id
int64
0
300k
label
stringlengths
1
74
text
stringlengths
4k
8k
2,500
capped
# This file is part of Hypothesis, which may be found at # https://github.com/HypothesisWorks/hypothesis/ # # Copyright the Hypothesis Authors. # Individual contributors are listed in AUTHORS.rst and the git log. # # This Source Code Form is subject to the terms of the Mozilla Public License, # v. 2.0. If a copy of the MPL was not distributed with this file, You can # obtain one at https://mozilla.org/MPL/2.0/. import threading from contextlib import contextmanager from hypothesis.errors import InvalidArgument from hypothesis.internal.lazyformat import lazyformat from hypothesis.internal.reflection import get_pretty_function_description from hypothesis.internal.validation import check_type from hypothesis.strategies._internal.strategies import ( OneOfStrategy, SearchStrategy, check_strategy, ) class LimitReached(BaseException): pass class LimitedStrategy(SearchStrategy): def __init__(self, strategy): super().__init__() self.base_strategy = strategy self._threadlocal = threading.local() @property def marker(self): return getattr(self._threadlocal, "marker", 0) @marker.setter def marker(self, value): self._threadlocal.marker = value @property def currently_capped(self): return getattr(self._threadlocal, "currently_capped", False) @currently_capped.setter def currently_capped(self, value): self._threadlocal.currently_capped = value def __repr__(self): return f"LimitedStrategy({self.base_strategy!r})" def do_validate(self): self.base_strategy.validate() def do_draw(self, data): assert self.currently_capped if self.marker <= 0: raise LimitReached self.marker -= 1 return data.draw(self.base_strategy) @contextmanager def METHOD_NAME(self, max_templates): try: was_capped = self.currently_capped self.currently_capped = True self.marker = max_templates yield finally: self.currently_capped = was_capped class RecursiveStrategy(SearchStrategy): def __init__(self, base, extend, max_leaves): self.max_leaves = max_leaves self.base = base self.limited_base = LimitedStrategy(base) self.extend = extend strategies = [self.limited_base, self.extend(self.limited_base)] while 2 ** (len(strategies) - 1) <= max_leaves: strategies.append(extend(OneOfStrategy(tuple(strategies)))) self.strategy = OneOfStrategy(strategies) def __repr__(self): if not hasattr(self, "_cached_repr"): self._cached_repr = "recursive(%r, %s, max_leaves=%d)" % ( self.base, get_pretty_function_description(self.extend), self.max_leaves, ) return self._cached_repr def do_validate(self): check_strategy(self.base, "base") extended = self.extend(self.limited_base) check_strategy(extended, f"extend({self.limited_base!r})") self.limited_base.validate() extended.validate() check_type(int, self.max_leaves, "max_leaves") if self.max_leaves <= 0: raise InvalidArgument( f"max_leaves={self.max_leaves!r} must be greater than zero" ) def do_draw(self, data): count = 0 while True: try: with self.limited_base.METHOD_NAME(self.max_leaves): return data.draw(self.strategy) except LimitReached: # Workaround for possible coverage bug - this branch is definitely # covered but for some reason is showing up as not covered. if count == 0: # pragma: no branch data.note_event( lazyformat( "Draw for %r exceeded max_leaves and had to be retried", self, ) ) count += 1
2,501
cell flowsheet model
################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # # Copyright (c) 2018-2023 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. ################################################################################# # TODO: Missing doc strings # pylint: disable=missing-module-docstring __author__ = "Douglas Allan" import pyomo.environ as pyo from idaes.core import FlowsheetBlock def METHOD_NAME(dynamic, time_set, zfaces): # function that creates a unit model with cell-level variables for testing # subcomponents that require them m = pyo.ConcreteModel() m.fs = FlowsheetBlock(dynamic=False, time_set=time_set, time_units=pyo.units.s) tset = m.fs.config.time znodes = m.fs.znodes = pyo.Set( initialize=[(zfaces[i] + zfaces[i + 1]) / 2.0 for i in range(len(zfaces) - 1)] ) iznodes = m.fs.iznodes = pyo.Set(initialize=range(1, len(znodes) + 1)) m.fs.length_z = pyo.Var(initialize=0.25, units=pyo.units.m) m.fs.length_y = pyo.Var(initialize=0.25, units=pyo.units.m) m.fs.current_density = pyo.Var( tset, iznodes, initialize=0, units=pyo.units.A / pyo.units.m**2 ) m.fs.temperature_z = pyo.Var(tset, iznodes, initialize=1000, units=pyo.units.K) m.fs.length_y.fix(0.08) m.fs.length_z.fix(0.08) m.fs.temperature_z.fix(1000) m.fs.current_density.fix(0) return m def _build_test_utility(block, comp_dict, references=None): # Takes a unit model and four dictionaries: references (variables), # not_references (variables), constraints, and expressions. They should # have the attribute name as a key and the length of the attribute as # the value. This function goes through and ensures that all these # components exist and are the right length, and furthermore they are no # unlisted components of these types if references is not None: for attr in references: try: comp = getattr(block, attr) except AttributeError: raise AttributeError( f"Reference {attr} missing from block {block.name}." ) if not comp.is_reference(): raise AssertionError( f"Attribute {attr} found on block {block.name}, but " "was not Reference." ) for comp in block.component_data_objects(descend_into=False): if comp.is_reference(): if not comp in references: raise AssertionError( f"Unexpected Reference {comp.name} encountered " f"in block {block.name}." ) for ctype, sub_dict in comp_dict.items(): for attr, length in sub_dict.items(): try: comp = getattr(block, attr) except AttributeError: raise AttributeError(f"{ctype} {attr} missing from block {block.name}.") if not len(comp) == length: raise AssertionError( f"{ctype} {comp.name} was not expected length in block " f"{block.name}." ) for comp in block.component_data_objects(ctype=ctype, descend_into=False): short_name = comp.local_name.split("[")[0] if not short_name in sub_dict.keys(): raise AssertionError( f"Unexpected {ctype} {comp.name} encountered in block " f"{block.name}." )
2,502
about
""" @generated by mypy-protobuf. Do not edit manually! isort:skip_file Copyright 2016-2023, Pulumi Corporation. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import abc import collections.abc import google.protobuf.empty_pb2 import grpc import grpc.aio import typing import pulumi.language_pb2 import pulumi.plugin_pb2 class LanguageRuntimeStub: """LanguageRuntime is the interface that the planning monitor uses to drive execution of an interpreter responsible for confguring and creating resource objects. """ def __init__(self, channel: grpc.Channel) -> None: ... GetRequiredPlugins: grpc.UnaryUnaryMultiCallable[ pulumi.language_pb2.GetRequiredPluginsRequest, pulumi.language_pb2.GetRequiredPluginsResponse, ] """GetRequiredPlugins computes the complete set of anticipated plugins required by a program.""" Run: grpc.UnaryUnaryMultiCallable[ pulumi.language_pb2.RunRequest, pulumi.language_pb2.RunResponse, ] """Run executes a program and returns its result.""" GetPluginInfo: grpc.UnaryUnaryMultiCallable[ google.protobuf.empty_pb2.Empty, pulumi.plugin_pb2.PluginInfo, ] """GetPluginInfo returns generic information about this plugin, like its version.""" InstallDependencies: grpc.UnaryStreamMultiCallable[ pulumi.language_pb2.InstallDependenciesRequest, pulumi.language_pb2.InstallDependenciesResponse, ] """InstallDependencies will install dependencies for the project, e.g. by running `npm install` for nodejs projects.""" METHOD_NAME: grpc.UnaryUnaryMultiCallable[ google.protobuf.empty_pb2.Empty, pulumi.language_pb2.AboutResponse, ] """About returns information about the runtime for this language.""" GetProgramDependencies: grpc.UnaryUnaryMultiCallable[ pulumi.language_pb2.GetProgramDependenciesRequest, pulumi.language_pb2.GetProgramDependenciesResponse, ] """GetProgramDependencies returns the set of dependencies required by the program.""" RunPlugin: grpc.UnaryStreamMultiCallable[ pulumi.language_pb2.RunPluginRequest, pulumi.language_pb2.RunPluginResponse, ] """RunPlugin executes a plugin program and returns its result asynchronously.""" GenerateProgram: grpc.UnaryUnaryMultiCallable[ pulumi.language_pb2.GenerateProgramRequest, pulumi.language_pb2.GenerateProgramResponse, ] """GenerateProgram generates a given PCL program into a program for this language.""" GenerateProject: grpc.UnaryUnaryMultiCallable[ pulumi.language_pb2.GenerateProjectRequest, pulumi.language_pb2.GenerateProjectResponse, ] """GenerateProject generates a given PCL program into a project for this language.""" GeneratePackage: grpc.UnaryUnaryMultiCallable[ pulumi.language_pb2.GeneratePackageRequest, pulumi.language_pb2.GeneratePackageResponse, ] """GeneratePackage generates a given pulumi package into a package for this language.""" Pack: grpc.UnaryUnaryMultiCallable[ pulumi.language_pb2.PackRequest, pulumi.language_pb2.PackResponse, ] """Pack packs a package into a language specific artifact.""" class LanguageRuntimeServicer(metaclass=abc.ABCMeta): """LanguageRuntime is the interface that the planning monitor uses to drive execution of an interpreter responsible for confguring and creating resource objects. """ def GetRequiredPlugins( self, request: pulumi.language_pb2.GetRequiredPluginsRequest, context: grpc.ServicerContext, ) -> pulumi.language_pb2.GetRequiredPluginsResponse: """GetRequiredPlugins computes the complete set of anticipated plugins required by a program.""" def Run( self, request: pulumi.language_pb2.RunRequest, context: grpc.ServicerContext, ) -> pulumi.language_pb2.RunResponse: """Run executes a program and returns its result.""" def GetPluginInfo( self, request: google.protobuf.empty_pb2.Empty, context: grpc.ServicerContext, ) -> pulumi.plugin_pb2.PluginInfo: """GetPluginInfo returns generic information about this plugin, like its version.""" def InstallDependencies( self, request: pulumi.language_pb2.InstallDependenciesRequest, context: grpc.ServicerContext, ) -> collections.abc.Iterator[pulumi.language_pb2.InstallDependenciesResponse]: """InstallDependencies will install dependencies for the project, e.g. by running `npm install` for nodejs projects.""" def METHOD_NAME( self, request: google.protobuf.empty_pb2.Empty, context: grpc.ServicerContext, ) -> pulumi.language_pb2.AboutResponse: """About returns information about the runtime for this language.""" def GetProgramDependencies( self, request: pulumi.language_pb2.GetProgramDependenciesRequest, context: grpc.ServicerContext, ) -> pulumi.language_pb2.GetProgramDependenciesResponse: """GetProgramDependencies returns the set of dependencies required by the program.""" def RunPlugin( self, request: pulumi.language_pb2.RunPluginRequest, context: grpc.ServicerContext, ) -> collections.abc.Iterator[pulumi.language_pb2.RunPluginResponse]: """RunPlugin executes a plugin program and returns its result asynchronously.""" def GenerateProgram( self, request: pulumi.language_pb2.GenerateProgramRequest, context: grpc.ServicerContext, ) -> pulumi.language_pb2.GenerateProgramResponse: """GenerateProgram generates a given PCL program into a program for this language.""" def GenerateProject( self, request: pulumi.language_pb2.GenerateProjectRequest, context: grpc.ServicerContext, ) -> pulumi.language_pb2.GenerateProjectResponse: """GenerateProject generates a given PCL program into a project for this language.""" def GeneratePackage( self, request: pulumi.language_pb2.GeneratePackageRequest, context: grpc.ServicerContext, ) -> pulumi.language_pb2.GeneratePackageResponse: """GeneratePackage generates a given pulumi package into a package for this language.""" def Pack( self, request: pulumi.language_pb2.PackRequest, context: grpc.ServicerContext, ) -> pulumi.language_pb2.PackResponse: """Pack packs a package into a language specific artifact.""" def add_LanguageRuntimeServicer_to_server(servicer: LanguageRuntimeServicer, server: typing.Union[grpc.Server, grpc.aio.Server]) -> None: ...
2,503
get service name
import random from pathlib import Path from typing import Callable, Dict, Tuple import opentelemetry.sdk.metrics.export import opentelemetry.sdk.metrics.view import pytest from opentelemetry.sdk.metrics.export import ( AggregationTemporality, MetricExporter, MetricExportResult, MetricsData, PeriodicExportingMetricReader, ) class DirMetricExporter(MetricExporter): """Implementation of :class:`MetricExporter` that prints metrics to a file in a given directory. This class can be used for diagnostic or testing purposes. """ def __init__( self, metric_dir: str, preferred_temporality: Dict[type, AggregationTemporality] = None, preferred_aggregation: Dict[ type, "opentelemetry.sdk.metrics.view.Aggregation" ] = None, ): super().__init__( preferred_temporality=preferred_temporality, preferred_aggregation=preferred_aggregation, ) self.metric_filename: Path = Path(metric_dir) / str(random.randint(0, 1048575)) self.f = open(self.metric_filename, 'a') def export( self, metrics_data: MetricsData, timeout_millis: float = 10_000, **kwargs, ) -> MetricExportResult: self.f.write(metrics_data.to_json()) self.f.write('\n') self.f.flush() return MetricExportResult.SUCCESS def shutdown(self, timeout_millis: float = 30_000, **kwargs) -> None: pass def force_flush(self, timeout_millis: float = 10_000) -> bool: return True def __del__(self): self.f.close() @pytest.fixture(scope='function') def monkeypatch_metric_exporter( tmpdir_factory: pytest.TempdirFactory, ) -> Tuple[Callable, Callable]: import json import os import time from pathlib import Path import opentelemetry.sdk.metrics.export collect_path = Path(tmpdir_factory.mktemp('otel-collector')) metrics_path = collect_path / 'metrics' os.mkdir(metrics_path) tick_counter_filename = collect_path / 'tick_counter' with open(tick_counter_filename, 'w', encoding='utf-8') as f: f.write('0') def collect_metrics(): with open(tick_counter_filename, 'r', encoding='utf-8') as f: tick_counter = int(f.read()) with open(tick_counter_filename, 'w', encoding='utf-8') as f: f.write(str(tick_counter + 1)) time.sleep(2) def METHOD_NAME(otel_measurement): return otel_measurement['resource_metrics'][0]['resource']['attributes'][ 'service.name' ] def read_metrics(): def read_metric_file(filename): with open(filename, 'r', encoding='utf-8') as f: return json.loads(f.read()) return { METHOD_NAME(i): i for i in map(read_metric_file, metrics_path.glob('*')) } class PatchedTextReader(PeriodicExportingMetricReader): def __init__(self, *args, **kwargs) -> None: self.exporter = DirMetricExporter(metrics_path) self.tick_counter = 0 super().__init__( exporter=self.exporter, export_interval_millis=500, ) def _ticker(self) -> None: interval_secs = self._export_interval_millis / 1e3 while not self._shutdown_event.wait(interval_secs): with open(tick_counter_filename, 'r', encoding='utf-8') as f: tick_counter = int(f.read()) if tick_counter != self.tick_counter: self.tick_counter = tick_counter self.collect(timeout_millis=self._export_timeout_millis) self.collect(timeout_millis=self._export_interval_millis) real_reader = opentelemetry.sdk.metrics.export.PeriodicExportingMetricReader opentelemetry.sdk.metrics.export.PeriodicExportingMetricReader = PatchedTextReader yield collect_metrics, read_metrics opentelemetry.sdk.metrics.export.PeriodicExportingMetricReader = real_reader
2,504
method
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # # Code generated by aaz-dev-tools # -------------------------------------------------------------------------------------------- # pylint: skip-file # flake8: noqa from azure.cli.core.aaz import * @register_command( "vm extension delete", ) class Delete(AAZCommand): """Delete operation to delete the extension. :example: Use a VM name and extension to delete an extension from a VM. az vm extension delete -g MyResourceGroup --vm-name MyVm -n MyExtensionName :example: Delete extensions with IDs containing the string "MyExtension" from a VM. az vm extension delete --ids $(az resource list --query "[?contains(name, 'MyExtension')].id" -o tsv) """ _aaz_info = { "version": "2020-06-01", "resources": [ ["mgmt-plane", "/subscriptions/{}/resourcegroups/{}/providers/microsoft.compute/virtualmachines/{}/extensions/{}", "2020-06-01"], ] } AZ_SUPPORT_NO_WAIT = True def _handler(self, command_args): super()._handler(command_args) return self.build_lro_poller(self._execute_operations, None) _args_schema = None @classmethod def _build_arguments_schema(cls, *args, **kwargs): if cls._args_schema is not None: return cls._args_schema cls._args_schema = super()._build_arguments_schema(*args, **kwargs) # define Arg Group "" _args_schema = cls._args_schema _args_schema.resource_group = AAZResourceGroupNameArg( required=True, ) _args_schema.vm_extension_name = AAZStrArg( options=["-n", "--name", "--vm-extension-name"], help="The name of the virtual machine extension.", required=True, id_part="child_name_1", ) _args_schema.vm_name = AAZStrArg( options=["--vm-name"], help="The name of the Virtual Machine. You can configure the default using `az configure --defaults vm=<name>`.", required=True, id_part="name", ) return cls._args_schema def _execute_operations(self): self.pre_operations() yield self.VirtualMachineExtensionsDelete(ctx=self.ctx)() self.post_operations() @register_callback def pre_operations(self): pass @register_callback def post_operations(self): pass class VirtualMachineExtensionsDelete(AAZHttpOperation): CLIENT_TYPE = "MgmtClient" def __call__(self, *args, **kwargs): request = self.make_request() session = self.client.send_request(request=request, stream=False, **kwargs) if session.http_response.status_code in [202]: return self.client.build_lro_polling( self.ctx.args.no_wait, session, self.on_200, self.on_error, lro_options={"final-state-via": "azure-async-operation"}, path_format_arguments=self.url_parameters, ) if session.http_response.status_code in [200]: return self.client.build_lro_polling( self.ctx.args.no_wait, session, self.on_200, self.on_error, lro_options={"final-state-via": "azure-async-operation"}, path_format_arguments=self.url_parameters, ) if session.http_response.status_code in [204]: return self.client.build_lro_polling( self.ctx.args.no_wait, session, self.on_204, self.on_error, lro_options={"final-state-via": "azure-async-operation"}, path_format_arguments=self.url_parameters, ) return self.on_error(session.http_response) @property def url(self): return self.client.format_url( "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachines/{vmName}/extensions/{vmExtensionName}", **self.url_parameters ) @property def METHOD_NAME(self): return "DELETE" @property def error_format(self): return "MgmtErrorFormat" @property def url_parameters(self): parameters = { **self.serialize_url_param( "resourceGroupName", self.ctx.args.resource_group, required=True, ), **self.serialize_url_param( "subscriptionId", self.ctx.subscription_id, required=True, ), **self.serialize_url_param( "vmExtensionName", self.ctx.args.vm_extension_name, required=True, ), **self.serialize_url_param( "vmName", self.ctx.args.vm_name, required=True, ), } return parameters @property def query_parameters(self): parameters = { **self.serialize_query_param( "api-version", "2020-06-01", required=True, ), } return parameters def on_200(self, session): pass def on_204(self, session): pass class _DeleteHelper: """Helper class for Delete""" __all__ = ["Delete"]
2,505
set
import logging from pyvo.utils.http import create_session from . import securitymethods __all__ = ["CredentialStore"] class CredentialStore(object): """ The credential store takes user credentials, and uses them to create appropriate requests sessions for dispatching requests using those credentials. Different types of credentials can be passed in, such as cookies, a jar of cookies, certificates, and basic auth. A session can also be associated with a security method URI by calling the set function. Before a request is to be dispatched, the AuthSession calls the get method to retrieve the appropriate requests.Session for making that HTTP request. """ def __init__(self): self.credentials = {} self.METHOD_NAME(securitymethods.ANONYMOUS, create_session()) def negotiate_method(self, allowed_methods): """ Compare the credentials provided by the user against the security methods passed in, and determine which method is to be used for making this request. Parameters ---------- allowed_methods : list(str) list of allowed security methods to return Raises ------ Raises an exception if a common method could not be negotiated. """ available_methods = METHOD_NAME(self.credentials.keys()) methods = available_methods.intersection(allowed_methods) logging.debug('Available methods: %s', methods) # If we have no common auth mechanism, then fail. if not methods: msg = 'Negotiation failed. Server supports %s, client supports %s' % \ (allowed_methods, available_methods) raise Exception(msg) # If there are more than 1 method to pick, don't pick # anonymous over an actual method. if len(methods) > 1: methods.discard(securitymethods.ANONYMOUS) # Pick a random method. return methods.pop() def METHOD_NAME(self, method_uri, session): """ Associate a security method URI with a requests.Session like object. Parameters ---------- method_uri : str URI representing the security method session : object the requests.Session like object that will dispatch requests for the authentication method provided by method_uri """ self.credentials[method_uri] = session def get(self, method_uri): """ Retrieve the requests.Session like object associated with a security method URI. Parameters ---------- method_uri : str URI representing the security method """ return self.credentials[method_uri] def set_cookie(self, cookie_name, cookie_value, domain='', path='/'): """ Add a cookie to use as authentication. More than one call to set_cookie will add multiple cookies into the same cookie jar used for the request. Parameters ---------- cookie_name : str name of the cookie cookie_value : str value of the cookie domain : str restrict usage of this cookie to this domain path : str restrict usage of this cookie to this path """ cookie_session = self.credentials.setdefault(securitymethods.COOKIE, create_session()) cookie_session.cookies.METHOD_NAME(cookie_name, cookie_value, domain=domain, path=path) def set_cookie_jar(self, cookie_jar): """ Set the cookie jar to use for authentication. Any previous cookies or cookie jars set will be removed. Parameters ---------- cookie_jar : obj the cookie jar to use. """ cookie_session = self.credentials.setdefault(securitymethods.COOKIE, create_session()) cookie_session.cookies = cookie_jar def set_client_certificate(self, certificate_path): """ Add a client certificate to use for authentication. Parameters ---------- certificate_path : str path to the file of the client certificate """ cert_session = create_session() cert_session.cert = certificate_path self.METHOD_NAME(securitymethods.CLIENT_CERTIFICATE, cert_session) def set_password(self, username, password): """ Add a username / password for basic authentication. Parameters ---------- username : str username to use password : str password to use """ basic_session = create_session() basic_session.auth = (username, password) self.METHOD_NAME(securitymethods.BASIC, basic_session) def __repr__(self): return 'Support for %s' % self.credentials.keys()
2,506
id
# coding=utf-8 # *** WARNING: this file was generated by pulumi. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetClusterResult', 'AwaitableGetClusterResult', 'get_cluster', 'get_cluster_output', ] @pulumi.output_type class GetClusterResult: """ The HDInsight cluster. """ def __init__(__self__, etag=None, METHOD_NAME=None, identity=None, location=None, name=None, properties=None, system_data=None, tags=None, type=None, zones=None): if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if METHOD_NAME and not isinstance(METHOD_NAME, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", METHOD_NAME) if identity and not isinstance(identity, dict): raise TypeError("Expected argument 'identity' to be a dict") pulumi.set(__self__, "identity", identity) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if properties and not isinstance(properties, dict): raise TypeError("Expected argument 'properties' to be a dict") pulumi.set(__self__, "properties", properties) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if zones and not isinstance(zones, list): raise TypeError("Expected argument 'zones' to be a list") pulumi.set(__self__, "zones", zones) @property @pulumi.getter def etag(self) -> Optional[str]: """ The ETag for the resource """ return pulumi.get(self, "etag") @property @pulumi.getter def METHOD_NAME(self) -> str: """ Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} """ return pulumi.get(self, "id") @property @pulumi.getter def identity(self) -> Optional['outputs.ClusterIdentityResponse']: """ The identity of the cluster, if configured. """ return pulumi.get(self, "identity") @property @pulumi.getter def location(self) -> str: """ The geo-location where the resource lives """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> 'outputs.ClusterGetPropertiesResponse': """ The properties of the cluster. """ return pulumi.get(self, "properties") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ Metadata pertaining to creation and last modification of the resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type") @property @pulumi.getter def zones(self) -> Optional[Sequence[str]]: """ The availability zones. """ return pulumi.get(self, "zones") class AwaitableGetClusterResult(GetClusterResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetClusterResult( etag=self.etag, METHOD_NAME=self.METHOD_NAME, identity=self.identity, location=self.location, name=self.name, properties=self.properties, system_data=self.system_data, tags=self.tags, type=self.type, zones=self.zones) def get_cluster(cluster_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetClusterResult: """ Gets the specified cluster. :param str cluster_name: The name of the cluster. :param str resource_group_name: The name of the resource group. """ __args__ = dict() __args__['clusterName'] = cluster_name __args__['resourceGroupName'] = resource_group_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:hdinsight/v20230815preview:getCluster', __args__, opts=opts, typ=GetClusterResult).value return AwaitableGetClusterResult( etag=pulumi.get(__ret__, 'etag'), METHOD_NAME=pulumi.get(__ret__, 'id'), identity=pulumi.get(__ret__, 'identity'), location=pulumi.get(__ret__, 'location'), name=pulumi.get(__ret__, 'name'), properties=pulumi.get(__ret__, 'properties'), system_data=pulumi.get(__ret__, 'system_data'), tags=pulumi.get(__ret__, 'tags'), type=pulumi.get(__ret__, 'type'), zones=pulumi.get(__ret__, 'zones')) @_utilities.lift_output_func(get_cluster) def get_cluster_output(cluster_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetClusterResult]: """ Gets the specified cluster. :param str cluster_name: The name of the cluster. :param str resource_group_name: The name of the resource group. """ ...
2,507
create dyn state matrices
#!/usr/bin/env python3 """ Dynamic bicycle model from "The Science of Vehicle Dynamics (2014), M. Guiggiani" The state is x = [v, r]^T with v lateral speed [m/s], and r rotational speed [rad/s] The input u is the steering angle [rad], and roll [rad] The system is defined by x_dot = A*x + B*u A depends on longitudinal speed, u [m/s], and vehicle parameters CP """ from typing import Tuple import numpy as np from numpy.linalg import solve from cereal import car ACCELERATION_DUE_TO_GRAVITY = 9.8 class VehicleModel: def __init__(self, CP: car.CarParams): """ Args: CP: Car Parameters """ # for math readability, convert long names car params into short names self.m: float = CP.mass self.j: float = CP.rotationalInertia self.l: float = CP.wheelbase self.aF: float = CP.centerToFront self.aR: float = CP.wheelbase - CP.centerToFront self.chi: float = CP.steerRatioRear self.cF_orig: float = CP.tireStiffnessFront self.cR_orig: float = CP.tireStiffnessRear self.update_params(1.0, CP.steerRatio) def update_params(self, stiffness_factor: float, steer_ratio: float) -> None: """Update the vehicle model with a new stiffness factor and steer ratio""" self.cF: float = stiffness_factor * self.cF_orig self.cR: float = stiffness_factor * self.cR_orig self.sR: float = steer_ratio def steady_state_sol(self, sa: float, u: float, roll: float) -> np.ndarray: """Returns the steady state solution. If the speed is too low we can't use the dynamic model (tire slip is undefined), we then have to use the kinematic model Args: sa: Steering wheel angle [rad] u: Speed [m/s] roll: Road Roll [rad] Returns: 2x1 matrix with steady state solution (lateral speed, rotational speed) """ if u > 0.1: return dyn_ss_sol(sa, u, roll, self) else: return kin_ss_sol(sa, u, self) def calc_curvature(self, sa: float, u: float, roll: float) -> float: """Returns the curvature. Multiplied by the speed this will give the yaw rate. Args: sa: Steering wheel angle [rad] u: Speed [m/s] roll: Road Roll [rad] Returns: Curvature factor [1/m] """ return (self.curvature_factor(u) * sa / self.sR) + self.roll_compensation(roll, u) def curvature_factor(self, u: float) -> float: """Returns the curvature factor. Multiplied by wheel angle (not steering wheel angle) this will give the curvature. Args: u: Speed [m/s] Returns: Curvature factor [1/m] """ sf = calc_slip_factor(self) return (1. - self.chi) / (1. - sf * u**2) / self.l def get_steer_from_curvature(self, curv: float, u: float, roll: float) -> float: """Calculates the required steering wheel angle for a given curvature Args: curv: Desired curvature [1/m] u: Speed [m/s] roll: Road Roll [rad] Returns: Steering wheel angle [rad] """ return (curv - self.roll_compensation(roll, u)) * self.sR * 1.0 / self.curvature_factor(u) def roll_compensation(self, roll: float, u: float) -> float: """Calculates the roll-compensation to curvature Args: roll: Road Roll [rad] u: Speed [m/s] Returns: Roll compensation curvature [rad] """ sf = calc_slip_factor(self) if abs(sf) < 1e-6: return 0 else: return (ACCELERATION_DUE_TO_GRAVITY * roll) / ((1 / sf) - u**2) def get_steer_from_yaw_rate(self, yaw_rate: float, u: float, roll: float) -> float: """Calculates the required steering wheel angle for a given yaw_rate Args: yaw_rate: Desired yaw rate [rad/s] u: Speed [m/s] roll: Road Roll [rad] Returns: Steering wheel angle [rad] """ curv = yaw_rate / u return self.get_steer_from_curvature(curv, u, roll) def yaw_rate(self, sa: float, u: float, roll: float) -> float: """Calculate yaw rate Args: sa: Steering wheel angle [rad] u: Speed [m/s] roll: Road Roll [rad] Returns: Yaw rate [rad/s] """ return self.calc_curvature(sa, u, roll) * u def kin_ss_sol(sa: float, u: float, VM: VehicleModel) -> np.ndarray: """Calculate the steady state solution at low speeds At low speeds the tire slip is undefined, so a kinematic model is used. Args: sa: Steering angle [rad] u: Speed [m/s] VM: Vehicle model Returns: 2x1 matrix with steady state solution """ K = np.zeros((2, 1)) K[0, 0] = VM.aR / VM.sR / VM.l * u K[1, 0] = 1. / VM.sR / VM.l * u return K * sa def METHOD_NAME(u: float, VM: VehicleModel) -> Tuple[np.ndarray, np.ndarray]: """Returns the A and B matrix for the dynamics system Args: u: Vehicle speed [m/s] VM: Vehicle model Returns: A tuple with the 2x2 A matrix, and 2x2 B matrix Parameters in the vehicle model: cF: Tire stiffness Front [N/rad] cR: Tire stiffness Front [N/rad] aF: Distance from CG to front wheels [m] aR: Distance from CG to rear wheels [m] m: Mass [kg] j: Rotational inertia [kg m^2] sR: Steering ratio [-] chi: Steer ratio rear [-] """ A = np.zeros((2, 2)) B = np.zeros((2, 2)) A[0, 0] = - (VM.cF + VM.cR) / (VM.m * u) A[0, 1] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.m * u) - u A[1, 0] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.j * u) A[1, 1] = - (VM.cF * VM.aF**2 + VM.cR * VM.aR**2) / (VM.j * u) # Steering input B[0, 0] = (VM.cF + VM.chi * VM.cR) / VM.m / VM.sR B[1, 0] = (VM.cF * VM.aF - VM.chi * VM.cR * VM.aR) / VM.j / VM.sR # Roll input B[0, 1] = -ACCELERATION_DUE_TO_GRAVITY return A, B def dyn_ss_sol(sa: float, u: float, roll: float, VM: VehicleModel) -> np.ndarray: """Calculate the steady state solution when x_dot = 0, Ax + Bu = 0 => x = -A^{-1} B u Args: sa: Steering angle [rad] u: Speed [m/s] roll: Road Roll [rad] VM: Vehicle model Returns: 2x1 matrix with steady state solution """ A, B = METHOD_NAME(u, VM) inp = np.array([[sa], [roll]]) return -solve(A, B) @ inp # type: ignore def calc_slip_factor(VM: VehicleModel) -> float: """The slip factor is a measure of how the curvature changes with speed it's positive for Oversteering vehicle, negative (usual case) otherwise. """ return VM.m * (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.l**2 * VM.cF * VM.cR)
2,508
test filename
from unittest import mock import pytest from sentry import eventstore from sentry.event_manager import EventManager from sentry.interfaces.stacktrace import get_context, is_url def test_is_url(): assert is_url("http://example.org/") is True assert is_url("https://example.org/") is True assert is_url("file:///tmp/filename") is True assert is_url("applewebdata://00000000-0000-1000-8080-808080808080") is True assert is_url("app:///index.bundle") is False # react native assert is_url("webpack:///./app/index.jsx") is False # webpack bundle assert is_url("data:,") is False assert is_url("blob:\x00") is False def test_works_with_empty_filename(): result = get_context(0, "hello world") assert result == [(0, "hello world")] @pytest.fixture def make_stacktrace_snapshot(insta_snapshot): def inner(data): mgr = EventManager(data={"stacktrace": data}) mgr.normalize() evt = eventstore.backend.create_event(data=mgr.get_data()) interface = evt.interfaces.get("stacktrace") insta_snapshot( { "errors": evt.data.get("errors"), "to_json": interface and interface.to_json(), "get_stacktrace": interface and interface.get_stacktrace(evt), "to_string": interface and interface.to_string(evt), } ) return inner def test_basic(make_stacktrace_snapshot): make_stacktrace_snapshot( dict( frames=[ {"filename": "foo/bar.py"}, {"filename": "foo/baz.py", "lineno": 1, "in_app": True}, ] ) ) @pytest.mark.parametrize("input", [{"frames": [{}]}, {"frames": [{"abs_path": None}]}]) def test_null_values_in_frames(make_stacktrace_snapshot, input): make_stacktrace_snapshot(input) def METHOD_NAME(make_stacktrace_snapshot): make_stacktrace_snapshot(dict(frames=[{"filename": "foo.py"}])) def test_filename2(make_stacktrace_snapshot): make_stacktrace_snapshot(dict(frames=[{"lineno": 1, "filename": "foo.py"}])) def test_allows_abs_path_without_filename(make_stacktrace_snapshot): make_stacktrace_snapshot(dict(frames=[{"lineno": 1, "abs_path": "foo/bar/baz.py"}])) def test_coerces_url_filenames(make_stacktrace_snapshot): make_stacktrace_snapshot(dict(frames=[{"lineno": 1, "filename": "http://foo.com/foo.js"}])) def test_does_not_overwrite_filename(make_stacktrace_snapshot): make_stacktrace_snapshot( dict(frames=[{"lineno": 1, "filename": "foo.js", "abs_path": "http://foo.com/foo.js"}]) ) def test_ignores_results_with_empty_path(make_stacktrace_snapshot): make_stacktrace_snapshot(dict(frames=[{"lineno": 1, "filename": "http://foo.com"}])) def test_serialize_returns_frames(make_stacktrace_snapshot): make_stacktrace_snapshot(dict(frames=[{"lineno": 1, "filename": "foo.py"}])) @mock.patch("sentry.interfaces.stacktrace.Stacktrace.get_stacktrace", mock.Mock(return_value="foo")) def test_to_string_returns_stacktrace(make_stacktrace_snapshot): make_stacktrace_snapshot(dict(frames=[])) @mock.patch("sentry.interfaces.stacktrace.is_newest_frame_first", mock.Mock(return_value=False)) def test_get_stacktrace_with_only_filename(make_stacktrace_snapshot): make_stacktrace_snapshot(dict(frames=[{"filename": "foo"}, {"filename": "bar"}])) @mock.patch("sentry.interfaces.stacktrace.is_newest_frame_first", mock.Mock(return_value=False)) def test_get_stacktrace_with_module(make_stacktrace_snapshot): make_stacktrace_snapshot(dict(frames=[{"module": "foo"}, {"module": "bar"}])) @mock.patch("sentry.interfaces.stacktrace.is_newest_frame_first", mock.Mock(return_value=False)) def test_get_stacktrace_with_filename_and_function(make_stacktrace_snapshot): make_stacktrace_snapshot( dict( frames=[{"filename": "foo", "function": "biz"}, {"filename": "bar", "function": "baz"}] ) ) @mock.patch("sentry.interfaces.stacktrace.is_newest_frame_first", mock.Mock(return_value=False)) def test_get_stacktrace_with_filename_function_lineno_and_context(make_stacktrace_snapshot): make_stacktrace_snapshot( dict( frames=[ { "filename": "foo", "function": "biz", "lineno": 3, "context_line": " def foo(r):", }, { "filename": "bar", "function": "baz", "lineno": 5, "context_line": " return None", }, ] ) )
2,509
acr scope map show
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from enum import Enum from azure.cli.core.util import CLIError from ._utils import ( get_resource_group_name_by_registry_name, parse_scope_map_actions ) class RepoScopeMapActions(Enum): CONTENT_DELETE = 'content/delete' CONTENT_READ = 'content/read' CONTENT_WRITE = 'content/write' METADATA_READ = 'metadata/read' METADATA_WRITE = 'metadata/write' class GatewayScopeMapActions(Enum): CONFIG_READ = 'config/read' CONFIG_WRITE = 'config/write' MESSAGES_READ = 'message/read' MESSAGES_WRITE = 'message/write' def acr_scope_map_create(cmd, client, registry_name, scope_map_name, repository_actions_list=None, gateway_actions_list=None, resource_group_name=None, description=None): resource_group_name = get_resource_group_name_by_registry_name(cmd.cli_ctx, registry_name, resource_group_name) actions = parse_scope_map_actions(repository_actions_list, gateway_actions_list) ScopeMap = cmd.get_models('ScopeMap') scope_map = ScopeMap( actions=actions, description=description ) return client.begin_create( resource_group_name, registry_name, scope_map_name, scope_map ) def acr_scope_map_delete(cmd, client, registry_name, scope_map_name, yes=None, resource_group_name=None): if not yes: from knack.prompting import prompt_y_n confirmation = prompt_y_n("Deleting the scope map '{}' will remove its permissions with associated tokens. " "Proceed?".format(scope_map_name)) if not confirmation: return None resource_group_name = get_resource_group_name_by_registry_name(cmd.cli_ctx, registry_name, resource_group_name) return client.begin_delete(resource_group_name, registry_name, scope_map_name) def acr_scope_map_update(cmd, client, registry_name, scope_map_name, add_repository=None, remove_repository=None, add_gateway=None, remove_gateway=None, resource_group_name=None, description=None): if not (add_repository or remove_repository or add_gateway or remove_gateway or description): raise CLIError('No scope map properties to update.') resource_group_name = get_resource_group_name_by_registry_name(cmd.cli_ctx, registry_name, resource_group_name) current_scope_map = METHOD_NAME(cmd, client, registry_name, scope_map_name, resource_group_name) current_actions = current_scope_map.actions if add_repository or remove_repository or add_gateway or remove_gateway: add_actions_set = set(parse_scope_map_actions(add_repository, add_gateway)) remove_actions_set = set(parse_scope_map_actions(remove_repository, remove_gateway)) # Duplicate actions can lead to inconsistency based on order of operations (set subtraction isn't associative). # Eg: ({A, B} - {B}) U {B, C} = {A, B, C}, ({A, B} U {B, C}) - {B} = {A, C} duplicate_actions = set.intersection(add_actions_set, remove_actions_set) if duplicate_actions: # Display these actions to users: remove 'repositories/' prefix from 'repositories/<repo>/<action>' errors = sorted(map(lambda action: action[action.find('/') + 1:], duplicate_actions)) raise CLIError( 'Update ambiguity. Duplicate actions were provided with --add and --remove arguments.\n{}' .format(errors)) final_actions_set = set(current_scope_map.actions).union(add_actions_set).difference(remove_actions_set) current_actions = list(final_actions_set) ScopeMapUpdateParameters = cmd.get_models('ScopeMapUpdateParameters') scope_map_update_parameters = ScopeMapUpdateParameters( description=description, actions=current_actions ) return client.begin_update(resource_group_name, registry_name, scope_map_name, scope_map_update_parameters) def METHOD_NAME(cmd, client, registry_name, scope_map_name, resource_group_name=None): resource_group_name = get_resource_group_name_by_registry_name(cmd.cli_ctx, registry_name, resource_group_name) return client.get( resource_group_name, registry_name, scope_map_name ) def acr_scope_map_list(cmd, client, registry_name, resource_group_name=None): resource_group_name = get_resource_group_name_by_registry_name(cmd.cli_ctx, registry_name, resource_group_name) return client.list( resource_group_name, registry_name )
2,510
test encoding flat map
import json from datetime import datetime, timedelta, timezone from bytewax._encoder import encode_dataflow from bytewax.dataflow import Dataflow from bytewax.inputs import PartitionedInput from bytewax.window import EventClockConfig, TumblingWindow # Helper functions for some steps def acc_values(acc, event): acc.append((event["value"], event["time"])) return acc # Example class to be encoded class OrderBook: def __init__(self): self.data = [] def update(self, data): self.data.append(data) def test_encoding_custom_object(): flow = Dataflow() flow.stateful_map("avg", OrderBook, OrderBook.update) assert encode_dataflow(flow) == json.dumps( { "type": "Dataflow", "steps": [ { "type": "StatefulMap", "builder": "OrderBook", "mapper": "update", "step_id": "avg", } ], }, sort_keys=True, ) def test_encoding_custom_input(): flow = Dataflow() class MyCustomInput(PartitionedInput): def list_parts(self): return ["one"] def build_part(self, for_key, resume_state): ... flow.input("inp", MyCustomInput()) assert encode_dataflow(flow) == json.dumps( { "type": "Dataflow", "steps": [ { "input": { "type": "MyCustomInput", }, "step_id": "inp", "type": "Input", }, ], }, sort_keys=True, ) def test_encoding_map(): flow = Dataflow() flow.map(lambda x: x + 1) assert encode_dataflow(flow) == json.dumps( {"type": "Dataflow", "steps": [{"type": "Map", "mapper": "<lambda>"}]}, sort_keys=True, ) def test_encoding_filter(): flow = Dataflow() flow.filter(lambda x: x == 1) assert encode_dataflow(flow) == json.dumps( {"type": "Dataflow", "steps": [{"type": "Filter", "predicate": "<lambda>"}]}, sort_keys=True, ) def test_encoding_reduce(): flow = Dataflow() flow.reduce("sessionizer", lambda x, y: x + y, lambda x, y: x == y) assert encode_dataflow(flow) == json.dumps( { "type": "Dataflow", "steps": [ { "type": "Reduce", "step_id": "sessionizer", "reducer": "<lambda>", "is_complete": "<lambda>", } ], }, sort_keys=True, ) def METHOD_NAME(): flow = Dataflow() flow.flat_map(lambda x: x + 1) assert encode_dataflow(flow) == json.dumps( {"type": "Dataflow", "steps": [{"type": "FlatMap", "mapper": "<lambda>"}]}, sort_keys=True, ) def test_encoding_stateful_map(): flow = Dataflow() flow.stateful_map("order_book", lambda key: OrderBook(), OrderBook.update) assert encode_dataflow(flow) == json.dumps( { "type": "Dataflow", "steps": [ { "builder": "<lambda>", "mapper": "update", "step_id": "order_book", "type": "StatefulMap", } ], }, sort_keys=True, ) def test_encoding_fold_window(): flow = Dataflow() align_to = datetime(2005, 7, 14, 12, 30, tzinfo=timezone.utc) wc = TumblingWindow(align_to=align_to, length=timedelta(seconds=5)) cc = EventClockConfig( lambda x: datetime.fromisoformat(x["time"]), wait_for_system_duration=timedelta(seconds=10), ) flow.fold_window("running_average", cc, wc, lambda x: list(x), acc_values) assert encode_dataflow(flow) == json.dumps( { "type": "Dataflow", "steps": [ { "builder": "<lambda>", "clock_config": { "dt_getter": "<lambda>", "type": "EventClockConfig", "wait_for_system_duration": "0:00:10", }, "folder": "acc_values", "step_id": "running_average", "type": "FoldWindow", "window_config": { "length": "0:00:05", "align_to": "2005-07-14T12:30:00+00:00", "type": "TumblingWindow", }, } ], }, sort_keys=True, ) def test_encoding_method_descriptor(): flow = Dataflow() flow.flat_map(str.split) assert encode_dataflow(flow) == json.dumps( {"type": "Dataflow", "steps": [{"type": "FlatMap", "mapper": "split"}]}, sort_keys=True, )
2,511
test variable positive matches
""" Typograhic Number Theory tests ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :copyright: Copyright 2006-2023 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import pytest from pygments.lexers.tnt import TNTLexer from pygments.token import Text, Operator, Keyword, Name, Number, \ Punctuation, Error @pytest.fixture(autouse=True) def lexer(): yield TNTLexer() # whitespace @pytest.mark.parametrize('text', (' a', ' \t0', '\n\n 3')) def test_whitespace_positive_matches(lexer, text): """Test fragments that should be tokenized as whitespace text.""" assert lexer.whitespace(0, text) == len(text) - 1 assert lexer.whitespace(0, text, True) == len(text) - 1 assert lexer.cur[-1] == (0, Text, text[:-1]) @pytest.mark.parametrize('text', ('0 a=b premise', 'b=a symmetry')) def test_whitespace_negative_matches(lexer, text): """Test statements that do not start with whitespace text.""" assert lexer.whitespace(0, text) == 0 with pytest.raises(AssertionError): lexer.whitespace(0, text, True) assert not lexer.cur # terms that can go on either side of an = sign @pytest.mark.parametrize('text', ('a ', "a' ", 'b ', "c' ")) def METHOD_NAME(lexer, text): """Test fragments that should be tokenized as variables.""" assert lexer.variable(0, text) == len(text) - 1 assert lexer.cur[-1] == (0, Name.Variable, text[:-1]) @pytest.mark.parametrize('text', ("' ", 'f ', "f' ")) def test_variable_negative_matches(lexer, text): """Test fragments that should **not** be tokenized as variables.""" with pytest.raises(AssertionError): lexer.variable(0, text) assert not lexer.cur @pytest.mark.parametrize('text', ('0', 'S0', 'SSSSS0')) def test_numeral_positive_matches(lexer, text): """Test fragments that should be tokenized as (unary) numerals.""" assert lexer.term(0, text) == len(text) assert lexer.cur[-1] == (len(text) - 1, Number.Integer, text[-1]) if text != '0': assert lexer.cur[-2] == (0, Number.Integer, text[:-1]) @pytest.mark.parametrize('text', ( '(a+b)', '(b.a)', '(c+d)' )) def test_multiterm_positive_matches(lexer, text): """Test fragments that should be tokenized as a compound term.""" assert lexer.term(0, text) == len(text) assert [t[1] for t in lexer.cur] == [ Punctuation, Name.Variable, Operator, Name.Variable, Punctuation ] @pytest.mark.parametrize('text', ('1', '=', 'A')) def test_term_negative_matches(lexer, text): """Test fragments that should not be tokenized as terms at all.""" with pytest.raises(AssertionError): lexer.term(0, text) assert not lexer.cur # full statements, minus rule @pytest.mark.parametrize('text', ('~a=b ', '~~~~a=b ')) def test_negator_positive_matches(lexer, text): """Test statements that start with a negation.""" assert lexer.formula(0, text) == len(text) - 1 assert lexer.cur[0] == (0, Operator, text[:-4]) @pytest.mark.parametrize('text', ('Aa:a=b ', 'Eb:a=b ')) def test_quantifier_positive_matches(lexer, text): """Test statements that start with a quantifier.""" assert lexer.formula(0, text) == len(text) - 1 assert lexer.cur[0][1] == Keyword.Declaration assert lexer.cur[1][1] == Name.Variable assert lexer.cur[2] == (2, Punctuation, ':') @pytest.mark.parametrize('text', ('Aaa=b', 'Eba=b')) def test_quantifier_negative_matches(lexer, text): """Test quantifiers that are only partially valid.""" with pytest.raises(AssertionError): lexer.formula(0, text) # leftovers should still be valid assert lexer.cur[0][1] == Keyword.Declaration assert lexer.cur[1][1] == Name.Variable @pytest.mark.parametrize('text', ('<a=b&b=a>', '<a=b|b=a>', '<a=b]b=a>')) def test_compound_positive_matches(lexer, text): """Test statements that consist of multiple formulas compounded.""" assert lexer.formula(0, text) == len(text) assert lexer.cur[0] == (0, Punctuation, '<') assert lexer.cur[4][1] == Operator assert lexer.cur[-1] == (len(text)-1, Punctuation, '>') @pytest.mark.parametrize('text', ('<a=b/b=a>', '<a=b&b=a ')) def test_compound_negative_matches(lexer, text): """Test statements that look like compounds but are invalid.""" with pytest.raises(AssertionError): lexer.formula(0, text) assert lexer.cur[0] == (0, Punctuation, '<') @pytest.mark.parametrize('text', ('a=b ', 'a=0 ', '0=b ')) def test_formula_postive_matches(lexer, text): """Test the normal singular formula.""" assert lexer.formula(0, text) == len(text) - 1 assert lexer.cur[0][2] == text[0] assert lexer.cur[1] == (1, Operator, '=') assert lexer.cur[2][2] == text[2] @pytest.mark.parametrize('text', ('a/b', '0+0 ')) def test_formula_negative_matches(lexer, text): """Test anything but an equals sign.""" with pytest.raises(AssertionError): lexer.formula(0, text) # rules themselves @pytest.mark.parametrize('text', ( 'fantasy rule', 'carry over line 5', 'premise', 'joining', 'double-tilde', 'switcheroo', 'De Morgan', 'specification' )) def test_rule_positive_matches(lexer, text): """Test some valid rules of TNT.""" assert lexer.rule(0, text) == len(text) assert lexer.cur[0][:2] == (0, Keyword) if text[-1].isdigit(): assert lexer.cur[1][1] == Number.Integer @pytest.mark.parametrize('text', ( 'fantasy', 'carry over', 'premse', 'unjoining', 'triple-tilde', 'switcheru', 'De-Morgan', 'despecification' )) def test_rule_negative_matches(lexer, text): """Test some invalid rules of TNT.""" with pytest.raises(AssertionError): lexer.rule(0, text) # referrals @pytest.mark.parametrize('text', ('(lines 1, 2, and 4)', '(line 3,5,6)', '(lines 1, 6 and 0)')) def test_lineno_positive_matches(lexer, text): """Test line referrals.""" assert lexer.lineno(0, text) == len(text) assert lexer.cur[0] == (0, Punctuation, '(') assert lexer.cur[1][:2] == (1, Text) assert lexer.cur[2][1] == Number.Integer assert lexer.cur[3] == (len(text)-1, Punctuation, ')') @pytest.mark.parametrize('text', ( '(lines one, two, and four)1 ', # to avoid IndexError '(lines 1 2 and 3)', '(lines 1 2 3)' )) def test_lineno_negative_matches(lexer, text): """Test invalid line referrals.""" with pytest.raises(AssertionError): lexer.lineno(0, text) # worst-case: error text @pytest.mark.parametrize('text', ('asdf', 'fdsa\nasdf', 'asdf\n ')) def test_error_till_line_end(lexer, text): try: nl = text.index('\n') except ValueError: nl = len(text) try: end = text.find(text.split(None, 2)[1]) except IndexError: # split failed end = len(text) assert lexer.error_till_line_end(0, text) == end assert lexer.cur[0] == (0, Error, text[:nl]) # full statement, including rule (because this can't be tested any other way) @pytest.mark.parametrize('text', ('[ push', '] pop')) def test_fantasy_positive_matches(lexer, text): """Test statements that should be tokenized as push/pop statements.""" assert lexer.get_tokens_unprocessed(text)[0] == (0, Keyword, text[0]) # full text is already done by examplefiles, but here's some exceptions @pytest.mark.parametrize('text', ( '0', 'a=b', 'premise', '0 a=b premise', '1 b=a symmetry (line 0)' )) def test_no_crashing(lexer, text): """Test incomplete text fragments that shouldn't crash the whole lexer.""" assert lexer.get_tokens(text)
2,512
has ipv6
from __future__ import absolute_import import socket from .wait import wait_for_read from .selectors import HAS_SELECT, SelectorError def is_connection_dropped(conn): # Platform-specific """ Returns True if the connection is dropped and should be closed. :param conn: :class:`httplib.HTTPConnection` object. Note: For platforms like AppEngine, this will always return ``False`` to let the platform handle connection recycling transparently for us. """ sock = getattr(conn, 'sock', False) if sock is False: # Platform-specific: AppEngine return False if sock is None: # Connection already closed (such as by httplib). return True if not HAS_SELECT: return False try: return bool(wait_for_read(sock, timeout=0.0)) except SelectorError: return True # This function is copied from socket.py in the Python 2.7 standard # library test suite. Added to its signature is only `socket_options`. # One additional modification is that we avoid binding to IPv6 servers # discovered in DNS if the system doesn't have IPv6 functionality. def create_connection(address, timeout=socket._GLOBAL_DEFAULT_TIMEOUT, source_address=None, socket_options=None): """Connect to *address* and return the socket object. Convenience function. Connect to *address* (a 2-tuple ``(host, port)``) and return the socket object. Passing the optional *timeout* parameter will set the timeout on the socket instance before attempting to connect. If no *timeout* is supplied, the global default timeout setting returned by :func:`getdefaulttimeout` is used. If *source_address* is set it must be a tuple of (host, port) for the socket to bind as a source address before making the connection. An host of '' or port 0 tells the OS to use the default. """ host, port = address if host.startswith('['): host = host.strip('[]') err = None # Using the value from allowed_gai_family() in the context of getaddrinfo lets # us select whether to work with IPv4 DNS records, IPv6 records, or both. # The original create_connection function always returns all records. family = allowed_gai_family() for res in socket.getaddrinfo(host, port, family, socket.SOCK_STREAM): af, socktype, proto, canonname, sa = res sock = None try: sock = socket.socket(af, socktype, proto) # If provided, set socket level options before connecting. _set_socket_options(sock, socket_options) if timeout is not socket._GLOBAL_DEFAULT_TIMEOUT: sock.settimeout(timeout) if source_address: sock.bind(source_address) sock.connect(sa) return sock except socket.error as e: err = e if sock is not None: sock.close() sock = None if err is not None: raise err raise socket.error("getaddrinfo returns an empty list") def _set_socket_options(sock, options): if options is None: return for opt in options: sock.setsockopt(*opt) def allowed_gai_family(): """This function is designed to work in the context of getaddrinfo, where family=socket.AF_UNSPEC is the default and will perform a DNS search for both IPv6 and IPv4 records.""" family = socket.AF_INET if HAS_IPV6: family = socket.AF_UNSPEC return family def METHOD_NAME(host): """ Returns True if the system can bind an IPv6 address. """ sock = None has_ipv6 = False if socket.has_ipv6: # has_ipv6 returns true if cPython was compiled with IPv6 support. # It does not tell us if the system has IPv6 support enabled. To # determine that we must bind to an IPv6 address. # https://github.com/shazow/urllib3/pull/611 # https://bugs.python.org/issue658327 try: sock = socket.socket(socket.AF_INET6) sock.bind((host, 0)) has_ipv6 = True except Exception: pass if sock: sock.close() return has_ipv6 HAS_IPV6 = METHOD_NAME('::1')
2,513
echo
# -*- coding: utf-8 -*- """Format and display CLI output. Classes: CliTable: Pretty prints tabular data to stdout, via Rich's Console API """ import os from typing import Any, List, Union import rich from rich import box, print from rich.console import Console from rich.style import Style from rich.table import Column, Table CHECKMARK = "[green]:heavy_check_mark:" if os.name == "posix" else "+" CROSSMARK = "[red]:cross_mark:" if os.name == "posix" else "-" class CliTable: """Format and print data to the command line in tabular form. Attributes: * PICTOGRAM_TRUE: True boolean values are replaced with this string. * PICTOGRAM_FALSE = False boolean values are replaced with this string. Methods: * echo: Print the table data to stdout using rich.Console.print Class Methods: * columnify_headers: Convert a list of strs to Columns """ PICTOGRAM_TRUE = CHECKMARK PICTOGRAM_FALSE = " " def __init__( self, data: List[List[Any]], title: str = None, dim_rows: List[int] = None, **kwargs, ): """Constructor. Args: data: Required. List[List] of data to format, with the heading as 0-th member. title: String to use as the table's title. dim_rows: List[int] of row indices to dim. """ headers: List[Column] = self.columnify_headers(data[0]) rows = [self._stringify_row(r) for r in data[1:]] self._table: Table = Table(*headers, title=title, box=box.SIMPLE, **kwargs) for idx, row in enumerate(rows): dim_row = idx + 1 in dim_rows if dim_rows else False self._table.add_row(*row, style=Style(dim=dim_row)) def _stringify_row(self, row: list) -> List[str]: return [self._stringify_cell(cell) for cell in row] def _stringify_cell(self, cell: Any) -> str: if isinstance(cell, bool): cell = self.PICTOGRAM_TRUE if cell else self.PICTOGRAM_FALSE elif cell is None: cell = "" else: cell = str(cell) return cell def __rich__(self) -> str: return self._table def columnify_headers(self, headers: List[Union[str, Column]]) -> List[Column]: """ Given a List[str, Column], return a list of Columns. Strings are instantiated with default styles, Columns are unchanged. """ cols: List[Column] = [] for header in headers: if isinstance(header, Column): cols.append(header) else: header: str = self._stringify_cell(header) cols.append(Column(header=header, overflow="fold")) return cols def METHOD_NAME(self, plain=False, box_style: box.Box = None): """ Print this table to the global Console using console.print(). """ orig_box = self._table.box if plain: self._table.box = box.ASCII2 else: self._table.box = box_style or orig_box console = rich.get_console() console.print(self._table) self._table.box = orig_box @property def table(self): return self._table def __str__(self): from io import StringIO console = Console(file=StringIO()) tab_width = console.size.width - 21 console.print(self._table, width=tab_width) return console.file.getvalue() def _soql_table(results, truncated): if results: if truncated: assert results[-1] == truncated first_row = results[0] fake_row = {k: "" for k, v in first_row.items()} first_column = list(first_row)[0] fake_row[first_column] = truncated results[-1] = fake_row headings = list(results[0].keys()) return CliTable( [headings] + [list(map(str, r.values())) for r in results], ).METHOD_NAME() else: return CliTable([["No results"]]).METHOD_NAME() def _summarize(field): if field["referenceTo"]: allowed = field["referenceTo"] elif field["picklistValues"]: allowed = [value["value"] for value in field["picklistValues"]] else: allowed = field["type"] return (field["name"], allowed) class SimpleSalesforceUIHelpers: def __init__(self, sf): self._sf = sf def query(self, query, format="table", include_deleted=False, max_rows=100): """Return the result of a Salesforce SOQL query. Arguments: * query -- the SOQL query to send to Salesforce, e.g. SELECT Id FROM Lead WHERE Email = "[email protected]" * include_deleted -- True if deleted records should be included * format -- one of these values: - "table" -- printable ASCII table (the default) - "obj" -- ordinary Python objects - "pprint" -- string in easily readable Python dict shape - "json" -- JSON * max_rows -- maximum rows to output, defaults to 100 For example: query("select Name, Id from Account", format="pprint") contact_ids = query("select count(Id) from Contact", format="obj") """ results = self._sf.query_all(query, include_deleted=include_deleted)["records"] if len(results) > max_rows: truncated = f"... truncated {len(results) - max_rows} rows" results = results[0:max_rows] else: truncated = False for result in results: if result.get("attributes"): del result["attributes"] if truncated: results.append(truncated) if format == "table": help_message = "Type help(query) to learn about other return formats or assigning the result." print(_soql_table(results, truncated)) print() print(help_message) rc = None elif format == "obj": rc = results elif format == "pprint": from rich.pretty import pprint pprint(results) rc = None elif format == "json": from json import dumps rc = dumps(results, indent=2) else: raise TypeError(f"Unknown format `{format}`") return rc def describe(self, sobj_name, detailed=False, format="pprint"): """Describe an sobject. Arguments: sobj_name - sobject name to describe. e.g. "Account", "Contact" detailed - set to `True` to get detailed information about object format -- one of these values: - "pprint" -- string in easily readable Python dict shape (default) - "obj" -- ordinary Python objects For example: >>> describe("Account") >>> data = describe("Account", detailed=True, format=obj) """ from pprint import pprint data = getattr(self._sf, sobj_name).describe() if detailed: rc = data else: rc = dict(_summarize(field) for field in data["fields"]) if format == "pprint": pprint(rc) elif format == "obj": return rc else: raise TypeError(f"Unknown format {format}")
2,514
