id
int64
0
300k
label
stringlengths
1
74
text
stringlengths
4k
8k
2,300
tear down
# Copyright 2011 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for php_generator.""" __author__ = '[email protected] (Chirag Shah)' from absl.testing import absltest from googleapis.codegen import api from googleapis.codegen import php_generator from googleapis.codegen import schema class PHPApiTest(absltest.TestCase): def setUp(self): gen_params = {'name': 'test', 'version': 'v1', 'resources': {}} self.api = php_generator.PHPApi(gen_params) self.generator = php_generator.PHPGenerator(gen_params) self.language_model = php_generator.PhpLanguageModel() # TODO(user): Do what we did for template_helpers and allow language # model to come from global state. Then we don't need this stuff. self.api.VisitAll(lambda o: o.SetLanguageModel(self.language_model)) def METHOD_NAME(self): self.api = None def testAnnotateMethod(self): param_dict = {'httpMethod': 'GET', 'id': 'myservice.foo.count', 'parameters': {'alt': {}}} method = api.Method(self.api, 'count', param_dict) self.generator.AnnotateMethod(self.api, method) self.assertEqual('myservice.foo.count', method.values['id']) self.assertEqual('count', method.values['name']) self.assertEqual('count', method.values['wireName']) self.assertEqual('Count', method.values['className']) def testSetTypeHint(self): """Test creating safe class names from object names.""" test_schema = api.Schema(self.api, 'testSchema', {}) type_to_hint = [ ({'$ref': 'Activity'}, 'Activity'), ({'type': 'boolean'}, ''), ({'type': 'integer'}, ''), ({'type': 'string'}, ''), # PHP doesn't support primitive type hints. ({'type': 'StRing'}, ''), # PHP var names are case-insensitive. ({'$ref': 'Photo'}, 'Photo'), ({'type': 'array', 'items': {'type': 'string'}}, ''), ({'type': 'object', 'properties': {'p1': {'type': 'string'}}}, 'TestSchemaTest'), ] for type_dict, expected_hint in type_to_hint: test_property = schema.Property(self.api, test_schema, 'test', type_dict) test_property.SetLanguageModel(self.language_model) self.generator._SetTypeHint(test_property) self.assertEqual(expected_hint, test_property.values['typeHint']) def testToMethodName(self): """Test creating safe method names from wire names.""" method = {'wireName': 'foo'} method_name = self.generator._ToMethodName(method, None) self.assertEqual('foo', method_name) # Method name that doesn't conflict with a PHP keyword. method['wireName'] = 'get' resource = {'className': 'ResourceClassName'} method_name = self.generator._ToMethodName(method, resource) self.assertEqual('get', method_name) # Method name that conflicts with a PHP keyword. method['wireName'] = 'as' resource['className'] = 'Class' method_name = self.generator._ToMethodName(method, resource) self.assertEqual('asClass', method_name) # Method name that conflicts with a canonical PHP keyword. method['wireName'] = 'aS' method_name = self.generator._ToMethodName(method, resource) self.assertEqual('aSClass', method_name) def testToClassName(self): """Test creating safe class names from object names.""" self.assertEqual('Foo', self.api.ToClassName('foo', None)) self.assertEqual('TestObject', self.api.ToClassName('object', None)) self.assertEqual('TestString', self.api.ToClassName('string', None)) def testGetCodeTypeFromDictionary(self): """Test mapping of JSON schema types to PHP class names.""" php_type_to_schema = [('object', {'type': 'object'}), ('string', {'type': 'string'}), ('array', {'type': 'any'}), ('bool', {'type': 'boolean'}), ('int', {'type': 'integer'}), ('string', {'type': 'number', 'format': 'uint32'}), ('string', {'type': 'integer', 'format': 'uint32'}), ('string', {'type': 'string', 'format': 'uint32'}), ('string', {'type': 'number', 'format': 'uint64'}), ('string', {'type': 'integer', 'format': 'uint64'}), ('string', {'type': 'string', 'format': 'uint64'}), ('int', {'type': 'number', 'format': 'int32'}), ('int', {'type': 'integer', 'format': 'int32'}), ('int', {'type': 'string', 'format': 'int32'}), ('string', {'type': 'number', 'format': 'int64'}), ('string', {'type': 'integer', 'format': 'int64'}), ('string', {'type': 'string', 'format': 'int64'}), ('string', {'type': 'string', 'format': 'date-time'}), ('double', {'type': 'number', 'format': 'double'}), ('double', {'type': 'string', 'format': 'double'}), ('float', {'type': 'number', 'format': 'float'}), ('float', {'type': 'string', 'format': 'float'})] for schema_obj in php_type_to_schema: php_type = schema_obj[0] s = schema_obj[1] self.assertEqual(php_type, self.language_model.GetCodeTypeFromDictionary(s)) if __name__ == '__main__': absltest.main()
2,301
test process empty filing
# Copyright © 2019 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Test Suites to ensure that the worker is operating correctly.""" import json import random import pytest # from tests.unit import create_business, create_director, create_filing # noqa I001, E501; from tests.unit import create_business, create_filing # noqa I001, E501; def test_extract_payment_token(): """Assert that the payment token can be extracted from the Queue delivered Msg.""" import stan.pb.protocol_pb2 as protocol from stan.aio.client import Msg from entity_pay.worker import extract_payment_token # setup token = {'paymentToken': {'id': 1234, 'statusCode': 'COMPLETED'}} msg = Msg() msg.proto = protocol.MsgProto msg.proto.data = json.dumps(token).encode('utf-8') # test and verify assert extract_payment_token(msg) == token def test_get_filing_by_payment_id(app, session): """Assert that a unique filling gets retrieved for a filing id.""" from entity_pay.worker import get_filing_by_payment_id payment_id = str(random.SystemRandom().getrandbits(0x58)) create_filing(payment_id) filing = get_filing_by_payment_id(int(payment_id)) assert filing assert filing.payment_token == payment_id async def test_process_payment_missing_app(app, session): """Assert that a filling will fail with no flask app supplied.""" from legal_api.models import Filing from entity_pay.worker import process_payment # vars payment_id = str(random.SystemRandom().getrandbits(0x58)) identifier = 'CP1234567' # setup business = create_business(identifier) create_filing(payment_id, None, business.id) payment_token = {'paymentToken': {'id': payment_id, 'statusCode': Filing.Status.COMPLETED.value}} # TEST with pytest.raises(Exception): await process_payment(payment_token, flask_app=None) async def METHOD_NAME(app, session): """Assert that an AR filling can be applied to the model correctly.""" from legal_api.models import Filing from entity_pay.worker import get_filing_by_payment_id, process_payment # vars payment_id = str(random.SystemRandom().getrandbits(0x58)) identifier = 'CP1234567' # setup business = create_business(identifier) business_id = business.id create_filing(payment_id, None, business.id) payment_token = {'paymentToken': {'id': payment_id, 'statusCode': Filing.Status.COMPLETED.value}} # TEST await process_payment(payment_token, app) # Get modified data filing = get_filing_by_payment_id(int(payment_id)) # check it out assert filing.business_id == business_id assert filing.status == Filing.Status.PAID.value async def test_process_payment_failed(app, session): """Assert that an AR filling status is set to error if payment transaction failed.""" from legal_api.models import Business, Filing from entity_pay.worker import get_filing_by_payment_id, process_payment # vars payment_id = str(random.SystemRandom().getrandbits(0x58)) identifier = 'CP1234567' # setup business = create_business(identifier) business_id = business.id create_filing(payment_id, None, business.id) payment_token = {'paymentToken': {'id': payment_id, 'statusCode': 'TRANSACTION_FAILED'}} # TEST await process_payment(payment_token, app) # Get modified data filing = get_filing_by_payment_id(int(payment_id)) business = Business.find_by_internal_id(business_id) # check it out assert filing.business_id == business_id assert filing.status == Filing.Status.PENDING.value assert not business.last_agm_date assert not business.last_ar_date @pytest.mark.parametrize('name,filing_id,corp_type_code,expected_result', [ ('success', '1', 'BEN', True), ('success', '1', 'CP', True), ('success', '1', 'SP', True), ('success', '1', 'GP', True), ('success', '1', 'BC', True), ('success', '1', 'ULC', True), ('success', '1', 'CC', True), ('fail_invalid_corp_type', '1', None, False), ('fail_invalid_corp_type', '1', 'CSO', False), ('fail_no_payment_token', '1', 'BC', False), ]) def test_is_processable_message(app, session, name, filing_id, corp_type_code, expected_result): """Assert that the queue message is processable only when msg meets required criteria.""" from entity_pay.worker import is_processable_message # setup if name == 'fail_no_payment_token': msg = {'paymentToken': None} else: msg = {'paymentToken': {'id': 1234, 'statusCode': 'COMPLETED', 'corpTypeCode': corp_type_code}} # test and verify assert is_processable_message(msg) == expected_result
2,302
update loaded pyrevit referenced modules
"""Manage information about pyRevit sessions.""" import sys from collections import namedtuple from pyrevit import HOST_APP, HOME_DIR from pyrevit import versionmgr from pyrevit.compat import safe_strtype from pyrevit.versionmgr import about from pyrevit import coreutils from pyrevit.coreutils.logger import get_logger from pyrevit.coreutils import envvars from pyrevit.userconfig import user_config from pyrevit import runtime from pyrevit.loader.systemdiag import system_diag #pylint: disable=W0703,C0302,C0103 mlogger = get_logger(__name__) RuntimeInfo = namedtuple('RuntimeInfo', ['pyrevit_version', 'engine_version', 'host_version']) """Session runtime information tuple. Args: pyrevit_version (str): formatted pyRevit version engine_version (int): active IronPython engine version host_version (str): Current Revit version """ def setup_runtime_vars(): """Setup runtime environment variables with session information.""" # set pyrevit version pyrvt_ver = versionmgr.get_pyrevit_version().get_formatted() envvars.set_pyrevit_env_var(envvars.VERSION_ENVVAR, pyrvt_ver) # set app version env var if HOST_APP.is_newer_than(2017): envvars.set_pyrevit_env_var(envvars.APPVERSION_ENVVAR, HOST_APP.subversion) else: envvars.set_pyrevit_env_var(envvars.APPVERSION_ENVVAR, HOST_APP.version) # set ironpython engine version env var attachment = user_config.get_current_attachment() if attachment and attachment.Clone: envvars.set_pyrevit_env_var(envvars.CLONENAME_ENVVAR, attachment.Clone.Name) envvars.set_pyrevit_env_var(envvars.IPYVERSION_ENVVAR, str(attachment.Engine.Version)) else: mlogger.debug('Can not determine attachment.') envvars.set_pyrevit_env_var(envvars.CLONENAME_ENVVAR, "Unknown") envvars.set_pyrevit_env_var(envvars.IPYVERSION_ENVVAR, "0") # set cpython engine version env var cpyengine = user_config.get_active_cpython_engine() if cpyengine: envvars.set_pyrevit_env_var(envvars.CPYVERSION_ENVVAR, str(cpyengine.Version)) else: envvars.set_pyrevit_env_var(envvars.CPYVERSION_ENVVAR, "0") # set a list of important assemblies # this is required for dotnet script execution set_loaded_pyrevit_referenced_modules( runtime.get_references() ) def get_runtime_info(): """Return runtime information tuple. Returns: :obj:`RuntimeInfo`: runtime info tuple Example: >>> sessioninfo.get_runtime_info() """ # FIXME: add example output return RuntimeInfo( pyrevit_version=envvars.get_pyrevit_env_var(envvars.VERSION_ENVVAR), engine_version=envvars.get_pyrevit_env_var(envvars.IPYVERSION_ENVVAR), host_version=envvars.get_pyrevit_env_var(envvars.APPVERSION_ENVVAR) ) def set_session_uuid(uuid_str): """Set session uuid on environment variable. Args: uuid_str (str): session uuid string """ envvars.set_pyrevit_env_var(envvars.SESSIONUUID_ENVVAR, uuid_str) def get_session_uuid(): """Read session uuid from environment variable. Returns: str: session uuid string """ return envvars.get_pyrevit_env_var(envvars.SESSIONUUID_ENVVAR) def new_session_uuid(): """Create a new uuid for a pyRevit session. Returns: str: session uuid string """ uuid_str = safe_strtype(coreutils.new_uuid()) set_session_uuid(uuid_str) return uuid_str def get_loaded_pyrevit_assemblies(): """Return list of loaded pyRevit assemblies from environment variable. Returns: list[str]: list of loaded assemblies """ # FIXME: verify and document return type loaded_assms_str = envvars.get_pyrevit_env_var(envvars.LOADEDASSMS_ENVVAR) if loaded_assms_str: return loaded_assms_str.split(coreutils.DEFAULT_SEPARATOR) else: return [] def set_loaded_pyrevit_assemblies(loaded_assm_name_list): """Set the environment variable with list of loaded assemblies. Args: loaded_assm_name_list (list[str]): list of assembly names val (type): desc """ envvars.set_pyrevit_env_var( envvars.LOADEDASSMS_ENVVAR, coreutils.DEFAULT_SEPARATOR.join(loaded_assm_name_list) ) def get_loaded_pyrevit_referenced_modules(): loaded_assms_str = envvars.get_pyrevit_env_var(envvars.REFEDASSMS_ENVVAR) if loaded_assms_str: return set(loaded_assms_str.split(coreutils.DEFAULT_SEPARATOR)) else: return set() def set_loaded_pyrevit_referenced_modules(loaded_assm_name_list): envvars.set_pyrevit_env_var( envvars.REFEDASSMS_ENVVAR, coreutils.DEFAULT_SEPARATOR.join(loaded_assm_name_list) ) def METHOD_NAME(loaded_assm_name_list): loaded_modules = get_loaded_pyrevit_referenced_modules() loaded_modules.update(loaded_assm_name_list) set_loaded_pyrevit_referenced_modules(loaded_modules) def report_env(): """Report python version, home directory, config file, etc.""" # run diagnostics system_diag() # get python version that includes last commit hash mlogger.info('pyRevit version: %s - </> with :growing_heart: in %s', envvars.get_pyrevit_env_var(envvars.VERSION_ENVVAR), about.get_pyrevit_about().madein) if user_config.rocket_mode: mlogger.info('pyRevit Rocket Mode enabled. :rocket:') mlogger.info('Host is %s pid: %s', HOST_APP.pretty_name, HOST_APP.proc_id) # ipy 2.7.10 has a new line in its sys.version :rolling-eyes-emoji: mlogger.info('Running on: %s', sys.version.replace('\n', ' ')) mlogger.info('User is: %s', HOST_APP.username) mlogger.info('Home Directory is: %s', HOME_DIR) mlogger.info('Session uuid is: %s', get_session_uuid()) mlogger.info('Runtime assembly is: %s', runtime.RUNTIME_ASSM_NAME) mlogger.info('Config file is (%s): %s', user_config.config_type, user_config.config_file)
2,303
read eventfile
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf # poc workspace client_results_root = "../workspace_brats" # All sites used the same validation set, so only 1 site's record is needed site_num = 1 site_pre = "site-" # Central vs. FedAvg vs. FedAvg_DP experiments = { "brats_central": {"tag": "val_metric_global_model", "site": "All"}, "brats_fedavg": {"tag": "val_metric_global_model"}, "brats_fedavg_dp": {"tag": "val_metric_global_model"}, } weight = 0.8 def smooth(scalars, weight): # Weight between 0 and 1 last = scalars[0] # First value in the plot (first timestep) smoothed = list() for point in scalars: smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value smoothed.append(smoothed_val) # Save it last = smoothed_val # Anchor the last smoothed value return smoothed def find_job_id(workdir, fl_app_name="prostate_central"): """Find the first matching experiment""" target_path = os.path.join(workdir, "*", "fl_app.txt") fl_app_files = glob.glob(target_path, recursive=True) assert len(fl_app_files) > 0, f"No `fl_app.txt` files found in workdir={workdir}." for fl_app_file in fl_app_files: with open(fl_app_file, "r") as f: _fl_app_name = f.read() if fl_app_name == _fl_app_name: # alpha will be matched based on value in config file job_id = os.path.basename(os.path.dirname(fl_app_file)) return job_id raise ValueError(f"No job id found for fl_app_name={fl_app_name} in workdir={workdir}") def METHOD_NAME(filepath, tags=["val_metric_global_model"]): data = {} for summary in tf.compat.v1.train.summary_iterator(filepath): for v in summary.summary.value: if v.tag in tags: if v.tag in data.keys(): data[v.tag].append([summary.step, v.simple_value]) else: data[v.tag] = [[summary.step, v.simple_value]] return data def add_eventdata(data, config, filepath, tag="val_metric_global_model"): event_data = METHOD_NAME(filepath, tags=[tag]) assert len(event_data[tag]) > 0, f"No data for key {tag}" metric = [] for e in event_data[tag]: # print(e) data["Config"].append(config) data["Epoch"].append(e[0]) metric.append(e[1]) metric = smooth(metric, weight) for entry in metric: data["Dice"].append(entry) print(f"added {len(event_data[tag])} entries for {tag}") def main(): plt.figure() i = 1 # add event files data = {"Config": [], "Epoch": [], "Dice": []} for site in range(site_num): # clear data for each site site = site + 1 data = {"Config": [], "Epoch": [], "Dice": []} for config, exp in experiments.items(): job_id = find_job_id(workdir=client_results_root + "/site-1", fl_app_name=config) print(f"Found run {job_id} for {config}") spec_site = exp.get("site", None) if spec_site is not None: record_path = os.path.join(client_results_root, site_pre + spec_site, job_id, "*", "events.*") else: record_path = os.path.join(client_results_root, site_pre + str(site), job_id, "*", "events.*") eventfile = glob.glob(record_path, recursive=True) assert len(eventfile) == 1, "No unique event file found!" eventfile = eventfile[0] print("adding", eventfile) add_eventdata(data, config, eventfile, tag=exp["tag"]) ax = plt.subplot(1, site_num, i) ax.set_title(site) sns.lineplot(x="Epoch", y="Dice", hue="Config", data=data) i = i + 1 plt.subplots_adjust(hspace=0.3) plt.show() if __name__ == "__main__": main()
2,304
raw concepts
import pytest from coding_systems.ctv3.coding_system import CodingSystem from coding_systems.ctv3.models import ( RawConcept, RawConceptTermMapping, RawTerm, TPPConcept, TPPRelationship, ) @pytest.fixture def coding_system(): yield CodingSystem(database_alias="ctv3_test_20200101") @pytest.fixture def tpp_concepts(): for code in [".....", "11111", "22222"]: TPPConcept.objects.using("ctv3_test_20200101").create( read_code=code, description=f"Concept {code}" ) @pytest.fixture def METHOD_NAME(): for raw_code in ["33333", "44444"]: rawconcept = RawConcept.objects.using("ctv3_test_20200101").create( read_code=raw_code, status="C", unknown_field_2="A", another_concept_id=raw_code, ) rawterm = RawTerm.objects.using("ctv3_test_20200101").create( term_id=raw_code, status="C", name_1=f"raw_concept_{raw_code}" ) RawConceptTermMapping.objects.using("ctv3_test_20200101").create( concept=rawconcept, term=rawterm, term_type="P" ) def test_lookup_names(coding_system, tpp_concepts): assert coding_system.lookup_names(["11111", "22222", "99999"]) == { "11111": "Concept 11111", "22222": "Concept 22222", } def test_code_to_term(coding_system, tpp_concepts): assert coding_system.code_to_term(["11111", "22222", "99999"]) == { "11111": "Concept 11111", "22222": "Concept 22222", "99999": "Unknown", } def test_search_by_term(coding_system, tpp_concepts, METHOD_NAME): # searching by "concept" matches all concepts, both raw and tpp assert coding_system.search_by_term("concept") == { ".....", "11111", "22222", "33333", "44444", } # searching by "raw_concept" matches only the raw ones assert coding_system.search_by_term("raw_concept") == {"33333", "44444"} # search by an unknown term assert coding_system.search_by_term("unk") == set() def test_search_by_code(coding_system, tpp_concepts, METHOD_NAME): # search by a TPP concept code assert coding_system.search_by_code("22222") == {"22222"} # search by a raw code assert coding_system.search_by_code("44444") == {"44444"} # search by an unknown code assert coding_system.search_by_code("55555") == set() def test_relationships(coding_system): r"""Hierarchy has this structure: . / \ 1 2 / \ / \ 3 4 5 """ records = [ [".....", "11111", 1], [".....", "22222", 1], [".....", "33333", 2], [".....", "44444", 2], [".....", "44444", 2], # There are two routes from ..... to 44444 [".....", "55555", 2], ["11111", "33333", 1], ["11111", "44444", 1], ["22222", "44444", 1], ["22222", "55555", 1], ] for ancestor_code, descendant_code, distance in records: ancestor, _ = TPPConcept.objects.using("ctv3_test_20200101").get_or_create( read_code=ancestor_code, defaults={"description": ancestor_code} ) descendant, _ = TPPConcept.objects.using("ctv3_test_20200101").get_or_create( read_code=descendant_code, defaults={"description": descendant_code} ) TPPRelationship.objects.using("ctv3_test_20200101").create( ancestor=ancestor, descendant=descendant, distance=distance, ) assert set(coding_system.ancestor_relationships(["....."])) == set() assert set(coding_system.ancestor_relationships(["11111"])) == { (".....", "11111"), } assert set(coding_system.ancestor_relationships(["33333", "55555"])) == { (".....", "11111"), (".....", "22222"), ("11111", "33333"), ("22222", "55555"), } assert set(coding_system.descendant_relationships(["....."])) == { (".....", "11111"), (".....", "22222"), ("11111", "33333"), ("11111", "44444"), ("22222", "44444"), ("22222", "55555"), } assert set(coding_system.descendant_relationships(["11111"])) == { ("11111", "33333"), ("11111", "44444"), } assert set(coding_system.descendant_relationships(["33333", "55555"])) == set() def test_matching_codes(coding_system, tpp_concepts, METHOD_NAME): assert coding_system.matching_codes(["11111", "33333", "99999"]) == { "11111", "33333", }
2,305
fit
"""Baseline classifier.""" import numpy as np import pandas as pd from evalml.model_family import ModelFamily from evalml.pipelines.components.estimators import Estimator from evalml.problem_types import ProblemTypes from evalml.utils import get_random_state, infer_feature_types class BaselineClassifier(Estimator): """Classifier that predicts using the specified strategy. This is useful as a simple baseline classifier to compare with other classifiers. Args: strategy (str): Method used to predict. Valid options are "mode", "random" and "random_weighted". Defaults to "mode". random_seed (int): Seed for the random number generator. Defaults to 0. """ name = "Baseline Classifier" hyperparameter_ranges = {} """{}""" model_family = ModelFamily.BASELINE """ModelFamily.BASELINE""" supported_problem_types = [ProblemTypes.BINARY, ProblemTypes.MULTICLASS] """[ProblemTypes.BINARY, ProblemTypes.MULTICLASS]""" def __init__(self, strategy="mode", random_seed=0, **kwargs): if strategy not in ["mode", "random", "random_weighted"]: raise ValueError( "'strategy' parameter must equal either 'mode', 'random', or 'random_weighted'", ) parameters = {"strategy": strategy} parameters.update(kwargs) self._classes = None self._percentage_freq = None self._num_features = None self._num_unique = None self._mode = None super().__init__( parameters=parameters, component_obj=None, random_seed=random_seed, ) def METHOD_NAME(self, X, y=None): """Fits baseline classifier component to data. Args: X (pd.DataFrame): The input training data of shape [n_samples, n_features]. y (pd.Series): The target training data of length [n_samples]. Returns: self Raises: ValueError: If y is None. """ if y is None: raise ValueError("Cannot fit Baseline classifier if y is None") X = infer_feature_types(X) y = infer_feature_types(y) vals, counts = np.unique(y, return_counts=True) self._classes = list(vals) self._percentage_freq = counts.astype(float) / len(y) self._num_unique = len(self._classes) self._num_features = X.shape[1] if self.parameters["strategy"] == "mode": self._mode = y.mode()[0] return self def predict(self, X): """Make predictions using the baseline classification strategy. Args: X (pd.DataFrame): Data of shape [n_samples, n_features]. Returns: pd.Series: Predicted values. """ X = infer_feature_types(X) strategy = self.parameters["strategy"] if strategy == "mode": predictions = pd.Series([self._mode] * len(X)) elif strategy == "random": predictions = get_random_state(self.random_seed).choice( self._classes, len(X), ) else: predictions = get_random_state(self.random_seed).choice( self._classes, len(X), p=self._percentage_freq, ) return infer_feature_types(predictions) def predict_proba(self, X): """Make prediction probabilities using the baseline classification strategy. Args: X (pd.DataFrame): Data of shape [n_samples, n_features]. Returns: pd.DataFrame: Predicted probability values. """ X = infer_feature_types(X) strategy = self.parameters["strategy"] if strategy == "mode": mode_index = self._classes.index(self._mode) proba_arr = np.array( [[1.0 if i == mode_index else 0.0 for i in range(self._num_unique)]] * len(X), ) elif strategy == "random": proba_arr = np.array( [[1.0 / self._num_unique for i in range(self._num_unique)]] * len(X), ) else: proba_arr = np.array( [[self._percentage_freq[i] for i in range(self._num_unique)]] * len(X), ) predictions = pd.DataFrame(proba_arr, columns=self._classes) return infer_feature_types(predictions) @property def feature_importance(self): """Returns importance associated with each feature. Since baseline classifiers do not use input features to calculate predictions, returns an array of zeroes. Returns: pd.Series: An array of zeroes """ return pd.Series(np.zeros(self._num_features)) @property def classes_(self): """Returns class labels. Will return None before fitting. Returns: list[str] or list(float) : Class names """ return self._classes
2,306
test checkout shipping address update both token
