorm(nn.Module): + """ + From "Root Mean Square Layer Normalization" by https://arxiv.org/abs/1910.07467 + + Adapted from flax.linen.LayerNorm + """ + + epsilon: float = 1e-6 + dtype: Any = jnp.float32 + param_dtype: Any = jnp.float32 + use_scale: bool = True + scale_init: Any = jax.nn.initializers.ones +
dalle_mini.model.text/HashtagProcessor.__init__
Modified
borisdayma~dalle-mini
3b8d8cb0d153f8ad1b8be3c6d6e09b0a40c64c8f
fix(textnormalizer): consider utf8 on windows (#148)
<4>:<add> l.split()[0] <add> for l in Path(wiki_word_frequency).read_text(encoding="utf8").splitlines() <del> l.split()[0] for l in Path(wiki_word_frequency).read_text().splitlines()
# module: dalle_mini.model.text class HashtagProcessor: # Adapted from wordninja library # We use our wikipedia word count + a good heuristic to make it work def __init__(self): <0> wiki_word_frequency = hf_hub_download( <1> "dalle-mini/dalle-mini", filename="enwiki-words-frequency.txt" <2> ) <3> self._word_cost = ( <4> l.split()[0] for l in Path(wiki_word_frequency).read_text().splitlines() <5> ) <6> self._word_cost = { <7> str(k): math.log(float(i + 1)) for i, k in enumerate(self._word_cost) <8> } <9> self._max_word = max(len(x) for x in self._word_cost.keys()) <10> self._SPLIT_RE = re.compile("[^a-zA-Z0-9']+") <11>
===========unchanged ref 0=========== at: huggingface_hub.file_download hf_hub_download(repo_id: str, filename: str, *, subfolder: Optional[str]=None, repo_type: Optional[str]=None, revision: Optional[str]=None, library_name: Optional[str]=None, library_version: Optional[str]=None, cache_dir: Union[str, Path, None]=None, local_dir: Union[str, Path, None]=None, local_dir_use_symlinks: Union[bool, Literal["auto"]]="auto", user_agent: Union[Dict, str, None]=None, force_download: bool=False, force_filename: Optional[str]=None, proxies: Optional[Dict]=None, etag_timeout: float=DEFAULT_ETAG_TIMEOUT, resume_download: bool=False, token: Union[bool, str, None]=None, local_files_only: bool=False, legacy_cache_layout: bool=False, endpoint: Optional[str]=None) -> str at: math log(x: SupportsFloat, base: SupportsFloat=...) -> float at: pathlib Path() at: pathlib.Path __slots__ = () read_text(encoding: Optional[str]=..., errors: Optional[str]=...) -> str
dalle_mini.model.configuration/DalleBartConfig.__init__
Modified
borisdayma~dalle-mini
472c4cc44dcbd88275440c2921f0eb0bae9d30a7
feat: add cogview
<13>:<add> "cogview",
<s>) - ln_positions="deepnet", # layer normalization positions, "normformer", "swinv2", "deepnet" (same as post-ln) use_cosine_attention=False, # used in Swin v2 tau_init=0.05, # used only in cosine attention (Swin v2) use_deepnet_scaling=False, # used in Deepnet use_glu=False, # "GLU Variants Improve Transformer" **kwargs, ): <0> # text normalizer <1> self.normalize_text = normalize_text <2> <3> # transformer variants <4> self.head_scale = head_scale # per Normformer <5> assert ln_type in [ <6> "rmsnorm", <7> "layernorm", <8> ], "ln_type must be 'rmsnorm' or 'layernorm'" <9> self.ln_type = ln_type <10> assert ln_positions in [ <11> "normformer", <12> "swinv2", <13> "deepnet", <14> ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" <15> self.ln_positions = ln_positions <16> self.use_cosine_attention = use_cosine_attention <17> self.tau_init = tau_init <18> self.use_deepnet_scaling = use_deepnet_scaling <19> self.use_glu = use_glu <20> <21> # common parameters <22> self.encoder_vocab_size = encoder_vocab_size <23> self.image_vocab_size = image_vocab_size <24> self.image_length = image_length <25> self.max_text_length = max_text_length <26> self.d_model = d_model <27> self.encoder_ffn_dim = encoder_ffn_dim <28> self.encoder_layers = encoder_layers <29> self.encoder_attention_heads = encoder_attention_heads <30> self.decoder_ffn_dim = decoder_ffn_dim <31> self.decoder_layers = decoder_layers</s>
===========below chunk 0=========== <s>_positions="deepnet", # layer normalization positions, "normformer", "swinv2", "deepnet" (same as post-ln) use_cosine_attention=False, # used in Swin v2 tau_init=0.05, # used only in cosine attention (Swin v2) use_deepnet_scaling=False, # used in Deepnet use_glu=False, # "GLU Variants Improve Transformer" **kwargs, ): # offset: 1 self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length + 1) max_length = kwargs.pop("max_length", image_length + 1) super().__init__( # args required in parent class is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_embeddings, forced_eos_token_id=forced_eos_token_id, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, </s> ===========below chunk 1=========== <s>_positions="deepnet", # layer normalization positions, "normformer", "swinv2", "deepnet" (same as post-ln) use_cosine_attention=False, # used in Swin v2 tau_init=0.05, # used only in cosine attention (Swin v2) use_deepnet_scaling=False, # used in Deepnet use_glu=False, # "GLU Variants Improve Transformer" **kwargs, ): # offset: 2 <s>_token_id=decoder_start_token_id, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, min_length=min_length, max_length=max_length, do_sample=do_sample, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." ) ===========unchanged ref 0=========== at: _warnings warn(message: str, category: Optional[Type[Warning]]=..., stacklevel: int=..., source: Optional[Any]=...) -> None warn(message: Warning, category: Any=..., stacklevel: int=..., source: Optional[Any]=...) -> None at: transformers.configuration_utils.PretrainedConfig model_type: str = "" is_composition: bool = False attribute_map: Dict[str, str] = {} _auto_class: Optional[str] = None __init__(**kwargs) __init__(self, **kwargs) at: transformers.configuration_utils.PretrainedConfig.__init__ self.bos_token_id = kwargs.pop("bos_token_id", None) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] at: typing.MutableMapping pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T] pop(key: _KT) -> _VT
dalle_mini.model.modeling/GLU.__call__
Modified
borisdayma~dalle-mini
472c4cc44dcbd88275440c2921f0eb0bae9d30a7
feat: add cogview
<4>:<add> if self.config.ln_positions in ["normformer", "cogview"]: <del> if self.config.ln_positions in ["normformer"]:
# module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: <0> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <1> self.config <2> ) <3> <4> if self.config.ln_positions in ["normformer"]: <5> x = norm( <6> self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False <7> )(x) <8> w = nn.Dense( <9> self.ffn_dim, <10> dtype=self.dtype, <11> use_bias=False, <12> kernel_init=deepnet_init(gain) <13> if self.config.use_deepnet_scaling <14> else jax.nn.initializers.normal(self.config.init_std), <15> )(x) <16> w = ACT2FN[self.config.activation_function](w) <17> v = nn.Dense( <18> self.ffn_dim, <19> dtype=self.dtype, <20> use_bias=False, <21> kernel_init=deepnet_init(gain) <22> if self.config.use_deepnet_scaling <23> else jax.nn.initializers.normal(self.config.init_std), <24> )(x) <25> x = w * v <26> if self.config.ln_positions in ["normformer"]: <27> x = norm( <28> self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False <29> )(x) <30> x = nn.Dropout(rate=self.config.activation_dropout)( <31> x, deterministic=deterministic <32> ) <33> <34> x = nn.Dense( <35> self.embed_dim, <36> dtype=self.dtype, <37> use_bias=False, <38> kernel_init=deep</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.GLU config: DalleBartConfig ffn_dim: int embed_dim: int dtype: jnp.dtype = jnp.float32 is_encoder: bool = False at: transformers.modeling_flax_utils ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } ===========changed ref 0=========== <s>) - ln_positions="deepnet", # layer normalization positions, "normformer", "swinv2", "deepnet" (same as post-ln) use_cosine_attention=False, # used in Swin v2 tau_init=0.05, # used only in cosine attention (Swin v2) use_deepnet_scaling=False, # used in Deepnet use_glu=False, # "GLU Variants Improve Transformer" **kwargs, ): # text normalizer self.normalize_text = normalize_text # transformer variants self.head_scale = head_scale # per Normformer assert ln_type in [ "rmsnorm", "layernorm", ], "ln_type must be 'rmsnorm' or 'layernorm'" self.ln_type = ln_type assert ln_positions in [ "normformer", "swinv2", + "cogview", "deepnet", ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" self.ln_positions = ln_positions self.use_cosine_attention = use_cosine_attention self.tau_init = tau_init self.use_deepnet_scaling = use_deepnet_scaling self.use_glu = use_glu # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout </s> ===========changed ref 1=========== <s>_positions="deepnet", # layer normalization positions, "normformer", "swinv2", "deepnet" (same as post-ln) use_cosine_attention=False, # used in Swin v2 tau_init=0.05, # used only in cosine attention (Swin v2) use_deepnet_scaling=False, # used in Deepnet use_glu=False, # "GLU Variants Improve Transformer" **kwargs, ): # offset: 1 <s>_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length + 1) max_length = kwargs.pop("max_length", image_length + 1) super().__init__( # args required in parent class is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_embeddings,</s> ===========changed ref 2=========== <s>_positions="deepnet", # layer normalization positions, "normformer", "swinv2", "deepnet" (same as post-ln) use_cosine_attention=False, # used in Swin v2 tau_init=0.05, # used only in cosine attention (Swin v2) use_deepnet_scaling=False, # used in Deepnet use_glu=False, # "GLU Variants Improve Transformer" **kwargs, ): # offset: 2 <s> forced_eos_token_id=forced_eos_token_id, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, min_length=min_length, max_length=max_length, do_sample=do_sample, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." )
dalle_mini.model.modeling/FFN.__call__
Modified
borisdayma~dalle-mini
472c4cc44dcbd88275440c2921f0eb0bae9d30a7
feat: add cogview
<3>:<add> if self.config.ln_positions in ["normformer", "cogview"]: <del> if self.config.ln_positions in ["normformer"]: <31>:<add> if self.config.ln_positions in ["swinv2", "cogview"]: <del> if self.config.ln_positions in ["swinv2"]:
# module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: <0> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <1> self.config <2> ) <3> if self.config.ln_positions in ["normformer"]: <4> x = norm( <5> self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False <6> )(x) <7> x = nn.Dense( <8> self.ffn_dim, <9> dtype=self.dtype, <10> use_bias=False, <11> kernel_init=deepnet_init(gain) <12> if self.config.use_deepnet_scaling <13> else jax.nn.initializers.normal(self.config.init_std), <14> )(x) <15> x = ACT2FN[self.config.activation_function](x) <16> if self.config.ln_positions in ["normformer"]: <17> x = norm( <18> self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False <19> )(x) <20> x = nn.Dropout(rate=self.config.activation_dropout)( <21> x, deterministic=deterministic <22> ) <23> x = nn.Dense( <24> self.embed_dim, <25> dtype=self.dtype, <26> use_bias=False, <27> kernel_init=deepnet_init(gain) <28> if self.config.use_deepnet_scaling <29> else jax.nn.initializers.normal(self.config.init_std), <30> )(x) <31> if self.config.ln_positions in ["swinv2"]: <32> x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) <33> x = nn.Dropout(</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 return x ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FFN config: DalleBartConfig ffn_dim: int embed_dim: int dtype: jnp.dtype = jnp.float32 is_encoder: bool = False at: transformers.modeling_flax_utils ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } ===========changed ref 0=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) + if self.config.ln_positions in ["normformer", "cogview"]: - if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False )(x) w = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) w = ACT2FN[self.config.activation_function](w) v = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = w * v if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deep</s> ===========changed ref 1=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s> use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) + if self.config.ln_positions in ["swinv2", "cogview"]: - if self.config.ln_positions in ["swinv2"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========changed ref 2=========== <s>) - ln_positions="deepnet", # layer normalization positions, "normformer", "swinv2", "deepnet" (same as post-ln) use_cosine_attention=False, # used in Swin v2 tau_init=0.05, # used only in cosine attention (Swin v2) use_deepnet_scaling=False, # used in Deepnet use_glu=False, # "GLU Variants Improve Transformer" **kwargs, ): # text normalizer self.normalize_text = normalize_text # transformer variants self.head_scale = head_scale # per Normformer assert ln_type in [ "rmsnorm", "layernorm", ], "ln_type must be 'rmsnorm' or 'layernorm'" self.ln_type = ln_type assert ln_positions in [ "normformer", "swinv2", + "cogview", "deepnet", ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" self.ln_positions = ln_positions self.use_cosine_attention = use_cosine_attention self.tau_init = tau_init self.use_deepnet_scaling = use_deepnet_scaling self.use_glu = use_glu # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout </s>
dalle_mini.model.modeling/FlaxBartDecoderLayer.__call__
Modified
borisdayma~dalle-mini
472c4cc44dcbd88275440c2921f0eb0bae9d30a7
feat: add cogview
<10>:<add> if self.config.ln_positions in ["normformer", "cogview"]: <del> if self.config.ln_positions in ["normformer"]: <32>:<add> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: <del> if self.config.ln_positions in ["normformer", "swinv2"]:
<s> FlaxBartDecoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> res_gain = ( <1> deepnet_gain["decoder"]["alpha"](self.config) <2> if self.config.use_deepnet_scaling <3> else 1 <4> ) <5> <6> embed_dim = self.config.d_model <7> residual = hidden_states <8> <9> # Self Attention <10> if self.config.ln_positions in ["normformer"]: <11> hidden_states = norm( <12> self.config.ln_type, <13> dtype=self.dtype, <14> epsilon=1e-05, <15> use_scale=False, <16> )(hidden_states) <17> hidden_states, attn_weights = FlaxBartAttention( <18> config=self.config, <19> embed_dim=embed_dim, <20> num_heads=self.config.decoder_attention_heads, <21> dropout=self.config.attention_dropout, <22> causal=True, <23> bias=False, <24> dtype=self.dtype, <25> is_encoder=False, <26> )( <27> hidden_states=hidden_states, <28> attention_mask=attention_mask, <29> init_cache=init_cache, <30> ) <31> <32> if self.config.ln_positions in ["normformer", "swinv2"]: <33> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <34> hidden_states <35> ) <36> hidden_states = nn.Dropout(rate=self.config.</s>
===========below chunk 0=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["deepnet"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) # Cross Attention cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states if self.config.ln_positions in ["normformer"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False, )(hidden_states) hidden_states, cross_attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, bias=False, dtype=self.dtype, is_encoder=False, )( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) if self.config.ln_positions in ["normformer", "swinv2"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) hidden_states = nn.Drop</s> ===========below chunk 1=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s>, dtype=self.dtype, epsilon=1e-05 )(hidden_states) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["deepnet"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) # Feed forward residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["deepnet"]: use_scale = self.use_scale or self.config</s> ===========below chunk 2=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>_positions == "deepnet" hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights, cross_attn_weights) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartDecoderLayer config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = False at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') ===========changed ref 0=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) + if self.config.ln_positions in ["normformer", "cogview"]: - if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False )(x) x = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = ACT2FN[self.config.activation_function](x) if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) + if self.config.ln_positions in ["swinv2", "cogview"]: - if self.config.ln_positions in ["swinv2"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-</s>
dalle_mini.model.modeling/FlaxBartEncoderLayerCollection.__call__
Modified
borisdayma~dalle-mini
02824a7255785a8ca60568f8db2677a32109b65f
feat: remove unecessary LN
<14>:<add> # not needed for other models which use layernorm before x-attention <15>:<del> add_norm = (i == n_layers - 1) or ( <16>:<add> add_norm = self.config.ln_positions == "swinv2" and ( <del> (self.config.ln_positions == "swinv2") and ((i + 1) % 6 == 0) <17>:<add> (i == n_layers - 1) or ((i + 1) % 6 == 0)
# module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): <0> all_hidden_states = () if output_hidden_states else None <1> all_self_attns = () if output_attentions else None <2> <3> n_layers = self.config.encoder_layers <4> layer = ( <5> remat(FlaxBartEncoderLayer, static_argnums=(2, 3)) <6> if self.config.gradient_checkpointing <7> else FlaxBartEncoderLayer <8> ) <9> for i in range(n_layers): <10> if output_hidden_states: <11> all_hidden_states += (hidden_states,) <12> # final layernorm on the output of the last layer <13> # or every 6 layers for Swin v2 <14> # ignored args for deepnet which always add a norm with scale <15> add_norm = (i == n_layers - 1) or ( <16> (self.config.ln_positions == "swinv2") and ((i + 1) % 6 == 0) <17> ) <18> # we don't need to scale the norm for the last layer <19> use_scale = i != n_layers - 1 <20> layer_outputs = layer( <21> self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale <22> )( <23> hidden_states, <24> attention_mask, <25> output_attentions, <26> deterministic, <27> ) <28> hidden_states = layer_outputs[0] <29> if output_attentions: <30> all_self_attns += (layer_outputs[1],) <31> <32> # add hidden states from the last layer <33> if output_hidden_states: <34> all_hidden</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 1 outputs = [ hidden_states, all_hidden_states, all_self_attns, ] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, ) ===========unchanged ref 0=========== at: dalle_mini.model.modeling remat = nn_partitioning.remat at: dalle_mini.model.modeling.FlaxBartEncoderLayerCollection config: DalleBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation at: transformers.modeling_flax_outputs FlaxBaseModelOutput(**kwargs: _VT) FlaxBaseModelOutput(iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) FlaxBaseModelOutput(map: Mapping[_KT, _VT], **kwargs: _VT)
dalle_mini.model.modeling/FlaxBartEncoder.setup
Modified
borisdayma~dalle-mini
503d6b48c94dca09b8ca01fbbd80a6156489167d
fix: DeepNet doesn't scale weights of embedding/output layers (#150)
<12>:<del> embedding_init=deepnet_init() <13>:<del> if self.config.use_deepnet_scaling <14>:<add> embedding_init=jax.nn.initializers.normal(self.config.init_std), <del> else jax.nn.initializers.normal(self.config.init_std),
# module: dalle_mini.model.modeling class FlaxBartEncoder(FlaxBartEncoder): def setup(self): <0> self.dropout_layer = nn.Dropout(rate=self.config.dropout) <1> <2> embed_dim = self.config.d_model <3> self.padding_idx = self.config.pad_token_id <4> self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 <5> <6> # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 <7> # and adjust num_embeddings appropriately. Other models don't have this hack <8> self.offset = 0 <9> self.embed_positions = nn.Embed( <10> self.config.max_text_length + self.offset, <11> embed_dim, <12> embedding_init=deepnet_init() <13> if self.config.use_deepnet_scaling <14> else jax.nn.initializers.normal(self.config.init_std), <15> ) <16> self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) <17> self.layernorm_embedding = norm( <18> self.config.ln_type, dtype=self.dtype, epsilon=1e-05 <19> ) <20>
===========unchanged ref 0=========== at: dalle_mini.model.modeling norm(type, *args, **kwargs) at: math sqrt(x: SupportsFloat, /) -> float at: transformers.configuration_utils.PretrainedConfig.__init__ self.pad_token_id = kwargs.pop("pad_token_id", None) at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.d_model = d_model self.dropout = dropout self.init_std = init_std self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True at: transformers.models.bart.modeling_flax_bart.FlaxBartEncoder config: BartConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self)
dalle_mini.model.modeling/FlaxBartDecoder.setup
Modified
borisdayma~dalle-mini