test cpu features with static template
# Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """Tests for the CPU features for aarch64.""" import platform import re import pytest import framework.utils_cpuid as cpuid_utils from framework.utils_cpu_templates import nonci_on_arm PLATFORM = platform.machine() DEFAULT_G2_FEATURES = ( "fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp " "asimdhp cpuid asimdrdm lrcpc dcpop asimddp ssbs" ) DEFAULT_G2_FEATURES_NO_SSBS = ( "fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp " "asimdhp cpuid asimdrdm lrcpc dcpop asimddp" ) DEFAULT_G3_FEATURES_4_14 = ( "fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp " "asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp " "sha512 asimdfhm dit uscat ilrcpc flagm ssbs" ) DEFAULT_G3_FEATURES_5_10 = ( "fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp " "asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp " "sha512 asimdfhm dit uscat ilrcpc flagm ssbs dcpodp i8mm bf16 dgh rng" ) DEFAULT_G3_FEATURES_NO_SSBS_4_14 = ( "fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp " "asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp " "sha512 asimdfhm dit uscat ilrcpc flagm dcpodp i8mm bf16 dgh rng" ) DEFAULT_G3_FEATURES_WITH_SVE_AND_PAC_4_14 = ( "fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp " "asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp " "sha512 asimdfhm dit uscat ilrcpc flagm ssbs" ) DEFAULT_G3_FEATURES_NO_SSBS_4_14 = ( "fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp " "asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp " "sha512 asimdfhm dit uscat ilrcpc flagm" ) DEFAULT_G3_FEATURES_NO_SSBS_5_10 = ( "fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp " "asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp " "sha512 asimdfhm dit uscat ilrcpc flagm dcpodp i8mm bf16 dgh rng" ) DEFAULT_G3_FEATURES_WITH_SVE_AND_PAC_5_10 = ( "fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp " "asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp " "sha512 sve asimdfhm dit uscat ilrcpc flagm ssbs paca pacg dcpodp svei8mm svebf16 i8mm bf16 dgh rng" ) DEFAULT_G3_FEATURES_V1N1 = ( "fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp " "asimdhp cpuid asimdrdm lrcpc dcpop asimddp ssbs" ) def _check_cpu_features_arm(test_microvm, guest_kv, template_name=None): expected_cpu_features = {"Flags": []} match (cpuid_utils.get_instance_type(), guest_kv, template_name): case ("m6g.metal", _, "aarch64_remove_ssbs"): expected_cpu_features["Flags"] = DEFAULT_G2_FEATURES_NO_SSBS case ("m6g.metal", _, "aarch64_v1n1"): expected_cpu_features["Flags"] = DEFAULT_G2_FEATURES case ("m6g.metal", _, None): expected_cpu_features["Flags"] = DEFAULT_G2_FEATURES case ("c7g.metal", "4.14", "aarch64_remove_ssbs"): expected_cpu_features["Flags"] = DEFAULT_G3_FEATURES_NO_SSBS_4_14 case ("c7g.metal", "5.10", "aarch64_remove_ssbs"): expected_cpu_features["Flags"] = DEFAULT_G3_FEATURES_NO_SSBS_5_10 case ("c7g.metal", "4.14", "aarch64_with_sve_and_pac"): expected_cpu_features["Flags"] = DEFAULT_G3_FEATURES_WITH_SVE_AND_PAC_4_14 case ("c7g.metal", "5.10", "aarch64_with_sve_and_pac"): expected_cpu_features["Flags"] = DEFAULT_G3_FEATURES_WITH_SVE_AND_PAC_5_10 case ("c7g.metal", _, "aarch64_v1n1"): expected_cpu_features["Flags"] = DEFAULT_G3_FEATURES_V1N1 case ("c7g.metal", "4.14", None): expected_cpu_features["Flags"] = DEFAULT_G3_FEATURES_4_14 case ("c7g.metal", "5.10", None): expected_cpu_features["Flags"] = DEFAULT_G3_FEATURES_5_10 cpuid_utils.check_guest_cpuid_output( test_microvm, "lscpu", None, ":", expected_cpu_features ) def get_cpu_template_dir(cpu_template): """ Utility function to return a valid string which will be used as name of the directory where snapshot artifacts are stored during snapshot test and loaded from during restore test. """ return cpu_template if cpu_template else "none" @pytest.mark.skipif( PLATFORM != "aarch64", reason="This is aarch64 specific test.", ) def test_default_cpu_features(microvm_factory, guest_kernel, rootfs_ubuntu_22): """ Check the CPU features for a microvm with the specified config. """ vm = microvm_factory.build(guest_kernel, rootfs_ubuntu_22, monitor_memory=False) vm.spawn() vm.basic_config() vm.add_net_iface() vm.start() guest_kv = re.search(r"vmlinux-(\d+\.\d+)", guest_kernel.name).group(1) _check_cpu_features_arm(vm, guest_kv) @pytest.mark.skipif( PLATFORM != "aarch64", reason="This is aarch64 specific test.", ) @nonci_on_arm def METHOD_NAME( microvm_factory, guest_kernel, rootfs_ubuntu_22, cpu_template ): """ Check the CPU features for a microvm with the specified config. """ vm = microvm_factory.build(guest_kernel, rootfs_ubuntu_22, monitor_memory=False) vm.spawn() vm.basic_config(cpu_template=cpu_template) vm.add_net_iface() vm.start() guest_kv = re.search(r"vmlinux-(\d+\.\d+)", guest_kernel.name).group(1) _check_cpu_features_arm(vm, guest_kv, "aarch64_v1n1") @pytest.mark.skipif( PLATFORM != "aarch64", reason="This is aarch64 specific test.", ) @nonci_on_arm def test_cpu_features_with_custom_template( microvm_factory, guest_kernel, rootfs_ubuntu_22, custom_cpu_template ): """ Check the CPU features for a microvm with the specified config. """ vm = microvm_factory.build(guest_kernel, rootfs_ubuntu_22, monitor_memory=False) vm.spawn() vm.basic_config() vm.api.cpu_config.put(**custom_cpu_template["template"]) vm.add_net_iface() vm.start() guest_kv = re.search(r"vmlinux-(\d+\.\d+)", guest_kernel.name).group(1) _check_cpu_features_arm(vm, guest_kv, custom_cpu_template["name"])
2,515
test call
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pytype: skip-file import logging import threading import unittest from typing import Any from apache_beam.utils import multi_process_shared class CallableCounter(object): def __init__(self, start=0): self.running = start self.lock = threading.Lock() def __call__(self): return self.running def increment(self, value=1): with self.lock: self.running += value return self.running def error(self, msg): raise RuntimeError(msg) class Counter(object): def __init__(self, start=0): self.running = start self.lock = threading.Lock() def get(self): return self.running def increment(self, value=1): with self.lock: self.running += value return self.running def error(self, msg): raise RuntimeError(msg) class CounterWithBadAttr(object): def __init__(self, start=0): self.running = start self.lock = threading.Lock() def get(self): return self.running def increment(self, value=1): with self.lock: self.running += value return self.running def error(self, msg): raise RuntimeError(msg) def __getattribute__(self, __name: str) -> Any: if __name == 'error': raise AttributeError('error is not actually supported on this platform') else: # Default behaviour return object.__getattribute__(self, __name) class MultiProcessSharedTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.shared = multi_process_shared.MultiProcessShared( Counter, tag='basic', always_proxy=True).acquire() cls.sharedCallable = multi_process_shared.MultiProcessShared( CallableCounter, tag='callable', always_proxy=True).acquire() def METHOD_NAME(self): self.assertEqual(self.shared.get(), 0) self.assertEqual(self.shared.increment(), 1) self.assertEqual(self.shared.increment(10), 11) self.assertEqual(self.shared.increment(value=10), 21) self.assertEqual(self.shared.get(), 21) def test_call_illegal_attr(self): shared_handle = multi_process_shared.MultiProcessShared( CounterWithBadAttr, tag='test_call_illegal_attr', always_proxy=True) shared = shared_handle.acquire() self.assertEqual(shared.get(), 0) self.assertEqual(shared.increment(), 1) self.assertEqual(shared.get(), 1) def test_call_callable(self): self.assertEqual(self.sharedCallable(), 0) self.assertEqual(self.sharedCallable.increment(), 1) self.assertEqual(self.sharedCallable.increment(10), 11) self.assertEqual(self.sharedCallable.increment(value=10), 21) self.assertEqual(self.sharedCallable(), 21) def test_error(self): with self.assertRaisesRegex(Exception, 'something bad'): self.shared.error('something bad') def test_no_method(self): with self.assertRaisesRegex(Exception, 'no_such_method'): self.shared.no_such_method() def test_connect(self): first = multi_process_shared.MultiProcessShared( Counter, tag='counter').acquire() second = multi_process_shared.MultiProcessShared( Counter, tag='counter').acquire() self.assertEqual(first.get(), 0) self.assertEqual(first.increment(), 1) self.assertEqual(second.get(), 1) self.assertEqual(second.increment(), 2) self.assertEqual(first.get(), 2) self.assertEqual(first.increment(), 3) def test_release(self): shared1 = multi_process_shared.MultiProcessShared( Counter, tag='test_release') shared2 = multi_process_shared.MultiProcessShared( Counter, tag='test_release') counter1 = shared1.acquire() counter2 = shared2.acquire() self.assertEqual(counter1.increment(), 1) self.assertEqual(counter2.increment(), 2) counter1again = shared1.acquire() self.assertEqual(counter1again.increment(), 3) shared1.release(counter1) shared2.release(counter2) with self.assertRaisesRegex(Exception, 'released'): counter1.get() with self.assertRaisesRegex(Exception, 'released'): counter2.get() self.assertEqual(counter1again.get(), 3) shared1.release(counter1again) counter1New = shared1.acquire() self.assertEqual(counter1New.get(), 0) with self.assertRaisesRegex(Exception, 'released'): counter1.get() def test_release_always_proxy(self): shared1 = multi_process_shared.MultiProcessShared( Counter, tag='test_release_always_proxy', always_proxy=True) shared2 = multi_process_shared.MultiProcessShared( Counter, tag='test_release_always_proxy', always_proxy=True) counter1 = shared1.acquire() counter2 = shared2.acquire() self.assertEqual(counter1.increment(), 1) self.assertEqual(counter2.increment(), 2) counter1again = shared1.acquire() self.assertEqual(counter1again.increment(), 3) shared1.release(counter1) shared2.release(counter2) with self.assertRaisesRegex(Exception, 'released'): counter1.get() with self.assertRaisesRegex(Exception, 'released'): counter2.get() self.assertEqual(counter1again.get(), 3) shared1.release(counter1again) counter1New = shared1.acquire() self.assertEqual(counter1New.get(), 0) with self.assertRaisesRegex(Exception, 'released'): counter1.get() if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) unittest.main()
2,516
token
from typing import Any, Dict, List, NamedTuple, Optional, Tuple from neo4j import GraphDatabase from pandas import DataFrame, Series from pyarrow import flight from pyarrow.flight import ClientMiddleware, ClientMiddlewareFactory from .query_runner import QueryRunner from graphdatascience.query_runner.graph_constructor import GraphConstructor from graphdatascience.query_runner.neo4j_query_runner import Neo4jQueryRunner class AuraDbConnectionInfo(NamedTuple): uri: str auth: Tuple[str, str] class AuraDbArrowQueryRunner(QueryRunner): def __init__(self, fallback_query_runner: QueryRunner, aura_db_connection_info: AuraDbConnectionInfo): self._fallback_query_runner = fallback_query_runner aura_db_endpoint, auth = aura_db_connection_info self._auth = auth config: Dict[str, Any] = {"max_connection_lifetime": 60} self._driver = GraphDatabase.driver(aura_db_endpoint, auth=auth, **config) arrow_info: "Series[Any]" = ( Neo4jQueryRunner(self._driver, auto_close=True) .run_query("CALL gds.debug.arrow.plugin()", custom_error=False) .squeeze() ) if not arrow_info.get("running"): raise RuntimeError("The plugin arrow server for AuraDB is not running") listen_address: Optional[str] = arrow_info.get("advertisedListenAddress") # type: ignore if not listen_address: raise ConnectionError("Did not retrieve connection info from database") host, port_string = listen_address.split(":") self._auth_pair_middleware = AuthPairInterceptingMiddleware() client_options: Dict[str, Any] = { "middleware": [AuthPairInterceptingMiddlewareFactory(self._auth_pair_middleware)], "disable_server_verification": True, } location = ( flight.Location.for_grpc_tls(host, int(port_string)) if self._driver.encrypted else flight.Location.for_grpc_tcp(host, int(port_string)) ) self._client = flight.FlightClient(location, **client_options) def run_query( self, query: str, params: Optional[Dict[str, Any]] = None, database: Optional[str] = None, custom_error: bool = True, ) -> DataFrame: if params is None: params = {} if "gds.alpha.graph.project.remote" in query: METHOD_NAME, aura_db_arrow_endpoint = self._get_or_request_auth_pair() params["token"] = METHOD_NAME params["host"] = aura_db_arrow_endpoint params["config"] = {"useEncryption": False} elif ".write" in query and "config" in params and "remote" in params["config"] and params["config"]["remote"]: METHOD_NAME, aura_db_arrow_endpoint = self._get_or_request_auth_pair() host, port_string = aura_db_arrow_endpoint.split(":") del params["config"]["remote"] params["config"]["arrowConnectionInfo"] = { "hostname": host, "port": int(port_string), "bearerToken": METHOD_NAME, "useEncryption": False, } return self._fallback_query_runner.run_query(query, params, database, custom_error) def set_database(self, database: str) -> None: self._fallback_query_runner.set_database(database) def database(self) -> Optional[str]: return self._fallback_query_runner.database() def create_graph_constructor( self, graph_name: str, concurrency: int, undirected_relationship_types: Optional[List[str]] ) -> GraphConstructor: return self._fallback_query_runner.create_graph_constructor( graph_name, concurrency, undirected_relationship_types ) def close(self) -> None: self._client.close() self._driver.close() self._fallback_query_runner.close() def _get_or_request_auth_pair(self) -> Tuple[str, str]: self._client.authenticate_basic_token(self._auth[0], self._auth[1]) return (self._auth_pair_middleware.METHOD_NAME(), self._auth_pair_middleware.endpoint()) class AuthPairInterceptingMiddlewareFactory(ClientMiddlewareFactory): # type: ignore def __init__(self, middleware: "AuthPairInterceptingMiddleware", *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self._middleware = middleware def start_call(self, info: Any) -> "AuthPairInterceptingMiddleware": return self._middleware class AuthPairInterceptingMiddleware(ClientMiddleware): # type: ignore def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) def received_headers(self, headers: Dict[str, Any]) -> None: auth_header = headers.get("authorization") auth_type, METHOD_NAME = self._read_auth_header(auth_header) if auth_type == "Bearer": self._token = METHOD_NAME self._arrow_address = self._read_address_header(headers.get("arrowpluginaddress")) def sending_headers(self) -> Dict[str, str]: return {} def METHOD_NAME(self) -> str: return self._token def endpoint(self) -> str: return self._arrow_address def _read_auth_header(self, auth_header: Any) -> Tuple[str, str]: if isinstance(auth_header, List): auth_header = auth_header[0] elif not isinstance(auth_header, str): raise ValueError("Incompatible header format '{}'", auth_header) auth_type, METHOD_NAME = auth_header.split(" ", 1) return (str(auth_type), str(METHOD_NAME)) def _read_address_header(self, address_header: Any) -> str: if isinstance(address_header, List): return str(address_header[0]) if isinstance(address_header, str): return address_header raise ValueError("Incompatible header format '{}'", address_header)
2,517
compressed image
import time from typing import Tuple, List, Union import depthai as dai import numpy as np import rclpy import rclpy.node as node # from geometry_msgs.msg import Vector3, Quaternion, Pose2D, Point, Transform, TransformStamped # from std_msgs.msg import Header, ColorRGBA, String # from visualization_msgs.msg import ImageMarker from geometry_msgs.msg import Vector3, Quaternion from sensor_msgs.msg import METHOD_NAME, Image, Imu # , PointCloud2, PointField, Imu # s, PointCloud from std_msgs.msg import Header from builtin_interfaces.msg import Time from depthai_sdk.integrations.ros.imu_interpolation import ImuInterpolation class DepthAi2Ros2: xyz = dict() def __init__(self, device: dai.Device) -> None: self.start_time = dai.Clock.now() self.device = device self.imu_packets = [] self.imu_interpolation = ImuInterpolation() def set_header(self, msg, dai_msg: Union[dai.ImgFrame, dai.IMUReport]) -> Header: try: msg.header.frame_id = str(dai_msg.getSequenceNum()) # ImgFrame except: msg.header.frame_id = str(dai_msg.sequence) # IMUReport ts = dai_msg.getTimestampDevice() - self.start_time # secs / nanosecs msg.header.stamp = Time(sec=ts.seconds, nanosec=ts.microseconds * 1000) return msg def METHOD_NAME(self, imgFrame: dai.ImgFrame) -> METHOD_NAME: msg = METHOD_NAME() self.set_header(msg, imgFrame) msg.format = "jpeg" msg.data.frombytes(imgFrame.getData()) return msg def Image(self, imgFrame: dai.ImgFrame) -> Image: msg = Image() self.set_header(msg, imgFrame) msg.height = imgFrame.getHeight() msg.width = imgFrame.getWidth() msg.step = imgFrame.getWidth() msg.is_bigendian = 0 type = imgFrame.getType() TYPE = dai.ImgFrame.Type if type == TYPE.RAW16: # Depth msg.encoding = 'mono16' msg.step *= 2 # 2 bytes per pixel msg.data.frombytes(imgFrame.getData()) elif type in [TYPE.GRAY8, TYPE.RAW8]: # Mono frame msg.encoding = 'mono8' msg.data.frombytes(imgFrame.getData()) else: msg.encoding = 'bgr8' msg.data.frombytes(imgFrame.getCvFrame()) return msg # def TfMessage(self, # imgFrame: dai.ImgFrame, # translation: Tuple[float, float, float] = (0., 0., 0.), # rotation: Tuple[float, float, float, float] = (0., 0., 0., 0.)) -> tfMessage: # msg = tfMessage() # tf = TransformStamped() # tf.header = self.header(imgFrame) # tf.child_frame_id = str(imgFrame.getSequenceNum()) # tf.transform = Transform( # translation=Vector3(x=translation[0], y=translation[1], z=translation[2]), # rotation=Quaternion(x=rotation[0], y=rotation[1], z=rotation[2], w=rotation[3]) # ) # msg.transforms.append(tf) # return msg # # def PointCloud2(self, imgFrame: dai.ImgFrame) -> PointCloud2: # """ # Depth frame -> ROS1 PointCloud2 message # """ # msg = PointCloud2() # msg.header = self.header(imgFrame) # # heigth = str(imgFrame.getHeight()) # if heigth not in self.xyz: # self._create_xyz(imgFrame.getWidth(), imgFrame.getHeight()) # # frame = imgFrame.getCvFrame() # frame = np.expand_dims(np.array(frame), axis=-1) # pcl = self.xyz[heigth] * frame / 1000.0 # To meters # # msg.height = imgFrame.getHeight() # msg.width = imgFrame.getWidth() # msg.fields = [ # PointField(name="x", offset=0, datatype=PointField.FLOAT32, count=1), # PointField(name="y", offset=4, datatype=PointField.FLOAT32, count=1), # PointField(name="z", offset=8, datatype=PointField.FLOAT32, count=1) # ] # msg.is_bigendian = False # msg.point_step = 12 # 3 * float32 (=4 bytes) # msg.row_step = 12 * imgFrame.getWidth() # msg.data = pcl.tobytes() # msg.is_dense = True # return msg # # def _create_xyz(self, width, height): # calibData = self.device.readCalibration() # M_right = calibData.getCameraIntrinsics(dai.CameraBoardSocket.RIGHT, dai.Size2f(width, height)) # camera_matrix = np.array(M_right).reshape(3, 3) # # xs = np.linspace(0, width - 1, width, dtype=np.float32) # ys = np.linspace(0, height - 1, height, dtype=np.float32) # # # generate grid by stacking coordinates # base_grid = np.stack(np.meshgrid(xs, ys)) # WxHx2 # points_2d = base_grid.transpose(1, 2, 0) # 1xHxWx2 # # # unpack coordinates # u_coord: np.array = points_2d[..., 0] # v_coord: np.array = points_2d[..., 1] # # # unpack intrinsics # fx: np.array = camera_matrix[0, 0] # fy: np.array = camera_matrix[1, 1] # cx: np.array = camera_matrix[0, 2] # cy: np.array = camera_matrix[1, 2] # # # projective # x_coord: np.array = (u_coord - cx) / fx # y_coord: np.array = (v_coord - cy) / fy # # xyz = np.stack([x_coord, y_coord], axis=-1) # self.xyz[str(height)] = np.pad(xyz, ((0, 0), (0, 0), (0, 1)), "constant", constant_values=1.0) def Imu(self, dai_msg): dai_msg: dai.IMUData for packet in dai_msg.packets: msg = Imu( orientation=Quaternion(x=0.0, y=0.0, z=0.0, w=1.0), orientation_covariance=np.array([-1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]), angular_velocity=Vector3(x=0.0, y=0.0, z=0.0), angular_velocity_covariance=np.zeros(9), linear_acceleration=Vector3(x=0.0,y=0.0, z=0.0), linear_acceleration_covariance=np.zeros(9) ) report = packet.acceleroMeter or packet.gyroscope or packet.magneticField or packet.rotationVector self.set_header(msg, report) self.imu_interpolation.Imu(msg, packet) # TODO: publish from here directly, so single IMUData can result in more Imu packets? return msg
2,518
get gw mac address
""" Copyright 2022 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import binascii import ipaddress import logging import socket import subprocess from typing import List, Optional, Tuple import dpkt import netifaces from lte.protos.mobilityd_pb2 import IPAddress from magma.pipelined.app.packet_parser import ParseSocketPacket from magma.pipelined.ifaces import get_mac_address_from_iface def METHOD_NAME(ip: IPAddress, vlan: str, non_nat_arp_egress_port: str) -> str: gw_ip = str(ipaddress.ip_address(ip.address)) if ip.version == IPAddress.IPV4: return _get_gw_mac_address_v4(gw_ip, vlan, non_nat_arp_egress_port) elif ip.version == IPAddress.IPV6: if vlan == "NO_VLAN": try: mac = get_mac_by_ip6(gw_ip) logging.debug("Got mac %s for IP: %s", mac, gw_ip) return mac except ValueError: logging.warning( "Invalid GW Ip address: [%s]", gw_ip, ) else: logging.error("Not supported: GW IPv6: %s over vlan %d", gw_ip, vlan) return "" def get_mac_by_ip4(target_ip4: str) -> Optional[str]: iface = get_iface_by_ip4(target_ip4) if iface: return _get_gw_mac_address_v4( gw_ip=target_ip4, vlan="NO_VLAN", non_nat_arp_egress_port=iface, ) return None def get_iface_by_ip4(target_ip4: str) -> Optional[str]: for iface in netifaces.interfaces(): iface_ip4 = netifaces.ifaddresses(iface)[netifaces.AF_INET][0]['addr'] netmask = netifaces.ifaddresses(iface)[netifaces.AF_INET][0]['netmask'] res_iface = ipaddress.ip_network(f'{iface_ip4}/{netmask}', strict=False) res_target_ip4 = ipaddress.ip_network(f'{target_ip4}/{netmask}', strict=False) if res_iface == res_target_ip4: return iface return None def get_mac_by_ip6(gw_ip: str) -> str: for iface, _ in get_ifaces_by_ip6(gw_ip): # Refresh the ip neighbor table if subprocess.run(["ping", "-c", "1", gw_ip], check=False).returncode != 0: continue res = subprocess.run( ["ip", "neigh", "get", gw_ip, "dev", iface], capture_output=True, check=False, ).stdout.decode("utf-8") if "lladdr" in res: res = res.split("lladdr ")[1].split(" ")[0] return res raise ValueError(f"No mac address found for ip6 {gw_ip}") def get_ifaces_by_ip6(target_ip6: str) -> Tuple[List[str], List[str]]: ifaces = [] ifaces_ip6 = [] for iface in netifaces.interfaces(): try: for i in range(len(netifaces.ifaddresses(iface)[netifaces.AF_INET6])): iface_ip6 = netifaces.ifaddresses(iface)[netifaces.AF_INET6][i]['addr'] netmask = netifaces.ifaddresses(iface)[netifaces.AF_INET6][i]['netmask'] res_prefix = ipaddress.IPv6Network(iface_ip6.split('%')[0] + '/' + netmask.split('/')[-1], strict=False) target_prefix = ipaddress.IPv6Network(target_ip6.split('%')[0] + '/' + netmask.split('/')[-1], strict=False) if res_prefix == target_prefix: ifaces.append(iface) ifaces_ip6.append(iface_ip6.split('%')[0]) except KeyError: continue return ifaces, ifaces_ip6 def _get_gw_mac_address_v4(gw_ip: str, vlan: str, non_nat_arp_egress_port: str) -> str: try: logging.debug( "sending arp via egress: %s", non_nat_arp_egress_port, ) eth_mac_src, psrc = _get_addresses(non_nat_arp_egress_port) pkt = _create_arp_packet(eth_mac_src, psrc, gw_ip, vlan) logging.debug("ARP Req pkt:\n%s", pkt.pprint()) res = _send_packet_and_receive_response(pkt, vlan, non_nat_arp_egress_port) if res is None: logging.debug("Got Null response") return "" parsed = ParseSocketPacket(res) logging.debug("ARP Res pkt %s", str(parsed)) if str(parsed.arp.psrc) != gw_ip: logging.warning( "Unexpected IP in ARP response. expected: %s pkt: {str(parsed)}", gw_ip, ) return "" if vlan.isdigit(): if parsed.dot1q is not None and str(parsed.dot1q.vlan) == vlan: mac = parsed.arp.hwsrc else: logging.warning( "Unexpected vlan in ARP response. expected: %s pkt: %s", vlan, str(parsed), ) return "" else: mac = parsed.arp.hwsrc return mac.mac_address except ValueError: logging.warning( "Invalid GW Ip address: [%s] or vlan %s", gw_ip, vlan, ) return "" def _get_addresses(non_nat_arp_egress_port): eth_mac_src = get_mac_address_from_iface(non_nat_arp_egress_port) eth_mac_src = binascii.unhexlify(eth_mac_src.replace(':', '')) psrc = "0.0.0.0" egress_port_ip = netifaces.ifaddresses(non_nat_arp_egress_port) if netifaces.AF_INET in egress_port_ip: psrc = egress_port_ip[netifaces.AF_INET][0]['addr'] return eth_mac_src, psrc def _create_arp_packet(eth_mac_src: bytes, psrc: str, gw_ip: str, vlan: str) -> dpkt.arp.ARP: pkt = dpkt.arp.ARP( sha=eth_mac_src, spa=socket.inet_aton(psrc), tha=b'\x00' * 6, tpa=socket.inet_aton(gw_ip), op=dpkt.arp.ARP_OP_REQUEST, ) if vlan.isdigit(): pkt = dpkt.ethernet.VLANtag8021Q( id=int(vlan), data=bytes(pkt), type=dpkt.ethernet.ETH_TYPE_ARP, ) t = dpkt.ethernet.ETH_TYPE_8021Q else: t = dpkt.ethernet.ETH_TYPE_ARP pkt = dpkt.ethernet.Ethernet( dst=b'\xff' * 6, src=eth_mac_src, data=bytes(pkt), type=t, ) return pkt def _send_packet_and_receive_response(pkt: dpkt.arp.ARP, vlan: str, non_nat_arp_egress_port: str) -> Optional[bytes]: buffsize = 2 ** 16 sol_packet = 263 packet_aux_data = 8 with socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.ntohs(0x0003)) as s: s.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, buffsize) s.settimeout(50) if vlan.isdigit(): s.setsockopt(sol_packet, packet_aux_data, 1) s.setsockopt(socket.SOL_SOCKET, socket.SO_MARK, 1) s.bind((non_nat_arp_egress_port, 0x0003)) s.send(bytes(pkt)) if vlan.isdigit(): res, aux, _, _ = s.recvmsg(0xffff, socket.CMSG_LEN(4096)) for cmsg_level, cmsg_type, cmsg_data in aux: if cmsg_level == sol_packet and cmsg_type == packet_aux_data: # add VLAN tag after ethernet header res = res[:12] + cmsg_data[-1:-5:-1] + res[12:] else: res = s.recv(0xffff) return res
2,519
do for each proc
# Copyright 2018 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging from wa.framework import pluginloader from wa.framework.exception import ConfigError from wa.framework.instrument import is_installed from wa.framework.plugin import Plugin from wa.utils.log import log_error, indentcontext from wa.utils.misc import isiterable from wa.utils.types import identifier class OutputProcessor(Plugin): kind = 'output_processor' requires = [] def __init__(self, **kwargs): super(OutputProcessor, self).__init__(**kwargs) self.is_enabled = True def validate(self): super(OutputProcessor, self).validate() for instrument in self.requires: if not is_installed(instrument): msg = 'Instrument "{}" is required by {}, but is not installed.' raise ConfigError(msg.format(instrument, self.name)) def initialize(self, context): pass def finalize(self, context): pass class ProcessorManager(object): def __init__(self, loader=pluginloader): self.loader = loader self.logger = logging.getLogger('processor') self.processors = [] def install(self, processor, context): if not isinstance(processor, OutputProcessor): processor = self.loader.get_output_processor(processor) self.logger.debug('Installing {}'.format(processor.name)) processor.logger.context = context self.processors.append(processor) context.add_augmentation(processor) def disable_all(self): for output_processor in self.processors: self._disable_output_processor(output_processor) def enable_all(self): for output_processor in self.processors: self._enable_output_processor(output_processor) def enable(self, to_enable): if isiterable(to_enable): for inst in to_enable: self._enable_output_processor(inst) else: self._enable_output_processor(to_enable) def disable(self, to_disable): if isiterable(to_disable): for inst in to_disable: self._disable_output_processor(inst) else: self._disable_output_processor(to_disable) def get_output_processor(self, processor): if isinstance(processor, OutputProcessor): return processor processor = identifier(processor) for p in self.processors: if processor == p.name: return p raise ValueError('Output processor {} is not installed'.format(processor)) def get_enabled(self): return [p for p in self.processors if p.is_enabled] def get_disabled(self): return [p for p in self.processors if not p.is_enabled] def validate(self): for proc in self.processors: proc.validate() def initialize(self, context): for proc in self.processors: proc.initialize(context) def finalize(self, context): for proc in self.processors: proc.finalize(context) def process_job_output(self, context): self.METHOD_NAME('process_job_output', 'Processing using "{}"', context.job_output, context.target_info, context.run_output) def export_job_output(self, context): self.METHOD_NAME('export_job_output', 'Exporting using "{}"', context.job_output, context.target_info, context.run_output) def process_run_output(self, context): self.METHOD_NAME('process_run_output', 'Processing using "{}"', context.run_output, context.target_info) def export_run_output(self, context): self.METHOD_NAME('export_run_output', 'Exporting using "{}"', context.run_output, context.target_info) def METHOD_NAME(self, method_name, message, *args): with indentcontext(): for proc in self.processors: if proc.is_enabled: proc_func = getattr(proc, method_name, None) if proc_func is None: continue try: self.logger.info(message.format(proc.name)) proc_func(*args) except Exception as e: # pylint: disable=broad-except if isinstance(e, KeyboardInterrupt): raise log_error(e, self.logger) def _enable_output_processor(self, inst): inst = self.get_output_processor(inst) self.logger.debug('Enabling output processor {}'.format(inst.name)) if not inst.is_enabled: inst.is_enabled = True def _disable_output_processor(self, inst): inst = self.get_output_processor(inst) self.logger.debug('Disabling output processor {}'.format(inst.name)) if inst.is_enabled: inst.is_enabled = False
2,520
path
""" .. _slice_example: Slicing ~~~~~~~ Extract thin planar slices from a volume. """ import matplotlib.pyplot as plt import numpy as np # sphinx_gallery_thumbnail_number = 2 import pyvista as pv from pyvista import examples ############################################################################### # PyVista meshes have several slicing filters bound directly to all datasets. # These filters allow you to slice through a volumetric dataset to extract and # view sections through the volume of data. # # One of the most common slicing filters used in PyVista is the # :func:`pyvista.DataSetFilters.slice_orthogonal` filter which creates three # orthogonal slices through the dataset parallel to the three Cartesian planes. # For example, let's slice through the sample geostatistical training image # volume. First, load up the volume and preview it: mesh = examples.load_channels() # define a categorical colormap cmap = plt.cm.get_cmap("viridis", 4) mesh.plot(cmap=cmap) ############################################################################### # Note that this dataset is a 3D volume and there might be regions within this # volume that we would like to inspect. We can create slices through the mesh # to gain further insight about the internals of the volume. slices = mesh.slice_orthogonal() slices.plot(cmap=cmap) ############################################################################### # The orthogonal slices can be easily translated throughout the volume: slices = mesh.slice_orthogonal(x=20, y=20, z=30) slices.plot(cmap=cmap) ############################################################################### # We can also add just a single slice of the volume by specifying the origin # and normal of the slicing plane with the :func:`pyvista.DataSetFilters.slice` # filter: # Single slice - origin defaults to the center of the mesh single_slice = mesh.slice(normal=[1, 1, 0]) p = pv.Plotter() p.add_mesh(mesh.outline(), color="k") p.add_mesh(single_slice, cmap=cmap) p.show() ############################################################################### # Adding slicing planes uniformly across an axial direction can also be # automated with the :func:`pyvista.DataSetFilters.slice_along_axis` filter: slices = mesh.slice_along_axis(n=7, axis="y") slices.plot(cmap=cmap) ############################################################################### # Slice Along Line # ++++++++++++++++ # # We can also slice a dataset along a :func:`pyvista.Spline` or # :func:`pyvista.Line` using the :func:`pyvista.DataSetFilters.slice_along_line` filter. # # First, define a line source through the dataset of interest. Please note # that this type of slicing is computationally expensive and might take a while # if there are a lot of points in the line - try to keep the resolution of # the line low. model = examples.load_channels() def METHOD_NAME(y): """Equation: x = a(y-h)^2 + k""" a = 110.0 / 160.0**2 x = a * y**2 + 0.0 return x, y x, y = METHOD_NAME(np.arange(model.bounds[2], model.bounds[3], 15.0)) zo = np.linspace(9.0, 11.0, num=len(y)) points = np.c_[x, y, zo] spline = pv.Spline(points, 15) spline ############################################################################### # Then run the filter slc = model.slice_along_line(spline) slc ############################################################################### p = pv.Plotter() p.add_mesh(slc, cmap=cmap) p.add_mesh(model.outline()) p.show(cpos=[1, -1, 1]) ############################################################################### # Multiple Slices in Vector Direction # +++++++++++++++++++++++++++++++++++ # # Slice a mesh along a vector direction perpendicularly. mesh = examples.download_brain() # Create vector vec = np.array([1.0, 2.0, 1.0]) # Normalize the vector normal = vec / np.linalg.norm(vec) # Make points along that vector for the extent of your slices a = mesh.center + normal * mesh.length / 3.0 b = mesh.center - normal * mesh.length / 3.0 # Define the line/points for the slices n_slices = 5 line = pv.Line(a, b, n_slices) # Generate all of the slices slices = pv.MultiBlock() for point in line.points: slices.append(mesh.slice(normal=normal, origin=point)) ############################################################################### p = pv.Plotter() p.add_mesh(mesh.outline(), color="k") p.add_mesh(slices, opacity=0.75) p.add_mesh(line, color="red", line_width=5) p.show() ############################################################################### # Slice At Different Bearings # +++++++++++++++++++++++++++ # # From `pyvista-support#23 <https://github.com/pyvista/pyvista-support/issues/23>`_ # # An example of how to get many slices at different bearings all centered # around a user-chosen location. # # Create a point to orient slices around ranges = np.array(model.bounds).reshape(-1, 2).ptp(axis=1) point = np.array(model.center) - ranges * 0.25 ############################################################################### # Now generate a few normal vectors to rotate a slice around the z-axis. # Use equation for circle since its about the Z-axis. increment = np.pi / 6.0 # use a container to hold all the slices slices = pv.MultiBlock() # treat like a dictionary/list for theta in np.arange(0, np.pi, increment): normal = np.array([np.cos(theta), np.sin(theta), 0.0]).dot(np.pi / 2.0) name = f'Bearing: {np.rad2deg(theta):.2f}' slices[name] = model.slice(origin=point, normal=normal) slices ############################################################################### # And now display it. p = pv.Plotter() p.add_mesh(slices, cmap=cmap) p.add_mesh(model.outline()) p.show()
2,521
json seems like protocol
"""File identifier interface.""" import json from dataclasses import dataclass from typing import Any, Dict, Sequence, Union import anyio from opentrons_shared_data.robot.dev_types import RobotType from opentrons.protocols.api_support.definitions import MAX_SUPPORTED_VERSION from opentrons.protocols.api_support.types import APIVersion from opentrons.protocols import parse from opentrons.protocols.types import MalformedPythonProtocolError, PythonProtocol from .file_reader_writer import BufferedFile from .protocol_files_invalid_error import ProtocolFilesInvalidError from .protocol_source import Metadata JsonDict = Dict[str, Any] @dataclass(frozen=True) class IdentifiedJsonMain: """A file identified as a JSON protocol's main .json file.""" original_file: BufferedFile """The original file that this was identified from.""" unvalidated_json: JsonDict """The parsed JSON contents. Believed, but not confirmed at this point, to conform to one of our JSON protocol schemas. """ schema_version: int """The JSON protocol schema that this file is believed to conform to.""" robot_type: RobotType """The type of robot on which this protocol is meant to run.""" metadata: Metadata """The protocol metadata extracted from this file.""" @dataclass(frozen=True) class IdentifiedPythonMain: """A file identified as a Python protocol's main .py file.""" original_file: BufferedFile """The original file that this was identified from.""" api_level: APIVersion """The Python Protocol API apiLevel declared by the Python source.""" robot_type: RobotType """The type of robot on which this protocol is meant to run.""" metadata: Metadata """The protocol metadata extracted from this file.""" @dataclass(frozen=True) class IdentifiedLabwareDefinition: """A file identified as a labware definition.""" original_file: BufferedFile """The original file that this was identified from.""" unvalidated_json: JsonDict """The parsed JSON contents. Believed, but not confirmed at this point, to conform to our labware definition schema v2. """ @dataclass(frozen=True) class IdentifiedData: """A file identified as a user-defined data file.""" original_file: BufferedFile """The original file that this was identified from.""" IdentifiedFile = Union[ IdentifiedJsonMain, IdentifiedPythonMain, IdentifiedLabwareDefinition, IdentifiedData, ] class FileIdentificationError(ProtocolFilesInvalidError): """Raised when FileIdentifier detects an invalid file.""" class FileIdentifier: """File identifier interface.""" @staticmethod async def identify( files: Sequence[BufferedFile], python_parse_mode: parse.PythonParseMode ) -> Sequence[IdentifiedFile]: """Identify the type and extract basic information from each file. This is intended to take ≲1 second per protocol on an OT-2, so it can extract basic information about all stored protocols relatively quickly. Fully parsing and validating protocols can take 10-100x longer, so that's left to other units, for only when it's really needed. """ return [await _identify(file, python_parse_mode) for file in files] async def _identify( file: BufferedFile, python_parse_mode: parse.PythonParseMode ) -> IdentifiedFile: lower_file_name = file.name.lower() if lower_file_name.endswith(".json"): return await _analyze_json(json_file=file) elif lower_file_name.endswith(".py"): return _analyze_python_protocol( py_file=file, python_parse_mode=python_parse_mode ) elif lower_file_name.endswith(".csv") or lower_file_name.endswith(".txt"): return IdentifiedData(original_file=file) else: raise FileIdentificationError( f"{file.name} has an unrecognized file extension." ) async def _analyze_json( json_file: BufferedFile, ) -> Union[IdentifiedJsonMain, IdentifiedLabwareDefinition]: try: json_contents = await anyio.to_thread.run_sync(json.loads, json_file.contents) except json.JSONDecodeError as e: raise FileIdentificationError( f"{json_file.name} is not valid JSON. {str(e)}" ) from e if _json_seems_like_labware(json_contents): return IdentifiedLabwareDefinition( original_file=json_file, unvalidated_json=json_contents, ) elif METHOD_NAME(json_contents): return _analyze_json_protocol( original_file=json_file, json_contents=json_contents, ) else: raise FileIdentificationError( f"{json_file.name} is not a known Opentrons format." ) def _json_seems_like_labware(json: JsonDict) -> bool: # "ordering" and "wells" are required properties in our labware schema v2. return "ordering" in json and "wells" in json def METHOD_NAME(json: JsonDict) -> bool: # "schemaVersion" and "commands" are required properties in all of our JSON # protocol schemas since schema v3. (v7 is the latest at the time of writing.) # # When we stop supporting v3 files, we can look at "$otSharedSchema" instead, # which is more precise. return "schemaVersion" in json and "commands" in json def _analyze_json_protocol( original_file: BufferedFile, json_contents: JsonDict ) -> IdentifiedJsonMain: error_message = f"{original_file.name} is not a valid JSON protocol." try: metadata = json_contents["metadata"] schema_version = json_contents["schemaVersion"] robot_type = json_contents["robot"]["model"] except KeyError as e: raise FileIdentificationError(error_message) from e # todo(mm, 2022-12-22): A JSON protocol file's metadata is not quite just an # arbitrary dict: its fields are supposed to follow a schema. Should we validate # this metadata against that schema instead of doing this simple isinstance() check? if not isinstance(metadata, dict): raise FileIdentificationError(error_message) if not isinstance(schema_version, int): raise FileIdentificationError(error_message) if robot_type not in ("OT-2 Standard", "OT-3 Standard"): raise FileIdentificationError(error_message) return IdentifiedJsonMain( original_file=original_file, unvalidated_json=json_contents, schema_version=schema_version, robot_type=robot_type, metadata=metadata, ) def _analyze_python_protocol( py_file: BufferedFile, python_parse_mode: parse.PythonParseMode, ) -> IdentifiedPythonMain: try: parsed = parse.parse( protocol_file=py_file.contents, filename=py_file.name, python_parse_mode=python_parse_mode, ) except MalformedPythonProtocolError as e: raise FileIdentificationError(e.short_message) from e # We know this should never be a JsonProtocol. Help out the type-checker. assert isinstance( parsed, PythonProtocol ), "Parsing a Python file returned something other than a Python protocol." if parsed.api_level > MAX_SUPPORTED_VERSION: raise FileIdentificationError( f"API version {parsed.api_level} is not supported by this " f"robot software. Please either reduce your requested API " f"version or update your robot." ) return IdentifiedPythonMain( original_file=py_file, metadata=parsed.metadata or {}, robot_type=parsed.robot_type, api_level=parsed.api_level, )
2,522
main
#!/usr/bin/env python3 # SPDX-License-Identifier: LGPL-2.1-only # # Advanced cgclassify functionality test - '-b' '-g' <controller> (cgroup v2) # # Copyright (c) 2023 Oracle and/or its affiliates. # Author: Kamalesh Babulal <[email protected]> # from cgroup import Cgroup, CgroupVersion from systemd import Systemd from process import Process from run import RunError import consts import ftests import time import sys import os CONTROLLER = 'cpu' SYSTEMD_CGNAME = '066_cg_in_scope' OTHER_CGNAME = '066_cg_not_in_scope' SLICE = 'libcgtests.slice' SCOPE = 'test066.scope' CONFIG_FILE_NAME = os.path.join(os.getcwd(), '066cgconfig.conf') SYSTEMD_PIDS = '' OTHER_PIDS = '' def prereqs(config): result = consts.TEST_PASSED cause = None if CgroupVersion.get_version('cpu') != CgroupVersion.CGROUP_V2: result = consts.TEST_SKIPPED cause = 'This test requires the cgroup v2 cpu controller' return result, cause if config.args.container: result = consts.TEST_SKIPPED cause = 'This test cannot be run within a container' return result, cause def setup(config): result = consts.TEST_PASSED cause = None pid = Systemd.write_config_with_pid(config, CONFIG_FILE_NAME, SLICE, SCOPE) Cgroup.configparser(config, load_file=CONFIG_FILE_NAME) # create and check if the cgroup was created under the systemd default path if not Cgroup.create_and_validate(config, None, SYSTEMD_CGNAME): result = consts.TEST_FAILED cause = ( 'Failed to create systemd delegated cgroup {} under ' '/sys/fs/cgroup/{}/{}/'.format(SYSTEMD_CGNAME, SLICE, SCOPE) ) return result, cause # With cgroup v2, we can't enable controller for the child cgroup, while # a task is attached to test066.scope. Attach the task from test066.scope # to child cgroup SYSTEMD_CGNAME and then enable cpu controller in the parent, # so that the cgroup.get() works Cgroup.set(config, cgname=SYSTEMD_CGNAME, setting='cgroup.procs', value=pid) Cgroup.set( config, cgname=(os.path.join(SLICE, SCOPE)), setting='cgroup.subtree_control', value='+cpu', ignore_systemd=True ) # create and check if the cgroup was created under the controller root if not Cgroup.create_and_validate(config, CONTROLLER, OTHER_CGNAME, ignore_systemd=True): result = consts.TEST_FAILED cause = ( 'Failed to create cgroup {} under ' '/sys/fs/cgroup/{}/'.format(OTHER_CGNAME, CONTROLLER) ) return result, cause def create_process_get_pid(config, CGNAME, SLICENAME='', ignore_systemd=False): result = consts.TEST_PASSED cause = None config.process.create_process_in_cgroup( config, CONTROLLER, CGNAME, ignore_systemd=ignore_systemd ) pids = Cgroup.get_pids_in_cgroup(config, os.path.join(SLICENAME, CGNAME), CONTROLLER) if pids is None: result = consts.TEST_FAILED cause = 'No processes were found in cgroup {}'.format(CGNAME) return pids, result, cause def test(config): global SYSTEMD_PIDS, OTHER_PIDS result = consts.TEST_PASSED cause = None # Test cgclassify, that creates a process and then uses cgclassify # to migrate the task the cgroup. SYSTEMD_PIDS, result, cause = create_process_get_pid( config, SYSTEMD_CGNAME, os.path.join(SLICE, SCOPE) ) if result == consts.TEST_FAILED: return result, cause OTHER_PIDS, result, tmp_cause = create_process_get_pid( config, OTHER_CGNAME, ignore_systemd=True ) if result == consts.TEST_FAILED: return result, cause # classify a task from the non-systemd scope cgroup (OTHER_CGNAME) to # systemd scope cgroup (SYSTEMD_CGNAME). Migration should fail due to # the incorrect destination cgroup path that gets constructed, without # the systemd slice/scope when ignore_systemd=True) try: Cgroup.classify(config, CONTROLLER, SYSTEMD_CGNAME, OTHER_PIDS, ignore_systemd=True) except RunError as re: err_str = 'Error changing group of pid {}: Cgroup does not exist'.format(OTHER_PIDS[0]) if re.stderr != err_str: raise re else: result = consts.TEST_FAILED cause = 'Changing group of pid {} erroneously succeeded'.format(OTHER_PIDS[0]) # classify a task from the systemd scope cgroup (SYSTEMD_CGNAME) to # non-systemd scope cgroup (OTHER_CGNAME). Migration should fail due # to the incorrect destination cgroup path that gets constructed, with # the systemd slice/scope when ignore_systemd=False) try: Cgroup.classify(config, CONTROLLER, OTHER_CGNAME, SYSTEMD_PIDS[1]) except RunError as re: err_str = 'Error changing group of pid {}: Cgroup does not exist'.format( SYSTEMD_PIDS[1]) if re.stderr != err_str: raise re else: result = consts.TEST_FAILED tmp_cause = 'Changing group of pid {} erroneously succeeded'.format(SYSTEMD_PIDS[1]) cause = '\n'.join(filter(None, [cause, tmp_cause])) # classify the task from the non-systemd scope cgroup to systemd scope cgroup. Cgroup.classify(config, CONTROLLER, SYSTEMD_CGNAME, OTHER_PIDS) return result, cause def teardown(config): global SYSTEMD_PIDS, OTHER_PIDS Process.kill(config, SYSTEMD_PIDS) Process.kill(config, OTHER_PIDS) # We need a pause, so that cgroup.procs gets updated. time.sleep(1) os.remove(CONFIG_FILE_NAME) try: Cgroup.delete(config, CONTROLLER, cgname=SLICE, ignore_systemd=True) except RunError as re: if 'No such file or directory' not in re.stderr: raise re # Incase the error occurs before the creation of OTHER_CGNAME, # let's ignore the exception try: Cgroup.delete(config, CONTROLLER, OTHER_CGNAME, ignore_systemd=True) except RunError as re: if 'No such file or directory' not in re.stderr: raise re def METHOD_NAME(config): [result, cause] = prereqs(config) if result != consts.TEST_PASSED: return [result, cause] [result, cause] = setup(config) if result != consts.TEST_PASSED: return [result, cause] try: [result, cause] = test(config) finally: teardown(config) return [result, cause] if __name__ == '__main__': config = ftests.parse_args() # this test was invoked directly. run only it config.args.num = int(os.path.basename(__file__).split('-')[0]) sys.exit(ftests.METHOD_NAME(config)) # vim: set et ts=4 sw=4:
2,523
test is cors
from datetime import datetime from unittest.mock import Mock, patch from actstream.actions import follow from actstream.models import Action, Follow from actstream.signals import action from django.contrib.contenttypes.models import ContentType from rest_framework.test import APIClient from kitsune.notifications import api from kitsune.notifications import tasks as notification_tasks from kitsune.notifications.models import Notification, RealtimeRegistration from kitsune.questions.tests import AnswerFactory, QuestionFactory from kitsune.sumo.tests import TestCase from kitsune.sumo.urlresolvers import reverse from kitsune.users.templatetags.jinja_helpers import profile_avatar from kitsune.users.tests import UserFactory class TestPushNotificationRegistrationSerializer(TestCase): def setUp(self): self.user = UserFactory() self.profile = self.user.profile self.request = Mock() self.request.user = self.user self.context = { "request": self.request, } self.data = { "creator": self.user, "push_url": "https://example.com/notifications/123123123", } def test_automatic_creator(self): del self.data["creator"] serializer = api.PushNotificationRegistrationSerializer( context=self.context, data=self.data ) assert serializer.is_valid() self.assertEqual(serializer.errors, {}) obj = serializer.save() self.assertEqual(obj.creator, self.user) def test_cant_register_for_other_users(self): wrong_user = UserFactory() self.data["creator"] = wrong_user serializer = api.PushNotificationRegistrationSerializer( context=self.context, data=self.data ) assert not serializer.is_valid() self.assertEqual( serializer.errors, { "creator": ["Can't register push notifications for another user."], }, ) class TestNotificationSerializer(TestCase): def test_correct_fields(self): follower = UserFactory() followed = UserFactory() q = QuestionFactory(creator=followed) # The above might make follows, which this test isn't about. Clear them out. Follow.objects.all().delete() follow(follower, followed) # Make a new action for the above. This should trigger notifications action.send(followed, verb="asked", action_object=q) act = Action.objects.order_by("-id")[0] notification = Notification.objects.get(action=act) serializer = api.NotificationSerializer(instance=notification) self.assertEqual(serializer.data["is_read"], False) self.assertEqual( serializer.data["actor"], { "type": "user", "username": followed.username, "display_name": followed.profile.name, "avatar": profile_avatar(followed), }, ) self.assertEqual(serializer.data["verb"], "asked") self.assertEqual(serializer.data["action_object"]["type"], "question") self.assertEqual(serializer.data["action_object"]["id"], q.id) self.assertEqual(serializer.data["target"], None) # Check that the serialized data is in the correct format. If it is # not, this will throw an exception. datetime.strptime(serializer.data["timestamp"], "%Y-%m-%dT%H:%M:%SZ") class TestNotificationViewSet(TestCase): def setUp(self): self.client = APIClient() self.follower = UserFactory() self.followed = UserFactory() self.question = QuestionFactory(creator=self.followed) # The above might make follows, which this test isn't about. Clear them out. Follow.objects.all().delete() follow(self.follower, self.followed) def _makeNotification(self, is_read=False): # Make a new action. This should trigger notifications action.send(self.followed, verb="asked", action_object=self.question) act = Action.objects.order_by("-id")[0] n = Notification.objects.get(action=act) if is_read: n.is_read = True n.save() return n def test_mark_read(self): n = self._makeNotification() self.client.force_authenticate(user=self.follower) res = self.client.post(reverse("notification-mark-read", args=[n.id])) self.assertEqual(res.status_code, 204) n = Notification.objects.get(id=n.id) self.assertEqual(n.is_read, True) def test_mark_unread(self): n = self._makeNotification(is_read=True) self.client.force_authenticate(user=self.follower) res = self.client.post(reverse("notification-mark-unread", args=[n.id])) self.assertEqual(res.status_code, 204) n = Notification.objects.get(id=n.id) self.assertEqual(n.is_read, False) def test_filter_is_read_false(self): n = self._makeNotification(is_read=False) self._makeNotification(is_read=True) self.client.force_authenticate(user=self.follower) res = self.client.get(reverse("notification-list") + "?is_read=0") self.assertEqual(res.status_code, 200) self.assertEqual([d["id"] for d in res.data], [n.id]) def test_filter_is_read_true(self): self._makeNotification(is_read=False) n = self._makeNotification(is_read=True) self.client.force_authenticate(user=self.follower) res = self.client.get(reverse("notification-list") + "?is_read=1") self.assertEqual(res.status_code, 200) self.assertEqual([d["id"] for d in res.data], [n.id]) @patch.object(notification_tasks, "requests") class RealtimeViewSet(TestCase): def setUp(self): self.client = APIClient() def test_updates_subview(self, requests): requests.put.return_value.status_code = 200 u = UserFactory() q = QuestionFactory(content="asdf") ct = ContentType.objects.get_for_model(q) rt = RealtimeRegistration.objects.create( creator=u, content_type=ct, object_id=q.id, endpoint="http://example.com/" ) # Some of the above may have created actions, which we don't care about. Action.objects.all().delete() # This should create an action that will trigger the above. a = AnswerFactory(question=q, content="asdf") self.client.force_authenticate(user=u) url = reverse("realtimeregistration-updates", args=[rt.id]) res = self.client.get(url) self.assertEqual(res.status_code, 200) self.assertEqual(len(res.data), 1) act = res.data[0] self.assertEqual(act["actor"]["username"], a.creator.username) self.assertEqual(act["target"]["content"], q.content_parsed) self.assertEqual(act["action_object"]["content"], a.content_parsed) def METHOD_NAME(self, requests): u = UserFactory() q = QuestionFactory() self.client.force_authenticate(user=u) url = reverse("realtimeregistration-list") data = { "content_type": "question", "object_id": q.id, "endpoint": "http://example.com", } res = self.client.post(url, data, HTTP_ORIGIN="http://example.com") self.assertEqual(res.status_code, 201) self.assertEqual(res["Access-Control-Allow-Origin"], "*")
2,524
remove data loading plan