from unittest import mock import graphene from .....checkout.error_codes import CheckoutErrorCode from .....checkout.fetch import fetch_checkout_info, fetch_checkout_lines from .....plugins.manager import get_plugins_manager from ....tests.utils import get_graphql_content from ...mutations.utils import update_checkout_shipping_method_if_invalid MUTATION_CHECKOUT_SHIPPING_ADDRESS_UPDATE = """ mutation checkoutShippingAddressUpdate( $checkoutId: ID, $token: UUID, $shippingAddress: AddressInput!) { checkoutShippingAddressUpdate( checkoutId: $checkoutId, token: $token, shippingAddress: $shippingAddress ) { checkout { token, id }, errors { field message code } } }""" @mock.patch( "saleor.graphql.checkout.mutations.checkout_shipping_address_update." "update_checkout_shipping_method_if_invalid", wraps=update_checkout_shipping_method_if_invalid, ) def test_checkout_shipping_address_update_by_id( mocked_update_shipping_method, user_api_client, checkout_with_item, graphql_address_data, ): checkout = checkout_with_item assert checkout.shipping_address is None checkout_id = graphene.Node.to_global_id("Checkout", checkout.pk) shipping_address = graphql_address_data variables = {"checkoutId": checkout_id, "shippingAddress": shipping_address} response = user_api_client.post_graphql( MUTATION_CHECKOUT_SHIPPING_ADDRESS_UPDATE, variables ) content = get_graphql_content(response) data = content["data"]["checkoutShippingAddressUpdate"] assert not data["errors"] checkout.refresh_from_db() assert checkout.shipping_address is not None assert checkout.shipping_address.first_name == shipping_address["firstName"] assert checkout.shipping_address.last_name == shipping_address["lastName"] assert ( checkout.shipping_address.street_address_1 == shipping_address["streetAddress1"] ) assert ( checkout.shipping_address.street_address_2 == shipping_address["streetAddress2"] ) assert checkout.shipping_address.postal_code == shipping_address["postalCode"] assert checkout.shipping_address.country == shipping_address["country"] assert checkout.shipping_address.city == shipping_address["city"].upper() manager = get_plugins_manager() lines, _ = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, manager) mocked_update_shipping_method.assert_called_once_with(checkout_info, lines) @mock.patch( "saleor.graphql.checkout.mutations.checkout_shipping_address_update." "update_checkout_shipping_method_if_invalid", wraps=update_checkout_shipping_method_if_invalid, ) def test_checkout_shipping_address_update_by_token( mocked_update_shipping_method, user_api_client, checkout_with_item, graphql_address_data, ): # given checkout = checkout_with_item assert checkout.shipping_address is None shipping_address = graphql_address_data variables = {"token": checkout.token, "shippingAddress": shipping_address} # when response = user_api_client.post_graphql( MUTATION_CHECKOUT_SHIPPING_ADDRESS_UPDATE, variables ) # then content = get_graphql_content(response) data = content["data"]["checkoutShippingAddressUpdate"] assert not data["errors"] checkout.refresh_from_db() assert checkout.shipping_address is not None assert checkout.shipping_address.first_name == shipping_address["firstName"] assert checkout.shipping_address.last_name == shipping_address["lastName"] assert ( checkout.shipping_address.street_address_1 == shipping_address["streetAddress1"] ) assert ( checkout.shipping_address.street_address_2 == shipping_address["streetAddress2"] ) assert checkout.shipping_address.postal_code == shipping_address["postalCode"] assert checkout.shipping_address.country == shipping_address["country"] assert checkout.shipping_address.city == shipping_address["city"].upper() manager = get_plugins_manager() lines, _ = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, manager) mocked_update_shipping_method.assert_called_once_with(checkout_info, lines) def test_checkout_shipping_address_update_neither_token_and_id_given( user_api_client, checkout_with_item, graphql_address_data, ): checkout = checkout_with_item assert checkout.shipping_address is None shipping_address = graphql_address_data variables = {"shippingAddress": shipping_address} response = user_api_client.post_graphql( MUTATION_CHECKOUT_SHIPPING_ADDRESS_UPDATE, variables ) content = get_graphql_content(response) data = content["data"]["checkoutShippingAddressUpdate"] assert len(data["errors"]) == 1 assert not data["checkout"] assert data["errors"][0]["code"] == CheckoutErrorCode.GRAPHQL_ERROR.name def METHOD_NAME( user_api_client, checkout_with_item, graphql_address_data, ): checkout = checkout_with_item assert checkout.shipping_address is None checkout_id = graphene.Node.to_global_id("Checkout", checkout.pk) shipping_address = graphql_address_data variables = { "checkoutId": checkout_id, "token": checkout.token, "shippingAddress": shipping_address, } response = user_api_client.post_graphql( MUTATION_CHECKOUT_SHIPPING_ADDRESS_UPDATE, variables ) content = get_graphql_content(response) data = content["data"]["checkoutShippingAddressUpdate"] assert len(data["errors"]) == 1 assert not data["checkout"] assert data["errors"][0]["code"] == CheckoutErrorCode.GRAPHQL_ERROR.name
2,307
run
# # -*- coding: utf-8 -*- # # Copyright (c) 2023 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # from __future__ import division import time import tensorflow as tf import numpy as np from argparse import ArgumentParser arg_parser = ArgumentParser(description='Parse args') arg_parser.add_argument('-g', "--input-graph", help='Specify the input graph for the transform tool', dest='input_graph') arg_parser.add_argument("--output-graph", help='Specify tune result model save dir', dest='output_graph') arg_parser.add_argument('--benchmark', dest='benchmark', action='store_true', help='run benchmark') arg_parser.add_argument('--mode', dest='mode', default='performance', help='benchmark mode') arg_parser.add_argument('--export', dest='export', action='store_true', help='use neural_compressor to export.') arg_parser.add_argument('--tune', dest='tune', action='store_true', help='use neural_compressor to tune.') arg_parser.add_argument('--dataset_location', dest='dataset_location', help='location of calibration dataset and evaluate dataset') arg_parser.add_argument('--batch_size', type=int, default=32, dest='batch_size', help='batch_size of evaluation') arg_parser.add_argument('--iters', type=int, default=100, dest='iters', help='interations') args = arg_parser.parse_args() def evaluate(model): """Custom evaluate function to estimate the accuracy of the model. Args: model (tf.Graph_def): The input model graph Returns: accuracy (float): evaluation result, the larger is better. """ infer = model.signatures["serving_default"] output_dict_keys = infer.structured_outputs.keys() output_name = list(output_dict_keys )[0] from neural_compressor import METRICS metrics = METRICS('tensorflow') metric = metrics['topk']() def eval_func(dataloader, metric): warmup = 5 iteration = None latency_list = [] if args.benchmark and args.mode == 'performance': iteration = args.iters for idx, (inputs, labels) in enumerate(dataloader): inputs = np.array(inputs) input_tensor = tf.constant(inputs) start = time.time() predictions = infer(input_tensor)[output_name] end = time.time() predictions = predictions.numpy() metric.update(predictions, labels) latency_list.append(end - start) if iteration and idx >= iteration: break latency = np.array(latency_list[warmup:]).mean() / eval_dataloader.batch_size return latency from neural_compressor.utils.create_obj_from_config import create_dataloader dataloader_args = { 'batch_size': args.batch_size, 'dataset': {"ImageRecord": {'root': args.dataset_location}}, 'transform': {'BilinearImagenet': {'height': 224, 'width': 224}}, 'filter': None } eval_dataloader = create_dataloader('tensorflow', dataloader_args) latency = eval_func(eval_dataloader, metric) if args.benchmark and args.mode == 'performance': print("Batch size = {}".format(eval_dataloader.batch_size)) print("Latency: {:.3f} ms".format(latency * 1000)) print("Throughput: {:.3f} images/sec".format(1. / latency)) acc = metric.result() return acc class eval_object_detection_optimized_graph(object): def METHOD_NAME(self): from neural_compressor import set_random_seed set_random_seed(9527) if args.tune: from neural_compressor import quantization from neural_compressor.config import PostTrainingQuantConfig from neural_compressor.utils.create_obj_from_config import create_dataloader calib_dataloader_args = { 'batch_size': 10, 'dataset': {"ImageRecord": {'root':args.dataset_location}}, 'transform': {'BilinearImagenet': {'height': 224, 'width': 224}}, 'filter': None } calib_dataloader = create_dataloader('tensorflow', calib_dataloader_args) conf = PostTrainingQuantConfig(calibration_sampling_size=[20, 50]) q_model = quantization.fit(model=args.input_graph, conf=conf, calib_dataloader=calib_dataloader, eval_func=evaluate) q_model.save(args.output_graph) if args.benchmark: from neural_compressor.benchmark import fit from neural_compressor.config import BenchmarkConfig if args.mode == 'performance': conf = BenchmarkConfig(cores_per_instance=4, num_of_instance=1) from neural_compressor.utils.create_obj_from_config import create_dataloader dataloader_args = { 'batch_size': args.batch_size, 'dataset': {"ImageRecord": {'root': args.dataset_location}}, 'transform': {'BilinearImagenet': {'height': 224, 'width': 224}}, 'filter': None } eval_dataloader = create_dataloader('tensorflow', dataloader_args) fit(model=args.input_graph, conf=conf, b_dataloader=eval_dataloader) else: from neural_compressor.model import Model model = Model(args.input_graph).model accuracy = evaluate(model) print('Batch size = %d' % args.batch_size) print("Accuracy: %.5f" % accuracy) if __name__ == "__main__": evaluate_opt_graph = eval_object_detection_optimized_graph() evaluate_opt_graph.METHOD_NAME()
2,308
test 2022
# python-holidays # --------------- # A fast, efficient Python library for generating country, province and state # specific sets of holidays on the fly. It aims to make determining whether a # specific date is a holiday as fast and flexible as possible. # # Authors: dr-prodigy <[email protected]> (c) 2017-2023 # ryanss <[email protected]> (c) 2014-2017 # Website: https://github.com/dr-prodigy/python-holidays # License: MIT (see LICENSE file) from holidays.countries.norway import Norway, NO, NOR from tests.common import SundayHolidays class TestNorway(SundayHolidays): @classmethod def setUpClass(cls): super().setUpClass(Norway) def test_country_aliases(self): self.assertCountryAliases(Norway, NO, NOR) def test_new_years(self): self.assertHoliday("1900-01-01", "2017-01-01", "2023-01-01") def test_easter(self): self.assertHoliday( "2000-04-20", "2000-04-21", "2000-04-23", "2000-04-24", "2010-04-01", "2010-04-02", "2010-04-04", "2010-04-05", "2021-04-01", "2021-04-02", "2021-04-04", "2021-04-05", "2024-03-28", "2024-03-29", "2024-03-31", "2024-04-01", ) def test_workers_day(self): self.assertHoliday("1947-05-01", "2017-05-01", "2023-05-01") self.assertNoHoliday("1946-05-01") self.assertNoHolidayName("Arbeidernes dag", Norway(years=1946)) def test_constitution_day(self): self.assertHoliday("1947-05-17", "2017-05-17", "2023-05-17") self.assertNoHoliday("1946-05-17") self.assertNoHolidayName("Grunnlovsdag", Norway(years=1946)) def test_pentecost(self): self.assertHoliday( "2000-06-11", "2000-06-12", "2010-05-23", "2010-05-24", "2023-05-28", "2023-05-29", ) def test_christmas(self): self.assertHoliday( "1901-12-25", "1901-12-26", "2016-12-25", "2016-12-26", ) def test_sundays(self): self.assertSundays(Norway) # Sundays are considered holidays in Norway. def test_not_holiday(self): # TODO: Add more dates that are often confused for being a holiday. # Sundays in Norway are considered holidays, # so make sure none of these are actually Sundays. self.assertNoHoliday( "2017-02-06", "2017-02-07", "2017-02-08", "2017-02-09", "2017-02-10", "2001-12-24", "2001-05-16", "2001-05-18", "1999-12-31", "2016-12-31", "2016-12-27", "2016-12-28", ) def METHOD_NAME(self): self.assertHolidays( ("2022-01-01", "Første nyttårsdag"), ("2022-04-14", "Skjærtorsdag"), ("2022-04-15", "Langfredag"), ("2022-04-17", "Første påskedag"), ("2022-04-18", "Andre påskedag"), ("2022-05-01", "Arbeidernes dag"), ("2022-05-17", "Grunnlovsdag"), ("2022-05-26", "Kristi himmelfartsdag"), ("2022-06-05", "Første pinsedag"), ("2022-06-06", "Andre pinsedag"), ("2022-12-25", "Første juledag"), ("2022-12-26", "Andre juledag"), ) def test_l10n_default(self): self.assertLocalizedHolidays( ("2022-01-01", "Første nyttårsdag"), ("2022-04-14", "Skjærtorsdag"), ("2022-04-15", "Langfredag"), ("2022-04-17", "Første påskedag"), ("2022-04-18", "Andre påskedag"), ("2022-05-01", "Arbeidernes dag"), ("2022-05-17", "Grunnlovsdag"), ("2022-05-26", "Kristi himmelfartsdag"), ("2022-06-05", "Første pinsedag"), ("2022-06-06", "Andre pinsedag"), ("2022-12-25", "Første juledag"), ("2022-12-26", "Andre juledag"), ) def test_l10n_en_us(self): self.assertLocalizedHolidays( "en_US", ("2022-01-01", "New Year's Day"), ("2022-04-14", "Maundy Thursday"), ("2022-04-15", "Good Friday"), ("2022-04-17", "Easter Sunday"), ("2022-04-18", "Easter Monday"), ("2022-05-01", "Labor Day"), ("2022-05-17", "Constitution Day"), ("2022-05-26", "Ascension Day"), ("2022-06-05", "Whit Sunday"), ("2022-06-06", "Whit Monday"), ("2022-12-25", "Christmas Day"), ("2022-12-26", "Second Day of Christmas"), ) def test_l10n_uk(self): self.assertLocalizedHolidays( "uk", ("2022-01-01", "Новий рік"), ("2022-04-14", "Великий четвер"), ("2022-04-15", "Страсна пʼятниця"), ("2022-04-17", "Великдень"), ("2022-04-18", "Великодній понеділок"), ("2022-05-01", "День праці"), ("2022-05-17", "День Конституції"), ("2022-05-26", "Вознесіння Господнє"), ("2022-06-05", "Трійця"), ("2022-06-06", "День Святого Духа"), ("2022-12-25", "Різдво Христове"), ("2022-12-26", "Другий день Різдва"), )
2,309
build local cluster
# Copyright (c) 2023 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Neural Solution backend utils.""" import json import os from urllib.parse import urlparse from neural_solution.utils import logger def serialize(request: dict) -> bytes: """Serialize a dict object to bytes for inter-process communication.""" return json.dumps(request).encode() def deserialize(request: bytes) -> dict: """Deserialize the received bytes to a dict object.""" return json.loads(request) def dump_elapsed_time(customized_msg=""): """Get the elapsed time for decorated functions. Args: customized_msg (string, optional): The parameter passed to decorator. Defaults to None. """ import time def f(func): def fi(*args, **kwargs): start = time.time() res = func(*args, **kwargs) end = time.time() logger.info( "%s elapsed time: %s ms" % (customized_msg if customized_msg else func.__qualname__, round((end - start) * 1000, 2)) ) return res return fi return f def get_task_log_path(log_path, task_id): """Get the path of task log according id. Args: log_path (str): the log path of task task_id (str): the task id Returns: str: the path of task log file """ if not os.path.exists(log_path): os.makedirs(log_path) log_file_path = "{}/task_{}.txt".format(log_path, task_id) return log_file_path def get_db_path(workspace="./"): """Get the database path. Args: workspace (str, optional): the workspace for Neural Solution. Defaults to "./". Returns: str: the path of database """ return os.path.join(workspace, "db", "task.db") def get_task_workspace(workspace="./"): """Get the workspace of task. Args: workspace (str, optional): the workspace for Neural Solution. Defaults to "./". Returns: str: the workspace of task """ return os.path.join(workspace, "task_workspace") def get_task_log_workspace(workspace="./"): """Get the log workspace for task. Args: workspace (str, optional): the workspace for Neural Solution. Defaults to "./". Returns: str: the log workspace for task """ return os.path.join(workspace, "task_log") def get_serve_log_workspace(workspace="./"): """Get log workspace for service. Args: workspace (str, optional): the workspace for Neural Solution. Defaults to "./". Returns: str: log workspace for service """ return os.path.join(workspace, "serve_log") def METHOD_NAME(db_path): """Build a local cluster. Args: db_path (str): database path Returns: (Cluster, int): cluster and num threads per process """ from neural_solution.backend.cluster import Cluster, Node hostname = "localhost" node1 = Node(name=hostname, num_sockets=2, num_cores_per_socket=5) node2 = Node(name=hostname, num_sockets=2, num_cores_per_socket=5) node3 = Node(name=hostname, num_sockets=2, num_cores_per_socket=5) node_lst = [node1, node2, node3] cluster = Cluster(node_lst=node_lst, db_path=db_path) return cluster, 5 def build_cluster(file_path, db_path): """Build cluster according to the host file. Args: file_path : the path of host file. Returns: Cluster: return cluster object. """ from neural_solution.backend.cluster import Cluster, Node # If no file is specified, build a local cluster if file_path == "None" or file_path is None: return METHOD_NAME(db_path) if not os.path.exists(file_path): raise Exception(f"Please check the path of host file: {file_path}.") node_lst = [] num_threads_per_process = 5 with open(file_path, "r") as f: for line in f: hostname, num_sockets, num_cores_per_socket = line.strip().split(" ") num_sockets, num_cores_per_socket = int(num_sockets), int(num_cores_per_socket) node = Node(name=hostname, num_sockets=num_sockets, num_cores_per_socket=num_cores_per_socket) node_lst.append(node) num_threads_per_process = num_cores_per_socket cluster = Cluster(node_lst=node_lst, db_path=db_path) return cluster, num_threads_per_process def get_current_time(): """Get current time. Returns: str: the current time in hours, minutes, and seconds. """ from datetime import datetime return datetime.now().strftime("%H:%M:%S") def synchronized(func): """Locking for synchronization. Args: func (function): decorative function """ def wrapper(self, *args, **kwargs): with self.lock: return func(self, *args, **kwargs) return wrapper def build_workspace(path, task_id=""): """Build workspace of running tasks. Args: path: master work directory for all tasks. task_id: the id of task """ task_path = "{}/{}".format(path, task_id) if not os.path.exists(task_path): os.makedirs(task_path) return os.path.abspath(task_path) def is_remote_url(url_or_filename): """Check if input is a URL. Args: url_or_filename (str): url_or_filename Returns: bool: True or False """ parsed = urlparse(url_or_filename) return parsed.scheme in ("http", "https") def create_dir(path): """Create the (nested) path if not exist.""" if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path)) def get_q_model_path(log_path): """Get the quantized model path from task log. Args: log_path (str): log path for task Returns: str: quantized model path """ import re for line in reversed(open(log_path).readlines()): match = re.search(r"(Save quantized model to|Save config file and weights of quantized model to) (.+?)\.", line) if match: q_model_path = match.group(2) return q_model_path return "quantized model path not found"
2,310
roles
# SPDX-License-Identifier: MIT from __future__ import annotations import asyncio from typing import TYPE_CHECKING, Callable, Generic, List, Optional, Tuple, TypeVar from ...components import MentionableSelectMenu from ...enums import ComponentType from ...interactions import ClientT from ...member import Member from ...role import Role from ...user import User from ...utils import MISSING from ..item import ItemCallbackType from ..view import View from .base import SelectBase, SelectValuesBase if TYPE_CHECKING: from typing_extensions import Self from ...guild import Guild from ...state import ConnectionState from ...types.components import MentionableSelectMenu as MentionableSelectMenuPayload from ...types.interactions import ComponentInteractionData __all__ = ("MentionableSelect", "mentionable_select", "MentionableSelectValues") V = TypeVar("V", bound="View", covariant=True) class MentionableSelectValues(SelectValuesBase): """Represents the values of a :class:`.ui.MentionableSelect`.""" @property def members(self) -> List[Member]: """List[:class:`.Member`]: A list of members that were selected.""" return [v for v in self.data if isinstance(v, Member)] @property def users(self) -> List[User]: """List[:class:`nextcord.User`]: A list of users that were selected.""" return [v for v in self.data if isinstance(v, User)] @property def METHOD_NAME(self) -> List[Role]: """List[:class:`.Role`]: A list of roles that were selected.""" return [v for v in self.data if isinstance(v, Role)] class MentionableSelect(SelectBase, Generic[V]): """Represents a UI mentionable select menu. This is usually represented as a drop down menu. In order to get the selected items that the user has chosen, use :attr:`MentionableSelect.values`. .. versionadded:: 2.3 Parameters ------------ custom_id: :class:`str` The ID of the select menu that gets received during an interaction. If not given then one is generated for you. placeholder: Optional[:class:`str`] The placeholder text that is shown if nothing is selected, if any. min_values: :class:`int` The minimum number of items that must be chosen for this select menu. Defaults to 1 and must be between 1 and 25. max_values: :class:`int` The maximum number of items that must be chosen for this select menu. Defaults to 1 and must be between 1 and 25. disabled: :class:`bool` Whether the select is disabled or not. Defaults to ``False``. row: Optional[:class:`int`] The relative row this select menu belongs to. A Discord component can only have 5 rows. By default, items are arranged automatically into those 5 rows. If you'd like to control the relative positioning of the row then passing an index is advised. For example, row=1 will show up before row=2. Defaults to ``None``, which is automatic ordering. The row number must be between 0 and 4 (i.e. zero indexed). """ __item_repr_attributes__: Tuple[str, ...] = ( "placeholder", "min_values", "max_values", "disabled", ) def __init__( self, *, custom_id: str = MISSING, placeholder: Optional[str] = None, min_values: int = 1, max_values: int = 1, disabled: bool = False, row: Optional[int] = None, ) -> None: super().__init__( custom_id=custom_id, min_values=min_values, max_values=max_values, disabled=disabled, row=row, placeholder=placeholder, ) self._selected_values: MentionableSelectValues = MentionableSelectValues() self._underlying = MentionableSelectMenu._raw_construct( custom_id=self.custom_id, type=ComponentType.mentionable_select, placeholder=self.placeholder, min_values=self.min_values, max_values=self.max_values, disabled=self.disabled, ) @property def values(self) -> MentionableSelectValues: """:class:`.ui.MentionableSelectValues`: A list of Union[:class:`.Member`, :class:`nextcord.User`, :class:`.Role`] that have been selected by the user.""" return self._selected_values def to_component_dict(self) -> MentionableSelectMenuPayload: return self._underlying.to_dict() @classmethod def from_component(cls, component: MentionableSelectMenu) -> Self: return cls( custom_id=component.custom_id, placeholder=component.placeholder, min_values=component.min_values, max_values=component.max_values, disabled=component.disabled, row=None, ) def refresh_state( self, data: ComponentInteractionData, state: ConnectionState, guild: Optional[Guild] ) -> None: self._selected_values = MentionableSelectValues.construct( data.get("values", []), data.get("resolved", {}), state, guild, ) def mentionable_select( *, placeholder: Optional[str] = None, custom_id: str = MISSING, min_values: int = 1, max_values: int = 1, disabled: bool = False, row: Optional[int] = None, ) -> Callable[ [ItemCallbackType[MentionableSelect[V], ClientT]], ItemCallbackType[MentionableSelect[V], ClientT], ]: """A decorator that attaches a mentionable select menu to a component. The function being decorated should have three parameters, ``self`` representing the :class:`.ui.View`, the :class:`.ui.MentionableSelect` being pressed and the :class:`.Interaction` you receive. In order to get the selected items that the user has chosen within the callback use :attr:`MentionableSelect.values`. .. versionadded:: 2.3 Parameters ------------ placeholder: Optional[:class:`str`] The placeholder text that is shown if nothing is selected, if any. custom_id: :class:`str` The ID of the select menu that gets received during an interaction. It is recommended not to set this parameter to prevent conflicts. row: Optional[:class:`int`] The relative row this select menu belongs to. A Discord component can only have 5 rows. By default, items are arranged automatically into those 5 rows. If you'd like to control the relative positioning of the row then passing an index is advised. For example, row=1 will show up before row=2. Defaults to ``None``, which is automatic ordering. The row number must be between 0 and 4 (i.e. zero indexed). min_values: :class:`int` The minimum number of items that must be chosen for this select menu. Defaults to 1 and must be between 1 and 25. max_values: :class:`int` The maximum number of items that must be chosen for this select menu. Defaults to 1 and must be between 1 and 25. disabled: :class:`bool` Whether the select is disabled or not. Defaults to ``False``. """ def decorator(func: ItemCallbackType) -> ItemCallbackType: if not asyncio.iscoroutinefunction(func): raise TypeError("Select function must be a coroutine function") func.__discord_ui_model_type__ = MentionableSelect func.__discord_ui_model_kwargs__ = { "placeholder": placeholder, "custom_id": custom_id, "row": row, "min_values": min_values, "max_values": max_values, "disabled": disabled, } return func return decorator
2,311
on prerelease state change