503d6b48c94dca09b8ca01fbbd80a6156489167d
fix: DeepNet doesn't scale weights of embedding/output layers (#150)
<14>:<del> embedding_init=deepnet_init() <15>:<del> if self.config.use_deepnet_scaling <16>:<add> embedding_init=jax.nn.initializers.normal(self.config.init_std), <del> else jax.nn.initializers.normal(self.config.init_std),
# module: dalle_mini.model.modeling class FlaxBartDecoder(FlaxBartDecoder): def setup(self): <0> self.dropout_layer = nn.Dropout(rate=self.config.dropout) <1> <2> embed_dim = self.config.d_model <3> self.padding_idx = self.config.pad_token_id <4> self.embed_scale = ( <5> math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 <6> ) <7> <8> # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 <9> # and adjust num_embeddings appropriately. Other models don't have this hack <10> self.offset = 0 <11> self.embed_positions = nn.Embed( <12> self.config.image_length + self.offset, # image length for BOS <13> embed_dim, <14> embedding_init=deepnet_init() <15> if self.config.use_deepnet_scaling <16> else jax.nn.initializers.normal(self.config.init_std), <17> ) <18> <19> self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) <20> self.layernorm_embedding = norm( <21> self.config.ln_type, dtype=self.dtype, epsilon=1e-05 <22> ) <23>
===========unchanged ref 0=========== at: dalle_mini.model.modeling norm(type, *args, **kwargs) at: math sqrt(x: SupportsFloat, /) -> float at: transformers.configuration_utils.PretrainedConfig.__init__ self.pad_token_id = kwargs.pop("pad_token_id", None) at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.d_model = d_model self.init_std = init_std self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True at: transformers.models.bart.modeling_flax_bart.FlaxBartDecoder config: BartConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoder(FlaxBartEncoder): def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 0 self.embed_positions = nn.Embed( self.config.max_text_length + self.offset, embed_dim, - embedding_init=deepnet_init() - if self.config.use_deepnet_scaling + embedding_init=jax.nn.initializers.normal(self.config.init_std), - else jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )
dalle_mini.model.modeling/FlaxBartModule.setup
Modified
borisdayma~dalle-mini
503d6b48c94dca09b8ca01fbbd80a6156489167d
fix: DeepNet doesn't scale weights of embedding/output layers (#150)
<3>:<del> embedding_init=deepnet_init() <4>:<del> if self.config.use_deepnet_scaling <5>:<add> embedding_init=jax.nn.initializers.normal(self.config.init_std), <del> else jax.nn.initializers.normal(self.config.init_std), <10>:<del> embedding_init=deepnet_init() <11>:<del> if self.config.use_deepnet_scaling <12>:<add> embedding_init=jax.nn.initializers.normal(self.config.init_std), <del> else jax.nn.initializers.normal(self.config.init_std),
# module: dalle_mini.model.modeling class FlaxBartModule(FlaxBartModule): def setup(self): <0> encoder_embed_tokens = nn.Embed( <1> self.config.encoder_vocab_size, <2> self.config.d_model, <3> embedding_init=deepnet_init() <4> if self.config.use_deepnet_scaling <5> else jax.nn.initializers.normal(self.config.init_std), <6> ) <7> decoder_embed_tokens = nn.Embed( <8> self.config.image_vocab_size + 1, # image vocab size + 1 for BOS <9> self.config.d_model, <10> embedding_init=deepnet_init() <11> if self.config.use_deepnet_scaling <12> else jax.nn.initializers.normal(self.config.init_std), <13> ) <14> <15> self.encoder = FlaxBartEncoder( <16> self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens <17> ) <18> self.decoder = FlaxBartDecoder( <19> self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens <20> ) <21>
===========unchanged ref 0=========== at: dalle_mini.model.modeling.FlaxBartModule.setup encoder_embed_tokens = nn.Embed( self.config.encoder_vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.d_model = d_model self.init_std = init_std at: transformers.models.bart.modeling_flax_bart FlaxBartPreTrainedModel(config: BartConfig, input_shape: Tuple[int]=(1, 1), seed: int=0, dtype: jnp.dtype=jnp.float32, _do_init: bool=True, **kwargs) at: transformers.models.bart.modeling_flax_bart.FlaxBartModule config: BartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartDecoder(FlaxBartDecoder): def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.embed_scale = ( math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 ) # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 0 self.embed_positions = nn.Embed( self.config.image_length + self.offset, # image length for BOS embed_dim, - embedding_init=deepnet_init() - if self.config.use_deepnet_scaling + embedding_init=jax.nn.initializers.normal(self.config.init_std), - else jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 ) ===========changed ref 1=========== # module: dalle_mini.model.modeling class FlaxBartEncoder(FlaxBartEncoder): def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 0 self.embed_positions = nn.Embed( self.config.max_text_length + self.offset, embed_dim, - embedding_init=deepnet_init() - if self.config.use_deepnet_scaling + embedding_init=jax.nn.initializers.normal(self.config.init_std), - else jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )
dalle_mini.model.modeling/FlaxBartForConditionalGenerationModule.setup
Modified
borisdayma~dalle-mini
503d6b48c94dca09b8ca01fbbd80a6156489167d
fix: DeepNet doesn't scale weights of embedding/output layers (#150)
<6>:<del> kernel_init=deepnet_init() <7>:<del> if self.config.use_deepnet_scaling <8>:<add> kernel_init=jax.nn.initializers.normal(self.config.init_std), <del> else jax.nn.initializers.normal(self.config.init_std),
# module: dalle_mini.model.modeling class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule): def setup(self): <0> self.model = FlaxBartModule(config=self.config, dtype=self.dtype) <1> self.lm_head = nn.Dense( <2> self.config.image_vocab_size <3> + 1, # image vocab size + 1 for BOS to have same size as decoder inputs (for sharding) <4> use_bias=False, <5> dtype=self.dtype, <6> kernel_init=deepnet_init() <7> if self.config.use_deepnet_scaling <8> else jax.nn.initializers.normal(self.config.init_std), <9> ) <10>
===========unchanged ref 0=========== at: transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule config: BartConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros __call__(self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool=False, output_hidden_states: bool=False, return_dict: bool=True, deterministic: bool=True) ===========changed ref 0=========== # module: dalle_mini.model.modeling class FlaxBartModule(FlaxBartModule): def setup(self): encoder_embed_tokens = nn.Embed( self.config.encoder_vocab_size, self.config.d_model, - embedding_init=deepnet_init() - if self.config.use_deepnet_scaling + embedding_init=jax.nn.initializers.normal(self.config.init_std), - else jax.nn.initializers.normal(self.config.init_std), ) decoder_embed_tokens = nn.Embed( self.config.image_vocab_size + 1, # image vocab size + 1 for BOS self.config.d_model, - embedding_init=deepnet_init() - if self.config.use_deepnet_scaling + embedding_init=jax.nn.initializers.normal(self.config.init_std), - else jax.nn.initializers.normal(self.config.init_std), ) self.encoder = FlaxBartEncoder( self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens ) self.decoder = FlaxBartDecoder( self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens ) ===========changed ref 1=========== # module: dalle_mini.model.modeling class FlaxBartDecoder(FlaxBartDecoder): def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.embed_scale = ( math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 ) # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 0 self.embed_positions = nn.Embed( self.config.image_length + self.offset, # image length for BOS embed_dim, - embedding_init=deepnet_init() - if self.config.use_deepnet_scaling + embedding_init=jax.nn.initializers.normal(self.config.init_std), - else jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 ) ===========changed ref 2=========== # module: dalle_mini.model.modeling class FlaxBartEncoder(FlaxBartEncoder): def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 0 self.embed_positions = nn.Embed( self.config.max_text_length + self.offset, embed_dim, - embedding_init=deepnet_init() - if self.config.use_deepnet_scaling + embedding_init=jax.nn.initializers.normal(self.config.init_std), - else jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )
dalle_mini.model.configuration/DalleBartConfig.__init__
Modified
borisdayma~dalle-mini
5bd4c2020842d23c8feb4a0acce0c35a43f13cf5
feat: allow more configurations
<16>:<add> if ln_positions == "deepnet": <add> ln_positions = "postln" <21>:<add> self.use_all_scale = use_all_scale
<s>, # used in Swin v2 tau_init=0.05, # used only in cosine attention (Swin v2) use_deepnet_scaling=False, # used in Deepnet + use_glu=True, # "GLU Variants Improve Transformer" - use_glu=False, # "GLU Variants Improve Transformer" + use_all_scale=True, # use scale in layernorm even when seemingly unnecessary **kwargs, ): <0> # text normalizer <1> self.normalize_text = normalize_text <2> <3> # transformer variants <4> self.head_scale = head_scale # per Normformer <5> assert ln_type in [ <6> "rmsnorm", <7> "layernorm", <8> ], "ln_type must be 'rmsnorm' or 'layernorm'" <9> self.ln_type = ln_type <10> assert ln_positions in [ <11> "normformer", <12> "swinv2", <13> "cogview", <14> "deepnet", <15> ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" <16> self.ln_positions = ln_positions <17> self.use_cosine_attention = use_cosine_attention <18> self.tau_init = tau_init <19> self.use_deepnet_scaling = use_deepnet_scaling <20> self.use_glu = use_glu <21> <22> # common parameters <23> self.encoder_vocab_size = encoder_vocab_size <24> self.image_vocab_size = image_vocab_size <25> self.image_length = image_length <26> self.max_text_length = max_text_length <27> self.d_model = d_model <28> self.encoder_ffn_dim = encoder_ffn_dim <29> self.encoder_layers = encoder_layers <30> self.encoder_attention_heads = encoder_attention_heads <31> self.decoder_ffn_dim = decoder_ffn_dim <32> self</s>