import os import re from cache import cached from db import node_database from flask import request, g from middlewares import middleware, medical_folder_dataset, common from schemas import ValidateMedicalFolderReferenceCSV, \ ValidateMedicalFolderRoot, \ ValidateSubjectsHasAllModalities, \ ValidateMedicalFolderAddRequest, \ ValidateDataLoadingPlanAddRequest, \ ValidateDataLoadingPlanDeleteRequest, \ PreviewDatasetRequest from utils import error, validate_request_data, response from fedbiomed.common.data import MedicalFolderController, MapperBlock, MedicalFolderLoadingBlockTypes from fedbiomed.common.exceptions import FedbiomedError from fedbiomed.node.dataset_manager import DatasetManager from . import api from config import config dataset_manager = DatasetManager() # Medical Folder Controller mf_controller = MedicalFolderController() # Path to write and read the datafiles DATA_PATH_RW = config['DATA_PATH_RW'] # Database table (default datasets table of TinyDB) and query object table = node_database.table_datasets() query = node_database.query() @api.route('/datasets/medical-folder-dataset/validate-reference-column', methods=['POST']) @validate_request_data(schema=ValidateMedicalFolderReferenceCSV) @middleware(middlewares=[medical_folder_dataset.read_medical_folder_reference, medical_folder_dataset.validate_available_subjects]) def validate_reference_csv_column(): """ Validate selected reference CSV and column shows folder names """ subjects = g.available_subjects return response({"valid": True, "subjects": subjects}), 200 @api.route('/datasets/medical-folder-dataset/validate-root', methods=['POST']) @validate_request_data(schema=ValidateMedicalFolderRoot) @middleware(middlewares=[medical_folder_dataset.validate_medical_folder_root]) def validate_root_path(): """Validates MedicalFolder Dataset root path""" return response(data={"valid": True, "modalities": g.modalities}), 200 @api.route('/datasets/medical-folder-dataset/validate-all-modalities', methods=['POST']) @validate_request_data(schema=ValidateSubjectsHasAllModalities) @middleware(middlewares=[medical_folder_dataset.validate_all_modalities]) def validate_subjects_has_all_modalities(): """Validates MedicalFolder Dataset has subjects with all modalities""" return response(data={"valid": True, "subjects": g.subjects}), 200 @api.route('/datasets/medical-folder-dataset/add', methods=['POST']) @validate_request_data(schema=ValidateMedicalFolderAddRequest) @middleware(middlewares=[common.check_tags_already_registered, medical_folder_dataset.load_dlp, medical_folder_dataset.validate_medical_folder_root, medical_folder_dataset.read_medical_folder_reference, medical_folder_dataset.validate_available_subjects]) def add_medical_folder_dataset(): """ Adds MedicalFolder dataset into database of NODE """ # Request object as JSON req = request.json data_path_save = os.path.join(config['DATA_PATH_SAVE'], *req['medical_folder_root']) if req["reference_csv_path"] is None: dataset_parameters = {} else: reference_csv = os.path.join(config['DATA_PATH_SAVE'], *req["reference_csv_path"]) dataset_parameters = {"index_col": req["index_col"], "tabular_file": reference_csv} try: dataset_id = dataset_manager.add_database( name=req["name"], data_type="medical-folder", tags=req['tags'], description=req['desc'], path=data_path_save, dataset_parameters=dataset_parameters, data_loading_plan=g.dlp, save_dlp=False) except FedbiomedError as e: return error(str(e)), 400 except Exception as e: return error("Unexpected error: " + str(e)), 400 # Get saved dataset document res = table.get(query.dataset_id == dataset_id) if not res: return error("Medical Folder Dataset is not properly deployed. " "Please try again."), 400 return response(data=res), 200 @api.route('/datasets/medical-folder-dataset/add-dlp', methods=['POST']) @validate_request_data(schema=ValidateDataLoadingPlanAddRequest) @middleware(middlewares=[medical_folder_dataset.create_dlp]) def add_data_loading_plan(): """Adds DataLoadingPlan into database of NODE """ try: dlp_id = dataset_manager.save_data_loading_plan(g.dlp) except FedbiomedError as e: return error(f"Cannot save data loading plan for customizations: {e}"), 400 if dlp_id is None: return error("Cannot save data loading plan for customizations: no DLP id"), 400 return response(data=dlp_id), 200 @api.route('/datasets/medical-folder-dataset/delete-dlp', methods=['POST']) @validate_request_data(schema=ValidateDataLoadingPlanDeleteRequest) def METHOD_NAME(): """Remove DataLoadingPlan from database of NODE """ # Request object as JSON req = request.json try: dataset_manager.remove_dlp_by_id(req['dlp_id'], True) except FedbiomedError as e: return error(f"Cannot remove data loading plan for customizations: {e}"), 400 return response(data=True), 200 @api.route('/datasets/medical-folder-dataset/preview', methods=['POST']) @validate_request_data(schema=PreviewDatasetRequest) @cached(key="dataset_id", prefix="medical_folder_dataset-preview", timeout=600) def medical_folder_preview(): """Gets preview of MedicalFolder dataset by providing a table of subject and available modalities""" # Request object as JSON req = request.json dataset = table.get(query.dataset_id == req['dataset_id']) # Extract data path where the files are saved in the local GUI repository rexp = re.match('^' + config['DATA_PATH_SAVE'], dataset['path']) data_path = dataset['path'].replace(rexp.group(0), config['DATA_PATH_RW']) mf_controller.root = data_path if "index_col" in dataset["dataset_parameters"]: # Extract data path where the files are saved in the local GUI repository rexp = re.match('^' + config['DATA_PATH_SAVE'], dataset['path']) reference_path = dataset["dataset_parameters"]["tabular_file"].replace(rexp.group(0), config['DATA_PATH_RW']) reference_csv = mf_controller.read_demographics( path=reference_path, index_col=dataset["dataset_parameters"]["index_col"] ) subject_table = mf_controller.subject_modality_status(index=reference_csv.index) else: subject_table = mf_controller.subject_modality_status() modalities, _ = mf_controller.modalities() data = { "subject_table": subject_table, "modalities": modalities, } return response(data=data), 200 @api.route('/datasets/medical-folder-dataset/default-modalities', methods=['GET']) def get_default_modalities(): formatted_modalities = [{'value': name, 'label': name} for name in MedicalFolderController.default_modality_names] return response(data={'default_modalities': formatted_modalities}), 200
2,525
output child post
import typing as t from ast import literal_eval from ast import parse from itertools import chain from itertools import islice from types import GeneratorType from . import nodes from .compiler import CodeGenerator from .compiler import Frame from .compiler import has_safe_repr from .environment import Environment from .environment import Template def native_concat(values: t.Iterable[t.Any]) -> t.Optional[t.Any]: """Return a native Python type from the list of compiled nodes. If the result is a single node, its value is returned. Otherwise, the nodes are concatenated as strings. If the result can be parsed with :func:`ast.literal_eval`, the parsed value is returned. Otherwise, the string is returned. :param values: Iterable of outputs to concatenate. """ head = list(islice(values, 2)) if not head: return None if len(head) == 1: raw = head[0] if not isinstance(raw, str): return raw else: if isinstance(values, GeneratorType): values = chain(head, values) raw = "".join([str(v) for v in values]) try: return literal_eval( # In Python 3.10+ ast.literal_eval removes leading spaces/tabs # from the given string. For backwards compatibility we need to # parse the string ourselves without removing leading spaces/tabs. parse(raw, mode="eval") ) except (ValueError, SyntaxError, MemoryError): return raw class NativeCodeGenerator(CodeGenerator): """A code generator which renders Python types by not adding ``str()`` around output nodes. """ @staticmethod def _default_finalize(value: t.Any) -> t.Any: return value def _output_const_repr(self, group: t.Iterable[t.Any]) -> str: return repr("".join([str(v) for v in group])) def _output_child_to_const( self, node: nodes.Expr, frame: Frame, finalize: CodeGenerator._FinalizeInfo ) -> t.Any: const = node.as_const(frame.eval_ctx) if not has_safe_repr(const): raise nodes.Impossible() if isinstance(node, nodes.TemplateData): return const return finalize.const(const) # type: ignore def _output_child_pre( self, node: nodes.Expr, frame: Frame, finalize: CodeGenerator._FinalizeInfo ) -> None: if finalize.src is not None: self.write(finalize.src) def METHOD_NAME( self, node: nodes.Expr, frame: Frame, finalize: CodeGenerator._FinalizeInfo ) -> None: if finalize.src is not None: self.write(")") class NativeEnvironment(Environment): """An environment that renders templates to native Python types.""" code_generator_class = NativeCodeGenerator concat = staticmethod(native_concat) # type: ignore class NativeTemplate(Template): environment_class = NativeEnvironment def render(self, *args: t.Any, **kwargs: t.Any) -> t.Any: """Render the template to produce a native Python type. If the result is a single node, its value is returned. Otherwise, the nodes are concatenated as strings. If the result can be parsed with :func:`ast.literal_eval`, the parsed value is returned. Otherwise, the string is returned. """ ctx = self.new_context(dict(*args, **kwargs)) try: return self.environment_class.concat( # type: ignore self.root_render_func(ctx) # type: ignore ) except Exception: return self.environment.handle_exception() async def render_async(self, *args: t.Any, **kwargs: t.Any) -> t.Any: if not self.environment.is_async: raise RuntimeError( "The environment was not created with async mode enabled." ) ctx = self.new_context(dict(*args, **kwargs)) try: return self.environment_class.concat( # type: ignore [n async for n in self.root_render_func(ctx)] # type: ignore ) except Exception: return self.environment.handle_exception() NativeEnvironment.template_class = NativeTemplate
2,526
rgb to hex
# -*- coding: utf-8 -*- # Copyright (c) Vispy Development Team. All Rights Reserved. # Distributed under the (new) BSD License. See LICENSE.txt for more info. from __future__ import division # just to be safe... import numpy as np ############################################################################### # Utility functions def _check_color_dim(val): """Ensure val is Nx(n_col), usually Nx3""" val = np.atleast_2d(val) if val.shape[1] not in (3, 4): raise RuntimeError('Value must have second dimension of size 3 or 4') return val, val.shape[1] ############################################################################### # RGB<->HEX conversion def _hex_to_rgba(hexs): """Convert hex to rgba, permitting alpha values in hex""" hexs = np.atleast_1d(np.array(hexs, '|U9')) out = np.ones((len(hexs), 4), np.float32) for hi, h in enumerate(hexs): assert isinstance(h, str) off = 1 if h[0] == '#' else 0 assert len(h) in (6+off, 8+off) e = (len(h)-off) // 2 out[hi, :e] = [int(h[i:i+2], 16) / 255. for i in range(off, len(h), 2)] return out def METHOD_NAME(rgbs): """Convert rgb to hex triplet""" rgbs, n_dim = _check_color_dim(rgbs) return np.array(['#%02x%02x%02x' % tuple((255*rgb[:3]).astype(np.uint8)) for rgb in rgbs], '|U7') ############################################################################### # RGB<->HSV conversion def _rgb_to_hsv(rgbs): """Convert Nx3 or Nx4 rgb to hsv""" rgbs, n_dim = _check_color_dim(rgbs) hsvs = list() for rgb in rgbs: rgb = rgb[:3] # don't use alpha here idx = np.argmax(rgb) val = rgb[idx] c = val - np.min(rgb) if c == 0: hue = 0 sat = 0 else: if idx == 0: # R == max hue = ((rgb[1] - rgb[2]) / c) % 6 elif idx == 1: # G == max hue = (rgb[2] - rgb[0]) / c + 2 else: # B == max hue = (rgb[0] - rgb[1]) / c + 4 hue *= 60 sat = c / val hsv = [hue, sat, val] hsvs.append(hsv) hsvs = np.array(hsvs, dtype=np.float32) if n_dim == 4: hsvs = np.concatenate((hsvs, rgbs[:, 3]), axis=1) return hsvs def _hsv_to_rgb(hsvs): """Convert Nx3 or Nx4 hsv to rgb""" hsvs, n_dim = _check_color_dim(hsvs) # In principle, we *might* be able to vectorize this, but might as well # wait until a compelling use case appears rgbs = list() for hsv in hsvs: c = hsv[1] * hsv[2] m = hsv[2] - c hp = hsv[0] / 60 x = c * (1 - abs(hp % 2 - 1)) if 0 <= hp < 1: r, g, b = c, x, 0 elif hp < 2: r, g, b = x, c, 0 elif hp < 3: r, g, b = 0, c, x elif hp < 4: r, g, b = 0, x, c elif hp < 5: r, g, b = x, 0, c else: r, g, b = c, 0, x rgb = [r + m, g + m, b + m] rgbs.append(rgb) rgbs = np.array(rgbs, dtype=np.float32) if n_dim == 4: rgbs = np.concatenate((rgbs, hsvs[:, 3]), axis=1) return rgbs ############################################################################### # RGB<->CIELab conversion # These numbers are adapted from MIT-licensed MATLAB code for # Lab<->RGB conversion. They provide an XYZ<->RGB conversion matrices, # w/D65 white point normalization built in. # _rgb2xyz = np.array([[0.412453, 0.357580, 0.180423], # [0.212671, 0.715160, 0.072169], # [0.019334, 0.119193, 0.950227]]) # _white_norm = np.array([0.950456, 1.0, 1.088754]) # _rgb2xyz /= _white_norm[:, np.newaxis] # _rgb2xyz_norm = _rgb2xyz.T _rgb2xyz_norm = np.array([[0.43395276, 0.212671, 0.01775791], [0.37621941, 0.71516, 0.10947652], [0.18982783, 0.072169, 0.87276557]]) # _xyz2rgb = np.array([[3.240479, -1.537150, -0.498535], # [-0.969256, 1.875992, 0.041556], # [0.055648, -0.204043, 1.057311]]) # _white_norm = np.array([0.950456, 1., 1.088754]) # _xyz2rgb *= _white_norm[np.newaxis, :] _xyz2rgb_norm = np.array([[3.07993271, -1.53715, -0.54278198], [-0.92123518, 1.875992, 0.04524426], [0.05289098, -0.204043, 1.15115158]]) def _rgb_to_lab(rgbs): rgbs, n_dim = _check_color_dim(rgbs) # convert RGB->XYZ xyz = rgbs[:, :3].copy() # a misnomer for now but will end up being XYZ over = xyz > 0.04045 xyz[over] = ((xyz[over] + 0.055) / 1.055) ** 2.4 xyz[~over] /= 12.92 xyz = np.dot(xyz, _rgb2xyz_norm) over = xyz > 0.008856 xyz[over] = xyz[over] ** (1. / 3.) xyz[~over] = 7.787 * xyz[~over] + 0.13793103448275862 # Convert XYZ->LAB L = (116. * xyz[:, 1]) - 16 a = 500 * (xyz[:, 0] - xyz[:, 1]) b = 200 * (xyz[:, 1] - xyz[:, 2]) labs = [L, a, b] # Append alpha if necessary if n_dim == 4: labs.append(np.atleast1d(rgbs[:, 3])) labs = np.array(labs, order='F').T # Becomes 'C' order b/c of .T return labs def _lab_to_rgb(labs): """Convert Nx3 or Nx4 lab to rgb""" # adapted from BSD-licensed work in MATLAB by Mark Ruzon # Based on ITU-R Recommendation BT.709 using the D65 labs, n_dim = _check_color_dim(labs) # Convert Lab->XYZ (silly indexing used to preserve dimensionality) y = (labs[:, 0] + 16.) / 116. x = (labs[:, 1] / 500.) + y z = y - (labs[:, 2] / 200.) xyz = np.concatenate(([x], [y], [z])) # 3xN over = xyz > 0.2068966 xyz[over] = xyz[over] ** 3. xyz[~over] = (xyz[~over] - 0.13793103448275862) / 7.787 # Convert XYZ->LAB rgbs = np.dot(_xyz2rgb_norm, xyz).T over = rgbs > 0.0031308 rgbs[over] = 1.055 * (rgbs[over] ** (1. / 2.4)) - 0.055 rgbs[~over] *= 12.92 if n_dim == 4: rgbs = np.concatenate((rgbs, labs[:, 3]), axis=1) rgbs = np.clip(rgbs, 0., 1.) return rgbs
2,527
whiteout section
# This file is part of the Frescobaldi project, http://www.frescobaldi.org/ # # Copyright (c) 2013 - 2014 by Wilbert Berendsen # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # See http://www.gnu.org/licenses/ for more information. """ Maintains an overview of the structure of a Document. """ import re from PyQt5.QtCore import QSettings import app import plugin import lydocument import ly.document # default outline patterns that are ignored in comments default_outline_patterns = [ r"(?P<title>\\(score|book|bookpart))\b", r"^\\(paper|layout|header)\b", r"\\(new|context)\s+[A-Z]\w+", r"^[a-zA-Z]+\s*=", r"^<<", r"^\{", r"^\\relative([ \t]+\w+[',]*)?", ] # default outline patterns that are matched also in comments default_outline_patterns_comments = [ r"(?P<title>BEGIN[^\n]*)[ \t]*$", r"\b(?P<alert>(FIXME|HACK|XXX+)\b\W*\w+)", ] # cache the outline regexp _outline_re = None _outline_re_comments = None def outline_re(comments): """Return the expression to look for document outline items. If comments is True it is used to search in the whole document, if it is False comments are excluded.""" v = '_outline_re'+('_comments' if comments else '') if globals()[v] is None: globals()[v] = create_outline_re(comments) return globals()[v] def _reset_outline_re(): global _outline_re global _outline_re_comments _outline_re = None _outline_re_comments = None app.settingsChanged.connect(_reset_outline_re, -999) def create_outline_re(comments): """Create and return the expression to look for document outline items. If comments is True it is used to search in the whole document, if it is False comments are excluded.""" try: if comments: rx = QSettings().value("documentstructure/outline_patterns_comments", default_outline_patterns_comments, str) else: rx = QSettings().value("documentstructure/outline_patterns", default_outline_patterns, str) except TypeError: rx = [] # suffix duplicate named groups with a number groups = {} new_rx = [] for e in rx: try: c = re.compile(e) except re.error: continue if c.groupindex: for name in c.groupindex: if name in groups: groups[name] += 1 new_name = name + format(groups[name]) e = e.replace(f"(?P<{name}>", f"(?P<{new_name}>") else: groups[name] = 0 new_rx.append(e) rx = '|'.join(new_rx) return re.compile(rx, re.MULTILINE | re.UNICODE) class DocumentStructure(plugin.DocumentPlugin): def __init__(self, document): self._outline = None def invalidate(self): """Called when the document changes or the settings are changed.""" self._outline = None app.settingsChanged.disconnect(self.invalidate) self.document().contentsChanged.disconnect(self.invalidate) def outline(self): """Return the document outline as a series of match objects.""" if self._outline is None: # match patterns excluding comments active_code = self.remove_comments() outline_list = list(outline_re(False).finditer(active_code)) # match patterns including comments outline_list_comments = list(outline_re(True).finditer(self.document().toPlainText())) # merge lists and sort by start position self._outline = outline_list + outline_list_comments self._outline.sort(key=lambda match: match.start()) self.document().contentsChanged.connect(self.invalidate) app.settingsChanged.connect(self.invalidate, -999) return self._outline def remove_comments(self): """Remove Lilypond comments from text""" def METHOD_NAME(cursor, start, end): spaces = ''.join(' ' for x in range(start, end)) with cursor.document as doc: doc[start:end] = spaces doc = ly.document.Document(self.document().toPlainText()) cursor = lydocument.Cursor(doc) source = ly.document.Source(cursor, True, tokens_with_position=True) start = 0 for token in source: if isinstance(token, ly.lex.BlockCommentStart): start = token.pos elif isinstance(token, ly.lex.BlockCommentEnd): if start: METHOD_NAME(cursor, start, token.end) start = 0 elif isinstance(token, ly.lex.Comment): METHOD_NAME(cursor, token.pos, token.end) return cursor.document.plaintext()
2,528
load partition data mnist
import json import os import numpy as np import wget from ...ml.engine import ml_engine_adapter cwd = os.getcwd() import zipfile from ...constants import FEDML_DATA_MNIST_URL import logging def download_mnist(data_cache_dir): if not os.path.exists(data_cache_dir): os.makedirs(data_cache_dir, exist_ok=True) file_path = os.path.join(data_cache_dir, "MNIST.zip") logging.info(file_path) # Download the file (if we haven't already) if not os.path.exists(file_path): wget.download(FEDML_DATA_MNIST_URL, out=file_path) file_extracted_path = os.path.join(data_cache_dir, "MNIST") if not os.path.exists(file_extracted_path): with zipfile.ZipFile(file_path, "r") as zip_ref: zip_ref.extractall(data_cache_dir) def read_data(train_data_dir, test_data_dir): """parses data in given train and test data directories assumes: - the data in the input directories are .json files with keys 'users' and 'user_data' - the set of train set users is the same as the set of test set users Return: clients: list of non-unique client ids groups: list of group ids; empty list if none found train_data: dictionary of train data test_data: dictionary of test data """ clients = [] groups = [] train_data = {} test_data = {} train_files = os.listdir(train_data_dir) train_files = [f for f in train_files if f.endswith(".json")] for f in train_files: file_path = os.path.join(train_data_dir, f) with open(file_path, "r") as inf: cdata = json.load(inf) clients.extend(cdata["users"]) if "hierarchies" in cdata: groups.extend(cdata["hierarchies"]) train_data.update(cdata["user_data"]) test_files = os.listdir(test_data_dir) test_files = [f for f in test_files if f.endswith(".json")] for f in test_files: file_path = os.path.join(test_data_dir, f) with open(file_path, "r") as inf: cdata = json.load(inf) test_data.update(cdata["user_data"]) clients = sorted(cdata["users"]) return clients, groups, train_data, test_data def batch_data(args, data, batch_size): """ data is a dict := {'x': [numpy array], 'y': [numpy array]} (on one client) returns x, y, which are both numpy array of length: batch_size """ data_x = data["x"] data_y = data["y"] # randomly shuffle data np.random.seed(100) rng_state = np.random.get_state() np.random.shuffle(data_x) np.random.set_state(rng_state) np.random.shuffle(data_y) # loop through mini-batches batch_data = list() for i in range(0, len(data_x), batch_size): batched_x = data_x[i : i + batch_size] batched_y = data_y[i : i + batch_size] batched_x, batched_y = ml_engine_adapter.convert_numpy_to_ml_engine_data_format(args, batched_x, batched_y) batch_data.append((batched_x, batched_y)) return batch_data def load_partition_data_mnist_by_device_id(batch_size, device_id, train_path="MNIST_mobile", test_path="MNIST_mobile"): train_path += os.path.join("/", device_id, "train") test_path += os.path.join("/", device_id, "test") return METHOD_NAME(batch_size, train_path, test_path) def METHOD_NAME( args, batch_size, train_path=os.path.join(os.getcwd(), "MNIST", "train"), test_path=os.path.join(os.getcwd(), "MNIST", "test") ): users, groups, train_data, test_data = read_data(train_path, test_path) if len(groups) == 0: groups = [None for _ in users] train_data_num = 0 test_data_num = 0 train_data_local_dict = dict() test_data_local_dict = dict() train_data_local_num_dict = dict() train_data_global = list() test_data_global = list() client_idx = 0 logging.info("loading data...") for u, g in zip(users, groups): user_train_data_num = len(train_data[u]["x"]) user_test_data_num = len(test_data[u]["x"]) train_data_num += user_train_data_num test_data_num += user_test_data_num train_data_local_num_dict[client_idx] = user_train_data_num # transform to batches train_batch = batch_data(args, train_data[u], batch_size) test_batch = batch_data(args, test_data[u], batch_size) # index using client index train_data_local_dict[client_idx] = train_batch test_data_local_dict[client_idx] = test_batch train_data_global += train_batch test_data_global += test_batch client_idx += 1 logging.info("finished the loading data") client_num = client_idx class_num = 10 return ( client_num, train_data_num, test_data_num, train_data_global, test_data_global, train_data_local_num_dict, train_data_local_dict, test_data_local_dict, class_num, )
2,529
name op
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the arg_scope used for scoping layers arguments. Allows one to define models much more compactly by eliminating boilerplate code. This is accomplished through the use of argument scoping (arg_scope). Example of how to use tf.contrib.framework.arg_scope: ``` from third_party.tensorflow.contrib.layers.python import layers arg_scope = tf.contrib.framework.arg_scope with arg_scope([layers.conv2d], padding='SAME', initializer=layers.variance_scaling_initializer(), regularizer=layers.l2_regularizer(0.05)): net = layers.conv2d(inputs, 64, [11, 11], 4, padding='VALID', scope='conv1') net = layers.conv2d(net, 256, [5, 5], scope='conv2') ``` The first call to conv2d will behave as follows: layers.conv2d(inputs, 64, [11, 11], 4, padding='VALID', initializer=layers.variance_scaling_initializer(), regularizer=layers.l2_regularizer(0.05), scope='conv1') The second call to conv2d will also use the arg_scope's default for padding: layers.conv2d(inputs, 256, [5, 5], padding='SAME', initializer=layers.variance_scaling_initializer(), regularizer=layers.l2_regularizer(0.05), scope='conv2') Example of how to reuse an arg_scope: ``` with arg_scope([layers.conv2d], padding='SAME', initializer=layers.variance_scaling_initializer(), regularizer=layers.l2_regularizer(0.05)) as sc: net = layers.conv2d(net, 256, [5, 5], scope='conv1') .... with arg_scope(sc): net = layers.conv2d(net, 256, [5, 5], scope='conv2') ``` Example of how to use tf.contrib.framework.add_arg_scope to enable your function to be called within an arg_scope later: @tf.contrib.framework.add_arg_scope def conv2d(*args, **kwargs) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.util import tf_contextlib from tensorflow.python.util import tf_decorator __all__ = [ 'arg_scope', 'add_arg_scope', 'current_arg_scope', 'has_arg_scope', 'arg_scoped_arguments', 'arg_scope_func_key' ] _ARGSTACK = [{}] _DECORATED_OPS = {} def _get_arg_stack(): if _ARGSTACK: return _ARGSTACK else: _ARGSTACK.append({}) return _ARGSTACK def current_arg_scope(): stack = _get_arg_stack() return stack[-1] def arg_scope_func_key(op): return getattr(op, '_key_op', str(op)) def METHOD_NAME(op): return (op.__module__, op.__name__) def _kwarg_names(func): kwargs_length = len(func.__defaults__) if func.__defaults__ else 0 return func.__code__.co_varnames[-kwargs_length:func.__code__.co_argcount] def _add_op(op): key_op = arg_scope_func_key(op) _DECORATED_OPS[key_op] = _kwarg_names(op) @tf_contextlib.contextmanager def arg_scope(list_ops_or_scope, **kwargs): """Stores the default arguments for the given set of list_ops. For usage, please see examples at top of the file. Args: list_ops_or_scope: List or tuple of operations to set argument scope for or a dictionary containing the current scope. When list_ops_or_scope is a dict, kwargs must be empty. When list_ops_or_scope is a list or tuple, then every op in it need to be decorated with @add_arg_scope to work. **kwargs: keyword=value that will define the defaults for each op in list_ops. All the ops need to accept the given set of arguments. Yields: the current_scope, which is a dictionary of {op: {arg: value}} Raises: TypeError: if list_ops is not a list or a tuple. ValueError: if any op in list_ops has not be decorated with @add_arg_scope. """ if isinstance(list_ops_or_scope, dict): # Assumes that list_ops_or_scope is a scope that is being reused. if kwargs: raise ValueError('When attempting to re-use a scope by suppling a' 'dictionary, kwargs must be empty.') current_scope = list_ops_or_scope.copy() try: _get_arg_stack().append(current_scope) yield current_scope finally: _get_arg_stack().pop() else: # Assumes that list_ops_or_scope is a list/tuple of ops with kwargs. if not isinstance(list_ops_or_scope, (list, tuple)): raise TypeError('list_ops_or_scope must either be a list/tuple or reused ' 'scope (i.e. dict)') try: current_scope = current_arg_scope().copy() for op in list_ops_or_scope: key = arg_scope_func_key(op) if not has_arg_scope(op): raise ValueError('%s is not decorated with @add_arg_scope', METHOD_NAME(op)) if key in current_scope: current_kwargs = current_scope[key].copy() current_kwargs.update(kwargs) current_scope[key] = current_kwargs else: current_scope[key] = kwargs.copy() _get_arg_stack().append(current_scope) yield current_scope finally: _get_arg_stack().pop() def add_arg_scope(func): """Decorates a function with args so it can be used within an arg_scope. Args: func: function to decorate. Returns: A tuple with the decorated function func_with_args(). """ def func_with_args(*args, **kwargs): current_scope = current_arg_scope() current_args = kwargs key_func = arg_scope_func_key(func) if key_func in current_scope: current_args = current_scope[key_func].copy() current_args.update(kwargs) return func(*args, **current_args) _add_op(func) setattr(func_with_args, '_key_op', arg_scope_func_key(func)) return tf_decorator.make_decorator(func, func_with_args) def has_arg_scope(func): """Checks whether a func has been decorated with @add_arg_scope or not. Args: func: function to check. Returns: a boolean. """ return arg_scope_func_key(func) in _DECORATED_OPS def arg_scoped_arguments(func): """Returns the list kwargs that arg_scope can set for a func. Args: func: function which has been decorated with @add_arg_scope. Returns: a list of kwargs names. """ assert has_arg_scope(func) return _DECORATED_OPS[arg_scope_func_key(func)]
2,530
unwrap
from typing import Union import torch import torch.nn as nn from torch import Tensor from torch.optim import Optimizer class OptimizerWrapper: """ A standard interface for optimizers wrapped by the Booster. Args: optim (Optimizer): The optimizer to be wrapped. """ def __init__(self, optim: Optimizer): self.optim = optim @property def parameters(self): params = [] for group in self.param_groups: params += group['params'] return params @property def param_groups(self): return self.optim.param_groups @property def defaults(self): return self.optim.defaults def add_param_group(self, *args, **kwargs): return self.optim.add_param_group(*args, **kwargs) def step(self, *args, **kwargs): """ Performs a single optimization step. """ return self.optim.step(*args, **kwargs) def zero_grad(self, *args, **kwargs): """ Clears the gradients of all optimized `torch.Tensor`. """ self.optim.zero_grad(*args, **kwargs) def backward(self, loss: Tensor, *args, **kwargs): """ Performs a backward pass on the loss. """ loss.backward(*args, **kwargs) def backward_by_grad(self, tensor: Tensor, grad: Tensor): torch.autograd.backward(tensor, grad) def state_dict(self): """ Returns the optimizer state. """ return self.optim.state_dict() def load_state_dict(self, *args, **kwargs): """ Loads the optimizer state. """ self.optim.load_state_dict(*args, **kwargs) def clip_grad_by_value(self, clip_value: float, *args, **kwargs) -> None: """ Clips gradient of an iterable of parameters at specified min and max values. Args: clip_value (float or int): maximum allowed value of the gradients. Gradients are clipped in the range Note: In PyTorch Torch 2.0 and above, you can pass in foreach=True as kwargs to clip_grad_value_ to use the faster implementation. Please refer to the PyTorch documentation for more details. """ nn.utils.clip_grad_value_(self.parameters, clip_value, *args, **kwargs) def clip_grad_by_norm(self, max_norm: Union[float, int], norm_type: Union[float, int] = 2.0, error_if_nonfinite: bool = False, *args, **kwargs) -> Tensor: """ Clips gradient norm of an iterable of parameters. Args: max_norm (float or int): max norm of the gradients norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for infinity norm. error_if_nonfinite (bool): if True, an error is raised if the total norm is non-finite. Default: False Note: In PyTorch Torch 2.0 and above, you can pass in foreach=True as kwargs to clip_grad_norm_ to use the faster implementation. Please refer to the PyTorch documentation for more details. """ norm = nn.utils.clip_grad_norm_(self.parameters, max_norm, norm_type, error_if_nonfinite, *args, **kwargs) return norm def scale_loss(self, loss: Tensor): """ Scales the loss for mixed precision training. Note: Only available for optimizers with mixed precision training. Args: loss (Tensor): The loss to be scaled. """ raise NotImplementedError( "The method scale_loss is only available for optimizers with mixed precision training") def unscale_grad(self): """ Unscale the gradients for mixed precision training. Note: Only available for optimizers with mixed precision training. """ raise NotImplementedError( "The method unscale_grad is only available for optimizers with mixed precision training") def METHOD_NAME(self): """ Unwrap the optimizer for checkpoint saving/loading. """ return self.optim
2,531
run validations
# This file is autogenerated. # To change this file you should edit assets/configuration/spec.yaml and then run the following commands: # ddev -x validate config -s <INTEGRATION_NAME> # ddev -x validate models -s <INTEGRATION_NAME> from __future__ import annotations from typing import Any, Mapping, Optional, Sequence, Union from pydantic import BaseModel, Extra, Field, root_validator, validator from datadog_checks.base.utils.functions import identity from datadog_checks.base.utils.models import validation from . import defaults, validators class AuthToken(BaseModel): class Config: allow_mutation = False reader: Optional[Mapping[str, Any]] writer: Optional[Mapping[str, Any]] class ExtraMetric(BaseModel): class Config: extra = Extra.allow allow_mutation = False name: Optional[str] type: Optional[str] class MetricPatterns(BaseModel): class Config: allow_mutation = False exclude: Optional[Sequence[str]] include: Optional[Sequence[str]] class Metric(BaseModel): class Config: extra = Extra.allow allow_mutation = False name: Optional[str] type: Optional[str] class Proxy(BaseModel): class Config: allow_mutation = False http: Optional[str] https: Optional[str] no_proxy: Optional[Sequence[str]] class ShareLabel(BaseModel): class Config: allow_mutation = False labels: Optional[Sequence[str]] match: Optional[Sequence[str]] class InstanceConfig(BaseModel): class Config: allow_mutation = False allow_redirects: Optional[bool] auth_token: Optional[AuthToken] auth_type: Optional[str] aws_host: Optional[str] aws_region: Optional[str] aws_service: Optional[str] cache_metric_wildcards: Optional[bool] cache_shared_labels: Optional[bool] collect_counters_with_distributions: Optional[bool] collect_histogram_buckets: Optional[bool] connect_timeout: Optional[float] disable_generic_tags: Optional[bool] empty_default_hostname: Optional[bool] enable_health_service_check: Optional[bool] exclude_labels: Optional[Sequence[str]] exclude_metrics: Optional[Sequence[str]] exclude_metrics_by_labels: Optional[Mapping[str, Union[bool, Sequence[str]]]] extra_headers: Optional[Mapping[str, Any]] extra_metrics: Optional[Sequence[Union[str, Mapping[str, Union[str, ExtraMetric]]]]] headers: Optional[Mapping[str, Any]] histogram_buckets_as_distributions: Optional[bool] hostname_format: Optional[str] hostname_label: Optional[str] ignore_tags: Optional[Sequence[str]] include_labels: Optional[Sequence[str]] kerberos_auth: Optional[str] kerberos_cache: Optional[str] kerberos_delegate: Optional[bool] kerberos_force_initiate: Optional[bool] kerberos_hostname: Optional[str] kerberos_keytab: Optional[str] kerberos_principal: Optional[str] log_requests: Optional[bool] metric_patterns: Optional[MetricPatterns] metrics: Optional[Sequence[Union[str, Mapping[str, Union[str, Metric]]]]] min_collection_interval: Optional[float] namespace: Optional[str] = Field(None, regex='\\w*') non_cumulative_histogram_buckets: Optional[bool] ntlm_domain: Optional[str] openmetrics_endpoint: str password: Optional[str] persist_connections: Optional[bool] proxy: Optional[Proxy] raw_line_filters: Optional[Sequence[str]] raw_metric_prefix: Optional[str] read_timeout: Optional[float] rename_labels: Optional[Mapping[str, Any]] request_size: Optional[float] service: Optional[str] share_labels: Optional[Mapping[str, Union[bool, ShareLabel]]] skip_proxy: Optional[bool] tag_by_endpoint: Optional[bool] tags: Optional[Sequence[str]] telemetry: Optional[bool] timeout: Optional[float] tls_ca_cert: Optional[str] tls_cert: Optional[str] tls_ignore_warning: Optional[bool] tls_private_key: Optional[str] tls_protocols_allowed: Optional[Sequence[str]] tls_use_host_header: Optional[bool] tls_verify: Optional[bool] use_latest_spec: Optional[bool] use_legacy_auth_encoding: Optional[bool] use_process_start_time: Optional[bool] username: Optional[str] @root_validator(pre=True) def _initial_validation(cls, values): return validation.core.initialize_config(getattr(validators, 'initialize_instance', identity)(values)) @validator('*', pre=True, always=True) def _ensure_defaults(cls, v, field): if v is not None or field.required: return v return getattr(defaults, f'instance_{field.name}')(field, v) @validator('*') def METHOD_NAME(cls, v, field): if not v: return v return getattr(validators, f'instance_{field.name}', identity)(v, field=field) @root_validator(pre=False) def _final_validation(cls, values): return validation.core.finalize_config(getattr(validators, 'finalize_instance', identity)(values))
2,532
remove embedded layers
import logging import os from pathlib import Path from core.models import ProjectMapUrlAlias from core.signals import (execute_search_on_models, load_layer_actions, pre_delete_project, pre_update_project) from django.conf import settings from django.contrib.auth.signals import user_logged_out from django.core.cache import caches from django.db.models.signals import (post_delete, post_save, pre_delete, pre_save) from django.dispatch import receiver from django.template import loader from qgis.core import QgsProject from .models import ColumnAcl, Layer, Project, SessionTokenFilter from .searches import ProjectSearch from .signals import post_save_qdjango_project_file from .views import QdjangoProjectListView, QdjangoProjectUpdateView logger = logging.getLogger('django.request') @receiver(post_delete, sender=Project) def delete_project_file(sender, **kwargs): """ Perform delete project file from 'projects' media folder """ instance = kwargs['instance'] try: os.remove(instance.qgis_file.path) except Exception as e: logger.error(e) if 'qdjango' in settings.CACHES: caches['qdjango'].delete( settings.QDJANGO_PRJ_CACHE_KEY.format(instance.pk)) # delete ProjectMapUrlAlias related instance ProjectMapUrlAlias.objects.filter( app_name='qdjango', project_id=instance.pk).delete() @receiver(post_save, sender=Project) def delete_cache_project_settings(sender, **kwargs): """ Perform deleting of key caches for getprojectsettings response. """ if 'qdjango' in settings.CACHES: caches['qdjango'].delete( settings.QDJANGO_PRJ_CACHE_KEY.format(kwargs['instance'].pk)) instance = kwargs['instance'] @receiver(post_delete, sender=Layer) def METHOD_NAME(sender, **kwargs): """ Checks for layers embedded from the deleted layer, deletes them accordingly and remove the whole project if empty """ layer = kwargs['instance'] # If it is embedded make sure it is removed from the project # because it may be a cascade if layer.parent_project is not None: project = QgsProject() assert project.read(layer.project.qgis_file.file.name) project.removeMapLayers([layer.qgs_layer_id]) assert project.write() @receiver(post_save, sender=Project) def remove_parent_project_from_cache(sender, **kwargs): """Triggers a cache invalidation in parent projects from embedded layers""" # only for update if kwargs['created']: return project = kwargs['instance'] updated_parents = [] for l in Layer.objects.filter(parent_project=project): path = l.project.qgis_file.file.name if path in updated_parents: continue updated_parents.append(path) p = Path(path) p.touch() logging.getLogger('g3wadmin.debug').debug( 'QGIS Server parent project touched to invalidate cache: %s' % path) @receiver(post_save, sender=Layer) def update_widget(sender, **kwargs): """ Update widget data when layer datasource change """ # only for update if kwargs['created']: return layer = kwargs['instance'] # search for widget widgets = layer.widget_set.all() for widget in widgets: if widget.datasource != layer.datasource: widget.datasource = layer.datasource widget.save() @receiver(user_logged_out) def delete_session_token_filter(sender, **kwargs): """ Delete session token filter on user logout """ SessionTokenFilter.objects.filter( sessionid=kwargs['request'].session.session_key).delete() @receiver(execute_search_on_models) def execute_search(sender, request, search_text, **kwargs): """ Execute searches on Group and MacroGroup models :param request: django request instance :param text_search: str search string :return: list object search result """ return [ ProjectSearch(search_text, request.user) ] @receiver(load_layer_actions) def filter_by_user_layer_action(sender, **kwargs): """ Return html actions editing for project layer. """ template = loader.get_template('qdjango/layer_actions/filter_by_user.html') return template.render(kwargs) @receiver(pre_delete_project) def check_embedded_layer_on_delete(sender, **kwargs): """ Check project for embedded layers from other projects. """ if isinstance(sender, QdjangoProjectListView): # get config data projects = kwargs['projects'] messages = [] for project in projects: for embedded_layer in Layer.objects.filter(parent_project=project): msg = loader.get_template( 'qdjango/check_embedded_layer_on_delete.html') messages.append( {'project': project, 'message': msg.render({'project': project, 'embedded_layer': embedded_layer})}) if len(messages): return messages @receiver(pre_update_project) def check_embedded_layer_on_update(sender, **kwargs): """ Check project for embedded layers from other projects. """ if isinstance(sender, QdjangoProjectUpdateView): # get config data project = kwargs['project'] embedded_layers = Layer.objects.filter(parent_project=project) if embedded_layers.count() > 0: msg = loader.get_template( 'qdjango/check_embedded_layer_on_update.html') return msg.render({'embedded_layers': embedded_layers}) @receiver(pre_save, sender=ColumnAcl) def set_layer_acl_flag_save(sender, **kwargs): """Updates has_column_acl flag in the layers""" if not kwargs.get('raw', True): column_acl = kwargs['instance'] try: old_acl = ColumnAcl.objects.get(pk=column_acl.pk) if old_acl.layer != column_acl.layer and ColumnAcl.objects.filter(layer=old_acl.layer).count() == 1: old_acl.layer.has_column_acl = False old_acl.layer.save() except ColumnAcl.DoesNotExist: pass column_acl = kwargs['instance'] column_acl.layer.has_column_acl = True column_acl.layer.save() @receiver(post_delete, sender=ColumnAcl) def set_layer_acl_flag_delete(sender, **kwargs): """Updates has_column_acl flag in the layers""" column_acl = kwargs['instance'] try: layer = column_acl.layer layer.has_column_acl = ColumnAcl.objects.filter( layer=layer).count() > 0 layer.save() except ColumnAcl.DoesNotExist: pass
2,533
test altconstraints
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the DataLad package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## '''Unit tests for basic constraints functionality.''' from datalad.tests.utils_pytest import ( assert_equal, assert_raises, ) from ..support import constraints as ct def test_int(): c = ct.EnsureInt() # this should always work assert_equal(c(7), 7) assert_equal(c(7.0), 7) assert_equal(c('7'), 7) assert_equal(c([7, 3]), [7, 3]) # this should always fail assert_raises(ValueError, lambda: c('fail')) assert_raises(ValueError, lambda: c([3, 'fail'])) # this will also fail assert_raises(ValueError, lambda: c('17.0')) assert_equal(c.short_description(), 'int') def test_float(): c = ct.EnsureFloat() # this should always work assert_equal(c(7.0), 7.0) assert_equal(c(7), 7.0) assert_equal(c('7'), 7.0) assert_equal(c([7.0, '3.0']), [7.0, 3.0]) # this should always fail assert_raises(ValueError, lambda: c('fail')) assert_raises(ValueError, lambda: c([3.0, 'fail'])) def test_bool(): c = ct.EnsureBool() # this should always work assert_equal(c(True), True) assert_equal(c(False), False) # all that resuls in True assert_equal(c('True'), True) assert_equal(c('true'), True) assert_equal(c('1'), True) assert_equal(c('yes'), True) assert_equal(c('on'), True) assert_equal(c('enable'), True) # all that resuls in False assert_equal(c('false'), False) assert_equal(c('False'), False) assert_equal(c('0'), False) assert_equal(c('no'), False) assert_equal(c('off'), False) assert_equal(c('disable'), False) # this should always fail assert_raises(ValueError, c, 0) assert_raises(ValueError, c, 1) def test_str(): c = ct.EnsureStr() # this should always work assert_equal(c('hello'), 'hello') assert_equal(c('7.0'), '7.0') # this should always fail assert_raises(ValueError, lambda: c(['ab'])) assert_raises(ValueError, lambda: c(['a', 'b'])) assert_raises(ValueError, lambda: c(('a', 'b'))) # no automatic conversion attempted assert_raises(ValueError, lambda: c(7.0)) assert_equal(c.short_description(), 'str') def test_str_min_len(): c = ct.EnsureStr(min_len=1) assert_equal(c('hello'), 'hello') assert_equal(c('h'), 'h') assert_raises(ValueError, c, '') c = ct.EnsureStr(min_len=2) assert_equal(c('hello'), 'hello') assert_raises(ValueError, c, 'h') def test_none(): c = ct.EnsureNone() # this should always work assert_equal(c(None), None) # instance of NoneDeprecated is also None assert_equal(c(ct.NoneDeprecated), None) # this should always fail assert_raises(ValueError, lambda: c('None')) assert_raises(ValueError, lambda: c([])) def test_callable(): c = ct.EnsureCallable() # this should always work assert_equal(c(range), range) assert_raises(ValueError, c, 'range') def test_choice(): c = ct.EnsureChoice('choice1', 'choice2', None) # this should always work assert_equal(c('choice1'), 'choice1') assert_equal(c(None), None) # this should always fail assert_raises(ValueError, lambda: c('fail')) assert_raises(ValueError, lambda: c('None')) def test_keychoice(): c = ct.EnsureKeyChoice(key='some', values=('choice1', 'choice2', None)) assert_equal(c({'some': 'choice1'}), {'some': 'choice1'}) assert_equal(c({'some': None}), {'some': None}) assert_equal(c({'some': None, 'ign': 'ore'}), {'some': None, 'ign': 'ore'}) assert_raises(ValueError, c, 'fail') assert_raises(ValueError, c, 'None') assert_raises(ValueError, c, {'nope': 'None'}) assert_raises(ValueError, c, {'some': 'None'}) assert_raises(ValueError, c, {'some': ('a', 'b')}) def test_range(): c = ct.EnsureRange(min=3, max=7) # this should always work assert_equal(c(3.0), 3.0) # this should always fail assert_raises(ValueError, lambda: c(2.9999999)) assert_raises(ValueError, lambda: c(77)) assert_raises(TypeError, lambda: c('fail')) assert_raises(TypeError, lambda: c((3, 4))) # since no type checks are performed assert_raises(TypeError, lambda: c('7')) # Range doesn't have to be numeric c = ct.EnsureRange(min="e", max="qqq") assert_equal(c('e'), 'e') assert_equal(c('fa'), 'fa') assert_equal(c('qq'), 'qq') assert_raises(ValueError, c, 'a') assert_raises(ValueError, c, 'qqqa') def test_listof(): c = ct.EnsureListOf(str) assert_equal(c(['a', 'b']), ['a', 'b']) assert_equal(c(['a1', 'b2']), ['a1', 'b2']) assert_equal(c('a1 b2'), ['a1 b2']) def test_tupleof(): c = ct.EnsureTupleOf(str) assert_equal(c(('a', 'b')), ('a', 'b')) assert_equal(c(('a1', 'b2')), ('a1', 'b2')) assert_equal(c('a1 b2'), ('a1 b2',)) def test_constraints(): # this should always work c = ct.Constraints(ct.EnsureFloat()) assert_equal(c(7.0), 7.0) c = ct.Constraints(ct.EnsureFloat(), ct.EnsureRange(min=4.0)) assert_equal(c(7.0), 7.0) # __and__ form c = ct.EnsureFloat() & ct.EnsureRange(min=4.0) assert_equal(c(7.0), 7.0) assert_raises(ValueError, c, 3.9) c = ct.Constraints(ct.EnsureFloat(), ct.EnsureRange(min=4), ct.EnsureRange(max=9)) assert_equal(c(7.0), 7.0) assert_raises(ValueError, c, 3.9) assert_raises(ValueError, c, 9.01) # __and__ form c = ct.EnsureFloat() & ct.EnsureRange(min=4) & ct.EnsureRange(max=9) assert_equal(c(7.0), 7.0) assert_raises(ValueError, c, 3.99) assert_raises(ValueError, c, 9.01) # and reordering should not have any effect c = ct.Constraints(ct.EnsureRange(max=4), ct.EnsureRange(min=9), ct.EnsureFloat()) assert_raises(ValueError, c, 3.99) assert_raises(ValueError, c, 9.01) def METHOD_NAME(): # this should always work c = ct.AltConstraints(ct.EnsureFloat()) assert_equal(c(7.0), 7.0) c = ct.AltConstraints(ct.EnsureFloat(), ct.EnsureNone()) assert_equal(c.short_description(), '(float or None)') assert_equal(c(7.0), 7.0) assert_equal(c(None), None) # __or__ form c = ct.EnsureFloat() | ct.EnsureNone() assert_equal(c(7.0), 7.0) assert_equal(c(None), None) # this should always fail c = ct.Constraints(ct.EnsureRange(min=0, max=4), ct.EnsureRange(min=9, max=11)) assert_raises(ValueError, c, 7.0) c = ct.EnsureRange(min=0, max=4) | ct.EnsureRange(min=9, max=11) assert_equal(c(3.0), 3.0) assert_equal(c(9.0), 9.0) assert_raises(ValueError, c, 7.0) assert_raises(ValueError, c, -1.0) def test_both(): # this should always work c = ct.AltConstraints( ct.Constraints( ct.EnsureFloat(), ct.EnsureRange(min=7.0, max=44.0)), ct.EnsureNone()) assert_equal(c(7.0), 7.0) assert_equal(c(None), None) # this should always fail assert_raises(ValueError, lambda: c(77.0)) def test_type_str(): assert_equal(ct._type_str((str,)), 'str') assert_equal(ct._type_str(str), 'str')
2,534
delete
''' local.py - this file is part of S3QL. Copyright © 2008 Nikolaus Rath <[email protected]> This work can be distributed under the terms of the GNU GPLv3. ''' import _thread import logging import os import struct from contextlib import ExitStack from typing import Any, BinaryIO, Dict, Optional from ..common import ThawError, copyfh, freeze_basic_mapping, thaw_basic_mapping from .common import AbstractBackend, CorruptedObjectError, DanglingStorageURLError, NoSuchObject log = logging.getLogger(__name__) class Backend(AbstractBackend): ''' A backend that stores data on the local hard disk ''' needs_login = False known_options = set() def __init__(self, options): '''Initialize local backend''' # Unused argument # pylint: disable=W0613 super().__init__() self.prefix = options.storage_url[len('local://') :].rstrip('/') if not os.path.exists(self.prefix): raise DanglingStorageURLError(self.prefix) @property def has_delete_multi(self): return True def __str__(self): return 'local directory %s' % self.prefix def is_temp_failure(self, exc): # IGNORE:W0613 return False def lookup(self, key): path = self._key_to_path(key) try: with open(path, 'rb') as src: return _read_meta(src) except FileNotFoundError: raise NoSuchObject(key) def get_size(self, key): return os.path.getsize(self._key_to_path(key)) def readinto_fh(self, key: str, ofh: BinaryIO): '''Transfer data stored under *key* into *fh*, return metadata. The data will be inserted at the current offset. ''' path = self._key_to_path(key) with ExitStack() as es: try: ifh = es.enter_context(open(path, 'rb', buffering=0)) except FileNotFoundError: raise NoSuchObject(key) try: metadata = _read_meta(ifh) except ThawError: raise CorruptedObjectError('Invalid metadata') copyfh(ifh, ofh) return metadata def write_fh( self, key: str, fh: BinaryIO, metadata: Optional[Dict[str, Any]] = None, len_: Optional[int] = None, ): '''Upload *len_* bytes from *fh* under *key*. The data will be read at the current offset. If *len_* is None, reads until the end of the file. If a temporary error (as defined by `is_temp_failure`) occurs, the operation is retried. Returns the size of the resulting storage object . ''' if metadata is None: metadata = dict() path = self._key_to_path(key) buf = freeze_basic_mapping(metadata) if len(buf).bit_length() > 16: raise ValueError('Metadata too large') # By renaming, we make sure that there are no # conflicts between parallel reads, the last one wins tmpname = '%s#%d-%d.tmp' % (path, os.getpid(), _thread.get_ident()) with ExitStack() as es: try: dest = es.enter_context(open(tmpname, 'wb', buffering=0)) except FileNotFoundError: try: os.makedirs(os.path.dirname(path)) except FileExistsError: # Another thread may have created the directory already pass dest = es.enter_context(open(tmpname, 'wb', buffering=0)) dest.write(b's3ql_1\n') dest.write(struct.pack('<H', len(buf))) dest.write(buf) copyfh(fh, dest, len_) size = dest.tell() os.rename(tmpname, path) return size def contains(self, key): path = self._key_to_path(key) try: os.lstat(path) except FileNotFoundError: return False return True def delete_multi(self, keys): for i, key in enumerate(keys): try: self.METHOD_NAME(key) except: del keys[:i] raise del keys[:] def METHOD_NAME(self, key): path = self._key_to_path(key) try: os.unlink(path) except FileNotFoundError: pass def list(self, prefix=''): if prefix: base = os.path.dirname(self._key_to_path(prefix)) else: base = self.prefix for path, dirnames, filenames in os.walk(base, topdown=True): # Do not look in wrong directories if prefix: rpath = path[len(self.prefix) :] # path relative to base prefix_l = ''.join(rpath.split('/')) dirs_to_walk = list() for name in dirnames: prefix_ll = unescape(prefix_l + name) if prefix_ll.startswith(prefix[: len(prefix_ll)]): dirs_to_walk.append(name) dirnames[:] = dirs_to_walk for name in filenames: # Skip temporary files if '#' in name: continue key = unescape(name) if not prefix or key.startswith(prefix): yield key def _key_to_path(self, key): '''Return path for given key''' # NOTE: We must not split the path in the middle of an # escape sequence, or list() will fail to work. key = escape(key) if not key.startswith('s3ql_data_'): return os.path.join(self.prefix, key) no = key[10:] path = [self.prefix, 's3ql_data_'] for i in range(0, len(no), 3): path.append(no[:i]) path.append(key) return os.path.join(*path) def _read_meta(fh): buf = fh.read(9) if not buf.startswith(b's3ql_1\n'): raise CorruptedObjectError('Invalid object header: %r' % buf) len_ = struct.unpack('<H', buf[-2:])[0] try: return thaw_basic_mapping(fh.read(len_)) except ThawError: raise CorruptedObjectError('Invalid metadata') def escape(s): '''Escape '/', '=' and '.' in s''' s = s.replace('=', '=3D') s = s.replace('/', '=2F') s = s.replace('#', '=23') return s def unescape(s): '''Un-Escape '/', '=' and '.' in s''' s = s.replace('=2F', '/') s = s.replace('=23', '#') s = s.replace('=3D', '=') return s
2,535
test missing final newline
# Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0 # For details: https://github.com/nedbat/coveragepy/blob/master/NOTICE.txt """Tests for coverage.py's improved tokenizer.""" from __future__ import annotations import os.path import re import textwrap import warnings import pytest from coverage import env from coverage.phystokens import source_token_lines, source_encoding from coverage.python import get_python_source from tests.coveragetest import CoverageTest, TESTS_DIR # A simple program and its token stream. SIMPLE = """\ # yay! def foo(): say('two = %d' % 2) """ SIMPLE_TOKENS = [ [('com', "# yay!")], [('key', 'def'), ('ws', ' '), ('nam', 'foo'), ('op', '('), ('op', ')'), ('op', ':')], [('ws', ' '), ('nam', 'say'), ('op', '('), ('str', "'two = %d'"), ('ws', ' '), ('op', '%'), ('ws', ' '), ('num', '2'), ('op', ')')], ] # Mixed-white-space program, and its token stream. MIXED_WS = """\ def hello(): a="Hello world!" \tb="indented" """ MIXED_WS_TOKENS = [ [('key', 'def'), ('ws', ' '), ('nam', 'hello'), ('op', '('), ('op', ')'), ('op', ':')], [('ws', ' '), ('nam', 'a'), ('op', '='), ('str', '"Hello world!"')], [('ws', ' '), ('nam', 'b'), ('op', '='), ('str', '"indented"')], ] # https://github.com/nedbat/coveragepy/issues/822 BUG_822 = """\ print( "Message 1" ) array = [ 1,2,3,4, # 4 numbers \\ 5,6,7 ] # 3 numbers print( "Message 2" ) """ class PhysTokensTest(CoverageTest): """Tests for coverage.py's improved tokenizer.""" run_in_temp_dir = False def check_tokenization(self, source: str) -> None: """Tokenize `source`, then put it back together, should be the same.""" tokenized = "" for line in source_token_lines(source): text = "".join(t for _, t in line) tokenized += text + "\n" # source_token_lines doesn't preserve trailing spaces, so trim all that # before comparing. source = source.replace('\r\n', '\n') source = re.sub(r"(?m)[ \t]+$", "", source) tokenized = re.sub(r"(?m)[ \t]+$", "", tokenized) assert source == tokenized def check_file_tokenization(self, fname: str) -> None: """Use the contents of `fname` for `check_tokenization`.""" self.check_tokenization(get_python_source(fname)) def test_simple(self) -> None: assert list(source_token_lines(SIMPLE)) == SIMPLE_TOKENS self.check_tokenization(SIMPLE) def METHOD_NAME(self) -> None: # We can tokenize source that is missing the final newline. assert list(source_token_lines(SIMPLE.rstrip())) == SIMPLE_TOKENS def test_tab_indentation(self) -> None: # Mixed tabs and spaces... assert list(source_token_lines(MIXED_WS)) == MIXED_WS_TOKENS def test_bug_822(self) -> None: self.check_tokenization(BUG_822) def test_tokenize_real_file(self) -> None: # Check the tokenization of a real file (large, btw). real_file = os.path.join(TESTS_DIR, "test_coverage.py") self.check_file_tokenization(real_file) @pytest.mark.parametrize("fname", [ "stress_phystoken.tok", "stress_phystoken_dos.tok", ]) def test_stress(self, fname: str) -> None: # Check the tokenization of the stress-test files. # And check that those files haven't been incorrectly "fixed". with warnings.catch_warnings(): warnings.filterwarnings("ignore", message=r".*invalid escape sequence") stress = os.path.join(TESTS_DIR, fname) self.check_file_tokenization(stress) with open(stress) as fstress: assert re.search(r"(?m) $", fstress.read()), f"{stress} needs a trailing space." @pytest.mark.skipif(not env.PYBEHAVIOR.soft_keywords, reason="Soft keywords are new in Python 3.10") class SoftKeywordTest(CoverageTest): """Tests the tokenizer handling soft keywords.""" run_in_temp_dir = False def test_soft_keywords(self) -> None: source = textwrap.dedent("""\ match re.match(something): case ["what"]: match = case("hello") case [_]: match("hello") match another.thing: case 1: pass class case(): pass def match(): global case """) tokens = list(source_token_lines(source)) assert tokens[0][0] == ("key", "match") assert tokens[0][4] == ("nam", "match") assert tokens[1][1] == ("key", "case") assert tokens[2][1] == ("nam", "match") assert tokens[2][5] == ("nam", "case") assert tokens[3][1] == ("key", "case") assert tokens[4][1] == ("nam", "match") assert tokens[5][1] == ("key", "match") assert tokens[6][1] == ("key", "case") assert tokens[9][2] == ("nam", "case") assert tokens[10][2] == ("nam", "match") assert tokens[11][3] == ("nam", "case") # The default source file encoding. DEF_ENCODING = "utf-8" ENCODING_DECLARATION_SOURCES = [ # Various forms from http://www.python.org/dev/peps/pep-0263/ (1, b"# coding=cp850\n\n", "cp850"), (1, b"# coding=latin-1\n", "iso-8859-1"), (1, b"# coding=iso-latin-1\n", "iso-8859-1"), (1, b"#!/usr/bin/python\n# -*- coding: cp850 -*-\n", "cp850"), (1, b"#!/usr/bin/python\n# vim: set fileencoding=cp850:\n", "cp850"), (1, b"# This Python file uses this encoding: cp850\n", "cp850"), (1, b"# This file uses a different encoding:\n# coding: cp850\n", "cp850"), (1, b"\n# coding=cp850\n\n", "cp850"), (2, b"# -*- coding:cp850 -*-\n# vim: fileencoding=cp850\n", "cp850"), ] class SourceEncodingTest(CoverageTest): """Tests of source_encoding() for detecting encodings.""" run_in_temp_dir = False def test_detect_source_encoding(self) -> None: for _, source, expected in ENCODING_DECLARATION_SOURCES: assert source_encoding(source) == expected, f"Wrong encoding in {source!r}" def test_detect_source_encoding_not_in_comment(self) -> None: # Should not detect anything here source = b'def parse(src, encoding=None):\n pass' assert source_encoding(source) == DEF_ENCODING def test_dont_detect_source_encoding_on_third_line(self) -> None: # A coding declaration doesn't count on the third line. source = b"\n\n# coding=cp850\n\n" assert source_encoding(source) == DEF_ENCODING def test_detect_source_encoding_of_empty_file(self) -> None: # An important edge case. assert source_encoding(b"") == DEF_ENCODING def test_bom(self) -> None: # A BOM means utf-8. source = b"\xEF\xBB\xBFtext = 'hello'\n" assert source_encoding(source) == 'utf-8-sig' def test_bom_with_encoding(self) -> None: source = b"\xEF\xBB\xBF# coding: utf-8\ntext = 'hello'\n" assert source_encoding(source) == 'utf-8-sig' def test_bom_is_wrong(self) -> None: # A BOM with an explicit non-utf8 encoding is an error. source = b"\xEF\xBB\xBF# coding: cp850\n" with pytest.raises(SyntaxError, match="encoding problem: utf-8"): source_encoding(source) def test_unknown_encoding(self) -> None: source = b"# coding: klingon\n" with pytest.raises(SyntaxError, match="unknown encoding: klingon"): source_encoding(source)
2,536
test index