# noinspection PyPackageRequirements import wx from gui.preferenceView import PreferenceView from gui.bitmap_loader import BitmapLoader from service.settings import UpdateSettings _t = wx.GetTranslation class PFUpdatePref(PreferenceView): def populatePanel(self, panel): self.title = _t("Updates") self.desc = _t("Pyfa can automatically check and notify you of new releases. " "This feature is toggled in the Network settings. " "Here, you may allow pre-release notifications and view " "suppressed release notifications, if any.") self.UpdateSettings = UpdateSettings.getInstance() self.dirtySettings = False dlgWidth = panel.GetParent().GetParent().ClientSize.width mainSizer = wx.BoxSizer(wx.VERTICAL) self.stTitle = wx.StaticText(panel, wx.ID_ANY, self.title, wx.DefaultPosition, wx.DefaultSize, 0) self.stTitle.Wrap(-1) self.stTitle.SetFont(wx.Font(12, 70, 90, 90, False, wx.EmptyString)) mainSizer.Add(self.stTitle, 0, wx.EXPAND | wx.ALL, 5) self.m_staticline1 = wx.StaticLine(panel, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.LI_HORIZONTAL) mainSizer.Add(self.m_staticline1, 0, wx.EXPAND | wx.TOP | wx.BOTTOM, 5) self.stDesc = wx.StaticText(panel, wx.ID_ANY, self.desc, wx.DefaultPosition, wx.DefaultSize, 0) self.stDesc.Wrap(dlgWidth - 50) mainSizer.Add(self.stDesc, 0, wx.ALL, 5) self.suppressPrerelease = wx.CheckBox(panel, wx.ID_ANY, _t("Allow pre-release notifications"), wx.DefaultPosition, wx.DefaultSize, 0) self.suppressPrerelease.Bind(wx.EVT_CHECKBOX, self.METHOD_NAME) self.suppressPrerelease.SetValue(not self.UpdateSettings.get('prerelease')) mainSizer.Add(self.suppressPrerelease, 0, wx.ALL | wx.EXPAND, 5) if self.UpdateSettings.get('version'): self.versionSizer = wx.BoxSizer(wx.VERTICAL) self.versionTitle = wx.StaticText(panel, wx.ID_ANY, _t("Suppressing {0} Notifications").format( self.UpdateSettings.get('version')), wx.DefaultPosition, wx.DefaultSize, 0) self.versionTitle.Wrap(-1) self.versionTitle.SetFont(wx.Font(12, 70, 90, 90, False, wx.EmptyString)) self.versionInfo = _t("There is a release available which you have chosen to suppress. " "You can choose to reset notification suppression for this release, " "or download the new release from GitHub.") self.versionSizer.AddStretchSpacer() self.versionSizer.Add(wx.StaticLine(panel, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.LI_HORIZONTAL), 0, wx.EXPAND, 5) self.versionSizer.AddStretchSpacer() self.versionSizer.Add(self.versionTitle, 0, wx.EXPAND, 5) self.versionDesc = wx.StaticText(panel, wx.ID_ANY, self.versionInfo, wx.DefaultPosition, wx.DefaultSize, 0) self.versionDesc.Wrap(dlgWidth - 50) self.versionSizer.Add(self.versionDesc, 0, wx.ALL, 5) actionSizer = wx.BoxSizer(wx.HORIZONTAL) resetSizer = wx.BoxSizer(wx.VERTICAL) self.downloadButton = wx.Button(panel, wx.ID_ANY, _t("Download"), wx.DefaultPosition, wx.DefaultSize, 0) self.downloadButton.Bind(wx.EVT_BUTTON, self.OnDownload) resetSizer.Add(self.downloadButton, 0, wx.ALL, 5) actionSizer.Add(resetSizer, 1, wx.EXPAND, 5) self.resetButton = wx.Button(panel, wx.ID_ANY, _t("Reset Suppression"), wx.DefaultPosition, wx.DefaultSize, 0) self.resetButton.Bind(wx.EVT_BUTTON, self.ResetSuppression) actionSizer.Add(self.resetButton, 0, wx.ALL, 5) self.versionSizer.Add(actionSizer, 0, wx.EXPAND, 5) mainSizer.Add(self.versionSizer, 0, wx.EXPAND, 5) panel.SetSizer(mainSizer) panel.Layout() def METHOD_NAME(self, event): self.UpdateSettings.set('prerelease', not self.suppressPrerelease.IsChecked()) def ResetSuppression(self, event): self.UpdateSettings.set('version', None) # Todo: Find a way to hide the entire panel in one go self.versionSizer.Hide(True) self.versionTitle.Hide() self.versionDesc.Hide() self.downloadButton.Hide() self.resetButton.Hide() self.resetButton.Hide() def OnDownload(self, event): wx.LaunchDefaultBrowser('https://github.com/pyfa-org/Pyfa/releases/tag/' + self.UpdateSettings.get('version')) def getImage(self): return BitmapLoader.getBitmap("prefs_update", "gui") PFUpdatePref.register()
2,312
test hash
# Copyright (c) 2022, 2022, Oracle and/or its affiliates. All rights reserved. # DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. # # The Universal Permissive License (UPL), Version 1.0 # # Subject to the condition set forth below, permission is hereby granted to any # person obtaining a copy of this software, associated documentation and/or # data (collectively the "Software"), free of charge and under any and all # copyright rights in the Software, and any and all patent rights owned or # freely licensable by each licensor hereunder covering either (i) the # unmodified Software as contributed to or provided by such licensor, or (ii) # the Larger Works (as defined below), to deal in both # # (a) the Software, and # # (b) any piece of software and/or hardware listed in the lrgrwrks.txt file if # one is included with the Software each a "Larger Work" to which the Software # is contributed by such licensors), # # without restriction, including without limitation the rights to copy, create # derivative works of, display, perform, and distribute the Software and make, # use, sell, offer for sale, import, export, have made, and have sold the # Software and the Larger Work(s), and to sublicense the foregoing rights on # either these or other terms. # # This license is subject to the following condition: # # The above copyright notice and either this complete permission notice or at a # minimum a reference to the UPL must be included in all copies or substantial # portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import unittest class ss(str): pass ts1 = 'abc' ts2 = 'x☏yz' ts3 = '\U00010400' # surrogates: D801 DC00 ss1 = ss('abc') ss2 = ss('x☏yz') ss3 = ss('\U00010400') class TruffleStringTests(unittest.TestCase): def METHOD_NAME(self): self.assertEqual(hash(ts3), hash(ss3)) self.assertEqual(hash(ts1), ts1.__hash__()) self.assertEqual(hash(ss1), ss1.__hash__()) def test_len(self): for exp_len, slist in {3: (ts1, ss1), 4: (ts2, ss2), 1: (ts3, ss3)}.items(): for s in slist: self.assertEqual(exp_len, len(s)) self.assertEqual(exp_len, s.__len__()) def test_getnewargs(self): self.assertEqual(('abc',), ts1.__getnewargs__()) self.assertEqual(('abc',), ss1.__getnewargs__()) self.assertIsNot(ts1, ts1.__getnewargs__()[0]) self.assertIsNot(ss1, ss1.__getnewargs__()[0]) def test_contains(self): self.assertIn('b', ts1) self.assertIn(ss('b'), ts1) self.assertIn('b', ss1) self.assertIn(ss('b'), ss1) self.assertFalse('\udc00' in ts3) self.assertFalse('\udc00' in ss3) def test_dict(self): key = "\x00" self.assertEqual(1, {ss(key): 1}[key]) def test_lst(self): self.assertEqual([ts3], list(ts3)) def test_compare(self): s1 = '\ufb00' s2 = ts3 self.assertTrue(s1 < s2) self.assertTrue((s1, ) < (s2, )) self.assertTrue(s1.__lt__(s2)) def test_collections(self): self.assertEqual(3, len(dict.fromkeys("a\U00010400b"))) self.assertEqual(3, len(list("a\U00010400b"))) self.assertEqual(3, len(tuple("a\U00010400b"))) self.assertEqual(ts3, list("a\U00010400b")[1]) self.assertEqual(ts3, tuple("a\U00010400b")[1]) def test_str_iter(self): self.assertEqual(ts3, next(iter(ts3))) self.assertEqual(ts3, next(reversed(ts3))) def test_surrogates(self): self.assertFalse('\ud801' + '\udc00' == '\U00010400') if __name__ == '__main__': unittest.main()
2,313
check formhandler
import gramex.cache from . import TestGramex from nose.tools import eq_, ok_ class TestOpenAPIHandler(TestGramex): expected = gramex.cache.open('openapiresponse.yaml', rel=True) def has_param(self, params, **kwargs): items = kwargs.items() return any(items <= param.items() for param in params) def test_openapi(self): # OpenAPI spec is a JSON response spec = self.check('/openapi/spec').json() # OpenAPI spec version matches eq_(spec['openapi'], '3.0.2') # spec.info comes from gramex.yaml OpenAPIHandler kwargs # .info is from gramex.yaml > openapi/spec eq_( spec['info'], { 'title': 'OpenAPI-title', 'version': 'OpenAPI-version', 'description': 'OpenAPI-description', }, ) # spec.servers comes from gramex.yaml OpenAPIHandler kwargs eq_(spec['servers'], [{'url': '..', 'description': 'Server-description'}]) self.check_functionhandler(spec) self.METHOD_NAME(spec) def check_functionhandler(self, spec): # /openapi/func path exists ok_('/openapi/func' in spec['paths']) path = spec['paths']['/openapi/func'] for request in ('post', 'put'): ok_(request in path) conf = path[request] # Summary is based on function name eq_(conf['summary'], 'Openapi Func: FunctionHandler') # Description is as per utils.test_function eq_(conf['description'], '\nThis is a **Markdown** docstring.\n') # Argument types, defaults, required as per utils.test_function params = {param['name']: param for param in conf['parameters']} self.assertDictContainsSubset( { 'in': 'query', 'description': '', 'required': True, 'schema': {'type': 'array', 'items': {'type': 'integer'}}, }, params['li1'], ) self.assertDictContainsSubset( { 'in': 'query', 'description': '', 'required': True, 'schema': {'type': 'array', 'items': {'type': 'number'}}, }, params['lf1'], ) self.assertDictContainsSubset( { 'in': 'query', 'description': 'List of ints', 'required': True, 'schema': {'type': 'array', 'items': {'type': 'integer'}}, }, params['li2'], ) self.assertDictContainsSubset( { 'in': 'query', 'description': 'List of floats', 'required': True, 'schema': {'type': 'array', 'items': {'type': 'number'}}, }, params['lf2'], ) self.assertDictContainsSubset( { 'in': 'query', 'description': '', 'schema': {'type': 'array', 'items': {'type': 'integer'}, 'default': [0]}, }, params['li3'], ) self.assertDictContainsSubset( { 'in': 'query', 'description': '', 'schema': {'type': 'array', 'items': {'type': 'number'}, 'default': [0.0]}, }, params['lf3'], ) self.assertDictContainsSubset( { 'in': 'query', 'description': '', 'schema': {'type': 'string', 'default': []}, }, params['l1'], ) self.assertDictContainsSubset( { 'in': 'query', 'description': 'First value', 'schema': {'type': 'integer', 'default': 0}, }, params['i1'], ) self.assertDictContainsSubset( { 'in': 'query', 'description': 'Second value', 'schema': {'type': 'integer', 'default': 0}, }, params['i2'], ) self.assertDictContainsSubset( { 'in': 'query', 'description': '', 'schema': {'type': 'string', 'default': 'Total'}, }, params['s1'], ) self.assertDictContainsSubset( { 'in': 'query', 'description': '', 'schema': {'type': 'integer', 'default': 0}, }, params['n1'], ) self.assertDictContainsSubset( { 'in': 'query', 'description': '', 'schema': {'type': 'string', 'default': 0}, }, params['n2'], ) self.assertDictContainsSubset( { 'in': 'header', 'description': '', 'schema': {'type': 'string', 'default': ''}, }, params['h'], ) self.assertDictContainsSubset( { 'in': 'query', 'description': '', 'schema': {'type': 'integer', 'default': 200}, }, params['code'], ) resp = conf['responses'] # 400 response has description from gramex.yaml self.assertDictContainsSubset( { 'description': 'Bad request', 'content': {'text/html': {'example': 'Bad request'}}, }, resp['400'], ) # Rest should have default error responses self.assertDictContainsSubset( {'description': 'Successful Response', 'content': {'application/json': {}}}, resp['200'], ) self.assertDictContainsSubset( { 'description': 'Not authorized', 'content': {'text/html': {'example': 'Not authorized'}}, }, resp['401'], ) # 429 is added only to PUT not GET if request == 'put': self.assertDictContainsSubset({'description': 'Rate limited'}, resp['429']) else: self.assertNotIn('429', resp) def METHOD_NAME(self, spec): ok_('/openapi/form' in spec['paths']) eq_(spec['paths']['/openapi/form'], self.expected['/openapi/form']) eq_(spec['paths']['/openapi/form'], self.expected['/openapi/form'])
2,314
connection made
# twisted is optional and self-contained in this module. # We don't want to force it as a dependency but that means we also can't test it with type-checkers given the current setup. from _typeshed import Incomplete from typing import Generic, NamedTuple, TypeVar import pika.connection from pika.adapters.utils import nbio_interface from twisted.internet.base import DelayedCall # type: ignore[import] # pyright: ignore[reportMissingImports] from twisted.internet.defer import Deferred, DeferredQueue # type: ignore[import] # pyright: ignore[reportMissingImports] from twisted.internet.interfaces import ITransport # type: ignore[import] # pyright: ignore[reportMissingImports] from twisted.internet.protocol import Protocol # type: ignore[import] # pyright: ignore[reportMissingImports] from twisted.python.failure import Failure # type: ignore[import] # pyright: ignore[reportMissingImports] _T = TypeVar("_T") LOGGER: Incomplete class ClosableDeferredQueue(DeferredQueue[_T], Generic[_T]): # pyright: ignore[reportUntypedBaseClass] closed: Failure | BaseException | None def __init__(self, size: Incomplete | None = ..., backlog: Incomplete | None = ...) -> None: ... # Returns a Deferred with an error if fails. None if success def put(self, obj: _T) -> Deferred[Failure | BaseException] | None: ... # type: ignore[override] def get(self) -> Deferred[Failure | BaseException | _T]: ... # type: ignore[override] pending: Incomplete def close(self, reason: BaseException | None) -> None: ... class ReceivedMessage(NamedTuple): channel: Incomplete method: Incomplete properties: Incomplete body: Incomplete class TwistedChannel: on_closed: Deferred[Incomplete | Failure | BaseException | None] def __init__(self, channel) -> None: ... @property def channel_number(self): ... @property def connection(self): ... @property def is_closed(self): ... @property def is_closing(self): ... @property def is_open(self): ... @property def flow_active(self): ... @property def consumer_tags(self): ... def callback_deferred(self, deferred, replies) -> None: ... def add_on_return_callback(self, callback): ... def basic_ack(self, delivery_tag: int = ..., multiple: bool = ...): ... def basic_cancel(self, consumer_tag: str = ...) -> Deferred[Incomplete | Failure | BaseException | None]: ... def basic_consume( self, queue, auto_ack: bool = ..., exclusive: bool = ..., consumer_tag: Incomplete | None = ..., arguments: Incomplete | None = ..., ) -> Deferred[Incomplete | Failure | BaseException]: ... def basic_get(self, queue, auto_ack: bool = ...) -> Deferred[Incomplete | Failure | BaseException | None]: ... def basic_nack(self, delivery_tag: Incomplete | None = ..., multiple: bool = ..., requeue: bool = ...): ... def basic_publish( self, exchange, routing_key, body, properties: Incomplete | None = ..., mandatory: bool = ... ) -> Deferred[Incomplete | Failure | BaseException]: ... def basic_qos( self, prefetch_size: int = ..., prefetch_count: int = ..., global_qos: bool = ... ) -> Deferred[Incomplete | Failure | BaseException | None]: ... def basic_reject(self, delivery_tag, requeue: bool = ...): ... def basic_recover(self, requeue: bool = ...) -> Deferred[Incomplete | Failure | BaseException | None]: ... def close(self, reply_code: int = ..., reply_text: str = ...): ... def confirm_delivery(self) -> Deferred[Incomplete | None]: ... def exchange_bind( self, destination, source, routing_key: str = ..., arguments: Incomplete | None = ... ) -> Deferred[Incomplete | Failure | BaseException | None]: ... def exchange_declare( self, exchange, exchange_type=..., passive: bool = ..., durable: bool = ..., auto_delete: bool = ..., internal: bool = ..., arguments: Incomplete | None = ..., ) -> Deferred[Incomplete | Failure | BaseException | None]: ... def exchange_delete( self, exchange: Incomplete | None = ..., if_unused: bool = ... ) -> Deferred[Incomplete | Failure | BaseException | None]: ... def exchange_unbind( self, destination: Incomplete | None = ..., source: Incomplete | None = ..., routing_key: str = ..., arguments: Incomplete | None = ..., ) -> Deferred[Incomplete | Failure | BaseException | None]: ... def flow(self, active) -> Deferred[Incomplete | Failure | BaseException | None]: ... def open(self): ... def queue_bind( self, queue, exchange, routing_key: Incomplete | None = ..., arguments: Incomplete | None = ... ) -> Deferred[Incomplete | Failure | BaseException | None]: ... def queue_declare( self, queue, passive: bool = ..., durable: bool = ..., exclusive: bool = ..., auto_delete: bool = ..., arguments: Incomplete | None = ..., ) -> Deferred[Incomplete | Failure | BaseException | None]: ... def queue_delete( self, queue, if_unused: bool = ..., if_empty: bool = ... ) -> Deferred[Incomplete | Failure | BaseException | None]: ... def queue_purge(self, queue) -> Deferred[Incomplete | Failure | BaseException | None]: ... def queue_unbind( self, queue, exchange: Incomplete | None = ..., routing_key: Incomplete | None = ..., arguments: Incomplete | None = ... ) -> Deferred[Incomplete | Failure | BaseException | None]: ... def tx_commit(self) -> Deferred[Incomplete | Failure | BaseException | None]: ... def tx_rollback(self) -> Deferred[Incomplete | Failure | BaseException | None]: ... def tx_select(self) -> Deferred[Incomplete | Failure | BaseException | None]: ... class _TwistedConnectionAdapter(pika.connection.Connection): def __init__(self, parameters, on_open_callback, on_open_error_callback, on_close_callback, custom_reactor) -> None: ... def METHOD_NAME(self, transport: ITransport) -> None: ... def connection_lost(self, error: Exception) -> None: ... def data_received(self, data) -> None: ... class TwistedProtocolConnection(Protocol): # pyright: ignore[reportUntypedBaseClass] ready: Deferred[None] | None closed: Deferred[None] | Failure | BaseException | None def __init__(self, parameters: Incomplete | None = ..., custom_reactor: Incomplete | None = ...) -> None: ... def channel(self, channel_number: Incomplete | None = ...): ... @property def is_open(self): ... @property def is_closed(self): ... def close(self, reply_code: int = ..., reply_text: str = ...) -> Deferred[None] | Failure | BaseException | None: ... def dataReceived(self, data) -> None: ... def connectionLost(self, reason: Failure | BaseException = ...) -> None: ... def makeConnection(self, transport: ITransport) -> None: ... def connectionReady(self): ... class _TimerHandle(nbio_interface.AbstractTimerReference): def __init__(self, handle: DelayedCall) -> None: ... def cancel(self) -> None: ...
2,315
test mongo fetch with filter
from typing import Optional import pandas as pd import pytest from aqueduct.error import AqueductError from aqueduct.resources.mongodb import MongoDBResource from aqueduct import LoadUpdateMode, op from sdk.data_resource_tests.flow_manager import FlowManager from sdk.data_resource_tests.mongo_db_data_validator import MongoDBDataValidator from sdk.data_resource_tests.save import save from sdk.data_resource_tests.validation_helpers import check_hotel_reviews_table_artifact from sdk.shared.naming import generate_table_name from sdk.shared.validation import check_artifact_was_computed @pytest.fixture(autouse=True) def assert_data_resource_is_mongo_db(data_resource): assert isinstance(data_resource, MongoDBResource) def test_mongo_fetch(client, data_resource: MongoDBResource): # Retrieve all rows with _id column excluded. # This makes sure the `check_hotel_reviews_table_artifact` doesn't include # this _id column generated by MongoDB. hotel_reviews = data_resource.collection("hotel_reviews").find({}, {"_id": 0}) check_hotel_reviews_table_artifact(hotel_reviews) def test_bad_fetch(client, data_resource: MongoDBResource): # collection that doesn't exist with pytest.raises(AqueductError, match="Preview Execution Failed"): data_resource.collection("missing_table").find({}) # valid collection, bad query, here "$or" is an invalid operator. with pytest.raises(AqueductError, match="Preview Execution Failed"): data_resource.collection("hotel_reviews").find({}, {"$or": ["1", "2"]}) def test_mongo_fetch_column_selection(client, data_resource: MongoDBResource): hotel_reviews = data_resource.collection("hotel_reviews").find({}, {"review": 1}).get() assert list(hotel_reviews.columns) == ["_id", "review"] hotel_reviews = ( data_resource.collection("hotel_reviews") .find({}, {"_id": 0, "reviewer_nationality": 1}) .get() ) assert list(hotel_reviews.columns) == ["reviewer_nationality"] def METHOD_NAME(client, data_resource: MongoDBResource): actual_data = ( data_resource.collection("hotel_reviews") .find({"reviewer_nationality": " United Kingdom "}) .get() ) all_data = data_resource.collection("hotel_reviews").find({}).get() assert len(actual_data) == len(all_data[all_data["reviewer_nationality"] == " United Kingdom "]) def test_mongo_fetch_with_multiple_parametrized_filters(client, data_resource: MongoDBResource): country1 = client.create_param("param_1", default=" United Kingdom ") country2 = client.create_param("param_2", default=" Australia ") parameterized_results = data_resource.collection("hotel_reviews").find( { "reviewer_nationality": { "$in": ["$1", "$2"], } }, parameters=[country1, country2], ) expanded_results = data_resource.collection("hotel_reviews").find( { "reviewer_nationality": { "$in": [" United Kingdom ", " Australia "], } } ) assert parameterized_results.get().equals(expanded_results.get()) expanded_results = data_resource.collection("hotel_reviews").find( { "reviewer_nationality": { "$in": [" Thailand ", " Australia "], } } ) assert parameterized_results.get(parameters={"param_1": " Thailand "}).equals( expanded_results.get() ) def test_mongo_save_replace(flow_manager: FlowManager, data_resource: MongoDBResource): # retrieve all rows with _id column. hotel_reviews = data_resource.collection("hotel_reviews").find({}) save(data_resource, hotel_reviews, generate_table_name(), LoadUpdateMode.REPLACE) flow = flow_manager.publish_flow_test(hotel_reviews) MongoDBDataValidator(flow_manager._client, data_resource).check_saved_artifact_data( flow, hotel_reviews.id(), expected_data=hotel_reviews.get() ) def test_mongo_save_append(flow_manager: FlowManager, data_resource: MongoDBResource): table_name = generate_table_name() # saving twice with append mode # Everything is done with `_id` excluded, as this field must be unique. # We rely on mongoDB to generate `_id`s when we upload copies. Otherwise, # append would fail if we try to upload with duplicated `_id`s . hotel_reviews = data_resource.collection("hotel_reviews").find({}, {"_id": 0}) save(data_resource, hotel_reviews, table_name, LoadUpdateMode.REPLACE) flow = flow_manager.publish_flow_test(hotel_reviews) save(data_resource, hotel_reviews, table_name, LoadUpdateMode.APPEND) flow = flow_manager.publish_flow_test(existing_flow=flow, artifacts=hotel_reviews) reviews_data = hotel_reviews.get() expected_data = pd.concat([reviews_data, reviews_data], ignore_index=True) actual_data = data_resource.collection(table_name).find({}, {"_id": 0}).get() assert expected_data.equals(actual_data) def test_mongo_artifact_with_custom_metadata( flow_manager: FlowManager, data_resource: MongoDBResource ): # TODO: validate custom descriptions once we can fetch descriptions easily. op_name = "test" artf_name = "test artifact" description = "test description" hotel_reviews = data_resource.collection("hotel_reviews").find( {}, {"_id": 0}, name=op_name, description=description ) assert hotel_reviews.name() == artf_name flow = flow_manager.publish_flow_test(artifacts=hotel_reviews) check_artifact_was_computed(flow, artf_name) def test_mongo_artifact_with_same_op_and_artf_names( flow_manager: FlowManager, data_resource: MongoDBResource ): # TODO: validate custom descriptions once we can fetch descriptions easily. op_name = "test" artf_name = "test" description = "test description" hotel_reviews = data_resource.collection("hotel_reviews").find( {}, {"_id": 0}, name=op_name, output=artf_name, description=description ) assert hotel_reviews.name() == artf_name flow = flow_manager.publish_flow_test(artifacts=hotel_reviews) check_artifact_was_computed(flow, artf_name) def test_mongo_preserves_bson_table_even_with_pickled_collection_type( flow_manager, data_resource: MongoDBResource, ): """Test that bson table fidelity is preserved in the case where it is included in a collection object (list, tuple). """ hotel_reviews = data_resource.collection("hotel_reviews").find({}, {"_id": 0}) @op def select_first_object_of_input_tuple(mongo_table, another_param): return mongo_table output = select_first_object_of_input_tuple(hotel_reviews, 123) # Saving the output back to Mongo will guarantee that the table maintained fidelity # across function execution. table_name = generate_table_name() save(data_resource, output, table_name, LoadUpdateMode.REPLACE) flow_manager.publish_flow_test(artifacts=output) saved_data = data_resource.collection(table_name).find({}, {"_id": 0}).get() assert hotel_reviews.get().equals(saved_data)
2,316
run rez bind