===========below chunk 0=========== <s> Swin v2 tau_init=0.05, # used only in cosine attention (Swin v2) use_deepnet_scaling=False, # used in Deepnet + use_glu=True, # "GLU Variants Improve Transformer" - use_glu=False, # "GLU Variants Improve Transformer" + use_all_scale=True, # use scale in layernorm even when seemingly unnecessary **kwargs, ): # offset: 1 self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length + 1) max_length = kwargs.pop("max_length", image_length + 1) super().__init__( # args required in parent class is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_embeddings, forced_eos_token_id=forced_eos_token_id, decoder_start_token_id=decoder_start_token_id, </s> ===========below chunk 1=========== <s> Swin v2 tau_init=0.05, # used only in cosine attention (Swin v2) use_deepnet_scaling=False, # used in Deepnet + use_glu=True, # "GLU Variants Improve Transformer" - use_glu=False, # "GLU Variants Improve Transformer" + use_all_scale=True, # use scale in layernorm even when seemingly unnecessary **kwargs, ): # offset: 2 <s>=forced_eos_token_id, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, min_length=min_length, max_length=max_length, do_sample=do_sample, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." ) ===========unchanged ref 0=========== at: transformers.configuration_utils.PretrainedConfig model_type: str = "" is_composition: bool = False attribute_map: Dict[str, str] = {} _auto_class: Optional[str] = None __init__(**kwargs) __init__(self, **kwargs) at: transformers.configuration_utils.PretrainedConfig.__init__ self.bos_token_id = kwargs.pop("bos_token_id", None) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] at: typing.MutableMapping pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T] pop(key: _KT) -> _VT
dalle_mini.model.modeling/GLU.__call__
Modified
borisdayma~dalle-mini
5bd4c2020842d23c8feb4a0acce0c35a43f13cf5
feat: allow more configurations
<6>:<add> self.config.ln_type, <add> dtype=self.dtype, <add> epsilon=1e-05, <add> use_scale=self.config.use_all_scale, <del> self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False <28>:<add> self.config.ln_type, <add> dtype=self.dtype, <add> epsilon=1e-05, <add> use_scale=self.config.use_all_scale, <del> self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False
# module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: <0> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <1> self.config <2> ) <3> <4> if self.config.ln_positions in ["normformer", "cogview"]: <5> x = norm( <6> self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False <7> )(x) <8> w = nn.Dense( <9> self.ffn_dim, <10> dtype=self.dtype, <11> use_bias=False, <12> kernel_init=deepnet_init(gain) <13> if self.config.use_deepnet_scaling <14> else jax.nn.initializers.normal(self.config.init_std), <15> )(x) <16> w = ACT2FN[self.config.activation_function](w) <17> v = nn.Dense( <18> self.ffn_dim, <19> dtype=self.dtype, <20> use_bias=False, <21> kernel_init=deepnet_init(gain) <22> if self.config.use_deepnet_scaling <23> else jax.nn.initializers.normal(self.config.init_std), <24> )(x) <25> x = w * v <26> if self.config.ln_positions in ["normformer"]: <27> x = norm( <28> self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False <29> )(x) <30> x = nn.Dropout(rate=self.config.activation_dropout)( <31> x, deterministic=deterministic <32> ) <33> <34> x = nn.Dense( <35> self.embed_dim, <36> dtype=self.dtype, <37> use_bias=False, <38> </s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.GLU config: DalleBartConfig ffn_dim: int embed_dim: int dtype: jnp.dtype = jnp.float32 is_encoder: bool = False at: transformers.modeling_flax_utils ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } ===========changed ref 0=========== <s>, # used in Swin v2 tau_init=0.05, # used only in cosine attention (Swin v2) use_deepnet_scaling=False, # used in Deepnet + use_glu=True, # "GLU Variants Improve Transformer" - use_glu=False, # "GLU Variants Improve Transformer" + use_all_scale=True, # use scale in layernorm even when seemingly unnecessary **kwargs, ): # text normalizer self.normalize_text = normalize_text # transformer variants self.head_scale = head_scale # per Normformer assert ln_type in [ "rmsnorm", "layernorm", ], "ln_type must be 'rmsnorm' or 'layernorm'" self.ln_type = ln_type assert ln_positions in [ "normformer", "swinv2", "cogview", "deepnet", ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" + if ln_positions == "deepnet": + ln_positions = "postln" self.ln_positions = ln_positions self.use_cosine_attention = use_cosine_attention self.tau_init = tau_init self.use_deepnet_scaling = use_deepnet_scaling self.use_glu = use_glu + self.use_all_scale = use_all_scale # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ff</s> ===========changed ref 1=========== <s> Swin v2 tau_init=0.05, # used only in cosine attention (Swin v2) use_deepnet_scaling=False, # used in Deepnet + use_glu=True, # "GLU Variants Improve Transformer" - use_glu=False, # "GLU Variants Improve Transformer" + use_all_scale=True, # use scale in layernorm even when seemingly unnecessary **kwargs, ): # offset: 1 <s>layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length + 1) max_length = kwargs.pop("max_length", image_length + 1) super().__init__(</s> ===========changed ref 2=========== <s> Swin v2 tau_init=0.05, # used only in cosine attention (Swin v2) use_deepnet_scaling=False, # used in Deepnet + use_glu=True, # "GLU Variants Improve Transformer" - use_glu=False, # "GLU Variants Improve Transformer" + use_all_scale=True, # use scale in layernorm even when seemingly unnecessary **kwargs, ): # offset: 2 <s> # args required in parent class is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_embeddings, forced_eos_token_id=forced_eos_token_id, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, min_length=min_length, max_length=max_length, do_sample=do_sample, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." )
dalle_mini.model.modeling/FFN.__call__
Modified
borisdayma~dalle-mini
5bd4c2020842d23c8feb4a0acce0c35a43f13cf5
feat: allow more configurations
<5>:<add> self.config.ln_type, <add> dtype=self.dtype, <add> epsilon=1e-05, <add> use_scale=self.config.use_all_scale, <del> self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False <18>:<add> self.config.ln_type, <add> dtype=self.dtype, <add> epsilon=1e-05, <add> use_scale=self.config.use_all_scale, <del> self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False
# module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: <0> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <1> self.config <2> ) <3> if self.config.ln_positions in ["normformer", "cogview"]: <4> x = norm( <5> self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False <6> )(x) <7> x = nn.Dense( <8> self.ffn_dim, <9> dtype=self.dtype, <10> use_bias=False, <11> kernel_init=deepnet_init(gain) <12> if self.config.use_deepnet_scaling <13> else jax.nn.initializers.normal(self.config.init_std), <14> )(x) <15> x = ACT2FN[self.config.activation_function](x) <16> if self.config.ln_positions in ["normformer"]: <17> x = norm( <18> self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False <19> )(x) <20> x = nn.Dropout(rate=self.config.activation_dropout)( <21> x, deterministic=deterministic <22> ) <23> x = nn.Dense( <24> self.embed_dim, <25> dtype=self.dtype, <26> use_bias=False, <27> kernel_init=deepnet_init(gain) <28> if self.config.use_deepnet_scaling <29> else jax.nn.initializers.normal(self.config.init_std), <30> )(x) <31> if self.config.ln_positions in ["swinv2", "cogview"]: <32> x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x)</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 return x ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FFN config: DalleBartConfig ffn_dim: int embed_dim: int dtype: jnp.dtype = jnp.float32 is_encoder: bool = False at: transformers.modeling_flax_utils ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } ===========changed ref 0=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) if self.config.ln_positions in ["normformer", "cogview"]: x = norm( + self.config.ln_type, + dtype=self.dtype, + epsilon=1e-05, + use_scale=self.config.use_all_scale, - self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False )(x) w = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) w = ACT2FN[self.config.activation_function](w) v = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = w * v if self.config.ln_positions in ["normformer"]: x = norm( + self.config.ln_type, + dtype=self.dtype, + epsilon=1e-05, + use_scale=self.config.use_all_scale, - self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False )(x) x = nn.Dropout(rate</s> ===========changed ref 1=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s>dtype, epsilon=1e-05, use_scale=False )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========changed ref 2=========== <s>, # used in Swin v2 tau_init=0.05, # used only in cosine attention (Swin v2) use_deepnet_scaling=False, # used in Deepnet + use_glu=True, # "GLU Variants Improve Transformer" - use_glu=False, # "GLU Variants Improve Transformer" + use_all_scale=True, # use scale in layernorm even when seemingly unnecessary **kwargs, ): # text normalizer self.normalize_text = normalize_text # transformer variants self.head_scale = head_scale # per Normformer assert ln_type in [ "rmsnorm", "layernorm", ], "ln_type must be 'rmsnorm' or 'layernorm'" self.ln_type = ln_type assert ln_positions in [ "normformer", "swinv2", "cogview", "deepnet", ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" + if ln_positions == "deepnet": + ln_positions = "postln" self.ln_positions = ln_positions self.use_cosine_attention = use_cosine_attention self.tau_init = tau_init self.use_deepnet_scaling = use_deepnet_scaling self.use_glu = use_glu + self.use_all_scale = use_all_scale # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ff</s>
dalle_mini.model.modeling/FlaxBartEncoderLayer.__call__
Modified
borisdayma~dalle-mini
5bd4c2020842d23c8feb4a0acce0c35a43f13cf5
feat: allow more configurations
<8>:<add> if self.config.ln_positions in ["normformer", "cogview"]: <del> if self.config.ln_positions in ["normformer"]: <9>:<add> hidden_states = norm( <add> self.config.ln_type, <add> dtype=self.dtype, <add> epsilon=1e-05, <add> use_scale=self.config.use_all_scale, <del> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <10>:<add> )(hidden_states) <del> hidden_states <11>:<del> ) <22>:<add> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: <del> if self.config.ln_positions in ["normformer", "swinv2"]: <30>:<add> if self.config.ln_positions in ["postln"]: <del> if self.config.ln_positions in ["deepnet"]:
# module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> res_gain = ( <1> deepnet_gain["encoder"]["alpha"](self.config) <2> if self.config.use_deepnet_scaling <3> else 1 <4> ) <5> <6> embed_dim = self.config.d_model <7> residual = hidden_states <8> if self.config.ln_positions in ["normformer"]: <9> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <10> hidden_states <11> ) <12> hidden_states, attn_weights = FlaxBartAttention( <13> config=self.config, <14> embed_dim=embed_dim, <15> num_heads=self.config.encoder_attention_heads, <16> dropout=self.config.attention_dropout, <17> bias=False, <18> dtype=self.dtype, <19> is_encoder=True, <20> )(hidden_states=hidden_states, attention_mask=attention_mask) <21> <22> if self.config.ln_positions in ["normformer", "swinv2"]: <23> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <24> hidden_states <25> ) <26> hidden_states = nn.Dropout(rate=self.config.dropout)( <27> hidden_states, deterministic=deterministic <28> ) <29> hidden_states = residual * res_gain + hidden_states <30> if self.config.ln_positions in ["deepnet"]: <31> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <32> hidden_states </s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["deepnet"]: use_scale = self.use_scale or self.config.ln_positions == "deepnet" hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartEncoderLayer config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = True at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') ===========changed ref 0=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) if self.config.ln_positions in ["normformer", "cogview"]: x = norm( + self.config.ln_type, + dtype=self.dtype, + epsilon=1e-05, + use_scale=self.config.use_all_scale, - self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False )(x) x = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = ACT2FN[self.config.activation_function](x) if self.config.ln_positions in ["normformer"]: x = norm( + self.config.ln_type, + dtype=self.dtype, + epsilon=1e-05, + use_scale=self.config.use_all_scale, - self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.</s> ===========changed ref 1=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s>(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========changed ref 2=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) if self.config.ln_positions in ["normformer", "cogview"]: x = norm( + self.config.ln_type, + dtype=self.dtype, + epsilon=1e-05, + use_scale=self.config.use_all_scale, - self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False )(x) w = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) w = ACT2FN[self.config.activation_function](w) v = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = w * v if self.config.ln_positions in ["normformer"]: x = norm( + self.config.ln_type, + dtype=self.dtype, + epsilon=1e-05, + use_scale=self.config.use_all_scale, - self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False )(x) x = nn.Dropout(rate</s>
dalle_mini.model.modeling/FlaxBartDecoderLayer.__call__
Modified
borisdayma~dalle-mini
5bd4c2020842d23c8feb4a0acce0c35a43f13cf5
feat: allow more configurations
<15>:<add> use_scale=self.config.use_all_scale, <del> use_scale=False,
<s> FlaxBartDecoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> res_gain = ( <1> deepnet_gain["decoder"]["alpha"](self.config) <2> if self.config.use_deepnet_scaling <3> else 1 <4> ) <5> <6> embed_dim = self.config.d_model <7> residual = hidden_states <8> <9> # Self Attention <10> if self.config.ln_positions in ["normformer", "cogview"]: <11> hidden_states = norm( <12> self.config.ln_type, <13> dtype=self.dtype, <14> epsilon=1e-05, <15> use_scale=False, <16> )(hidden_states) <17> hidden_states, attn_weights = FlaxBartAttention( <18> config=self.config, <19> embed_dim=embed_dim, <20> num_heads=self.config.decoder_attention_heads, <21> dropout=self.config.attention_dropout, <22> causal=True, <23> bias=False, <24> dtype=self.dtype, <25> is_encoder=False, <26> )( <27> hidden_states=hidden_states, <28> attention_mask=attention_mask, <29> init_cache=init_cache, <30> ) <31> <32> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: <33> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <34> hidden_states <35> ) <36> hidden_states = nn</s>
===========below chunk 0=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["deepnet"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) # Cross Attention cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states if self.config.ln_positions in ["normformer", "cogview"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=False, )(hidden_states) hidden_states, cross_attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, bias=False, dtype=self.dtype, is_encoder=False, )( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states</s> ===========below chunk 1=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s>( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["deepnet"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) # Feed forward residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["deepnet"]: use_scale</s> ===========below chunk 2=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>.use_scale or self.config.ln_positions == "deepnet" hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights, cross_attn_weights) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartDecoderLayer config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = False at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')
dalle_mini.model.configuration/DalleBartConfig.__init__
Modified
borisdayma~dalle-mini
32f4ba551a0808722b7a8da5eb8dd569fa1022ca
feat: force final ln in encoder
<23>:<add> self.force_ln_scale = force_ln_scale <del> self.use_all_scale = use_all_scale <24>:<add> self.force_final_ln_encoder = force_final_ln_encoder
<s> Improve Transformer" - use_glu=True, # "GLU Variants Improve Transformer" + # parameters that should not be necessary but could affect results + force_ln_scale=True, # force scale in layernorm even when followed by dense layers + force_final_ln_encoder=False, # force layer normalization in encoder final layer even when followed by dense layers - use_all_scale=True, # use scale in layernorm even when seemingly unnecessary **kwargs, ): <0> # text normalizer <1> self.normalize_text = normalize_text <2> <3> # transformer variants <4> self.head_scale = head_scale # per Normformer <5> assert ln_type in [ <6> "rmsnorm", <7> "layernorm", <8> ], "ln_type must be 'rmsnorm' or 'layernorm'" <9> self.ln_type = ln_type <10> assert ln_positions in [ <11> "normformer", <12> "swinv2", <13> "cogview", <14> "deepnet", <15> ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" <16> if ln_positions == "deepnet": <17> ln_positions = "postln" <18> self.ln_positions = ln_positions <19> self.use_cosine_attention = use_cosine_attention <20> self.tau_init = tau_init <21> self.use_deepnet_scaling = use_deepnet_scaling <22> self.use_glu = use_glu <23> self.use_all_scale = use_all_scale <24> <25> # common parameters <26> self.encoder_vocab_size = encoder_vocab_size <27> self.image_vocab_size = image_vocab_size <28> self.image_length = image_length <29> self.max_text_length = max_text_length <30> self.d_model = d_model <31> self.encoder_ffn_dim = encoder_ffn_dim <32> self.encoder_layers = encoder_</s>
===========below chunk 0=========== <s> - use_glu=True, # "GLU Variants Improve Transformer" + # parameters that should not be necessary but could affect results + force_ln_scale=True, # force scale in layernorm even when followed by dense layers + force_final_ln_encoder=False, # force layer normalization in encoder final layer even when followed by dense layers - use_all_scale=True, # use scale in layernorm even when seemingly unnecessary **kwargs, ): # offset: 1 self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length + 1) max_length = kwargs.pop("max_length", image_length + 1) super().__init__( # args required in parent class is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_</s> ===========below chunk 1=========== <s> - use_glu=True, # "GLU Variants Improve Transformer" + # parameters that should not be necessary but could affect results + force_ln_scale=True, # force scale in layernorm even when followed by dense layers + force_final_ln_encoder=False, # force layer normalization in encoder final layer even when followed by dense layers - use_all_scale=True, # use scale in layernorm even when seemingly unnecessary **kwargs, ): # offset: 2 <s> in parent class is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_embeddings, forced_eos_token_id=forced_eos_token_id, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, min_length=min_length, max_length=max_length, do_sample=do_sample, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." ) ===========unchanged ref 0=========== at: _warnings warn(message: str, category: Optional[Type[Warning]]=..., stacklevel: int=..., source: Optional[Any]=...) -> None warn(message: Warning, category: Any=..., stacklevel: int=..., source: Optional[Any]=...) -> None at: transformers.configuration_utils.PretrainedConfig model_type: str = "" is_composition: bool = False attribute_map: Dict[str, str] = {} _auto_class: Optional[str] = None __init__(**kwargs) __init__(self, **kwargs) at: transformers.configuration_utils.PretrainedConfig.__init__ self.bos_token_id = kwargs.pop("bos_token_id", None) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] at: typing.MutableMapping pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T] pop(key: _KT) -> _VT
dalle_mini.model.modeling/GLU.__call__
Modified
borisdayma~dalle-mini
32f4ba551a0808722b7a8da5eb8dd569fa1022ca
feat: force final ln in encoder
<9>:<add> use_scale=self.config.force_ln_scale, <del> use_scale=self.config.use_all_scale, <34>:<add> use_scale=self.config.force_ln_scale, <del> use_scale=self.config.use_all_scale,