import pytest from typing import Optional from mlserver.errors import ModelNotFound from mlserver.registry import MultiModelRegistry from mlserver.handlers import ModelRepositoryHandlers from mlserver.settings import ModelSettings from mlserver.types import RepositoryIndexRequest, State async def METHOD_NAME( model_repository_handlers: ModelRepositoryHandlers, repository_index_request: RepositoryIndexRequest, sum_model_settings: ModelSettings, ): repo_index = list(await model_repository_handlers.index(repository_index_request)) assert len(repo_index) == 1 assert repo_index[0].name == sum_model_settings.name assert ( repo_index[0].version == sum_model_settings.parameters.version # type: ignore ) assert repo_index[0].state == State.READY async def test_index_unavailable_model( model_repository_handlers: ModelRepositoryHandlers, repository_index_request: RepositoryIndexRequest, sum_model_settings: ModelSettings, ): await model_repository_handlers.unload(sum_model_settings.name) repo_index = list(await model_repository_handlers.index(repository_index_request)) assert len(repo_index) == 1 assert repo_index[0].name == sum_model_settings.name assert ( repo_index[0].version == sum_model_settings.parameters.version # type: ignore ) assert repo_index[0].state == State.UNAVAILABLE @pytest.mark.parametrize("ready,expected", [(None, 1), (True, 0), (False, 1)]) async def test_index_filter_ready( model_repository_handlers: ModelRepositoryHandlers, repository_index_request: RepositoryIndexRequest, sum_model_settings: ModelSettings, ready: Optional[bool], expected: int, ): await model_repository_handlers.unload(sum_model_settings.name) repository_index_request.ready = ready repo_index = list(await model_repository_handlers.index(repository_index_request)) assert len(repo_index) == expected async def test_unload( model_repository_handlers: ModelRepositoryHandlers, model_registry: MultiModelRegistry, sum_model_settings: ModelSettings, ): await model_repository_handlers.unload(sum_model_settings.name) with pytest.raises(ModelNotFound): await model_registry.get_model(sum_model_settings.name) async def test_unload_not_found( model_repository_handlers: ModelRepositoryHandlers, ): with pytest.raises(ModelNotFound): await model_repository_handlers.unload("not-existing") async def test_load_not_found( model_repository_handlers: ModelRepositoryHandlers, ): with pytest.raises(ModelNotFound): await model_repository_handlers.load("not-existing") async def test_load_removes_stale_models( model_repository_handlers: ModelRepositoryHandlers, repository_index_request: RepositoryIndexRequest, model_registry: MultiModelRegistry, sum_model_settings: ModelSettings, ): # Load a few models which are not present on the repository (including a # default one), therefore they will be stale stale_settings = sum_model_settings.copy(deep=True) stale_settings.parameters.version = None await model_registry.load(stale_settings) to_load = ["v0", "v1", "v2"] for version in to_load: stale_settings = sum_model_settings.copy(deep=True) stale_settings.parameters.version = version await model_registry.load(stale_settings) # Validate that the stale test models have been loaded registry_models = await model_registry.get_models(sum_model_settings.name) stale_length = ( len(to_load) + 1 # Count the (stale) default model + 1 # Count the previous (non-stale) model ) assert len(registry_models) == stale_length # Reload our model and validate whether stale models have been removed await model_repository_handlers.load(sum_model_settings.name) # Assert that stale models have been removed from both the registry (and # ensure they are not present on the repository either) registry_models = await model_registry.get_models(sum_model_settings.name) repo_models = list(await model_repository_handlers.index(repository_index_request)) expected_version = sum_model_settings.parameters.version assert len(registry_models) == 1 assert registry_models[0].version == expected_version assert len(repo_models) == 1 assert repo_models[0].version == expected_version
2,537
test intrinsicparamschema
# # Copyright (C) 2019 ifm electronic, gmbh # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distribtued on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest import time from multiprocessing.dummy import Pool as ThreadPool import ifm3dpy pytest.skip("skipping as not ported to new naming convention", allow_module_level=True) def test_factorydefaults(): cam = ifm3dpy.Camera() cam.factory_reset() time.sleep(6) cam.device_type() def test_waitforframe(): cam = ifm3dpy.Camera() fg = ifm3dpy.FrameGrabber(cam) buff = ifm3dpy.ImageBuffer() count = 0 for i in range(10): assert fg.wait_for_frame(buff, 1000) count = count + 1 assert count == 10 def test_customschema(): mask = ifm3dpy.IMG_AMP | ifm3dpy.IMG_RDIS | ifm3dpy.IMG_UVEC cam = ifm3dpy.Camera() fg = ifm3dpy.FrameGrabber(cam, mask) buff = ifm3dpy.ImageBuffer() assert fg.wait_for_frame(buff, 1000) def METHOD_NAME(): mask = ifm3dpy.IMG_AMP | ifm3dpy.IMG_RDIS | ifm3dpy.INTR_CAL cam = ifm3dpy.Camera() if cam.is_O3X(): with pytest.raises(RuntimeError): fg = ifm3dpy.FrameGrabber(cam, mask) elif (cam.is_O3D() and cam.check_minimum_firmware_version( ifm3dpy.O3D_INTRINSIC_PARAM_SUPPORT_MAJOR, ifm3dpy.O3D_INTRINSIC_PARAM_SUPPORT_MINOR, ifm3dpy.O3D_INTRINSIC_PARAM_SUPPORT_PATCH)): fg = ifm3dpy.FrameGrabber(cam, mask) buff = ifm3dpy.ImageBuffer() assert fg.wait_for_frame(buff, 1000) elif (cam.is_O3D()): with pytest.raises(RuntimeError): fg = ifm3dpy.FrameGrabber(cam, mask) def test_inverseintrinsicparamschema(): mask = (ifm3dpy.IMG_AMP | ifm3dpy.IMG_RDIS | ifm3dpy.INTR_CAL | ifm3dpy.INV_INTR_CAL) cam = ifm3dpy.Camera() if cam.is_O3X(): with pytest.raises(RuntimeError): fg = ifm3dpy.FrameGrabber(cam, mask) elif (cam.is_O3D() and cam.check_minimum_firmware_version( ifm3dpy.O3D_INVERSE_INTRINSIC_PARAM_SUPPORT_MAJOR, ifm3dpy.O3D_INVERSE_INTRINSIC_PARAM_SUPPORT_MINOR, ifm3dpy.O3D_INVERSE_INTRINSIC_PARAM_SUPPORT_PATCH)): fg = ifm3dpy.FrameGrabber(cam, mask) buff = ifm3dpy.ImageBuffer() assert fg.wait_for_frame(buff, 1000) elif (cam.is_O3D()): with pytest.raises(RuntimeError): fg = ifm3dpy.FrameGrabber(cam, mask) def test_framegrabberrecycling(): cam = ifm3dpy.Camera() fg = ifm3dpy.FrameGrabber(cam) buff = ifm3dpy.ImageBuffer() for i in range(5): assert fg.wait_for_frame(buff, 1000) fg.reset(cam) for i in range(5): assert fg.wait_for_frame(buff, 1000) def test_softwaretrigger(): cam = ifm3dpy.Camera() idx = cam.active_application() config = cam.to_json() config['ifm3d']['Apps'][idx-1]['TriggerMode'] = \ str(int(ifm3dpy.Camera.trigger_mode.SW)) cam.from_json(config) fg = ifm3dpy.FrameGrabber(cam) buff = ifm3dpy.ImageBuffer() # waiting for an image should now timeout assert not fg.wait_for_frame(buff, 1000) # now, get image data by explicitly s/w triggering the device for i in range(10): fg.sw_trigger() assert fg.wait_for_frame(buff, 1000) # set the camera back into free-run mode config['ifm3d']['Apps'][idx-1]['TriggerMode'] = \ str(int(ifm3dpy.Camera.trigger_mode.FREE_RUN)) cam.from_json(config) def test_swtriggermultipleclients(): cam = ifm3dpy.Camera() # O3X cannot handle multiple client connections to PCIC # so this test does not apply if cam.is_O3X(): return # mark the current active application as sw triggered idx = cam.active_application() config = cam.to_json() config['ifm3d']['Apps'][idx-1]['TriggerMode'] = \ str(int(ifm3dpy.Camera.trigger_mode.SW)) cam.from_json(config) # create two framegrabbers with same camera fg1 = ifm3dpy.FrameGrabber(cam) fg2 = ifm3dpy.FrameGrabber(cam) # launch two threads where each of the framegrabbers will # wait for a new frame def get_frame(fg): buff = ifm3dpy.ImageBuffer() if not fg.wait_for_frame(buff, 5000): buff = None return buff pool = ThreadPool(2) res = pool.map_async(get_frame, [fg1, fg2]) # Let's S/W trigger from the first -- this could have been a third # framegrabber fg1.sw_trigger() pool.close() pool.join() # Did they both get a frame? frames = res.get() assert all(frames) # Check that the data are the same if all(frames): assert (frames[0].distance_image() == frames[1].distance_image()).all() assert (frames[0].unit_vectors() == frames[1].unit_vectors()).all() assert (frames[0].gray_image() == frames[1].gray_image()).all() assert (frames[0].amplitude_image() == frames[1].amplitude_image()).all() assert (frames[0].raw_amplitude_image() == frames[1].raw_amplitude_image()).all() assert (frames[0].confidence_image() == frames[1].confidence_image()).all() assert (frames[0].xyz_image() == frames[1].xyz_image()).all() # set the camera back into free-run mode config['ifm3d']['Apps'][idx-1]['TriggerMode'] = \ str(int(ifm3dpy.Camera.trigger_mode.FREE_RUN)) cam.from_json(config) def test_json_model(): cam = ifm3dpy.Camera() mask = ifm3dpy.IMG_AMP | ifm3dpy.JSON_MODEL if cam.is_O3X(): with pytest.raises(RuntimeError): fg = ifm3dpy.FrameGrabber(cam, mask) else: fg = ifm3dpy.FrameGrabber(cam, mask) buff = ifm3dpy.ImageBuffer() assert fg.wait_for_frame(buff, 1000) model = buff.json_model() assert model
2,538
graph
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A structure used to describe the network of a model.""" import sys import types import paddle from paddleslim.core import GraphWrapper from .METHOD_NAME import Graph, Node from paddleslim.core.dygraph import dygraph2program __all__ = ["GraphTracer"] def _apply(layer, func): for name, child in layer.named_children(): func(child) _apply(child, func) def _add_call_hook(module, function_new, method_name='forward', backup_name='__forward_orig__'): def _call_hook_enable(op): # do not patch the top level modules. makes it easy to invoke by self.module(x) if op is not module: assert not hasattr( op, backup_name ), f'in {op.__class__.__name__} detected an existing function {backup_name} : please double check' # backup the original forward of op into backup_name method_orig = getattr(op, method_name) setattr(op, backup_name, method_orig) # set new method method_new = types.MethodType(function_new, op) setattr(op, method_name, method_new) _apply(module, _call_hook_enable) def _remove_call_hook(module, method_name='forward', backup_name='__forward_orig__'): def _call_hook_disable(op): if op is not module: if hasattr(op, backup_name): method_new = getattr(op, method_name) method_orig = getattr(op, backup_name) setattr(op, method_name, method_orig) # delete the backup setattr(op, backup_name, method_new) delattr(op, backup_name) _apply(module, _call_hook_disable) class GraphTracer(paddle.nn.Layer): """ A tool used to trace the execution of the model. Call the forward of the model decorated by this tracer and it will create a graph. Args: model(paddle.nn.Layer): The model to be traced. Examples: .. code-block:: python from paddeslim.core.graph_tracer import GraphTracer from paddle.vision.models import resnet18 model = resnet18() x = paddle.rand([1, 3, 224, 224]) tracer = GraphTracer(model) tracer(x) print(tracer.graph) """ def __init__(self, model: paddle.nn.Layer): super(GraphTracer, self).__init__() self._model = model self._graph = None self._call_count = {} self._tensor_previous = {} @property def METHOD_NAME(self) -> Graph: assert self._graph is not None, "Please trace the graph by calling forward function of current tracer." return self._graph def forward(self, inputs, *args, **kwargs): self._graph = Graph() _add_call_hook(self._model, self._analyze_modules_op) self._model(inputs, *args, **kwargs) _remove_call_hook(self._model) def _analyze_modules_op(self, op, inputs, *args, **kwargs): node = self._trace_in(op, inputs) #print(f"inputs: {inputs.name}") outputs = op.__forward_orig__(inputs, *args, **kwargs) #print(f"outputs: {outputs.name}") self._trace_out(node, outputs) return outputs def _call_layer(self, layer): layer_name = layer.full_name() if layer_name not in self._call_count: self._call_count[layer_name] = 0 self._call_count[layer_name] += 1 return self._call_count[layer_name] def _trace_in(self, layer, inputs): inputs = self._convert_to_list(inputs) call_cout = self._call_layer(layer) current_node = Node(layer, call_cout) if current_node.name not in self._graph._name2node: self._graph._name2node[current_node.name] = current_node current_node = self._graph._name2node[current_node.name] for inp in inputs: last_node = self._tensor_previous.get(inp.name, None) if last_node is not None: assert isinstance(last_node, Node) if last_node not in current_node.previous_nodes: current_node.previous_nodes.append(last_node) if current_node not in last_node.next_nodes: last_node.next_nodes.append(current_node) return current_node def _trace_out(self, current_node, outputs): assert current_node is not None, "The current node has not been visited." if current_node.is_leaf(): outputs = self._convert_to_list(outputs) for out in outputs: self._tensor_previous[out.name] = current_node def _convert_to_list(self, tensors): """ Convert tensor to list. It is important to convert the inputs to a list. Because visiting the tensor by 'for ... in' will create new temp variables and break the tracing process. """ if isinstance(tensors, paddle.Tensor): return [tensors] elif isinstance(tensors, (list, tuple)): for _t in tensors: assert isinstance(_t, paddle.Tensor) return tensors raise TypeError( f"Unsopported type: {type(tensors)}; The inputs type should be paddle.Tensor' or list of paddle.Tensor." )
2,539
test scalar param array
from __future__ import annotations import datetime from collections import OrderedDict import numpy as np import pandas as pd import pandas.testing as tm import pytest import sqlalchemy as sa from pytest import param import ibis import ibis.expr.datatypes as dt from ibis import _ try: from google.api_core.exceptions import BadRequest as GoogleBadRequest except ImportError: GoogleBadRequest = None @pytest.mark.parametrize( ("column", "raw_value"), [ ("double_col", 0.0), ("double_col", 10.1), ("float_col", 1.1), ("float_col", 2.2), ], ) @pytest.mark.notimpl(["datafusion"]) def test_floating_scalar_parameter(backend, alltypes, df, column, raw_value): value = ibis.param(dt.double) expr = (alltypes[column] + value).name("tmp") expected = df[column] + raw_value result = expr.execute(params={value: raw_value}) expected = backend.default_series_rename(expected) backend.assert_series_equal(result, expected, check_dtype=False) @pytest.mark.parametrize( ("start_string", "end_string"), [("2009-03-01", "2010-07-03"), ("2014-12-01", "2017-01-05")], ) @pytest.mark.notimpl(["datafusion", "mssql", "trino", "druid"]) @pytest.mark.broken(["oracle"], raises=sa.exc.DatabaseError) def test_date_scalar_parameter(backend, alltypes, start_string, end_string): start, end = ibis.param(dt.date), ibis.param(dt.date) col = alltypes.timestamp_col.date() expr = col.between(start, end).name("output") expected_expr = col.between(start_string, end_string).name("output") result = expr.execute(params={start: start_string, end: end_string}) expected = expected_expr.execute() backend.assert_series_equal(result, expected) @pytest.mark.notimpl(["datafusion"]) def test_timestamp_accepts_date_literals(alltypes): date_string = "2009-03-01" param = ibis.param(dt.timestamp) expr = alltypes.mutate(param=param) params = {param: date_string} assert expr.compile(params=params) is not None @pytest.mark.notimpl( ["dask", "datafusion", "impala", "pandas", "pyspark", "druid", "oracle"] ) @pytest.mark.never( ["mysql", "sqlite", "mssql"], reason="backend will never implement array types" ) def METHOD_NAME(con): value = [1, 2, 3] param = ibis.param(dt.Array(dt.int64)) result = con.execute(param.length().name("tmp"), params={param: value}) assert result == len(value) @pytest.mark.notimpl(["datafusion", "impala", "postgres", "pyspark", "druid", "oracle"]) @pytest.mark.never( ["mysql", "sqlite", "mssql"], reason="mysql and sqlite will never implement struct types", ) def test_scalar_param_struct(con): value = dict(a=1, b="abc", c=3.0) param = ibis.param("struct<a: int64, b: string, c: float64>") result = con.execute(param["a"], params={param: value}) assert result == value["a"] @pytest.mark.notimpl( ["clickhouse", "datafusion", "impala", "pyspark", "polars", "druid", "oracle"] ) @pytest.mark.never( ["mysql", "sqlite", "mssql"], reason="mysql and sqlite will never implement map types", ) @pytest.mark.notyet(["bigquery"]) def test_scalar_param_map(con): value = {"a": "ghi", "b": "def", "c": "abc"} param = ibis.param(dt.Map(dt.string, dt.string)) result = con.execute(param["b"], params={param: value}) assert result == value["b"] @pytest.mark.parametrize( ("value", "dtype", "col"), [ param("0", "string", "string_col", id="string"), param(0, "int64", "int_col", id="int"), param(0.0, "float64", "double_col", id="double"), param( True, "bool", "bool_col", id="bool", marks=[pytest.mark.notimpl(["druid"])], ), param( "2009-01-20 01:02:03", "timestamp", "timestamp_col", id="string_timestamp", marks=[ pytest.mark.notimpl(["druid"]), pytest.mark.broken( ["bigquery"], raises=GoogleBadRequest, reason="No matching for operator = for argument types: DATETIME, TIMESTAMP", ), ], ), param( datetime.date(2009, 1, 20), "timestamp", "timestamp_col", id="date_timestamp", marks=[ pytest.mark.notimpl(["druid"]), pytest.mark.broken( ["bigquery"], raises=GoogleBadRequest, reason="No matching for operator = for argument types: DATETIME, TIMESTAMP", ), ], ), param( datetime.datetime(2009, 1, 20, 1, 2, 3), "timestamp", "timestamp_col", id="datetime_timestamp", marks=[ pytest.mark.notimpl(["druid"]), pytest.mark.broken( ["bigquery"], raises=GoogleBadRequest, reason="No matching for operator = for argument types: DATETIME, TIMESTAMP", ), ], ), ], ) @pytest.mark.notimpl(["datafusion"]) def test_scalar_param(alltypes, df, value, dtype, col): param = ibis.param(dtype) expr = alltypes.filter([_[col] == param]) result = ( expr.execute(params={param: value}).sort_values("id").reset_index(drop=True) ) expected = df.loc[df[col] == value].sort_values("id").reset_index(drop=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "value", ["2009-01-20", datetime.date(2009, 1, 20), datetime.datetime(2009, 1, 20)], ids=["string", "date", "datetime"], ) @pytest.mark.notimpl(["datafusion", "druid", "oracle"]) @pytest.mark.notyet(["impala"], reason="impala doesn't support dates") def test_scalar_param_date(backend, alltypes, value): param = ibis.param("date") ds_col = alltypes.date_string_col month = ds_col[:2] day = ds_col[3:5] year = "20" + ds_col[6:8] date_col = (year + "-" + month + "-" + day).cast(param.type()) base = alltypes.mutate(date_col=date_col) expr = ( alltypes.mutate(date_col=date_col) .filter(lambda t: t.date_col == param) .drop("date_col") ) result = ( expr.execute(params={param: value}).sort_values("id").reset_index(drop=True) ) df = base.execute() expected = ( df.loc[df.date_col.dt.normalize() == pd.Timestamp(value).normalize()] .sort_values("id") .reset_index(drop=True) .drop(columns=["date_col"]) ) backend.assert_frame_equal(result, expected) @pytest.mark.notyet(["mysql"], reason="no struct support") @pytest.mark.notimpl( [ "postgres", "datafusion", "clickhouse", "polars", "duckdb", "sqlite", "snowflake", "impala", "oracle", "pyspark", "mssql", "trino", "druid", ] ) def test_scalar_param_nested(con): param = ibis.param("struct<x: array<struct<y: array<double>>>>") value = OrderedDict([("x", [OrderedDict([("y", [1.0, 2.0, 3.0])])])]) result = con.execute(param, {param: value}) assert pytest.approx(result["x"][0]["y"]) == np.array([1.0, 2.0, 3.0])
2,540
test fopen with disallowed fds
""" Unit Tests for functions located in salt/utils/files.py """ import copy import io import os import pytest import salt.utils.files from tests.support.mock import MagicMock, patch def test_safe_rm(): with patch("os.remove") as os_remove_mock: salt.utils.files.safe_rm("dummy_tgt") assert os_remove_mock.called is True def test_safe_rm_exceptions(tmp_path): assert ( salt.utils.files.safe_rm(str(tmp_path / "no_way_this_is_a_file_nope.sh")) is None ) def test_safe_walk_symlink_recursion(tmp_path): if tmp_path.stat().st_ino == 0: pytest.xfail(reason="inodes not supported in {}".format(tmp_path)) tmp_path = str(tmp_path) os.mkdir(os.path.join(tmp_path, "fax")) os.makedirs(os.path.join(tmp_path, "foo", "bar")) os.symlink(os.path.join("..", ".."), os.path.join(tmp_path, "foo", "bar", "baz")) os.symlink("foo", os.path.join(tmp_path, "root")) expected = [ (os.path.join(tmp_path, "root"), ["bar"], []), (os.path.join(tmp_path, "root", "bar"), ["baz"], []), (os.path.join(tmp_path, "root", "bar", "baz"), ["fax", "foo", "root"], []), (os.path.join(tmp_path, "root", "bar", "baz", "fax"), [], []), ] paths = [] for root, dirs, names in salt.utils.files.safe_walk(os.path.join(tmp_path, "root")): paths.append((root, sorted(dirs), names)) assert paths == expected def METHOD_NAME(): """ This is safe to have as a unit test since we aren't going to actually try to read or write. We want to ensure that we are raising a TypeError. Python 3's open() builtin will treat the booleans as file descriptor numbers and try to open stdin/stdout. We also want to test fd 2 which is stderr. """ for invalid_fn in (False, True, 0, 1, 2): try: with salt.utils.files.fopen(invalid_fn): pass except TypeError: # This is expected. We aren't using an assertRaises here # because we want to ensure that if we did somehow open the # filehandle, that it doesn't remain open. pass else: # We probably won't even get this far if we actually opened # stdin/stdout as a file descriptor. It is likely to cause the # integration suite to die since, news flash, closing # stdin/stdout/stderr is usually not a wise thing to do in the # middle of a program's execution. pytest.fail( "fopen() should have been prevented from opening a file " "using {} as the filename".format(invalid_fn) ) def test_fopen_binary_line_buffering(tmp_path): tmp_file = os.path.join(tmp_path, "foobar") with patch("builtins.open") as open_mock, patch( "salt.utils.files.is_fcntl_available", MagicMock(return_value=False) ): salt.utils.files.fopen(os.path.join(tmp_path, "foobar"), mode="b", buffering=1) assert open_mock.called assert open_mock.call_args[1]["buffering"] == io.DEFAULT_BUFFER_SIZE def _create_temp_structure(temp_directory, structure): for folder, files in structure.items(): current_directory = os.path.join(temp_directory, folder) os.makedirs(current_directory) for name, content in files.items(): path = os.path.join(temp_directory, folder, name) with salt.utils.files.fopen(path, "w+") as fh: fh.write(content) def _validate_folder_structure_and_contents(target_directory, desired_structure): for folder, files in desired_structure.items(): for name, content in files.items(): path = os.path.join(target_directory, folder, name) with salt.utils.files.fopen(path) as fh: assert fh.read().strip() == content def test_recursive_copy(tmp_path): src = str(tmp_path / "src") dest = str(tmp_path / "dest") src_structure = { "foo": {"foofile.txt": "fooSTRUCTURE"}, "bar": {"barfile.txt": "barSTRUCTURE"}, } dest_structure = { "foo": {"foo.txt": "fooTARGET_STRUCTURE"}, "baz": {"baz.txt": "bazTARGET_STRUCTURE"}, } # Create the file structures in both src and dest dirs _create_temp_structure(src, src_structure) _create_temp_structure(dest, dest_structure) # Perform the recursive copy salt.utils.files.recursive_copy(src, dest) # Confirm results match expected results desired_structure = copy.copy(dest_structure) desired_structure.update(src_structure) _validate_folder_structure_and_contents(dest, desired_structure) @pytest.mark.skip_unless_on_windows def test_case_sensitive_filesystem_win(): """ Test case insensitivity on Windows. """ result = salt.utils.files.case_insensitive_filesystem() assert result is True @pytest.mark.skip_unless_on_linux def test_case_sensitive_filesystem_lin(): """ Test case insensitivity on Linux. """ result = salt.utils.files.case_insensitive_filesystem() assert result is False @pytest.mark.skip_unless_on_darwin def test_case_sensitive_filesystem_dar(): """ Test case insensitivity on Darwin. """ result = salt.utils.files.case_insensitive_filesystem() assert result is True
2,541
drop user granted directly
from testflows.core import * from testflows.asserts import error from rbac.requirements import * from rbac.helper.common import * import rbac.helper.errors as errors @TestSuite def METHOD_NAME(self, node=None): """Check that a user is able to execute `DROP USER` with privileges are granted directly. """ user_name = f"user_{getuid()}" if node is None: node = self.context.node with user(node, f"{user_name}"): Suite(run=drop_user, examples=Examples("privilege grant_target_name user_name", [ tuple(list(row)+[user_name,user_name]) for row in drop_user.examples ], args=Args(name="check privilege={privilege}", format_name=True))) @TestSuite def drop_user_granted_via_role(self, node=None): """Check that a user is able to execute `DROP USER` with privileges are granted through a role. """ user_name = f"user_{getuid()}" role_name = f"role_{getuid()}" if node is None: node = self.context.node with user(node, f"{user_name}"), role(node, f"{role_name}"): with When("I grant the role to the user"): node.query(f"GRANT {role_name} TO {user_name}") Suite(run=drop_user, examples=Examples("privilege grant_target_name user_name", [ tuple(list(row)+[role_name,user_name]) for row in drop_user.examples ], args=Args(name="check privilege={privilege}", format_name=True))) @TestOutline(Suite) @Examples("privilege",[ ("ALL",), ("ACCESS MANAGEMENT",), ("DROP USER",), ]) def drop_user(self, privilege, grant_target_name, user_name, node=None): """Check that user is only able to execute `DROP USER` when they have the necessary privilege. """ exitcode, message = errors.not_enough_privileges(name=user_name) if node is None: node = self.context.node with Scenario("DROP USER without privilege"): drop_user_name = f"drop_user_{getuid()}" with user(node, drop_user_name): with When("I grant the user NONE privilege"): node.query(f"GRANT NONE TO {grant_target_name}") with And("I grant the user USAGE privilege"): node.query(f"GRANT USAGE ON *.* TO {grant_target_name}") with When("I check the user can't drop a user"): node.query(f"DROP USER {drop_user_name}", settings=[("user",user_name)], exitcode=exitcode, message=message) with Scenario("DROP USER with privilege"): drop_user_name = f"drop_user_{getuid()}" with user(node, drop_user_name): with When(f"I grant {privilege}"): node.query(f"GRANT {privilege} ON *.* TO {grant_target_name}") with Then("I check the user can drop a user"): node.query(f"DROP USER {drop_user_name}", settings = [("user", f"{user_name}")]) with Scenario("DROP USER on cluster"): drop_user_name = f"drop_user_{getuid()}" try: with Given("I have a user on a cluster"): node.query(f"CREATE USER {drop_user_name} ON CLUSTER sharded_cluster") with When(f"I grant {privilege}"): node.query(f"GRANT {privilege} ON *.* TO {grant_target_name}") with Then("I check the user can drop a user"): node.query(f"DROP USER {drop_user_name} ON CLUSTER sharded_cluster", settings = [("user", f"{user_name}")]) finally: with Finally("I drop the user"): node.query(f"DROP USER IF EXISTS {drop_user_name} ON CLUSTER sharded_cluster") with Scenario("DROP USER with revoked privilege"): drop_user_name = f"drop_user_{getuid()}" with user(node, drop_user_name): with When(f"I grant {privilege}"): node.query(f"GRANT {privilege} ON *.* TO {grant_target_name}") with And(f"I revoke {privilege}"): node.query(f"REVOKE {privilege} ON *.* FROM {grant_target_name}") with Then("I check the user can't drop a user"): node.query(f"DROP USER {drop_user_name}", settings=[("user",user_name)], exitcode=exitcode, message=message) @TestFeature @Name("drop user") @Requirements( RQ_SRS_006_RBAC_Privileges_DropUser("1.0"), RQ_SRS_006_RBAC_Privileges_All("1.0"), RQ_SRS_006_RBAC_Privileges_None("1.0") ) def feature(self, node="clickhouse1"): """Check the RBAC functionality of DROP USER. """ self.context.node = self.context.cluster.node(node) Suite(run=METHOD_NAME, setup=instrument_clickhouse_server_log) Suite(run=drop_user_granted_via_role, setup=instrument_clickhouse_server_log)
2,542
evaluate
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from functools import partial import paddle from utils import convert_example, reader, unify_prompt_name from paddlenlp.datasets import MapDataset, load_dataset from paddlenlp.metrics import SpanEvaluator from paddlenlp.transformers import UIE, AutoTokenizer from paddlenlp.utils.log import logger @paddle.no_grad() def METHOD_NAME(model, metric, data_loader): """ Given a dataset, it evals model and computes the metric. Args: model(obj:`paddle.nn.Layer`): A model to classify texts. metric(obj:`paddle.metric.Metric`): The evaluation metric. data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches. """ model.eval() metric.reset() for batch in data_loader: input_ids, token_type_ids, att_mask, pos_ids, start_ids, end_ids = batch start_prob, end_prob = model(input_ids, token_type_ids, att_mask, pos_ids) start_ids = paddle.cast(start_ids, "float32") end_ids = paddle.cast(end_ids, "float32") num_correct, num_infer, num_label = metric.compute(start_prob, end_prob, start_ids, end_ids) metric.update(num_correct, num_infer, num_label) precision, recall, f1 = metric.accumulate() model.train() return precision, recall, f1 def do_eval(): tokenizer = AutoTokenizer.from_pretrained(args.model_path) model = UIE.from_pretrained(args.model_path) test_ds = load_dataset(reader, data_path=args.test_path, max_seq_len=args.max_seq_len, lazy=False) class_dict = {} if args.debug: for data in test_ds: class_name = unify_prompt_name(data["prompt"]) # Only positive examples are evaluated in debug mode if len(data["result_list"]) != 0: class_dict.setdefault(class_name, []).append(data) else: class_dict["all_classes"] = test_ds for key in class_dict.keys(): if args.debug: test_ds = MapDataset(class_dict[key]) else: test_ds = class_dict[key] test_ds = test_ds.map(partial(convert_example, tokenizer=tokenizer, max_seq_len=args.max_seq_len)) test_batch_sampler = paddle.io.BatchSampler(dataset=test_ds, batch_size=args.batch_size, shuffle=False) test_data_loader = paddle.io.DataLoader(dataset=test_ds, batch_sampler=test_batch_sampler, return_list=True) metric = SpanEvaluator(args.limit) precision, recall, f1 = METHOD_NAME(model, metric, test_data_loader) logger.info("-----------------------------") logger.info("Class Name: %s" % key) logger.info("Evaluation Precision: %.5f | Recall: %.5f | F1: %.5f" % (precision, recall, f1)) if __name__ == "__main__": # yapf: disable parser = argparse.ArgumentParser() parser.add_argument("--model_path", type=str, default=None, help="The path of saved model that you want to load.") parser.add_argument("--test_path", type=str, default=None, help="The path of test set.") parser.add_argument("--batch_size", type=int, default=16, help="Batch size per GPU/CPU for training.") parser.add_argument("--max_seq_len", type=int, default=512, help="The maximum total input sequence length after tokenization.") parser.add_argument("--debug", action='store_true', help="Precision, recall and F1 score are calculated for each class separately if this option is enabled.") parser.add_argument("--limit", type=float, default=0.5, help="The limit when using SpanEvaluator, when the last dimension in probability arrays is greater than the limit, the corresponding span will be returned.") args = parser.parse_args() # yapf: enable do_eval()
2,543
method
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # # Code generated by aaz-dev-tools # -------------------------------------------------------------------------------------------- # pylint: skip-file # flake8: noqa from azure.cli.core.aaz import * @register_command( "vm extension image list-versions", ) class ListVersions(AAZCommand): """List the versions for available extensions. :example: Find the available versions for the Docker extension. az vm extension image list-versions --publisher Microsoft.Azure.Extensions -l westus -n DockerExtension -o table """ _aaz_info = { "version": "2022-11-01", "resources": [ ["mgmt-plane", "/subscriptions/{}/providers/microsoft.compute/locations/{}/publishers/{}/artifacttypes/vmextension/types/{}/versions", "2022-11-01"], ] } def _handler(self, command_args): super()._handler(command_args) self._execute_operations() return self._output() _args_schema = None @classmethod def _build_arguments_schema(cls, *args, **kwargs): if cls._args_schema is not None: return cls._args_schema cls._args_schema = super()._build_arguments_schema(*args, **kwargs) # define Arg Group "" _args_schema = cls._args_schema _args_schema.location = AAZResourceLocationArg( help="Location. Values from: `az account list-locations`. You can configure the default location using `az configure --defaults location=<location>`.", required=True, id_part="name", ) _args_schema.publisher_name = AAZStrArg( options=["-p", "--publisher", "--publisher-name"], help="Image publisher name.", required=True, id_part="child_name_1", ) _args_schema.name = AAZStrArg( options=["-n", "--name", "--type"], help="Name of the extension.", required=True, id_part="child_name_3", ) _args_schema.filter = AAZStrArg( options=["--filter"], help="The filter to apply on the operation. Default value is None.", ) _args_schema.orderby = AAZStrArg( options=["--orderby"], help="The $orderby odata query option.", ) _args_schema.top = AAZIntArg( options=["--top"], help="The $top odata query option.", ) return cls._args_schema def _execute_operations(self): self.pre_operations() self.VirtualMachineExtensionImagesListVersions(ctx=self.ctx)() self.post_operations() @register_callback def pre_operations(self): pass @register_callback def post_operations(self): pass def _output(self, *args, **kwargs): result = self.deserialize_output(self.ctx.vars.instance, client_flatten=True) return result class VirtualMachineExtensionImagesListVersions(AAZHttpOperation): CLIENT_TYPE = "MgmtClient" def __call__(self, *args, **kwargs): request = self.make_request() session = self.client.send_request(request=request, stream=False, **kwargs) if session.http_response.status_code in [200]: return self.on_200(session) return self.on_error(session.http_response) @property def url(self): return self.client.format_url( "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmextension/types/{type}/versions", **self.url_parameters ) @property def METHOD_NAME(self): return "GET" @property def error_format(self): return "ODataV4Format" @property def url_parameters(self): parameters = { **self.serialize_url_param( "location", self.ctx.args.location, required=True, ), **self.serialize_url_param( "publisherName", self.ctx.args.publisher_name, required=True, ), **self.serialize_url_param( "subscriptionId", self.ctx.subscription_id, required=True, ), **self.serialize_url_param( "type", self.ctx.args.name, required=True, ), } return parameters @property def query_parameters(self): parameters = { **self.serialize_query_param( "$filter", self.ctx.args.filter, ), **self.serialize_query_param( "$orderby", self.ctx.args.orderby, ), **self.serialize_query_param( "$top", self.ctx.args.top, ), **self.serialize_query_param( "api-version", "2022-11-01", required=True, ), } return parameters @property def header_parameters(self): parameters = { **self.serialize_header_param( "Accept", "application/json", ), } return parameters def on_200(self, session): data = self.deserialize_http_content(session) self.ctx.set_var( "instance", data, schema_builder=self._build_schema_on_200 ) _schema_on_200 = None @classmethod def _build_schema_on_200(cls): if cls._schema_on_200 is not None: return cls._schema_on_200 cls._schema_on_200 = AAZListType() _schema_on_200 = cls._schema_on_200 _schema_on_200.Element = AAZObjectType() _element = cls._schema_on_200.Element _element.id = AAZStrType( flags={"read_only": True}, ) _element.location = AAZStrType( flags={"required": True}, ) _element.name = AAZStrType( flags={"required": True, "read_only": True}, ) _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.tags = AAZDictType() _element.type = AAZStrType( flags={"read_only": True}, ) properties = cls._schema_on_200.Element.properties properties.compute_role = AAZStrType( serialized_name="computeRole", flags={"required": True}, ) properties.handler_schema = AAZStrType( serialized_name="handlerSchema", flags={"required": True}, ) properties.operating_system = AAZStrType( serialized_name="operatingSystem", flags={"required": True}, ) properties.supports_multiple_extensions = AAZBoolType( serialized_name="supportsMultipleExtensions", ) properties.vm_scale_set_enabled = AAZBoolType( serialized_name="vmScaleSetEnabled", ) tags = cls._schema_on_200.Element.tags tags.Element = AAZStrType() return cls._schema_on_200 class _ListVersionsHelper: """Helper class for ListVersions""" __all__ = ["ListVersions"]
2,544
test distance
"""GridLAB-D Geodata Distance Package The distance package computes the shortest distance between consecutive positions. INPUT id - record id (see column_names configuration) latitude - latitude of record (see column_names configuration) longitude - longitude of record (see column_names configuration) OUTPUT distance - distance from previous record id or first record (see relative option and column_names configuration) OPTIONS units - units in which distance is measured (default is "meters"). Valid units are "meters", "m", "kilometers", "km", "miles", "mi", "yards", "yd", "ft", or "feet". The default is "meters". relative - boolean value to use last record as distance reference (default is False) precision - dictionary of precision options distance - decimals with which distance values are delivered (default is 0) CONFIGURATION method - specifies the method used to calculate distances (default 'haversine'). Haversine is the only method currently supported. This method does not account for the oblate spheroid shape of the earth. column_names - dictionary of column names to use LAT - latitude column name (default "latitude") LON - longitude column name (default "longitude") ID - record id column name (default "id") DIST - distance column name (default "distance") """ version = 1 # specify API version import sys import json import math, numpy from pandas import DataFrame import haversine # # Defaults # default_options = { "units" : "meters", "relative" : False, "precision" : { "distance" : 0, } } default_config = { "method" : "haversine", "column_names" : { "LAT" : "latitude", "LON" : "longitude", "ID" : "id", "DIST" : "distance", }, } valid_units = { "m" : 1.0, "meters" : 1.0, "km" : 1e-3, "kilometers" : 1e-3, "mi" : 0.000621371, "miles" : 0.000621371, "yards" : 1.09361296, "yd" : 1.09361296, "ft" : 3.28083888, "feet" : 3.28083888, } # # Implementation of address package # def apply(data, options=default_options, config=default_config, warning=print): """Perform distance calculation at locations in data ARGUMENTS: data (pandas.DataFrame) The data frame must contain `latitude` and `longitude` fields between which distances will be computed. options (dict) "units" specifies the units in which distances are measured. Valid units are ["meters","m"], ["kilometers","km"], ["feet","ft"], ["yards","yd", and ["miles","mi"]. config (dict) There are no configuration options RETURNS: pandas.DataFrame The first (and only) return value is the `data` data frame with either the `distance` fields updated/added for consecutive fields. """ # convert lat,lon to address try: path = list(zip(data[config["column_names"]["LAT"]],data[config["column_names"]["LON"]],data[config["column_names"]["ID"]])) except Exception as err: path = None if type(path) == type(None): raise Exception("distance calculation requires 'latitude', 'longitude', and 'id' fields") if len(path) == 0: dist = [] else: dist = [0.0] pos1 = path[0] lat1 = pos1[0] lon1 = pos1[1] if config["method"] == "haversine": for pos2 in path[1:]: id = pos2[2] lat2 = pos2[0] lon2 = pos2[1] d = haversine.haversine([lat1,lon1],[lat2,lon2],unit=haversine.Unit.METERS) if options["relative"]: if math.isnan(id): dist.append(d) else: lat1 = lat2 lon1 = lon2 dist.append(0.0) else: lat1 = lat2 lon1 = lon2 dist.append(d+dist[-1]) else: raise Exception(f"method '{config[method]}' is not recognized") try: global valid_units data[config["column_names"]["DIST"]] = (numpy.array(dist) * valid_units[options["units"]]).round(options["precision"]["distance"]) except: raise Exception(f"unit '{options['units']}' is not recognized") return data # # Perform validation tests # if __name__ == '__main__': import unittest class TestDistance(unittest.TestCase): def METHOD_NAME(self): test = DataFrame({ "id" : [0,1], "latitude" : [37.4205,37.5205], "longitude" : [-122.2046,-122.3046], }) result = apply(test) self.assertEqual(result["distance"][1],14196.0) unittest.main()
2,545
read mat ark
# To use this file, the dependency (https://github.com/vesis84/kaldi-io-for-python) # needs to be installed. This is a light wrapper around kaldi_io that returns # torch.Tensors. from typing import Any, Callable, Iterable, Tuple import torch from torch import Tensor from torchaudio._internal import module_utils as _mod_utils if _mod_utils.is_module_available("numpy"): import numpy as np __all__ = [ "read_vec_int_ark", "read_vec_flt_scp", "read_vec_flt_ark", "read_mat_scp", "read_mat_ark", ] def _convert_method_output_to_tensor( file_or_fd: Any, fn: Callable, convert_contiguous: bool = False ) -> Iterable[Tuple[str, Tensor]]: r"""Takes a method invokes it. The output is converted to a tensor. Args: file_or_fd (str/FileDescriptor): File name or file descriptor fn (Callable): Function that has the signature (file name/descriptor) and converts it to Iterable[Tuple[str, Tensor]]. convert_contiguous (bool, optional): Determines whether the array should be converted into a contiguous layout. (Default: ``False``) Returns: Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is vec/mat """ for key, np_arr in fn(file_or_fd): if convert_contiguous: np_arr = np.ascontiguousarray(np_arr) yield key, torch.from_numpy(np_arr) @_mod_utils.requires_module("kaldi_io", "numpy") def read_vec_int_ark(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]: r"""Create generator of (key,vector<int>) tuples, which reads from the ark file/stream. Args: file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor Returns: Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the vector read from file Example >>> # read ark to a 'dictionary' >>> d = { u:d for u,d in torchaudio.kaldi_io.read_vec_int_ark(file) } """ import kaldi_io # Requires convert_contiguous to be True because elements from int32 vector are # sorted in tuples: (sizeof(int32), value) so strides are (5,) instead of (4,) which will throw an error # in from_numpy as it expects strides to be a multiple of 4 (int32). return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_int_ark, convert_contiguous=True) @_mod_utils.requires_module("kaldi_io", "numpy") def read_vec_flt_scp(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]: r"""Create generator of (key,vector<float32/float64>) tuples, read according to Kaldi scp. Args: file_or_fd (str/FileDescriptor): scp, gzipped scp, pipe or opened file descriptor Returns: Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the vector read from file Example >>> # read scp to a 'dictionary' >>> # d = { u:d for u,d in torchaudio.kaldi_io.read_vec_flt_scp(file) } """ import kaldi_io return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_flt_scp) @_mod_utils.requires_module("kaldi_io", "numpy") def read_vec_flt_ark(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]: r"""Create generator of (key,vector<float32/float64>) tuples, which reads from the ark file/stream. Args: file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor Returns: Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the vector read from file Example >>> # read ark to a 'dictionary' >>> d = { u:d for u,d in torchaudio.kaldi_io.read_vec_flt_ark(file) } """ import kaldi_io return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_flt_ark) @_mod_utils.requires_module("kaldi_io", "numpy") def read_mat_scp(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]: r"""Create generator of (key,matrix<float32/float64>) tuples, read according to Kaldi scp. Args: file_or_fd (str/FileDescriptor): scp, gzipped scp, pipe or opened file descriptor Returns: Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the matrix read from file Example >>> # read scp to a 'dictionary' >>> d = { u:d for u,d in torchaudio.kaldi_io.read_mat_scp(file) } """ import kaldi_io return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_mat_scp) @_mod_utils.requires_module("kaldi_io", "numpy") def METHOD_NAME(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]: r"""Create generator of (key,matrix<float32/float64>) tuples, which reads from the ark file/stream. Args: file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor Returns: Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the matrix read from file Example >>> # read ark to a 'dictionary' >>> d = { u:d for u,d in torchaudio.kaldi_io.read_mat_ark(file) } """ import kaldi_io return _convert_method_output_to_tensor(file_or_fd, kaldi_io.METHOD_NAME)
2,546
cf security adaptive network hardenings
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- def _cf_security(cli_ctx, **_): from azure.cli.core.commands.client_factory import get_mgmt_service_client from azure.mgmt.security import SecurityCenter return get_mgmt_service_client(cli_ctx, SecurityCenter, asc_location="centralus") def cf_security_tasks(cli_ctx, _): # do not return cli_ctx.tasks for home region compatibility return _cf_security(cli_ctx) def cf_security_alerts(cli_ctx, _): return _cf_security(cli_ctx).alerts def cf_security_alerts_suppression_rule(cli_ctx, _): return _cf_security(cli_ctx).alerts_suppression_rules def cf_security_settings(cli_ctx, _): return _cf_security(cli_ctx).settings def cf_security_contacts(cli_ctx, _): return _cf_security(cli_ctx).security_contacts def cf_security_auto_provisioning_settings(cli_ctx, _): return _cf_security(cli_ctx).auto_provisioning_settings def cf_security_discovered_security_solutions(cli_ctx, _): # do not return cli_ctx.discovered_security_solutions for home region compatibility return _cf_security(cli_ctx) def cf_security_external_security_solutions(cli_ctx, _): # do not return cli_ctx.external_security_solutions for home region compatibility return _cf_security(cli_ctx) def cf_security_jit_network_access_policies(cli_ctx, _): return _cf_security(cli_ctx).jit_network_access_policies def cf_security_locations(cli_ctx, _): return _cf_security(cli_ctx).locations def cf_security_pricings(cli_ctx, _): return _cf_security(cli_ctx).pricings def cf_security_topology(cli_ctx, _): # do not return cli_ctx.topology for home region compatibility return _cf_security(cli_ctx) def cf_security_workspace_settings(cli_ctx, _): return _cf_security(cli_ctx).workspace_settings def cf_security_advanced_threat_protection(cli_ctx, _): return _cf_security(cli_ctx).advanced_threat_protection def cf_sql_vulnerability_assessment_scans(cli_ctx, _): return _cf_security(cli_ctx).sql_vulnerability_assessment_scans def cf_sql_vulnerability_assessment_results(cli_ctx, _): return _cf_security(cli_ctx).sql_vulnerability_assessment_scan_results def cf_sql_vulnerability_assessment_baseline(cli_ctx, _): return _cf_security(cli_ctx).sql_vulnerability_assessment_baseline_rules def cf_security_assessment(cli_ctx, _): return _cf_security(cli_ctx).assessments def cf_security_assessment_metadata(cli_ctx, _): return _cf_security(cli_ctx).assessments_metadata def cf_security_sub_assessment(cli_ctx, _): return _cf_security(cli_ctx).sub_assessments def cf_security_iot_solution(cli_ctx, _): return _cf_security(cli_ctx).iot_security_solution def cf_security_iot_analytics(cli_ctx, _): return _cf_security(cli_ctx).iot_security_solution_analytics def cf_security_iot_alerts(cli_ctx, _): return _cf_security(cli_ctx).iot_security_solutions_analytics_aggregated_alert def cf_security_iot_recommendations(cli_ctx, _): return _cf_security(cli_ctx).iot_security_solutions_analytics_recommendation def cf_security_regulatory_compliance_standards(cli_ctx, _): return _cf_security(cli_ctx).regulatory_compliance_standards def cf_security_regulatory_compliance_control(cli_ctx, _): return _cf_security(cli_ctx).regulatory_compliance_controls def cf_security_regulatory_compliance_assessment(cli_ctx, _): return _cf_security(cli_ctx).regulatory_compliance_assessments def cf_security_adaptive_application_controls(cli_ctx, _): # do not return cli_ctx.adaptive_application_controls for home region compatibility return _cf_security(cli_ctx).adaptive_application_controls def METHOD_NAME(cli_ctx, _): # do not return cli_ctx.adaptive_network_hardenings for home region compatibility return _cf_security(cli_ctx).adaptive_network_hardenings def cf_security_allowed_connections(cli_ctx, _): # do not return cli_ctx.allowed_connections for home region compatibility return _cf_security(cli_ctx) def cf_security_secure_scores(cli_ctx, _): return _cf_security(cli_ctx).secure_scores def cf_security_secure_score_controls(cli_ctx, _): return _cf_security(cli_ctx).secure_score_controls def cf_security_secure_score_control_definitions(cli_ctx, _): return _cf_security(cli_ctx).secure_score_control_definitions def cf_security_security_solutions_reference_data(cli_ctx, _): return _cf_security(cli_ctx).security_solutions_reference_data def cf_security_automations(cli_ctx, _): return _cf_security(cli_ctx).automations def cf_security_security_solutions(cli_ctx, _): return _cf_security(cli_ctx)
2,547
double data type
from __future__ import annotations from typing import Collection from dbt_semantic_interfaces.enum_extension import assert_values_exhausted from dbt_semantic_interfaces.type_enums.time_granularity import TimeGranularity from typing_extensions import override from metricflow.errors.errors import UnsupportedEngineFeatureError from metricflow.sql.render.expr_renderer import ( DefaultSqlExpressionRenderer, SqlExpressionRenderer, SqlExpressionRenderResult, ) from metricflow.sql.render.sql_plan_renderer import DefaultSqlQueryPlanRenderer from metricflow.sql.sql_bind_parameters import SqlBindParameters from metricflow.sql.sql_exprs import ( SqlGenerateUuidExpression, SqlPercentileExpression, SqlPercentileFunctionType, SqlTimeDeltaExpression, ) class PostgresSqlExpressionRenderer(DefaultSqlExpressionRenderer): """Expression renderer for the PostgreSQL engine.""" @property @override def METHOD_NAME(self) -> str: """Custom double data type for the PostgreSQL engine.""" return "DOUBLE PRECISION" @property @override def supported_percentile_function_types(self) -> Collection[SqlPercentileFunctionType]: return {SqlPercentileFunctionType.CONTINUOUS, SqlPercentileFunctionType.DISCRETE} @override def visit_time_delta_expr(self, node: SqlTimeDeltaExpression) -> SqlExpressionRenderResult: """Render time delta operations for PostgreSQL, which needs custom support for quarterly granularity.""" arg_rendered = node.arg.accept(self) if node.grain_to_date: return SqlExpressionRenderResult( sql=f"DATE_TRUNC('{node.granularity.value}', {arg_rendered.sql}::timestamp)", bind_parameters=arg_rendered.bind_parameters, ) count = node.count granularity = node.granularity if granularity == TimeGranularity.QUARTER: granularity = TimeGranularity.MONTH count *= 3 return SqlExpressionRenderResult( sql=f"{arg_rendered.sql} - MAKE_INTERVAL({granularity.value}s => {count})", bind_parameters=arg_rendered.bind_parameters, ) @override def visit_generate_uuid_expr(self, node: SqlGenerateUuidExpression) -> SqlExpressionRenderResult: return SqlExpressionRenderResult( sql="GEN_RANDOM_UUID()", bind_parameters=SqlBindParameters(), ) @override def visit_percentile_expr(self, node: SqlPercentileExpression) -> SqlExpressionRenderResult: """Render a percentile expression for Postgres.""" arg_rendered = self.render_sql_expr(node.order_by_arg) params = arg_rendered.bind_parameters percentile = node.percentile_args.percentile if node.percentile_args.function_type is SqlPercentileFunctionType.CONTINUOUS: function_str = "PERCENTILE_CONT" elif node.percentile_args.function_type is SqlPercentileFunctionType.DISCRETE: function_str = "PERCENTILE_DISC" elif node.percentile_args.function_type is SqlPercentileFunctionType.APPROXIMATE_CONTINUOUS: raise UnsupportedEngineFeatureError( "Approximate continuous percentile aggregate not supported for Postgres. Set " + "use_approximate_percentile to false in all percentile measures." ) elif node.percentile_args.function_type is SqlPercentileFunctionType.APPROXIMATE_DISCRETE: raise UnsupportedEngineFeatureError( "Approximate discrete percentile aggregate not supported for Postgres. Set " + "use_approximate_percentile to false in all percentile measures." ) else: assert_values_exhausted(node.percentile_args.function_type) return SqlExpressionRenderResult( sql=f"{function_str}({percentile}) WITHIN GROUP (ORDER BY ({arg_rendered.sql}))", bind_parameters=params, ) class PostgresSQLSqlQueryPlanRenderer(DefaultSqlQueryPlanRenderer): """Plan renderer for the PostgreSQL engine.""" EXPR_RENDERER = PostgresSqlExpressionRenderer() @property @override def expr_renderer(self) -> SqlExpressionRenderer: return self.EXPR_RENDERER
2,548
test transform skipped
import base64 import json import unittest import zlib from unittest.mock import patch, ANY import asyncio from orangecontrib.text.vectorization.sbert import SBERT, EMB_DIM from orangecontrib.text import Corpus PATCH_METHOD = 'httpx.AsyncClient.post' RESPONSES = { t: [i] * EMB_DIM for i, t in enumerate(Corpus.from_file("deerwester").documents) } RESPONSE_NONE = RESPONSES.copy() RESPONSE_NONE[list(RESPONSE_NONE.keys())[-1]] = None IDEAL_RESPONSE = [[i] * EMB_DIM for i in range(9)] class DummyResponse: def __init__(self, content): self.content = content def _decompress_text(instance): return zlib.decompress(base64.b64decode(instance.encode("utf-8"))).decode("utf-8") def make_dummy_post(responses, sleep=0): @staticmethod async def dummy_post(url, headers, data=None, content=None): assert data or content await asyncio.sleep(sleep) data = json.loads(content.decode("utf-8", "replace")) data_ = data if isinstance(data, list) else [data] texts = [_decompress_text(instance) for instance in data_] responses_ = [responses[t] for t in texts] r = {"embedding": responses_ if isinstance(data, list) else responses_[0]} return DummyResponse(content=json.dumps(r).encode("utf-8")) return dummy_post class TestSBERT(unittest.TestCase): def setUp(self): self.sbert = SBERT() self.sbert.clear_cache() self.corpus = Corpus.from_file('deerwester') def tearDown(self): self.sbert.clear_cache() @patch(PATCH_METHOD) def test_empty_corpus(self, mock): self.assertEqual(len(self.sbert(self.corpus.documents[:0])), 0) mock.request.assert_not_called() mock.get_response.assert_not_called() self.assertEqual( self.sbert._server_communicator._cache._cache_dict, dict() ) @patch(PATCH_METHOD, make_dummy_post(RESPONSES)) def test_success(self): result = self.sbert(self.corpus.documents) self.assertEqual(result, IDEAL_RESPONSE) @patch(PATCH_METHOD, make_dummy_post(RESPONSE_NONE)) def test_none_result(self): result = self.sbert(self.corpus.documents) self.assertEqual(result, IDEAL_RESPONSE[:-1] + [None]) @patch(PATCH_METHOD, make_dummy_post(RESPONSES)) def test_transform(self): res, skipped = self.sbert.transform(self.corpus) self.assertIsNone(skipped) self.assertEqual(len(self.corpus), len(res)) self.assertTupleEqual(self.corpus.domain.metas, res.domain.metas) self.assertEqual(384, len(res.domain.attributes)) @patch(PATCH_METHOD, make_dummy_post(RESPONSE_NONE)) def METHOD_NAME(self): res, skipped = self.sbert.transform(self.corpus) self.assertEqual(len(self.corpus) - 1, len(res)) self.assertTupleEqual(self.corpus.domain.metas, res.domain.metas) self.assertEqual(384, len(res.domain.attributes)) self.assertEqual(1, len(skipped)) self.assertTupleEqual(self.corpus.domain.metas, skipped.domain.metas) self.assertEqual(0, len(skipped.domain.attributes)) @patch(PATCH_METHOD, make_dummy_post(RESPONSES)) def test_batches_success(self): for i in range(1, 11): # try different batch sizes result = self.sbert.embed_batches(self.corpus.documents, i) self.assertEqual(result, IDEAL_RESPONSE) @patch(PATCH_METHOD, make_dummy_post(RESPONSE_NONE)) def test_batches_none_result(self): for i in range(1, 11): # try different batch sizes result = self.sbert.embed_batches(self.corpus.documents, i) self.assertEqual(result, IDEAL_RESPONSE[:-1] + [None]) @patch("orangecontrib.text.vectorization.sbert._ServerCommunicator.embedd_data") def test_reordered(self, mock): """Test that texts are reordered according to their length""" self.sbert(self.corpus.documents) mock.assert_called_with( tuple(sorted(self.corpus.documents, key=len, reverse=True)), callback=ANY ) self.sbert([["1", "2"], ["4", "5", "6"], ["0"]]) mock.assert_called_with((["4", "5", "6"], ["1", "2"], ["0"]), callback=ANY) if __name__ == "__main__": unittest.main()
2,549
output size
import numpy as np import pandas as pd from torch import nn from torch.utils.data import sampler from clinicadl.utils.exceptions import ClinicaDLArgumentError from clinicadl.utils.task_manager.task_manager import TaskManager class RegressionManager(TaskManager): def __init__( self, mode, ): super().__init__(mode) @property def columns(self): return [ "participant_id", "session_id", f"{self.mode}_id", "true_label", "predicted_label", ] @property def evaluation_metrics(self): return ["MSE", "MAE"] @property def save_outputs(self): return False def generate_test_row(self, idx, data, outputs): return [ [ data["participant_id"][idx], data["session_id"][idx], data[f"{self.mode}_id"][idx].item(), data["label"][idx].item(), outputs[idx].item(), ] ] def compute_metrics(self, results_df): return self.metrics_module.apply( results_df.true_label.values, results_df.predicted_label.values, ) @staticmethod def generate_label_code(df, label): return None @staticmethod def METHOD_NAME(input_size, df, label): return 1 @staticmethod def generate_sampler(dataset, sampler_option="random", n_bins=5): df = dataset.df count = np.zeros(n_bins) values = df[dataset.label].values.astype(float) thresholds = [ min(values) + i * (max(values) - min(values)) / n_bins for i in range(n_bins) ] for idx in df.index: label = df.loc[idx, dataset.label] key = max(np.where((label >= np.array(thresholds))[0])) count[[key]] += 1 weight_per_class = 1 / np.array(count) weights = [] for idx, label in enumerate(df[dataset.label].values): key = max(np.where((label >= np.array(thresholds)))[0]) weights += [weight_per_class[key]] * dataset.elem_per_image if sampler_option == "random": return sampler.RandomSampler(weights) elif sampler_option == "weighted": return sampler.WeightedRandomSampler(weights, len(weights)) else: raise NotImplementedError( f"The option {sampler_option} for sampler on regression task is not implemented" ) def ensemble_prediction( self, performance_df, validation_df, selection_threshold=None, use_labels=True, method="hard", ): """ Compute the results at the image-level by assembling the results on parts of the image. Args: performance_df (pd.DataFrame): results that need to be assembled. validation_df (pd.DataFrame): results on the validation set used to compute the performance of each separate part of the image. selection_threshold (float): with soft-voting method, allows to exclude some parts of the image if their associated performance is too low. use_labels (bool): If True, metrics are computed and the label column values must be different from None. method (str): method to assemble the results. Current implementation proposes only hard-voting. Returns: df_final (pd.DataFrame) the results on the image level results (Dict[str, float]) the metrics on the image level """ if method != "hard": raise NotImplementedError( f"You asked for {method} ensemble method. " f"The only method implemented for regression is hard-voting." ) n_modes = validation_df[f"{self.mode}_id"].nunique() weight_series = np.ones(n_modes) # Sort to allow weighted average computation performance_df.sort_values( ["participant_id", "session_id", f"{self.mode}_id"], inplace=True ) # Soft majority vote df_final = pd.DataFrame(columns=self.columns) for (subject, session), subject_df in performance_df.groupby( ["participant_id", "session_id"] ): label = subject_df["true_label"].unique().item() prediction = np.average( subject_df["predicted_label"], weights=weight_series ) row = [[subject, session, 0, label, prediction]] row_df = pd.DataFrame(row, columns=self.columns) df_final = pd.concat([df_final, row_df]) if use_labels: results = self.compute_metrics(df_final) else: results = None return df_final, results @staticmethod def get_criterion(criterion=None): compatible_losses = [ "L1Loss", "MSELoss", "KLDivLoss", "BCEWithLogitsLoss", "HuberLoss", "SmoothL1Loss", ] if criterion is None: return nn.MSELoss() if criterion not in compatible_losses: raise ClinicaDLArgumentError( f"Regression loss must be chosen in {compatible_losses}." ) return getattr(nn, criterion)() @staticmethod def get_default_network(): return "Conv5_FC3"