# SPDX-License-Identifier: Apache-2.0 # Copyright Contributors to the Rez Project """ Entry points. """ import os import os.path import sys ### Utility functions def get_specifications(): """Get entry point specifications See: * https://pythonhosted.org/distlib/reference.html#distlib.scripts.ScriptMaker.make_multiple * https://setuptools.readthedocs.io/en/latest/setuptools.html#automatic-script-creation Example return value: { "rez-env": "rez-env = rez.cli._entry_points.run_rez_env", ... } Returns: dict (str, str): The specification string for each script name. """ specs = {} for attr, obj in sys.modules[__name__].__dict__.items(): scriptname = getattr(obj, "__scriptname__", None) if scriptname: spec = "%s = rez.cli._entry_points:%s" % (scriptname, attr) specs[scriptname] = spec return specs def scriptname(name): def decorator(fn): setattr(fn, "__scriptname__", name) return fn return decorator def check_production_install(): path = os.path.dirname(sys.argv[0]) filepath = os.path.join(path, ".rez_production_install") if not os.path.exists(filepath): sys.stderr.write( "Pip-based rez installation detected. Please be aware that rez command " "line tools are not guaranteed to function correctly in this case. See " "https://github.com/AcademySoftwareFoundation/rez/wiki/Installation#why-not-pip-for-production " " for futher details.\n" ) ### Entry points @scriptname("rez") def run_rez(): check_production_install() from rez.cli._main import run return run() @scriptname("rezolve") def run_rezolve(): # alias for osx, where rez is a different tool # https://www.unix.com/man-page/osx/1/REZ/ check_production_install() from rez.cli._main import run return run() @scriptname("_rez-complete") def run_rez_complete(): check_production_install() from rez.cli._main import run return run("complete") @scriptname("_rez_fwd") def run_rez_fwd(): check_production_install() from rez.cli._main import run return run("forward") @scriptname("rez-bind") def METHOD_NAME(): check_production_install() from rez.cli._main import run return run("bind") @scriptname("rez-build") def run_rez_build(): check_production_install() from rez.cli._main import run return run("build") @scriptname("rez-config") def run_rez_config(): check_production_install() from rez.cli._main import run return run("config") @scriptname("rez-context") def run_rez_context(): check_production_install() from rez.cli._main import run return run("context") @scriptname("rez-cp") def run_rez_cp(): check_production_install() from rez.cli._main import run return run("cp") @scriptname("rez-depends") def run_rez_depends(): check_production_install() from rez.cli._main import run return run("depends") @scriptname("rez-diff") def run_rez_diff(): check_production_install() from rez.cli._main import run return run("diff") @scriptname("rez-env") def run_rez_env(): check_production_install() from rez.cli._main import run return run("env") @scriptname("rez-gui") def run_rez_gui(): check_production_install() from rez.cli._main import run return run("gui") @scriptname("rez-help") def run_rez_help(): check_production_install() from rez.cli._main import run return run("help") @scriptname("rez-interpret") def run_rez_interpret(): check_production_install() from rez.cli._main import run return run("interpret") @scriptname("rez-memcache") def run_rez_memcache(): check_production_install() from rez.cli._main import run return run("memcache") @scriptname("rez-pip") def run_rez_pip(): check_production_install() from rez.cli._main import run return run("pip") @scriptname("rez-pkg-cache") def run_rez_pkg_cache(): check_production_install() from rez.cli._main import run return run("pkg-cache") @scriptname("rez-plugins") def run_rez_plugins(): check_production_install() from rez.cli._main import run return run("plugins") @scriptname("rez-python") def run_rez_python(): check_production_install() from rez.cli._main import run return run("python") @scriptname("rez-release") def run_rez_release(): check_production_install() from rez.cli._main import run return run("release") @scriptname("rez-search") def run_rez_search(): check_production_install() from rez.cli._main import run return run("search") @scriptname("rez-selftest") def run_rez_selftest(): check_production_install() from rez.cli._main import run return run("selftest") @scriptname("rez-status") def run_rez_status(): check_production_install() from rez.cli._main import run return run("status") @scriptname("rez-suite") def run_rez_suite(): check_production_install() from rez.cli._main import run return run("suite") @scriptname("rez-test") def run_rez_test(): check_production_install() from rez.cli._main import run return run("test") @scriptname("rez-view") def run_rez_view(): check_production_install() from rez.cli._main import run return run("view") @scriptname("rez-yaml2py") def run_rez_yaml2py(): check_production_install() from rez.cli._main import run return run("yaml2py") @scriptname("rez-bundle") def run_rez_bundle(): check_production_install() from rez.cli._main import run return run("bundle") @scriptname("rez-benchmark") def run_rez_benchmark(): check_production_install() # Special case - we have to override config settings here, before rez is # loaded. TODO this would be cleaner if we had an Application object, see #1043 # # /start import json settings = { "memcached_uri": [], "package_filter": [], "package_orderers": [], "allow_unversioned_packages": False, "resource_caching_maxsize": -1, "cache_packages_path": None } for setting, value in settings.items(): os.environ.pop("REZ_" + setting.upper(), None) os.environ["REZ_" + setting.upper() + "_JSON"] = json.dumps(value) # /end from rez.cli._main import run return run("benchmark") @scriptname("rez-pkg-ignore") def run_rez_pkg_ignore(): check_production_install() from rez.cli._main import run return run("pkg-ignore") @scriptname("rez-mv") def run_rez_mv(): check_production_install() from rez.cli._main import run return run("mv") @scriptname("rez-rm") def run_rez_rm(): check_production_install() from rez.cli._main import run return run("rm")
2,317
create hyperpipe
import types import unittest from functools import reduce import operator from inspect import signature from photonai.base import PipelineElement, Switch, Branch, Hyperpipe from photonai.optimization import GridSearchOptimizer, RandomGridSearchOptimizer, IntegerRange from photonai.optimization.base_optimizer import PhotonSlaveOptimizer, PhotonMasterOptimizer from sklearn.datasets import load_breast_cancer from sklearn.model_selection import KFold, ShuffleSplit class GridSearchOptimizerTest(unittest.TestCase): def setUp(self): self.pipeline_elements = [PipelineElement("StandardScaler"), PipelineElement('PCA', hyperparameters={'n_components': IntegerRange(5, 20)}), PipelineElement("SVC")] self.optimizer = GridSearchOptimizer() self.optimizer_name = 'grid_search' self.optimizer_params = None def METHOD_NAME(self): self.hyperpipe = Hyperpipe('optimizer_test', project_folder='./tmp', metrics=['accuracy'], best_config_metric='accuracy', inner_cv=KFold(n_splits=2), outer_cv=ShuffleSplit(n_splits=2), optimizer=self.optimizer_name, optimizer_params=self.optimizer_params, verbosity=0) def test_run(self): self.METHOD_NAME() for p in self.pipeline_elements: self.hyperpipe += p X, y = load_breast_cancer(return_X_y=True) self.hyperpipe.fit(X, y) def test_all_functions_available(self): """Test existence of functions and parameters -> .ask() .tell() .prepare().""" self.assertTrue(hasattr(self.optimizer, 'prepare')) self.assertListEqual(list(signature(self.optimizer.prepare).parameters.keys()), ['pipeline_elements', 'maximize_metric']) self.assertTrue(hasattr(self.optimizer, 'tell')) self.assertListEqual(list(signature(self.optimizer.tell).parameters.keys()), ['config', 'performance']) self.assertTrue(hasattr(self.optimizer, 'ask')) def test_all_attributes_available(self): """Test for .ask and .param_grid attribute. .ask is important for next configuration that should be tested.""" self.optimizer.prepare(pipeline_elements=self.pipeline_elements, maximize_metric=True) self.assertIsInstance(self.optimizer.ask, types.GeneratorType) def test_ask(self): """Test general functionality of .ask().""" self.optimizer.prepare(pipeline_elements=self.pipeline_elements, maximize_metric=True) ask_list = list(self.optimizer.ask) self.assertIsInstance(ask_list, list) self.assertSetEqual(set([str(type(a)) for a in ask_list]), {"<class 'dict'>"}) generated_elements = reduce(operator.concat, [list(a.keys()) for a in ask_list]) self.assertIn("PCA__n_components", generated_elements) return generated_elements def test_ask_advanced(self): """Test advanced functionality of .ask().""" branch = Branch('branch') branch += PipelineElement('PCA') branch += PipelineElement('SVC', {'C': [0.1, 1], 'kernel': ['rbf', 'sigmoid']}) pipe_switch = Switch('switch', [PipelineElement("StandardScaler"), PipelineElement("MaxAbsScaler")]) self.pipeline_elements = [PipelineElement("StandardScaler"), PipelineElement('PCA', hyperparameters={'n_components': IntegerRange(5, 20)}, test_disabled=True), pipe_switch, branch, Switch('Switch_in_switch', [branch, pipe_switch])] generated_elements = self.test_ask() self.assertIn("PCA__n_components", generated_elements) self.assertIn("Switch_in_switch__current_element", generated_elements) self.assertIn("branch__SVC__C", generated_elements) self.assertIn("branch__SVC__kernel", generated_elements) self.assertIn("switch__current_element", generated_elements) class RandomGridSearchOptimizerTest(GridSearchOptimizerTest): def setUp(self): self.pipeline_elements = [PipelineElement("StandardScaler"), PipelineElement('PCA', hyperparameters={'n_components': IntegerRange(5, 20)}), PipelineElement("SVC")] self.optimizer = RandomGridSearchOptimizer() self.optimizer_name = 'random_grid_search' self.optimizer_params = None def test_parameter_k(self): """Test for parameter n_configuration and k.""" self.optimizer = RandomGridSearchOptimizer(n_configurations=3) self.optimizer.prepare(pipeline_elements=self.pipeline_elements, maximize_metric=True) self.assertEqual(len(self.optimizer.param_grid), 3) self.optimizer = RandomGridSearchOptimizer(n_configurations=500) self.optimizer.prepare(pipeline_elements=self.pipeline_elements, maximize_metric=True) self.assertEqual(len(self.optimizer.param_grid), 15) class BaseOptimizerTests(unittest.TestCase): @staticmethod def test_slave_interface(): opt = PhotonSlaveOptimizer() opt.prepare(list(), True) opt.ask() opt.tell(dict(), float()) @staticmethod def test_master_interface(): opt = PhotonMasterOptimizer() opt.prepare(list(), True, None) opt.optimize()
2,318
shutup
from http.server import HTTPServer, SimpleHTTPRequestHandler import unittest import os import tempfile from pykickstart import load from pykickstart.errors import KickstartError from signal import SIGTERM class LoadTest(unittest.TestCase): def __init__(self, *args, **kwargs): unittest.TestCase.__init__(self, *args, **kwargs) self._content = """ auth --enableshadow --passalgo=sha512 graphical firstboot --enable ignoredisk --only-use=vda keyboard --vckeymap=cz --xlayouts='cz' lang cs_CZ.UTF-8 network --bootproto=dhcp --device=ens3 --ipv6=auto --activate network --hostname=test rootpw password timezone Europe/Prague --isUtc user --groups=wheel --name=testuser --password=password --iscrypted --gecos="Test User" xconfig --startxonboot bootloader --location=mbr --boot-drive=vda autopart --type=lvm clearpart --all --initlabel --drives=vda %packages @^xfce-desktop-environment @xfce-apps @xfce-media %end %addon com_redhat_kdump --disable --reserve-mb='128' %end """ def setUp(self): (handle, self._path) = tempfile.mkstemp(prefix="testfile-", text=True) os.write(handle, self._content.encode("utf-8")) os.close(handle) def tearDown(self): os.unlink(self._path) class Load_To_String_TestCase(LoadTest): def runTest(self): self.assertEqual(self._content, load.load_to_str(self._path)) class Load_To_File_TestCase(LoadTest): def __init__(self, *args, **kwargs): LoadTest.__init__(self, *args, **kwargs) self._target_path = "" def runTest(self): (handle, self._target_path) = tempfile.mkstemp(prefix="testfile", text=True) os.close(handle) target_path = load.load_to_file(self._path, self._target_path) self.assertEqual(target_path, self._target_path) with open(self._target_path, 'r') as f: self.assertEqual(self._content, f.read()) with self.assertRaises(KickstartError): load.load_to_file("/tmp/foo", "/tmp/bar") def tearDown(self): super(Load_To_File_TestCase, self).tearDown() os.unlink(self._target_path) class Load_From_URL_Test(LoadTest): def setUp(self): super(Load_From_URL_Test, self).setUp() # Disable logging in the handler, mostly to keep the HTTPS binary garbage off the screen httphandler = SimpleHTTPRequestHandler def METHOD_NAME(*args, **kwargs): pass httphandler.log_message = METHOD_NAME self._server = HTTPServer(('127.0.0.1', 0), httphandler) httpd_port = self._server.server_port self._httpd_pid = os.fork() if self._httpd_pid == 0: os.chdir(os.path.dirname(self._path)) self._server.serve_forever() self._url = 'http://127.0.0.1:%d/%s' % (httpd_port, os.path.basename(self._path)) # wrong URL (HTTPS request won't be handled correctly by the HTTP server) self._url_https = "https" + self._url.lstrip("http") def tearDown(self): super(Load_From_URL_Test, self).tearDown() self._server.server_close() os.kill(self._httpd_pid, SIGTERM) class Load_From_URL_To_Str_TestCase(Load_From_URL_Test): def runTest(self): self.assertEqual(self._content, load.load_to_str(self._url)) self.assertRaises(KickstartError, load.load_to_str, self._url_https) class Load_From_URL_To_File_TestCase(Load_From_URL_Test): def setUp(self): super(Load_From_URL_To_File_TestCase, self).setUp() (handle, self._target_path) = tempfile.mkstemp(prefix="testfile", text=True) os.close(handle) def runTest(self): target_path = load.load_to_file(self._url, self._target_path) self.assertEqual(target_path, self._target_path) with open(self._target_path, 'r') as f: self.assertEqual(self._content, f.read()) self.assertEqual(self._content, load.load_to_str(self._url)) # raises SSLError in _load_url() with self.assertRaises(KickstartError): load.load_to_file(self._url_https, self._target_path) # raises RequestException in _load_url() with self.assertRaises(KickstartError): load.load_to_file('http://test.local/ks.cfg', self._target_path) # raises IOError in load_file() with self.assertRaises(KickstartError): load.load_to_file(self._url, '/no/exist') # request.status_code == 404 in _load_url() with self.assertRaises(KickstartError): load.load_to_file(self._url+'.TEST', '/tmp/foo') def tearDown(self): super(Load_From_URL_To_File_TestCase, self).tearDown() os.unlink(self._target_path) if __name__ == "__main__": unittest.main()
2,319
get mfr id
# # psuutil.py # Platform-specific PSU status interface for SONiC # import logging import os.path try: from sonic_psu.psu_base import PsuBase except ImportError as e: raise ImportError(str(e) + "- required module not found") class PsuUtil(PsuBase): """Platform-specific PSUutil class""" HWMON_PATH = '/sys/class/hwmon/hwmon1/' PSU1_PREFIX = 'power42_' PSU2_PREFIX = 'power52_' MAX_PSUS = 2 def __init__(self): PsuBase.__init__(self) # Get sysfs attribute def get_attr_value(self, attr_path): retval = 'ERR' if (not os.path.isfile(attr_path)): return retval try: with open(attr_path, 'r') as fd: retval = fd.read() except Exception: logging.error("Unable to open ", attr_path, " file !") retval = retval.rstrip('\r\n') return retval def get_attr_filename(self, index, attr): if (index == 1): attr_file = self.PSU1_PREFIX + attr elif (index == 2): attr_file = self.PSU2_PREFIX + attr else: logging.error("Invalid PSU number:", index) return '' return attr_file def get_num_psus(self): """ Retrieves the number of PSUs available on the device :return: An integer, the number of PSUs available on the device """ return self.MAX_PSUS def get_psu_status(self, index): """ Retrieves the oprational status of power supply unit (PSU) defined by index <index> :param index: An integer, index of the PSU of which to query status :return: Boolean, True if PSU is operating properly, False if PSU is\ faulty """ status = False attr_filename = self.get_attr_filename(index, 'input') if attr_filename == '': return status attr_path = self.HWMON_PATH + attr_filename attr_value = self.get_attr_value(attr_path) if (attr_value != 'ERR'): attr_value = float(attr_value) # Check PSU status if (attr_value != 0.0): status = True return status def get_psu_presence(self, index): """ Retrieves the presence status of power supply unit (PSU) defined by index <index> :param index: An integer, index of the PSU of which to query status :return: Boolean, True if PSU is plugged, False if not """ status = False attr_filename = self.get_attr_filename(index, 'present') if attr_filename == '': return status attr_path = self.HWMON_PATH + attr_filename attr_value = self.get_attr_value(attr_path) if (attr_value != 'ERR'): attr_value = int(attr_value, 16) # Check PSU status if (attr_value == 1): status = True return status def get_powergood_status(self, index): status = False attr_filename = self.get_attr_filename(index, 'input') if attr_filename == '': return status attr_path = self.HWMON_PATH + attr_filename attr_value = self.get_attr_value(attr_path) if (attr_value != 'ERR'): attr_value = float(attr_value) # Check PSU status if (attr_value != 0.0): status = True return status def get_model(self, index): attr_filename = self.get_attr_filename(index, 'model') if attr_filename == '': return None attr_path = self.HWMON_PATH + attr_filename attr_value = self.get_attr_value(attr_path) if (attr_value != 'ERR'): return attr_value.rstrip() def METHOD_NAME(self, index): attr_filename = self.get_attr_filename(index, 'mfrid') if attr_filename == '': return None attr_path = self.HWMON_PATH + attr_filename attr_value = self.get_attr_value(attr_path) if (attr_value != 'ERR'): return attr_value.rstrip() def get_serial(self, index): attr_filename = self.get_attr_filename(index, 'sn') if attr_filename == '': return None attr_path = self.HWMON_PATH + attr_filename attr_value = self.get_attr_value(attr_path) if (attr_value != 'ERR'): return attr_value.rstrip() def get_direction(self, index): if (index == 1): direction_file = 'fan40_direction' elif (index == 2): direction_file = 'fan50_direction' else: logging.error("Invalid PSU number:", index) return None direction = self.get_attr_value(self.HWMON_PATH + direction_file) direction = direction.rstrip() """ 1: FB 2: BF Since the fan is at rear of the switch, FB means Exhaust; BF means Intake """ if direction == '2': return "INTAKE" else: return "EXHAUST" def get_output_voltage(self, index): if (index == 1): attr_file = 'in47_input' elif (index == 2): attr_file = 'in57_input' else: logging.error("Invalid PSU number:", index) return 0.0 voltage = self.get_attr_value(self.HWMON_PATH + attr_file) voltage = voltage.rstrip() if (voltage != 'ERR'): voltage, dummy = voltage.split('.', 1) else: return 0.0 return float(voltage)/1000 def get_output_current(self, index): if (index == 1): attr_file = 'curr39_input' elif (index == 2): attr_file = 'curr49_input' else: logging.error("Invalid PSU number:", index) return 0.0 current = self.get_attr_value(self.HWMON_PATH + attr_file) current = current.rstrip() if (current != 'ERR'): current, dummy = current.split('.',1) else: return 0.0 return float(current)/1000 def get_output_power(self, index): attr_filename = self.get_attr_filename(index, 'input') if attr_filename == '': return 0.0 attr_path = self.HWMON_PATH + attr_filename attr_value = self.get_attr_value(attr_path) if (attr_value != 'ERR'): attr_value = float(attr_value) else: return 0.0 return float(attr_value/1000) def get_fan_rpm(self, index, fan_idx): if (index == 1): rpm_file = 'fan40_input' elif (index == 2): rpm_file = 'fan50_input' else: logging.error("Invalid PSU number:", index) return 0 rpm = self.get_attr_value(self.HWMON_PATH + rpm_file) rpm = rpm.rstrip() if (rpm != 'ERR'): rpm = float(rpm) else: return 0 return int(rpm)
2,320
clean text data
# Generated by Django 3.2.16 on 2022-10-18 13:16 import re import warnings from typing import Dict, Optional from django.db import migrations from django.template.defaultfilters import truncatechars from django.utils.html import strip_tags from urllib3.util import parse_url # Start copy of /saleor/core/utils/editorjs.py BLACKLISTED_URL_SCHEMES = ("javascript",) HYPERLINK_TAG_WITH_URL_PATTERN = r"(.*?<a\s+href=\\?\")(\w+://\S+[^\\])(\\?\">)" def clean_editor_js(definitions: Optional[Dict], *, to_string: bool = False): """Sanitize a given EditorJS JSON definitions. Look for not allowed URLs, replaced them with `invalid` value, and clean valid ones. `to_string` flag is used for returning concatenated string from all blocks instead of returning json object. """ if definitions is None: return "" if to_string else definitions blocks = definitions.get("blocks") if not blocks or not isinstance(blocks, list): return "" if to_string else definitions plain_text_list = [] for index, block in enumerate(blocks): block_type = block["type"] data = block.get("data") if not data or not isinstance(data, dict): continue if block_type == "list": for item_index, item in enumerate(block["data"]["items"]): if not item: continue new_text = METHOD_NAME(item) if to_string: plain_text_list.append(strip_tags(new_text)) else: blocks[index]["data"]["items"][item_index] = new_text else: text = block["data"].get("text") if not text: continue new_text = METHOD_NAME(text) if to_string: plain_text_list.append(strip_tags(new_text)) else: blocks[index]["data"]["text"] = new_text return " ".join(plain_text_list) if to_string else definitions def METHOD_NAME(text: str): """Look for url in text, check if URL is allowed and return the cleaned URL. By default, only the protocol ``javascript`` is denied. """ if not text: return end_of_match = 0 new_text = "" for match in re.finditer(HYPERLINK_TAG_WITH_URL_PATTERN, text): original_url = match.group(2) original_url.strip() url = parse_url(original_url) new_url = url.url if url.scheme in BLACKLISTED_URL_SCHEMES: warnings.warn( f"An invalid url was sent: {original_url} " f"-- Scheme: {url.scheme} is blacklisted" ) new_url = "#invalid" new_text += match.group(1) + new_url + match.group(3) end_of_match = match.end() if end_of_match: new_text += text[end_of_match:] return new_text if new_text else text # End copy of /saleor/core/utils/editorjs.py def queryset_in_batches(queryset): """Slice a queryset into batches. Input queryset should be sorted be pk. """ start_pk = 0 while True: qs = queryset.filter(pk__gt=start_pk)[:2000] pks = list(qs.values_list("pk", flat=True)) if not pks: break yield pks start_pk = pks[-1] def propagate_names_for_plain_text_attribute_value_translations(apps, schema_editor): AttributeValueTranslation = apps.get_model("attribute", "AttributeValueTranslation") queryset = ( AttributeValueTranslation.objects.exclude(plain_text=None) .filter(name="") .order_by("pk") ) for batch_pks in queryset_in_batches(queryset): batch = AttributeValueTranslation.objects.filter(pk__in=batch_pks) instances = [] for instance in batch: instance.name = truncatechars(instance.plain_text, 100) instances.append(instance) AttributeValueTranslation.objects.bulk_update(instances, ["name"]) class Migration(migrations.Migration): dependencies = [ ("attribute", "0024_merge_20221018_1100"), ] operations = [ migrations.RunPython( propagate_names_for_plain_text_attribute_value_translations, migrations.RunPython.noop, ), ]
2,321
async set preset mode
""" Setup for different kinds of Tuya fan devices """ import logging from homeassistant.components.fan import FanEntity, FanEntityFeature from .device import TuyaLocalDevice from .helpers.config import async_tuya_setup_platform from .helpers.device_config import TuyaEntityConfig from .helpers.mixin import TuyaLocalEntity _LOGGER = logging.getLogger(__name__) async def async_setup_entry(hass, config_entry, async_add_entities): config = {**config_entry.data, **config_entry.options} await async_tuya_setup_platform( hass, async_add_entities, config, "fan", TuyaLocalFan, ) class TuyaLocalFan(TuyaLocalEntity, FanEntity): """Representation of a Tuya Fan entity.""" def __init__(self, device: TuyaLocalDevice, config: TuyaEntityConfig): """ Initialise the fan device. Args: device (TuyaLocalDevice): The device API instance. config (TuyaEntityConfig): The entity config. """ super().__init__() dps_map = self._init_begin(device, config) self._switch_dps = dps_map.pop("switch", None) self._preset_dps = dps_map.pop("preset_mode", None) self._speed_dps = dps_map.pop("speed", None) self._oscillate_dps = dps_map.pop("oscillate", None) self._direction_dps = dps_map.pop("direction", None) self._init_end(dps_map) self._support_flags = 0 if self._preset_dps: self._support_flags |= FanEntityFeature.PRESET_MODE if self._speed_dps: self._support_flags |= FanEntityFeature.SET_SPEED if self._oscillate_dps: self._support_flags |= FanEntityFeature.OSCILLATE if self._direction_dps: self._support_flags |= FanEntityFeature.DIRECTION @property def supported_features(self): """Return the features supported by this climate device.""" return self._support_flags @property def is_on(self): """Return whether the switch is on or not.""" # If there is no switch, it is always on if self._switch_dps is None: return self.available return self._switch_dps.get_value(self._device) async def async_turn_on(self, **kwargs): """Turn the switch on""" if self._switch_dps is None: raise NotImplementedError() await self._switch_dps.async_set_value(self._device, True) async def async_turn_off(self, **kwargs): """Turn the switch off""" if self._switch_dps is None: raise NotImplementedError await self._switch_dps.async_set_value(self._device, False) @property def percentage(self): """Return the currently set percentage.""" if self._speed_dps is None: return None return self._speed_dps.get_value(self._device) @property def percentage_step(self): """Return the step for percentage.""" if self._speed_dps is None: return None if self._speed_dps.values(self._device): return 100 / len(self._speed_dps.values(self._device)) return self._speed_dps.step(self._device) @property def speed_count(self): """Return the number of speeds supported by the fan.""" if self._speed_dps is None: return 0 if self._speed_dps.values(self._device): return len(self._speed_dps.values(self._device)) return int(round(100 / self.percentage_step)) async def async_set_percentage(self, percentage): """Set the fan speed as a percentage.""" # If speed is 0, turn the fan off if percentage == 0 and self._switch_dps: return await self.async_turn_off() if self._speed_dps is None: return None # If there is a fixed list of values, snap to the closest one if self._speed_dps.values(self._device): percentage = min( self._speed_dps.values(self._device), key=lambda x: abs(x - percentage), ) values_to_set = self._speed_dps.get_values_to_set(self._device, percentage) if not self.is_on and self._switch_dps: values_to_set.update(self._switch_dps.get_values_to_set(self._device, True)) await self._device.async_set_properties(values_to_set) @property def preset_mode(self): """Return the current preset mode.""" if self._preset_dps is None: return None return self._preset_dps.get_value(self._device) @property def preset_modes(self): """Return the list of presets that this device supports.""" if self._preset_dps is None: return [] return self._preset_dps.values(self._device) async def METHOD_NAME(self, preset_mode): """Set the preset mode.""" if self._preset_dps is None: raise NotImplementedError() await self._preset_dps.async_set_value(self._device, preset_mode) @property def current_direction(self): """Return the current direction [forward or reverse].""" if self._direction_dps is None: return None return self._direction_dps.get_value(self._device) async def async_set_direction(self, direction): """Set the direction of the fan.""" if self._direction_dps is None: raise NotImplementedError() await self._direction_dps.async_set_value(self._device, direction) @property def oscillating(self): """Return whether or not the fan is oscillating.""" if self._oscillate_dps is None: return None return self._oscillate_dps.get_value(self._device) async def async_oscillate(self, oscillating): """Oscillate the fan.""" if self._oscillate_dps is None: raise NotImplementedError() await self._oscillate_dps.async_set_value(self._device, oscillating)