# module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: <0> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <1> self.config <2> ) <3> <4> if self.config.ln_positions in ["normformer", "cogview"]: <5> x = norm( <6> self.config.ln_type, <7> dtype=self.dtype, <8> epsilon=1e-05, <9> use_scale=self.config.use_all_scale, <10> )(x) <11> w = nn.Dense( <12> self.ffn_dim, <13> dtype=self.dtype, <14> use_bias=False, <15> kernel_init=deepnet_init(gain) <16> if self.config.use_deepnet_scaling <17> else jax.nn.initializers.normal(self.config.init_std), <18> )(x) <19> w = ACT2FN[self.config.activation_function](w) <20> v = nn.Dense( <21> self.ffn_dim, <22> dtype=self.dtype, <23> use_bias=False, <24> kernel_init=deepnet_init(gain) <25> if self.config.use_deepnet_scaling <26> else jax.nn.initializers.normal(self.config.init_std), <27> )(x) <28> x = w * v <29> if self.config.ln_positions in ["normformer"]: <30> x = norm( <31> self.config.ln_type, <32> dtype=self.dtype, <33> epsilon=1e-05, <34> use_scale=self.config.use_all_scale, <35> )(x) <36> x = nn.Dropout(rate=self.config.activation_dropout)( <37> x, deterministic=deterministic <38> ) <39> <40> x</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.GLU config: DalleBartConfig ffn_dim: int embed_dim: int dtype: jnp.dtype = jnp.float32 is_encoder: bool = False at: transformers.modeling_flax_utils ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } ===========changed ref 0=========== <s> Improve Transformer" - use_glu=True, # "GLU Variants Improve Transformer" + # parameters that should not be necessary but could affect results + force_ln_scale=True, # force scale in layernorm even when followed by dense layers + force_final_ln_encoder=False, # force layer normalization in encoder final layer even when followed by dense layers - use_all_scale=True, # use scale in layernorm even when seemingly unnecessary **kwargs, ): # text normalizer self.normalize_text = normalize_text # transformer variants self.head_scale = head_scale # per Normformer assert ln_type in [ "rmsnorm", "layernorm", ], "ln_type must be 'rmsnorm' or 'layernorm'" self.ln_type = ln_type assert ln_positions in [ "normformer", "swinv2", "cogview", "deepnet", ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" if ln_positions == "deepnet": ln_positions = "postln" self.ln_positions = ln_positions self.use_cosine_attention = use_cosine_attention self.tau_init = tau_init self.use_deepnet_scaling = use_deepnet_scaling self.use_glu = use_glu + self.force_ln_scale = force_ln_scale - self.use_all_scale = use_all_scale + self.force_final_ln_encoder = force_final_ln_encoder # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_</s> ===========changed ref 1=========== <s> - use_glu=True, # "GLU Variants Improve Transformer" + # parameters that should not be necessary but could affect results + force_ln_scale=True, # force scale in layernorm even when followed by dense layers + force_final_ln_encoder=False, # force layer normalization in encoder final layer even when followed by dense layers - use_all_scale=True, # use scale in layernorm even when seemingly unnecessary **kwargs, ): # offset: 1 <s>d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image</s>
dalle_mini.model.modeling/FFN.__call__
Modified
borisdayma~dalle-mini
32f4ba551a0808722b7a8da5eb8dd569fa1022ca
feat: force final ln in encoder
<8>:<add> use_scale=self.config.force_ln_scale, <del> use_scale=self.config.use_all_scale, <24>:<add> use_scale=self.config.force_ln_scale, <del> use_scale=self.config.use_all_scale,
# module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: <0> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <1> self.config <2> ) <3> if self.config.ln_positions in ["normformer", "cogview"]: <4> x = norm( <5> self.config.ln_type, <6> dtype=self.dtype, <7> epsilon=1e-05, <8> use_scale=self.config.use_all_scale, <9> )(x) <10> x = nn.Dense( <11> self.ffn_dim, <12> dtype=self.dtype, <13> use_bias=False, <14> kernel_init=deepnet_init(gain) <15> if self.config.use_deepnet_scaling <16> else jax.nn.initializers.normal(self.config.init_std), <17> )(x) <18> x = ACT2FN[self.config.activation_function](x) <19> if self.config.ln_positions in ["normformer"]: <20> x = norm( <21> self.config.ln_type, <22> dtype=self.dtype, <23> epsilon=1e-05, <24> use_scale=self.config.use_all_scale, <25> )(x) <26> x = nn.Dropout(rate=self.config.activation_dropout)( <27> x, deterministic=deterministic <28> ) <29> x = nn.Dense( <30> self.embed_dim, <31> dtype=self.dtype, <32> use_bias=False, <33> kernel_init=deepnet_init(gain) <34> if self.config.use_deepnet_scaling <35> else jax.nn.initializers.normal(self.config.init_std), <36> )(x) <37> if self.config.ln_positions in ["swinv2",</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FFN config: DalleBartConfig ffn_dim: int embed_dim: int dtype: jnp.dtype = jnp.float32 is_encoder: bool = False at: transformers.modeling_flax_utils ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } ===========changed ref 0=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) if self.config.ln_positions in ["normformer", "cogview"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, + use_scale=self.config.force_ln_scale, - use_scale=self.config.use_all_scale, )(x) w = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) w = ACT2FN[self.config.activation_function](w) v = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = w * v if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, + use_scale=self.config.force_ln_scale, - use_scale=self.config.use_all_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense</s> ===========changed ref 1=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s>=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========changed ref 2=========== <s> Improve Transformer" - use_glu=True, # "GLU Variants Improve Transformer" + # parameters that should not be necessary but could affect results + force_ln_scale=True, # force scale in layernorm even when followed by dense layers + force_final_ln_encoder=False, # force layer normalization in encoder final layer even when followed by dense layers - use_all_scale=True, # use scale in layernorm even when seemingly unnecessary **kwargs, ): # text normalizer self.normalize_text = normalize_text # transformer variants self.head_scale = head_scale # per Normformer assert ln_type in [ "rmsnorm", "layernorm", ], "ln_type must be 'rmsnorm' or 'layernorm'" self.ln_type = ln_type assert ln_positions in [ "normformer", "swinv2", "cogview", "deepnet", ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" if ln_positions == "deepnet": ln_positions = "postln" self.ln_positions = ln_positions self.use_cosine_attention = use_cosine_attention self.tau_init = tau_init self.use_deepnet_scaling = use_deepnet_scaling self.use_glu = use_glu + self.force_ln_scale = force_ln_scale - self.use_all_scale = use_all_scale + self.force_final_ln_encoder = force_final_ln_encoder # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_</s>
dalle_mini.model.modeling/FlaxBartEncoderLayer.__call__
Modified
borisdayma~dalle-mini
32f4ba551a0808722b7a8da5eb8dd569fa1022ca
feat: force final ln in encoder
<13>:<add> use_scale=self.config.force_ln_scale, <del> use_scale=self.config.use_all_scale,
# module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> res_gain = ( <1> deepnet_gain["encoder"]["alpha"](self.config) <2> if self.config.use_deepnet_scaling <3> else 1 <4> ) <5> <6> embed_dim = self.config.d_model <7> residual = hidden_states <8> if self.config.ln_positions in ["normformer", "cogview"]: <9> hidden_states = norm( <10> self.config.ln_type, <11> dtype=self.dtype, <12> epsilon=1e-05, <13> use_scale=self.config.use_all_scale, <14> )(hidden_states) <15> hidden_states, attn_weights = FlaxBartAttention( <16> config=self.config, <17> embed_dim=embed_dim, <18> num_heads=self.config.encoder_attention_heads, <19> dropout=self.config.attention_dropout, <20> bias=False, <21> dtype=self.dtype, <22> is_encoder=True, <23> )(hidden_states=hidden_states, attention_mask=attention_mask) <24> <25> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: <26> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <27> hidden_states <28> ) <29> hidden_states = nn.Dropout(rate=self.config.dropout)( <30> hidden_states, deterministic=deterministic <31> ) <32> hidden_states = residual * res_gain + hidden_states <33> if self.config.ln_positions in ["postln"]: <34> </s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 hidden_states ) residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["postln"]: use_scale = ( self.use_scale or self.config.ln_positions == "postln" or self.config.use_all_scale ) hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartEncoderLayer config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = True at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple') ===========changed ref 0=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) if self.config.ln_positions in ["normformer", "cogview"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, + use_scale=self.config.force_ln_scale, - use_scale=self.config.use_all_scale, )(x) x = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = ACT2FN[self.config.activation_function](x) if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, + use_scale=self.config.force_ln_scale, - use_scale=self.config.use_all_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "c</s> ===========changed ref 1=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s>config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========changed ref 2=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) if self.config.ln_positions in ["normformer", "cogview"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, + use_scale=self.config.force_ln_scale, - use_scale=self.config.use_all_scale, )(x) w = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) w = ACT2FN[self.config.activation_function](w) v = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = w * v if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, + use_scale=self.config.force_ln_scale, - use_scale=self.config.use_all_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense</s>
dalle_mini.model.modeling/FlaxBartDecoderLayer.__call__
Modified
borisdayma~dalle-mini
32f4ba551a0808722b7a8da5eb8dd569fa1022ca
feat: force final ln in encoder
<15>:<add> use_scale=self.config.force_ln_scale, <del> use_scale=self.config.use_all_scale,
<s> FlaxBartDecoderLayer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> res_gain = ( <1> deepnet_gain["decoder"]["alpha"](self.config) <2> if self.config.use_deepnet_scaling <3> else 1 <4> ) <5> <6> embed_dim = self.config.d_model <7> residual = hidden_states <8> <9> # Self Attention <10> if self.config.ln_positions in ["normformer", "cogview"]: <11> hidden_states = norm( <12> self.config.ln_type, <13> dtype=self.dtype, <14> epsilon=1e-05, <15> use_scale=self.config.use_all_scale, <16> )(hidden_states) <17> hidden_states, attn_weights = FlaxBartAttention( <18> config=self.config, <19> embed_dim=embed_dim, <20> num_heads=self.config.decoder_attention_heads, <21> dropout=self.config.attention_dropout, <22> causal=True, <23> bias=False, <24> dtype=self.dtype, <25> is_encoder=False, <26> )( <27> hidden_states=hidden_states, <28> attention_mask=attention_mask, <29> init_cache=init_cache, <30> ) <31> <32> if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: <33> hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( <34> hidden_states <35> )</s>