2,550
width value changed
""" @package rdigit.toolbars @brief rdigit toolbars and icons. Classes: - toolbars::RDigitToolbar (C) 2014 by the GRASS Development Team This program is free software under the GNU General Public License (>=v2). Read the file COPYING that comes with GRASS for details. @author Anna Petrasova <kratochanna gmail.com> """ import wx from gui_core.toolbars import BaseToolbar from icons.icon import MetaIcon from gui_core.widgets import FloatValidator import wx.lib.colourselect as csel from gui_core.wrap import TextCtrl, StaticText, ColourSelect from gui_core.toolbars import BaseIcons rdigitIcons = { "area": MetaIcon(img="polygon-create", label=_("Digitize area")), "line": MetaIcon(img="line-create", label=_("Digitize line")), "point": MetaIcon(img="point-create", label=_("Digitize point")), "save": MetaIcon(img="save", label=_("Save raster map")), "undo": MetaIcon(img="undo", label=_("Undo")), } class RDigitToolbar(BaseToolbar): """RDigit toolbar""" def __init__(self, parent, giface, controller, toolSwitcher): """RDigit toolbar constructor""" BaseToolbar.__init__(self, parent, toolSwitcher) self._controller = controller self._giface = giface self.InitToolbar(self._toolbarData()) self._mapSelectionCombo = wx.ComboBox( self, id=wx.ID_ANY, value=_("Select raster map"), choices=[], size=(120, -1) ) self._mapSelectionCombo.Bind(wx.EVT_COMBOBOX, self.OnMapSelection) self._mapSelectionCombo.SetEditable(False) self.InsertControl(0, self._mapSelectionCombo) self._previousMap = self._mapSelectionCombo.GetValue() self._color = ColourSelect(parent=self, colour=wx.GREEN, size=(30, 30)) self._color.Bind(csel.EVT_COLOURSELECT, lambda evt: self._changeDrawColor()) self._color.SetToolTip(_("Set drawing color (not raster cell color)")) self.InsertControl(4, self._color) self._cellValues = set(["1"]) # validator does not work with combobox, SetBackgroundColor is not # working self._valueCombo = wx.ComboBox( self, id=wx.ID_ANY, choices=list(self._cellValues), size=(80, -1), validator=FloatValidator(), ) self._valueCombo.Bind(wx.EVT_COMBOBOX, lambda evt: self._cellValueChanged()) self._valueCombo.Bind(wx.EVT_TEXT, lambda evt: self._cellValueChanged()) self._valueCombo.SetSelection(0) self._cellValueChanged() labelValue = StaticText(self, label=" %s" % _("Cell value:")) self.InsertControl(6, labelValue) self.InsertControl(7, self._valueCombo) # validator does not work with combobox, SetBackgroundColor is not # working self._widthValue = TextCtrl( self, id=wx.ID_ANY, value="0", size=(80, -1), validator=FloatValidator() ) self._widthValue.Bind(wx.EVT_TEXT, lambda evt: self.METHOD_NAME()) self.METHOD_NAME() self._widthValue.SetToolTip( _( "Width of currently digitized line or diameter of a digitized point in map units." ) ) labelWidth = StaticText(self, label=" %s" % _("Width:")) self.InsertControl(8, labelWidth) self.InsertControl(9, self._widthValue) for tool in (self.area, self.line, self.point): self.toolSwitcher.AddToolToGroup(group="mouseUse", toolbar=self, tool=tool) self.toolSwitcher.toggleToolChanged.connect(self.CheckSelectedTool) self._default = self.area # realize the toolbar self.Realize() # workaround Mac bug for t in ( self._mapSelectionCombo, self._color, self._valueCombo, self._widthValue, labelValue, labelWidth, ): t.Hide() t.Show() def _toolbarData(self): """Toolbar data""" return self._getToolbarData( ( ( ("area", rdigitIcons["area"].label), rdigitIcons["area"], lambda event: self._controller.SelectType("area"), wx.ITEM_CHECK, ), ( ("line", rdigitIcons["line"].label), rdigitIcons["line"], lambda event: self._controller.SelectType("line"), wx.ITEM_CHECK, ), ( ("point", rdigitIcons["point"].label), rdigitIcons["point"], lambda event: self._controller.SelectType("point"), wx.ITEM_CHECK, ), (None,), (None,), ( ("undo", rdigitIcons["undo"].label), rdigitIcons["undo"], lambda event: self._controller.Undo(), ), ( ("save", rdigitIcons["save"].label), rdigitIcons["save"], lambda event: self._controller.Save(), ), ( ("help", BaseIcons["help"].label), BaseIcons["help"], lambda event: self._giface.Help("wxGUI.rdigit"), ), ( ("quit", BaseIcons["quit"].label), BaseIcons["quit"], lambda event: self._controller.Stop(), ), ) ) def CheckSelectedTool(self, id): if self.toolSwitcher.IsToolInGroup(tool=id, group="mouseUse") and id not in ( self.area, self.line, self.point, ): self._controller.SelectType(None) def UpdateRasterLayers(self, rasters): new = _("New raster map") items = [raster.name for raster in rasters if raster.name is not None] items.insert(0, new) self._mapSelectionCombo.SetItems(items) def OnMapSelection(self, event=None): """!Either map to edit or create new map selected.""" idx = self._mapSelectionCombo.GetSelection() if idx == 0: ret = self._controller.SelectNewMap() else: ret = self._controller.SelectOldMap(self._mapSelectionCombo.GetString(idx)) if not ret: # in wxpython 3 we can't set value which is not in the items # when not editable self._mapSelectionCombo.SetEditable(True) self._mapSelectionCombo.SetValue(self._previousMap) self._mapSelectionCombo.SetEditable(False) # we need to get back to previous self._previousMap = self._mapSelectionCombo.GetValue() def NewRasterAdded(self, name): idx = self._mapSelectionCombo.Append(name) self._mapSelectionCombo.SetSelection(idx) def UpdateCellValues(self, values=None): orig = self._valueCombo.GetValue() if not values: values = [orig] for value in values: self._cellValues.add(str(value)) valList = sorted(list(self._cellValues), key=float) self._valueCombo.SetItems(valList) self._valueCombo.SetStringSelection(orig) def _cellValueChanged(self): value = self._valueCombo.GetValue() try: value = float(value) self._controller.SetCellValue(value) except ValueError: return def METHOD_NAME(self): value = self._widthValue.GetValue() try: value = float(value) self._controller.SetWidthValue(value) except ValueError: self._controller.SetWidthValue(0) return def _changeDrawColor(self): color = self._color.GetColour() self._controller.ChangeDrawColor(color=color)
2,551
proc7
""" "PYSTONE" Benchmark Program Version: Python/1.1 (corresponds to C/1.1 plus 2 Pystone fixes) Author: Reinhold P. Weicker, CACM Vol 27, No 10, 10/84 pg. 1013. Translated from ADA to C by Rick Richardson. Every method to preserve ADA-likeness has been used, at the expense of C-ness. Translated from C to Python by Guido van Rossum. Version History: Version 1.1 corrects two bugs in version 1.0: First, it leaked memory: in Proc1(), NextRecord ends up having a pointer to itself. I have corrected this by zapping NextRecord.PtrComp at the end of Proc1(). Second, Proc3() used the operator != to compare a record to None. This is rather inefficient and not true to the intention of the original benchmark (where a pointer comparison to None is intended; the != operator attempts to find a method __cmp__ to do value comparison of the record). Version 1.1 runs 5-10 percent faster than version 1.0, so benchmark figures of different versions can't be compared directly. """ LOOPS = 50000 from time import time as clock __version__ = "1.1" [Ident1, Ident2, Ident3, Ident4, Ident5] = range(1, 6) class Record: def __init__(self, PtrComp = None, Discr = 0, EnumComp = 0, IntComp = 0, StringComp = 0): self.PtrComp = PtrComp self.Discr = Discr self.EnumComp = EnumComp self.IntComp = IntComp self.StringComp = StringComp def copy(self): return Record(self.PtrComp, self.Discr, self.EnumComp, self.IntComp, self.StringComp) TRUE = 1 FALSE = 0 def main(loops=LOOPS): benchtime, stones = pystones(loops) print("Pystone(%s) time for %d passes = %g" % \ (__version__, loops, benchtime)) print("This machine benchmarks at %g pystones/second" % stones) def pystones(loops=LOOPS): return Proc0(loops) IntGlob = 0 BoolGlob = FALSE Char1Glob = '\0' Char2Glob = '\0' Array1Glob = [0]*51 Array2Glob = list(map(lambda x: x[:], [Array1Glob]*51)) PtrGlb = None PtrGlbNext = None def Proc0(loops=LOOPS): global IntGlob global BoolGlob global Char1Glob global Char2Glob global Array1Glob global Array2Glob global PtrGlb global PtrGlbNext starttime = clock() for i in range(loops): pass nulltime = clock() - starttime PtrGlbNext = Record() PtrGlb = Record() PtrGlb.PtrComp = PtrGlbNext PtrGlb.Discr = Ident1 PtrGlb.EnumComp = Ident3 PtrGlb.IntComp = 40 PtrGlb.StringComp = "DHRYSTONE PROGRAM, SOME STRING" String1Loc = "DHRYSTONE PROGRAM, 1'ST STRING" Array2Glob[8][7] = 10 starttime = clock() for i in range(loops): Proc5() Proc4() IntLoc1 = 2 IntLoc2 = 3 String2Loc = "DHRYSTONE PROGRAM, 2'ND STRING" EnumLoc = Ident2 BoolGlob = not Func2(String1Loc, String2Loc) while IntLoc1 < IntLoc2: IntLoc3 = 5 * IntLoc1 - IntLoc2 IntLoc3 = METHOD_NAME(IntLoc1, IntLoc2) IntLoc1 = IntLoc1 + 1 Proc8(Array1Glob, Array2Glob, IntLoc1, IntLoc3) PtrGlb = Proc1(PtrGlb) CharIndex = 'A' while CharIndex <= Char2Glob: if EnumLoc == Func1(CharIndex, 'C'): EnumLoc = Proc6(Ident1) CharIndex = chr(ord(CharIndex)+1) IntLoc3 = IntLoc2 * IntLoc1 IntLoc2 = IntLoc3 / IntLoc1 IntLoc2 = 7 * (IntLoc3 - IntLoc2) - IntLoc1 IntLoc1 = Proc2(IntLoc1) benchtime = clock() - starttime - nulltime if benchtime == 0.0: loopsPerBenchtime = 0.0 else: loopsPerBenchtime = (loops / benchtime) return benchtime, loopsPerBenchtime def Proc1(PtrParIn): PtrParIn.PtrComp = NextRecord = PtrGlb.copy() PtrParIn.IntComp = 5 NextRecord.IntComp = PtrParIn.IntComp NextRecord.PtrComp = PtrParIn.PtrComp NextRecord.PtrComp = Proc3(NextRecord.PtrComp) if NextRecord.Discr == Ident1: NextRecord.IntComp = 6 NextRecord.EnumComp = Proc6(PtrParIn.EnumComp) NextRecord.PtrComp = PtrGlb.PtrComp NextRecord.IntComp = METHOD_NAME(NextRecord.IntComp, 10) else: PtrParIn = NextRecord.copy() NextRecord.PtrComp = None return PtrParIn def Proc2(IntParIO): IntLoc = IntParIO + 10 while 1: if Char1Glob == 'A': IntLoc = IntLoc - 1 IntParIO = IntLoc - IntGlob EnumLoc = Ident1 if EnumLoc == Ident1: break return IntParIO def Proc3(PtrParOut): global IntGlob if PtrGlb is not None: PtrParOut = PtrGlb.PtrComp else: IntGlob = 100 PtrGlb.IntComp = METHOD_NAME(10, IntGlob) return PtrParOut def Proc4(): global Char2Glob BoolLoc = Char1Glob == 'A' BoolLoc = BoolLoc or BoolGlob Char2Glob = 'B' def Proc5(): global Char1Glob global BoolGlob Char1Glob = 'A' BoolGlob = FALSE def Proc6(EnumParIn): EnumParOut = EnumParIn if not Func3(EnumParIn): EnumParOut = Ident4 if EnumParIn == Ident1: EnumParOut = Ident1 elif EnumParIn == Ident2: if IntGlob > 100: EnumParOut = Ident1 else: EnumParOut = Ident4 elif EnumParIn == Ident3: EnumParOut = Ident2 elif EnumParIn == Ident4: pass elif EnumParIn == Ident5: EnumParOut = Ident3 return EnumParOut def METHOD_NAME(IntParI1, IntParI2): IntLoc = IntParI1 + 2 IntParOut = IntParI2 + IntLoc return IntParOut def Proc8(Array1Par, Array2Par, IntParI1, IntParI2): global IntGlob IntLoc = IntParI1 + 5 Array1Par[IntLoc] = IntParI2 Array1Par[IntLoc+1] = Array1Par[IntLoc] Array1Par[IntLoc+30] = IntLoc for IntIndex in range(IntLoc, IntLoc+2): Array2Par[IntLoc][IntIndex] = IntLoc Array2Par[IntLoc][IntLoc-1] = Array2Par[IntLoc][IntLoc-1] + 1 Array2Par[IntLoc+20][IntLoc] = Array1Par[IntLoc] IntGlob = 5 def Func1(CharPar1, CharPar2): CharLoc1 = CharPar1 CharLoc2 = CharLoc1 if CharLoc2 != CharPar2: return Ident1 else: return Ident2 def Func2(StrParI1, StrParI2): IntLoc = 1 while IntLoc <= 1: if Func1(StrParI1[IntLoc], StrParI2[IntLoc+1]) == Ident1: CharLoc = 'A' IntLoc = IntLoc + 1 if CharLoc >= 'W' and CharLoc <= 'Z': IntLoc = 7 if CharLoc == 'X': return TRUE else: if StrParI1 > StrParI2: IntLoc = IntLoc + 7 return TRUE else: return FALSE def Func3(EnumParIn): EnumLoc = EnumParIn if EnumLoc == Ident3: return TRUE return FALSE main(LOOPS)
2,552
kickin cost
""" When an attendee or group preregisters or changes their registration, we want a way to determine the potential costs and credits to add to their receipt. These items are defined here. Each cost/credit should return None if there is no applicable charge for that model or a tuple of the cost description, the cost price, and (optionally) the number of items. If the cost price is 0, the item is printed as "Free" on the receipt. All cost prices should be in cents. """ from collections import defaultdict from uber.config import c from uber.decorators import cost_calculation, credit_calculation from uber.models import Attendee, ArtShowApplication, Group @cost_calculation.MarketplaceApplication def app_cost(app): if app.status == c.APPROVED: return ("Marketplace Application Fee", app.overridden_price * 100 or c.MARKETPLACE_FEE * 100 or 0, None) ArtShowApplication.cost_changes = { 'overridden_price': ('Custom App Price', "calc_app_price_change"), 'panels': ('General Panels', "calc_app_price_change"), 'panels_ad': ('Mature Panels', "calc_app_price_change"), 'tables': ('General Tables', "calc_app_price_change"), 'tables_ad': ('Mature Tables', "calc_app_price_change"), } @cost_calculation.ArtShowApplication def overridden_app_cost(app): if app.status == c.APPROVED and app.overridden_price != None: return ("Art Show Application (Custom Price)", app.overridden_price * 100, 'overridden_price') @cost_calculation.ArtShowApplication def panel_cost(app): return ("General Panel", c.COST_PER_PANEL * 100, app.panels, None) if app.panels else None @cost_calculation.ArtShowApplication def table_cost(app): return ("General Table", c.COST_PER_TABLE * 100, app.tables, None) if app.tables else None @cost_calculation.ArtShowApplication def mature_panel_cost(app): return ("Mature Panel", c.COST_PER_PANEL * 100, app.panels_ad, None) if app.panels_ad else None @cost_calculation.ArtShowApplication def mature_table_cost(app): return ("Mature Table", c.COST_PER_TABLE * 100, app.tables_ad, None) if app.tables_ad else None @cost_calculation.ArtShowApplication def mailing_fee_cost(app): return ("Mailing fee", c.ART_MAILING_FEE * 100, None) if app.delivery_method == c.BY_MAIL else None Attendee.cost_changes = { 'overridden_price': ('Custom Badge Price', "calc_badge_cost_change"), 'badge_type': ('Badge ({})', "calc_badge_cost_change", c.BADGES), 'amount_extra': ('Preordered Merch ({})', None, c.DONATION_TIERS), 'extra_donation': ('Extra Donation', None), } Attendee.credit_changes = { 'paid': ('Badge Comp', "calc_badge_comp_change"), 'birthdate': ('Age Discount', "calc_age_discount_change"), 'promo_code': ('Promo Code', "calc_promo_discount_change"), } @cost_calculation.Attendee def badge_cost(attendee): if attendee.paid == c.PAID_BY_GROUP or attendee.promo_code_groups or getattr(attendee, 'badges', None): cost = 0 else: cost = attendee.calculate_badge_cost() * 100 if cost or attendee.badge_type in c.BADGE_TYPE_PRICES: if attendee.badge_type in c.BADGE_TYPE_PRICES or not attendee.badge_type_label: label = "Attendee badge for {}{}".format(attendee.full_name, "" if cost else " (paid by group)") else: label = "{} badge for {}".format(attendee.badge_type_label, attendee.full_name) return (label, cost, None) @cost_calculation.Attendee def badge_upgrade_cost(attendee): if attendee.badge_type in c.BADGE_TYPE_PRICES: return ("{} badge upgrade for {}".format(attendee.badge_type_label, attendee.full_name), attendee.calculate_badge_prices_cost() * 100, 'badge_type') @cost_calculation.Attendee def shipping_fee_cost(attendee): if attendee.badge_status == c.DEFERRED_STATUS and attendee.amount_extra: return ("Merch Shipping Fee", attendee.calculate_shipping_fee_cost() * 100, None) @cost_calculation.Attendee def donation_cost(attendee): return ("Extra Donation", attendee.extra_donation * 100, 'extra_donation') if attendee.extra_donation else None @cost_calculation.Attendee def METHOD_NAME(attendee): return ("Preordered Merch ({})".format(attendee.amount_extra_label), attendee.amount_extra * 100, 'amount_extra') if attendee.amount_extra else None @credit_calculation.Attendee def age_discount(attendee): if attendee.qualifies_for_discounts and attendee.age_discount: if abs(attendee.age_discount) > attendee.calculate_badge_cost(): age_discount = attendee.calculate_badge_cost() * 100 * -1 else: age_discount = attendee.age_discount * 100 return ("Age Discount", age_discount, None) @credit_calculation.Attendee def group_discount(attendee): if c.GROUP_DISCOUNT and attendee.qualifies_for_discounts and not attendee.age_discount and ( attendee.promo_code_groups or attendee.group): return ("Group Discount", c.GROUP_DISCOUNT * 100 * -1, None) @credit_calculation.Attendee def promo_code_discount(attendee): if attendee.promo_code: discount = attendee.calculate_badge_cost() - attendee.badge_cost_with_promo_code return ("Promo Code", discount * 100 * -1, None) Group.cost_changes = { 'cost': ('Custom Group Price', "calc_group_price_change"), 'tables': ('Tables', "calc_group_price_change"), 'badges': ('Badges', "calc_group_price_change"), } @cost_calculation.Group def table_cost(group): table_count = int(float(group.tables)) if table_count and group.auto_recalc: return ("{} Tables".format(table_count), c.get_table_price(table_count) * 100, None) @cost_calculation.Group def badge_cost(group): cost_table = defaultdict(int) if not group.auto_recalc: return for attendee in group.attendees: if attendee.paid == c.PAID_BY_GROUP and attendee.badge_cost: cost_table[attendee.badge_cost * 100] += 1 return ("Group badge ({})".format(group.name), cost_table, None) @cost_calculation.Group def set_cost(group): if not group.auto_recalc: return ("Custom fee for group {}".format(group.name), group.cost * 100, None) @cost_calculation.Attendee def promo_code_group_cost(attendee): cost_table = defaultdict(int) if getattr(attendee, 'badges', None): # During prereg we set the number of promo code badges on the attendee model cost_table[c.get_group_price() * 100] = int(attendee.badges) elif attendee.promo_code_groups: for code in attendee.promo_code_groups[0].promo_codes: cost_table[code.cost * 100] += 1 else: return return ("Group badge ({})".format(attendee.promo_code_groups[0].name if attendee.promo_code_groups else getattr(attendee, 'name', 'Unknown')), cost_table, None)
2,553
fprime
""" Holds files for l1 regularization of LikelihoodModel, using scipy.optimize.slsqp """ import numpy as np from scipy.optimize import fmin_slsqp import statsmodels.base.l1_solvers_common as l1_solvers_common def fit_l1_slsqp( f, score, start_params, args, kwargs, disp=False, maxiter=1000, callback=None, retall=False, full_output=False, hess=None): """ Solve the l1 regularized problem using scipy.optimize.fmin_slsqp(). Specifically: We convert the convex but non-smooth problem .. math:: \\min_\\beta f(\\beta) + \\sum_k\\alpha_k |\\beta_k| via the transformation to the smooth, convex, constrained problem in twice as many variables (adding the "added variables" :math:`u_k`) .. math:: \\min_{\\beta,u} f(\\beta) + \\sum_k\\alpha_k u_k, subject to .. math:: -u_k \\leq \\beta_k \\leq u_k. Parameters ---------- All the usual parameters from LikelhoodModel.fit alpha : non-negative scalar or numpy array (same size as parameters) The weight multiplying the l1 penalty term trim_mode : 'auto, 'size', or 'off' If not 'off', trim (set to zero) parameters that would have been zero if the solver reached the theoretical minimum. If 'auto', trim params using the Theory above. If 'size', trim params if they have very small absolute value size_trim_tol : float or 'auto' (default = 'auto') For use when trim_mode === 'size' auto_trim_tol : float For sue when trim_mode == 'auto'. Use qc_tol : float Print warning and do not allow auto trim when (ii) in "Theory" (above) is violated by this much. qc_verbose : bool If true, print out a full QC report upon failure acc : float (default 1e-6) Requested accuracy as used by slsqp """ start_params = np.array(start_params).ravel('F') ### Extract values # k_params is total number of covariates, # possibly including a leading constant. k_params = len(start_params) # The start point x0 = np.append(start_params, np.fabs(start_params)) # alpha is the regularization parameter alpha = np.array(kwargs['alpha_rescaled']).ravel('F') # Make sure it's a vector alpha = alpha * np.ones(k_params) assert alpha.min() >= 0 # Convert display parameters to scipy.optimize form disp_slsqp = _get_disp_slsqp(disp, retall) # Set/retrieve the desired accuracy acc = kwargs.setdefault('acc', 1e-10) ### Wrap up for use in fmin_slsqp func = lambda x_full: _objective_func(f, x_full, k_params, alpha, *args) f_ieqcons_wrap = lambda x_full: _f_ieqcons(x_full, k_params) fprime_wrap = lambda x_full: METHOD_NAME(score, x_full, k_params, alpha) fprime_ieqcons_wrap = lambda x_full: _fprime_ieqcons(x_full, k_params) ### Call the solver results = fmin_slsqp( func, x0, f_ieqcons=f_ieqcons_wrap, fprime=fprime_wrap, acc=acc, iter=maxiter, disp=disp_slsqp, full_output=full_output, fprime_ieqcons=fprime_ieqcons_wrap) params = np.asarray(results[0][:k_params]) ### Post-process # QC qc_tol = kwargs['qc_tol'] qc_verbose = kwargs['qc_verbose'] passed = l1_solvers_common.qc_results( params, alpha, score, qc_tol, qc_verbose) # Possibly trim trim_mode = kwargs['trim_mode'] size_trim_tol = kwargs['size_trim_tol'] auto_trim_tol = kwargs['auto_trim_tol'] params, trimmed = l1_solvers_common.do_trim_params( params, k_params, alpha, score, passed, trim_mode, size_trim_tol, auto_trim_tol) ### Pack up return values for statsmodels optimizers # TODO These retvals are returned as mle_retvals...but the fit was not ML. # This could be confusing someday. if full_output: x_full, fx, its, imode, smode = results fopt = func(np.asarray(x_full)) converged = (imode == 0) warnflag = str(imode) + ' ' + smode iterations = its gopt = float('nan') # Objective is non-differentiable hopt = float('nan') retvals = { 'fopt': fopt, 'converged': converged, 'iterations': iterations, 'gopt': gopt, 'hopt': hopt, 'trimmed': trimmed, 'warnflag': warnflag} ### Return if full_output: return params, retvals else: return params def _get_disp_slsqp(disp, retall): if disp or retall: if disp: disp_slsqp = 1 if retall: disp_slsqp = 2 else: disp_slsqp = 0 return disp_slsqp def _objective_func(f, x_full, k_params, alpha, *args): """ The regularized objective function """ x_params = x_full[:k_params] x_added = x_full[k_params:] ## Return return f(x_params, *args) + (alpha * x_added).sum() def METHOD_NAME(score, x_full, k_params, alpha): """ The regularized derivative """ x_params = x_full[:k_params] # The derivative just appends a vector of constants return np.append(score(x_params), alpha) def _f_ieqcons(x_full, k_params): """ The inequality constraints. """ x_params = x_full[:k_params] x_added = x_full[k_params:] # All entries in this vector must be \geq 0 in a feasible solution return np.append(x_params + x_added, x_added - x_params) def _fprime_ieqcons(x_full, k_params): """ Derivative of the inequality constraints """ I = np.eye(k_params) # noqa:E741 A = np.concatenate((I, I), axis=1) B = np.concatenate((-I, I), axis=1) C = np.concatenate((A, B), axis=0) ## Return return C
2,554
sbc compare audio frames
#!/usr/bin/env python3 import numpy as np import wave import struct import sys from sbc import * from sbc_encoder import * from sbc_decoder import * error = 0.99 max_error = -1 def sbc_compare_subband_samples(frame_count, actual_frame, expected_frame): global error, max_error for blk in range(actual_frame.nr_blocks): for ch in range(actual_frame.nr_channels): M = mse(actual_frame.sb_sample[blk][ch], expected_frame.sb_sample[blk][ch]) if M > max_error: max_error = M if max_error > error: print ("Frame %d: sb_sample error %f (ch %d, blk %d)" % (frame_count, max_error, ch, blk)) print (actual_frame.sb_sample[blk]) print (expected_frame.sb_sample[blk]) return -1 return 0 def METHOD_NAME(frame_count, actual_frame, expected_frame): global error, max_error for blk in range(actual_frame.nr_blocks): for ch in range(actual_frame.nr_channels): M = mse(actual_frame.audio_sample[blk][ch], expected_frame.audio_sample[blk][ch]) if M > max_error: max_error = M if max_error > error: print ("audio_sample error (%d, %f ) " % (frame_count, max_error)) print (actual_frame.audio_sample[blk]) print (expected_frame.audio_sample[blk]) return -1 return 0 def sbc_compare_headers(frame_count, actual_frame, expected_frame): if actual_frame.syncword != expected_frame.syncword: print ("syncword wrong ", actual_frame.syncword) return -1 if actual_frame.sampling_frequency != expected_frame.sampling_frequency: print ("sampling_frequency wrong ", actual_frame.sampling_frequency) return -1 if actual_frame.nr_blocks != expected_frame.nr_blocks: print ("nr_blocks wrong ", actual_frame.nr_blocks) return -1 if actual_frame.channel_mode != expected_frame.channel_mode: print ("channel_mode wrong ", actual_frame.channel_mode) return -1 if actual_frame.nr_channels != expected_frame.nr_channels: print ("nr_channels wrong ", actual_frame.nr_channels) return -1 if actual_frame.allocation_method != expected_frame.allocation_method: print ("allocation_method wrong ", actual_frame.allocation_method) return -1 if actual_frame.nr_subbands != expected_frame.nr_subbands: print ("nr_subbands wrong ", actual_frame.nr_subbands) return -1 if actual_frame.bitpool != expected_frame.bitpool: print ("bitpool wrong (E: %d, D: %d)" % (actual_frame.bitpool, expected_frame.bitpool)) return -1 if mse(actual_frame.join, expected_frame.join) > 0: print ("join error \nE:\n %s \nD:\n %s" % (actual_frame.join, expected_frame.join)) return -1 if mse(actual_frame.scale_factor, expected_frame.scale_factor) > 0: print ("scale_factor error %d \nE:\n %s \nD:\n %s" % (frame_count, actual_frame.scale_factor, expected_frame.scale_factor)) return -1 if mse(actual_frame.scalefactor, expected_frame.scalefactor) > 0: print ("scalefactor error %d \nE:\n %s \nD:\n %s" % (frame_count, actual_frame.scalefactor, expected_frame.scalefactor)) return -1 if mse(actual_frame.bits, expected_frame.bits) > 0: print ("bits error %d \nE:\n %s \nD:\n %s" % (frame_count, actual_frame.bits, expected_frame.bits)) return -1 if actual_frame.crc_check != expected_frame.crc_check: print ("crc_check wrong (E: %d, D: %d)" % (actual_frame.crc_check, expected_frame.crc_check)) return -1 return 0 def get_actual_frame(fin, nr_blocks, nr_subbands, nr_channels, sampling_frequency, bitpool, allocation_method, force_channel_mode): actual_frame = SBCFrame(nr_blocks, nr_subbands, nr_channels, sampling_frequency, bitpool, allocation_method) fetch_samples_for_next_sbc_frame(fin, actual_frame) sbc_encode(actual_frame, force_channel_mode) return actual_frame file_size = 0 def get_expected_frame(fin_expected): global file_size expected_frame = SBCFrame() sbc_unpack_frame(fin_expected, file_size - fin_expected.tell(), expected_frame) sbc_reconstruct_subband_samples(expected_frame) return expected_frame usage = ''' Usage: ./sbc_encoder_test.py encoder_input.wav blocks subbands bitpool allocation_method force_channel_mode encoder_expected_output.sbc Example: ./sbc_encoder_test.py fanfare.wav 16 4 31 0 2 fanfare-4sb.sbc ''' if (len(sys.argv) < 8): print(usage) sys.exit(1) try: encoder_input_wav = sys.argv[1] nr_blocks = int(sys.argv[2]) nr_subbands = int(sys.argv[3]) bitpool = int(sys.argv[4]) allocation_method = int(sys.argv[5]) encoder_expected_sbc = sys.argv[6] force_channel_mode = int(sys.argv[7]) sampling_frequency = 44100 if not encoder_input_wav.endswith('.wav'): print(usage) sys.exit(1) if not encoder_expected_sbc.endswith('.sbc'): print(usage) sys.exit(1) fin = wave.open(encoder_input_wav, 'rb') nr_channels = fin.getnchannels() sampling_frequency = fin.getframerate() nr_audio_frames = fin.getnframes() fin_expected = open(encoder_expected_sbc, 'rb') fin_expected.seek(0,2) file_size = fin_expected.tell() fin_expected.seek(0,0) subband_frame_count = 0 audio_frame_count = 0 nr_samples = nr_blocks * nr_subbands while audio_frame_count < nr_audio_frames: if subband_frame_count % 200 == 0: print("== Frame %d ==" % (subband_frame_count)) actual_frame = get_actual_frame(fin, nr_blocks, nr_subbands, nr_channels, bitpool, sampling_frequency, allocation_method, force_channel_mode) expected_frame = get_expected_frame(fin_expected) err = sbc_compare_headers(subband_frame_count, actual_frame, expected_frame) if err < 0: exit(1) err = METHOD_NAME(subband_frame_count, actual_frame, expected_frame) if err < 0: exit(1) audio_frame_count += nr_samples subband_frame_count += 1 print ("Max MSE audio sample error %f" % max_error) fin.close() fin_expected.close() except TypeError: print ("Max MSE audio sample error %f" % max_error) fin.close() fin_expected.close() except IOError: print(usage) sys.exit(1)
2,555
tags
# coding=utf-8 # *** WARNING: this file was generated by pulumi. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetBatchEndpointResult', 'AwaitableGetBatchEndpointResult', 'get_batch_endpoint', 'get_batch_endpoint_output', ] @pulumi.output_type class GetBatchEndpointResult: def __init__(__self__, batch_endpoint_details=None, id=None, identity=None, kind=None, location=None, name=None, sku=None, system_data=None, METHOD_NAME=None, type=None): if batch_endpoint_details and not isinstance(batch_endpoint_details, dict): raise TypeError("Expected argument 'batch_endpoint_details' to be a dict") pulumi.set(__self__, "batch_endpoint_details", batch_endpoint_details) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if identity and not isinstance(identity, dict): raise TypeError("Expected argument 'identity' to be a dict") pulumi.set(__self__, "identity", identity) if kind and not isinstance(kind, str): raise TypeError("Expected argument 'kind' to be a str") pulumi.set(__self__, "kind", kind) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if sku and not isinstance(sku, dict): raise TypeError("Expected argument 'sku' to be a dict") pulumi.set(__self__, "sku", sku) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if METHOD_NAME and not isinstance(METHOD_NAME, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", METHOD_NAME) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="batchEndpointDetails") def batch_endpoint_details(self) -> 'outputs.BatchEndpointResponse': """ [Required] Additional attributes of the entity. """ return pulumi.get(self, "batch_endpoint_details") @property @pulumi.getter def id(self) -> str: """ Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} """ return pulumi.get(self, "id") @property @pulumi.getter def identity(self) -> Optional['outputs.ManagedServiceIdentityResponse']: """ Managed service identity (system assigned and/or user assigned identities) """ return pulumi.get(self, "identity") @property @pulumi.getter def kind(self) -> Optional[str]: """ Metadata used by portal/tooling/etc to render different UX experiences for resources of the same type. """ return pulumi.get(self, "kind") @property @pulumi.getter def location(self) -> str: """ The geo-location where the resource lives """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter def sku(self) -> Optional['outputs.SkuResponse']: """ Sku details required for ARM contract for Autoscaling. """ return pulumi.get(self, "sku") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ Azure Resource Manager metadata containing createdBy and modifiedBy information. """ return pulumi.get(self, "system_data") @property @pulumi.getter def METHOD_NAME(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type") class AwaitableGetBatchEndpointResult(GetBatchEndpointResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetBatchEndpointResult( batch_endpoint_details=self.batch_endpoint_details, id=self.id, identity=self.identity, kind=self.kind, location=self.location, name=self.name, sku=self.sku, system_data=self.system_data, METHOD_NAME=self.METHOD_NAME, type=self.type) def get_batch_endpoint(endpoint_name: Optional[str] = None, resource_group_name: Optional[str] = None, workspace_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetBatchEndpointResult: """ Use this data source to access information about an existing resource. :param str endpoint_name: Name for the Batch Endpoint. :param str resource_group_name: The name of the resource group. The name is case insensitive. :param str workspace_name: Name of Azure Machine Learning workspace. """ __args__ = dict() __args__['endpointName'] = endpoint_name __args__['resourceGroupName'] = resource_group_name __args__['workspaceName'] = workspace_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:machinelearningservices/v20220201preview:getBatchEndpoint', __args__, opts=opts, typ=GetBatchEndpointResult).value return AwaitableGetBatchEndpointResult( batch_endpoint_details=pulumi.get(__ret__, 'batch_endpoint_details'), id=pulumi.get(__ret__, 'id'), identity=pulumi.get(__ret__, 'identity'), kind=pulumi.get(__ret__, 'kind'), location=pulumi.get(__ret__, 'location'), name=pulumi.get(__ret__, 'name'), sku=pulumi.get(__ret__, 'sku'), system_data=pulumi.get(__ret__, 'system_data'), METHOD_NAME=pulumi.get(__ret__, 'tags'), type=pulumi.get(__ret__, 'type')) @_utilities.lift_output_func(get_batch_endpoint) def get_batch_endpoint_output(endpoint_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, workspace_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetBatchEndpointResult]: """ Use this data source to access information about an existing resource. :param str endpoint_name: Name for the Batch Endpoint. :param str resource_group_name: The name of the resource group. The name is case insensitive. :param str workspace_name: Name of Azure Machine Learning workspace. """ ...
2,556
test get document url with deeplinking url
from unittest.mock import create_autospec, sentinel import pytest from lms.product.canvas._plugin.misc import CanvasMiscPlugin from lms.resources._js_config import JSConfig from tests import factories class TestCanvasMiscPlugin: @pytest.mark.parametrize("is_gradable", [True, False]) @pytest.mark.parametrize("is_learner", [True, False]) @pytest.mark.parametrize("grading_id", [None, sentinel.grading_id]) @pytest.mark.parametrize("focused_user", [None, sentinel.focused_user]) def test_post_launch_assignment_hook( self, request, plugin, js_config, pyramid_request, is_gradable, is_learner, grading_id, focused_user, ): assignment = factories.Assignment(is_gradable=is_gradable) pyramid_request.lti_params["lis_result_sourcedid"] = grading_id pyramid_request.params["focused_user"] = focused_user if is_learner: request.getfixturevalue("user_is_learner") plugin.post_launch_assignment_hook(pyramid_request, js_config, assignment) if assignment.is_gradable and is_learner and grading_id: js_config.add_canvas_speedgrader_settings.assert_called_once_with( assignment.document_url ) else: js_config.add_canvas_speedgrader_settings.assert_not_called() if focused_user: js_config.set_focused_user.assert_called_once_with(focused_user) else: js_config.set_focused_user.assert_not_called() def test_get_document_url(self, plugin, pyramid_request): assert not plugin.get_document_url( pyramid_request, sentinel.assignment, sentinel.historical_assignment ) @pytest.mark.parametrize( "url,expected", ( (None, None), # URL encoded paths ( "https%3A%2F%2Fexample.com%2Fpath%3Fparam%3Dvalue", "https://example.com/path?param=value", ), ( "http%3A%2F%2Fexample.com%2Fpath%3Fparam%3Dvalue", "http://example.com/path?param=value", ), ( "HTTP%3a%2F%2Fexample.com%2Fpath%3Fparam%3Dvalue", "HTTP://example.com/path?param=value", ), ( "canvas%3A%2F%2Ffile%2Fcourse_id%2FCOURSE_ID%2Ffile_if%2FFILE_ID", "canvas://file/course_id/COURSE_ID/file_if/FILE_ID", ), ( "jstor%3A%2F%2FDOI", "jstor://DOI", ), ( "vitalsource%3A%2F%2Fbook%2FbookID%2FL-999-70469%2Fcfi%2F%2F6%2F8", "vitalsource://book/bookID/L-999-70469/cfi//6/8", ), # Non-URL encoded paths ( "https://example.com/path?param=value", "https://example.com/path?param=value", ), ( "http://example.com/path?param=%25foo%25", "http://example.com/path?param=%25foo%25", ), ( "canvas://file/course_id/COURSE_ID/file_if/FILE_ID", "canvas://file/course_id/COURSE_ID/file_if/FILE_ID", ), ("jstor://DOI", "jstor://DOI"), ( "vitalsource://book/bookID/L-999-70469/cfi//6/8", "vitalsource://book/bookID/L-999-70469/cfi//6/8", ), # Unknown but valid (RFC3986) schemas get decoded ( "j5-tor.r%3A%2F%2FDOI", "j5-tor.r://DOI", ), # Invalid schemas don't get decoded ( "1stor%3A%2F%2FDOI", "1stor%3A%2F%2FDOI", ), ), ) def METHOD_NAME( self, plugin, pyramid_request, url, expected ): if url: pyramid_request.params["url"] = url assert ( plugin.get_document_url( pyramid_request, sentinel.assignment, sentinel.historical_assignment ) == expected ) def test_get_document_url_with_canvas_files(self, plugin, pyramid_request): pyramid_request.params["canvas_file"] = "any" pyramid_request.params["file_id"] = "FILE_ID" pyramid_request.lti_params["custom_canvas_course_id"] = "COURSE_ID" assert ( plugin.get_document_url( pyramid_request, sentinel.assignment, sentinel.historical_assignment ) == "canvas://file/course/COURSE_ID/file_id/FILE_ID" ) @pytest.mark.parametrize("cfi", (None, sentinel.cfi)) def test_get_document_url_with_legacy_vitalsource_book( self, plugin, pyramid_request, VSBookLocation, cfi ): pyramid_request.params["vitalsource_book"] = "any" pyramid_request.params["book_id"] = sentinel.book_id if cfi: pyramid_request.params["cfi"] = cfi result = plugin.get_document_url( pyramid_request, sentinel.assignment, sentinel.historical_assignment ) VSBookLocation.assert_called_once_with(book_id=sentinel.book_id, cfi=cfi) assert result == VSBookLocation.return_value.document_url def test_get_deeplinking_launch_url(self, plugin, pyramid_request): config = {"param": "value"} assert ( plugin.get_deeplinking_launch_url(pyramid_request, config) == "http://example.com/lti_launches?param=value" ) def test_factory(self, pyramid_request): plugin = CanvasMiscPlugin.factory(sentinel.context, pyramid_request) assert isinstance(plugin, CanvasMiscPlugin) @pytest.fixture def plugin(self): return CanvasMiscPlugin() @pytest.fixture def js_config(self): return create_autospec(JSConfig, spec_set=True, instance=True) @pytest.fixture def VSBookLocation(self, patch): return patch("lms.product.canvas._plugin.misc.VSBookLocation")
2,557
test step1b
# # Copyright (c) 2020-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from cuml.preprocessing.text.stem.porter_stemmer import PorterStemmer from cuml.internals.safe_imports import gpu_only_import cudf = gpu_only_import("cudf") def test_step1a(): word_str_ser = cudf.Series( ["caresses", "ponies", "ties", "caress", "cats"] ) st = PorterStemmer() got = st._step1a(word_str_ser) expect = ["caress", "poni", "tie", "caress", "cat"] assert list(got.to_pandas().values) == expect # mask test mask = cudf.Series([True, False, True, True, False]) expect = ["caress", "ponies", "tie", "caress", "cats"] got = st._step1a(word_str_ser, mask) assert list(got.to_pandas().values) == expect def METHOD_NAME(): word_str_ser_ls = [ "feed", "agreed", "plastered", "bled", "motoring", "sing", "conflated", "troubled", "sized", "hopping", "tanned", "falling", "hissing", "fizzed", "failing", "filing", ] expected = [ "feed", "agree", "plaster", "bled", "motor", "sing", "conflate", "trouble", "size", "hop", "tan", "fall", "hiss", "fizz", "fail", "file", ] word_str_ser = cudf.Series(word_str_ser_ls) st = PorterStemmer() got = st._step1b(word_str_ser) assert list(got.to_pandas().values) == expected # mask test expected = expected[:-3] + ["fizzed", "failing", "filing"] mask = cudf.Series([True] * (len(expected) - 3) + [False] * 3) got = st._step1b(word_str_ser, mask) assert list(got.to_pandas().values) == expected def test_step1c(): word_str_ser_ls = ["happy", "sky", "enjoy", "boy", "toy", "y"] word_str_ser = cudf.Series(word_str_ser_ls) st = PorterStemmer() got = st._step1c(word_str_ser) expect = ["happi", "ski", "enjoy", "boy", "toy", "y"] assert list(got.to_pandas().values) == expect # mask test expect = ["happi", "sky", "enjoy", "boy", "toy", "y"] mask = cudf.Series([True, False, False, False, False, True]) got = st._step1c(word_str_ser, mask) assert list(got.to_pandas().values) == expect def test_step2(): word_str_ser_ls = [ "relational", "conditional", "rational", "valenci", "hesitanci", "digitizer", "conformabli", "radicalli", "differentli", "vileli", "analogousli", "vietnamization", "predication", "operator", "feudalism", "decisiveness", "hopefulness", "callousness", "formaliti", "sensitiviti", "sensibiliti", ] expect = [ "relate", "condition", "rational", "valence", "hesitance", "digitize", "conformable", "radical", "different", "vile", "analogous", "vietnamize", "predicate", "operate", "feudal", "decisive", "hopeful", "callous", "formal", "sensitive", "sensible", ] word_str_ser = cudf.Series(word_str_ser_ls) st = PorterStemmer() got = st._step2(word_str_ser) assert list(got.to_pandas().values) == expect # mask test expect = expect[:-3] + ["formaliti", "sensitiviti", "sensibiliti"] mask = cudf.Series([True] * (len(expect) - 3) + [False] * 3) got = st._step2(word_str_ser, mask) assert list(got.to_pandas().values) == expect def test_step3(): word_str_ser_ls = [ "triplicate", "formative", "formalize", "electriciti", "electriciti", "hopeful", "goodness", ] expect = [ "triplic", "form", "formal", "electric", "electric", "hope", "good", ] word_str_ser = cudf.Series(word_str_ser_ls) st = PorterStemmer() got = st._step3(word_str_ser) assert list(got.to_pandas().values) == expect # mask test expect = expect[:-2] + ["hopeful", "goodness"] mask = cudf.Series([True] * (len(expect) - 2) + [False] * 2) got = st._step3(word_str_ser, mask) assert list(got.to_pandas().values) == expect def test_step4(): word_str_ser_ls = [ "revival", "allowance", "inference", "airliner", "gyroscopic", "adjustable", "defensible", "irritant", "replacement", "adjustment", "dependent", "adoption", "homologou", "communism", "activate", "angulariti", "homologous", "effective", "bowdlerize", ] expect = [ "reviv", "allow", "infer", "airlin", "gyroscop", "adjust", "defens", "irrit", "replac", "adjust", "depend", "adopt", "homolog", "commun", "activ", "angular", "homolog", "effect", "bowdler", ] word_str_ser = cudf.Series(word_str_ser_ls) st = PorterStemmer() got = st._step4(word_str_ser) assert list(got.to_pandas().values) == expect # mask test expect = expect[:-2] + ["effective", "bowdlerize"] mask = cudf.Series([True] * (len(expect) - 2) + [False] * 2) got = st._step4(word_str_ser, mask) assert list(got.to_pandas().values) == expect def test_step5a(): word_str_ser_ls = ["probate", "rate", "cease", "ones"] word_str_ser = cudf.Series(word_str_ser_ls) expect = ["probat", "rate", "ceas", "ones"] st = PorterStemmer() got = st._step5a(word_str_ser) assert list(got.to_pandas().values) == expect # mask test expect = expect[:-2] + ["cease", "ones"] mask = cudf.Series([True] * (len(expect) - 2) + [False] * 2) got = st._step5a(word_str_ser, mask) assert list(got.to_pandas().values) == expect def test_step5b(): word_str_ser_ls = ["controll", "roll"] word_str_ser = cudf.Series(word_str_ser_ls) expect = ["control", "roll"] st = PorterStemmer() got = st._step5b(word_str_ser) assert list(got.to_pandas().values) == expect # mask test expect = ["controll", "roll"] mask = cudf.Series([False, True]) got = st._step5b(word_str_ser, mask) assert list(got.to_pandas().values) == expect
2,558
create n user
#!/usr/bin/env python3 import subprocess import random import re alphabet = 'azertyuiopqsdfghjklmwxcvbnAZERTYUIOPQSDFGHJKLMWXCVBN123456789-_' a_length = len(alphabet) """ ACL support attribute """ ACL4_SUPPORT_ALLOW_ACL = 0x00000001 ACL4_SUPPORT_DENY_ACL = 0x00000002 ACL4_SUPPORT_AUDIT_ACL = 0x00000004 ACL4_SUPPORT_ALARM_ACL = 0x00000008 class RandomGen(object): """ List of ACE possible who fields """ ace_who=["OWNER@","GROUP@","EVERYONE@","ANONYMOUS@","AUTHENTICATED@"] """ List of GID than can be used to do the tests """ gList=[] gListSize = len(gList) uList = [] uListSize = len(uList) fList=[] fListSize = len(fList) """ Create a user in available groups to do the tests """ def createUser(self,username): group = self.gList[random.randint(0,len(self.gList)-1)][0] opts = "-g" + group + " -p" + "1pilot" + " -m " + username u = subprocess.getoutput('/usr/sbin/useradd '+ opts) if u != "": print("create user " + username + "failed" + u) def createFile(self,path,n): for i in range(n): fName = 'file' + str(i) u = subprocess.getoutput('touch ' + path + '/'+ fName) self.fList.append(fName) def createGroup(self, grpname, gid): u = subprocess.getoutput('/usr/sbin/groupadd -g' + gid + " " + grpname) if u != "": print(u) def createNGroup(self, n): for i in range(n): gName = 'grp' + str(i) gid = str(500+i) self.createGroup(gName, gid) """ Random creation of n user """ def METHOD_NAME(self,n): for i in range(n): userName= "user" + str(i) self.createUser(userName) """ clean all users created to do the tests """ def cleanUsers(self): for name in self.uList: u = subprocess.getoutput('/usr/sbin/userdel -r '+ name) self.uList = [] """ clean all users created to do the tests """ def cleanGroups(self): for name in self.gList: u = subprocess.getoutput('/usr/sbin/groupdel '+ name[0]) self.gList = [] """ Retrieve the list of user from /etc/passwd file """ def getUserList(self): f = open('/etc/passwd','r') lines = f.readlines() for line in lines: splitedline = line.split(':') userName = splitedline[0] gid = splitedline[3] # TO FIX: verify that the group is OK (in the right range) NameOK = re.match("user",userName) # We keep only usernames starting with "user" if NameOK != None: self.uList.append(userName) f.close() def getFileList(self,path): u = subprocess.getoutput('ls ' + path) tmp = u.split('\n') for i in range (len(tmp)-1): NameOK = re.match("file",tmp[i]) if NameOK != None: self.fList.append(tmp[i]) def getNUserList(self,nb): f = open('/etc/passwd','r') lines = f.readlines() n = 0 for line in lines: splitedline = line.split(':'); userName = splitedline[0] gid = splitedline[3] # TO FIX: verify that the group is OK (in the right range) NameOK = re.match("user",userName) # We keep only usernames starting with "user" if NameOK != None: self.uList.append(userName) n = n+1 if n==nb: break; f.close() """ Get group list """ def getGroupList(self): f = open('/etc/group','r') lines = f.readlines() for line in lines: splitedline = line.split(':'); groupName = splitedline[0] gid = splitedline[2] NameOK = re.match("grp",groupName) if NameOK != None: self.gList.append([groupName,gid]) f.close() """ Get a list of n group """ def getNGroupList(self,nb): f = open('/etc/group','r') lines = f.readlines() n = 0 for line in lines: splitedline = line.split(':'); groupName = splitedline[0] gid = splitedline[2] NameOK = re.match("grp",groupName) if NameOK != None: self.gList.append([groupName,gid]) n = n+1 if n==nb: break; f.close() def printUserList(self): print(self.uList) def printGroupList(self): print(self.gList) """ Create a random name of random length """ def createOneNameRandomLength(self,maxlength): outputString ="" l=random.randint(0,maxlength) for i in range(l): a = random.randint(0,a_length-1) outputString =outputString + alphabet[a] return outputString """ Create a random name of fixed length """ def createOneName(self,lenght): outputString ="" for i in range(length): a = random.randint(0,a_length-1) outputString = outputString + alphabet[a] return outputString """ Create Random User List with fixed length user names """ def createRandomUserList(self,listlength,usernamelength): userlist = [] for i in range(listlength): user = createOneName(lenght) userlist.append(user) return userlist """ Create Random ACE for a file and a given usr """ def createRandomACE(self,user): type = ace_type[random.randint(0,len(ace_type))] flag = ace_flags[random.randint(0,len(ace_flags))] mask = ace_mask[random.randint(0,len(ace_mask))] who = ace_who[random.randint(0,len(ace_who))] return nfsace4(type, flag, mask, who) """ Create Random ACL for a file with a fixed number a entries """ def createRandomACL(self,acl_size): acl = [] userList = uList userListSize = uListSize for i in range(acl_size): n = random.randint(0,userListSize-1) usr = userList.pop(n) newace = createRandomACE(usr) acl.append(newace) return acl """ Return a mode string like 'xwr' or 'x' """ def createRandomMode(self): out_str = "" while (out_str == ""): if random.randint(0,1) == 1: out_str += 'x' if random.randint(0,1) == 1: out_str += 'w' if random.randint(0,1) == 1: out_str += 'r' return out_str """ Create a random ACL operation (delete / remove / modify on user / group ) """ def randomOp(self,path): a = random.randint(1,4) mode = self.createRandomMode() file = self.fList[random.randint(0,len(self.fList)-1)] if a == 1: # creation/modification user = self.uList[random.randint(0,len(self.uList)-1)] u = subprocess.getoutput('setfacl -m u:' + user + ':' + mode + " " + path + "/" + file) if a == 2: # with group group = self.gList[random.randint(0,len(self.gList)-1)][0] u = subprocess.getoutput('setfacl -m g:' + group + ':' + mode + " " + path + "/" + file) if a == 3: # deletation user = self.uList[random.randint(0,len(self.uList)-1)] u = subprocess.getoutput('setfacl -x u:' + user + " " + path + "/" + file) if a == 4: # with group group = self.gList[random.randint(0,len(self.gList)-1)][0] u = subprocess.getoutput('setfacl -x g:' + group + " " + path + "/" + file) # request on a unexisting group '''if a == 5: group = self.createOneNameRandomLength(16) print 'setfacl -x g:' + group + " " + path + "/" + file u = commands.getoutput('setfacl -x g:' + group + " " + path + "/" + file) if a == 6: user = self.createOneNameRandomLength(16) u = commands.getoutput('setfacl -x u:' + user + " " + path + "/" + file) if a == 7: # creation/modification user = self.createOneNameRandomLength(16) u = commands.getoutput('setfacl -m u:' + user + ':' + mode + " " + path + "/" + file) if a == 8: # with group group = self.createOneNameRandomLength(16) u = commands.getoutput('setfacl -m g:' + group + ':' + mode + " " + path + "/" + file) if a == 9: #Copying the ACL of one file to another file2 = self.fList[random.randint(0,len(self.fList)-1)] u = commands.getoutput('getfacl ' + path + "/" + file + "| setfacl --set-file=- " + path + "/" + file2) if u!="": print u'''
2,559
hash code
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from dataclasses import dataclass from plc4py.api.messages.PlcMessage import PlcMessage from plc4py.protocols.modbus.readwrite.ModbusPDU import ModbusPDU from plc4py.protocols.modbus.readwrite.ModbusPDU import ModbusPDUBuilder from plc4py.spi.generation.ReadBuffer import ReadBuffer from plc4py.spi.generation.WriteBuffer import WriteBuffer from typing import List import math @dataclass class ModbusPDUReadWriteMultipleHoldingRegistersRequest(PlcMessage, ModbusPDU): read_starting_address: int read_quantity: int write_starting_address: int write_quantity: int value: List[int] # Accessors for discriminator values. error_flag: bool = False function_flag: int = 0x17 response: bool = False def __post_init__(self): super().__init__() def serialize_modbus_pdu_child(self, write_buffer: WriteBuffer): write_buffer.push_context("ModbusPDUReadWriteMultipleHoldingRegistersRequest") # Simple Field (readStartingAddress) write_buffer.write_unsigned_short( self.read_starting_address, logical_name="readStartingAddress" ) # Simple Field (readQuantity) write_buffer.write_unsigned_short( self.read_quantity, logical_name="readQuantity" ) # Simple Field (writeStartingAddress) write_buffer.write_unsigned_short( self.write_starting_address, logical_name="writeStartingAddress" ) # Simple Field (writeQuantity) write_buffer.write_unsigned_short( self.write_quantity, logical_name="writeQuantity" ) # Implicit Field (byte_count) (Used for parsing, but its value is not stored as it's implicitly given by the objects content) byte_count: int = int(len(self.value)) write_buffer.write_unsigned_byte(byte_count, logical_name="byteCount") # Array Field (value) write_buffer.write_byte_array(self.value, logical_name="value") write_buffer.pop_context("ModbusPDUReadWriteMultipleHoldingRegistersRequest") def length_in_bytes(self) -> int: return int(math.ceil(float(self.get_length_in_bits() / 8.0))) def get_length_in_bits(self) -> int: length_in_bits: int = super().get_length_in_bits() _value: ModbusPDUReadWriteMultipleHoldingRegistersRequest = self # Simple field (readStartingAddress) length_in_bits += 16 # Simple field (readQuantity) length_in_bits += 16 # Simple field (writeStartingAddress) length_in_bits += 16 # Simple field (writeQuantity) length_in_bits += 16 # Implicit Field (byteCount) length_in_bits += 8 # Array field if self.value != None: length_in_bits += 8 * len(self.value) return length_in_bits @staticmethod def static_parse_builder(read_buffer: ReadBuffer, response: bool): read_buffer.push_context("ModbusPDUReadWriteMultipleHoldingRegistersRequest") self.read_starting_address = read_simple_field( "readStartingAddress", read_unsigned_int ) self.read_quantity = read_simple_field("readQuantity", read_unsigned_int) self.write_starting_address = read_simple_field( "writeStartingAddress", read_unsigned_int ) self.write_quantity = read_simple_field("writeQuantity", read_unsigned_int) byte_count: int = read_implicit_field("byteCount", read_unsigned_short) self.value = read_buffer.read_byte_array("value", int(byte_count)) read_buffer.pop_context("ModbusPDUReadWriteMultipleHoldingRegistersRequest") # Create the instance return ModbusPDUReadWriteMultipleHoldingRegistersRequestBuilder( read_starting_address, read_quantity, write_starting_address, write_quantity, value, ) def equals(self, o: object) -> bool: if self == o: return True if not isinstance(o, ModbusPDUReadWriteMultipleHoldingRegistersRequest): return False that: ModbusPDUReadWriteMultipleHoldingRegistersRequest = ( ModbusPDUReadWriteMultipleHoldingRegistersRequest(o) ) return ( (self.read_starting_address == that.read_starting_address) and (self.read_quantity == that.read_quantity) and (self.write_starting_address == that.write_starting_address) and (self.write_quantity == that.write_quantity) and (self.value == that.value) and super().equals(that) and True ) def METHOD_NAME(self) -> int: return hash(self) def __str__(self) -> str: write_buffer_box_based: WriteBufferBoxBased = WriteBufferBoxBased(True, True) try: write_buffer_box_based.writeSerializable(self) except SerializationException as e: raise RuntimeException(e) return "\n" + str(write_buffer_box_based.get_box()) + "\n" @dataclass class ModbusPDUReadWriteMultipleHoldingRegistersRequestBuilder(ModbusPDUBuilder): readStartingAddress: int readQuantity: int writeStartingAddress: int writeQuantity: int value: List[int] def __post_init__(self): pass def build( self, ) -> ModbusPDUReadWriteMultipleHoldingRegistersRequest: modbus_pdu_read_write_multiple_holding_registers_request: ModbusPDUReadWriteMultipleHoldingRegistersRequest = ModbusPDUReadWriteMultipleHoldingRegistersRequest( self.read_starting_address, self.read_quantity, self.write_starting_address, self.write_quantity, self.value, ) return modbus_pdu_read_write_multiple_holding_registers_request
2,560
test invalid json data