2,322
test missing eof
import unittest from drake.tools.lint.formatter import FormatterBase, IncludeFormatter class TestFormatterBase(unittest.TestCase): def test_essentials(self): original_lines = [ '// Line 1\n', '/* Line 2 */\n', '\n', ] dut = FormatterBase('filename.cc', readlines=original_lines) # Everything starts out unchanged. self.assertTrue(dut.is_same_as_original()) self.assertTrue(dut.is_permutation_of_original()) self.assertEqual(dut.get_all_lines(), original_lines) self.assertTrue(dut.get_first_differing_original_index() is None) # Basic getters. self.assertEqual(dut.get_num_lines(), 3) self.assertTrue(dut.is_blank_line(2)) self.assertEqual(dut.get_line(0), '// Line 1\n') # Reverse it and end up with a permutation. dut.set_all_lines(reversed(dut.get_all_lines())) self.assertFalse(dut.is_same_as_original()) self.assertTrue(dut.is_permutation_of_original()) self.assertEqual(dut.get_first_differing_original_index(), 0) # Rebuild it using insertion and removal. dut.set_all_lines(['\n'] * 3) dut.set_line(0, '/* Line 2 */\n') dut.insert_lines(0, ['AAA\n', '// Line 1\n']) dut.remove_all([0, 3]) self.assertEqual(dut.get_all_lines(), original_lines) def test_format_ranges(self): original_lines = [ '#include "line0"\n', '// clang-format off\n', '#include "line2"\n', '// clang-format on\n', '#include "line4"\n', '#include "line5"\n', '/* clang-format off */\n', '#include "line7"\n', '#include "line8"\n', '/* clang-format on */\n', '#include "line10"\n', ] dut = FormatterBase("filename.cc", readlines=original_lines) self.assertEqual( dut.get_format_ranges(), [[0], [4, 5], [10]]) self.assertEqual( dut.get_non_format_ranges(), [[1, 2, 3], [6, 7, 8, 9]]) def test_dos(self): original_lines = [ '#include "line0"\r\n', ] with self.assertRaisesRegex(Exception, "DOS newline"): FormatterBase("filename.cc", readlines=original_lines) def METHOD_NAME(self): original_lines = [ '#include "line0"', ] with self.assertRaisesRegex(Exception, "newline.*end of file"): FormatterBase("filename.cc", readlines=original_lines) class TestIncludeFormatter(unittest.TestCase): def _split(self, triple_quoted_file_contents): lines = triple_quoted_file_contents.split("\n") assert len(lines) >= 2 assert lines[0] == "" # Detritus from first triple quote. assert lines[-1] == "" # Detritus from last triple quote. del lines[0] del lines[-1] return [line + "\n" for line in lines] def _check(self, basename, original, expected, first_differing): original_lines = self._split(original) expected_lines = self._split(expected) dut = IncludeFormatter( "drake/dummy/" + basename, readlines=original_lines) dut.format_includes() self.assertEqual(dut.get_all_lines(), expected_lines) self.assertEqual(dut.get_first_differing_original_index(), first_differing) def test_basic(self): # A pile of headers gets sorted per cppguide: # - The related header # - C system files # - C++ system files # - Other libraries' .h files # - Your project's .h files original = """ #include "drake/common/drake_assert.h" #include "drake/dummy/bar.h" #include "drake/dummy/dut.h" #include <gtest/gtest.h> #include <Eigen/Dense> #include <algorithm> #include <poll.h> #include <sys/wait.h> #include <vector> """ expected = """ #include "drake/dummy/dut.h" #include <poll.h> #include <sys/wait.h> #include <algorithm> #include <vector> #include <Eigen/Dense> #include <gtest/gtest.h> #include "drake/common/drake_assert.h" #include "drake/dummy/bar.h" """ self._check("dut.cc", original, expected, 0) def test_nothing(self): # A file with _no_ include statements. original = """ namespace { } """ self._check("dut.cc", original, original, None) def test_regroup(self): # Wrongly grouped whitespace. original = """ #include "drake/dummy/dut.h" #include <Eigen/Dense> #include <algorithm> #include <vector> #include "drake/common/drake_assert.h" #include "drake/dummy/bar.h" #include <gtest/gtest.h> """ expected = """ #include "drake/dummy/dut.h" #include <algorithm> #include <vector> #include <Eigen/Dense> #include <gtest/gtest.h> #include "drake/common/drake_assert.h" #include "drake/dummy/bar.h" """ self._check("dut.cc", original, expected, 2) def test_format_off(self): # "clang-format off". original = """ #include "drake/dummy/dut.h" // clang-format off #ifdef FOO #include <algorithm> #include <vector> #else #include <vector> #include <algorithm> #endif // clang-format on #include "drake/common/drake_assert.h" """ self._check("dut.cc", original, original, None) def test_target_is_header(self): # A header file. original = """ #include "drake/common/drake_assert.h" #include <algorithm> namespace { } """ expected = """ #include <algorithm> #include "drake/common/drake_assert.h" namespace { } """ self._check("dut.h", original, expected, 0) def test_associated_comment(self): # A comment prior to a line. original = """ #include "drake/dummy/dut.h" // Some comment describing the next line. #include <vector> namespace { } """ self._check("dut.cc", original, original, None) def test_file_opening_comment(self): # A comment atop the file with no blank line. original = """ /// @file dut.cc /// Mumble mumble /// #include <string> #include <vector> """ self._check("dut.cc", original, original, None) def test_internal_related_header(self): # Two related headers, guarded by "clang-format off". original = """ /* clang-format off (with explanatory comment) */ #include "drake/dummy/dut.h" #include "drake/dummy/dut_internal.h" /* clang-format on (with explanatory comment) */ #include <vector> #include <string> #include "drake/dummy/drake_assert.h" #include "drake/dummy/drake_deprecated.h" """ expected = """ /* clang-format off (with explanatory comment) */ #include "drake/dummy/dut.h" #include "drake/dummy/dut_internal.h" /* clang-format on (with explanatory comment) */ #include <string> #include <vector> #include "drake/dummy/drake_assert.h" #include "drake/dummy/drake_deprecated.h" """ self._check("dut.cc", original, expected, 5) def test_resort_solo_groups(self): # Groups of one, but sorted incorrectly. original = """ #include "drake/dummy/dut.h" #include "drake/common/drake_assert.h" #include <vector> """ expected = """ #include "drake/dummy/dut.h" #include <vector> #include "drake/common/drake_assert.h" """ self._check("dut.cc", original, expected, 2) def test_nontrivial_reformatting(self): # If clang-format changes any lines, we want to fail-fast. # (Note the two spaces between #include and the double quote.) original_lines = ['#include "nontrivial.h"\n'] dut = IncludeFormatter("nontrivial.cc", readlines=original_lines) dut.format_includes() with self.assertRaisesRegex(Exception, 'not just a shuffle'): dut.rewrite_file()
2,323
gradrhofunc
import os, shutil, mpi from Spheral2d import * from SpheralTestUtilities import * from centroidalRelaxNodes import * from GenerateNodeDistribution2d import * from siloPointmeshDump import * from fieldStatistics import * title("2-D test of centroidal relaxation.") #------------------------------------------------------------------------------- # Generic problem parameters #------------------------------------------------------------------------------- commandLine(KernelConstructor = NBSplineKernel, order = 7, nPerh = 1.01, hmin = 1e-5, hmax = 1.0, hminratio = 1.0, # The initial density function coeffients: rho(x) = a + bx*x + by*y a = 1.0, bx = 0.0, by = 0.0, cx2 = 0.0, cxy = 0.0, cy2 = 0.0, # Initial geometry nx = 50, ny = 50, x0 = 0.0, x1 = 1.0, y0 = 0.0, y1 = 1.0, ranfrac = 0.25, seed = 14892042, # Material properties gamma = 5.0/3.0, mu = 1.0, # Simulation control iterations = 100, tol = 1.0e-3, graphics = True, baseName = "centroidal_relaxation_2d", ) #------------------------------------------------------------------------------- # Our density and gradient methods. #------------------------------------------------------------------------------- def rhofunc(posi): return a + bx*posi.x + by*posi.y + cx2*posi.x**2 + cxy*posi.x*posi.y + cy2*posi.y**2 def METHOD_NAME(posi): return Vector(bx + 2.0*cx2*posi.x + cxy*posi.y, by + 2.0*cy2*posi.y + cxy*posi.x) #------------------------------------------------------------------------------- # Create a random number generator. #------------------------------------------------------------------------------- import random rangen = random.Random() rangen.seed(seed) #------------------------------------------------------------------------------- # Material properties. #------------------------------------------------------------------------------- eos = GammaLawGasMKS(gamma, mu) #------------------------------------------------------------------------------- # Interpolation kernels. #------------------------------------------------------------------------------- if KernelConstructor==NBSplineKernel: Wbase = NBSplineKernel(order) else: Wbase = KernelConstructor() WT = TableKernel(Wbase, 1000) output("WT") #------------------------------------------------------------------------------- # Make the NodeList. #------------------------------------------------------------------------------- nodes = makeFluidNodeList("nodes", eos, hmin = hmin, hmax = hmax, hminratio = hminratio, nPerh = nPerh, kernelExtent = WT.kernelExtent) output("nodes") output("nodes.hmin") output("nodes.hmax") output("nodes.nodesPerSmoothingScale") #------------------------------------------------------------------------------- # Set the node properties. #------------------------------------------------------------------------------- generator = GenerateNodeDistribution2d(nx, ny, rhofunc, "lattice", xmin = (x0, y0), xmax = (x1, y1), nNodePerh = nPerh, SPH = True) if mpi.procs > 1: from VoronoiDistributeNodes import distributeNodes2d #from PeanoHilbertDistributeNodes import distributeNodes2d else: from DistributeNodes import distributeNodes2d distributeNodes2d((nodes, generator)) output("mpi.reduce(nodes.numInternalNodes, mpi.MIN)") output("mpi.reduce(nodes.numInternalNodes, mpi.MAX)") output("mpi.reduce(nodes.numInternalNodes, mpi.SUM)") # Randomly jitter the node positions. dx = (x1 - x0)/nx dy = (y1 - y0)/ny pos = nodes.positions() for i in range(nodes.numInternalNodes): pos[i].x += ranfrac * dx * rangen.uniform(-1.0, 1.0) pos[i].y += ranfrac * dy * rangen.uniform(-1.0, 1.0) # Initialize the mass and densities. m = nodes.mass() rho = nodes.massDensity() for i in range(nodes.numNodes): rho[i] = rhofunc(pos[i]) m[i] = rho[i]*dx*dy #------------------------------------------------------------------------------- # Construct a DataBase to hold our node list #------------------------------------------------------------------------------- db = DataBase() output("db") output("db.appendNodeList(nodes)") output("db.numNodeLists") output("db.numFluidNodeLists") #------------------------------------------------------------------------------- # Create boundary conditions. #------------------------------------------------------------------------------- xPlane0 = Plane(Vector(x0, y0), Vector( 1.0, 0.0)) xPlane1 = Plane(Vector(x1, y0), Vector(-1.0, 0.0)) yPlane0 = Plane(Vector(x0, y0), Vector( 0.0, 1.0)) yPlane1 = Plane(Vector(x1, y1), Vector( 0.0, -1.0)) xbc0 = ReflectingBoundary(xPlane0) xbc1 = ReflectingBoundary(xPlane1) ybc0 = ReflectingBoundary(yPlane0) ybc1 = ReflectingBoundary(yPlane1) boundaries = [] # [xbc0, xbc1, ybc0, ybc1] #------------------------------------------------------------------------------- # Call the centroidal relaxer. #------------------------------------------------------------------------------- # Report the initial mass matching. print("Initial mass (min, max, avg, std dev) : ", fieldStatistics(m)) bcpoints = vector_of_Vector() for p in [Vector(x0, y0), Vector(x1, y0), Vector(x1, y1), Vector(x0, y1)]: bcpoints.append(p) boundary = Polygon(bcpoints) vol, surfacePoint = centroidalRelaxNodes(nodeListsAndBounds = [(nodes, boundary)], W = WT, rho = rhofunc, gradrho = METHOD_NAME, maxIterations = iterations, boundaries = boundaries, fracTol = tol, tessellationFileName = baseName) # Report the final mass matching. print("Final mass (min, max, avg, std dev) : ", fieldStatistics(m)) #------------------------------------------------------------------------------- # Plot the final state. #------------------------------------------------------------------------------- if graphics: from SpheralGnuPlotUtilities import * rPlot = plotNodePositions2d(db, colorNodeLists=0, colorDomains=1) # rho rhoPlot = plotFieldList(db.fluidMassDensity, winTitle = "Density", plotStyle = "points", colorNodeLists = False, plotGhosts = False) # mass massPlot = plotFieldList(db.fluidMass, winTitle = "Mass", plotStyle = "points", colorNodeLists = False, plotGhosts = False)
2,324
update settings
# vim: ft=python fileencoding=utf-8 sw=4 et sts=4 """Main function and startup utilities for vimiv. Module Attributes: _tmpdir: TemporaryDirectory when running with ``--temp-basedir``. The object must exist until vimiv exits. """ import argparse import os import sys import tempfile from typing import cast, List from vimiv.qt.core import QSize, QCoreApplication from vimiv.qt.widgets import QApplication from vimiv import app, api, parser, imutils, plugins from vimiv.commands import runners, search, wildcards from vimiv.config import configfile, keyfile, styles from vimiv.gui import mainwindow from vimiv.utils import xdg, crash_handler, log, trash_manager, customtypes, migration # Must be imported to create the commands using the decorators from vimiv.commands import ( # pylint: disable=unused-import misccommands, delete_command, help_command, ) from vimiv.config import configcommands # pylint: disable=unused-import _tmpdir = None _tmppath = None _logger = log.module_logger(__name__) def main() -> int: """Run startup and the Qt main loop.""" args = setup_pre_app(sys.argv[1:]) qt_args = parser.get_qt_args(args) qapp = app.Application(*qt_args) crash_handler.CrashHandler(qapp) setup_post_app(args) _logger.debug("Startup completed, starting Qt main loop") returncode = qapp.exec() plugins.cleanup() _logger.debug("Exiting with status %d", returncode) return returncode def setup_pre_app(argv: List[str]) -> argparse.Namespace: """Early setup that is done before the QApplication is created. Includes parsing the command line and setting up logging as well as initializing the components that do not require an application. Args: argv: sys.argv[1:] from the executable or argv passed by test suite. """ args = parser.parse_args(argv) if args.version: import vimiv.version print(vimiv.version.info(), vimiv.version.paths(), sep="\n\n") sys.exit(customtypes.Exit.success) migration.run() init_directories(args) log.setup_logging(args.log_level, *args.debug) _logger.debug("Start: vimiv %s", " ".join(argv)) METHOD_NAME(args) trash_manager.init() return args def setup_post_app(args: argparse.Namespace) -> None: """Setup performed after creating the QApplication.""" api.working_directory.init() imutils.init() init_ui(args) # Must be done after UI so the search signals are processed after the widgets have # been updated search.search.connect_signals() plugins.load() init_paths(args) if args.command: run_startup_commands(*args.command) if args.output: def print_output() -> None: print(wildcards.expand_internal(args.output, api.modes.current())) # We are sure we have an application here qapp = cast(QApplication, QCoreApplication.instance()) qapp.aboutToQuit.connect(print_output) def init_directories(args: argparse.Namespace) -> None: """Create vimiv cache, config and data directories. The directories are either the directories defined in the freedesktop standard or located in a temporary base directory. Args: args: Arguments returned from parser.parse_args(). """ if args.temp_basedir: global _tmpdir # We want the temporary directory to stick around until the end # pylint: disable=consider-using-with _tmpdir = tempfile.TemporaryDirectory(prefix="vimiv-tempdir-") args.basedir = _tmpdir.name if args.basedir is not None: xdg.basedir = args.basedir xdg.makedirs(xdg.vimiv_cache_dir(), xdg.vimiv_config_dir(), xdg.vimiv_data_dir()) def init_paths(args: argparse.Namespace) -> None: """Open paths given from commandline or fallback to library if set.""" _logger.debug("Opening paths") # Path names passed via stdin if args.stdinput and not sys.stdin.isatty(): print("stdin") paths = [os.path.realpath(line.strip()) for line in sys.stdin] # Binary image passed via stdin elif args.binary_stdinput and not sys.stdin.isatty(): print("binary stdin") global _tmppath # We want the temporary image to stick around until the end # pylint: disable=consider-using-with _tmppath = tempfile.NamedTemporaryFile(prefix="vimiv-stdin-") with open(_tmppath.name, "wb") as f: f.write(sys.stdin.buffer.read()) paths = [_tmppath.name] # Default else: print("default") paths = args.paths print(paths) try: api.open_paths(paths) except api.commands.CommandError: _logger.debug("init_paths: No valid paths retrieved") if api.settings.startup_library.value: api.open_paths([os.getcwd()]) api.status.update("startup paths initialized") def init_ui(args: argparse.Namespace) -> None: """Initialize the Qt UI.""" _logger.debug("Initializing UI") mw = mainwindow.MainWindow() if args.fullscreen: mw.fullscreen() # Center on screen and apply size screen_geometry = QApplication.primaryScreen().geometry() geometry = ( args.geometry if args.geometry else QSize(screen_geometry.width() // 2, screen_geometry.height() // 2) ) x = screen_geometry.x() + (screen_geometry.width() - geometry.width()) // 2 y = screen_geometry.y() + (screen_geometry.height() - geometry.height()) // 2 mw.setGeometry(x, y, geometry.width(), geometry.height()) mw.show() migration.run_welcome_popup(parent=mw) def METHOD_NAME(args: argparse.Namespace) -> None: """Update default settings with command line arguments and configfiles. Args: args: Arguments returned from parser.parse_args(). """ configfile.parse(args.config) for option, value in args.cmd_settings: try: setting = api.settings.get(option) setting.value = value except KeyError: log.error("Unknown setting %s", option) except ValueError as e: log.error(str(e)) keyfile.parse(args.keyfile) styles.parse() def run_startup_commands(*commands: str) -> None: """Run commands given via --command at startup. Args: commands: All command strings given via individual --command arguments. """ total = len(commands) for i, command in enumerate(commands, start=1): _logger.debug("Startup commands: running %d/%d '%s'", i, total, command) if "quit" in command: # This does not work without a running app log.warning("Quitting forcefully as the app does not exist") app.Application.preexit(customtypes.Exit.success) sys.exit(customtypes.Exit.success) else: runners.run(command, mode=api.modes.current())
2,325
test call kwargs single
# Copyright Iris contributors # # This file is part of Iris and is released under the LGPL license. # See COPYING and COPYING.LESSER in the root of the repository for full # licensing details. """ Unit tests for the :func:`iris.common.lenient._lenient_client`. """ # Import iris.tests first so that some things can be initialised before # importing anything else. import iris.tests as tests # isort:skip from inspect import getmodule from unittest.mock import sentinel from iris.common.lenient import _LENIENT, _lenient_client class Test(tests.IrisTest): def setUp(self): module_name = getmodule(self).__name__ self.client = f"{module_name}" + ".Test.{}.<locals>.myclient" self.service = f"{module_name}" + ".Test.{}.<locals>.myservice" self.active = "active" self.args_in = sentinel.arg1, sentinel.arg2 self.kwargs_in = dict(kwarg1=sentinel.kwarg1, kwarg2=sentinel.kwarg2) def test_args_too_many(self): emsg = "Invalid lenient client arguments, expecting 1" with self.assertRaisesRegex(AssertionError, emsg): _lenient_client(None, None) def test_args_not_callable(self): emsg = "Invalid lenient client argument, expecting a callable" with self.assertRaisesRegex(AssertionError, emsg): _lenient_client(None) def test_args_and_kwargs(self): def func(): pass emsg = ( "Invalid lenient client, got both arguments and keyword arguments" ) with self.assertRaisesRegex(AssertionError, emsg): _lenient_client(func, services=func) def test_call_naked(self): @_lenient_client def myclient(): return _LENIENT.__dict__.copy() result = myclient() self.assertIn(self.active, result) qualname_client = self.client.format("test_call_naked") self.assertEqual(result[self.active], qualname_client) self.assertNotIn(qualname_client, result) def test_call_naked_alternative(self): def myclient(): return _LENIENT.__dict__.copy() result = _lenient_client(myclient)() self.assertIn(self.active, result) qualname_client = self.client.format("test_call_naked_alternative") self.assertEqual(result[self.active], qualname_client) self.assertNotIn(qualname_client, result) def test_call_naked_client_args_kwargs(self): @_lenient_client def myclient(*args, **kwargs): return args, kwargs args_out, kwargs_out = myclient(*self.args_in, **self.kwargs_in) self.assertEqual(args_out, self.args_in) self.assertEqual(kwargs_out, self.kwargs_in) def test_call_naked_doc(self): @_lenient_client def myclient(): """myclient doc-string""" self.assertEqual(myclient.__doc__, "myclient doc-string") def test_call_no_kwargs(self): @_lenient_client() def myclient(): return _LENIENT.__dict__.copy() result = myclient() self.assertIn(self.active, result) qualname_client = self.client.format("test_call_no_kwargs") self.assertEqual(result[self.active], qualname_client) self.assertNotIn(qualname_client, result) def test_call_no_kwargs_alternative(self): def myclient(): return _LENIENT.__dict__.copy() result = (_lenient_client())(myclient)() self.assertIn(self.active, result) qualname_client = self.client.format("test_call_no_kwargs_alternative") self.assertEqual(result[self.active], qualname_client) self.assertNotIn(qualname_client, result) def test_call_kwargs_none(self): @_lenient_client(services=None) def myclient(): return _LENIENT.__dict__.copy() result = myclient() self.assertIn(self.active, result) qualname_client = self.client.format("test_call_kwargs_none") self.assertEqual(result[self.active], qualname_client) self.assertNotIn(qualname_client, result) def METHOD_NAME(self): service = sentinel.service @_lenient_client(services=service) def myclient(): return _LENIENT.__dict__.copy() result = myclient() self.assertIn(self.active, result) qualname_client = self.client.format("test_call_kwargs_single") self.assertEqual(result[self.active], qualname_client) self.assertIn(qualname_client, result) self.assertEqual(result[qualname_client], (service,)) def test_call_kwargs_single_callable(self): def myservice(): pass @_lenient_client(services=myservice) def myclient(): return _LENIENT.__dict__.copy() test_name = "test_call_kwargs_single_callable" result = myclient() self.assertIn(self.active, result) qualname_client = self.client.format(test_name) self.assertEqual(result[self.active], qualname_client) self.assertIn(qualname_client, result) qualname_services = (self.service.format(test_name),) self.assertEqual(result[qualname_client], qualname_services) def test_call_kwargs_iterable(self): services = (sentinel.service1, sentinel.service2) @_lenient_client(services=services) def myclient(): return _LENIENT.__dict__.copy() result = myclient() self.assertIn(self.active, result) qualname_client = self.client.format("test_call_kwargs_iterable") self.assertEqual(result[self.active], qualname_client) self.assertIn(qualname_client, result) self.assertEqual(set(result[qualname_client]), set(services)) def test_call_client_args_kwargs(self): @_lenient_client() def myclient(*args, **kwargs): return args, kwargs args_out, kwargs_out = myclient(*self.args_in, **self.kwargs_in) self.assertEqual(args_out, self.args_in) self.assertEqual(kwargs_out, self.kwargs_in) def test_call_doc(self): @_lenient_client() def myclient(): """myclient doc-string""" self.assertEqual(myclient.__doc__, "myclient doc-string") if __name__ == "__main__": tests.main()
2,326
directional index