===========below chunk 0=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) # Cross Attention cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states if self.config.ln_positions in ["normformer", "cogview"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.use_all_scale, )(hidden_states) hidden_states, cross_attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, bias=False, dtype=self.dtype, is_encoder=False, )( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-</s> ===========below chunk 1=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s>: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) # Feed forward residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["post</s> ===========below chunk 2=========== <s>Layer(nn.Module): @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>: use_scale = ( self.use_scale or self.config.ln_positions == "postln" or self.config.use_all_scale ) hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights, cross_attn_weights) return outputs ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } norm(type, *args, **kwargs) at: dalle_mini.model.modeling.FlaxBartDecoderLayer config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = False at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')
dalle_mini.model.modeling/FlaxBartEncoderLayerCollection.__call__
Modified
borisdayma~dalle-mini
32f4ba551a0808722b7a8da5eb8dd569fa1022ca
feat: force final ln in encoder
<16>:<add> add_norm = self.config.force_final_ln_encoder or ( <add> self.config.ln_positions == "swinv2" <del> add_norm = self.config.ln_positions == "swinv2" and ( <17>:<add> and ((i == n_layers - 1) or ((i + 1) % 6 == 0)) <del> (i == n_layers - 1) or ((i + 1) % 6 == 0)
# module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): <0> all_hidden_states = () if output_hidden_states else None <1> all_self_attns = () if output_attentions else None <2> <3> n_layers = self.config.encoder_layers <4> layer = ( <5> remat(FlaxBartEncoderLayer, static_argnums=(2, 3)) <6> if self.config.gradient_checkpointing <7> else FlaxBartEncoderLayer <8> ) <9> for i in range(n_layers): <10> if output_hidden_states: <11> all_hidden_states += (hidden_states,) <12> # final layernorm on the output of the last layer <13> # or every 6 layers for Swin v2 <14> # not needed for other models which use layernorm before x-attention <15> # ignored args for deepnet which always add a norm with scale <16> add_norm = self.config.ln_positions == "swinv2" and ( <17> (i == n_layers - 1) or ((i + 1) % 6 == 0) <18> ) <19> # we don't need to scale the norm for the last layer <20> use_scale = i != n_layers - 1 <21> layer_outputs = layer( <22> self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale <23> )( <24> hidden_states, <25> attention_mask, <26> output_attentions, <27> deterministic, <28> ) <29> hidden_states = layer_outputs[0] <30> if output_attentions: <31> all_self_attns += (layer_outputs[1],) <32> <33> # add hidden states from the last layer</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartEncoderLayerCollection(nn.Module): @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # offset: 1 all_hidden_states += (hidden_states,) outputs = [ hidden_states, all_hidden_states, all_self_attns, ] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, ) ===========unchanged ref 0=========== at: dalle_mini.model.modeling remat = nn_partitioning.remat at: dalle_mini.model.modeling.FlaxBartEncoderLayerCollection config: DalleBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation at: transformers.modeling_flax_outputs FlaxBaseModelOutput(**kwargs: _VT) FlaxBaseModelOutput(iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) FlaxBaseModelOutput(map: Mapping[_KT, _VT], **kwargs: _VT) ===========changed ref 0=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) if self.config.ln_positions in ["normformer", "cogview"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, + use_scale=self.config.force_ln_scale, - use_scale=self.config.use_all_scale, )(x) x = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = ACT2FN[self.config.activation_function](x) if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, + use_scale=self.config.force_ln_scale, - use_scale=self.config.use_all_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "c</s> ===========changed ref 1=========== # module: dalle_mini.model.modeling class FFN(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s>config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x ===========changed ref 2=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) if self.config.ln_positions in ["normformer", "cogview"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, + use_scale=self.config.force_ln_scale, - use_scale=self.config.use_all_scale, )(x) w = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) w = ACT2FN[self.config.activation_function](w) v = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = w * v if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, + use_scale=self.config.force_ln_scale, - use_scale=self.config.use_all_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense</s> ===========changed ref 3=========== # module: dalle_mini.model.modeling class GLU(nn.Module): @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: # offset: 1 <s>=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x
dalle_mini.model.configuration/DalleBartConfig.__init__
Modified
borisdayma~dalle-mini
69bcbeb80ce94cfda6acdb0fae3a3499d668fa20
feat: placeholders for more config
<18>:<add> assert use_alibi is False, "use_alibi is not supported yet" <23>:<add> self.use_alibi = use_alibi <add> self.sink_iters = sink_iters
<s> Transformer" + use_alibi=False, # from "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" + sink_iters=1, # used in SinkFormers # parameters that should not be necessary but could affect results force_ln_scale=True, # force scale in layernorm even when followed by dense layers force_final_ln_encoder=False, # force layer normalization in encoder final layer even when followed by dense layers **kwargs, ): <0> # text normalizer <1> self.normalize_text = normalize_text <2> <3> # transformer variants <4> self.head_scale = head_scale # per Normformer <5> assert ln_type in [ <6> "rmsnorm", <7> "layernorm", <8> ], "ln_type must be 'rmsnorm' or 'layernorm'" <9> self.ln_type = ln_type <10> assert ln_positions in [ <11> "normformer", <12> "swinv2", <13> "cogview", <14> "deepnet", <15> ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" <16> if ln_positions == "deepnet": <17> ln_positions = "postln" <18> self.ln_positions = ln_positions <19> self.use_cosine_attention = use_cosine_attention <20> self.tau_init = tau_init <21> self.use_deepnet_scaling = use_deepnet_scaling <22> self.use_glu = use_glu <23> self.force_ln_scale = force_ln_scale <24> self.force_final_ln_encoder = force_final_ln_encoder <25> <26> # common parameters <27> self.encoder_vocab_size = encoder_vocab_size <28> self.image_vocab_size = image_vocab_size <29> self.image_length = image_length <30> self.max_text_length = max_text_length <31> self.d_model = d_model <32> self.encoder_ffn</s>
===========below chunk 0=========== <s> use_alibi=False, # from "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" + sink_iters=1, # used in SinkFormers # parameters that should not be necessary but could affect results force_ln_scale=True, # force scale in layernorm even when followed by dense layers force_final_ln_encoder=False, # force layer normalization in encoder final layer even when followed by dense layers **kwargs, ): # offset: 1 self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length + 1) max_length = kwargs.pop("max_length", image_length + 1) super().__init__( # args required in parent class is_encoder_decoder=is_encoder_decoder, </s> ===========below chunk 1=========== <s> use_alibi=False, # from "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation" + sink_iters=1, # used in SinkFormers # parameters that should not be necessary but could affect results force_ln_scale=True, # force scale in layernorm even when followed by dense layers force_final_ln_encoder=False, # force layer normalization in encoder final layer even when followed by dense layers **kwargs, ): # offset: 2 <s> super().__init__( # args required in parent class is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_embeddings, forced_eos_token_id=forced_eos_token_id, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, min_length=min_length, max_length=max_length, do_sample=do_sample, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." ) ===========unchanged ref 0=========== at: dalle_mini.model.configuration.DalleBartConfig.__init__ self.forced_bos_token_id = self.bos_token_id at: transformers.configuration_utils.PretrainedConfig model_type: str = "" is_composition: bool = False attribute_map: Dict[str, str] = {} _auto_class: Optional[str] = None __init__(**kwargs) __init__(self, **kwargs) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] at: typing.MutableMapping pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T] pop(key: _KT) -> _VT
dalle_mini.model.configuration/DalleBartConfig.__init__
Modified
borisdayma~dalle-mini
f139b0be7c3b03f0520c106b12540b3fbd8e6e82
feat: add sinkformer + custom final ln + pre-ln (#151)
<4>:<add> self.use_head_scale = use_head_scale # per Normformer <del> self.head_scale = head_scale # per Normformer <10>:<add> if ln_positions == "deepnet": <add> ln_positions = "postln" <14>:<add> "postln", <add> "preln", <del> "deepnet", <15>:<add> ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'" <del> ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" <16>:<del> if ln_positions == "deepnet": <17>:<del> ln_positions = "postln" <25>:<add> self.sinkhorn_iters = sinkhorn_iters <del> self.sink_iters = sink_iters <26>:<add> if ln_positions == "postln": <add> assert ( <add> use_final_ln_encoder <add> ), "use_final_ln_encoder must be True when ln_positions is 'postln'" <add> assert ( <add> use_final_ln_decoder <add> ), "use_final_ln_decoder must be True when ln_positions is 'postln'" <add> self.use_final_ln_encoder = use_final_ln_encoder <add> self.