# This file is part of Buildbot. Buildbot is free software: you can # redistribute it and/or modify it under the terms of the GNU General Public # License as published by the Free Software Foundation, version 2. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # Copyright Buildbot Team Members from twisted.internet import defer from twisted.trial import unittest from buildbot.reporters.zulip import ZulipStatusPush from buildbot.test.fake import fakemaster from buildbot.test.fake import httpclientservice as fakehttpclientservice from buildbot.test.reactor import TestReactorMixin from buildbot.test.util.config import ConfigErrorsMixin from buildbot.test.util.logging import LoggingMixin from buildbot.test.util.reporter import ReporterTestMixin class TestZulipStatusPush(unittest.TestCase, ReporterTestMixin, LoggingMixin, ConfigErrorsMixin, TestReactorMixin): def setUp(self): self.setup_test_reactor() self.setup_reporter_test() self.master = fakemaster.make_master( testcase=self, wantData=True, wantDb=True, wantMq=True) @defer.inlineCallbacks def tearDown(self): if self.master.running: yield self.master.stopService() @defer.inlineCallbacks def setupZulipStatusPush(self, endpoint="http://example.com", token="123", stream=None): self.sp = ZulipStatusPush( endpoint=endpoint, token=token, stream=stream) self._http = yield fakehttpclientservice.HTTPClientService.getService( self.master, self, endpoint, debug=None, verify=None) yield self.sp.setServiceParent(self.master) yield self.master.startService() @defer.inlineCallbacks def test_build_started(self): yield self.setupZulipStatusPush(stream="xyz") build = yield self.insert_build_new() self._http.expect( 'post', '/api/v1/external/buildbot?api_key=123&stream=xyz', json={ "event": 'new', "buildid": 20, "buildername": "Builder0", "url": "http://localhost:8080/#/builders/79/builds/0", "project": "testProject", "timestamp": 10000001 }) yield self.sp._got_event(('builds', 20, 'new'), build) @defer.inlineCallbacks def test_build_finished(self): yield self.setupZulipStatusPush(stream="xyz") build = yield self.insert_build_finished() self._http.expect( 'post', '/api/v1/external/buildbot?api_key=123&stream=xyz', json={ "event": "finished", "buildid": 20, "buildername": "Builder0", "url": "http://localhost:8080/#/builders/79/builds/0", "project": "testProject", "timestamp": 10000005, "results": 0 }) yield self.sp._got_event(('builds', 20, 'finished'), build) @defer.inlineCallbacks def test_stream_none(self): yield self.setupZulipStatusPush(stream=None) build = yield self.insert_build_finished() self._http.expect( 'post', '/api/v1/external/buildbot?api_key=123', json={ "event": "finished", "buildid": 20, "buildername": "Builder0", "url": "http://localhost:8080/#/builders/79/builds/0", "project": "testProject", "timestamp": 10000005, "results": 0 }) yield self.sp._got_event(('builds', 20, 'finished'), build) def test_endpoint_string(self): with self.assertRaisesConfigError( "Endpoint must be a string"): ZulipStatusPush(endpoint=1234, token="abcd") def test_token_string(self): with self.assertRaisesConfigError( "Token must be a string"): ZulipStatusPush(endpoint="http://example.com", token=1234) @defer.inlineCallbacks def METHOD_NAME(self): yield self.setupZulipStatusPush(stream="xyz") build = yield self.insert_build_new() self._http.expect( 'post', '/api/v1/external/buildbot?api_key=123&stream=xyz', json={ "event": 'new', "buildid": 20, "buildername": "Builder0", "url": "http://localhost:8080/#/builders/79/builds/0", "project": "testProject", "timestamp": 10000001 }, code=500) self.setUpLogging() yield self.sp._got_event(('builds', 20, 'new'), build) self.assertLogged('500: Error pushing build status to Zulip') @defer.inlineCallbacks def test_invalid_url(self): yield self.setupZulipStatusPush(stream="xyz") build = yield self.insert_build_new() self._http.expect( 'post', '/api/v1/external/buildbot?api_key=123&stream=xyz', json={ "event": 'new', "buildid": 20, "buildername": "Builder0", "url": "http://localhost:8080/#/builders/79/builds/0", "project": "testProject", "timestamp": 10000001 }, code=404) self.setUpLogging() yield self.sp._got_event(('builds', 20, 'new'), build) self.assertLogged('404: Error pushing build status to Zulip') @defer.inlineCallbacks def test_invalid_token(self): yield self.setupZulipStatusPush(stream="xyz") build = yield self.insert_build_new() self._http.expect( 'post', '/api/v1/external/buildbot?api_key=123&stream=xyz', json={ "event": 'new', "buildid": 20, "buildername": "Builder0", "url": "http://localhost:8080/#/builders/79/builds/0", "project": "testProject", "timestamp": 10000001 }, code=401, content_json={"result": "error", "msg": "Invalid API key", "code": "INVALID_API_KEY"}) self.setUpLogging() yield self.sp._got_event(('builds', 20, 'new'), build) self.assertLogged('401: Error pushing build status to Zulip')
2,561
save model
# # This sets up how models are displayed # in the web admin interface. # from django import forms from django.conf import settings from django.contrib import admin from evennia.scripts.models import ScriptDB from . import utils as adminutils from .attributes import AttributeInline from .tags import TagInline class ScriptForm(forms.ModelForm): db_key = forms.CharField( label="Name/Key", help_text="Script identifier, shown in listings etc." ) db_typeclass_path = forms.ChoiceField( label="Typeclass", help_text="This is the Python-path to the class implementing the actual script functionality. " "<BR>If your custom class is not found here, it may not be imported into Evennia yet.", choices=lambda: adminutils.get_and_load_typeclasses( parent=ScriptDB, excluded_parents=["evennia.prototypes.prototypes.DbPrototype"] ), ) db_lock_storage = forms.CharField( label="Locks", required=False, widget=forms.Textarea(attrs={"cols": "100", "rows": "2"}), help_text="In-game lock definition string. If not given, defaults will be used. " "This string should be on the form " "<i>type:lockfunction(args);type2:lockfunction2(args);...", ) db_interval = forms.IntegerField( label="Repeat Interval", help_text="Optional timer component.<BR>How often to call the Script's<BR>`at_repeat` hook, in seconds." "<BR>Set to 0 to disable.", ) db_repeats = forms.IntegerField( help_text="Only repeat this many times." "<BR>Set to 0 to run indefinitely." ) db_start_delay = forms.BooleanField(help_text="Wait <B>Interval</B> seconds before first call.") db_persistent = forms.BooleanField( label="Survives reboot", help_text="If unset, a server reboot will remove the timer." ) class ScriptTagInline(TagInline): """ Inline script tags. """ model = ScriptDB.db_tags.through related_field = "scriptdb" class ScriptAttributeInline(AttributeInline): """ Inline attribute tags. """ model = ScriptDB.db_attributes.through related_field = "scriptdb" @admin.register(ScriptDB) class ScriptAdmin(admin.ModelAdmin): """ Displaying the main Script page. """ list_display = ( "id", "db_key", "db_typeclass_path", "db_obj", "db_interval", "db_repeats", "db_persistent", "db_date_created", ) list_display_links = ("id", "db_key") ordering = ["-db_date_created", "-id"] search_fields = ["=id", "^db_key", "db_typeclass_path"] readonly_fields = ["serialized_string"] form = ScriptForm save_as = True save_on_top = True list_select_related = True view_on_site = False raw_id_fields = ("db_obj",) fieldsets = ( ( None, { "fields": ( ("db_key", "db_typeclass_path"), ("db_interval", "db_repeats", "db_start_delay", "db_persistent"), "db_obj", "db_lock_storage", "serialized_string", ) }, ), ) inlines = [ScriptTagInline, ScriptAttributeInline] def serialized_string(self, obj): """ Get the serialized version of the object. """ from evennia.utils import dbserialize return str(dbserialize.pack_dbobj(obj)) serialized_string.help_text = ( "Copy & paste this string into an Attribute's `value` field to store this script there." ) def get_form(self, request, obj=None, **kwargs): """ Overrides help texts. """ help_texts = kwargs.get("help_texts", {}) help_texts["serialized_string"] = self.serialized_string.help_text kwargs["help_texts"] = help_texts return super().get_form(request, obj, **kwargs) def METHOD_NAME(self, request, obj, form, change): """ Model-save hook. Args: request (Request): Incoming request. obj (Object): Database object. form (Form): Form instance. change (bool): If this is a change or a new object. """ obj.save() if not change: # adding a new object # have to call init with typeclass passed to it obj.set_class_from_typeclass(typeclass_path=obj.db_typeclass_path)
2,562
analyze python coverage
"""Analyze code coverage data to determine which integration test targets provide coverage for each arc or line.""" from __future__ import annotations import os import typing as t from .....encoding import ( to_text, ) from .....data import ( data_context, ) from .....util_common import ( ResultType, ) from .....executor import ( Delegate, ) from .....provisioning import ( prepare_profiles, HostState, ) from ... import ( enumerate_powershell_lines, enumerate_python_arcs, get_collection_path_regexes, get_powershell_coverage_files, get_python_coverage_files, get_python_modules, initialize_coverage, PathChecker, ) from . import ( CoverageAnalyzeTargetsConfig, get_target_index, make_report, write_report, ) from . import ( Arcs, Lines, TargetIndexes, ) class CoverageAnalyzeTargetsGenerateConfig(CoverageAnalyzeTargetsConfig): """Configuration for the `coverage analyze targets generate` command.""" def __init__(self, args: t.Any) -> None: super().__init__(args) self.input_dir: str = args.input_dir or ResultType.COVERAGE.path self.output_file: str = args.output_file def command_coverage_analyze_targets_generate(args: CoverageAnalyzeTargetsGenerateConfig) -> None: """Analyze code coverage data to determine which integration test targets provide coverage for each arc or line.""" host_state = prepare_profiles(args) # coverage analyze targets generate if args.delegate: raise Delegate(host_state) root = data_context().content.root target_indexes: TargetIndexes = {} arcs = dict((os.path.relpath(path, root), data) for path, data in METHOD_NAME(args, host_state, args.input_dir, target_indexes).items()) lines = dict((os.path.relpath(path, root), data) for path, data in analyze_powershell_coverage(args, args.input_dir, target_indexes).items()) report = make_report(target_indexes, arcs, lines) write_report(args, report, args.output_file) def METHOD_NAME( args: CoverageAnalyzeTargetsGenerateConfig, host_state: HostState, path: str, target_indexes: TargetIndexes, ) -> Arcs: """Analyze Python code coverage.""" results: Arcs = {} collection_search_re, collection_sub_re = get_collection_path_regexes() modules = get_python_modules() python_files = get_python_coverage_files(path) coverage = initialize_coverage(args, host_state) for python_file in python_files: if not is_integration_coverage_file(python_file): continue target_name = get_target_name(python_file) target_index = get_target_index(target_name, target_indexes) for filename, covered_arcs in enumerate_python_arcs(python_file, coverage, modules, collection_search_re, collection_sub_re): arcs = results.setdefault(filename, {}) for covered_arc in covered_arcs: arc = arcs.setdefault(covered_arc, set()) arc.add(target_index) prune_invalid_filenames(args, results, collection_search_re=collection_search_re) return results def analyze_powershell_coverage( args: CoverageAnalyzeTargetsGenerateConfig, path: str, target_indexes: TargetIndexes, ) -> Lines: """Analyze PowerShell code coverage""" results: Lines = {} collection_search_re, collection_sub_re = get_collection_path_regexes() powershell_files = get_powershell_coverage_files(path) for powershell_file in powershell_files: if not is_integration_coverage_file(powershell_file): continue target_name = get_target_name(powershell_file) target_index = get_target_index(target_name, target_indexes) for filename, hits in enumerate_powershell_lines(powershell_file, collection_search_re, collection_sub_re): lines = results.setdefault(filename, {}) for covered_line in hits: line = lines.setdefault(covered_line, set()) line.add(target_index) prune_invalid_filenames(args, results) return results def prune_invalid_filenames( args: CoverageAnalyzeTargetsGenerateConfig, results: dict[str, t.Any], collection_search_re: t.Optional[t.Pattern] = None, ) -> None: """Remove invalid filenames from the given result set.""" path_checker = PathChecker(args, collection_search_re) for path in list(results.keys()): if not path_checker.check_path(path): del results[path] def get_target_name(path: str) -> str: """Extract the test target name from the given coverage path.""" return to_text(os.path.basename(path).split('=')[1]) def is_integration_coverage_file(path: str) -> bool: """Returns True if the coverage file came from integration tests, otherwise False.""" return os.path.basename(path).split('=')[0] in ('integration', 'windows-integration', 'network-integration')
2,563
bad message
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test message sending before handshake completion. A node should never send anything other than VERSION/VERACK/REJECT until it's received a VERACK. This test connects to a node and sends it a few messages, trying to entice it into sending us something it shouldn't. """ from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * banscore = 10 class CLazyNode(P2PInterface): def __init__(self): super().__init__() self.unexpected_msg = False self.ever_connected = False def METHOD_NAME(self, message): self.unexpected_msg = True self.log.info("should not have received message: %s" % message.command) def on_open(self): self.ever_connected = True def on_version(self, message): self.METHOD_NAME(message) def on_verack(self, message): self.METHOD_NAME(message) def on_reject(self, message): self.METHOD_NAME(message) def on_inv(self, message): self.METHOD_NAME(message) def on_addr(self, message): self.METHOD_NAME(message) def on_getdata(self, message): self.METHOD_NAME(message) def on_getblocks(self, message): self.METHOD_NAME(message) def on_tx(self, message): self.METHOD_NAME(message) def on_block(self, message): self.METHOD_NAME(message) def on_getaddr(self, message): self.METHOD_NAME(message) def on_headers(self, message): self.METHOD_NAME(message) def on_getheaders(self, message): self.METHOD_NAME(message) def on_ping(self, message): self.METHOD_NAME(message) def on_mempool(self, message): self.METHOD_NAME(message) def on_pong(self, message): self.METHOD_NAME(message) def on_sendheaders(self, message): self.METHOD_NAME(message) def on_sendcmpct(self, message): self.METHOD_NAME(message) def on_cmpctblock(self, message): self.METHOD_NAME(message) def on_getblocktxn(self, message): self.METHOD_NAME(message) def on_blocktxn(self, message): self.METHOD_NAME(message) # Node that never sends a version. We'll use this to send a bunch of messages # anyway, and eventually get disconnected. class CNodeNoVersionBan(CLazyNode): # send a bunch of veracks without sending a message. This should get us disconnected. # NOTE: implementation-specific check here. Remove if raptoreumd ban behavior changes def on_open(self): super().on_open() for i in range(banscore): self.send_message(msg_verack()) def on_reject(self, message): pass # Node that never sends a version. This one just sits idle and hopes to receive # any message (it shouldn't!) class CNodeNoVersionIdle(CLazyNode): def __init__(self): super().__init__() # Node that sends a version but not a verack. class CNodeNoVerackIdle(CLazyNode): def __init__(self): self.version_received = False super().__init__() def on_reject(self, message): pass def on_verack(self, message): pass # When version is received, don't reply with a verack. Instead, see if the # node will give us a message that it shouldn't. This is not an exhaustive # list! def on_version(self, message): self.version_received = True self.send_message(msg_ping()) self.send_message(msg_getaddr()) class P2PLeakTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [['-banscore='+str(banscore)]] def run_test(self): no_version_bannode = self.nodes[0].add_p2p_connection(CNodeNoVersionBan(), send_version=False) no_version_idlenode = self.nodes[0].add_p2p_connection(CNodeNoVersionIdle(), send_version=False) no_verack_idlenode = self.nodes[0].add_p2p_connection(CNodeNoVerackIdle()) network_thread_start() wait_until(lambda: no_version_bannode.ever_connected, timeout=10, lock=mininode_lock) wait_until(lambda: no_version_idlenode.ever_connected, timeout=10, lock=mininode_lock) wait_until(lambda: no_verack_idlenode.version_received, timeout=10, lock=mininode_lock) # Mine a block and make sure that it's not sent to the connected nodes self.nodes[0].generate(1) #Give the node enough time to possibly leak out a message time.sleep(5) #This node should have been banned assert not no_version_bannode.is_connected self.nodes[0].disconnect_p2ps() # Wait until all connections are closed wait_until(lambda: len(self.nodes[0].getpeerinfo()) == 0) # Make sure no unexpected messages came in assert(no_version_bannode.unexpected_msg == False) assert(no_version_idlenode.unexpected_msg == False) assert(no_verack_idlenode.unexpected_msg == False) if __name__ == '__main__': P2PLeakTest().main()
2,564
cookies
"""Code to run before and after certain events during testing.""" import pymongo import requests from behave.model import Step from behave.runner import Context JSON_CONTENT_TYPE = "application/json" def before_all(context: Context) -> None: # noqa: C901 """Create shortcuts to send requests to the server API.""" timeout = 20 # Make timeout long enough to not time out when generating the PDF. def METHOD_NAME() -> dict[str, str]: """Return the cookies.""" return {"session_id": context.session_id} if context.session_id else {} def api_url(api: str) -> str: """Return the API URL.""" return f"{context.base_api_url}/{api}" def get(api: str, headers: dict[str, str] | None = None) -> requests.Response | dict | list: """Get the resource.""" url = api_url(api) for attribute in ("report_date", "min_report_date"): if value := getattr(context, attribute): sep = "&" if "?" in url else "?" url += f"{sep}{attribute}={value}" context.response = response = requests.get(url, headers=headers, METHOD_NAME=METHOD_NAME(), timeout=timeout) return response.json() if response.headers.get("Content-Type") == JSON_CONTENT_TYPE else response def post(api: str, json: dict | list | None = None) -> requests.Response | dict | list: """Post the resource.""" url = api_url(api) response = requests.post(url, json=json, METHOD_NAME=METHOD_NAME(), timeout=timeout) context.post_response = context.response = response if not response.ok: return response if "session_id" in response.METHOD_NAME: context.session_id = response.METHOD_NAME["session_id"] return response.json() if response.headers.get("Content-Type") == JSON_CONTENT_TYPE else response def put(api: str, json: dict | list | None = None) -> requests.Response | dict | list: """Post the resource.""" url = api_url(api) response = requests.put(url, json=json, METHOD_NAME=METHOD_NAME(), timeout=timeout) context.put_response = context.response = response # Ignore non-ok responses for now since we don't have testcases where they apply return response.json() if response.headers.get("Content-Type") == JSON_CONTENT_TYPE else response def delete(api: str) -> requests.Response | dict | list: """Delete the resource.""" context.response = response = requests.delete(api_url(api), METHOD_NAME=METHOD_NAME(), timeout=timeout) return response.json() if response.headers.get("Content-Type") == JSON_CONTENT_TYPE else response context.base_api_url = "http://localhost:5001/api/v3" context.database = pymongo.MongoClient("mongodb://root:root@localhost:27017")["quality_time_db"] context.session_id = None context.report_date = None context.min_report_date = None context.response = None # Most recent respone context.post_response = None # Most recent post response # Create a typed local variable to prevent mypy error: Type cannot be declared in assignment to non-self attribute uuid: dict[str, str] = {} context.uuid = uuid # Keep track of the most recent uuid per item type context.get = get context.post = post context.put = put context.delete = delete context.public_key = """-----BEGIN PUBLIC KEY----- MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEApLaktGOguW3bcC0xILmf ToucM7eYx3oXKSKKg2aX8TNwX6qendovmUw0X6ooM+vcKEqL/h8F26RdmvIxoJLa uK7BrqW4zDlYtLqmnsVE7rXLAFfgc+r8vxhlAvXGZIMqLd6KM/WTJu6+cxDwNJT7 TVr9Fxy6vP7CxqYrzPFcau/iNZQxvUSp8M7vHgRRsF4Ux8uQk2WqEjJ9gFYF6y/l 2MYGTjHSe2FzdzvpmPdwiSeZU42+zd9hqvjNdhc04rxNKu1xvpQthBY2d497Idkg 5380siuYrFMb46VtL3hdIoOH5934/nBVU35aXDirPcoZazMN2D3BaWULeEcvmKq1 pmUcidkMuTLeiOksl/d3GBT6dvdSVEsHG5rg9SB3XCrA3Fk3R1Dp/b9WHZko+tqx nivGYzlaMI/gzLCiWSiL4FuJIttiqdZM2xWFTHIdpQXO3jmogV2ouYJ/IoDIyIR9 M9uddlTPkf3y6mSLwtl3tJ6eDk4EoWFKc8q8F0hza5PLQD5P8O7ddLZ5SAVEoeLP oRo4ZewdU/XOhYKw3Jgpj1GFPwO/wxpKmYmjGR7lzG4uzae4o/3pEBi2KnSlUhC9 Fm+YDdqKwPSXu1L2DfJBISqpc2ua29O1WBQlsFo9QfSuESSRBnwvt4IbIwH5CVMJ hv23LX3At2kFGKAPC0jM1YUCAwEAAQ== -----END PUBLIC KEY----- """ def before_step(context: Context, step: Step) -> None: """Make the step available in the context.""" context.step = step
2,565
on 204
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # # Code generated by aaz-dev-tools # -------------------------------------------------------------------------------------------- # pylint: skip-file # flake8: noqa from azure.cli.core.aaz import * @register_command( "network vnet-gateway delete", ) class Delete(AAZCommand): """Delete a virtual network gateway. In order to delete a Virtual Network Gateway, you must first delete ALL Connection objects in Azure that are connected to the Gateway. After deleting the Gateway, proceed to delete other resources now not in use. For more information, follow the order of instructions on this page: https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-delete-vnet-gateway-portal :example: Delete a virtual network gateway. az network vnet-gateway delete -g MyResourceGroup -n MyVnetGateway """ _aaz_info = { "version": "2015-06-15", "resources": [ ["mgmt-plane", "/subscriptions/{}/resourcegroups/{}/providers/microsoft.network/virtualnetworkgateways/{}", "2015-06-15"], ] } AZ_SUPPORT_NO_WAIT = True def _handler(self, command_args): super()._handler(command_args) return self.build_lro_poller(self._execute_operations, None) _args_schema = None @classmethod def _build_arguments_schema(cls, *args, **kwargs): if cls._args_schema is not None: return cls._args_schema cls._args_schema = super()._build_arguments_schema(*args, **kwargs) # define Arg Group "" _args_schema = cls._args_schema _args_schema.resource_group = AAZResourceGroupNameArg( required=True, ) _args_schema.name = AAZStrArg( options=["-n", "--name"], help="Name of the VNet gateway.", required=True, id_part="name", ) return cls._args_schema def _execute_operations(self): self.pre_operations() yield self.VirtualNetworkGatewaysDelete(ctx=self.ctx)() self.post_operations() @register_callback def pre_operations(self): pass @register_callback def post_operations(self): pass class VirtualNetworkGatewaysDelete(AAZHttpOperation): CLIENT_TYPE = "MgmtClient" def __call__(self, *args, **kwargs): request = self.make_request() session = self.client.send_request(request=request, stream=False, **kwargs) if session.http_response.status_code in [202]: return self.client.build_lro_polling( self.ctx.args.no_wait, session, self.on_200, self.on_error, lro_options={"final-state-via": "location"}, path_format_arguments=self.url_parameters, ) if session.http_response.status_code in [200]: return self.client.build_lro_polling( self.ctx.args.no_wait, session, self.on_200, self.on_error, lro_options={"final-state-via": "location"}, path_format_arguments=self.url_parameters, ) if session.http_response.status_code in [204]: return self.client.build_lro_polling( self.ctx.args.no_wait, session, self.METHOD_NAME, self.on_error, lro_options={"final-state-via": "location"}, path_format_arguments=self.url_parameters, ) return self.on_error(session.http_response) @property def url(self): return self.client.format_url( "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}", **self.url_parameters ) @property def method(self): return "DELETE" @property def error_format(self): return "MgmtErrorFormat" @property def url_parameters(self): parameters = { **self.serialize_url_param( "resourceGroupName", self.ctx.args.resource_group, required=True, ), **self.serialize_url_param( "subscriptionId", self.ctx.subscription_id, required=True, ), **self.serialize_url_param( "virtualNetworkGatewayName", self.ctx.args.name, required=True, ), } return parameters @property def query_parameters(self): parameters = { **self.serialize_query_param( "api-version", "2015-06-15", required=True, ), } return parameters def on_200(self, session): pass def METHOD_NAME(self, session): pass class _DeleteHelper: """Helper class for Delete""" __all__ = ["Delete"]
2,566
add f aliases
import inspect import ast import astunparse from ast import NodeVisitor from typing import Any, Dict, List from dlt.common.reflection.utils import find_outer_func_def import dlt.reflection.names as n class PipelineScriptVisitor(NodeVisitor): def __init__(self, source: str): self.source = source self.source_lines: List[str] = ast._splitlines_no_ff(source) # type: ignore self.mod_aliases: Dict[str, str] = {} self.func_aliases: Dict[str, str] = {} # self.source_aliases: Dict[str, str] = {} self.is_destination_imported: bool = False self.known_calls: Dict[str, List[inspect.BoundArguments]] = {} self.known_sources: Dict[str, ast.FunctionDef] = {} self.known_source_calls: Dict[str, List[ast.Call]] = {} self.known_resources: Dict[str, ast.FunctionDef] = {} self.known_resource_calls: Dict[str, List[ast.Call]] = {} # updated in post visit self.known_sources_resources: Dict[str, ast.FunctionDef] = {} self.known_sources_resources_calls: Dict[str, List[ast.Call]] = {} def visit_passes(self, tree: ast.AST) -> None: self._curr_pass = 1 self.visit(tree) self._curr_pass = 2 self.visit(tree) self._post_visit() def visit_Import(self, node: ast.Import) -> Any: if self._curr_pass == 1: # reflect on imported modules for alias in node.names: # detect dlt import if alias.name == n.DLT: eff_name = alias.asname or alias.name self.mod_aliases[eff_name] = alias.name self.METHOD_NAME(eff_name) if alias.name.startswith(f"{n.DLT}.") and alias.asname is None: # this also imports dlt self.mod_aliases[alias.name] = alias.name self.METHOD_NAME(alias.name) if alias.name.startswith(f"{n.DESTINATIONS}."): self.is_destination_imported = True super().generic_visit(node) def visit_ImportFrom(self, node: ast.ImportFrom) -> Any: if self._curr_pass == 1: # reflect on pipeline functions and decorators if node.module == n.DLT: for alias in node.names: if alias.name in n.DETECTED_FUNCTIONS: self.func_aliases[alias.asname or alias.name] = alias.name if node.module == n.DESTINATIONS: self.is_destination_imported = True super().generic_visit(node) def visit_FunctionDef(self, node: ast.FunctionDef) -> Any: if self._curr_pass == 1: # find all sources and resources by inspecting decorators for deco in node.decorator_list: # decorators can be function calls, attributes or names if isinstance(deco, (ast.Name, ast.Attribute)): alias_name = astunparse.unparse(deco).strip() elif isinstance(deco, ast.Call): alias_name = astunparse.unparse(deco.func).strip() else: raise ValueError(self.source_segment(deco), type(deco), "Unknown decorator form") fn = self.func_aliases.get(alias_name) if fn == n.SOURCE: self.known_sources[str(node.name)] = node elif fn == n.RESOURCE: self.known_resources[str(node.name)] = node super().generic_visit(node) def visit_Call(self, node: ast.Call) -> Any: if self._curr_pass == 2: # check if this is a call to any of known functions alias_name = astunparse.unparse(node.func).strip() fn = self.func_aliases.get(alias_name) if not fn: # try a fallback to "run" function that may be called on pipeline or source if isinstance(node.func, ast.Attribute) and node.func.attr == n.RUN: fn = n.RUN if fn: # set parent to the outer function node.parent = find_outer_func_def(node) # type: ignore sig = n.SIGNATURES[fn] try: # bind the signature where the argument values are the corresponding ast nodes bound_args = sig.bind(*node.args, **{str(kwd.arg):kwd.value for kwd in node.keywords}) bound_args.apply_defaults() # print(f"ALIAS: {alias_name} of {self.func_aliases.get(alias_name)} with {bound_args}") fun_calls = self.known_calls.setdefault(fn, []) fun_calls.append(bound_args) except TypeError: # skip the signature pass else: # check if this is a call to any known source if alias_name in self.known_sources or alias_name in self.known_resources: # set parent to the outer function node.parent = find_outer_func_def(node) # type: ignore if alias_name in self.known_sources: decorated_calls = self.known_source_calls.setdefault(alias_name, []) else: decorated_calls = self.known_resource_calls.setdefault(alias_name, []) decorated_calls.append(node) # visit the children super().generic_visit(node) def _post_visit(self) -> None: self.known_sources_resources = self.known_sources.copy() self.known_sources_resources.update(self.known_resources) self.known_sources_resources_calls = self.known_source_calls.copy() self.known_sources_resources_calls.update(self.known_resource_calls) def source_segment(self, node: ast.AST) -> str: # TODO: this must cache parsed source. right now the full source is tokenized on every call return ast.get_source_segment(self.source, node) def METHOD_NAME(self, module_name: str) -> None: for fn in n.DETECTED_FUNCTIONS: self.func_aliases[f"{module_name}.{fn}"] = fn
2,567
paypal
"""Provides data related to payment.""" import re import string import typing as t from mimesis.data import CREDIT_CARD_NETWORKS from mimesis.enums import CardType, Gender from mimesis.exceptions import NonEnumerableError from mimesis.locales import Locale from mimesis.providers.base import BaseProvider from mimesis.providers.person import Person from mimesis.shortcuts import luhn_checksum __all__ = ["Payment"] class Payment(BaseProvider): """Class that provides data related to payments.""" def __init__(self, *args: t.Any, **kwargs: t.Any) -> None: """Initialize attributes. :param args: Arguments. :param kwargs: Keyword arguments. """ super().__init__(*args, **kwargs) self._person = Person( locale=Locale.EN, seed=self.seed, random=self.random, ) class Meta: name = "payment" def cid(self) -> str: """Generate a random CID. :return: CID code. :Example: 7452 """ return f"{self.random.randint(1, 9999):04d}" def METHOD_NAME(self) -> str: """Generate a random PayPal account. :return: Email of PapPal user. :Example: [email protected] """ return self._person.email() def bitcoin_address(self) -> str: """Generate a random bitcoin address. Keep in mind that although it generates **valid-looking** addresses, it does not mean that they are actually valid. :return: Bitcoin address. :Example: 3EktnHQD7RiAE6uzMj2ZifT9YgRrkSgzQX """ type_ = self.random.choice(["1", "3"]) characters = string.ascii_letters + string.digits return type_ + "".join(self.random.choices(characters, k=33)) def ethereum_address(self) -> str: """Generate a random Ethereum address. ..note: The address will look like Ethereum address, but keep in mind that it is not the valid address. :return: Ethereum address. :Example: 0xe8ece9e6ff7dba52d4c07d37418036a89af9698d """ bits = self.random.getrandbits(160) address = bits.to_bytes(20, byteorder="big") return "0x" + address.hex() def credit_card_network(self) -> str: """Generate a random credit card network. :return: Credit card network :Example: MasterCard """ return self.random.choice(CREDIT_CARD_NETWORKS) def credit_card_number(self, card_type: t.Optional[CardType] = None) -> str: """Generate a random credit card number. :param card_type: Issuing Network. Default is Visa. :return: Credit card number. :raises NotImplementedError: if card_type not supported. :Example: 4455 5299 1152 2450 """ length = 16 regex = re.compile(r"(\d{4})(\d{4})(\d{4})(\d{4})") if card_type is None: card_type = self.random.choice_enum_item(CardType) if card_type == CardType.VISA: number = self.random.randint(4000, 4999) elif card_type == CardType.MASTER_CARD: number = self.random.choice( [ self.random.randint(2221, 2720), self.random.randint(5100, 5599), ] ) elif card_type == CardType.AMERICAN_EXPRESS: number = self.random.choice([34, 37]) length = 15 regex = re.compile(r"(\d{4})(\d{6})(\d{5})") else: raise NonEnumerableError(CardType) str_num = str(number) while len(str_num) < length - 1: str_num += self.random.choice(string.digits) groups = regex.search( # type: ignore str_num + luhn_checksum(str_num), ).groups() card = " ".join(groups) return card def credit_card_expiration_date(self, minimum: int = 16, maximum: int = 25) -> str: """Generate a random expiration date for credit card. :param minimum: Date of issue. :param maximum: Maximum of expiration_date. :return: Expiration date of credit card. :Example: 03/19. """ month = self.random.randint(1, 12) year = self.random.randint(minimum, maximum) return f"{month:02d}/{year}" def cvv(self) -> str: """Generate a random CVV. :return: CVV code. :Example: 069 """ return f"{self.random.randint(1, 999):03d}" def credit_card_owner( self, gender: t.Optional[Gender] = None, ) -> t.Dict[str, str]: """Generate credit card owner. :param gender: Gender of credit card owner. :type gender: Gender's enum object. :return: """ owner = { "credit_card": self.credit_card_number(), "expiration_date": self.credit_card_expiration_date(), "owner": self._person.full_name(gender=gender).upper(), } return owner
2,568
splus rule1
# Leo colorizer control file for splus mode. # This file is in the public domain. # Properties for splus mode. properties = { "doubleBracketIndent": "false", "indentCloseBrackets": "}", "indentNextLine": "\\s*(((if|while)\\s*\\(|else\\s*|else\\s+if\\s*\\(|for\\s*\\(.*\\))[^{;]*)", "indentOpenBrackets": "{", "lineComment": "#", "lineUpClosingBracket": "true", "wordBreakChars": "_,+-=<>/?^&*", } # Attributes dict for splus_main ruleset. splus_main_attributes_dict = { "default": "null", "digit_re": "(0x[[:xdigit:]]+[lL]?|[[:digit:]]+(e[[:digit:]]*)?[lLdDfF]?)", "escape": "\\", "highlight_digits": "true", "ignore_case": "false", "no_word_sep": "", } # Dictionary of attributes dictionaries for splus mode. attributesDictDict = { "splus_main": splus_main_attributes_dict, } # Keywords dict for splus_main ruleset. splus_main_keywords_dict = { "F": "literal2", "T": "literal2", "break": "keyword1", "case": "keyword1", "continue": "keyword1", "default": "keyword1", "do": "keyword1", "else": "keyword1", "for": "keyword1", "function": "keyword1", "goto": "keyword1", "if": "keyword1", "return": "keyword1", "sizeof": "keyword1", "switch": "keyword1", "while": "keyword1", } # Dictionary of keywords dictionaries for splus mode. keywordsDictDict = { "splus_main": splus_main_keywords_dict, } # Rules for splus_main ruleset. def splus_rule0(colorer, s, i): return colorer.match_span(s, i, kind="literal1", begin="\"", end="\"", no_line_break=True) def METHOD_NAME(colorer, s, i): return colorer.match_span(s, i, kind="literal1", begin="'", end="'", no_line_break=True) def splus_rule2(colorer, s, i): return colorer.match_eol_span(s, i, kind="comment1", seq="#") def splus_rule3(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="=") def splus_rule4(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="!") def splus_rule5(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="_") def splus_rule6(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq=">=") def splus_rule7(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="<=") def splus_rule8(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="<-") def splus_rule9(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="+") def splus_rule10(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="-") def splus_rule11(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="/") def splus_rule12(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="*") def splus_rule13(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq=">") def splus_rule14(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="<") def splus_rule15(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="%") def splus_rule16(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="&") def splus_rule17(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="|") def splus_rule18(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="^") def splus_rule19(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="~") def splus_rule20(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="}") def splus_rule21(colorer, s, i): return colorer.match_plain_seq(s, i, kind="operator", seq="{") def splus_rule22(colorer, s, i): return colorer.match_mark_previous(s, i, kind="label", pattern=":", at_whitespace_end=True, exclude_match=True) def splus_rule23(colorer, s, i): return colorer.match_mark_previous(s, i, kind="function", pattern="(", exclude_match=True) def splus_rule24(colorer, s, i): return colorer.match_keywords(s, i) # Rules dict for splus_main ruleset. rulesDict1 = { "!": [splus_rule4,], "\"": [splus_rule0,], "#": [splus_rule2,], "%": [splus_rule15,], "&": [splus_rule16,], "'": [METHOD_NAME,], "(": [splus_rule23,], "*": [splus_rule12,], "+": [splus_rule9,], "-": [splus_rule10,], "/": [splus_rule11,], "0": [splus_rule24,], "1": [splus_rule24,], "2": [splus_rule24,], "3": [splus_rule24,], "4": [splus_rule24,], "5": [splus_rule24,], "6": [splus_rule24,], "7": [splus_rule24,], "8": [splus_rule24,], "9": [splus_rule24,], ":": [splus_rule22,], "<": [splus_rule7, splus_rule8, splus_rule14,], "=": [splus_rule3,], ">": [splus_rule6, splus_rule13,], "@": [splus_rule24,], "A": [splus_rule24,], "B": [splus_rule24,], "C": [splus_rule24,], "D": [splus_rule24,], "E": [splus_rule24,], "F": [splus_rule24,], "G": [splus_rule24,], "H": [splus_rule24,], "I": [splus_rule24,], "J": [splus_rule24,], "K": [splus_rule24,], "L": [splus_rule24,], "M": [splus_rule24,], "N": [splus_rule24,], "O": [splus_rule24,], "P": [splus_rule24,], "Q": [splus_rule24,], "R": [splus_rule24,], "S": [splus_rule24,], "T": [splus_rule24,], "U": [splus_rule24,], "V": [splus_rule24,], "W": [splus_rule24,], "X": [splus_rule24,], "Y": [splus_rule24,], "Z": [splus_rule24,], "^": [splus_rule18,], "_": [splus_rule5,], "a": [splus_rule24,], "b": [splus_rule24,], "c": [splus_rule24,], "d": [splus_rule24,], "e": [splus_rule24,], "f": [splus_rule24,], "g": [splus_rule24,], "h": [splus_rule24,], "i": [splus_rule24,], "j": [splus_rule24,], "k": [splus_rule24,], "l": [splus_rule24,], "m": [splus_rule24,], "n": [splus_rule24,], "o": [splus_rule24,], "p": [splus_rule24,], "q": [splus_rule24,], "r": [splus_rule24,], "s": [splus_rule24,], "t": [splus_rule24,], "u": [splus_rule24,], "v": [splus_rule24,], "w": [splus_rule24,], "x": [splus_rule24,], "y": [splus_rule24,], "z": [splus_rule24,], "{": [splus_rule21,], "|": [splus_rule17,], "}": [splus_rule20,], "~": [splus_rule19,], } # x.rulesDictDict for splus mode. rulesDictDict = { "splus_main": rulesDict1, } # Import dict for splus mode. importDict = {}
2,569
remove current task
"""Undocumented Module""" __all__ = ['TaskManagerPanel', 'TaskManagerWidget'] from direct.tkwidgets.AppShell import AppShell from direct.showbase.DirectObject import DirectObject import Pmw import tkinter as tk from tkinter.messagebox import askokcancel class TaskManagerPanel(AppShell): # Override class variables here appname = 'TaskManager Panel' frameWidth = 300 frameHeight = 400 usecommandarea = 0 usestatusarea = 0 def __init__(self, taskMgr, parent = None, **kw): INITOPT = Pmw.INITOPT optiondefs = ( ('title', self.appname, None), ) self.defineoptions(kw, optiondefs) self.taskMgr = taskMgr # Call superclass initialization function AppShell.__init__(self, parent = parent) self.initialiseoptions(TaskManagerPanel) def createInterface(self): # FILE MENU # Get a handle on the file menu so commands can be inserted # before quit item self.taskMgrWidget = TaskManagerWidget( self.interior(), self.taskMgr) def onDestroy(self, event): self.taskMgrWidget.onDestroy() class TaskManagerWidget(DirectObject): """ TaskManagerWidget class: this class contains methods for creating a panel to control taskManager tasks. """ def __init__(self, parent, taskMgr): """ TaskManagerWidget class pops up a control panel to view/delete tasks managed by the taskManager. """ # Record parent (used by ok cancel dialog boxes) self.parent = parent # Record taskManager self.taskMgr = taskMgr # Init current task self.currentTask = None self.__taskDict = {} # Create widgets # Create a listbox self.taskListBox = Pmw.ScrolledListBox( parent, labelpos = tk.NW, label_text = 'Tasks:', label_font=('MSSansSerif', 10, 'bold'), listbox_takefocus = 1, items = [], selectioncommand = self.setCurrentTask) self.taskListBox.pack(expand = 1, fill = tk.BOTH) self._popupMenu = tk.Menu(self.taskListBox.component('listbox'), tearoff = 0) self._popupMenu.add_command( label = 'Remove Task', command = self.METHOD_NAME) self._popupMenu.add_command( label = 'Remove Matching Tasks', command = self.removeMatchingTasks) # Controls Frame controlsFrame = tk.Frame(parent) self.removeButton = tk.Button(controlsFrame, text = 'Remove Task', command = self.METHOD_NAME) #self.removeButton.pack(expand = 1, fill = tk.X, side = LEFT) self.removeButton.grid(row = 0, column = 0, sticky = tk.EW) self.removeMatchingButton = tk.Button(controlsFrame, text = 'Remove Matching Tasks', command = self.removeMatchingTasks) #self.removeMatchingButton.pack(expand = 1, fill = tk.X, side = LEFT) self.removeMatchingButton.grid(row = 0, column = 1, sticky = tk.EW) self.taskMgrVerbose = tk.IntVar() self.taskMgrVerbose.set(0) self.update = tk.Button( controlsFrame, text = 'Update', command = self.updateTaskListBox) #self.update.pack(expand = 1, fill = tk.X, side = LEFT) self.update.grid(row = 1, column = 0, sticky = tk.EW) self.dynamicUpdate = tk.Checkbutton( controlsFrame, text = 'Dynamic Update', variable = self.taskMgrVerbose, command = self.toggleTaskMgrVerbose) #self.dynamicUpdate.pack(expand = 1, fill = tk.X, side = LEFT) self.dynamicUpdate.grid(row = 1, column = 1, sticky = tk.EW) # Pack frames controlsFrame.pack(fill = tk.X) controlsFrame.grid_columnconfigure(0, weight = 1) controlsFrame.grid_columnconfigure(1, weight = 1) # Add hook to spawnTaskEvents self.accept('TaskManager-spawnTask', self.spawnTaskHook) self.accept('TaskManager-removeTask', self.removeTaskHook) # Get listbox listbox = self.taskListBox.component('listbox') # Bind updates to arrow buttons listbox.bind('<KeyRelease-Up>', self.setCurrentTask) listbox.bind('<KeyRelease-Down>', self.setCurrentTask) listbox.bind('<ButtonPress-3>', self.popupMenu) # And grab focus (to allow keyboard navigation) listbox.focus_set() # Update listbox values self.updateTaskListBox() def popupMenu(self, event): """ listbox = self.taskListBox.component('listbox') index = listbox.nearest(event.y) listbox.selection_clear(0) listbox.activate(index) self.taskListBox.select_set(index) self.setCurrentTask() """ self._popupMenu.post(event.widget.winfo_pointerx(), event.widget.winfo_pointery()) return "break" def setCurrentTask(self, event = None): if len(self.taskListBox.curselection()) > 0: # [gjeon] to avoid crash when nothing is selected index = int(self.taskListBox.curselection()[0]) self.currentTask = self.__taskDict[index] else: self.currentTask = None def updateTaskListBox(self): # Get a list of task names taskNames = [] self.__taskDict = {} count = 0 for task in sorted(self.taskMgr.getTasks(), key=lambda t: t.getName()): taskNames.append(task.getName()) self.__taskDict[count] = task count += 1 if taskNames: self.taskListBox.setlist(taskNames) # And set current index (so keypresses will start with index 0) self.taskListBox.component('listbox').activate(0) # Select first item #self.taskListBox.select_set(0) # [gjeon] commented out to avoid focus problem with other lists self.setCurrentTask() def toggleTaskMgrVerbose(self): if self.taskMgrVerbose.get(): self.updateTaskListBox() def spawnTaskHook(self, task): if self.taskMgrVerbose.get(): self.updateTaskListBox() def removeTaskHook(self, task): if self.taskMgrVerbose.get(): self.updateTaskListBox() def METHOD_NAME(self): if self.currentTask: name = self.currentTask.name ok = 1 if ((name == 'dataLoop') or (name == 'resetPrevTransform') or (name == 'tkLoop') or (name == 'eventManager') or (name == 'igLoop')): ok = askokcancel('TaskManagerControls', 'Remove: %s?' % name, parent = self.parent, default = 'cancel') if ok: self.taskMgr.remove(self.currentTask) self.updateTaskListBox() def removeMatchingTasks(self): name = self.taskListBox.getcurselection()[0] ok = 1 if ((name == 'dataLoop') or (name == 'resetPrevTransform') or (name == 'tkLoop') or (name == 'eventManager') or (name == 'igLoop')): ok = askokcancel('TaskManagerControls', 'Remove tasks named: %s?' % name, parent = self.parent, default = 'cancel') if ok: self.taskMgr.remove(name) self.updateTaskListBox() def onDestroy(self): self.ignore('TaskManager-spawnTask') self.ignore('TaskManager-removeTask')
2,570
execute
""" Abstracts the various concerns of external table creation as much as possible This operator originally ran using airflow's bigquery hooks. However, for the version we had to use (airflow v1.14) they used an outdated form of authentication. Now, the pipeline aims to use bigquery's sqlalchemy client where possible. However, it's cumbersome to convert the http api style schema fields to SQL, so we provide a fallback for these old-style tasks. """ import os import re from google.api_core.exceptions import NotFound from google.cloud import bigquery from utils import CALITP_BQ_LOCATION from airflow.models import BaseOperator # TODO: this should probably be an env var def get_project_id(): return ( "cal-itp-data-infra-staging" if os.environ["AIRFLOW_ENV"] == "development" else "cal-itp-data-infra" ) def format_table_name(name, is_staging=False, full_name=False): dataset, table_name = name.split(".") staging = "__staging" if is_staging else "" # test_prefix = "zzz_test_" if is_development() else "" test_prefix = "" project_id = "cal-itp-data-infra" + "." if full_name else "" # e.g. test_gtfs_schedule__staging.agency return f"{project_id}{test_prefix}{dataset}.{table_name}{staging}" def _bq_client_create_external_table( table_name, schema_fields, source_objects, source_format, geojson=False, hive_options=None, bucket=None, post_hook=None, ): # TODO: must be fully qualified table name ext = bigquery.ExternalConfig(source_format) ext.source_uris = source_objects ext.autodetect = schema_fields is None ext.ignore_unknown_values = True if geojson: ext.json_extension = "GEOJSON" if hive_options: assert ( len(source_objects) == 1 ), "cannot use hive partitioning with more than one URI" opt = bigquery.external_config.HivePartitioningOptions() # _Strongly_ recommend using CUSTOM mode and explicitly-defined # key schema for more than a trivial number of files opt.mode = hive_options.get("mode", "AUTO") opt.require_partition_filter = hive_options.get( "require_partition_filter", True ) # TODO: this is very fragile, we should probably be calculating it from # the source_objects and validating the format (prefix, trailing slashes) prefix = hive_options["source_uri_prefix"] if prefix and bucket: opt.source_uri_prefix = bucket + "/" + prefix else: opt.source_uri_prefix = prefix ext.hive_partitioning = opt client = bigquery.Client(project=get_project_id(), location=CALITP_BQ_LOCATION) dataset_name, _ = table_name.split(".") full_dataset_name = ".".join((get_project_id(), dataset_name)) try: client.get_dataset(full_dataset_name) except NotFound: print(f"Dataset {full_dataset_name} not found, creating.") dataset = bigquery.Dataset(full_dataset_name) dataset.location = "us-west2" client.create_dataset(dataset, timeout=30) # for some reason, you can set the project name in the bigquery client, and # it doesn't need to be in the SQL code, but this bigquery API still requires # the fully qualified table name when initializing a Table. full_table_name = f"{get_project_id()}.{table_name}" # First delete table if it exists print(f"Deleting external table if exists: {full_table_name}") client.delete_table(full_table_name, not_found_ok=True) # (re)create table tbl = bigquery.Table(full_table_name, schema_fields) tbl.external_data_configuration = ext print( f"Creating external table: {full_table_name} {tbl} {source_objects} {hive_options}" ) created_table = client.create_table(tbl, timeout=300, exists_ok=True) if post_hook: client.query(post_hook).result() print(f"Successfully ran {post_hook}") return created_table class ExternalTable(BaseOperator): template_fields = ( "bucket", "post_hook", ) def __init__( self, *args, bucket=None, prefix_bucket=False, destination_project_dataset_table=None, # note that the project is optional here skip_leading_rows=1, schema_fields=None, hive_options=None, source_objects=[], source_format="CSV", geojson=False, use_bq_client=False, field_delimiter=",", post_hook=None, **kwargs, ): assert bucket is not None self.bucket = bucket # This only exists because the prefix_bucket() template isn't working in the yml file for some reason if self.bucket and prefix_bucket and os.environ["AIRFLOW_ENV"] == "development": self.bucket = re.sub(r"gs://([\w-]+)", r"gs://test-\1", self.bucket) self.destination_project_dataset_table = format_table_name( destination_project_dataset_table ) self.skip_leading_rows = skip_leading_rows self.schema_fields = schema_fields self.source_objects = source_objects self.source_format = source_format self.geojson = geojson self.hive_options = hive_options self.use_bq_client = use_bq_client self.field_delimiter = field_delimiter self.post_hook = post_hook super().__init__(**kwargs) def METHOD_NAME(self, context): # we can't do this in the init because templating occurs in the super init call self.source_objects = list(map(self.fix_prefix, self.source_objects)) # Basically for backwards support of tasks that have nested fields and # were created when we were using airflow bigquery hooks. # e.g. dags/gtfs_schedule_history/validation_report.yml # These tables should be defined using SqlQueryOperator and raw SQL now. if self.use_bq_client: _bq_client_create_external_table( self.destination_project_dataset_table, self.schema_fields, self.source_objects, self.source_format, self.geojson, self.hive_options, self.bucket, self.post_hook, ) else: if self.hive_options: raise RuntimeError( "have to use the bigquery client when creating a hive partitioned table" ) field_strings = [ f'{entry["name"]} {entry["type"]}' for entry in self.schema_fields ] fields_spec = ",\n".join(field_strings) options = [ f'format = "{self.source_format}"', f"uris = {repr(self.source_objects)}", ] if self.source_format == "CSV": options.append(f"skip_leading_rows = {self.skip_leading_rows}") options.append(f"field_delimiter = {repr(self.field_delimiter)}") if self.geojson: options.append("json_extension = 'GEOJSON'") options_str = ",".join(options) query = f""" CREATE OR REPLACE EXTERNAL TABLE `{self.destination_project_dataset_table}` ( {fields_spec} ) OPTIONS ({options_str}) """ print(query) client = bigquery.Client( project=get_project_id(), location=CALITP_BQ_LOCATION ) query_job = client.query(query) query_job.result() return self.schema_fields def fix_prefix(self, entry): entry = entry.replace("gs://", "") if entry.startswith("gs://") else entry return f"{self.bucket}/{entry}"
2,571
test stringwrapper eq
import copy import pytest from astropy.time import Time from sunpy.net import attr, attrs, hek @pytest.fixture def foostrwrap(request): return hek.attrs._StringParamAttrWrapper("foo") class HEKResult: """ Basic caching class to run the remote query once and return the result many times. """ def __init__(self): self._result = None def get_result(self): if self._result is None: startTime = '2011/08/09 07:23:56' endTime = '2011/08/09 12:40:29' eventType = 'FL' hekTime = attrs.Time(startTime, endTime) hekEvent = attrs.hek.EventType(eventType) h = hek.HEKClient() hek_query = h.search(hekTime, hekEvent) self._result = hek_query return copy.deepcopy(self._result) _hek_result = HEKResult() @pytest.fixture def hek_result(): return _hek_result.get_result() def test_eventtype_collide(): with pytest.raises(TypeError): attrs.hek.AR & attrs.hek.CE with pytest.raises(TypeError): (attrs.hek.AR & attrs.Time((2011, 1, 1), (2011, 1, 2))) & attrs.hek.CE with pytest.raises(TypeError): (attrs.hek.AR | attrs.Time((2011, 1, 1), (2011, 1, 2))) & attrs.hek.CE def test_eventtype_or(): assert (attrs.hek.AR | attrs.hek.CE).item == "ar,ce" def test_HEKAttr(): res = hek.attrs.walker.create(hek.attrs.HEKAttr("foo", "=", "bar"), {}) assert len(res) == 1 assert res[0] == {'value0': 'bar', 'operator0': '=', 'param0': 'foo'} def METHOD_NAME(foostrwrap): res = hek.attrs.walker.create(foostrwrap == "bar", {}) assert len(res) == 1 assert res[0] == {'value0': 'bar', 'operator0': '=', 'param0': 'foo'} def test_stringwrapper_lt(foostrwrap): res = hek.attrs.walker.create(foostrwrap < "bar", {}) assert len(res) == 1 assert res[0] == {'value0': 'bar', 'operator0': '<', 'param0': 'foo'} def test_stringwrapper_gt(foostrwrap): res = hek.attrs.walker.create(foostrwrap > "bar", {}) assert len(res) == 1 assert res[0] == {'value0': 'bar', 'operator0': '>', 'param0': 'foo'} def test_stringwrapper_le(foostrwrap): res = hek.attrs.walker.create(foostrwrap <= "bar", {}) assert len(res) == 1 assert res[0] == {'value0': 'bar', 'operator0': '<=', 'param0': 'foo'} def test_stringwrapper_ge(foostrwrap): res = hek.attrs.walker.create(foostrwrap >= "bar", {}) assert len(res) == 1 assert res[0] == {'value0': 'bar', 'operator0': '>=', 'param0': 'foo'} def test_stringwrapper_ne(foostrwrap): res = hek.attrs.walker.create(foostrwrap != "bar", {}) assert len(res) == 1 assert res[0] == {'value0': 'bar', 'operator0': '!=', 'param0': 'foo'} def test_stringwrapper_like(foostrwrap): res = hek.attrs.walker.create(foostrwrap.like("bar"), {}) assert len(res) == 1 assert res[0] == {'value0': 'bar', 'operator0': 'like', 'param0': 'foo'} def test_err_dummyattr_create(): with pytest.raises(TypeError): hek.attrs.walker.create(attr.DummyAttr(), {}) def test_err_dummyattr_apply(): with pytest.raises(TypeError): hek.attrs.walker.apply(attr.DummyAttr(), {}) @pytest.mark.remote_data def test_hek_client(hek_result): assert type(hek_result) == hek.hek.HEKTable @pytest.mark.remote_data def test_hek_empty_search_result(): startTime = '1985-05-04 00:00:00' endTime = '1985-05-04 00:00:00' eventType = 'FL' hekTime = attrs.Time(startTime, endTime) hekEvent = attrs.hek.EventType(eventType) h = hek.HEKClient() hek_query = h.search(hekTime, hekEvent) assert type(hek_query) == hek.hek.HEKTable assert len(hek_query) == 0 @pytest.mark.remote_data def test_getitem(hek_result): assert hek_result.__getitem__(0) == hek_result[0] @pytest.mark.remote_data def test_get_voevent(hek_result): ve = hek_result[0].get_voevent() assert len(ve['voe:VOEvent']) == 7 @pytest.mark.remote_data def test_hek_time_col(hek_result): assert isinstance(hek_result[0]['event_starttime'], Time) assert isinstance(hek_result[0]['event_endtime'], Time) @pytest.mark.remote_data def test_vso_time(hek_result): ve = hek_result[0].vso_time assert type(ve) == attrs.Time @pytest.mark.remote_data def test_vso_instrument(hek_result): vc = hek_result[1].vso_instrument assert type(vc) == attrs.Instrument @pytest.mark.remote_data def test_HEKRow_get(hek_result): assert hek_result[0]['event_peaktime'] == hek_result[0].get('event_peaktime') assert hek_result[0].get('') is None @pytest.mark.remote_data def test_mixed_results_get(): # To check that the following bug is fixed: # https://github.com/sunpy/sunpy/issues/3238 client = hek.HEKClient() result = client.search(attrs.Time('2013/02/01 00:00:00', '2013/02/01 23:30:00'), attrs.hek.FRM.Name == 'SPoCA') assert isinstance(result, hek.hek.HEKTable) assert len(result) == 89 assert result[0]["SOL_standard"] == 'SOL2013-01-31T20:13:31L199C128' @pytest.mark.remote_data def test_mixed_results_get_2(): # To check that the following bug is fixed: # # https://github.com/sunpy/sunpy/issues/3898 client = hek.HEKClient() result = client.search(attrs.Time('2011/08/09 07:23:56', '2011/08/09 12:40:29'), attrs.hek.EventType("FL")) assert isinstance(result, hek.hek.HEKTable) assert len(result) == 19 assert result[0]["SOL_standard"] == 'SOL2011-08-08T01:30:04L247C075' @pytest.mark.remote_data def test_mixed_results_get_angstrom(): # To check that the following bug is fixed: # https://github.com/sunpy/sunpy/issues/4087 client = hek.HEKClient() tstart = '2014/10/24 20:50' tend = '2014/10/25 00:14' event_type = 'FL' result = client.search(attrs.Time(tstart, tend), attrs.hek.EventType(event_type)) assert len(result) == 13 assert result[0]["SOL_standard"] == 'SOL2014-10-24T20:53:46L247C106' @pytest.mark.remote_data def test_query_multiple_operators(): event_type = "FL" tstart = "2013/10/28" tend = "2013/10/29" client = hek.HEKClient() results = client.search(attrs.Time(tstart, tend), attrs.hek.EventType(event_type), attrs.hek.FL.GOESCls > "M1.0", attrs.hek.OBS.Observatory == "GOES") assert len(results) == 7
2,572
get namespace authorization rule output
# coding=utf-8 # *** WARNING: this file was generated by pulumi. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetNamespaceAuthorizationRuleResult', 'AwaitableGetNamespaceAuthorizationRuleResult', 'get_namespace_authorization_rule', 'get_namespace_authorization_rule_output', ] @pulumi.output_type class GetNamespaceAuthorizationRuleResult: """ Description of a namespace authorization rule. """ def __init__(__self__, id=None, location=None, name=None, rights=None, system_data=None, type=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if rights and not isinstance(rights, list): raise TypeError("Expected argument 'rights' to be a list") pulumi.set(__self__, "rights", rights) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def id(self) -> str: """ Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> str: """ The geo-location where the resource lives """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter def rights(self) -> Sequence[str]: """ The rights associated with the rule. """ return pulumi.get(self, "rights") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ The system meta data relating to this resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> str: """ The type of the resource. E.g. "Microsoft.EventHub/Namespaces" or "Microsoft.EventHub/Namespaces/EventHubs" """ return pulumi.get(self, "type") class AwaitableGetNamespaceAuthorizationRuleResult(GetNamespaceAuthorizationRuleResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetNamespaceAuthorizationRuleResult( id=self.id, location=self.location, name=self.name, rights=self.rights, system_data=self.system_data, type=self.type) def get_namespace_authorization_rule(authorization_rule_name: Optional[str] = None, namespace_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetNamespaceAuthorizationRuleResult: """ Gets an authorization rule for a namespace by rule name. :param str authorization_rule_name: The authorization rule name. :param str namespace_name: The namespace name :param str resource_group_name: Name of the Resource group within the Azure subscription. """ __args__ = dict() __args__['authorizationRuleName'] = authorization_rule_name __args__['namespaceName'] = namespace_name __args__['resourceGroupName'] = resource_group_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:servicebus/v20220101preview:getNamespaceAuthorizationRule', __args__, opts=opts, typ=GetNamespaceAuthorizationRuleResult).value return AwaitableGetNamespaceAuthorizationRuleResult( id=pulumi.get(__ret__, 'id'), location=pulumi.get(__ret__, 'location'), name=pulumi.get(__ret__, 'name'), rights=pulumi.get(__ret__, 'rights'), system_data=pulumi.get(__ret__, 'system_data'), type=pulumi.get(__ret__, 'type')) @_utilities.lift_output_func(get_namespace_authorization_rule) def METHOD_NAME(authorization_rule_name: Optional[pulumi.Input[str]] = None, namespace_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetNamespaceAuthorizationRuleResult]: """ Gets an authorization rule for a namespace by rule name. :param str authorization_rule_name: The authorization rule name. :param str namespace_name: The namespace name :param str resource_group_name: Name of the Resource group within the Azure subscription. """ ...