# :copyright (c) URBANopt, Alliance for Sustainable Energy, LLC, and other contributors. # See also https://github.com/urbanopt/geojson-modelica-translator/blob/develop/LICENSE.md from collections import defaultdict class CouplingGraph: """Manages coupling relationships""" def __init__(self, couplings): if len(couplings) == 0: raise Exception('At least one coupling must be provided') self._couplings = couplings self._models_by_id = {} for coupling in self._couplings: a, b = coupling._model_a, coupling._model_b self._models_by_id[a.id] = a self._models_by_id[b.id] = b self._couplings_by_model_id = defaultdict(list) for coupling in self._couplings: a, b = coupling._model_a, coupling._model_b self._couplings_by_model_id[a.id].append(coupling) self._couplings_by_model_id[b.id].append(coupling) # _grouped_couplings_by_model_id stores couplings a model is involved with # grouped by the type of the _other_ model involved, e.g. # { # ... # 'my_network_123': { # 'ets_couplings': [...], # 'system_couplings': [...] # }, # ... # } self._grouped_couplings_by_model_id = {} for model_id, couplings in self._couplings_by_model_id.items(): grouped_couplings = defaultdict(list) for coupling in couplings: other_model = coupling.get_other_model(self._models_by_id[model_id]) coupling_type = f'{other_model.simple_gmt_type}_couplings' grouped_couplings[coupling_type].append(coupling) self._grouped_couplings_by_model_id[model_id] = grouped_couplings @property def couplings(self): return [coupling for coupling in self._couplings] @property def models(self): return [model for _, model in self._models_by_id.items()] def couplings_by_type(self, model_id): """Returns the model's associated couplings keyed by the types of the _other_ model involved For example if given model is ets, and its coupled to a load and network, the result would be: { 'load_couplings': [<load coupling>], 'network_couplings': [<network coupling>], } :param model_id: str :return: dict """ model = self._models_by_id[model_id] grouped_couplings = self._grouped_couplings_by_model_id[model.id] result = {} for type_, couplings in grouped_couplings.items(): result[type_] = [coupling.to_dict() for coupling in couplings] return result def METHOD_NAME(self, model_a_id, model_b_id): """Returns the index of model_b within model_a's adjacency list for model_b's type. For example, if our graph looks like this, and model_b is an ETS ``` { ... model_a: { ets_couplings: [ { ets: model_b, ... }, { ets: model_c, ...} ], ... }, ... } ``` Then this method would return 0, because it's at index 0 :param model_a_id: str, id of model_a :param model_b_id: str, id of model_b :return: int """ if model_a_id not in self._models_by_id: raise Exception('Model A id was not found') if model_b_id not in self._models_by_id: raise Exception('Model B id was not found') model_a, model_b = self._models_by_id[model_a_id], self._models_by_id[model_b_id] grouped_couplings = self._grouped_couplings_by_model_id[model_a.id] coupling_type = f'{model_b.simple_gmt_type}_couplings' try: couplings = grouped_couplings[coupling_type] other_models = [coupling.get_other_model(model_a) for coupling in couplings] other_model_ids = [m.id for m in other_models] return other_model_ids.index(model_b.id) except KeyError: raise Exception(f'model_a has no coupling with model_b\'s type ({model_b.simple_gmt_type})') except ValueError: raise Exception('model_a has no coupling with model_b') def get_coupled_load(self, ets_id): """Returns the load coupled to the provided ets :param ets_id: str :return: dict """ if ets_id not in self._grouped_couplings_by_model_id: raise Exception(f'No ETS with id {ets_id}') try: load_couplings = self._grouped_couplings_by_model_id[ets_id]['load_couplings'] return load_couplings[0].to_dict()['load'] except (KeyError, IndexError): raise Exception('ETS is not coupled to a load') def get_coupling(self, coupling_id): for coupling in self._couplings: if coupling.id == coupling_id: return coupling raise Exception(f'No coupling found with id "{coupling_id}"')
2,327
test scaleway remove absent nic
# Copyright (c) 2019, Ansible Project # GNU General Public License v3.0+ (see LICENSES/GPL-3.0-or-later.txt or https://www.gnu.org/licenses/gpl-3.0.txt) # SPDX-License-Identifier: GPL-3.0-or-later from __future__ import (absolute_import, division, print_function) __metaclass__ = type import os import json import pytest from ansible_collections.community.general.plugins.modules import scaleway_compute_private_network from ansible_collections.community.general.plugins.module_utils.scaleway import Scaleway, Response from ansible_collections.community.general.tests.unit.plugins.modules.utils import set_module_args from ansible_collections.community.general.tests.unit.compat.mock import patch def response_without_nics(): info = {"status": 200, "body": '{ "private_nics": []}' } return Response(None, info) def response_with_nics(): info = {"status": 200, "body": ('{ "private_nics": [{' '"id": "c123b4cd-ef5g-678h-90i1-jk2345678l90",' '"private_network_id": "b589b4cd-ef5g-678h-90i1-jk2345678l90",' '"server_id": "c004b4cd-ef5g-678h-90i1-jk2345678l90",' '"mac_address": "02:00:00:00:12:23",' '"state": "available",' '"creation_date": "2022-03-30T06:25:28.155973+00:00",' '"modification_date": "2022-03-30T06:25:28.155973+00:00",' '"zone": "fr-par-1"' '}]}' ) } return Response(None, info) def response_when_add_nics(): info = {"status": 200, "body": ('{ "private_nics": {' '"id": "c123b4cd-ef5g-678h-90i1-jk2345678l90",' '"private_network_id": "b589b4cd-ef5g-678h-90i1-jk2345678l90",' '"server_id": "c004b4cd-ef5g-678h-90i1-jk2345678l90",' '"mac_address": "02:00:00:00:12:23",' '"state": "available",' '"creation_date": "2022-03-30T06:25:28.155973+00:00",' '"modification_date": "2022-03-30T06:25:28.155973+00:00",' '"zone": "fr-par-1"' '}}' ) } return Response(None, info) def response_remove_nics(): info = {"status": 200} return Response(None, info) def test_scaleway_private_network_without_arguments(capfd): set_module_args({}) with pytest.raises(SystemExit) as results: scaleway_compute_private_network.main() out, err = capfd.readouterr() assert not err assert json.loads(out)['failed'] def test_scaleway_add_nic(capfd): os.environ['SCW_API_TOKEN'] = 'notrealtoken' pnid = 'b589b4cd-ef5g-678h-90i1-jk2345678l90' cid = 'c004b4cd-ef5g-678h-90i1-jk2345678l90' url = 'servers/' + cid + '/private_nics' set_module_args({"project": "a123b4cd-ef5g-678h-90i1-jk2345678l90", "state": "present", "region": "par1", "compute_id": cid, "private_network_id": pnid }) with patch.object(Scaleway, 'get') as mock_scw_get: mock_scw_get.return_value = response_without_nics() with patch.object(Scaleway, 'post') as mock_scw_post: mock_scw_post.return_value = response_when_add_nics() with pytest.raises(SystemExit) as results: scaleway_compute_private_network.main() mock_scw_post.assert_any_call(path=url, data={"private_network_id": pnid}) mock_scw_get.assert_any_call(url) out, err = capfd.readouterr() del os.environ['SCW_API_TOKEN'] assert not err assert json.loads(out)['changed'] def test_scaleway_add_existing_nic(capfd): os.environ['SCW_API_TOKEN'] = 'notrealtoken' pnid = 'b589b4cd-ef5g-678h-90i1-jk2345678l90' cid = 'c004b4cd-ef5g-678h-90i1-jk2345678l90' url = 'servers/' + cid + '/private_nics' set_module_args({"project": "a123b4cd-ef5g-678h-90i1-jk2345678l90", "state": "present", "region": "par1", "compute_id": cid, "private_network_id": pnid }) with patch.object(Scaleway, 'get') as mock_scw_get: mock_scw_get.return_value = response_with_nics() with pytest.raises(SystemExit) as results: scaleway_compute_private_network.main() mock_scw_get.assert_any_call(url) out, err = capfd.readouterr() del os.environ['SCW_API_TOKEN'] assert not err assert not json.loads(out)['changed'] def test_scaleway_remove_existing_nic(capfd): os.environ['SCW_API_TOKEN'] = 'notrealtoken' pnid = 'b589b4cd-ef5g-678h-90i1-jk2345678l90' cid = 'c004b4cd-ef5g-678h-90i1-jk2345678l90' nicid = 'c123b4cd-ef5g-678h-90i1-jk2345678l90' url = 'servers/' + cid + '/private_nics' urlremove = 'servers/' + cid + '/private_nics/' + nicid set_module_args({"project": "a123b4cd-ef5g-678h-90i1-jk2345678l90", "state": "absent", "region": "par1", "compute_id": cid, "private_network_id": pnid }) with patch.object(Scaleway, 'get') as mock_scw_get: mock_scw_get.return_value = response_with_nics() with patch.object(Scaleway, 'delete') as mock_scw_delete: mock_scw_delete.return_value = response_remove_nics() with pytest.raises(SystemExit) as results: scaleway_compute_private_network.main() mock_scw_delete.assert_any_call(urlremove) mock_scw_get.assert_any_call(url) out, err = capfd.readouterr() del os.environ['SCW_API_TOKEN'] assert not err assert json.loads(out)['changed'] def METHOD_NAME(capfd): os.environ['SCW_API_TOKEN'] = 'notrealtoken' pnid = 'b589b4cd-ef5g-678h-90i1-jk2345678l90' cid = 'c004b4cd-ef5g-678h-90i1-jk2345678l90' url = 'servers/' + cid + '/private_nics' set_module_args({"project": "a123b4cd-ef5g-678h-90i1-jk2345678l90", "state": "absent", "region": "par1", "compute_id": cid, "private_network_id": pnid }) with patch.object(Scaleway, 'get') as mock_scw_get: mock_scw_get.return_value = response_without_nics() with pytest.raises(SystemExit) as results: scaleway_compute_private_network.main() mock_scw_get.assert_any_call(url) out, err = capfd.readouterr() del os.environ['SCW_API_TOKEN'] assert not err assert not json.loads(out)['changed']
2,328
pack results2
# -*- coding: utf-8 -*- """ Created on Sat Apr 12 17:58:51 2014 @author: david """ import numpy as np try: import copy_reg except ImportError: import copyreg as copy_reg def pickleSlice(slice): return unpickleSlice, (slice.start, slice.stop, slice.step) def unpickleSlice(start, stop, step): return slice(start, stop, step) copy_reg.pickle(slice, pickleSlice, unpickleSlice) def replNoneWith1(n): if n is None: return 1 else: return n def fmtSlicesUsed(slicesUsed): if slicesUsed is None: return ((-1,-1,-1),(-1,-1,-1),(-1,-1,-1)) else: return tuple([(sl.start, sl.stop, replNoneWith1(sl.step)) for sl in slicesUsed] ) def _tuplify(var): try: return tuple(var) except TypeError: return var def pack_results(dtype, tIndex, fitResults, fitError=None, startParams=None, slicesUsed=None, resultCode=-1, **kwargs): """ Pack fit results into a structured array of the given dtype Collects logic from fit factories to a central place which hopefully makes it easier to maintain. Parameters ---------- dtype : np.dtype the numpy dtype of the structured array we want to pack into tIndex : int the current frame number fitResults : np.ndarray the fit parameters in the order they are defined in the dtype fitError : np.ndarray the fit errors in the order they are defined in the dtype startParams : np.ndarray, optional the start parameters in the order they are defined in the dtype slicesUsed : tuple, optional a 3-tuple of slice objects (xslice, yslice, zslice) that define the ROI used for this molecule resultCode : int, optional the result code as returned by the fitting routine **kwargs : dict, optional any additional information which gets stored in the structured array, either a scalar or a numpy array Returns ------- np.recarray The packed results array TODOS: - Support length mismatch on data FIXME: This currently uses tuples which is really gross for a number of reasons (e.g. moves what should be a numpy low level c loop into python, relies on implicitly coercing types rather than doing it explicitly). For some reason it is currently faster than assigning to views into an array even though it really should be quite a lot slower. If numpy history is anything to go by, it's also quite likely to break at some point in the future. """ dtype = np.dtype(dtype) if fitError is None: fitError = -5e3 + 0 * fitResults if startParams is None: startParams = -5e3 + 0 * fitResults slicesUsed = fmtSlicesUsed(slicesUsed) ns = locals() ns.update(kwargs) return np.array(tuple([_tuplify(ns[n]) for n in dtype.names]), dtype=dtype) ############################################### # Below are various experimental alternatives to pack_results. They are still a work in progress, but should # hopefully let us replace some of the tuple madness in the above one. Of the alternatives, _pack_results4, which # pushes stuff into a pre-allocated array is ~2 times faster than the tuple based code above, but would need quite # a lot of additional refactoring in the calling code to make it actually work (the exceptions here are the Multifit # and GPU fitting classes. Punting that to some point in the future for now. def _pack_results1(dtype, flatdtype, tIndex, fitResults, fitError=None, startParams=None, slicesUsed=None, resultCode=-1, **kwargs): dtype = np.dtype(dtype) if fitError is None: fitError = -5e3 + 0 * fitResults if startParams is None: startParams = -5e3 + 0 * fitResults slicesUsed = np.ravel(fmtSlicesUsed(slicesUsed)) ns = locals() ns.update(kwargs) res = np.zeros(1, dtype=flatdtype) for n in dtype.names: res[n] = ns[n] return res.view(dtype) def _pack_results4(out, flat_out, tIndex, fitResults, fitError=None, startParams=None, slicesUsed=None, resultCode=-1, **kwargs): if fitError is None: fitError = -5e3 + 0 * fitResults if startParams is None: startParams = -5e3 + 0 * fitResults slicesUsed = np.ravel(fmtSlicesUsed(slicesUsed)) ns = locals() ns.update(kwargs) for n in out.dtype.names: flat_out[n] = ns[n] return out def _pack_results3(dtype, flatdtype, tIndex, fitResults, fitError=None, startParams=None, slicesUsed=None, resultCode=-1, **kwargs): dtype = np.dtype(dtype) if fitError is None: fitError = -5e3 + 0 * fitResults if startParams is None: startParams = -5e3 + 0 * fitResults slicesUsed = np.ravel(fmtSlicesUsed(slicesUsed)) ns = locals() ns.update(kwargs) #res = np.zeros(1, dtype=flatdtype) #for n in dtype.names: # d = ns[n] return np.array(tuple([ns[n] for n in dtype.names]), flatdtype).view(dtype) def METHOD_NAME(dtype, tIndex, fitResults, fitError=None, startParams=None, slicesUsed=None, resultCode=-1, **kwargs): dtype = np.dtype(dtype) if fitError is None: fitError = -5e3 + 0 * fitResults if startParams is None: startParams = -5e3 + 0 * fitResults slicesUsed = fmtSlicesUsed(slicesUsed) ns = locals() ns.update(kwargs) res = np.zeros(1, dtype=dtype) for n in dtype.names: res[n] = _tuplify(ns[n]) return res #generate a flat dtype from a standard nested one (incomplete) def _gen_flat_dtype(dtype): dtype = np.dtype(dtype) out_dt = [] for n in dtype.names: field_dt = dtype.fields[n][0]
2,329
min
"""paddle backend implementation""" from packaging.version import Version import paddle if Version(paddle.__version__) != Version("0.0.0"): raise RuntimeError("DeepXDE requires PaddlePaddle==0.0.0(develop).") if paddle.device.is_compiled_with_cuda(): paddle.device.set_device("gpu") lib = paddle def data_type_dict(): return { "float16": paddle.float16, "float32": paddle.float32, "float64": paddle.float64, "uint8": paddle.uint8, "int8": paddle.int8, "int16": paddle.int16, "int32": paddle.int32, "int64": paddle.int64, "bool": paddle.bool, } def is_gpu_available(): device = paddle.device.get_device() # "cpu"/"gpu:x"/"xpu:x"/"mlu:x"/"npu:x" return "gpu" in device def is_tensor(obj): return paddle.is_tensor(obj) def shape(input_tensor): return input_tensor.shape def size(input_tensor): return int(paddle.numel(input_tensor)) def ndim(input_tensor): return input_tensor.ndim def transpose(tensor, axes=None): if axes is None: axes = tuple(range(tensor.ndim)[::-1]) return paddle.transpose(tensor, axes) def reshape(tensor, shape): return paddle.reshape(tensor, shape) def Variable(initial_value, dtype=None): if paddle.in_dynamic_mode(): return paddle.to_tensor(initial_value, dtype=dtype, stop_gradient=False) return paddle.create_parameter( shape=[1], dtype=paddle.get_default_dtype() if dtype is None else dtype, default_initializer=paddle.nn.initializer.Constant(value=initial_value), ) def as_tensor(data, dtype=None): if paddle.is_tensor(data): if dtype is None or data.dtype == dtype: return data return data.astype(dtype) return paddle.to_tensor(data, dtype=dtype) def sparse_tensor(indices, values, shape): return paddle.sparse.sparse_coo_tensor( list(zip(*indices)), values, shape, stop_gradient=False ) def from_numpy(np_array): return paddle.to_tensor(np_array) def to_numpy(input_tensor): return input_tensor.detach().cpu().numpy() def concat(values, axis): return paddle.concat(values, axis=axis) def stack(values, axis): return paddle.stack(values, axis=axis) def expand_dims(tensor, axis): return paddle.unsqueeze(tensor, axis=axis) def reverse(tensor, axis): return paddle.flip(tensor, axis) def roll(tensor, shift, axis): return paddle.roll(tensor, shift, axis) def lgamma(tensor): return paddle.lgamma(tensor) def elu(x): return paddle.nn.functional.elu(x) def relu(x): return paddle.nn.functional.relu(x) def selu(x): return paddle.nn.functional.selu(x) def sigmoid(x): return paddle.nn.functional.sigmoid(x) def silu(x): return paddle.nn.functional.silu(x) def sin(x): return paddle.sin(x) def cos(x): return paddle.cos(x) def exp(x): return paddle.exp(x) def square(x): return paddle.square(x) # pylint: disable=redefined-builtin def abs(x): return paddle.abs(x) def minimum(x, y): return paddle.minimum(x, y) def tanh(x): return paddle.tanh(x) def pow(x, y): return paddle.pow(x, y) def mean(input_tensor, dim, keepdims=False): return paddle.mean(input_tensor, axis=dim, keepdim=keepdims) def reduce_mean(input_tensor): return paddle.mean(input_tensor) def sum(input_tensor, dim, keepdims=False): return paddle.sum(input_tensor, axis=dim, keepdim=keepdims) def reduce_sum(input_tensor): return paddle.sum(input_tensor) def prod(input_tensor, dim, keepdims=False): return paddle.prod(input_tensor, axis=dim, keepdim=keepdims) def reduce_prod(input_tensor): return paddle.prod(input_tensor) # pylint: disable=redefined-builtin def METHOD_NAME(input_tensor, dim, keepdims=False): return paddle.METHOD_NAME(input_tensor, axis=dim, keepdim=keepdims) def reduce_min(input_tensor): return paddle.METHOD_NAME(input_tensor) # pylint: disable=redefined-builtin def max(input_tensor, dim, keepdims=False): return paddle.max(input_tensor, axis=dim, keepdim=keepdims) def reduce_max(input_tensor): return paddle.max(input_tensor) def norm(x, ord=None, axis=None, keepdims=False): if ord is None: ord = 2 return paddle.linalg.norm(x, p=ord, axis=axis, keepdim=keepdims) def zeros(shape, dtype): return paddle.zeros(shape, dtype=dtype) def zeros_like(input_tensor): return paddle.zeros_like(input_tensor) def matmul(x, y): return paddle.mm(x, y) def sparse_dense_matmul(x, y): return paddle.sparse.matmul(x, y)
2,330
kill podman container by name
from pathlib import Path from typing import Callable, Optional from paramiko import SSHException from scp import SCPException import consts from assisted_test_infra.test_infra.controllers.node_controllers import ssh from assisted_test_infra.test_infra.controllers.node_controllers.disk import Disk from service_client import log class Node: def __init__(self, name, node_controller, private_ssh_key_path: Optional[Path] = None, username="core"): self.name = name self.private_ssh_key_path = private_ssh_key_path self.username = username self.node_controller = node_controller self.original_vcpu_count = self.get_cpu_cores() self.original_ram_kib = self.get_ram_kib() self._ips = [] self._macs = [] def __str__(self): return self.name @property def is_active(self): return self.node_controller.is_active(self.name) def is_master_in_name(self): return consts.NodeRoles.MASTER in self.name def is_worker_in_name(self): return consts.NodeRoles.WORKER in self.name def _set_ips_and_macs(self): self._ips, self._macs = self.node_controller.get_node_ips_and_macs(self.name) # TODO maybe add ttl? need mechanism that # will zero this value when node is stopped @property def ips(self): if not self._ips: self._set_ips_and_macs() return self._ips @property def macs(self): if not self._macs: self._set_ips_and_macs() return self._macs @property def ssh_connection(self): if not self.ips: raise RuntimeError(f"No available IPs for node {self.name}") log.info("Trying to access through IP addresses: %s", ", ".join(self.ips)) for ip in self.ips: exception = None try: connection = ssh.SshConnection( ip, private_ssh_key_path=self.private_ssh_key_path, username=self.username ) connection.connect() return connection except (TimeoutError, SCPException, SSHException) as e: log.warning("Could not SSH through IP %s: %s", ip, str(e)) exception = e if exception is not None: raise exception def upload_file(self, local_source_path, remote_target_path): with self.ssh_connection as _ssh: return _ssh.upload_file(local_source_path, remote_target_path) def download_file(self, remote_source_path, local_target_path): with self.ssh_connection as _ssh: return _ssh.download_file(remote_source_path, local_target_path) def run_command(self, bash_command, background=False): output = "" if not self.node_controller.is_active(self.name): raise RuntimeError("%s is not active, can't run given command") with self.ssh_connection as _ssh: if background: _ssh.background_script(bash_command) else: output = _ssh.script(bash_command, verbose=False) return output def shutdown(self): return self.node_controller.shutdown_node(self.name) def start(self, check_ips=True): return self.node_controller.start_node(self.name, check_ips) def restart(self): self.shutdown() self.start() def restart_service(self, service): log.info("Restarting service: %s on host %s", service, self.name) self.run_command(f"sudo systemctl restart {service}.service") def reset(self): log.info("Resetting host %s", self.name) self.shutdown() self.format_disk() self.start() def format_disk(self, disk_index: int = 0): self.node_controller.format_node_disk(self.name, disk_index) def kill_installer(self): self.METHOD_NAME("assisted-installer") def kill_service(self, service): log.info("Killing service %s on host %s", service, self.name) self.run_command(f"sudo systemctl kill {service}.service || true") def METHOD_NAME(self, container_name): output = self.run_command(f"sudo su root -c 'podman ps | grep {container_name}'") log.info( f"Container details on {self.name}: provided container name: {container_name}, output: " f"\n {output}" ) log.info(f"Killing container: {container_name}") output = self.run_command(f"sudo su root -c 'podman kill {container_name}'") log.info(f"Output of kill container command: {output}") def is_service_active(self, service): log.info("Verifying if service %s is active on host %s", service, self.name) output = self.run_command(f"sudo systemctl is-active {service}.service || true") return output.strip() == "active" def set_boot_order(self, cd_first=False, cdrom_iso_path=None) -> None: log.info("Setting boot order with cd_first=%s on %s", cd_first, self.name) self.node_controller.set_boot_order(node_name=self.name, cd_first=cd_first, cdrom_iso_path=cdrom_iso_path) def set_per_device_boot_order(self, key: Callable[[Disk], int]): log.info("Setting boot order on %s", self.name) self.node_controller.set_per_device_boot_order(node_name=self.name, key=key) def set_boot_order_flow(self, cd_first=False, start=True): log.info("Setting boot order , cd_first=%s, start=%s", cd_first, start) self.shutdown() self.set_boot_order(cd_first) if start: self.start() def get_host_id(self): return self.node_controller.get_host_id(self.name) def get_cpu_cores(self): return self.node_controller.get_cpu_cores(self.name) def set_cpu_cores(self, core_count): self.node_controller.set_cpu_cores(self.name, core_count) def reset_cpu_cores(self): self.set_cpu_cores(self.original_vcpu_count) def get_ram_kib(self): return self.node_controller.get_ram_kib(self.name) def set_ram_kib(self, ram_kib): self.node_controller.set_ram_kib(self.name, ram_kib) def reset_ram_kib(self): self.set_ram_kib(self.original_ram_kib) def get_disks(self): return self.node_controller.list_disks(self.name) def attach_test_disk(self, disk_size, **kwargs): return self.node_controller.attach_test_disk(self.name, disk_size, **kwargs) def detach_all_test_disks(self): self.node_controller.detach_all_test_disks(self.name) def attach_interface(self, network_xml, target_interface=consts.TEST_TARGET_INTERFACE): return self.node_controller.attach_interface(self.name, network_xml, target_interface) def add_interface(self, network_name, target_interface=consts.TEST_TARGET_INTERFACE): return self.node_controller.add_interface(self.name, network_name, target_interface) def create_network(self, network_xml): return self.node_controller.create_network(network_xml) def get_network_by_name(self, network_name): return self.node_controller.get_network_by_name(network_name) def destroy_network(self, network): self.node_controller.destroy_network(network) def undefine_interface(self, mac): self.node_controller.undefine_interface(self.name, mac)
2,331
test categories children
import graphene import pytest from .....product.models import Category from ....tests.utils import get_graphql_content @pytest.mark.django_db @pytest.mark.count_queries(autouse=False) def test_category_view(api_client, category_with_products, count_queries, channel_USD): query = """ fragment BasicProductFields on Product { id name thumbnail { url alt } thumbnail2x: thumbnail(size: 510) { url } } fragment Price on TaxedMoney { gross { amount currency } net { amount currency } } fragment ProductPricingField on Product { pricing { onSale priceRangeUndiscounted { start { ...Price } stop { ...Price } } priceRange { start { ...Price } stop { ...Price } } } } query Category($id: ID!, $pageSize: Int, $channel: String) { products ( first: $pageSize, filter: {categories: [$id]}, channel: $channel ) { totalCount edges { node { ...BasicProductFields ...ProductPricingField category { id name } } } pageInfo { endCursor hasNextPage hasPreviousPage startCursor } } category(id: $id) { seoDescription seoTitle id name backgroundImage { url } children(first: 10) { edges { node { id name } } } ancestors(last: 5) { edges { node { id name } } } } attributes(filter: {inCategory: $id}, channel: $channel, first: 100) { edges { node { id name slug choices(first: 10) { edges { node { id name slug } } } } } } } """ variables = { "pageSize": 100, "id": graphene.Node.to_global_id("Category", category_with_products.pk), "channel": channel_USD.slug, } content = get_graphql_content(api_client.post_graphql(query, variables)) assert content["data"]["category"] is not None @pytest.mark.django_db @pytest.mark.count_queries(autouse=False) def METHOD_NAME(api_client, categories_with_children, count_queries): query = """query categories { categories(first: 30) { edges { node { children(first: 30) { edges { node { id name children(first: 30) { edges { node { id name } } } } } } } } } }""" content = get_graphql_content(api_client.post_graphql(query)) assert content["data"]["categories"] is not None @pytest.mark.django_db @pytest.mark.count_queries(autouse=False) def test_category_delete( staff_api_client, category_with_products, permission_manage_products, settings, count_queries, ): query = """ mutation($id: ID!) { categoryDelete(id: $id) { category { name } errors { field message } } } """ settings.PLUGINS = ["saleor.plugins.webhook.plugin.WebhookPlugin"] category = category_with_products variables = {"id": graphene.Node.to_global_id("Category", category.id)} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) errors = content["data"]["categoryDelete"]["errors"] assert not errors @pytest.mark.django_db @pytest.mark.count_queries(autouse=False) def test_categories_for_federation_query_count( api_client, django_assert_num_queries, count_queries, ): categories = Category.objects.bulk_create( [ Category( name="category 1", slug="category-1", lft=0, rght=1, tree_id=0, level=0 ), Category( name="category 2", slug="category-2", lft=2, rght=3, tree_id=0, level=0 ), Category( name="category 3", slug="category-3", lft=4, rght=5, tree_id=0, level=0 ), ] ) query = """ query GetCategoryInFederation($representations: [_Any]) { _entities(representations: $representations) { __typename ... on Category { id name } } } """ variables = { "representations": [ { "__typename": "Category", "id": graphene.Node.to_global_id("Category", categories[0].pk), }, ], } with django_assert_num_queries(1): response = api_client.post_graphql(query, variables) content = get_graphql_content(response) assert len(content["data"]["_entities"]) == 1 variables = { "representations": [ { "__typename": "Category", "id": graphene.Node.to_global_id("Category", category.pk), } for category in categories ], } with django_assert_num_queries(1): response = api_client.post_graphql(query, variables) content = get_graphql_content(response) assert len(content["data"]["_entities"]) == 3