<s>, # final layer normalization in encoder + use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results + force_ln_scale=False, # force scale in layernorm even when followed by dense layers - force_ln_scale=True, # force scale in layernorm even when followed by dense layers - force_final_ln_encoder=False, # force layer normalization in encoder final layer even when followed by dense layers **kwargs, ): <0> # text normalizer <1> self.normalize_text = normalize_text <2> <3> # transformer variants <4> self.head_scale = head_scale # per Normformer <5> assert ln_type in [ <6> "rmsnorm", <7> "layernorm", <8> ], "ln_type must be 'rmsnorm' or 'layernorm'" <9> self.ln_type = ln_type <10> assert ln_positions in [ <11> "normformer", <12> "swinv2", <13> "cogview", <14> "deepnet", <15> ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" <16> if ln_positions == "deepnet": <17> ln_positions = "postln" <18> assert use_alibi is False, "use_alibi is not supported yet" <19> self.ln_positions = ln_positions <20> self.use_cosine_attention = use_cosine_attention <21> self.tau_init = tau_init <22> self.use_deepnet_scaling = use_deepnet_scaling <23> self.use_glu = use_glu <24> self.use_alibi = use_alibi <25> self.sink_iters = sink_iters <26> self.force_ln_scale = force_ln_scale <27> self.force_final_ln_encoder = force_final_ln_encoder <28> <29> # common parameters <30> self.encoder_vocab_size = encoder_vocab_size <31> self.image_vocab_size = image_vocab</s>
===========below chunk 0=========== <s> normalization in encoder + use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results + force_ln_scale=False, # force scale in layernorm even when followed by dense layers - force_ln_scale=True, # force scale in layernorm even when followed by dense layers - force_final_ln_encoder=False, # force layer normalization in encoder final layer even when followed by dense layers **kwargs, ): # offset: 1 self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = ( scale_embedding # scale factor will be sqrt(d_model) if True ) # special token id's are appended to vocab if not provided decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size) bos_token_id = kwargs.pop("bos_token_id", image_vocab_size) pad_token_id = kwargs.pop("pad_token_id", image_vocab_size) eos_token_id = kwargs.pop("eos_token_id", image_vocab_size) # we generate to image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length + 1</s> ===========below chunk 1=========== <s> normalization in encoder + use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results + force_ln_scale=False, # force scale in layernorm even when followed by dense layers - force_ln_scale=True, # force scale in layernorm even when followed by dense layers - force_final_ln_encoder=False, # force layer normalization in encoder final layer even when followed by dense layers **kwargs, ): # offset: 2 <s> image_length + 1 (for bos) by default min_length = kwargs.pop("min_length", image_length + 1) max_length = kwargs.pop("max_length", image_length + 1) super().__init__( # args required in parent class is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_embeddings, forced_eos_token_id=forced_eos_token_id, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, min_length=min_length, max_length=max_length, do_sample=do_sample, **kwargs, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get( "force_bos_token_to_be_generated", False ): self.forced_bos_token_id = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." "The config can simply be saved and uploaded again to be fixed." ===========unchanged ref 0=========== at: transformers.configuration_utils.PretrainedConfig model_type: str = "" is_composition: bool = False attribute_map: Dict[str, str] = {} _auto_class: Optional[str] = None __init__(**kwargs) __init__(self, **kwargs) at: typing.MutableMapping pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T] pop(key: _KT) -> _VT
dalle_mini.model.modeling/FlaxBartAttention.setup
Modified
borisdayma~dalle-mini
f139b0be7c3b03f0520c106b12540b3fbd8e6e82
feat: add sinkformer + custom final ln + pre-ln (#151)
<40>:<add> if self.config.use_head_scale: <del> if
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: <0> self.head_dim = self.embed_dim // self.num_heads <1> if self.head_dim * self.num_heads != self.embed_dim: <2> raise ValueError( <3> f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" <4> f" and `num_heads`: {self.num_heads})." <5> ) <6> <7> dense = partial( <8> nn.Dense, <9> self.embed_dim, <10> use_bias=self.bias, <11> dtype=self.dtype, <12> ) <13> <14> gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( <15> self.config <16> ) <17> <18> self.q_proj = dense( <19> kernel_init=deepnet_init() <20> if self.config.use_deepnet_scaling <21> else jax.nn.initializers.normal(self.config.init_std) <22> ) <23> self.k_proj = dense( <24> kernel_init=deepnet_init() <25> if self.config.use_deepnet_scaling <26> else jax.nn.initializers.normal(self.config.init_std) <27> ) <28> self.v_proj = dense( <29> kernel_init=deepnet_init(gain) <30> if self.config.use_deepnet_scaling <31> else jax.nn.initializers.normal(self.config.init_std) <32> ) <33> self.out_proj = dense( <34> kernel_init=deepnet_init(gain) <35> if self.config.use_deepnet_scaling <36> else jax.nn.initializers.normal(self.config.init_std) <37> ) <38> self.dropout_layer = nn.Dropout(rate=self.dropout) <39> <40> if</s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def setup(self) -> None: # offset: 1 self.head_scale = self.param( "head_scale", jax.nn.initializers.ones, (1, 1, self.num_heads, 1) ) if self.config.use_cosine_attention: self.tau = self.param( "tau", jax.nn.initializers.constant(self.config.tau_init), (1, self.num_heads, 1, 1), ) if self.causal: # used only in decoder self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" ) ===========unchanged ref 0=========== at: dalle_mini.model.modeling deepnet_init(gain=1) deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } at: dalle_mini.model.modeling.FlaxBartAttention is_encoder: bool = False at: functools partial(func: Callable[..., _T], *args: Any, **kwargs: Any) partial(func, *args, **keywords, /) -> function with partial application() at: transformers.models.bart.configuration_bart.BartConfig.__init__ self.init_std = init_std at: transformers.models.bart.modeling_flax_bart.FlaxBartAttention config: BartConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation setup(self) -> None ===========changed ref 0=========== <s>, # final layer normalization in encoder + use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results + force_ln_scale=False, # force scale in layernorm even when followed by dense layers - force_ln_scale=True, # force scale in layernorm even when followed by dense layers - force_final_ln_encoder=False, # force layer normalization in encoder final layer even when followed by dense layers **kwargs, ): # text normalizer self.normalize_text = normalize_text # transformer variants + self.use_head_scale = use_head_scale # per Normformer - self.head_scale = head_scale # per Normformer assert ln_type in [ "rmsnorm", "layernorm", ], "ln_type must be 'rmsnorm' or 'layernorm'" self.ln_type = ln_type + if ln_positions == "deepnet": + ln_positions = "postln" assert ln_positions in [ "normformer", "swinv2", "cogview", + "postln", + "preln", - "deepnet", + ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'" - ], "ln_positions must be 'normformer', 'swinv2' or 'deepnet'" - if ln_positions == "deepnet": - ln_positions = "postln" assert use_alibi is False, "use_alibi is not supported yet" self.ln_positions = ln_positions self.use_cosine_attention = use_cosine_attention self.tau_init = tau_init self.use_deepnet_scaling = use_deepnet_scaling self.use_glu = use_glu self.use_alibi = use_alibi + self.sinkhorn_iters = sinkhorn_</s> ===========changed ref 1=========== <s> normalization in encoder + use_final_ln_decoder=False, # final layer normalization in decoder # parameters that should not be necessary but could affect results + force_ln_scale=False, # force scale in layernorm even when followed by dense layers - force_ln_scale=True, # force scale in layernorm even when followed by dense layers - force_final_ln_encoder=False, # force layer normalization in encoder final layer even when followed by dense layers **kwargs, ): # offset: 1 <s> self.use_alibi = use_alibi + self.sinkhorn_iters = sinkhorn_iters - self.sink_iters = sink_iters + if ln_positions == "postln": + assert ( + use_final_ln_encoder + ), "use_final_ln_encoder must be True when ln_positions is 'postln'" + assert ( + use_final_ln_decoder + ), "use_final_ln_decoder must be True when ln_positions is 'postln'" + self.use_final_ln_encoder = use_final_ln_encoder + self.use_final_ln_decoder = use_final_ln_decoder self.force_ln_scale = force_ln_scale - self.force_final_ln_encoder = force_final_ln_encoder # common parameters self.encoder_vocab_size = encoder_vocab_size self.image_vocab_size = image_vocab_size self.image_length = image_length self.max_text_length = max_text_length self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers</s>
dalle_mini.model.modeling/FlaxBartAttention.__call__
Modified
borisdayma~dalle-mini
f139b0be7c3b03f0520c106b12540b3fbd8e6e82
feat: add sinkformer + custom final ln + pre-ln (#151)
# module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: <0> """Input shape: Batch x Time x Channel""" <1> <2> # if key_value_states are provided this layer is used as a cross-attention layer <3> # for the decoder <4> is_cross_attention = key_value_states is not None <5> batch_size = hidden_states.shape[0] <6> <7> # get query proj <8> query_states = self.q_proj(hidden_states) <9> # get key, value proj <10> if is_cross_attention: <11> # cross_attentions <12> key_states = self.k_proj(key_value_states) <13> value_states = self.v_proj(key_value_states) <14> else: <15> # self_attention <16> key_states = self.k_proj(hidden_states) <17> value_states = self.v_proj(hidden_states) <18> <19> query_states = self._split_heads(query_states) <20> key_states = self._split_heads(key_states) <21> value_states = self._split_heads(value_states) <22> <23> # handle cache prepare causal attention mask <24> if self.causal: <25> query_length, key_length = query_states.shape[1], key_states.shape[1] <26> if self.has_variable("cache", "cached_key"): <27> mask_shift = self.variables["cache"]["cache_index"] <28> max_decoder_length = self.variables["cache"]["cached_key"].shape[1] <29> causal_mask = lax.dynamic_slice( </s>
===========below chunk 0=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 1 (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length), ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to( causal_mask, (batch_size,) + causal_mask.shape[1:] ) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to( jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape ) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of</s> ===========below chunk 1=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 2 <s> # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") if self.config.use_cosine_attention: # normalize q and k query_states = query_states / ( jnp.linalg.norm(query_states, axis=-1, keepdims=True) + 1e-8 ) key_states = key_states / ( jnp.linalg.norm(key_states, axis=-1, keepdims=True) + 1e-8 ) attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) if self.config.use</s> ===========below chunk 2=========== # module: dalle_mini.model.modeling class FlaxBartAttention(FlaxBartAttention): def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: # offset: 3 <s>ine_attention: # divide by tau attn_weights = attn_weights / jnp.maximum(self.tau, 0.01) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) if self.config.head_scale: # per Normformer attn_output = attn_output * self.head_scale attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights ===========unchanged ref 0=========== at: dalle_mini.model.modeling.FlaxBartAttention.setup self.q_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.k_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.v_proj = dense( kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" ) at: transformers.models.bart.modeling_flax_bart.FlaxBartAttention config: BartConfig dropout: float = 0.0 causal: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation _split_heads(hidden_states) _concatenate_to_cache(key, value, query, attention_mask) __call__(self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray]=None, attention_mask: Optional[jnp.ndarray]=None, init_cache: bool=False, deterministic: bool=True) -> Tuple[jnp.ndarray] at: typing Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')