2,573
test interpolate
import lenstronomy.Util.util as util import numpy as np import numpy.testing as npt import pytest import unittest from lenstronomy.LightModel.Profiles.shapelets import Shapelets, ShapeletSet class TestShapeletSet(object): """Class to test Shapelets.""" def setup_method(self): self.shapeletSet = ShapeletSet() self.shapelets = Shapelets(precalc=False) self.x, self.y = util.make_grid(10, 0.1, 1) def test_shapelet_set(self): """ :return: """ n_max = 2 beta = 1.0 amp = [1, 0, 0, 0, 0, 0] output = self.shapeletSet.function( np.array(1), np.array(1), amp, n_max, beta, center_x=0, center_y=0 ) assert output == 0.20755374871029739 input = np.array(0.0) input += output output = self.shapeletSet.function( self.x, self.y, amp, n_max, beta, center_x=0, center_y=0 ) assert output[10] == 0.47957022395315946 output = self.shapeletSet.function( 1, 1, amp, n_max, beta, center_x=0, center_y=0 ) assert output == 0.20755374871029739 n_max = -1 beta = 1.0 amp = [1, 0, 0, 0, 0, 0] output = self.shapeletSet.function( np.array(1), np.array(1), amp, n_max, beta, center_x=0, center_y=0 ) assert output == 0 beta = 1.0 amp = 1 shapelets = Shapelets(precalc=False, stable_cut=False) output = shapelets.function( np.array(1), np.array(1), amp, beta, 0, 0, center_x=0, center_y=0 ) npt.assert_almost_equal(0.2075537487102974, output, decimal=8) def test_shapelet_basis(self): num_order = 5 beta = 1 numPix = 10 kernel_list = self.shapeletSet.shapelet_basis_2d(num_order, beta, numPix) npt.assert_almost_equal(kernel_list[0][4, 4], 0.4393912894677224, decimal=9) def test_decomposition(self): """ :return: """ n_max = 2 beta = 10.0 deltaPix = 1 amp = np.array([1, 1, 1, 1, 1, 1]) x, y = util.make_grid(100, deltaPix, 1) input = self.shapeletSet.function( x, y, amp, n_max, beta, center_x=0, center_y=0 ) amp_out = self.shapeletSet.decomposition( input, x, y, n_max, beta, deltaPix, center_x=0, center_y=0 ) for i in range(len(amp)): npt.assert_almost_equal(amp_out[i], amp[i], decimal=4) def test_function_split(self): n_max = 2 beta = 10.0 deltaPix = 0.1 amp = np.array([1, 1, 1, 1, 1, 1]) x, y = util.make_grid(10, deltaPix, 1) function_set = self.shapeletSet.function_split( x, y, amp, n_max, beta, center_x=0, center_y=0 ) test_flux = self.shapelets.function( x, y, amp=1.0, n1=0, n2=0, beta=beta, center_x=0, center_y=0 ) print(np.shape(function_set)) print(np.shape(test_flux)) assert function_set[0][10] == test_flux[10] def METHOD_NAME(self): shapeletsInterp = Shapelets(interpolation=True) x, y = 0.99, 0 beta = 0.5 flux_full = self.shapelets.function( x, y, amp=1.0, n1=0, n2=0, beta=beta, center_x=0, center_y=0 ) flux_interp = shapeletsInterp.function( x, y, amp=1.0, n1=0, n2=0, beta=beta, center_x=0, center_y=0 ) npt.assert_almost_equal(flux_interp, flux_full, decimal=10) def test_hermval(self): x = np.linspace(0, 2000, 2001) n_array = [1, 2, 3, 0, 1] import numpy.polynomial.hermite as hermite out_true = hermite.hermval(x, n_array) out_approx = self.shapelets.hermval(x, n_array) shape_true = out_true * np.exp(-(x**2) / 2.0) shape_approx = out_approx * np.exp(-(x**2) / 2.0) npt.assert_almost_equal(shape_approx, shape_true, decimal=6) x = 2 n_array = [1, 2, 3, 0, 1] out_true = hermite.hermval(x, n_array) out_approx = self.shapelets.hermval(x, n_array) npt.assert_almost_equal(out_approx, out_true, decimal=6) x = 2001 n_array = [1, 2, 3, 0, 1] out_true = hermite.hermval(x, n_array) out_approx = self.shapelets.hermval(x, n_array) shape_true = out_true * np.exp(-(x**2) / 2.0) shape_approx = out_approx * np.exp(-(x**2) / 2.0) npt.assert_almost_equal(shape_approx, shape_true, decimal=6) class TestRaise(unittest.TestCase): def test_raise(self): with self.assertRaises(ValueError): shapelets = Shapelets() shapelets.pre_calc(1, 1, beta=1, n_order=200, center_x=0, center_y=0) if __name__ == "__main__": pytest.main()
2,574
test basicauth revoke
"""Client authentication tests across all endpoints. Client authentication in OAuth2 serve two purposes, to authenticate confidential clients and to ensure public clients are in fact public. The latter is achieved with authenticate_client_id and the former with authenticate_client. We make sure authentication is done by requiring a client object to be set on the request object with a client_id parameter. The client_id attribute prevents this check from being circumvented with a client form parameter. """ import json from unittest import mock from oauthlib.oauth2 import ( BackendApplicationServer, LegacyApplicationServer, MobileApplicationServer, RequestValidator, WebApplicationServer, ) from tests.unittest import TestCase from .test_utils import get_fragment_credentials class ClientAuthenticationTest(TestCase): def inspect_client(self, request, refresh_token=False): if not request.client or not request.client.client_id: raise ValueError() return 'abc' def setUp(self): self.validator = mock.MagicMock(spec=RequestValidator) self.validator.is_pkce_required.return_value = False self.validator.get_code_challenge.return_value = None self.validator.get_default_redirect_uri.return_value = 'http://i.b./path' self.web = WebApplicationServer(self.validator, token_generator=self.inspect_client) self.mobile = MobileApplicationServer(self.validator, token_generator=self.inspect_client) self.legacy = LegacyApplicationServer(self.validator, token_generator=self.inspect_client) self.backend = BackendApplicationServer(self.validator, token_generator=self.inspect_client) self.token_uri = 'http://example.com/path' self.auth_uri = 'http://example.com/path?client_id=abc&response_type=token' # should be base64 but no added value in this unittest self.basicauth_client_creds = {"Authorization": "john:doe"} self.basicauth_client_id = {"Authorization": "john:"} def set_client(self, request): request.client = mock.MagicMock() request.client.client_id = 'mocked' return True def set_client_id(self, client_id, request): request.client = mock.MagicMock() request.client.client_id = 'mocked' return True def basicauth_authenticate_client(self, request): assert "Authorization" in request.headers assert "john:doe" in request.headers["Authorization"] request.client = mock.MagicMock() request.client.client_id = 'mocked' return True def test_client_id_authentication(self): token_uri = 'http://example.com/path' # authorization code grant self.validator.authenticate_client.return_value = False self.validator.authenticate_client_id.return_value = False _, body, _ = self.web.create_token_response(token_uri, body='grant_type=authorization_code&code=mock') self.assertEqual(json.loads(body)['error'], 'invalid_client') self.validator.authenticate_client_id.return_value = True self.validator.authenticate_client.side_effect = self.set_client _, body, _ = self.web.create_token_response(token_uri, body='grant_type=authorization_code&code=mock') self.assertIn('access_token', json.loads(body)) # implicit grant auth_uri = 'http://example.com/path?client_id=abc&response_type=token' self.assertRaises(ValueError, self.mobile.create_authorization_response, auth_uri, scopes=['random']) self.validator.validate_client_id.side_effect = self.set_client_id h, _, s = self.mobile.create_authorization_response(auth_uri, scopes=['random']) self.assertEqual(302, s) self.assertIn('Location', h) self.assertIn('access_token', get_fragment_credentials(h['Location'])) def test_basicauth_web(self): self.validator.authenticate_client.side_effect = self.basicauth_authenticate_client _, body, _ = self.web.create_token_response( self.token_uri, body='grant_type=authorization_code&code=mock', headers=self.basicauth_client_creds ) self.assertIn('access_token', json.loads(body)) def test_basicauth_legacy(self): self.validator.authenticate_client.side_effect = self.basicauth_authenticate_client _, body, _ = self.legacy.create_token_response( self.token_uri, body='grant_type=password&username=abc&password=secret', headers=self.basicauth_client_creds ) self.assertIn('access_token', json.loads(body)) def test_basicauth_backend(self): self.validator.authenticate_client.side_effect = self.basicauth_authenticate_client _, body, _ = self.backend.create_token_response( self.token_uri, body='grant_type=client_credentials', headers=self.basicauth_client_creds ) self.assertIn('access_token', json.loads(body)) def METHOD_NAME(self): self.validator.authenticate_client.side_effect = self.basicauth_authenticate_client # legacy or any other uses the same RevocationEndpoint _, body, status = self.legacy.create_revocation_response( self.token_uri, body='token=foobar', headers=self.basicauth_client_creds ) self.assertEqual(status, 200, body) def test_basicauth_introspect(self): self.validator.authenticate_client.side_effect = self.basicauth_authenticate_client # legacy or any other uses the same IntrospectEndpoint _, body, status = self.legacy.create_introspect_response( self.token_uri, body='token=foobar', headers=self.basicauth_client_creds ) self.assertEqual(status, 200, body) def test_custom_authentication(self): token_uri = 'http://example.com/path' # authorization code grant self.assertRaises(NotImplementedError, self.web.create_token_response, token_uri, body='grant_type=authorization_code&code=mock') # password grant self.validator.authenticate_client.return_value = True self.assertRaises(NotImplementedError, self.legacy.create_token_response, token_uri, body='grant_type=password&username=abc&password=secret') # client credentials grant self.validator.authenticate_client.return_value = True self.assertRaises(NotImplementedError, self.backend.create_token_response, token_uri, body='grant_type=client_credentials')
2,575
test altitude agl
""" Unit Tests for Py-ART's io/nexrad_cdm.py module. """ import bz2 import numpy as np import pytest from numpy.ma.core import MaskedArray from numpy.testing import assert_almost_equal import pyart ################################################### # read_nexrad_cdm tests (verify radar attributes) # ################################################### # read in the sample file and create the radar objects # We need to decompress the bz2 file which contains this data with pyart.testing.InTemporaryDirectory(): tmpfile = "tmp_nexrad.nc" with open(tmpfile, "wb") as f: f.write(bz2.BZ2File(pyart.testing.NEXRAD_CDM_FILE).read()) radar = pyart.io.read_nexrad_cdm(tmpfile) # time attribute def test_time(): assert "comment" in radar.time.keys() assert "long_name" in radar.time.keys() assert "standard_name" in radar.time.keys() assert "units" in radar.time.keys() assert "calendar" in radar.time.keys() assert "data" in radar.time.keys() assert radar.time["units"] == "seconds since 2013-07-17T19:50:21Z" assert radar.time["data"].shape == (7200,) assert_almost_equal(radar.time["data"][1], 0.677, 3) # range attribute def test_range(): assert "long_name" in radar.range assert "standard_name" in radar.range assert "meters_to_center_of_first_gate" in radar.range assert "meters_between_gates" in radar.range assert "units" in radar.range assert "data" in radar.range assert "spacing_is_constant" in radar.range assert radar.range["data"].shape == (1832,) assert_almost_equal(radar.range["data"][1], 2375, 0) # fields attribute is tested later # metadata attribute def test_metadata(): assert "instrument_name" in radar.metadata assert "source" in radar.metadata # scan_type attribute def test_scan_type(): assert radar.scan_type == "ppi" # latitude attribute def test_latitude(): assert "data" in radar.latitude assert "standard_name" in radar.latitude assert "units" in radar.latitude assert radar.latitude["data"].shape == (1,) assert_almost_equal(radar.latitude["data"], 48, 0) # longitude attribute def test_longitude(): assert "data" in radar.longitude assert "standard_name" in radar.longitude assert "units" in radar.longitude assert radar.longitude["data"].shape == (1,) assert_almost_equal(radar.longitude["data"], -122, 0) # altitude attribute def test_altitude(): assert "data" in radar.altitude assert "standard_name" in radar.altitude assert "units" in radar.altitude assert "positive" in radar.altitude assert radar.altitude["data"].shape == (1,) assert_almost_equal(radar.altitude["data"], 151, 0) # 10 m different # altitude_agl attribute def METHOD_NAME(): assert radar.altitude_agl is None # sweep_number attribute def test_sweep_number(): assert "standard_name" in radar.sweep_number assert np.all(radar.sweep_number["data"] == range(16)) # sweep_mode attribute def test_sweep_mode(): assert "standard_name" in radar.sweep_mode assert radar.sweep_mode["data"].shape == (16,) assert radar.sweep_mode["data"].dtype.char == "S" assert np.all(radar.sweep_mode["data"] == [b"azimuth_surveillance"]) # fixed_angle attribute def test_fixed_angle(): assert "standard_name" in radar.fixed_angle assert "units" in radar.fixed_angle assert radar.fixed_angle["data"].shape == (16,) assert_almost_equal(radar.fixed_angle["data"][0], 0.53, 2) # sweep_start_ray_index attribute def test_sweep_start_ray_index(): assert "long_name" in radar.sweep_start_ray_index assert radar.sweep_start_ray_index["data"].shape == (16,) assert_almost_equal(radar.sweep_start_ray_index["data"][0], 0, 0) # sweep_end_ray_index attribute def test_sweep_end_ray_index(): assert "long_name" in radar.sweep_end_ray_index assert radar.sweep_end_ray_index["data"].shape == (16,) assert_almost_equal(radar.sweep_end_ray_index["data"][0], 719, 0) # target_scan_rate attribute def test_target_scan_rate(): assert radar.target_scan_rate is None # azimuth attribute def test_azimuth(): assert "standard_name" in radar.azimuth assert "long_name" in radar.azimuth assert "units" in radar.azimuth assert "axis" in radar.azimuth assert_almost_equal(radar.azimuth["data"][0], 350, 0) assert_almost_equal(radar.azimuth["data"][10], 355, 0) # elevation attribute def test_elevation(): assert "standard_name" in radar.elevation assert "long_name" in radar.azimuth assert "units" in radar.elevation assert "axis" in radar.elevation assert radar.elevation["data"].shape == (7200,) assert_almost_equal(radar.elevation["data"][0], 0.75, 2) # scan_rate attribute def test_scan_rate(): assert radar.scan_rate is None # antenna_transition attribute def test_antenna_transition(): assert radar.antenna_transition is None # instrument_parameters attribute def test_instument_parameters(): assert radar.instrument_parameters is None # radar_calibration attribute def test_radar_calibration(): assert radar.radar_calibration is None # ngates attribute def test_ngates(): assert radar.ngates == 1832 # nrays attribute def test_nrays(): assert radar.nrays == 7200 # nsweeps attribute def test_nsweeps(): assert radar.nsweeps == 16 #################### # fields attribute # #################### fields = [ "differential_phase", "spectrum_width", "cross_correlation_ratio", "reflectivity", "differential_reflectivity", "velocity", ] @pytest.mark.parametrize("field", fields) def test_field_dics(field): description = "field : %s, dictionary" % field check_field_dic.description = description check_field_dic(field) def check_field_dic(field): """Check that the required keys are present in a field dictionary.""" assert "standard_name" in radar.fields[field] assert "units" in radar.fields[field] assert "_FillValue" in radar.fields[field] assert "coordinates" in radar.fields[field] @pytest.mark.parametrize("field", fields) def test_field_shapes(field): description = "field : %s, shape" % field check_field_shape.description = description check_field_shape(field) def check_field_shape(field): assert radar.fields[field]["data"].shape == (7200, 1832) fields = { "differential_phase": MaskedArray, "spectrum_width": MaskedArray, "cross_correlation_ratio": MaskedArray, "reflectivity": MaskedArray, "differential_reflectivity": MaskedArray, "velocity": MaskedArray, } @pytest.mark.parametrize("field, field_type", fields.items(), ids=list(fields.keys())) def test_field_types(field, field_type): description = "field : %s, type" % field check_field_type.description = description check_field_type(field, field_type) def check_field_type(field, field_type): assert type(radar.fields[field]["data"]) is field_type fields = { "differential_phase": 181.0, "spectrum_width": np.ma.masked, "cross_correlation_ratio": 0.0, "reflectivity": -32.0, "differential_reflectivity": -8.0, "velocity": np.ma.masked, } @pytest.mark.parametrize("field, field_value", fields.items(), ids=list(fields.keys())) def test_field_first_points(field, field_value): # these values can be found using: # [round(radar.fields[f]['data'][0,0]) for f in radar.fields] description = "field : %s, first point" % field check_field_first_point.description = description check_field_first_point(field, field_value) def check_field_first_point(field, value): if np.ma.is_masked(value): assert np.ma.is_masked(radar.fields[field]["data"][0, 0]) else: assert_almost_equal(radar.fields[field]["data"][0, 0], value, 0)
2,576
create layer variables
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Toy models and input generation tools for testing trainer code.""" from lingvo import model_registry import lingvo.compat as tf from lingvo.core import base_input_generator from lingvo.core import base_model from lingvo.core import base_model_params from lingvo.core import metrics as metrics_lib from lingvo.core import program from lingvo.core import py_utils from lingvo.core import summary_utils import numpy as np class CountingInputGenerator(base_input_generator.BaseInputGenerator): """Produces deterministic inputs for IdentityRegressionModel. src_ids increment by 1, so a 2x2 batch would look like: [[0, 1], [2, 3]] and the next batch would be: [[4, 5], [6, 7]] Targets are the sum of the src_ids: [1, 5] next batch: [9, 13] Since `sum(src_ids) = target`, we expect that the regression model of `target = sum(m * src_ids) + b` will learn `m = 1` and `b = 0`. """ @classmethod def Params(cls): p = super().Params() p.Delete('batch_size') p.Define('batch_size', 2, 'batch size') p.Define('shape', [2, 2], 'source shape.') return p def __init__(self, params): super().__init__(params) self.shape = params.shape def _InputBatch(self): length = tf.reduce_prod(self.shape) counter = summary_utils.StatsCounter('CountingInputGenerator') new_value = tf.cast(counter.IncBy(length), dtype=tf.int32) - length new_value = tf.stop_gradient(new_value) values = new_value + tf.range(length) shaped_values = tf.reshape(tf.cast(values, dtype=tf.float32), self.shape) targets = tf.reduce_sum(shaped_values, axis=0) return py_utils.NestedMap(src_ids=shaped_values, tgt_ids=targets) class IdentityRegressionTask(base_model.BaseTask): """A simple regression task for testing.""" @classmethod def Params(cls): p = super().Params() p.Define('weight_init_value', 0.8, 'Initial value of the model weights.') p.name = 'identity_regression_task' return p def __init__(self, params): super().__init__(params) self.global_steps = [] self.metrics = [] self.result_per_example_tensors = [] def METHOD_NAME(self): super().METHOD_NAME() p = self.params self.CreateVariable( 'm', py_utils.WeightParams( shape=[], init=py_utils.WeightInit.Constant(p.weight_init_value))) self.CreateVariable( 'b', py_utils.WeightParams( shape=[], init=py_utils.WeightInit.Constant(p.weight_init_value))) def ComputePredictions(self, theta, input_batch): """sum(m * x) + b.""" return tf.reduce_sum(theta.m * input_batch.src_ids, axis=1) + theta.b def ComputeLoss(self, theta, predicted, input_batch): diff = predicted - input_batch.tgt_ids per_example_loss = diff * diff batch_dim = py_utils.GetShape(per_example_loss)[0] def replicate_var(name): return tf.convert_to_tensor( [self._private_vars[name]] * batch_dim, dtype=tf.float32) metrics = {'loss': (tf.reduce_sum(per_example_loss), batch_dim)} per_example_tensors = { 'input': input_batch.src_ids, 'loss': per_example_loss, 'diff': diff, 'm': replicate_var('m'), 'b': replicate_var('b'), } return metrics, per_example_tensors def FilterPerExampleTensors(self, per_example): return per_example def ProcessFPropResults(self, sess, global_step, metrics, per_example_tensors): self.global_steps.append(global_step) self.metrics.append(metrics) self.result_per_example_tensors.append(per_example_tensors) def CreateDecoderMetrics(self): return { 'num_samples_in_batch': metrics_lib.AverageMetric(), 'diff': metrics_lib.AverageMetric(), } def DecodeWithTheta(self, theta, input_batch): diff = self.ComputePredictions(theta, input_batch) - input_batch.tgt_ids return {'diff': diff} def PostProcessDecodeOut(self, dec_out_dict, dec_metrics_dict): diff = dec_out_dict['diff'] dec_metrics_dict['diff'].Update(np.mean(diff)) dec_metrics_dict['num_samples_in_batch'].Update(len(diff)) return [] class ModelTrackingFPropResults(base_model.SingleTaskModel): """Simple regression model.""" def __init__(self, params, **kwargs): super().__init__(params, **kwargs) self.global_steps = [] self.metrics = [] self.result_per_example_tensors = [] def ProcessFPropResults(self, sess, global_step, metrics, per_example_tensors): self.global_steps.append(global_step) self.metrics.append(metrics) self.result_per_example_tensors.append(per_example_tensors) def RegisterIdentityRegressionModel( # pylint: disable=invalid-name batch_size=2, weight_init_value=0.8, optimizer=None, learning_rate=1.0, max_train_steps=10, train_steps_per_loop=2, eval_decode_steps_per_loop=2, eval_decode_samples_per_summary=10): """Register an IdentityRegressionTask model with given configuration. Args: batch_size: batch size of CountingInputGenerator. weight_init_value: constant init value for the model varialbes. optimizer: if set, the optimizer params to use. learning_rate: the learning rate to use. max_train_steps: maximum training steps. train_steps_per_loop: number of training steps per TPU loop. eval_decode_steps_per_loop: number of evaluation/decode steps per TPU loop. eval_decode_samples_per_summary: number of samples to eval/decode for each checkpoint. """ class IdentityRegressionModel(base_model_params.SingleTaskModelParams): """Model params for IdentityRegressionTask.""" def Train(self): return CountingInputGenerator.Params().Set(batch_size=batch_size) def Test(self): return CountingInputGenerator.Params().Set(batch_size=batch_size) def Task(self): p = IdentityRegressionTask.Params().Set( weight_init_value=weight_init_value) if optimizer: p.train.optimizer = optimizer p.train.learning_rate = learning_rate p.train.max_steps = max_train_steps p.train.tpu_steps_per_loop = train_steps_per_loop p.eval.samples_per_summary = eval_decode_samples_per_summary p.eval.decoder_samples_per_summary = eval_decode_samples_per_summary return p def Model(self): return ModelTrackingFPropResults.Params(self.Task()) def ProgramSchedule(self): p = program.SimpleProgramScheduleForTask( train_dataset_name='Train', train_steps_per_loop=train_steps_per_loop, eval_dataset_names=['Test'], eval_steps_per_loop=eval_decode_steps_per_loop, decode_steps_per_loop=eval_decode_steps_per_loop) if max_train_steps == 0: p.train_executions_per_eval = 0 return p model_registry.RegisterSingleTaskModel(IdentityRegressionModel)
2,577
test stop scheduler many
# SPDX-FileCopyrightText: Red Hat, Inc. # SPDX-License-Identifier: GPL-2.0-or-later from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading import time import vdsm.common.time from vdsm import schedule from testlib import VdsmTestCase from testValidation import broken_on_ci from testValidation import stresstest from testlib import permutations, expandPermutations @expandPermutations class SchedulerTests(VdsmTestCase): # Time to wait for completion, so test will not fail on overloaded # machines. If tests fails on CI, increase this value. GRACETIME = 0.1 MAX_TASKS = 1000 PERMUTATIONS = ((time.time,), (vdsm.common.time.monotonic_time,)) def setUp(self): self.scheduler = None def tearDown(self): if self.scheduler: self.scheduler.stop(wait=True) @broken_on_ci("timing sensitive, may fail on overloaded machine") @permutations(PERMUTATIONS) def test_schedule_after(self, clock): self.create_scheduler(clock) delay = 0.3 task1 = Task(clock) task2 = Task(clock) deadline = self.clock() + delay self.scheduler.schedule(delay, task1) self.scheduler.schedule(delay + 1, task2) task1.wait(delay + self.GRACETIME) self.assertTrue(deadline <= task1.call_time) self.assertTrue(task1.call_time < deadline + self.GRACETIME) self.assertEqual(task2.call_time, None) @broken_on_ci("timing sensitive, may fail on overloaded machine") @permutations(PERMUTATIONS) def test_schedule_before(self, clock): self.create_scheduler(clock) delay = 0.3 task1 = Task(clock) task2 = Task(clock) deadline = self.clock() + delay self.scheduler.schedule(delay + 1, task2) self.scheduler.schedule(delay, task1) task1.wait(delay + self.GRACETIME) self.assertTrue(deadline <= task1.call_time) self.assertTrue(task1.call_time < deadline + self.GRACETIME) self.assertEqual(task2.call_time, None) @broken_on_ci("timing sensitive, may fail on overloaded machine") @permutations(PERMUTATIONS) def test_continue_after_failures(self, clock): self.create_scheduler(clock) self.scheduler.schedule(0.3, FailingTask()) task = Task(clock) self.scheduler.schedule(0.4, task) task.wait(0.4 + self.GRACETIME) self.assertTrue(task.call_time is not None) @permutations(PERMUTATIONS) def test_cancel_call(self, clock): self.create_scheduler(clock) delay = 0.3 task = Task(clock) call = self.scheduler.schedule(delay, task) self.assertTrue(call.valid()) call.cancel() self.assertFalse(call.valid()) task.wait(delay + self.GRACETIME) self.assertEqual(task.call_time, None) @stresstest @permutations(PERMUTATIONS) def test_cancel_call_many(self, clock): self.create_scheduler(clock) delay = 0.3 tasks = [] for i in range(self.MAX_TASKS): task = Task(clock) call = self.scheduler.schedule(delay, task) tasks.append((task, call)) for task, call in tasks: call.cancel() last_task = tasks[-1][0] last_task.wait(delay + self.GRACETIME) for task, call in tasks: self.assertEqual(task.call_time, None) @permutations(PERMUTATIONS) def test_stop_scheduler(self, clock): self.create_scheduler(clock) delay = 0.3 task = Task(clock) self.scheduler.schedule(delay, task) self.scheduler.stop() task.wait(delay + self.GRACETIME) self.assertEqual(task.call_time, None) @stresstest @permutations(PERMUTATIONS) def METHOD_NAME(self, clock): self.create_scheduler(clock) delay = 0.3 tasks = [] for i in range(self.MAX_TASKS): task = Task(clock) call = self.scheduler.schedule(delay, task) tasks.append((task, call)) self.scheduler.stop() last_task = tasks[-1][0] last_task.wait(delay + self.GRACETIME) for task, call in tasks: self.assertEqual(task.call_time, None) @stresstest @permutations(PERMUTATIONS) def test_latency(self, clock): # Test how the scheduler cope with load of 1000 calls per seconds. # This is not the typical use but it is interesting to see how good we # can do this. This may also reveal bad changes to the scheduler code # that otherwise may be hidden in the noise. self.create_scheduler(clock) interval = 1.0 tickers = [] for i in range(self.MAX_TASKS): ticker = Ticker(self.scheduler, interval, clock) tickers.append(ticker) time.sleep(10) for ticker in tickers: ticker.stop() ticker.latency.sort() min = ticker.latency[0] avg = sum(ticker.latency) / len(ticker.latency) med = ticker.latency[len(ticker.latency) // 2] max = ticker.latency[-1] print('latency - avg: %.3f min: %.3f median: %.3f max: %.3f' % ( avg, min, med, max)) # This may be too strict on overloaded machines. We may need to # increase this value if it breaks in the CI. On my laptop I get # avg latency 1 millisecond. self.assertTrue(max < 0.1) # Helpers def create_scheduler(self, clock): self.clock = clock self.scheduler = schedule.Scheduler(clock=clock) self.scheduler.start() class Task(object): def __init__(self, clock): self.clock = clock self.cond = threading.Condition(threading.Lock()) self.call_time = None def __call__(self): with self.cond: self.call_time = self.clock() self.cond.notify() def wait(self, timeout): with self.cond: if self.call_time is None: self.cond.wait(timeout) class Ticker(object): def __init__(self, scheduler, interval, clock): self.scheduler = scheduler self.interval = interval self.clock = clock self.latency = [] self.running = True self.last = self.clock() self.scheduler.schedule(self.interval, self.tick) def stop(self): self.running = False def tick(self): if self.running: now = self.clock() self.latency.append(now - self.last - self.interval) self.last = now self.scheduler.schedule(self.interval, self.tick) class FailingTask(object): def __call__(self): raise Exception("This task is broken") class TestScheduledCall(VdsmTestCase): def setUp(self): self.count = 0 def callback(self): self.count += 1 def test_create(self): call = schedule.ScheduledCall(0, self.callback) self.assertEqual(0, self.count) self.assertTrue(call.valid()) def test_execute(self): call = schedule.ScheduledCall(0, self.callback) call._execute() self.assertEqual(1, self.count) self.assertFalse(call.valid()) def test_execute_callback_once(self): call = schedule.ScheduledCall(0, self.callback) call._execute() call._execute() self.assertEqual(1, self.count) def test_order(self): now = vdsm.common.time.monotonic_time() call_soon = schedule.ScheduledCall(now, self.callback) call_later = schedule.ScheduledCall(now + 1, self.callback) self.assertLess(call_soon, call_later)
2,578
run test
# Copyright 2013-present Barefoot Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Thrift SAI interface ACL tests """ from switch import * import sai_base_test @group('acl') class IPAclTest(sai_base_test.ThriftInterfaceDataPlane): def METHOD_NAME(self): print print '----------------------------------------------------------------------------------------------' print "Sending packet ptf_intf 2 -> ptf_intf 1 (192.168.0.1 ---> 10.10.10.1 [id = 105])" switch_init(self.client) port1 = port_list[1] port2 = port_list[2] v4_enabled = 1 v6_enabled = 1 mac = '' vr_id = sai_thrift_create_virtual_router(self.client, v4_enabled, v6_enabled) rif_id1 = sai_thrift_create_router_interface(self.client, vr_id, 1, port1, 0, v4_enabled, v6_enabled, mac) rif_id2 = sai_thrift_create_router_interface(self.client, vr_id, 1, port2, 0, v4_enabled, v6_enabled, mac) addr_family = SAI_IP_ADDR_FAMILY_IPV4 ip_addr1 = '10.10.10.1' ip_mask1 = '255.255.255.255' dmac1 = '00:11:22:33:44:55' sai_thrift_create_neighbor(self.client, addr_family, rif_id1, ip_addr1, dmac1) nhop1 = sai_thrift_create_nhop(self.client, addr_family, ip_addr1, rif_id1) sai_thrift_create_route(self.client, vr_id, addr_family, ip_addr1, ip_mask1, rif_id1) # send the test packet(s) pkt = simple_tcp_packet(eth_dst=router_mac, eth_src='00:22:22:22:22:22', ip_dst='10.10.10.1', ip_src='192.168.0.1', ip_id=105, ip_ttl=64) exp_pkt = simple_tcp_packet( eth_dst='00:11:22:33:44:55', eth_src=router_mac, ip_dst='10.10.10.1', ip_src='192.168.0.1', ip_id=105, ip_ttl=63) try: print '#### NO ACL Applied ####' print '#### Sending ', router_mac, '| 00:22:22:22:22:22 | 10.10.10.1 | 192.168.0.1 | @ ptf_intf 2' send_packet(self, 2, str(pkt)) print '#### Expecting 00:11:22:33:44:55 |', router_mac, '| 10.10.10.1 | 192.168.0.1 | @ ptf_intf 1' verify_packets(self, exp_pkt, [1]) finally: print '----------------------------------------------------------------------------------------------' print "Sending packet ptf_intf 2 -[acl]-> ptf_intf 1 (192.168.0.1 -[acl]-> 10.10.10.1 [id = 105])" print 'ACL \'DROP, src 192.168.0.1/255.255.255.0, in_ports[ptf_intf_1,2]\' Applied ' # setup ACL to block based on Source IP action = 1 #Drop in_ports = [port1, port2] ip_src = "192.168.0.1" ip_src_mask = "255.255.255.0" ip_dst = None ip_dst_mask = None ip_proto = None in_port = None out_port = None out_ports = None ingress_mirror_id = None egress_mirror_id = None acl_table_id = sai_thrift_create_acl_table(self.client, addr_family, ip_src, ip_dst, ip_proto, in_ports, out_ports, in_port, out_port) acl_entry_id = sai_thrift_create_acl_entry(self.client, acl_table_id, action, addr_family, ip_src, ip_src_mask, ip_dst, ip_dst_mask, ip_proto, in_ports, out_ports, in_port, out_port, ingress_mirror_id, egress_mirror_id) try: assert acl_table_id > 0, 'acl_entry_id is <= 0' assert acl_entry_id > 0, 'acl_entry_id is <= 0' print '#### ACL \'DROP, src 192.168.0.1/255.255.255.0, in_ports[ptf_intf_1,2]\' Applied ####' print '#### Sending ', router_mac, '| 00:22:22:22:22:22 | 10.10.10.1 | 192.168.0.1 | @ ptf_intf 2' # send the same packet send_packet(self, 2, str(pkt)) # ensure packet is dropped # check for absence of packet here! print '#### NOT Expecting 00:11:22:33:44:55 |', router_mac, '| 10.10.10.1 | 192.168.0.1 | @ ptf_intf 1' verify_no_packet(self, exp_pkt, 1) #verify_packets(self, exp_pkt, [1]) finally: # cleanup ACL self.client.sai_thrift_delete_acl_entry(acl_entry_id) self.client.sai_thrift_delete_acl_table(acl_table_id) # cleanup sai_thrift_remove_route(self.client, vr_id, addr_family, ip_addr1, ip_mask1, rif_id1) self.client.sai_thrift_remove_next_hop(nhop1) sai_thrift_remove_neighbor(self.client, addr_family, rif_id1, ip_addr1, dmac1) self.client.sai_thrift_remove_router_interface(rif_id1) self.client.sai_thrift_remove_router_interface(rif_id2) self.client.sai_thrift_remove_virtual_router(vr_id)
2,579
name
# coding=utf-8 # *** WARNING: this file was generated by pulumi. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetPrivateEndpointConnectionProxyResult', 'AwaitableGetPrivateEndpointConnectionProxyResult', 'get_private_endpoint_connection_proxy', 'get_private_endpoint_connection_proxy_output', ] @pulumi.output_type class GetPrivateEndpointConnectionProxyResult: """ Private endpoint connection proxy details. """ def __init__(__self__, e_tag=None, id=None, METHOD_NAME=None, provisioning_state=None, remote_private_endpoint=None, status=None, system_data=None, type=None): if e_tag and not isinstance(e_tag, str): raise TypeError("Expected argument 'e_tag' to be a str") pulumi.set(__self__, "e_tag", e_tag) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if METHOD_NAME and not isinstance(METHOD_NAME, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", METHOD_NAME) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if remote_private_endpoint and not isinstance(remote_private_endpoint, dict): raise TypeError("Expected argument 'remote_private_endpoint' to be a dict") pulumi.set(__self__, "remote_private_endpoint", remote_private_endpoint) if status and not isinstance(status, str): raise TypeError("Expected argument 'status' to be a str") pulumi.set(__self__, "status", status) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(METHOD_NAME="eTag") def e_tag(self) -> str: """ ETag from NRP. """ return pulumi.get(self, "e_tag") @property @pulumi.getter def id(self) -> str: """ Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} """ return pulumi.get(self, "id") @property @pulumi.getter def METHOD_NAME(self) -> str: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter(METHOD_NAME="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the private endpoint connection proxy resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(METHOD_NAME="remotePrivateEndpoint") def remote_private_endpoint(self) -> Optional['outputs.RemotePrivateEndpointResponse']: """ Remote private endpoint details. """ return pulumi.get(self, "remote_private_endpoint") @property @pulumi.getter def status(self) -> Optional[str]: """ Operation status. """ return pulumi.get(self, "status") @property @pulumi.getter(METHOD_NAME="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ Azure Resource Manager metadata containing createdBy and modifiedBy information. """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> str: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type") class AwaitableGetPrivateEndpointConnectionProxyResult(GetPrivateEndpointConnectionProxyResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetPrivateEndpointConnectionProxyResult( e_tag=self.e_tag, id=self.id, METHOD_NAME=self.METHOD_NAME, provisioning_state=self.provisioning_state, remote_private_endpoint=self.remote_private_endpoint, status=self.status, system_data=self.system_data, type=self.type) def get_private_endpoint_connection_proxy(account_name: Optional[str] = None, private_endpoint_connection_proxy_id: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetPrivateEndpointConnectionProxyResult: """ (INTERNAL - DO NOT USE) Get the specified private endpoint connection proxy associated with the device update account. :param str account_name: Account name. :param str private_endpoint_connection_proxy_id: The ID of the private endpoint connection proxy object. :param str resource_group_name: The resource group name. """ __args__ = dict() __args__['accountName'] = account_name __args__['privateEndpointConnectionProxyId'] = private_endpoint_connection_proxy_id __args__['resourceGroupName'] = resource_group_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:deviceupdate/v20230701:getPrivateEndpointConnectionProxy', __args__, opts=opts, typ=GetPrivateEndpointConnectionProxyResult).value return AwaitableGetPrivateEndpointConnectionProxyResult( e_tag=pulumi.get(__ret__, 'e_tag'), id=pulumi.get(__ret__, 'id'), METHOD_NAME=pulumi.get(__ret__, 'name'), provisioning_state=pulumi.get(__ret__, 'provisioning_state'), remote_private_endpoint=pulumi.get(__ret__, 'remote_private_endpoint'), status=pulumi.get(__ret__, 'status'), system_data=pulumi.get(__ret__, 'system_data'), type=pulumi.get(__ret__, 'type')) @_utilities.lift_output_func(get_private_endpoint_connection_proxy) def get_private_endpoint_connection_proxy_output(account_name: Optional[pulumi.Input[str]] = None, private_endpoint_connection_proxy_id: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetPrivateEndpointConnectionProxyResult]: """ (INTERNAL - DO NOT USE) Get the specified private endpoint connection proxy associated with the device update account. :param str account_name: Account name. :param str private_endpoint_connection_proxy_id: The ID of the private endpoint connection proxy object. :param str resource_group_name: The resource group name. """ ...
2,580
factor rule8
# Leo colorizer control file for factor mode. # This file is in the public domain. # Properties for factor mode. properties = { "commentEnd": ")", "commentStart": "(", "doubleBracketIndent": "true", "indentCloseBrackets": "]", "indentNextLines": "^(\\*<<|:).*", "indentOpenBrackets": "[", "lineComment": "!", "lineUpClosingBracket": "true", "noWordSep": "+-*=><;.?/'", } # Attributes dict for factor_main ruleset. factor_main_attributes_dict = { "default": "null", "digit_re": "-?\\d+([./]\\d+)?", "escape": "\\", "highlight_digits": "true", "ignore_case": "false", "no_word_sep": "+-*=><;.?/'", } # Attributes dict for factor_stack_effect ruleset. factor_stack_effect_attributes_dict = { "default": "COMMENT4", "digit_re": "-?\\d+([./]\\d+)?", "escape": "\\", "highlight_digits": "true", "ignore_case": "false", "no_word_sep": "+-*=><;.?/'", } # Dictionary of attributes dictionaries for factor mode. attributesDictDict = { "factor_main": factor_main_attributes_dict, "factor_stack_effect": factor_stack_effect_attributes_dict, } # Keywords dict for factor_main ruleset. factor_main_keywords_dict = { "#{": "operator", "--": "label", ";": "markup", "<": "label", ">": "label", "[": "operator", "]": "operator", "f": "literal4", "r": "keyword1", "t": "literal3", "{": "operator", "|": "operator", "}": "operator", "~": "label", } # Keywords dict for factor_stack_effect ruleset. factor_stack_effect_keywords_dict = {} # Dictionary of keywords dictionaries for factor mode. keywordsDictDict = { "factor_main": factor_main_keywords_dict, "factor_stack_effect": factor_stack_effect_keywords_dict, } # Rules for factor_main ruleset. def factor_rule0(colorer, s, i): return colorer.match_eol_span(s, i, kind="comment2", seq="#!") def factor_rule1(colorer, s, i): return colorer.match_eol_span(s, i, kind="comment1", seq="!") def factor_rule2(colorer, s, i): return colorer.match_seq_regexp(s, i, kind="markup", regexp=":\\s+(\\S+)") def factor_rule3(colorer, s, i): return colorer.match_seq_regexp(s, i, kind="markup", regexp="IN:\\s+(\\S+)") def factor_rule4(colorer, s, i): return colorer.match_seq_regexp(s, i, kind="markup", regexp="USE:\\s+(\\S+)") def factor_rule5(colorer, s, i): return colorer.match_seq_regexp(s, i, kind="markup", regexp="DEFER:\\s+(\\S+)") def factor_rule6(colorer, s, i): return colorer.match_seq_regexp(s, i, kind="markup", regexp="POSTPONE:\\s+(\\S+)") def factor_rule7(colorer, s, i): return colorer.match_seq_regexp(s, i, kind="literal2", regexp="CHAR:\\s+(\\S+)") def METHOD_NAME(colorer, s, i): return colorer.match_seq_regexp(s, i, kind="literal2", regexp="BIN:\\s+(\\S+)") def factor_rule9(colorer, s, i): return colorer.match_seq_regexp(s, i, kind="literal2", regexp="OCT:\\s+(\\S+)") def factor_rule10(colorer, s, i): return colorer.match_seq_regexp(s, i, kind="literal2", regexp="HEX:\\s+(\\S+)") def factor_rule11(colorer, s, i): return colorer.match_span(s, i, kind="comment3", begin="(", end=")", delegate="factor::stack_effect") def factor_rule12(colorer, s, i): return colorer.match_span(s, i, kind="literal1", begin="\"", end="\"", no_line_break=True) def factor_rule13(colorer, s, i): return colorer.match_keywords(s, i) # Rules dict for factor_main ruleset. rulesDict1 = { "!": [factor_rule1,], "\"": [factor_rule12,], "#": [factor_rule0, factor_rule13,], "(": [factor_rule11,], "-": [factor_rule13,], "0": [factor_rule13,], "1": [factor_rule13,], "2": [factor_rule13,], "3": [factor_rule13,], "4": [factor_rule13,], "5": [factor_rule13,], "6": [factor_rule13,], "7": [factor_rule13,], "8": [factor_rule13,], "9": [factor_rule13,], ":": [factor_rule2,], ";": [factor_rule13,], "<": [factor_rule13,], ">": [factor_rule13,], "@": [factor_rule13,], "A": [factor_rule13,], "B": [METHOD_NAME, factor_rule13,], "C": [factor_rule7, factor_rule13,], "D": [factor_rule5, factor_rule13,], "E": [factor_rule13,], "F": [factor_rule13,], "G": [factor_rule13,], "H": [factor_rule10, factor_rule13,], "I": [factor_rule3, factor_rule13,], "J": [factor_rule13,], "K": [factor_rule13,], "L": [factor_rule13,], "M": [factor_rule13,], "N": [factor_rule13,], "O": [factor_rule9, factor_rule13,], "P": [factor_rule6, factor_rule13,], "Q": [factor_rule13,], "R": [factor_rule13,], "S": [factor_rule13,], "T": [factor_rule13,], "U": [factor_rule4, factor_rule13,], "V": [factor_rule13,], "W": [factor_rule13,], "X": [factor_rule13,], "Y": [factor_rule13,], "Z": [factor_rule13,], "[": [factor_rule13,], "]": [factor_rule13,], "a": [factor_rule13,], "b": [factor_rule13,], "c": [factor_rule13,], "d": [factor_rule13,], "e": [factor_rule13,], "f": [factor_rule13,], "g": [factor_rule13,], "h": [factor_rule13,], "i": [factor_rule13,], "j": [factor_rule13,], "k": [factor_rule13,], "l": [factor_rule13,], "m": [factor_rule13,], "n": [factor_rule13,], "o": [factor_rule13,], "p": [factor_rule13,], "q": [factor_rule13,], "r": [factor_rule13,], "s": [factor_rule13,], "t": [factor_rule13,], "u": [factor_rule13,], "v": [factor_rule13,], "w": [factor_rule13,], "x": [factor_rule13,], "y": [factor_rule13,], "z": [factor_rule13,], "{": [factor_rule13,], "|": [factor_rule13,], "}": [factor_rule13,], "~": [factor_rule13,], } # Rules for factor_stack_effect ruleset. def factor_rule14(colorer, s, i): return colorer.match_plain_seq(s, i, kind="comment3", seq="--") # Rules dict for factor_stack_effect ruleset. rulesDict2 = { "-": [factor_rule14,], } # x.rulesDictDict for factor mode. rulesDictDict = { "factor_main": rulesDict1, "factor_stack_effect": rulesDict2, } # Import dict for factor mode. importDict = {}
2,581
get argparser ctor args
# ------------------------------------------------------------------------- # # Part of the CodeChecker project, under the Apache License v2.0 with # LLVM Exceptions. See LICENSE for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # # ------------------------------------------------------------------------- """ Defines a subcommand for CodeChecker which prints version information. """ import argparse import json from typing import Dict, List, Tuple from codechecker_report_converter import twodim from codechecker_common import logger from codechecker_common.output import USER_FORMATS from codechecker_web.shared import webserver_context, version LOG = logger.get_logger('system') class Version: def __init__(self): context = webserver_context.get_context() self.server_versions = [ f'{major}.{minor}' for major, minor in version.SUPPORTED_VERSIONS.items()] self.version = context.version self.build_date = context.package_build_date self.git_hash = context.package_git_hash self.git_tag = context.package_git_tag self.client_api = version.CLIENT_API def is_release_candidate(self): return 'rc' in self.version def to_dict(self) -> Dict[str, str]: """ Get version information in dictionary format. """ return { "base_package_version": self.version, "package_build_date": self.build_date, "git_commit": self.git_hash, "git_tag": self.git_tag, "server_api_version": self.server_versions, "client_api_version": self.client_api} def to_list(self) -> List[Tuple[str, str]]: """ Get version information in list format. """ server_versions = ', '.join(self.server_versions) return [ ("Base package version", self.version), ("Package build date", self.build_date), ("Git commit ID (hash)", self.git_hash), ("Git tag information", self.git_tag), ("Server supported Thrift API version", server_versions), ("Client Thrift API version", self.client_api)] def print(self, output_format: str): """ Print web server version information in the given format. """ if output_format == "json": print(json.dumps(self.to_dict())) else: LOG.info("CodeChecker web version:") print(twodim.to_str( output_format, ["Kind", "Version"], self.to_list()), flush=True) if self.is_release_candidate(): LOG.warning("This version is only a release candidate! If you " "encounter any problems, please submit a bug " "report!") def METHOD_NAME(): """ This method returns a dict containing the kwargs for constructing an argparse.ArgumentParser (either directly or as a subparser). """ return { 'prog': 'CodeChecker webserver version', 'formatter_class': argparse.ArgumentDefaultsHelpFormatter, # Description is shown when the command's help is queried directly 'description': "Print the version of CodeChecker server package that " "is being used.", # Help is shown when the "parent" CodeChecker command lists the # individual subcommands. 'help': "Print the version of CodeChecker server package that is " "being used." } def add_arguments_to_parser(parser): """ Add the subcommand's arguments to the given argparse.ArgumentParser. """ parser.add_argument('-o', '--output', dest='output_format', required=False, default='table', choices=USER_FORMATS, help="The format to use when printing the version.") logger.add_verbose_arguments(parser) parser.set_defaults(func=main) def main(args): """ Get and print the version information from the version config file and Thrift API definition. """ # If the given output format is not 'table', redirect logger's output to # the stderr. stream = None if 'output_format' in args and args.output_format != 'table': stream = 'stderr' logger.setup_logger(args.verbose if 'verbose' in args else None, stream) Version().print(args.output_format)
2,582
lot solvent string
""" Utilities to determine level of theory, task type, and calculation type for Q-Chem calculations""" from typing import Any, Dict, Optional from emmet.core.qchem.calc_types import LevelOfTheory, CalcType, TaskType from emmet.core.qchem.calc_types.calc_types import ( FUNCTIONALS, BASIS_SETS, ) __author__ = "Evan Spotte-Smith <[email protected]>" functional_synonyms = { "b97mv": "b97m-v", "b97mrv": "b97m-rv", "wb97xd": "wb97x-d", "wb97xd3": "wb97x-d3", "wb97xv": "wb97x-v", "wb97mv": "wb97m-v", } smd_synonyms = { "DIELECTRIC=7,230;N=1,410;ALPHA=0,000;BETA=0,859;GAMMA=36,830;PHI=0,000;PSI=0,000": "diglyme", "DIELECTRIC=18,500;N=1,415;ALPHA=0,000;BETA=0,735;GAMMA=20,200;PHI=0,000;PSI=0,000": "3:7 EC:EMC", } def level_of_theory(parameters: Dict[str, Any]) -> LevelOfTheory: """ Returns the level of theory for a calculation, based on the input parameters given to Q-Chem Args: parameters: Dict of Q-Chem input parameters """ funct_raw = parameters.get("rem", dict()).get("method") basis_raw = parameters.get("rem", dict()).get("basis") if funct_raw is None or basis_raw is None: raise ValueError( 'Method and basis must be included in "rem" section ' "of parameters!" ) disp_corr = parameters.get("rem", dict()).get("dft_d") if disp_corr is None: funct_lower = funct_raw.lower() funct_lower = functional_synonyms.get(funct_lower, funct_lower) else: # Replace Q-Chem terms for D3 tails with more common expressions disp_corr = disp_corr.replace("_bj", "(bj)").replace("_zero", "(0)") funct_lower = f"{funct_raw}-{disp_corr}" basis_lower = basis_raw.lower() functional = [f for f in FUNCTIONALS if f.lower() == funct_lower] if not functional: raise ValueError(f"Unexpected functional {funct_lower}!") functional = functional[0] basis = [b for b in BASIS_SETS if b.lower() == basis_lower] if not basis: raise ValueError(f"Unexpected basis set {basis_lower}!") basis = basis[0] solvent_method = parameters["rem"].get("solvent_method", "").lower() if solvent_method == "": solvation = "VACUUM" elif solvent_method in ["pcm", "cosmo"]: solvation = "PCM" # TODO: Add this once added into pymatgen and atomate # elif solvent_method == "isosvp": # if parameters.get("svp", {}).get("idefesr", 0): # solvation = "CMIRS" # else: # solvation = "ISOSVP" elif solvent_method == "smd": solvation = "SMD" else: raise ValueError(f"Unexpected implicit solvent method {solvent_method}!") lot = f"{functional}/{basis}/{solvation}" return LevelOfTheory(lot) def solvent(parameters: Dict[str, Any], custom_smd: Optional[str] = None) -> str: """ Returns the solvent used for this calculation. Args: parameters: Dict of Q-Chem input parameters custom_smd: (Optional) string representing SMD parameters for a non-standard solvent """ lot = level_of_theory(parameters) solvation = lot.value.split("/")[-1] if solvation == "PCM": dielectric = float(parameters.get("solvent", {}).get("dielectric", 78.39)) dielectric_string = f"{dielectric:.2f}".replace(".", ",") return f"DIELECTRIC={dielectric_string}" # TODO: Add this once added into pymatgen and atomate # elif solvation == "ISOSVP": # dielectric = float(parameters.get("svp", {}).get("dielst", 78.39)) # rho = float(parameters.get("svp", {}).get("rhoiso", 0.001)) # return f"DIELECTRIC={round(dielectric, 2)},RHO={round(rho, 4)}" # elif solvation == "CMIRS": # dielectric = float(parameters.get("svp", {}).get("dielst", 78.39)) # rho = float(parameters.get("svp", {}).get("rhoiso", 0.001)) # a = parameters.get("pcm_nonels", {}).get("a") # b = parameters.get("pcm_nonels", {}).get("b") # c = parameters.get("pcm_nonels", {}).get("c") # d = parameters.get("pcm_nonels", {}).get("d") # solvrho = parameters.get("pcm_nonels", {}).get("solvrho") # gamma = parameters.get("pcm_nonels", {}).get("gamma") # # string = f"DIELECTRIC={round(dielectric, 2)},RHO={round(rho, 4)}" # for name, (piece, digits) in {"A": (a, 6), "B": (b, 6), "C": (c, 1), "D": (d, 3), # "SOLVRHO": (solvrho, 2), "GAMMA": (gamma, 1)}.items(): # if piece is None: # piecestring = "NONE" # else: # piecestring = f"{name}={round(float(piece), digits)}" # string += "," + piecestring # return string elif solvation == "SMD": solvent = parameters.get("smx", {}).get("solvent", "water") if solvent == "other": if custom_smd is None: raise ValueError( "SMD calculation with solvent=other requires custom_smd!" ) names = ["DIELECTRIC", "N", "ALPHA", "BETA", "GAMMA", "PHI", "PSI"] numbers = [float(x) for x in custom_smd.split(",")] string = "" for name, number in zip(names, numbers): string += f"{name}={number:.3f};" return string.rstrip(",").rstrip(";").replace(".", ",") else: return f"SOLVENT={solvent.upper()}" else: return "NONE" def METHOD_NAME( parameters: Dict[str, Any], custom_smd: Optional[str] = None ) -> str: """ Returns a string representation of the level of theory and solvent used for this calculation. Args: parameters: Dict of Q-Chem input parameters custom_smd: (Optional) string representing SMD parameters for a non-standard solvent """ lot = level_of_theory(parameters).value solv = solvent(parameters, custom_smd=custom_smd) return f"{lot}({solv})" def task_type(orig: Dict[str, Any], special_run_type: Optional[str] = None) -> TaskType: if special_run_type == "frequency_flattener": return TaskType("Frequency Flattening Geometry Optimization") elif special_run_type == "ts_frequency_flattener": return TaskType("Frequency Flattening Transition State Geometry Optimization") if orig["rem"].get("job_type") == "sp": return TaskType("Single Point") elif orig["rem"].get("job_type") == "force": return TaskType("Force") elif orig["rem"].get("job_type") == "opt": return TaskType("Geometry Optimization") elif orig["rem"].get("job_type") == "ts": return TaskType("Transition State Geometry Optimization") elif orig["rem"].get("job_type") == "freq": return TaskType("Frequency Analysis") return TaskType("Unknown") def calc_type(special_run_type: str, orig: Dict[str, Any]) -> CalcType: """ Determines the calc type Args: inputs: inputs dict with an incar, kpoints, potcar, and poscar dictionaries parameters: Dictionary of VASP parameters from Vasprun.xml """ rt = level_of_theory(orig).value tt = task_type(orig, special_run_type=special_run_type).value return CalcType(f"{rt} {tt}")
2,583
predicate
# Copyright 2021 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Dict, Tuple, Type, Union import numpy as np from cirq import ops, protocols, value if TYPE_CHECKING: import cirq # Tag for gates to which noise must be applied. PHYSICAL_GATE_TAG = 'physical_gate' @value.value_equality(distinct_child_types=True) class OpIdentifier: """Identifies an operation by gate and (optionally) target qubits.""" def __init__(self, gate_type: Type['cirq.Gate'], *qubits: 'cirq.Qid'): self._gate_type = gate_type self._gate_family = ops.GateFamily(gate_type) self._qubits: Tuple['cirq.Qid', ...] = tuple(qubits) @property def gate_type(self) -> Type['cirq.Gate']: # set to a type during initialization, never modified return self._gate_type @property def qubits(self) -> Tuple['cirq.Qid', ...]: return self._qubits def METHOD_NAME(self, *args, **kwargs): return self._gate_family.METHOD_NAME(*args, **kwargs) def is_proper_subtype_of(self, op_id: 'OpIdentifier'): """Returns true if this is contained within op_id, but not equal to it. If this returns true, (x in self) implies (x in op_id), but the reverse implication does not hold. op_id must be more general than self (either by accepting any qubits or having a more general gate type) for this to return true. """ more_specific_qubits = self.qubits and not op_id.qubits more_specific_gate = self.gate_type != op_id.gate_type and issubclass( self.gate_type, op_id.gate_type ) if more_specific_qubits: return more_specific_gate or self.gate_type == op_id.gate_type elif more_specific_gate: return more_specific_qubits or self.qubits == op_id.qubits else: return False def __contains__(self, item: Union[ops.Gate, ops.Operation]) -> bool: if isinstance(item, ops.Gate): return (not self._qubits) and self.METHOD_NAME(item) return ( (not self.qubits or (item.qubits == self._qubits)) and item.gate is not None and self.METHOD_NAME(item.gate) ) def __str__(self): return f'{self.gate_type}{self.qubits}' def __repr__(self) -> str: fullname = f'{self.gate_type.__module__}.{self.gate_type.__qualname__}' qubits = ', '.join(map(repr, self.qubits)) return f'cirq.devices.noise_utils.OpIdentifier({fullname}, {qubits})' def _value_equality_values_(self) -> Any: return (self.gate_type, self.qubits) def _json_dict_(self) -> Dict[str, Any]: gate_json = protocols.json_cirq_type(self._gate_type) return {'gate_type': gate_json, 'qubits': self._qubits} @classmethod def _from_json_dict_(cls, gate_type, qubits, **kwargs) -> 'OpIdentifier': gate_type = protocols.cirq_type_from_json(gate_type) return cls(gate_type, *qubits) # TODO: expose all from top-level cirq? def decay_constant_to_xeb_fidelity(decay_constant: float, num_qubits: int = 2) -> float: """Calculates the XEB fidelity from the depolarization decay constant. Args: decay_constant: Depolarization decay constant. num_qubits: Number of qubits. Returns: Calculated XEB fidelity. """ N = 2**num_qubits return 1 - ((1 - decay_constant) * (1 - 1 / N)) def decay_constant_to_pauli_error(decay_constant: float, num_qubits: int = 1) -> float: """Calculates pauli error from the depolarization decay constant. Args: decay_constant: Depolarization decay constant. num_qubits: Number of qubits. Returns: Calculated Pauli error. """ N = 2**num_qubits return (1 - decay_constant) * (1 - 1 / N / N) def pauli_error_to_decay_constant(pauli_error: float, num_qubits: int = 1) -> float: """Calculates depolarization decay constant from pauli error. Args: pauli_error: The pauli error. num_qubits: Number of qubits. Returns: Calculated depolarization decay constant. """ N = 2**num_qubits return 1 - (pauli_error / (1 - 1 / N / N)) def xeb_fidelity_to_decay_constant(xeb_fidelity: float, num_qubits: int = 2) -> float: """Calculates the depolarization decay constant from XEB fidelity. Args: xeb_fidelity: The XEB fidelity. num_qubits: Number of qubits. Returns: Calculated depolarization decay constant. """ N = 2**num_qubits return 1 - (1 - xeb_fidelity) / (1 - 1 / N) def pauli_error_from_t1(t_ns: float, t1_ns: float) -> float: """Calculates the pauli error from T1 decay constant. This computes error for a specific duration, `t`. Args: t_ns: The duration of the gate in ns. t1_ns: The T1 decay constant in ns. Returns: Calculated Pauli error resulting from T1 decay. """ t2 = 2 * t1_ns return (1 - np.exp(-t_ns / t2)) / 2 + (1 - np.exp(-t_ns / t1_ns)) / 4 def average_error(decay_constant: float, num_qubits: int = 1) -> float: """Calculates the average error from the depolarization decay constant. Args: decay_constant: Depolarization decay constant. num_qubits: Number of qubits. Returns: Calculated average error. """ N = 2**num_qubits return (1 - decay_constant) * (1 - 1 / N) def decoherence_pauli_error(t1_ns: float, tphi_ns: float, gate_time_ns: float) -> float: """The component of Pauli error caused by decoherence on a single qubit. Args: t1_ns: T1 time in nanoseconds. tphi_ns: Tphi time in nanoseconds. gate_time_ns: Duration in nanoseconds of the gate affected by this error. Returns: Calculated Pauli error resulting from decoherence. """ gamma_2 = (1 / (2 * t1_ns)) + 1 / tphi_ns exp1 = np.exp(-gate_time_ns / t1_ns) exp2 = np.exp(-gate_time_ns * gamma_2) px = 0.25 * (1 - exp1) py = px pz = 0.5 * (1 - exp2) - px return px + py + pz
2,584
execute
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (C) 2014-2022 Bitergia # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Authors: # Santiago Dueñas <[email protected]> # import unittest import unittest.mock import click.testing from sortinghat.cli.client import SortingHatClientError from sortinghat.cli.cmds.add import add ADD_CMD_OP = """mutation {{ addIdentity( source: "{}" email: "{}" name: "{}" username: "{}" ) {{ uuid }} }}""" ADD_PARTIAL_CMD_OP = """mutation {{ addIdentity(source: "{}", email: "{}") {{ uuid }} }}""" ADD_UUID_CMD_OP = """mutation {{ addIdentity(source: "{}", email: "{}", uuid: "{}") {{ uuid }} }}""" ADD_OUTPUT = ( "New identity eda9f62ad321b1fbe5f283cc05e2484516203117 " "added to eda9f62ad321b1fbe5f283cc05e2484516203117\n" ) ADD_PARTIAL_OUTPUT = ( "New identity 322397ed782a798ffd9d0bc7e293df4292fe075d " "added to 322397ed782a798ffd9d0bc7e293df4292fe075d\n" ) ADD_UUID_OUTPUT = ( "New identity ffefc2e3f2a255e9450ac9e2d36f37c28f51bd73 " "added to a9b403e150dd4af8953a52a4bb841051e4b705d9\n" ) ADD_UTF8_OUTPUT = ( "New identity 843fcc3383ddfd6179bef87996fa761d88a43915 " "added to 843fcc3383ddfd6179bef87996fa761d88a43915\n" ) ADD_NOT_FOUND_ERROR = ( "FFFFFFFFFFFFFFF not found in the registry" ) class MockClient: """Mock client""" def __init__(self, responses): self.responses = responses self.ops = [] def connect(self): pass def disconnect(self): pass def METHOD_NAME(self, operation): self.ops.append(operation) response = self.responses.pop(0) if isinstance(response, SortingHatClientError): raise response else: return response class TestAddCommand(unittest.TestCase): """Add command unit tests""" @unittest.mock.patch('sortinghat.cli.utils.SortingHatClient') def test_add(self, mock_client): """Check if it adds a new identity""" responses = [ {'data': {'addIdentity': {'uuid': 'eda9f62ad321b1fbe5f283cc05e2484516203117'}}}, ] client = MockClient(responses) mock_client.return_value = client runner = click.testing.CliRunner() # Create a new identity params = [ '--source', 'scm', '--email', '[email protected]', '--name', 'Jane Roe', '--username', 'jrae' ] result = runner.invoke(add, params) expected = ADD_CMD_OP.format('scm', '[email protected]', 'Jane Roe', 'jrae') self.assertEqual(len(client.ops), 1) self.assertEqual(str(client.ops[0]), expected) self.assertEqual(result.stdout, ADD_OUTPUT) self.assertEqual(result.exit_code, 0) @unittest.mock.patch('sortinghat.cli.utils.SortingHatClient') def test_add_partial_data(self, mock_client): """Check if it adds a new identity giving partial data""" responses = [ {'data': {'addIdentity': {'uuid': '322397ed782a798ffd9d0bc7e293df4292fe075d'}}}, ] client = MockClient(responses) mock_client.return_value = client runner = click.testing.CliRunner() # Create a new identity setting partial data params = [ '--source', 'scm', '--email', '[email protected]' ] result = runner.invoke(add, params) expected = ADD_PARTIAL_CMD_OP.format('scm', '[email protected]') self.assertEqual(len(client.ops), 1) self.assertEqual(str(client.ops[0]), expected) self.assertEqual(result.stdout, ADD_PARTIAL_OUTPUT) self.assertEqual(result.exit_code, 0) @unittest.mock.patch('sortinghat.cli.utils.SortingHatClient') def test_add_with_uuid(self, mock_client): """Check if it adds a new identity to an existing one""" responses = [ {'data': {'addIdentity': {'uuid': 'ffefc2e3f2a255e9450ac9e2d36f37c28f51bd73'}}} ] client = MockClient(responses) mock_client.return_value = client runner = click.testing.CliRunner() # Assign to John Smith - a9b403e150dd4af8953a52a4bb841051e4b705d9 # individual params = [ '--source', 'mls', '--email', '[email protected]', '--uuid', 'a9b403e150dd4af8953a52a4bb841051e4b705d9' ] result = runner.invoke(add, params) expected = ADD_UUID_CMD_OP.format('mls', '[email protected]', 'a9b403e150dd4af8953a52a4bb841051e4b705d9') self.assertEqual(len(client.ops), 1) self.assertEqual(str(client.ops[0]), expected) self.assertEqual(result.stdout, ADD_UUID_OUTPUT) self.assertEqual(result.exit_code, 0) @unittest.mock.patch('sortinghat.cli.utils.SortingHatClient') def test_add_with_utf8_4bytes(self, mock_client): """Check if it adds a new identity with utf-8 of 4 bytes""" responses = [ {'data': {'addIdentity': {'uuid': '843fcc3383ddfd6179bef87996fa761d88a43915'}}} ] client = MockClient(responses) mock_client.return_value = client runner = click.testing.CliRunner() params = [ '--source', 'scm', '--name', '😂', '--email', '😂', '--username', '😂' ] result = runner.invoke(add, params) expected = ADD_CMD_OP.format('scm', '😂', '😂', '😂', '843fcc3383ddfd6179bef87996fa761d88a43915') self.assertEqual(len(client.ops), 1) self.assertEqual(str(client.ops[0]), expected) self.assertEqual(result.stdout, ADD_UTF8_OUTPUT) self.assertEqual(result.exit_code, 0) @unittest.mock.patch('sortinghat.cli.utils.SortingHatClient') def test_error(self, mock_client): """"Check if it fails when an error is sent by the server""" error = { 'message': ADD_NOT_FOUND_ERROR, 'extensions': { 'code': 9 } } responses = [ SortingHatClientError(error['message'], errors=[error]) ] client = MockClient(responses) mock_client.return_value = client runner = click.testing.CliRunner(mix_stderr=False) params = [ '--source', 'scm', '--email', '[email protected]', '--uuid', 'FFFFFFFFFFFFFFF' ] result = runner.invoke(add, params, obj=mock_client) expected = ADD_UUID_CMD_OP.format('scm', '[email protected]', 'FFFFFFFFFFFFFFF') self.assertEqual(len(client.ops), 1) self.assertEqual(str(client.ops[0]), expected) expected_err = "Error: " + ADD_NOT_FOUND_ERROR + '\n' self.assertEqual(result.stderr, expected_err) self.assertEqual(result.exit_code, 9) if __name__ == '__main__': unittest.main()
2,585
convert to text
from collections import OrderedDict, defaultdict from typing import List from deeplake.util.hash import hash_str_to_int32 from deeplake.util.exceptions import EmptyTensorError from deeplake.client.log import logger import numpy as np import deeplake def convert_to_idx(samples, class_names: List[str]): class_idx = {class_names[i]: i for i in range(len(class_names))} def convert(samples): idxs = [] additions = [] for sample in samples: if isinstance(sample, np.ndarray): sample = sample.tolist() if isinstance(sample, str): idx = class_idx.get(sample) if idx is None: idx = len(class_idx) class_idx[sample] = idx additions.append((sample, idx)) idxs.append(idx) elif isinstance(sample, list): idxs_, additions_ = convert(sample) idxs.append(idxs_) additions.extend(additions_) else: idxs.append(sample) return idxs, additions return convert(samples) def convert_to_hash(samples, hash_label_map): if isinstance(samples, np.ndarray): samples = samples.tolist() if isinstance(samples, list): return [convert_to_hash(sample, hash_label_map) for sample in samples] else: if isinstance(samples, str): hash_ = hash_str_to_int32(samples) hash_label_map[hash_] = samples else: hash_ = samples return hash_ def convert_hash_to_idx(hashes, hash_idx_map): if isinstance(hashes, list): return [convert_hash_to_idx(hash, hash_idx_map) for hash in hashes] else: try: return hash_idx_map[hashes] except KeyError: return hashes def METHOD_NAME(inp, class_names: List[str], return_original=False): if isinstance(inp, np.integer): idx = int(inp) if idx < len(class_names): return class_names[idx] return idx if return_original else None return [METHOD_NAME(item, class_names) for item in inp] def sync_labels( ds, label_temp_tensors, hash_label_maps, num_workers, scheduler, verbose=True ): ds = ds.root hl_maps = defaultdict(OrderedDict) for map in hash_label_maps: for tensor in map: hl_maps[tensor].update(map[tensor]) hash_label_maps = hl_maps @deeplake.compute def class_label_sync( hash_tensor_sample, samples_out, label_tensor: str, hash_idx_map, ): try: hashes = hash_tensor_sample.numpy().tolist() idxs = convert_hash_to_idx(hashes, hash_idx_map) except EmptyTensorError: idxs = None samples_out[label_tensor].append(idxs) for tensor, temp_tensor in label_temp_tensors.items(): if len(ds[temp_tensor]) == 0: ds.delete_tensor(temp_tensor, large_ok=True) else: try: target_tensor = ds[tensor] hash_label_map = hash_label_maps[temp_tensor] class_names = target_tensor.info.class_names new_labels = [ label for label in hash_label_map.values() if label not in class_names ] if verbose: N = len(class_names) for i in range(len(new_labels)): logger.info( f"'{new_labels[i]}' added to {tensor}.info.class_names at index {N + i}" ) class_names.extend(new_labels) label_idx_map = {class_names[i]: i for i in range(len(class_names))} hash_idx_map = { hash: label_idx_map[hash_label_map[hash]] for hash in hash_label_map } target_tensor.info.is_dirty = True target_tensor.meta._disable_temp_transform = True target_tensor.meta.is_dirty = True logger.info("Synchronizing class labels...") class_label_sync(label_tensor=tensor, hash_idx_map=hash_idx_map).eval( ds[temp_tensor], ds, progressbar=True, check_lengths=False, skip_ok=True, ) target_tensor.meta._disable_temp_transform = False finally: ds.delete_tensor(temp_tensor, large_ok=True)