2,332
test add providers
import pytest from mimesis import BaseProvider, Generic class TestGeneric: def test_reseed(self, generic): generic.reseed(0xFFF) number_1 = generic.random.uniform(0, 1000) address_1 = generic.address.address() generic.reseed(0xFFF) number_2 = generic.random.uniform(0, 1000) address_2 = generic.address.address() assert number_1 == number_2 assert address_1 == address_2 def test_str(self, generic): assert str(generic).startswith("Generic") def test_base_person(self, generic): result = generic.person.username() assert result is not None def test_base_text(self, generic): result = generic.text.words() assert result is not None def test_base_payment(self, generic): result = generic.payment.bitcoin_address() assert result is not None def test_base_address(self, generic): result = generic.address.address() assert result is not None def test_base_food(self, generic): result = generic.food.fruit() assert result is not None def test_base_finance(self, generic): result = generic.finance.currency_symbol() assert result is not None def test_base_code(self, generic): result = generic.code.isbn() assert result is not None def test_base_binary_file(self, generic): result = generic.binaryfile.video() assert isinstance(result, bytes) def test_bad_argument(self, generic): with pytest.raises(AttributeError): _ = generic.bad_argument # noqa def METHOD_NAME(self, generic): class Provider1(BaseProvider): @staticmethod def one(): return 1 class Provider2(BaseProvider): class Meta: name = "custom_provider" @staticmethod def two(): return 2 class Provider3(BaseProvider): @staticmethod def three(): return 3 class Provider4: @staticmethod def empty(): ... class Provider5(BaseProvider): @staticmethod def five(): return 5 generic.add_providers(Provider1, Provider2, Provider3) assert generic.provider1.one() == 1 assert generic.custom_provider.two() == 2 assert generic.provider3.three() == 3 generic += Provider5 assert generic.provider5.five() == 5 with pytest.raises(TypeError): generic.add_providers(Provider4) with pytest.raises(TypeError): generic.add_providers(3) class UnnamedProvider(BaseProvider): @staticmethod def nothing(): return None generic.add_provider(UnnamedProvider) assert generic.unnamedprovider.nothing() is None def test_add_provider_generic_to_generic(self, generic): with pytest.raises(TypeError): generic.add_provider(Generic) def test_add_providers_generic_to_generic(self, generic): with pytest.raises(TypeError): generic.add_providers(Generic) def test_add_provider(self, generic): class CustomProvider(BaseProvider): def __init__(self, seed, a, b, c): super().__init__(seed=seed) self.a = a self.b = b self.c = c class Meta: name = "custom_provider" generic.add_provider(CustomProvider, a="a", b="b", c="c", seed=0xFFF) # See https://github.com/lk-geimfari/mimesis/issues/1172 assert generic.custom_provider.seed != 0xFFF assert generic.custom_provider.seed == generic.seed assert generic.custom_provider.a == "a" assert generic.custom_provider.b == "b" assert generic.custom_provider.c == "c" def test_dir(self, generic): providers = generic.__dir__() for p in providers: assert not p.startswith("_") class TestSeededGeneric: @pytest.fixture def g1(self, seed): return Generic(seed=seed) @pytest.fixture def g2(self, seed): return Generic(seed=seed) def test_generic_address(self, g1, g2): assert g1.address.street_number() == g2.address.street_number() assert g1.address.street_name() == g2.address.street_name() def test_generic_finance(self, g1, g2): assert g1.finance.company() == g2.finance.company() def test_generic_code(self, g1, g2): assert g1.code.locale_code() == g2.code.locale_code() assert g1.code.issn() == g2.code.issn() def test_generic_cryptographic(self, g1, g2): assert g1.cryptographic.uuid() != g2.cryptographic.uuid() assert g1.cryptographic.hash() != g2.cryptographic.hash() def test_generic_datetime(self, g1, g2): assert g1.datetime.week_date() == g2.datetime.week_date() assert g1.datetime.day_of_week() == g2.datetime.day_of_week() def test_generic_development(self, g1, g2): sl1 = g1.development.software_license() sl2 = g2.development.software_license() assert sl1 == sl2 def test_generic_file(self, g1, g2): assert g1.file.size() == g2.file.size() assert g1.file.file_name() == g2.file.file_name() def test_generic_food(self, g1, g2): assert g1.food.dish() == g2.food.dish() assert g1.food.spices() == g2.food.spices() def test_generic_hardware(self, g1, g2): assert g1.hardware.screen_size() == g2.hardware.screen_size() assert g1.hardware.cpu() == g2.hardware.cpu() def test_generic_internet(self, g1, g2): assert g1.internet.content_type() == g2.internet.content_type() def test_generic_numbers(self, g1, g2): assert g1.numeric.integers() == g2.numeric.integers() def test_generic_path(self, g1, g2): assert g1.path.root() == g2.path.root() assert g1.path.home() == g2.path.home() def test_generic_payment(self, g1, g2): assert g1.payment.cid() == g2.payment.cid() assert g1.payment.paypal() == g2.payment.paypal() def test_generic_person(self, g1, g2): assert g1.person.age() == g2.person.age() assert g1.person.name() == g2.person.name() def test_generic_science(self, g1, g2): assert g1.science.rna_sequence() == g2.science.rna_sequence() def test_generic_transport(self, g1, g2): assert g1.transport.airplane() == g2.transport.airplane()
2,333
generate
from conan import ConanFile from conan.tools.apple import fix_apple_shared_install_name from conan.tools.build import cross_building from conan.tools.env import VirtualBuildEnv from conan.tools.files import ( apply_conandata_patches, copy, export_conandata_patches, get, rename, rm, rmdir ) from conan.tools.gnu import Autotools, AutotoolsToolchain from conan.tools.layout import basic_layout from conan.tools.microsoft import is_msvc, unix_path from conan.tools.scm import Version import os required_conan_version = ">=1.54.0" class LibiconvConan(ConanFile): name = "libiconv" description = "Convert text to and from Unicode" license = ("LGPL-2.0-or-later", "LGPL-2.1-or-later") url = "https://github.com/conan-io/conan-center-index" homepage = "https://www.gnu.org/software/libiconv/" topics = ("iconv", "text", "encoding", "locale", "unicode", "conversion") package_type = "library" settings = "os", "arch", "compiler", "build_type" options = { "shared": [True, False], "fPIC": [True, False], } default_options = { "shared": False, "fPIC": True, } @property def _is_clang_cl(self): return self.settings.compiler == "clang" and self.settings.os == "Windows" and \ self.settings.compiler.get_safe("runtime") @property def _msvc_tools(self): return ("clang-cl", "llvm-lib", "lld-link") if self._is_clang_cl else ("cl", "lib", "link") @property def _settings_build(self): return getattr(self, "settings_build", self.settings) def export_sources(self): export_conandata_patches(self) def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def configure(self): if self.options.shared: self.options.rm_safe("fPIC") self.settings.rm_safe("compiler.libcxx") self.settings.rm_safe("compiler.cppstd") if Version(self.version) >= "1.17": self.license = "LGPL-2.1-or-later" else: self.license = "LGPL-2.0-or-later" def layout(self): basic_layout(self, src_folder="src") def build_requirements(self): if self._settings_build.os == "Windows": if not self.conf.get("tools.microsoft.bash:path", check_type=str): self.tool_requires("msys2/cci.latest") self.win_bash = True def source(self): get(self, **self.conan_data["sources"][self.version], strip_root=True) def METHOD_NAME(self): env = VirtualBuildEnv(self) env.METHOD_NAME() tc = AutotoolsToolchain(self) msvc_version = {"Visual Studio": "12", "msvc": "180"} if is_msvc(self) and Version(self.settings.compiler.version) >= msvc_version[str(self.settings.compiler)]: # https://github.com/conan-io/conan/issues/6514 tc.extra_cflags.append("-FS") if cross_building(self) and is_msvc(self): triplet_arch_windows = {"x86_64": "x86_64", "x86": "i686", "armv8": "aarch64"} # ICU doesn't like GNU triplet of conan for msvc (see https://github.com/conan-io/conan/issues/12546) host_arch = triplet_arch_windows.get(str(self.settings.arch)) build_arch = triplet_arch_windows.get(str(self._settings_build.arch)) if host_arch and build_arch: host = f"{host_arch}-w64-mingw32" build = f"{build_arch}-w64-mingw32" tc.configure_args.extend([ f"--host={host}", f"--build={build}", ]) env = tc.environment() if is_msvc(self) or self._is_clang_cl: cc, lib, link = self._msvc_tools build_aux_path = os.path.join(self.source_folder, "build-aux") lt_compile = unix_path(self, os.path.join(build_aux_path, "compile")) lt_ar = unix_path(self, os.path.join(build_aux_path, "ar-lib")) env.define("CC", f"{lt_compile} {cc} -nologo") env.define("CXX", f"{lt_compile} {cc} -nologo") env.define("LD", link) env.define("STRIP", ":") env.define("AR", f"{lt_ar} {lib}") env.define("RANLIB", ":") env.define("NM", "dumpbin -symbols") env.define("win32_target", "_WIN32_WINNT_VISTA") tc.METHOD_NAME(env) def build(self): apply_conandata_patches(self) autotools = Autotools(self) autotools.configure() autotools.make() def package(self): copy(self, "COPYING.LIB", self.source_folder, os.path.join(self.package_folder, "licenses")) autotools = Autotools(self) autotools.install() rm(self, "*.la", os.path.join(self.package_folder, "lib")) rmdir(self, os.path.join(self.package_folder, "share")) fix_apple_shared_install_name(self) if (is_msvc(self) or self._is_clang_cl) and self.options.shared: for import_lib in ["iconv", "charset"]: rename(self, os.path.join(self.package_folder, "lib", f"{import_lib}.dll.lib"), os.path.join(self.package_folder, "lib", f"{import_lib}.lib")) def package_info(self): self.cpp_info.set_property("cmake_find_mode", "both") self.cpp_info.set_property("cmake_file_name", "Iconv") self.cpp_info.set_property("cmake_target_name", "Iconv::Iconv") self.cpp_info.libs = ["iconv", "charset"] # TODO: to remove in conan v2 self.cpp_info.names["cmake_find_package"] = "Iconv" self.cpp_info.names["cmake_find_package_multi"] = "Iconv" self.env_info.PATH.append(os.path.join(self.package_folder, "bin"))
2,334
test read submodule resource by name
import sys import unittest from . import data01 from . import zipdata01, zipdata02 from . import util from importlib import resources, import_module class ResourceTests: # Subclasses are expected to set the `data` attribute. def test_is_resource_good_path(self): self.assertTrue(resources.is_resource(self.data, 'binary.file')) def test_is_resource_missing(self): self.assertFalse(resources.is_resource(self.data, 'not-a-file')) def test_is_resource_subresource_directory(self): # Directories are not resources. self.assertFalse(resources.is_resource(self.data, 'subdirectory')) def test_contents(self): contents = set(resources.contents(self.data)) # There may be cruft in the directory listing of the data directory. # Under Python 3 we could have a __pycache__ directory, and under # Python 2 we could have .pyc files. These are both artifacts of the # test suite importing these modules and writing these caches. They # aren't germane to this test, so just filter them out. contents.discard('__pycache__') contents.discard('__init__.pyc') contents.discard('__init__.pyo') self.assertEqual(contents, { '__init__.py', 'subdirectory', 'utf-8.file', 'binary.file', 'utf-16.file', }) class ResourceDiskTests(ResourceTests, unittest.TestCase): def setUp(self): self.data = data01 class ResourceZipTests(ResourceTests, util.ZipSetup, unittest.TestCase): pass class ResourceLoaderTests(unittest.TestCase): def test_resource_contents(self): package = util.create_package( file=data01, path=data01.__file__, contents=['A', 'B', 'C']) self.assertEqual( set(resources.contents(package)), {'A', 'B', 'C'}) def test_resource_is_resource(self): package = util.create_package( file=data01, path=data01.__file__, contents=['A', 'B', 'C', 'D/E', 'D/F']) self.assertTrue(resources.is_resource(package, 'B')) def test_resource_directory_is_not_resource(self): package = util.create_package( file=data01, path=data01.__file__, contents=['A', 'B', 'C', 'D/E', 'D/F']) self.assertFalse(resources.is_resource(package, 'D')) def test_resource_missing_is_not_resource(self): package = util.create_package( file=data01, path=data01.__file__, contents=['A', 'B', 'C', 'D/E', 'D/F']) self.assertFalse(resources.is_resource(package, 'Z')) class ResourceCornerCaseTests(unittest.TestCase): def test_package_has_no_reader_fallback(self): # Test odd ball packages which: # 1. Do not have a ResourceReader as a loader # 2. Are not on the file system # 3. Are not in a zip file module = util.create_package( file=data01, path=data01.__file__, contents=['A', 'B', 'C']) # Give the module a dummy loader. module.__loader__ = object() # Give the module a dummy origin. module.__file__ = '/path/which/shall/not/be/named' if sys.version_info >= (3,): module.__spec__.loader = module.__loader__ module.__spec__.origin = module.__file__ self.assertFalse(resources.is_resource(module, 'A')) class ResourceFromZipsTest(util.ZipSetupBase, unittest.TestCase): ZIP_MODULE = zipdata02 # type: ignore def test_unrelated_contents(self): # https://gitlab.com/python-devs/importlib_resources/issues/44 # # Here we have a zip file with two unrelated subpackages. The bug # reports that getting the contents of a resource returns unrelated # files. self.assertEqual( set(resources.contents('ziptestdata.one')), {'__init__.py', 'resource1.txt'}) self.assertEqual( set(resources.contents('ziptestdata.two')), {'__init__.py', 'resource2.txt'}) class SubdirectoryResourceFromZipsTest(util.ZipSetupBase, unittest.TestCase): ZIP_MODULE = zipdata01 # type: ignore def test_is_submodule_resource(self): submodule = import_module('ziptestdata.subdirectory') self.assertTrue( resources.is_resource(submodule, 'binary.file')) def METHOD_NAME(self): self.assertTrue( resources.is_resource('ziptestdata.subdirectory', 'binary.file')) def test_submodule_contents(self): submodule = import_module('ziptestdata.subdirectory') self.assertEqual( set(resources.contents(submodule)), {'__init__.py', 'binary.file'}) def test_submodule_contents_by_name(self): self.assertEqual( set(resources.contents('ziptestdata.subdirectory')), {'__init__.py', 'binary.file'}) class NamespaceTest(unittest.TestCase): def test_namespaces_cannot_have_resources(self): contents = resources.contents('test.test_importlib.data03.namespace') self.assertFalse(list(contents)) # Even though there is a file in the namespace directory, it is not # considered a resource, since namespace packages can't have them. self.assertFalse(resources.is_resource( 'test.test_importlib.data03.namespace', 'resource1.txt')) # We should get an exception if we try to read it or open it. self.assertRaises( FileNotFoundError, resources.open_text, 'test.test_importlib.data03.namespace', 'resource1.txt') self.assertRaises( FileNotFoundError, resources.open_binary, 'test.test_importlib.data03.namespace', 'resource1.txt') self.assertRaises( FileNotFoundError, resources.read_text, 'test.test_importlib.data03.namespace', 'resource1.txt') self.assertRaises( FileNotFoundError, resources.read_binary, 'test.test_importlib.data03.namespace', 'resource1.txt') if __name__ == '__main__': unittest.main()
2,335
build start state
# Copyright © 2012-2023 Forschungszentrum Jülich GmbH # SPDX-License-Identifier: LGPL-3.0-or-later import math from pathlib import Path from jupedsim_visualizer.geometry import Geometry from jupedsim_visualizer.replay_widget import ReplayWidget from jupedsim_visualizer.trajectory import Trajectory from jupedsim_visualizer.view_geometry_widget import ViewGeometryWidget from PySide6.QtCore import QSettings, QSize from PySide6.QtStateMachine import QFinalState, QState, QStateMachine from PySide6.QtWidgets import ( QApplication, QFileDialog, QMainWindow, QMessageBox, QTabWidget, ) import jupedsim as jps from jupedsim.recording import Recording from jupedsim.serialization import parse_wkt from jupedsim.util import build_jps_geometry class MainWindow(QMainWindow): def __init__(self, parent=None) -> None: QMainWindow.__init__(self, parent) self.settings = QSettings("jupedsim", "jupedsim_visualizer") self.setWindowTitle("jupedsim_visualizer") self._build_central_tabs_widget() self._build_menu_bar() self._build_state_machine() self.setVisible(True) def _build_central_tabs_widget(self): tabs = QTabWidget(self) tabs.setMinimumSize(QSize(640, 480)) tabs.setMovable(True) tabs.setDocumentMode(True) tabs.setTabsClosable(True) tabs.setTabBarAutoHide(True) tabs.tabCloseRequested.connect(tabs.removeTab) self.setCentralWidget(tabs) self.tabs = tabs def _build_menu_bar(self) -> None: menu = self.menuBar() open_menu = menu.addMenu("File") open_wkt_act = open_menu.addAction("Open wkt file") open_wkt_act.triggered.connect(self._open_wkt) open_replay_act = open_menu.addAction("Open replay file") open_replay_act.triggered.connect(self._open_replay) settings_menu = menu.addMenu("Settings") self._show_triangulation = settings_menu.addAction( "show triangulation" ) self._show_triangulation.setCheckable(True) self._show_triangulation.toggled.connect(self._toggle_triangulation) self._show_triangulation.setChecked( bool( self.settings.value( "show_triangulation", type=bool, defaultValue=False ) ) ) def _build_state_machine(self) -> None: sm = QStateMachine(self) sm.finished.connect(QApplication.quit) start = self.METHOD_NAME() sm.addState(start) exit = self._build_exit_state() sm.addState(exit) # start.addTransition(self.button.clicked, exit) sm.setInitialState(start) sm.start() self.state_machine = sm def METHOD_NAME(self) -> QState: state = QState() return state def _build_show_wkt_state(self) -> QState: state = QState() return state def _build_exit_state(self) -> QFinalState: state = QFinalState() return state def _toggle_triangulation(self, state: bool) -> None: self.settings.setValue("show_triangulation", state) for idx in range(self.tabs.count()): self.tabs.widget(idx).geo.show_triangulation(state) self.repaint() def _open_wkt(self): base_path_obj = self.settings.value( "files/last_wkt_location", type=str, defaultValue=Path("~").expanduser(), ) base_path = Path(str(base_path_obj)) file, _ = QFileDialog.getOpenFileName( self, caption="Open WKT file", dir=str(base_path) ) if not file: return file = Path(file) self.settings.setValue("files/last_wkt_location", str(file.parent)) try: wkt = parse_wkt(Path(file).read_text(encoding="UTF-8")) navi = jps.RoutingEngine(build_jps_geometry(wkt)) xmin, ymin, xmax, ymax = wkt.bounds info_text = f"Dimensions: {math.ceil(xmax - xmin)}m x {math.ceil(ymax - ymin)}m Triangles: {len(navi.mesh())}" name_text = f"Geometry: {file}" self.setUpdatesEnabled(False) geo = Geometry(navi) geo.show_triangulation(self._show_triangulation.isChecked()) tab = ViewGeometryWidget( navi, geo, name_text, info_text, parent=self ) tab_idx = self.tabs.insertTab(0, tab, file.name) self.tabs.setCurrentIndex(tab_idx) self.setUpdatesEnabled(True) except Exception as e: QMessageBox.critical( self, "Error importing WKT geometry", f"Error importing WKT geometry:\n{e}", ) return def _open_replay(self): base_path_obj = self.settings.value( "files/last_replay_location", type=str, defaultValue=Path("~").expanduser(), ) base_path = Path(str(base_path_obj)) file, _ = QFileDialog.getOpenFileName( self, caption="Open recording", dir=str(base_path) ) if not file: return file = Path(file) self.settings.setValue("files/last_replay_location", str(file.parent)) try: rec = Recording(file.as_posix()) self.setUpdatesEnabled(False) navi = jps.RoutingEngine(build_jps_geometry(rec.geometry())) geo = Geometry(navi) geo.show_triangulation(self._show_triangulation.isChecked()) trajectory = Trajectory(rec) tab = ReplayWidget(navi, rec, geo, trajectory, parent=self) tab_idx = self.tabs.insertTab(0, tab, file.name) self.tabs.setCurrentIndex(tab_idx) self.setUpdatesEnabled(True) self.update() except Exception as e: QMessageBox.critical( self, "Error importing simulation recording", f"Error importing simulation recording:\n{e}", ) return
2,336
path prettify
# -*- coding: utf-8 -*- # # This file is part of OpenMediaVault. # # @license http://www.gnu.org/licenses/gpl.html GPL Version 3 # @author Volker Theile <[email protected]> # @copyright Copyright (c) 2009-2023 Volker Theile # # OpenMediaVault is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # any later version. # # OpenMediaVault is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with OpenMediaVault. If not, see <http://www.gnu.org/licenses/>. __all__ = [ "camelcase_to_underscore", "truncate", "is_json", "is_uuid4", "is_fs_uuid", ] import json import re import uuid def camelcase_to_underscore(value): return ( re.sub("(((?<=[a-z])[A-Z])|([A-Z](?![A-Z]|$)))", "_\\1", value) .lower() .strip("_") ) def truncate(value, max_len): return value[:max_len] + (value[max_len:] and "...") def is_json(value): """ Finds out whether a string is JSON. :param value: The string being evaluated. :type value: str :return: Returns ``True`` if the string is JSON, otherwise ``False``. :rtype: bool """ if not isinstance(value, str): return False try: _ = json.loads(value) except ValueError: return False return True def is_uuid4(value): """ Finds out whether a variable is an UUID v4. :param value: The variable being evaluated. :type value: str :return: Returns ``True`` if the variable is an UUIDv4, otherwise ``False``. :rtype: bool """ if not isinstance(value, str): return False try: _ = uuid.UUID(value, version=4) except ValueError: return False return True def is_fs_uuid(value): """ Finds out whether a variable is a filesystem UUID. Example: - 78b669c1-9183-4ca3-a32c-80a4e2c61e2d (EXT2/3/4, JFS, XFS) - 7A48-BA97 (FAT) - 2ED43920D438EC29 (NTFS) - 2015-01-13-21-48-46-00 (ISO9660) See http://wiki.ubuntuusers.de/UUID :param value: The variable being evaluated. :type value: str :return: Returns ``True`` if the variable is a filesystem UUID, otherwise ``False``. :rtype: bool """ if not isinstance(value, str): return False # Check if it is an UUID v4. if is_uuid4(value): return True # Check if it is a NTFS, FAT or ISO9660 filesystem identifier. return None != re.match( r'^([a-f0-9]{4}-[a-f0-9]{4}|[a-f0-9]{16}|' '[0-9]{4}-[0-9]{2}-[0-9]{2}-[0-9]{2}-[0-9]{2}-[0-9]{2}-[0-9]{2})$', value, flags=re.IGNORECASE, ) def escape_blank(value, octal=False): """ Escape a string to be used in a shell environment. Blank characters will be replaced with their hexadecimal (\x20) or octal (\040) representation. Example: - /srv/dev-disk-by-label-xx yy => /srv/dev-disk-by-label-xx\x20yy - /srv/dev-disk-by-label-xx yy => /srv/dev-disk-by-label-xx\040yy :param value: The value that will be escaped. :type value: str :param octal: If ``True``, convert to octal values, otherwise hexadecimal. Defaults to ``False``. :type octal: bool :return: The escaped string. :rtype: str """ return value.replace(' ', '\\040' if octal else '\\x20') def unescape_blank(value, octal=False): """ Unescape a string. A hexadecimal (\x20) or octal (\040) blank will be replaced by their ASCII representation. Example: - /srv/dev-disk-by-label-xx\x20yy => /srv/dev-disk-by-label-xx yy - /srv/dev-disk-by-label-xx\040yy => /srv/dev-disk-by-label-xx yy :param value: The value that will be unescaped. :type value: str :param octal: If ``True``, convert octal values, otherwise hexadecimal. Defaults to ``False``. :type octal: bool :return: The unescaped string. :rtype: str """ return value.replace('\\040' if octal else '\\x20', ' ') def binary_format( value, precision=2, origin_unit='B', max_unit='YiB', return_json=False ): """ Convert a value into the highest possible binary unit. :param value: The number to convert (per default this is in Bytes). :type value: str|int :param precision: Defaults to 2. :param origin_unit: Defaults to ``B``. :param max_unit: Defaults to ``YiB``. :param return_json: Return value and unit as JSON object. Defaults to ``False``. :return: The converted string value including the unit or dictionary with the keys ``value`` and ``unit``. :rtype: str """ units = ['B', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB', 'YiB'] value = float(value) exp = units.index(origin_unit) max_exp = units.index(max_unit) while value >= 1024 and exp < max_exp: exp += 1 value = value / 1024 if not return_json: result = '{:.{prec}f} {}'.format(value, units[exp], prec=precision) else: result = {'value': value, 'unit': units[exp]} return result def METHOD_NAME(path): """ Make sure the directory path ends with a slash. >>> assert path_prettify('/foo/bar') == '/foo/bar/' >>> assert path_prettify('/foo/bar//') == '/foo/bar/' :param path: The path to process. :type path: str :return: Returns the prettified path. :rtype: str """ assert isinstance(path, str) return '{}/'.format(path.rstrip('/')) def add_slashes(value): """ Prefix certain characters of a string with '\'. These characters are: * backslash * single quote * double quote * dollar sign * backtick :param value: The string to be escaped. :type value: str :return: Returns a string with backslashes added before characters that need to be escaped. :rtype: str """ assert isinstance(value, str) for i in ['\\', '\'', '"', '$', '`']: value = value.replace(i, '\\{}'.format(i)) return value def yesno(value: bool, answers='yes,no') -> str: """ Convert a boolean value to 'yes' or 'no'. :return: Returns 'yes' if the value is true, otherwise 'no'. """ assert isinstance(value, bool) assert isinstance(answers, str) parts = answers.split(',') return parts[0] if value else parts[1]
2,337