2,586
is applied
# Copyright 2020-2023 Capypara and the SkyTemple Contributors # # This file is part of SkyTemple. # # SkyTemple is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # SkyTemple is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with SkyTemple. If not, see <https://www.gnu.org/licenses/>. from __future__ import annotations from typing import Callable from ndspy.rom import NintendoDSRom from range_typed_integers import u32_checked from skytemple_files.common.ppmdu_config.data import ( GAME_REGION_EU, GAME_REGION_US, GAME_VERSION_EOS, Pmd2Data, ) from skytemple_files.common.util import ( create_file_in_rom, write_u32, read_u32, ) from skytemple_files.common.i18n_util import _ from skytemple_files.hardcoded.dungeons import HardcodedDungeons from skytemple_files.patch.category import PatchCategory from skytemple_files.patch.handler.abstract import AbstractPatchHandler PATCH_CHECK_ADDR_APPLIED_US = 0x4F7F8 PATCH_CHECK_INSTR_APPLIED_US = 0x359F1010 PATCH_CHECK_ADDR_APPLIED_EU = 0x4FB30 PATCH_CHECK_INSTR_APPLIED_EU = 0x359F1010 FLOOR_FORBID_TABLE_US = 0x9F714 ITEM_AVAILABLE_TABLE_US = 0x94D34 FLOOR_RANKS_TABLE_US = 0xA0AD4 FLOOR_FORBID_TABLE_EU = 0x9FC98 ITEM_AVAILABLE_TABLE_EU = 0x95130 FLOOR_RANKS_TABLE_EU = 0xA1058 NB_ITEMS_TABLE = 100 AVAILABLE_ITEMS_NB = 1024 ARM9_START = 0x02000000 FLOOR_FORBID_PATH = "BALANCE/fforbid.bin" FLOOR_RANKS_PATH = "BALANCE/f_ranks.bin" AVAILABLE_ITEMS_PATH = "BALANCE/a_items.bin" # TODO: move this somewhere else FLOORS_NB = [ 3, 5, 6, 10, 8, 12, 9, 5, 14, 5, 11, 5, 16, 20, 15, 21, 11, 14, 8, 15, 15, 8, 12, 20, 15, 24, 24, 14, 25, 25, 20, 18, 50, 20, 23, 30, 18, 30, 20, 8, 13, 20, 10, 15, 20, 20, 30, 6, 5, 10, 5, 50, 20, 99, 30, 19, 19, 17, 25, 75, 40, 40, 99, 1, 50, 99, 10, 5, 15, 20, 25, 30, 40, 17, 7, 10, 15, 11, 16, 20, 8, 10, 15, 10, 18, 10, 11, 5, 5, 11, 19, 16, 5, 6, 7, 6, 5, 5, 5, 5, ] class ExtractDungeonDataPatchHandler(AbstractPatchHandler): @property def name(self) -> str: return "ExtractDungeonData" @property def description(self) -> str: return _( "Extracts the floor ranks, forbidden mission floors, items available in dungeon tables and put them in files. Provides support for reading them from the rom file system." ) @property def author(self) -> str: return "Anonymous" @property def version(self) -> str: return "0.0.1" @property def category(self) -> PatchCategory: return PatchCategory.UTILITY def METHOD_NAME(self, rom: NintendoDSRom, config: Pmd2Data) -> bool: if config.game_version == GAME_VERSION_EOS: if config.game_region == GAME_REGION_US: return ( read_u32(rom.arm9, PATCH_CHECK_ADDR_APPLIED_US) != PATCH_CHECK_INSTR_APPLIED_US ) if config.game_region == GAME_REGION_EU: return ( read_u32(rom.arm9, PATCH_CHECK_ADDR_APPLIED_EU) != PATCH_CHECK_INSTR_APPLIED_EU ) raise NotImplementedError() def apply( self, apply: Callable[[], None], rom: NintendoDSRom, config: Pmd2Data ) -> None: if not self.METHOD_NAME(rom, config): if config.game_version == GAME_VERSION_EOS: if config.game_region == GAME_REGION_US: rank_table = FLOOR_RANKS_TABLE_US item_table = ITEM_AVAILABLE_TABLE_US forbid_table = FLOOR_FORBID_TABLE_US if config.game_region == GAME_REGION_EU: rank_table = FLOOR_RANKS_TABLE_EU item_table = ITEM_AVAILABLE_TABLE_EU forbid_table = FLOOR_FORBID_TABLE_EU header = bytearray(NB_ITEMS_TABLE * 4) rank_data = bytearray(0) forbid_data = bytearray(0) current_ptr = u32_checked(len(header)) for i in range(NB_ITEMS_TABLE): start = read_u32(rom.arm9, rank_table + i * 4) - ARM9_START end = start + 1 + FLOORS_NB[i] if end % 4 != 0: end += 4 - (end % 4) rdata = rom.arm9[start:end] fdata = bytearray(len(rdata)) x = forbid_table while rom.arm9[x] != 0x64: if rom.arm9[x] == i: fdata[rom.arm9[x + 1]] = 1 x += 2 rom.arm9 = ( rom.arm9[:start] + bytes([0xCC] * (end - start)) + rom.arm9[end:] ) write_u32(header, current_ptr, i * 4) rank_data += bytearray(rdata) forbid_data += bytearray(fdata) current_ptr += end - start # type: ignore file_data = header + rank_data if FLOOR_RANKS_PATH not in rom.filenames: create_file_in_rom(rom, FLOOR_RANKS_PATH, file_data) else: rom.setFileByName(FLOOR_RANKS_PATH, file_data) file_data = header + forbid_data if FLOOR_FORBID_PATH not in rom.filenames: create_file_in_rom(rom, FLOOR_FORBID_PATH, file_data) else: rom.setFileByName(FLOOR_FORBID_PATH, file_data) dungeon_list = HardcodedDungeons.get_dungeon_list(rom.arm9, config) groups = [d.mappa_index for d in dungeon_list] print(hex(len(groups))) list_available = [] for x in range(AVAILABLE_ITEMS_NB): list_available.append(bytearray(0x100 // 8)) for i, g in enumerate(groups): off = item_table + g * (AVAILABLE_ITEMS_NB // 8) + (x // 8) if rom.arm9[off] & (1 << (x % 8)): list_available[-1][i // 8] |= 1 << (i % 8) file_data = bytearray().join(list_available) if AVAILABLE_ITEMS_PATH not in rom.filenames: create_file_in_rom(rom, AVAILABLE_ITEMS_PATH, file_data) else: rom.setFileByName(AVAILABLE_ITEMS_PATH, file_data) try: apply() except RuntimeError as ex: raise ex def unapply( self, unapply: Callable[[], None], rom: NintendoDSRom, config: Pmd2Data ) -> None: raise NotImplementedError()
2,587
run
from __future__ import absolute_import, division, print_function # LIBTBX_SET_DISPATCHER_NAME phenix.resolution from iotbx import reflection_file_reader from cctbx import maptbx from cctbx.array_family import flex from libtbx.utils import Sorry import sys, math, time from scitbx import regular_grid_on_unit_sphere import six from six.moves import range def one_d_image_along_axis(n, step, uc_length): rho = flex.double() dist = flex.double() r = 0 while r < uc_length/2: rho_ = 0 for n_key, n_value in six.iteritems(n): rho_ += n_value*math.cos(2*math.pi*r*n_key/uc_length) dist.append(r) rho.append(rho_) r+=step return dist, rho def second_derivatives(rho, delta): rho_2nd = flex.double() for i in range(rho.size()): if(i>=1 and i<rho.size()-1): tau = (rho[i+1]+rho[i-1]-2*rho[i])/delta**2 elif(i==0): tau = (rho[i+1]+rho[i+1]-2*rho[i])/delta**2 else: tau = (rho[i+0]+rho[i-1]-2*rho[i])/delta**2 rho_2nd.append(tau) result = flex.double() for i in range(rho_2nd.size()): rho_ave = 0 span = [-2,-1,0,1,2] #span = [-5,-4,-3,-2,-1,0,1,2, 3,4,5] for j in span: ij = i+j if(ij<0): ij=0 if(ij>=rho_2nd.size()): ij=rho_2nd.size()-1 rho_ave += rho_2nd[ij] rho_ave = rho_ave/len(span) result.append(rho_ave) return result def compute_d_eff(r, rho_2nd): v0 = rho_2nd[0] for i in range(rho_2nd.size()): if(v0*rho_2nd[i]<0): return r[i]*2.5 # formulas (9)-(10) return None def compute(miller_array, step_scale=0.0005): miller_array.show_comprehensive_summary(prefix=" ") step = miller_array.d_min()*step_scale # ma_p1 = miller_array.expand_to_p1() # n_h = {} n_k = {} n_l = {} indices = ma_p1.indices() for ind in indices: h,k,l = ind n_h.setdefault(h, flex.int()).append(1) n_k.setdefault(k, flex.int()).append(1) n_l.setdefault(l, flex.int()).append(1) def count(d): for k in d.keys(): d[k] = d[k].size() return d n_h = count(n_h) n_k = count(n_k) n_l = count(n_l) # resolutions along axes a,b,c = miller_array.unit_cell().parameters()[:3] x, rho_x = one_d_image_along_axis(n=n_h, step=step, uc_length=a) y, rho_y = one_d_image_along_axis(n=n_k, step=step, uc_length=b) z, rho_z = one_d_image_along_axis(n=n_l, step=step, uc_length=c) # 2nd derivatives r2x = second_derivatives(rho=rho_x, delta=step) r2y = second_derivatives(rho=rho_y, delta=step) r2z = second_derivatives(rho=rho_z, delta=step) # effective resolution along axes d_eff_a = compute_d_eff(r=x, rho_2nd=r2x) d_eff_b = compute_d_eff(r=y, rho_2nd=r2y) d_eff_c = compute_d_eff(r=z, rho_2nd=r2z) print(" Effective resolution along axes a,b,c: %6.3f %6.3f %6.3f"%( d_eff_a, d_eff_b, d_eff_c)) # all directions l = 0.8 * min(d_eff_a/2.5, d_eff_b/2.5, d_eff_c/2.5) r = 1.2 * max(d_eff_a/2.5, d_eff_b/2.5, d_eff_c/2.5) us = regular_grid_on_unit_sphere.rosca(m=9, hemisphere=True) d_effs = flex.double() o = maptbx.ft_analytical_1d_point_scatterer_at_origin(N=100000) for i, u in enumerate(us): o.compute( miller_indices=indices, step=step, left=l, right=r, u_frac=miller_array.unit_cell().fractionalize(u)) dist, rho_ = o.distances(), o.rho() rho2 = second_derivatives(rho=rho_, delta=step) d_eff = compute_d_eff(r=dist, rho_2nd=rho2) d_effs.append(d_eff) print(" Effective resolution (min,max): %8.3f%8.3f"%( flex.min(d_effs), flex.max(d_effs))) def METHOD_NAME(args): if(len(args)!=1): raise Sorry("Reflection file expected.") reflection_file = reflection_file_reader.any_reflection_file( file_name = args[0]) miller_arrays = reflection_file.as_miller_arrays( force_symmetry=True, merge_equivalents=False) if(miller_arrays is None): raise Sorry("Warning: unknown file format:", file_name) for ma in miller_arrays: if(type(ma.data()) == type(flex.double())): print("Processing data array with labels:", ma.info().label_string()) compute(miller_array=ma) print() if (__name__ == "__main__"): t0 = time.time() METHOD_NAME(args=sys.argv[1:]) print("Time: %8.3f"%(time.time()-t0))
2,588
command
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import re from typing import Optional, Type from lisa.executable import Tool from lisa.operating_system import Alpine, Debian from lisa.tools.ip import Ip from lisa.util import UnsupportedDistroException from lisa.util.process import Process INTERNET_PING_ADDRESS = "8.8.8.8" class Ping(Tool): # ping: SO_BINDTODEVICE: Operation not permitted # ping: icmp open socket: Operation not permitted # ping: socket: Operation not permitted _no_permission_pattern = re.compile( r"ping: .* Operation not permitted", re.M, ) # ping: sendmsg: Operation not permitted # The message indicates that the ICMP echo request packet has not been sent and is # blocked by the Control Plane ACL. Run "iptables --list" to check. no_sendmsg_permission_pattern = re.compile( r"ping: sendmsg: Operation not permitted", re.M, ) @property def METHOD_NAME(self) -> str: return "ping" @property def can_install(self) -> bool: return True def install(self) -> bool: if isinstance(self.node.os, Debian): package_name = "iputils-ping" else: raise UnsupportedDistroException(self.node.os) self.node.os.install_packages(package_name) return self._check_exists() def ping_async( self, target: str = "", nic_name: str = "", count: int = 5, interval: float = 0.2, package_size: Optional[int] = None, sudo: bool = False, ) -> Process: if not target: target = INTERNET_PING_ADDRESS args: str = f"{target} -c {count} -i {interval}" # For Alpine, '-O' option is unrecognized, so remove '-O' if not isinstance(self.node.os, Alpine): args += " -O" if nic_name: args += f" -I {nic_name}" if package_size: args += f" -s {package_size}" return self.run_async(args, force_run=True, sudo=sudo) def ping( self, target: str = "", nic_name: str = "", count: int = 5, interval: float = 0.2, package_size: Optional[int] = None, ignore_error: bool = False, sudo: bool = False, ) -> bool: if not target: target = INTERNET_PING_ADDRESS result = self.ping_async( target=target, nic_name=nic_name, count=count, interval=interval, package_size=package_size, sudo=sudo, ).wait_result() # for some distro like RHEL, ping with -I nic_name needs sudo # otherwise, ping fails with below output: # 'ping: SO_BINDTODEVICE: Operation not permitted' if not sudo and self._no_permission_pattern.findall(result.stdout): result = self.ping_async( target=target, nic_name=nic_name, count=count, interval=interval, package_size=package_size, sudo=True, ).wait_result() if not ignore_error: result.assert_exit_code( message=( "failed on ping. The server may not be reached." f" ping result is {result.stdout}" ), ) # return ping passed or not. return result.exit_code == 0 @classmethod def _freebsd_tool(cls) -> Optional[Type[Tool]]: return FreeBSDPing class FreeBSDPing(Ping): def ping_async( self, target: str = "", nic_name: str = "", count: int = 5, interval: float = 0.2, package_size: Optional[int] = None, sudo: bool = False, ) -> Process: if not target: target = INTERNET_PING_ADDRESS args: str = "" # ping with '-O' in FreeBSD has issue, so remove '-O' # run 'ping -c 5 -i 0.2 bing.com' without sudo, will encounter below issue # ping: -i interval too short: Operation not permitted # either run ping under sudo, there is no minimal value bar for interval value # or without sudo, set interval >= 1 if interval < 1 and not sudo: sudo = True args = f"-c {count} -i {interval}" if nic_name: # pinging with interface name has issue in FreeBSD # https://unix.stackexchange.com/questions/341590/invalid-multicast-interface interface_inet = self.node.tools[Ip].get_ip_address(nic_name) args += f" -S {interface_inet}" if package_size: args += f" -s {package_size}" args += f" {target}" return self.run_async(args, force_run=True, sudo=sudo)
2,589
config date
from bisect import bisect from collections import OrderedDict from decimal import Decimal from itertools import groupby from dateutil.parser import parse from flask import current_app as app from main import db from sqlalchemy import true, inspect from sqlalchemy.orm.base import NO_VALUE from sqlalchemy.sql.functions import func from sqlalchemy_continuum.utils import version_class, transaction_class from typing import TypeAlias # This alias *was* required to apply type annotations to the model objects, # but I don't think it even does that any more. # MyPy doesn't support this nested class syntax which flask-sqlalchemy uses, # even though type annotations are now present. https://github.com/pallets-eco/flask-sqlalchemy/issues/1112 BaseModel: TypeAlias = db.Model # type: ignore[name-defined] """ Type alias for ISO currency (GBP or EUR currently). """ # Note: A better type for this would be Union[Literal['GBP'], Literal['EUR']] but setting this # results in a world of pain currently. # # Ideally needs to be unified with the Currency class in app/common/__init__.py, but this is # non-trivial. Currency = str def event_start(): return METHOD_NAME("EVENT_START") def event_year(): """Year of the current event""" return event_start().year def event_end(): return METHOD_NAME("EVENT_END") def exists(query): return db.session.query(true()).filter(query.exists()).scalar() def to_dict(obj): return OrderedDict( (a.key, getattr(obj, a.key)) for a in inspect(obj).attrs if a.loaded_value != NO_VALUE ) def count_groups(query, *entities): return ( query.with_entities(func.count().label("count"), *entities) .group_by(*entities) .order_by(*entities) ) def nest_count_keys(rows): """For JSON's sake, because it doesn't support tuples as keys""" tree = OrderedDict() for c, *key in rows: node = tree for k in key[:-1]: node = node.setdefault(k, OrderedDict()) node[key[-1]] = c return tree def bucketise(vals, boundaries): """Sort values into bins, like pandas.cut""" ranges = [ "%s-%s" % (a, b - 1) if isinstance(b, int) and b - 1 > a else str(a) for a, b in zip(boundaries[:-1], boundaries[1:]) ] ranges.append("%s+" % boundaries[-1]) counts = OrderedDict.fromkeys(ranges, 0) for val in vals: if isinstance(val, tuple): # As a convenience for fetching counts/single columns in sqla val, *_ = val i = bisect(boundaries, val) if i == 0: raise IndexError( "{} is below the lowest boundary {}".format(val, boundaries[0]) ) counts[ranges[i - 1]] += 1 return counts def export_intervals(query, date_entity, interval, fmt): return nest_count_keys( count_groups(query, func.to_char(func.date_trunc(interval, date_entity), fmt)) ) def export_counts(query, cols): counts = OrderedDict() for col in cols: counts[col.name] = nest_count_keys(count_groups(query, col)) return counts def export_attr_counts(cls, attrs): cols = [getattr(cls, a) for a in attrs] return export_counts(cls.query, cols) def export_attr_edits(cls, attrs): edits_iter = iter_attr_edits(cls, attrs) maxes = dict.fromkeys(attrs, 0) totals = dict.fromkeys(attrs, 0) count = 0 for pk, attr_times in edits_iter: for a in attrs: maxes[a] = max(maxes[a], len(attr_times[a])) totals[a] += len(attr_times[a]) count += 1 edits = OrderedDict() for a in attrs: if count == 0: edits[a] = {"max": 0, "avg": Decimal("0.00")} else: avg = Decimal(totals[a]) / count edits[a] = {"max": maxes[a], "avg": avg.quantize(Decimal("0.01"))} return edits def iter_attr_edits(cls, attrs, query=None): pk_cols = [k for k in inspect(cls).primary_key] cls_version = version_class(cls) pk_cols_version = [getattr(cls_version, k.name) for k in pk_cols] attrs_version = [getattr(cls_version, a) for a in attrs] cls_transaction = transaction_class(cls) if query is None: query = cls_version.query all_versions = ( query.join(cls_version.transaction) .with_entities(*pk_cols_version + attrs_version + [cls_transaction.issued_at]) .order_by(*pk_cols_version + [cls_version.transaction_id]) ) def get_pk(row): return [getattr(row, k.name) for k in pk_cols_version] for pk, versions in groupby(all_versions, get_pk): # We don't yet process inserts/deletes, but should first = next(versions) attr_vals = {a: getattr(first, a) for a in attrs} attr_times = {a: [first.issued_at] for a in attrs} for version in versions: for attr in attrs: val = getattr(version, attr) if val != attr_vals[attr]: attr_times[attr].append(version.issued_at) attr_vals[attr] = val yield (pk, attr_times) def METHOD_NAME(key): return parse(app.config.get(key)) from .user import * # noqa: F401,F403 from .payment import * # noqa: F401,F403 from .cfp import * # noqa: F401,F403 from .permission import * # noqa: F401,F403 from .email import * # noqa: F401,F403 from .ical import * # noqa: F401,F403 from .product import * # noqa: F401,F403 from .purchase import * # noqa: F401,F403 from .basket import * # noqa: F401,F403 from .admin_message import * # noqa: F401,F403 from .volunteer import * # noqa: F401,F403 from .village import * # noqa: F401,F403 from .scheduled_task import * # noqa: F401,F403 from .feature_flag import * # noqa: F401,F403 from .site_state import * # noqa: F401,F403 db.configure_mappers()
2,590
copy from local
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import shutil from typing import List, Optional logger = logging.getLogger(__file__) try: from iopath.common.file_io import g_pathmgr as IOPathManager try: # [FB only - for now] AWS PathHandler for PathManager from .fb_pathhandlers import S3PathHandler IOPathManager.register_handler(S3PathHandler()) except KeyError: logging.warning("S3PathHandler already registered.") except ImportError: logging.debug( "S3PathHandler couldn't be imported. Either missing fb-only files, or boto3 module." ) except ImportError: IOPathManager = None class PathManager: """ Wrapper for insulating OSS I/O (using Python builtin operations) from iopath's PathManager abstraction (for transparently handling various internal backends). """ @staticmethod def open( path: str, mode: str = "r", buffering: int = -1, encoding: Optional[str] = None, errors: Optional[str] = None, newline: Optional[str] = None, ): if IOPathManager: return IOPathManager.open( path=path, mode=mode, buffering=buffering, encoding=encoding, errors=errors, newline=newline, ) return open( path, mode=mode, buffering=buffering, encoding=encoding, errors=errors, newline=newline, ) @staticmethod def copy(src_path: str, dst_path: str, overwrite: bool = False) -> bool: if IOPathManager: return IOPathManager.copy( src_path=src_path, dst_path=dst_path, overwrite=overwrite ) return shutil.copyfile(src_path, dst_path) @staticmethod def get_local_path(path: str, **kwargs) -> str: if IOPathManager: return IOPathManager.get_local_path(path, **kwargs) return path @staticmethod def exists(path: str) -> bool: if IOPathManager: return IOPathManager.exists(path) return os.path.exists(path) @staticmethod def isfile(path: str) -> bool: if IOPathManager: return IOPathManager.isfile(path) return os.path.isfile(path) @staticmethod def ls(path: str) -> List[str]: if IOPathManager: return IOPathManager.ls(path) return os.listdir(path) @staticmethod def mkdirs(path: str) -> None: if IOPathManager: return IOPathManager.mkdirs(path) os.makedirs(path, exist_ok=True) @staticmethod def rm(path: str) -> None: if IOPathManager: return IOPathManager.rm(path) os.remove(path) @staticmethod def chmod(path: str, mode: int) -> None: if not PathManager.path_requires_pathmanager(path): os.chmod(path, mode) @staticmethod def register_handler(handler) -> None: if IOPathManager: return IOPathManager.register_handler(handler=handler) @staticmethod def METHOD_NAME( local_path: str, dst_path: str, overwrite: bool = False, **kwargs ) -> None: if IOPathManager: return IOPathManager.METHOD_NAME( local_path=local_path, dst_path=dst_path, overwrite=overwrite, **kwargs ) return shutil.copyfile(local_path, dst_path) @staticmethod def path_requires_pathmanager(path: str) -> bool: """Do we require PathManager to access given path?""" if IOPathManager: for p in IOPathManager._path_handlers.keys(): if path.startswith(p): return True return False @staticmethod def supports_rename(path: str) -> bool: # PathManager doesn't yet support renames return not PathManager.path_requires_pathmanager(path) @staticmethod def rename(src: str, dst: str): os.rename(src, dst) """ ioPath async PathManager methods: """ @staticmethod def opena( path: str, mode: str = "r", buffering: int = -1, encoding: Optional[str] = None, errors: Optional[str] = None, newline: Optional[str] = None, ): """ Return file descriptor with asynchronous write operations. """ global IOPathManager if not IOPathManager: logging.info("ioPath is initializing PathManager.") try: from iopath.common.file_io import PathManager IOPathManager = PathManager() except Exception: logging.exception("Failed to initialize ioPath PathManager object.") return IOPathManager.opena( path=path, mode=mode, buffering=buffering, encoding=encoding, errors=errors, newline=newline, ) @staticmethod def async_close() -> bool: """ Wait for files to be written and clean up asynchronous PathManager. NOTE: `PathManager.async_close()` must be called at the end of any script that uses `PathManager.opena(...)`. """ global IOPathManager if IOPathManager: return IOPathManager.async_close() return False
2,591
test partial summarize transform
import pytest from db.transforms.base import Summarize, Limit from db.transforms.operations.serialize import serialize_transformation fully_speced_summarize = \ Summarize( dict( aggregation_expressions=[ dict( function='distinct_aggregate_to_array', input_alias='col2', output_alias='col2_agged' ) ], base_grouping_column='col1', grouping_expressions=[ dict( input_alias='col1', output_alias='col1_grouped', ) ] ) ) @pytest.mark.parametrize( 'input_summarize, expected_summarize', [ [ Summarize( dict( base_grouping_column='col1', aggregation_expressions=[ dict( function='distinct_aggregate_to_array', input_alias='col2', output_alias='col2_agged' ) ], ), ), fully_speced_summarize, ], [ Summarize( dict( base_grouping_column='col1', grouping_expressions=[ dict( input_alias='col1', output_alias='col1_grouped', ) ] ) ), fully_speced_summarize, ], [ Summarize( dict( base_grouping_column='col1', ) ), fully_speced_summarize, ], ] ) def METHOD_NAME( create_patents_table, client, input_summarize, expected_summarize, ): base_table = create_patents_table(table_name='patent_query_run_minimal_table') initial_columns = [ { 'id': base_table.get_column_by_name('Center').id, 'alias': 'col1', }, { 'id': base_table.get_column_by_name('Case Number').id, 'alias': 'col2', }, ] input_summarize_transform_json = \ serialize_transformation(input_summarize) expected_summarize_transform_json = \ serialize_transformation(expected_summarize) limit_transform_json = serialize_transformation(Limit(5)) input_transformations = [ limit_transform_json, input_summarize_transform_json, ] output_transformations = [ limit_transform_json, expected_summarize_transform_json, ] data = { 'base_table': base_table.id, 'initial_columns': initial_columns, 'display_names': None, 'parameters': { 'order_by': [ {'field': 'col1_grouped', 'direction': 'asc'}, {'field': 'col2_agged', 'direction': 'desc'} ], 'limit': 2 }, 'transformations': input_transformations, } expected_query = ( {k: v for k, v in data.items() if k not in {'parameters'}} | { 'schema': base_table.schema.id, 'transformations': output_transformations, 'display_names': { 'col1': 'Center', 'col1_grouped': 'Center group', 'col2': 'Case Number', 'col2_agged': 'Case Number distinct list', }, } ) expect_response_json = { 'column_metadata': { 'col1': { 'alias': 'col1', 'display_name': 'Center', 'display_options': None, 'input_alias': None, 'input_column_name': 'Center', 'input_table_name': 'patent_query_run_minimal_table', 'input_table_id': base_table.id, 'is_initial_column': True, 'type': 'text', 'type_options': None }, 'col1_grouped': { 'alias': 'col1_grouped', 'display_name': 'Center group', 'display_options': None, 'input_alias': 'col1', 'input_column_name': None, 'input_table_name': None, 'input_table_id': None, 'is_initial_column': False, 'type': 'text', 'type_options': None }, 'col2': { 'alias': 'col2', 'display_name': 'Case Number', 'display_options': None, 'input_alias': None, 'input_column_name': 'Case Number', 'input_table_name': 'patent_query_run_minimal_table', 'input_table_id': base_table.id, 'is_initial_column': True, 'type': 'text', 'type_options': None }, 'col2_agged': { 'alias': 'col2_agged', 'display_name': 'Case Number distinct list', 'display_options': None, 'input_alias': 'col2', 'input_column_name': None, 'input_table_name': None, 'input_table_id': None, 'is_initial_column': False, 'type': '_array', 'type_options': {'item_type': 'text'} } }, 'output_columns': [ 'col1_grouped', 'col2_agged', ], 'parameters': { 'limit': 2, 'order_by': [ {'direction': 'asc', 'field': 'col1_grouped'}, {'direction': 'desc', 'field': 'col2_agged'} ] }, 'query': expected_query, 'records': { 'count': 2, 'grouping': None, 'preview_data': None, 'results': [ { 'col1_grouped': 'NASA Ames Research Center', 'col2_agged': [ 'ARC-14048-1', 'ARC-14231-1', 'ARC-14231-2DIV', 'ARC-14231-3' ] }, { 'col1_grouped': 'NASA Kennedy Space Center', 'col2_agged': ['KSC-12871'] } ] } } response = client.post('/api/db/v0/queries/run/', data, format='json') assert response.status_code == 200 assert response.json() == expect_response_json
2,592
test get vsicurl
# ================================================================= # # Authors: Francesco Bartoli <[email protected]> # Authors: Tom Kralidis <[email protected]> # # Copyright (c) 2020 Francesco Bartoli # Copyright (c) 2022 Tom Kralidis # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # ================================================================= # Needs to be run like: python3 -m pytest # https://sampleserver6.arcgisonline.com/arcgis/rest/services/CommunityAddressing/FeatureServer/0 import logging import pytest from pygeoapi.provider.base import ProviderItemNotFoundError from pygeoapi.provider.ogr import OGRProvider LOGGER = logging.getLogger(__name__) @pytest.fixture() def config_vsicurl_csv(): return { 'name': 'OGR', 'type': 'feature', 'data': { 'source_type': 'CSV', 'source': '/vsicurl/https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv', # noqa # 'source_srs': 'EPSG:4326', # 'target_srs': 'EPSG:4326', 'source_capabilities': { 'paging': True }, 'open_options': { 'X_POSSIBLE_NAMES': 'long', 'Y_POSSIBLE_NAMES': 'lat', }, 'gdal_ogr_options': { 'EMPTY_AS_NULL': 'NO', 'GDAL_CACHEMAX': '64', 'CPL_DEBUG': 'NO' }, }, 'id_field': 'fid', 'time_field': 'data', 'layer': 'dpc-covid19-ita-regioni' } def test_get_fields_vsicurl(config_vsicurl_csv): """Testing field types""" p = OGRProvider(config_vsicurl_csv) results = p.get_fields() assert results['denominazione_regione']['type'] == 'string' assert results['totale_positivi']['type'] == 'string' def METHOD_NAME(config_vsicurl_csv): """Testing query for a specific object""" p = OGRProvider(config_vsicurl_csv) result = p.get('32') assert result['id'] == 32 assert '14' in result['properties']['codice_regione'] def test_get_not_existing_feature_raise_exception( config_vsicurl_csv ): """Testing query for a not existing object""" p = OGRProvider(config_vsicurl_csv) with pytest.raises(ProviderItemNotFoundError): p.get(-1) def test_query_hits_vsicurl(config_vsicurl_csv): """Testing query on entire collection for hits""" p = OGRProvider(config_vsicurl_csv) feature_collection = p.query(resulttype='hits') assert feature_collection.get('type') == 'FeatureCollection' features = feature_collection.get('features') assert len(features) == 0 hits = feature_collection.get('numberMatched') assert hits is not None assert hits > 100 def test_query_bbox_hits_vsicurl(config_vsicurl_csv): """Testing query for a valid JSON object with geometry""" p = OGRProvider(config_vsicurl_csv) feature_collection = p.query( bbox=[10.497565, 41.520355, 15.111823, 43.308645], resulttype='hits') assert feature_collection.get('type') == 'FeatureCollection' features = feature_collection.get('features') assert len(features) == 0 hits = feature_collection.get('numberMatched') assert hits is not None assert hits > 1 def test_query_with_limit_vsicurl(config_vsicurl_csv): """Testing query for a valid JSON object with geometry""" p = OGRProvider(config_vsicurl_csv) feature_collection = p.query(limit=2, resulttype='results') assert feature_collection.get('type') == 'FeatureCollection' features = feature_collection.get('features') assert len(features) == 2 hits = feature_collection.get('numberMatched') assert hits is None feature = features[0] properties = feature.get('properties') assert properties is not None geometry = feature.get('geometry') assert geometry is not None def test_query_with_offset_vsicurl(config_vsicurl_csv): """Testing query for a valid JSON object with geometry""" p = OGRProvider(config_vsicurl_csv) feature_collection = p.query(offset=20, limit=10, resulttype='results') assert feature_collection.get('type') == 'FeatureCollection' features = feature_collection.get('features') assert len(features) == 10 hits = feature_collection.get('numberMatched') assert hits is None feature = features[0] properties = feature.get('properties') assert properties is not None assert feature['id'] == 21 assert 'Veneto' in properties['denominazione_regione'] geometry = feature.get('geometry') assert geometry is not None def test_query_with_property_vsicurl(config_vsicurl_csv): """Testing query for a valid JSON object with property filter""" p = OGRProvider(config_vsicurl_csv) feature_collection = p.query( offset=20, limit=10, resulttype='results', properties=[('denominazione_regione', 'Lazio')]) assert feature_collection.get('type') == 'FeatureCollection' features = feature_collection.get('features') assert len(features) == 10 for feature in features: assert 'Lazio' in feature['properties']['denominazione_regione'] def test_query_with_skip_geometry_vsicurl(config_vsicurl_csv): """Testing query for a valid JSON object with property filter""" p = OGRProvider(config_vsicurl_csv) feature_collection = p.query(skip_geometry=True) for feature in feature_collection['features']: assert feature['geometry'] is None
2,593
get mi cols
# copyright: sktime developers, BSD-3-Clause License (see LICENSE file) """Converter utilities between dask and pandas, with multiindex convention. Converts between: pd.DataFrames with ordinary (single-level) index or pd.Multiindex, and dask DataFrame If pd.DataFrame has ordinary index, converts using dask compute/from_pandas if pd.DataFrame has MultiIndex, converts and back-converts MultiIndex columns to DataFrame columns with the name: __index__[indexname], if level has a name indexname __index__[index_iloc], if level has no indexname and is index_iloc-th level index is replaced by a string index where tuples are replaced with str coerced elements """ import pandas as pd from sktime.datatypes._common import _req from sktime.datatypes._common import _ret as ret def _is_mi_col(x): return isinstance(x, str) and x.startswith("__index__") def METHOD_NAME(obj): """Get multiindex cols from a dask object. Parameters ---------- obj : dask DataFrame Returns ------- list of pandas index elements all column index elements of obj that start with __index__ i.e., columns that are interpreted as multiindex columns in the correspondence """ return [x for x in obj.columns if _is_mi_col(x)] def convert_dask_to_pandas(obj): """Convert dask DataFrame to pandas DataFrame, preserving MultiIndex. Parameters ---------- obj : pandas.DataFrame Returns ------- dask DataFrame MultiIndex levels 0 .. -1 of X are converted to columns of name __index__[indexname], where indexname is name of multiindex level, or the integer index if the level has no name other columns and column names are identical to those of X """ obj = obj.compute() def mi_name(x): return x.split("__index__")[1] def mi_names(names): new_names = [mi_name(x) for x in names] for i, name in enumerate(new_names): if name == str(i): new_names[i] = None return new_names multi_cols = METHOD_NAME(obj) # if has multi-index cols, move to pandas MultiIndex if len(multi_cols) > 0: obj = obj.set_index(multi_cols) names = obj.index.names new_names = mi_names(names) new_names = new_names obj.index.names = new_names return obj def convert_pandas_to_dask(obj, npartitions=1, chunksize=None, sort=True): """Convert pandas DataFrame to dask DataFrame, preserving MultiIndex. Parameters ---------- obj : dask DataFrame npartitions : int or None, optional, default = 1 npartitions passed to dask from_pandas when converting obj to dask chunksize : int or None, optional, default = None chunksize passed to dask from_pandas when converting obj to dask sort : bool, optional, default = True sort passed to dask from_pandas when converting obj to dask Returns ------- pandas.DataFrame MultiIndex levels 0 .. -1 of X are converted to columns of name __index__[indexname], where indexname is name of multiindex level, or the integer index if the level has no name other columns and column names are identical to those of X """ from dask.dataframe import from_pandas def dask_mi_names(names): res = list(names).copy() for i, name in enumerate(names): if name is None: res[i] = str(i) return [f"__index__{x}" for x in res] if isinstance(obj.index, pd.MultiIndex): names = obj.index.names new_names = dask_mi_names(names) new_index = [str(x) for x in obj.index] obj = obj.copy() obj.index.names = new_names obj = obj.reset_index() obj.index = new_index obj = from_pandas(obj, npartitions=npartitions, chunksize=chunksize, sort=sort) return obj def check_dask_frame( obj, return_metadata=False, var_name="obj", freq_set_check=False, scitype="Series" ): """Check dask frame, generic for sktime check format.""" import dask metadata = {} if not isinstance(obj, dask.dataframe.core.DataFrame): msg = f"{var_name} must be a dask DataFrame, found {type(obj)}" return ret(False, msg, None, return_metadata) # we now know obj is a dask DataFrame index_cols = METHOD_NAME(obj) # check right number of cols depending on scitype if scitype == "Series": cols_msg = ( f"{var_name} must have exactly one index column, " f"found {len(index_cols)}, namely: {index_cols}" ) right_no_index_cols = len(index_cols) <= 1 elif scitype == "Panel": cols_msg = ( f"{var_name} must have exactly two index columns, " f"found {len(index_cols)}, namely: {index_cols}" ) right_no_index_cols = len(index_cols) == 2 elif scitype == "Hierarchical": cols_msg = ( f"{var_name} must have three or more index columns, " f"found {len(index_cols)}, namely: {index_cols}" ) right_no_index_cols = len(index_cols) >= 3 else: return RuntimeError( 'scitype arg of check_dask_frame must be one of strings "Series", ' f'"Panel", or "Hierarchical", but found {scitype}' ) if not right_no_index_cols: # dask series should have at most one __index__ col return ret(False, cols_msg, None, return_metadata) if _req("is_empty", return_metadata): metadata["is_empty"] = len(obj.index) < 1 or len(obj.columns) < 1 if _req("is_univariate", return_metadata): metadata["is_univariate"] = len(obj.columns) == 1 # check that columns are unique if not obj.columns.is_unique: msg = f"{var_name} must have unique column indices, but found {obj.columns}" return ret(False, msg, None, return_metadata) # check whether the time index is of valid type # if not is_in_valid_index_types(index): # msg = ( # f"{type(index)} is not supported for {var_name}, use " # f"one of {VALID_INDEX_TYPES} or integer index instead." # ) # return ret(False, msg, None, return_metadata) # Check time index is ordered in time if not obj.index.is_monotonic_increasing.compute(): msg = ( f"The (time) index of {var_name} must be sorted " f"monotonically increasing, but found: {obj.index}" ) return ret(False, msg, None, return_metadata) if freq_set_check and isinstance(obj.index, pd.DatetimeIndex): if obj.index.freq is None: msg = f"{var_name} has DatetimeIndex, but no freq attribute set." return ret(False, msg, None, return_metadata) # check whether index is equally spaced or if there are any nans # compute only if needed if _req("is_equally_spaced", return_metadata): # todo: logic for equal spacing metadata["is_equally_spaced"] = True if _req("has_nans", return_metadata): metadata["has_nans"] = obj.isnull().values.any().compute() if scitype in ["Panel", "Hierarchical"]: if _req("n_instances", return_metadata): instance_cols = index_cols[:-1] metadata["n_instances"] = len(obj[instance_cols].drop_duplicates()) if scitype in ["Hierarchical"]: if _req("n_panels", return_metadata): panel_cols = index_cols[:-2] metadata["n_panels"] = len(obj[panel_cols].drop_duplicates()) return ret(True, None, metadata, return_metadata)
2,594
add
# # data_source.py -- utilities to assist in making time-series plots # from collections import deque import numpy as np class XYDataSource: """Monitor a data source efficiently. Uses a static array circular queue and a sliding window algorithm to efficiently keep track of the current set of points and it's minmax. """ def __init__(self, arr_src, points=[], overwrite=False, none_for_empty=False): """Constructor for Data Source Parameters ---------- arr_src : ndarray (x, y) points to initialize the data source with points : array, list, tuple or sequence-like (optional) An array of points to initialize the data source with overwrite : bool (optional) If ``True`` the buffer will eventually overwrite old entries none_for_empty : bool (optional) If ``True`` then don't raise a ValueError for an empty buffer """ self.buf = arr_src self.length = len(arr_src) self.overwrite = overwrite self.none_for_empty = none_for_empty # for circular queue self.front = self.length - 1 self.rear = None self.limits = np.array([[0.0, 0.0], [0.0, 0.0]]) self.set_points(points) def get_limits(self): """Return the limits of this current data source. The return value looks like: [(xmin, ymin), (xmax, ymax)] """ return np.copy(self.limits) def update_limits(self): """Mostly internal routine to update the limits. Shouldn't need to be called explicitly in most cases. """ if len(self) == 0: self.limits = np.array([[0.0, 0.0], [0.0, 0.0]]) else: x_min, x_max = self.buf[self.rear][0], self.buf[self.front][0] y_min, y_max = self.slmm.get_minmax() self.limits = np.array([[x_min, y_min], [x_max, y_max]]) def set_points(self, points): """Initialize the data source with a series of points. `points` should be a list/array/sequence of (x, y) """ self.slmm = SlidingWindowMinMax() self.front = self.length - 1 self.rear = None self.add_points(points) def add_points(self, points): """Add a series of points. `points` should be a list/array/sequence of (x, y) """ for pt in points: self._add(pt) self.update_limits() def is_fullp(self): """Returns True if there is no more room in the buffer.""" front = (self.front + 1) % self.length return front == self.rear def _add(self, pt): x, y = pt front = (self.front + 1) % self.length if front == self.rear: if not self.overwrite: raise ValueError("Buffer is full") # circular queue full, need to expunge an old element _x, _y = self.buf[self.rear] if not np.isnan(_y): self.slmm.remove_head(_y) self.rear = (self.rear + 1) % self.length self.front = front if self.rear is None: self.rear = self.front self.buf[self.front, :] = pt if not np.isnan(y): self.slmm.add_tail(y) def METHOD_NAME(self, pt, update_limits=True): """Add a single data point and update the plot. If the number of points exceeds the `length` of the data source, the oldest point will be ejected. If `update_limits` is `True` (the default) then the limits of the current data set are updated. """ self._add(pt) if update_limits: self.update_limits() append = METHOD_NAME push = METHOD_NAME def peek(self): """Get the latest data point. Will return `None` if there are no points recorded. """ if len(self) == 0: if self.none_for_empty: return None raise ValueError("Buffer is empty") return self.buf[self.front] get_latest = peek def pop(self): """Get and remove the latest data point. Will return `None` if there are no points recorded. """ if len(self) == 0: if self.none_for_empty: return None raise ValueError("Buffer is empty") pt = self.buf[self.front] if self.rear == self.front: self.rear = None else: self.front = self.length - 1 if self.front == 0 else self.front - 1 return pt def peek_rear(self): """Get the earliest data point. Will return `None` if there are no points recorded. """ if len(self) == 0: if self.none_for_empty: return None raise ValueError("Buffer is empty") return self.buf[self.rear] def pop_rear(self): """Get and remove the earliest data point. Will return `None` if there are no points recorded. """ if len(self) == 0: if self.none_for_empty: return None raise ValueError("Buffer is empty") pt = self.buf[self.rear] if self.rear == self.front: self.rear = None else: self.rear = (self.rear + 1) % self.length return pt def get_points(self): """Get the entire set of data points as an `ndarray`. """ n = len(self) arr = np.zeros((n, 2), dtype=float) if n == 0: return arr if self.front >= self.rear: arr[:n, :] = self.buf[self.rear:self.front + 1, :] else: m = self.length - self.rear arr[0:m, :] = self.buf[self.rear:self.length, :] arr[m:n, :] = self.buf[0:self.front + 1, :] return arr @property def points(self): return self.get_points() def __len__(self): if self.rear is None: return 0 if self.front >= self.rear: return self.front - self.rear + 1 else: return self.length - self.rear + self.front + 1 class SlidingWindowMinMax: """Class to efficiently keep track of the minmax values of a changing data set. """ def __init__(self): self.min_deque = deque() self.max_deque = deque() def get_minmax(self): return (self.min_deque[0], self.max_deque[0]) def add_tail(self, val): while len(self.min_deque) > 0 and val < self.min_deque[-1]: self.min_deque.pop() self.min_deque.append(val) while len(self.max_deque) > 0 and val > self.max_deque[-1]: self.max_deque.pop() self.max_deque.append(val) def remove_head(self, val): if val < self.min_deque[0]: raise ValueError("Wrong value") elif val == self.min_deque[0]: self.min_deque.popleft() if val > self.max_deque[0]: raise ValueError("Wrong value") elif val == self.max_deque[0]: self.max_deque.popleft() def update_plot_from_source(dsrc, xyplot, update_limits=False): """Update the associated plot with the current set of points. If `update_limits` is `True` then the plot limits will be updated with the current limits of the data. """ arr = dsrc.get_points() if update_limits: limits = dsrc.get_limits() xyplot.plot(arr, limits=limits) else: xyplot.plot(arr)
2,595
form valid
from django.contrib.auth.decorators import login_required from django.contrib.auth.mixins import LoginRequiredMixin from django.core.exceptions import ObjectDoesNotExist, ValidationError from django.db.models.functions import Concat from django.forms import CharField, HiddenInput, ModelForm, Textarea from django.http import HttpResponse from django.shortcuts import get_object_or_404, redirect, render from django.urls import reverse from django.utils import timezone from django.views import View from django.views.generic.edit import CreateView from django.views.generic.list import ListView from ..models.code_golf import CodeTask, Result class ResultForm(ModelForm): """Form for submitting code. Discussion: We cannot verify that the user's code actually outputs what he reports, but we might at the very least verify that they include the correct output in their response. We here extend the model form of the Result model to include a field `output`, and verify that that field has the correct output (which is passed to the form through the constructor). Whether this is actually useful, or if a simple client side check is sufficient, can be discussed. Future refactorings of code golf are free to remvoe this server side check if they wish, which will have the benefit of making the code simpler. """ output = CharField( widget=HiddenInput(attrs={"v-model": "output"}) ) # The ouput of the user's code def __init__(self, *args, **kwargs): self.task = kwargs.pop("task") super().__init__(*args, **kwargs) class Meta: model = Result fields = ["solution"] labels = { "solution": "", # Drop the label } widgets = { "solution": Textarea( attrs={"placeholder": "Your solution", "v-model": "user_code"} ), } def clean(self): cleaned_data = super().clean() output = cleaned_data.get("output") if output != self.task.correct_output: raise ValidationError("Output does not match correct output") class CodeGolf(LoginRequiredMixin, CreateView): """View for writing and submitting solutions""" model = Result form_class = ResultForm template_name = "interactive/code_golf.html" def get_success_url(self): return reverse("code_golf_score", kwargs={"task_id": self.task.id}) def dispatch(self, request, *args, **kwargs): self.task = get_object_or_404(CodeTask, pk=self.kwargs.get("task_id")) return super().dispatch(request, *args, **kwargs) def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs["task"] = self.task # kwargs["auto_id"] = False return kwargs def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["task"] = self.task context["result_list"] = Result.objects.best_by_user(task=self.task) best_result = Result.objects.best_specific_user( task=self.task, user=self.request.user ) if best_result is None: best_result_length = -1 else: best_result_length = best_result.length context["best_attempt"] = best_result_length return context def METHOD_NAME(self, form): """Set other fields""" form.instance.user = self.request.user form.instance.task = self.task form.instance.python_version = ( "python2.7" # NB! Change if changing Skulpt version ) return super().METHOD_NAME(form) def markdownify_code(code): """ Takes a code as a string and converts it to a form where it will be formatted correctly by markdown. As of now, it is to add tabs in front of each line, but this is not very pretty... """ return "\n".join(["\t" + line for line in code.split("\n")]) @login_required def code_golf_score(request, task_id): """ Show user list with number of chars for their code. If user is logged in show users solution, if not, only show the results list. """ task = get_object_or_404(CodeTask, pk=task_id) result_list = Result.objects.best_by_user(task=task) output = markdownify_code(task.correct_output) context = {"output": output, "result_list": result_list, "task": task} user_has_solution = Result.objects.filter(user=request.user, task=task).exists() context["has_solution"] = user_has_solution if user_has_solution: user_results = Result.objects.filter(user=request.user, task=task).order_by( "length" ) best_result = user_results.first() length = best_result.length code = best_result.solution # Add #!python for markdown context["code"] = code context["length"] = length context["user_results"] = user_results return render(request, "interactive/code_golf_score.html", context) class CodeTaskListView(ListView): model = CodeTask def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) task_list = CodeTask.objects.prefetch_related("result_set").order_by("-pk") best_results = [] user_results = [] for obj in task_list: best_results.append(obj.get_best_result) if self.request.user.is_authenticated: user_result = ( obj.result_set.filter(user=self.request.user) .order_by("length") .first() ) if user_result is not None: user_results.append(user_result.length) else: user_results.append("--") else: user_results.append("--") tasks = zip(task_list, best_results, user_results) newest_task = task_list.first() context["newest_task"] = newest_task context["tasks"] = tasks return context
2,596
wrapped
#!/usr/bin/env python3 """ This is a minimal, speed-optimized version of a FASTQ->FASTA conversion script. It lacks a lot of options other scripts might have, but I got tired of runtimes taking hours with billion-read FASTQ files. Example timing information on a 5.4GB input file (with 21.7 million records)**: - 55.3 seconds with default settings - 2 minutes, 2 seconds when run with --detect_direction option - 2 minutes, 8 seconds when run with the --width=60 option - 3 minutes, 17 seconds when run with both --detect_direction and --width=60 options ** Timing was run on a laptop with an Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz, utilizing only one core. OUTPUT ------ Running with no options other than -i and -o, this script will transform headers like these: @SN7001163:78:C0YG5ACXX:6:1101:1129:2043 1:N:0:CCTAGGT @61JCNAAXX100503:5:100:10001:18267/2 to this in the FASTA output: >SN7001163:78:C0YG5ACXX:6:1101:1129:2043 1:N:0:CCTAGGT >61JCNAAXX100503:5:100:10001:18267/2 If you have have headers like this: @SN7001163:78:C0YG5ACXX:6:1101:1129:2043 1:N:0:CCTAGGT The optional --detect_direction option will see the '1' or '2' after the whitespace and transform the header to this instead (in FASTA): >SN7001163:78:C0YG5ACXX:6:1101:1129:2043/1 Note that this can increase the runtime up to 3x (from my testing), since a regex is used. The FASTQ format dictates that the sequence residues of each entry be all contained within a single line, while the convention for FASTA format is a fixed-with for all residue lines (usually 60bp) where longer ones are wrapped to the next line. By default this script will simply copy the residue lines over from the FASTQ to the FASTA file, but you can use the --width option to specify that the lines in the output FASTA should be wrapped at some width. This comes with a performance penalty. Author: Joshua Orvis (jorvis AT gmail) """ import argparse import re import sys def main(): parser = argparse.ArgumentParser( description='Convert FASTQ to FASTA format') ## output file to be written parser.add_argument('-i', '--input_file', type=str, required=True, help='Path to an input file to be read' ) parser.add_argument('-o', '--output_file', type=str, required=False, help='Path to an output file to be created' ) parser.add_argument('-d', '--detect_direction', action='store_true', help='Pass this flag to auto-detect the mate pair direction. See full documentation for more info' ) parser.add_argument('-w', '--width', type=int, required=False, help='Defines the width (or number of bases) on each FASTA sequence line' ) args = parser.parse_args() if args.output_file is None: ofh = sys.stdout else: ofh = open( args.output_file, 'wt' ) line_count = 0 record_count = 0 last_header = None for line in open(args.input_file, 'rU'): line_count += 1 if line_count % 4 == 1: record_count += 1 if args.detect_direction: m = re.search('^\@(.+?) (\d)', line) if m: last_header = "{0}/{1}\n".format(m.group(1), m.group(2)) else: raise Exception("ERROR: FASTQ header line found that didn't match expected format: {0}".format(line)) else: line = line.lstrip('@') last_header = line elif line_count % 4 == 2: if args.width: ofh.write(">{0}{1}\n".format(last_header, METHOD_NAME(line, args.width))) else: ofh.write(">{0}{1}".format(last_header, line)) ofh.close() print("{0} records written to the output FASTA file".format(record_count)) def METHOD_NAME(string, every=60): string = string.rstrip() ''' this runs orders of magnitude faster than using the textwrap module ''' return '\n'.join(string[i:i+every] for i in range(0, len(string), every)) if __name__ == '__main__': main()
2,597
run
""" Contains objects that define UI related workers that perform tasks in the background. Copyright (c) 2015-2022 Nicholas H.Tollervey and others (see the AUTHORS file). This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import logging import requests from PyQt5.QtCore import pyqtSignal, QObject logger = logging.getLogger(__name__) WSGI = """# This file contains the WSGI configuration required to serve up your # web application at http://<your-username>.pythonanywhere.com/ # It works by setting the variable 'application' to a WSGI handler of some # description. # # The below has been auto-generated BY MU for your Flask project import sys # add your project directory to the sys.path project_home = '/home/{username}/{app_name}' if project_home not in sys.path: sys.path = [project_home] + sys.path # import flask app but need to call it "application" for WSGI to work from {app_name} import app as application # noqa """ class PythonAnywhereWorker(QObject): """ Encapsulates deployment, configuration and restart of a website on PythonAnywhere. """ finished = pyqtSignal(str) # Emit domain when successfully finished. error = pyqtSignal(str) # Emitted with an error description if failed. def __init__(self, instance, username, token, files, app_name, progress): super().__init__(None) self.instance = instance self.username = username # PythonAnywhere username. self.token = token # PythonAnywhere API token. self.files = files # {"RemotePath": "LocalPath", ... } files dict. self.app_name = app_name # Python module containing Flask app. self.progress = progress # Progress modal to update. # The root API URL. The instance should be either "www" (main # PythonAnywhere instance) or "eu" (hosted in Europe). This is # configured in the admin widget. self.url = ( "https://{instance}.pythonanywhere.com/api/v0/user/{username}/" ).format(instance=instance, username=username) # Path to where web application's files are to be uploaded. self.files_path = "files/path/home/{username}/{app_name}/".format( username=username, app_name=app_name ) # Path to the WSGI configuration file for the application. self.wsgi_path = ( "/files/path/var/www/{username}_pythonanywhere_com_wsgi.py" ).format(username=username) # Path to where the web application's static files will be found. self.static_path = "/home/{username}/{app_name}/static/".format( username=username, app_name=app_name ) # The content of the WSGI file to upload. self.wsgi_config = WSGI.format( username=self.username, app_name=self.app_name ) def METHOD_NAME(self): logger.info( "Deploying to PythonAnywhere {instance} for: {app_name}".format( instance=self.instance, app_name=self.app_name ) ) headers = {"Authorization": "Token {token}".format(token=self.token)} domain = "{username}.pythonanywhere.com".format(username=self.username) if self.instance == "eu": domain = "{username}.eu.pythonanywhere.com".format( username=self.username ) # Progress steps are calculated as the number of files to upload plus # the five-ish additional API calls needed to configure and restart # the web application. self.progress.setMaximum(len(self.files) + 5) # The counter tracks how much progress has been made. counter = 1 try: # Get web application details (if required). self.progress.setValue(counter) path = self.url + "webapps/" response = requests.get(path, headers=headers) response.raise_for_status() apps = response.json() # Create the application if it doesn't exist. exists = False for app in apps: if app["domain_name"] == domain: exists = True break if not exists: # Create the app. response = requests.post( path, data={ "domain_name": domain, "python_version": "python38", }, headers=headers, ) response.raise_for_status() # Configure serving of static files. path = self.url + "webapps/{domain}/static_files/".format( domain=domain ) response = requests.post( path, data={ "url": "/static/", "path": self.static_path, }, headers=headers, ) response.raise_for_status() counter += 1 # Upload files. for target, source in self.files.items(): self.progress.setValue(counter) with open(source, "rb") as source_file: path = self.url + self.files_path + target response = requests.post( path, files={"content": source_file.read()}, headers=headers, ) response.raise_for_status() counter += 1 # Update WSGI settings. self.progress.setValue(counter) logger.info(self.wsgi_config) path = self.url + self.wsgi_path response = requests.post( path, files={"content": self.wsgi_config}, headers=headers, ) response.raise_for_status() counter += 1 # Force HTTPS and source directory. self.progress.setValue(counter) data = { "source_directory": "/home/{username}/{app_name}/".format( username=self.username, app_name=self.app_name ), "force_https": True, } path = self.url + "webapps/{domain}/".format(domain=domain) response = requests.put(path, data=data, headers=headers) response.raise_for_status() counter += 1 # Reload the application. self.progress.setValue(counter) path = self.url + "webapps/{domain}/reload/".format(domain=domain) response = requests.post(path, headers=headers) response.raise_for_status() counter += 1 self.progress.setValue(counter) self.finished.emit(domain) except Exception as ex: # Gracefully report all failures (logged and reported upstream). self.error.emit(repr(ex))
2,598
get all
# Stubs for ply.yacc (Python 3.7) # # NOTE: This dynamically typed stub was automatically generated by stubgen. from typing import Any, Optional, TypeVar, Generic, List from ply.lex import Lexer from inmanta.ast.statements import Statement __tabversion__: str yaccdebug: bool debug_file: str tab_module: str default_lr: str error_count: int yaccdevel: bool resultlimit: int pickle_protocol: int string_types = str MAXINT: Any class PlyLogger: f: Any = ... def __init__(self, f: Any) -> None: ... def debug(self, msg: Any, *args: Any, **kwargs: Any) -> None: ... info: Any = ... def warning(self, msg: Any, *args: Any, **kwargs: Any) -> None: ... def error(self, msg: Any, *args: Any, **kwargs: Any) -> None: ... critical: Any = ... class NullLogger: ... class YaccError(Exception): ... class YaccSymbol: ... class YaccProduction: slice: Any = ... stack: Any = ... lexer: Lexer = ... parser: Any = ... value: str type: str def __init__(self, s: Any, stack: Optional[Any] = ...) -> None: ... def __getitem__(self, n: Any) -> Any: ... def __setitem__(self, n: Any, v: Any) -> None: ... def __len__(self) -> int: ... def lineno(self, n: Any) -> int: ... def set_lineno(self, n: Any, lineno: Any) -> None: ... def lexpos(self, n: Any) -> int: ... def set_lexpos(self, n: Any, lexpos: Any) -> None: ... def error(self) -> None: ... T = TypeVar("T") class LRParser(Generic[T]): productions: Any = ... action: Any = ... goto: Any = ... errorfunc: Any = ... errorok: bool = ... def __init__(self, lrtab: Any, errorf: Any) -> None: ... def errok(self) -> None: ... def restart(self) -> None: ... defaulted_states: Any = ... def set_defaulted_states(self) -> None: ... def disable_defaulted_states(self) -> None: ... def parse(self, input: Optional[Any] = ..., lexer: Optional[Any] = ..., debug: bool = ..., tracking: bool = ..., tokenfunc: Optional[Any] = ...) -> List[T]: ... token: Any = ... statestack: Any = ... symstack: Any = ... state: Any = ... class Production: reduced: int = ... name: Any = ... prod: Any = ... number: Any = ... func: Any = ... callable: Any = ... file: Any = ... line: Any = ... prec: Any = ... len: Any = ... usyms: Any = ... lr_items: Any = ... lr_next: Any = ... str: Any = ... def __init__(self, number: Any, name: Any, prod: Any, precedence: Any = ..., func: Optional[Any] = ..., file: str = ..., line: int = ...) -> None: ... def __len__(self) -> int: ... def __getitem__(self, index: Any) -> Any: ... def bind(self, pdict: Any) -> None: ... class MiniProduction: name: Any = ... len: Any = ... func: Any = ... callable: Any = ... file: Any = ... line: Any = ... str: Any = ... def __init__(self, str: Any, name: Any, len: Any, func: Any, file: Any, line: Any) -> None: ... def bind(self, pdict: Any) -> None: ... class LRItem: name: Any = ... prod: Any = ... number: Any = ... lr_index: Any = ... lookaheads: Any = ... len: Any = ... usyms: Any = ... def __init__(self, p: Any, n: Any) -> None: ... class GrammarError(YaccError): ... class Grammar: Productions: Any = ... Prodnames: Any = ... Prodmap: Any = ... Terminals: Any = ... Nonterminals: Any = ... First: Any = ... Follow: Any = ... Precedence: Any = ... UsedPrecedence: Any = ... Start: Any = ... def __init__(self, terminals: Any) -> None: ... def __len__(self) -> int: ... def __getitem__(self, index: Any) -> Any: ... def set_precedence(self, term: Any, assoc: Any, level: Any) -> None: ... def add_production(self, prodname: Any, syms: Any, func: Optional[Any] = ..., file: str = ..., line: int = ...) -> None: ... def set_start(self, start: Optional[Any] = ...) -> None: ... def build_lritems(self) -> None: ... class VersionError(YaccError): ... class LRTable: lr_action: Any = ... lr_goto: Any = ... lr_productions: Any = ... lr_method: Any = ... def __init__(self) -> None: ... def bind_callables(self, pdict: Any) -> None: ... def traverse(x: Any, N: Any, stack: Any, F: Any, X: Any, R: Any, FP: Any) -> None: ... class LALRError(YaccError): ... class LRGeneratedTable(LRTable): grammar: Any = ... lr_method: Any = ... log: Any = ... lr_action: Any = ... lr_goto: Any = ... lr_productions: Any = ... lr_goto_cache: Any = ... lr0_cidhash: Any = ... sr_conflict: int = ... rr_conflict: int = ... conflicts: Any = ... sr_conflicts: Any = ... rr_conflicts: Any = ... def __init__(self, grammar: Any, method: str = ..., log: Optional[Any] = ...) -> None: ... def add_lookaheads(self, lookbacks: Any, followset: Any) -> None: ... def add_lalr_lookaheads(self, C: Any) -> None: ... def lr_parse_table(self) -> None: ... def write_table(self, tabmodule: Any, outputdir: str = ..., signature: str = ...) -> None: ... def pickle_table(self, filename: Any, signature: str = ...) -> None: ... class ParserReflect: pdict: Any = ... start: Any = ... error_func: Any = ... tokens: Any = ... modules: Any = ... grammar: Any = ... error: bool = ... log: Any = ... def __init__(self, pdict: Any, log: Optional[Any] = ...) -> None: ... def METHOD_NAME(self) -> None: ... def validate_modules(self) -> None: ... def get_start(self) -> None: ... def validate_start(self) -> None: ... def get_error_func(self) -> None: ... prec: Any = ... def get_precedence(self) -> None: ... preclist: Any = ... pfuncs: Any = ... def yacc( method: str = ..., debug: Any = ..., module: Optional[Any] = ..., tabmodule: Any = ..., start: Optional[Any] = ..., check_recursion: bool = ..., optimize: bool = ..., write_tables: bool = ..., debugfile: Any = ..., outputdir: Optional[Any] = ..., debuglog: Optional[Any] = ..., errorlog: Optional[Any] = ..., picklefile: Optional[Any] = ... ) -> LRParser[Statement]: ...
2,599
setup
# -*- coding: utf-8 -*- import pytest try: from ddtrace.appsec.iast import oce from ddtrace.appsec.iast._taint_tracking import as_formatted_evidence from tests.appsec.iast.aspects.aspect_utils import BaseReplacement from tests.appsec.iast.aspects.aspect_utils import create_taint_range_with_format from tests.appsec.iast.aspects.conftest import _iast_patched_module except (ImportError, AttributeError): pytest.skip("IAST not supported for this Python version", allow_module_level=True) mod = _iast_patched_module("tests.appsec.iast.fixtures.aspects.str_methods") def METHOD_NAME(): oce._enabled = True @pytest.mark.parametrize( "obj, kwargs", [ (3.5, {}), ("Hi", {}), ("🙀", {}), (b"Hi", {}), (b"Hi", {"encoding": "utf-8", "errors": "strict"}), (b"Hi", {"encoding": "utf-8", "errors": "ignore"}), ({"a": "b", "c": "d"}, {}), ({"a", "b", "c", "d"}, {}), (("a", "b", "c", "d"), {}), (["a", "b", "c", "d"], {}), ], ) def test_str_aspect(obj, kwargs): import ddtrace.appsec.iast._taint_tracking.aspects as ddtrace_aspects assert ddtrace_aspects.str_aspect(obj, **kwargs) == str(obj, **kwargs) @pytest.mark.parametrize( "obj, kwargs, should_be_tainted", [ (3.5, {}, False), ("Hi", {}, True), ("🙀", {}, True), (b"Hi", {}, True), (bytearray(b"Hi"), {}, True), (b"Hi", {"encoding": "utf-8", "errors": "strict"}, True), (b"Hi", {"encoding": "utf-8", "errors": "ignore"}, True), ({"a": "b", "c": "d"}, {}, False), ({"a", "b", "c", "d"}, {}, False), (("a", "b", "c", "d"), {}, False), (["a", "b", "c", "d"], {}, False), ], ) def test_str_aspect_tainting(obj, kwargs, should_be_tainted): from ddtrace.appsec.iast._taint_tracking import OriginType from ddtrace.appsec.iast._taint_tracking import is_pyobject_tainted from ddtrace.appsec.iast._taint_tracking import taint_pyobject import ddtrace.appsec.iast._taint_tracking.aspects as ddtrace_aspects if should_be_tainted: obj = taint_pyobject( obj, source_name="test_str_aspect_tainting", source_value=obj, source_origin=OriginType.PARAMETER ) result = ddtrace_aspects.str_aspect(obj, **kwargs) assert is_pyobject_tainted(result) == should_be_tainted assert result == str(obj, **kwargs) @pytest.mark.parametrize( "obj, expected_result", [ ("3.5", "'3.5'"), ("Hi", "'Hi'"), ("🙀", "'🙀'"), (b"Hi", "b'Hi'"), (bytearray(b"Hi"), "bytearray(b'Hi')"), ], ) def test_repr_aspect_tainting(obj, expected_result): from ddtrace.appsec.iast._taint_tracking import OriginType from ddtrace.appsec.iast._taint_tracking import is_pyobject_tainted from ddtrace.appsec.iast._taint_tracking import taint_pyobject import ddtrace.appsec.iast._taint_tracking.aspects as ddtrace_aspects assert repr(obj) == expected_result obj = taint_pyobject( obj, source_name="test_repr_aspect_tainting", source_value=obj, source_origin=OriginType.PARAMETER ) result = ddtrace_aspects.repr_aspect(obj) assert is_pyobject_tainted(result) is True class TestOperatorsReplacement(BaseReplacement): def test_aspect_ljust_str_tainted(self): # type: () -> None string_input = "foo" # Not tainted ljusted = mod.do_ljust(string_input, 4) # pylint: disable=no-member assert as_formatted_evidence(ljusted) == ljusted # Tainted string_input = create_taint_range_with_format(":+-foo-+:") ljusted = mod.do_ljust(string_input, 4) # pylint: disable=no-member assert as_formatted_evidence(ljusted) == ":+-foo-+: " def test_zfill(self): # Not tainted string_input = "-1234" res = mod.do_zfill(string_input, 6) # pylint: disable=no-member assert as_formatted_evidence(res) == "-01234" # Tainted string_input = create_taint_range_with_format(":+--12-+:34") res = mod.do_zfill(string_input, 6) # pylint: disable=no-member assert as_formatted_evidence(res) == ":+---+:0:+-12-+:34" string_input = create_taint_range_with_format(":+-+12-+:34") res = mod.do_zfill(string_input, 7) # pylint: disable=no-member assert as_formatted_evidence(res) == ":+-+-+:00:+-12-+:34" string_input = create_taint_range_with_format(":+-012-+:34") res = mod.do_zfill(string_input, 7) # pylint: disable=no-member assert as_formatted_evidence(res) == "00:+-012-+:34" def test_format(self): # type: () -> None string_input = "foo" result = mod.do_format_fill(string_input) assert result == "foo " string_input = create_taint_range_with_format(":+-foo-+:") result = mod.do_format_fill(string_input) # pylint: disable=no-member # TODO format with params doesn't work correctly the assert should be # assert as_formatted_evidence(result) == ":+-foo -+:" assert as_formatted_evidence(result) == "foo "