best effort removal
# -*- coding: utf-8 -*- # vim:expandtab:autoindent:tabstop=4:shiftwidth=4:filetype=python:textwidth=0: import errno import os import os.path import shutil import stat import subprocess import time from . import exception from .trace_decorator import getLog, traceLog @traceLog() def mkdirIfAbsent(*args): for dirName in args: getLog().debug("ensuring that dir exists: %s", dirName) try: os.makedirs(dirName) getLog().debug("created dir: %s", dirName) except OSError as e: if e.errno != errno.EEXIST: getLog().exception("Could not create dir %s. Error: %s", dirName, e) raise exception.Error("Could not create dir %s. Error: %s" % (dirName, e)) @traceLog() def touch(fileName): getLog().debug("touching file: %s", fileName) open(fileName, 'a').close() @traceLog() def rmtree(path, selinux=False, exclude=()): """Version of shutil.rmtree that ignores no-such-file-or-directory errors, tries harder if it finds immutable files and supports excluding paths""" if os.path.islink(path): raise OSError("Cannot call rmtree on a symbolic link: %s" % path) try_again = True retries = 10 failed_to_handle = False failed_filename = None if path in exclude: return while try_again: try_again = False try: names = os.listdir(path) for name in names: fullname = os.path.join(path, name) if fullname not in exclude: try: mode = os.lstat(fullname).st_mode except OSError: mode = 0 if stat.S_ISDIR(mode): try: rmtree(fullname, selinux=selinux, exclude=exclude) except OSError as e: if e.errno in (errno.EPERM, errno.EACCES, errno.EBUSY): # we already tried handling this on lower level and failed, # there's no point in trying again now failed_to_handle = True raise else: os.remove(fullname) os.rmdir(path) except OSError as e: if failed_to_handle: raise if e.errno == errno.ENOENT: # no such file or directory pass elif e.errno == errno.ENOTEMPTY: # there's something left if exclude: # but it is excluded pass else: # likely during Ctrl+C something additional data try_again = True retries -= 1 if retries <= 0: raise time.sleep(2) elif selinux and (e.errno == errno.EPERM or e.errno == errno.EACCES): try_again = True if failed_filename == e.filename: raise failed_filename = e.filename os.system("chattr -R -i %s" % path) elif e.errno == errno.EBUSY: retries -= 1 if retries <= 0: raise try_again = True getLog().debug("retrying failed tree remove after sleeping a bit") time.sleep(2) else: raise def is_in_dir(path, directory): """Tests whether `path` is inside `directory`.""" # use realpath to expand symlinks path = os.path.realpath(path) directory = os.path.realpath(directory) return os.path.commonprefix([path, directory]) == directory def get_fs_type(path): cmd = ['/bin/stat', '-f', '-L', '-c', '%T', path] p = subprocess.Popen(cmd, shell=False, stdout=subprocess.PIPE, universal_newlines=True) p.wait() with p.stdout as f: return f.readline().strip() def find_non_nfs_dir(): dirs = ('/dev/shm', '/run', '/tmp', '/usr/tmp', '/') for d in dirs: if not get_fs_type(d).startswith('nfs'): return d raise exception.Error('Cannot find non-NFS directory in: %s' % dirs) def unlink_if_exists(path): """ Unlink, ignore FileNotFoundError, but keep raising other exceptions. """ try: os.unlink(path) except FileNotFoundError: pass def METHOD_NAME(path, use_rmtree=True): try: os.unlink(path) except OSError: pass if not use_rmtree: return try: shutil.rmtree(path) except OSError: pass def update_tree(dest, src): """ Copy files from SRC directory into DEST, recursively. The DEST directory is created, including subdirectories (if not existent). The files in DEST are created or updated (shutil.copy2). If file is about to replace directory or vice versa, it is done without asking. Files that are in DEST and not in SRC are kept untouched. """ getLog().debug("Updating files in %s with files from %s", dest, src) mkdirIfAbsent(dest) for dirpath, dirnames, filenames in os.walk(src): raw_subpath = os.path.relpath(dirpath, src) subpath = os.path.normpath(raw_subpath) destpath = os.path.join(dest, subpath) for filename in filenames: file_from = os.path.join(dirpath, filename) file_to = os.path.join(destpath, filename) METHOD_NAME(file_to) shutil.copy2(file_from, file_to) for subdir in dirnames: dest_subdir = os.path.join(destpath, subdir) METHOD_NAME(dest_subdir, use_rmtree=False) mkdirIfAbsent(dest_subdir)
2,338
read stdin lines
from pathlib import Path from sys import stdin from typing import Any, Dict, Iterator, List, Optional, Tuple, Union PathLike = Union[str, Path] RawDoc = Union[str, bytes] try: from ruamel.yaml import YAML _YAML_C = YAML(typ="safe", pure=False) except ImportError: _YAML_C = None def _parse_yaml_yaml(s: str) -> Dict[str, Any]: # pylint: disable=import-outside-toplevel import yaml return yaml.load(s, Loader=getattr(yaml, "CSafeLoader", yaml.SafeLoader)) def _parse_yaml_ruamel(s: str) -> Dict[str, Any]: return _YAML_C.load(s) parse_yaml = _parse_yaml_yaml if _YAML_C is None else _parse_yaml_ruamel def _guess_is_file(s: str): try: return Path(s).exists() except IOError: return False def parse_yaml_file_or_inline(s: str) -> Dict[str, Any]: """ Accept on input either a path to yaml file or yaml text, return parsed yaml document. """ if _guess_is_file(s): txt = slurp(s, binary=False) assert isinstance(txt, str) else: txt = s result = parse_yaml(txt) if isinstance(result, str): raise IOError(f"No such file: {s}") return result def METHOD_NAME(skip_empty: bool = False) -> Iterator[str]: """Read lines from stdin. Returns iterator of lines with any whitespace trimmed. skip_empty - when True whitespace only lines will be omitted """ pred = {True: lambda s: len(s) > 0, False: lambda s: True}[skip_empty] for line in stdin: line = line.strip() if pred(line): yield line def slurp(fname: PathLike, binary: bool = False) -> RawDoc: """fname -> str|bytes. binary=True -- read bytes not text """ mode = "rb" if binary else "rt" with open(fname, mode) as f: return f.read() def slurp_lines(fname: str, *args, **kwargs) -> List[str]: """file path -> [lines]""" if len(args) > 0 or len(kwargs) > 0: fname = fname.format(*args, **kwargs) with open(fname, "rt") as f: return [s.rstrip() for s in f.readlines()] def read_int(path: PathLike, default=None, base=10) -> Optional[int]: """ Read single integer from a text file. Useful for things like parsing content of /sys/ or /proc. """ try: return int(slurp(path), base) except (FileNotFoundError, ValueError): return default def parse_mtl(txt: str) -> Dict[str, Any]: def parse_value(s): if len(s) == 0: return s if s[0] == '"': return s.strip('"') for parser in [int, float]: try: return parser(s) except ValueError: pass return s def tokenize(lines): if isinstance(lines, str): lines = lines.splitlines() for lineno, s in enumerate(lines): if len(s) == 0: continue i = s.find("=") if i < 0: if s.strip() == "END": break raise ValueError("Can not parse:[%d]: %s" % (lineno, s)) k = s[:i].strip() v = s[i + 1 :].strip() yield (k, v) tree: Dict[str, Any] = {} node, name = tree, None nodes = [] for k, v in tokenize(txt): if k == "GROUP": nodes.append((node, name)) parent, node, name = node, {}, v if name in parent: raise ValueError("Repeated key: %s" % name) parent[name] = node elif k == "END_GROUP": if len(nodes) == 0: raise ValueError("Bad END_GROUP: too many") if name != v: raise ValueError("Bad END_GROUP: bad name") node, name = nodes.pop() else: if k in node: raise ValueError("Repeated key: %s" % k) node[k] = parse_value(v) return tree def split_and_check( s: str, separator: str, n: Union[int, Tuple[int, ...]] ) -> Tuple[str, ...]: """Turn string into tuple, checking that there are exactly as many parts as expected. :param s: String to parse :param separator: Separator character :param n: Expected number of parts, can be a single integer value or several, example `(2, 3)` accepts 2 or 3 parts. """ if isinstance(n, int): n = (n,) parts = s.split(separator) if len(parts) not in n: raise ValueError('Failed to parse "{}"'.format(s)) return tuple(parts) def parse_range_int(s: str, separator: str = ":") -> Tuple[int, int]: """Parse str(<int>:<int>) -> (int, int)""" try: _in, _out = (int(x) for x in split_and_check(s, separator, 2)) except ValueError: raise ValueError( 'Expect <int>{}<int> syntax, got "{}"'.format(separator, s) ) from None return (_in, _out) def parse_range2d_int(s: str) -> Tuple[Tuple[int, int], Tuple[int, int]]: """Parse string like "0:3,4:5" -> ((0,3), (4,5))""" try: a, b = (parse_range_int(p, ":") for p in split_and_check(s, ",", 2)) except ValueError: raise ValueError( 'Expect <int>:<int>,<int>:<int> syntax, got "{}"'.format(s) ) from None return a, b # pylint: disable=import-outside-toplevel,inconsistent-return-statements def click_range2d(ctx, param, value): """ @click.option('--range', callback=click_range2d) """ import click if value is not None: try: return parse_range2d_int(value) except ValueError as e: raise click.ClickException(str(e)) from None def parse_slice(s: str) -> slice: """ Parse slice syntax in the form start:stop[:step] Examples "::4", "2:5", "2::10", "3:100:5" """ def parse(part: str) -> Optional[int]: if part == "": return None return int(part) try: parts = [parse(p) for p in split_and_check(s, ":", (2, 3))] except ValueError: raise ValueError(f'Expect <start>:<stop>[:<step>] syntax, got "{s}"') from None return slice(*parts) # pylint: disable=import-outside-toplevel,inconsistent-return-statements def click_slice(ctx, param, value): """ @click.option('--slice', callback=click_slice) Examples "::4", "2:5", "2::10", "3:100:5" """ import click if value is not None: try: return parse_slice(value) except ValueError as e: raise click.ClickException(str(e)) from None
2,339
test encrypt
import sys from pathlib import Path import aiofiles import pytest import unpaddedbase64 from Crypto import Random # nosec from nio import EncryptionError from nio.crypto import async_encrypt_attachment, decrypt_attachment FILEPATH = "tests/data/test_bytes" @pytest.mark.skipif( sys.version_info < (3, 5), reason="Python 3 specific asyncio tests", ) @pytest.mark.asyncio class TestClass: async def _get_data_cypher_keys(self, data=b"Test bytes"): *chunks, keys = [i async for i in async_encrypt_attachment(data)] return (data, b"".join(chunks), keys) async def METHOD_NAME(self, data=b"Test bytes", large=False): _, ciphertext, keys = await self._get_data_cypher_keys(data) plaintext = decrypt_attachment( ciphertext, keys["key"]["k"], keys["hashes"]["sha256"], keys["iv"], ) assert plaintext == b"Test bytes" * (16384 if large else 1) async def test_encrypt_large_bytes(self): # Makes sure our bytes chunking in async_generator_from_data # is working correctly await self.METHOD_NAME(b"Test bytes" * 16384, large=True) async def test_encrypt_str(self): await self.METHOD_NAME(FILEPATH) async def test_encrypt_path_object(self): await self.METHOD_NAME(Path(FILEPATH)) async def test_encrypt_iterable(self): await self.METHOD_NAME([b"Test ", b"bytes"]) async def test_encrypt_async_iterable(self): async def async_gen(): yield b"Test " yield b"bytes" await self.METHOD_NAME(async_gen()) async def test_encrypt_file_object(self): await self.METHOD_NAME(open(FILEPATH, "rb")) async def test_encrypt_async_file_object(self): await self.METHOD_NAME(await aiofiles.open(FILEPATH, "rb")) async def test_encrypt_bad_argument_type(self): with pytest.raises(TypeError): await self.METHOD_NAME(123) async def test_hash_verification(self): data, ciphertext, keys = await self._get_data_cypher_keys() with pytest.raises(EncryptionError): decrypt_attachment( ciphertext, keys["key"]["k"], "Fake hash", keys["iv"], ) async def test_invalid_key(self): data, ciphertext, keys = await self._get_data_cypher_keys() with pytest.raises(EncryptionError): decrypt_attachment( ciphertext, "Fake key", keys["hashes"]["sha256"], keys["iv"], ) async def test_invalid_iv(self): data, ciphertext, keys = await self._get_data_cypher_keys() with pytest.raises(EncryptionError): decrypt_attachment( ciphertext, keys["key"]["k"], keys["hashes"]["sha256"], "Fake iv", ) async def test_short_key(self): data, ciphertext, keys = await self._get_data_cypher_keys() with pytest.raises(EncryptionError): decrypt_attachment( ciphertext, unpaddedbase64.encode_base64(b"Fake key", urlsafe=True), keys["hashes"]["sha256"], keys["iv"], ) async def test_short_iv(self): data, ciphertext, keys = await self._get_data_cypher_keys() plaintext = decrypt_attachment( ciphertext, keys["key"]["k"], keys["hashes"]["sha256"], unpaddedbase64.encode_base64(b"F" + b"\x00" * 8), ) assert plaintext != data async def test_fake_key(self): data, ciphertext, keys = await self._get_data_cypher_keys() fake_key = Random.new().read(32) plaintext = decrypt_attachment( ciphertext, unpaddedbase64.encode_base64(fake_key, urlsafe=True), keys["hashes"]["sha256"], keys["iv"], ) assert plaintext != data
2,340
xml decl handler
from _typeshed import Incomplete, ReadableBuffer, SupportsRead from typing import Any, NoReturn from xml.dom.minidom import Document, DOMImplementation, Node, TypeInfo from xml.dom.xmlbuilder import DOMBuilderFilter, Options TEXT_NODE = Node.TEXT_NODE CDATA_SECTION_NODE = Node.CDATA_SECTION_NODE DOCUMENT_NODE = Node.DOCUMENT_NODE FILTER_ACCEPT = DOMBuilderFilter.FILTER_ACCEPT FILTER_REJECT = DOMBuilderFilter.FILTER_REJECT FILTER_SKIP = DOMBuilderFilter.FILTER_SKIP FILTER_INTERRUPT = DOMBuilderFilter.FILTER_INTERRUPT theDOMImplementation: DOMImplementation | None class ElementInfo: tagName: Incomplete def __init__(self, tagName, model: Incomplete | None = None) -> None: ... def getAttributeType(self, aname) -> TypeInfo: ... def getAttributeTypeNS(self, namespaceURI, localName) -> TypeInfo: ... def isElementContent(self) -> bool: ... def isEmpty(self) -> bool: ... def isId(self, aname) -> bool: ... def isIdNS(self, euri, ename, auri, aname) -> bool: ... class ExpatBuilder: document: Document # Created in self.reset() curNode: Incomplete # Created in self.reset() def __init__(self, options: Options | None = None) -> None: ... def createParser(self): ... def getParser(self): ... def reset(self) -> None: ... def install(self, parser) -> None: ... def parseFile(self, file: SupportsRead[ReadableBuffer | str]) -> Document: ... def parseString(self, string: str | ReadableBuffer) -> Document: ... def start_doctype_decl_handler(self, doctypeName, systemId, publicId, has_internal_subset) -> None: ... def end_doctype_decl_handler(self) -> None: ... def pi_handler(self, target, data) -> None: ... def character_data_handler_cdata(self, data) -> None: ... def character_data_handler(self, data) -> None: ... def start_cdata_section_handler(self) -> None: ... def end_cdata_section_handler(self) -> None: ... def entity_decl_handler(self, entityName, is_parameter_entity, value, base, systemId, publicId, notationName) -> None: ... def notation_decl_handler(self, notationName, base, systemId, publicId) -> None: ... def comment_handler(self, data) -> None: ... def external_entity_ref_handler(self, context, base, systemId, publicId) -> int: ... def first_element_handler(self, name, attributes) -> None: ... def start_element_handler(self, name, attributes) -> None: ... def end_element_handler(self, name) -> None: ... def element_decl_handler(self, name, model) -> None: ... def attlist_decl_handler(self, elem, name, type, default, required) -> None: ... def METHOD_NAME(self, version, encoding, standalone) -> None: ... class FilterVisibilityController: filter: DOMBuilderFilter def __init__(self, filter: DOMBuilderFilter) -> None: ... def startContainer(self, node: Node) -> int: ... def acceptNode(self, node: Node) -> int: ... class FilterCrutch: def __init__(self, builder) -> None: ... class Rejecter(FilterCrutch): def start_element_handler(self, *args: Any) -> None: ... def end_element_handler(self, *args: Any) -> None: ... class Skipper(FilterCrutch): def start_element_handler(self, *args: Any) -> None: ... def end_element_handler(self, *args: Any) -> None: ... class FragmentBuilder(ExpatBuilder): fragment: Incomplete | None originalDocument: Incomplete context: Incomplete def __init__(self, context, options: Options | None = None) -> None: ... class Namespaces: def createParser(self): ... def install(self, parser) -> None: ... def start_namespace_decl_handler(self, prefix, uri) -> None: ... def start_element_handler(self, name, attributes) -> None: ... def end_element_handler(self, name) -> None: ... class ExpatBuilderNS(Namespaces, ExpatBuilder): ... class FragmentBuilderNS(Namespaces, FragmentBuilder): ... class ParseEscape(Exception): ... class InternalSubsetExtractor(ExpatBuilder): subset: Any | None def getSubset(self) -> Any | None: ... def parseFile(self, file: SupportsRead[ReadableBuffer | str]) -> None: ... # type: ignore[override] def parseString(self, string: str | ReadableBuffer) -> None: ... # type: ignore[override] def start_doctype_decl_handler(self, name, publicId, systemId, has_internal_subset) -> None: ... # type: ignore[override] def end_doctype_decl_handler(self) -> NoReturn: ... def start_element_handler(self, name, attrs) -> NoReturn: ... def parse(file: str | SupportsRead[ReadableBuffer | str], namespaces: bool = True): ... def parseString(string: str | ReadableBuffer, namespaces: bool = True): ... def parseFragment(file, context, namespaces: bool = True): ... def parseFragmentString(string: str, context, namespaces: bool = True): ... def makeBuilder(options: Options) -> ExpatBuilderNS | ExpatBuilder: ...
2,341
test s3 data auto flush one table
# # Copyright (c) 2023 Airbyte, Inc., all rights reserved. # from typing import Any, Union from unittest.mock import ANY, MagicMock, call, patch from destination_firebolt.writer import FireboltS3Writer, FireboltSQLWriter from pytest import fixture, mark @fixture def connection() -> MagicMock: return MagicMock() @fixture def sql_writer(connection: MagicMock) -> FireboltSQLWriter: return FireboltSQLWriter(connection) @fixture @patch("destination_firebolt.writer.time", MagicMock(return_value=111)) @patch("destination_firebolt.writer.uuid4", MagicMock(return_value="dummy-uuid")) def s3_writer(connection: MagicMock) -> FireboltS3Writer: # Make sure S3FileSystem mock is reset each time with patch("destination_firebolt.writer.fs.S3FileSystem", MagicMock()): return FireboltS3Writer(connection, "dummy_bucket", "access_key", "secret_key", "us-east-1") def test_sql_default(sql_writer: FireboltSQLWriter) -> None: assert len(sql_writer._buffer) == 0 assert sql_writer.flush_interval == 1000 @mark.parametrize("writer", ["sql_writer", "s3_writer"]) def test_sql_create(connection: MagicMock, writer: Union[FireboltSQLWriter, FireboltS3Writer], request: Any) -> None: writer = request.getfixturevalue(writer) expected_query = """ CREATE FACT TABLE IF NOT EXISTS _airbyte_raw_dummy ( _airbyte_ab_id TEXT, _airbyte_emitted_at TIMESTAMP, _airbyte_data TEXT ) PRIMARY INDEX _airbyte_ab_id """ writer.create_raw_table("dummy") connection.cursor.return_value.execute.assert_called_once_with(expected_query) def test_data_buffering(sql_writer: FireboltSQLWriter) -> None: sql_writer.queue_write_data("dummy", "id1", 20200101, '{"key": "value"}') sql_writer._buffer["dummy"][0] == ("id1", 20200101, '{"key": "value"}') assert len(sql_writer._buffer["dummy"]) == 1 assert len(sql_writer._buffer.keys()) == 1 sql_writer.queue_write_data("dummy", "id2", 20200102, '{"key2": "value2"}') sql_writer._buffer["dummy"][0] == ("id2", 20200102, '{"key2": "value2"}') assert len(sql_writer._buffer["dummy"]) == 2 assert len(sql_writer._buffer.keys()) == 1 sql_writer.queue_write_data("dummy2", "id3", 20200103, '{"key3": "value3"}') sql_writer._buffer["dummy"][0] == ("id3", 20200103, '{"key3": "value3"}') assert len(sql_writer._buffer["dummy"]) == 2 assert len(sql_writer._buffer["dummy2"]) == 1 assert len(sql_writer._buffer.keys()) == 2 def test_data_auto_flush_one_table(connection: MagicMock, sql_writer: FireboltSQLWriter) -> None: sql_writer.flush_interval = 2 sql_writer.queue_write_data("dummy", "id1", 20200101, '{"key": "value"}') connection.cursor.return_value.executemany.assert_not_called() assert sql_writer._values == 1 sql_writer.queue_write_data("dummy", "id1", 20200101, '{"key": "value"}') connection.cursor.return_value.executemany.assert_called_once() assert len(sql_writer._buffer.keys()) == 0 assert sql_writer._values == 0 sql_writer.queue_write_data("dummy", "id1", 20200101, '{"key": "value"}') assert len(sql_writer._buffer.keys()) == 1 def test_data_auto_flush_multi_tables(connection: MagicMock, sql_writer: FireboltSQLWriter) -> None: sql_writer.flush_interval = 2 sql_writer.queue_write_data("dummy", "id1", 20200101, '{"key": "value"}') connection.cursor.return_value.executemany.assert_not_called() assert sql_writer._values == 1 sql_writer.queue_write_data("dummy2", "id1", 20200101, '{"key": "value"}') assert len(connection.cursor.return_value.executemany.mock_calls) == 2 assert len(sql_writer._buffer.keys()) == 0 assert sql_writer._values == 0 def test_s3_default(s3_writer: FireboltS3Writer) -> None: assert s3_writer.flush_interval == 100000 assert s3_writer._values == 0 assert len(s3_writer._buffer.keys()) == 0 def test_s3_delete_tables(connection: MagicMock, s3_writer: FireboltS3Writer) -> None: expected_sql = "DROP TABLE IF EXISTS _airbyte_raw_dummy" s3_writer.delete_table("dummy") connection.cursor.return_value.execute.assert_called_once_with(expected_sql) @patch("pyarrow.parquet.write_to_dataset") def METHOD_NAME(mock_write: MagicMock, s3_writer: FireboltS3Writer) -> None: s3_writer.flush_interval = 2 s3_writer.queue_write_data("dummy", "id1", 20200101, '{"key": "value"}') mock_write.assert_not_called() assert s3_writer._values == 1 s3_writer.queue_write_data("dummy", "id1", 20200101, '{"key": "value"}') mock_write.assert_called_once_with(table=ANY, root_path="dummy_bucket/airbyte_output/111_dummy-uuid/dummy", filesystem=s3_writer.fs) assert len(s3_writer._buffer.keys()) == 0 assert s3_writer._values == 0 assert s3_writer._updated_tables == set(["dummy"]) mock_write.reset_mock() s3_writer.queue_write_data("dummy", "id1", 20200101, '{"key": "value"}') mock_write.assert_not_called() assert len(s3_writer._buffer.keys()) == 1 assert s3_writer._updated_tables == set(["dummy"]) @patch("pyarrow.parquet.write_to_dataset") def test_s3_data_auto_flush_multi_tables(mock_write: MagicMock, s3_writer: FireboltS3Writer) -> None: s3_writer.flush_interval = 2 s3_writer.queue_write_data("dummy", "id1", 20200101, '{"key": "value"}') mock_write.assert_not_called() assert s3_writer._values == 1 s3_writer.queue_write_data("dummy2", "id1", 20200101, '{"key": "value"}') assert mock_write.mock_calls == [ call(table=ANY, root_path="dummy_bucket/airbyte_output/111_dummy-uuid/dummy", filesystem=s3_writer.fs), call(table=ANY, root_path="dummy_bucket/airbyte_output/111_dummy-uuid/dummy2", filesystem=s3_writer.fs), ] assert len(s3_writer._buffer.keys()) == 0 assert s3_writer._values == 0 assert s3_writer._updated_tables == set(["dummy", "dummy2"]) def test_s3_final_flush(connection: MagicMock, s3_writer: FireboltS3Writer) -> None: s3_writer._updated_tables = set(["dummy", "dummy2"]) s3_writer.flush() assert len(connection.cursor.return_value.execute.mock_calls) == 8 expected_url1 = "s3://dummy_bucket/airbyte_output/111_dummy-uuid/dummy" expected_url2 = "s3://dummy_bucket/airbyte_output/111_dummy-uuid/dummy2" connection.cursor.return_value.execute.assert_any_call(ANY, parameters=(expected_url1, "access_key", "secret_key")) connection.cursor.return_value.execute.assert_any_call(ANY, parameters=(expected_url2, "access_key", "secret_key")) expected_query1 = "INSERT INTO _airbyte_raw_dummy SELECT * FROM ex_airbyte_raw_dummy" expected_query2 = "INSERT INTO _airbyte_raw_dummy2 SELECT * FROM ex_airbyte_raw_dummy2" connection.cursor.return_value.execute.assert_any_call(expected_query1) connection.cursor.return_value.execute.assert_any_call(expected_query2) def test_s3_cleanup(connection: MagicMock, s3_writer: FireboltS3Writer) -> None: expected_sql = "DROP TABLE IF EXISTS ex_airbyte_raw_my_table" bucket_path = "dummy_bucket/airbyte_output/111_dummy-uuid/my_table" s3_writer.cleanup("my_table") connection.cursor.return_value.execute.assert_called_once_with(expected_sql) s3_writer.fs.delete_dir_contents.assert_called_once_with(bucket_path)
2,342
test controlchars
# Copyright © Michal Čihař <[email protected]> # # SPDX-License-Identifier: GPL-3.0-or-later """Tests for automatix fixups.""" from django.test import TestCase from weblate.checks.tests.test_checks import MockUnit from weblate.trans.autofixes import fix_target from weblate.trans.autofixes.chars import ( DevanagariDanda, RemoveControlChars, RemoveZeroSpace, ReplaceTrailingDotsWithEllipsis, ) from weblate.trans.autofixes.custom import DoubleApostrophes from weblate.trans.autofixes.html import BleachHTML from weblate.trans.autofixes.whitespace import SameBookendingWhitespace class AutoFixTest(TestCase): def test_ellipsis(self): unit = MockUnit(source="Foo…") fix = ReplaceTrailingDotsWithEllipsis() self.assertEqual(fix.fix_target(["Bar..."], unit), (["Bar…"], True)) self.assertEqual(fix.fix_target(["Bar... "], unit), (["Bar... "], False)) def test_no_ellipsis(self): unit = MockUnit(source="Foo...") fix = ReplaceTrailingDotsWithEllipsis() self.assertEqual(fix.fix_target(["Bar..."], unit), (["Bar..."], False)) self.assertEqual(fix.fix_target(["Bar…"], unit), (["Bar…"], False)) def test_whitespace(self): unit = MockUnit(source="Foo\n") fix = SameBookendingWhitespace() self.assertEqual(fix.fix_target(["Bar"], unit), (["Bar\n"], True)) self.assertEqual(fix.fix_target(["Bar\n"], unit), (["Bar\n"], False)) unit = MockUnit(source=" ") self.assertEqual(fix.fix_target([" "], unit), ([" "], False)) def test_no_whitespace(self): unit = MockUnit(source="Foo") fix = SameBookendingWhitespace() self.assertEqual(fix.fix_target(["Bar"], unit), (["Bar"], False)) self.assertEqual(fix.fix_target(["Bar\n"], unit), (["Bar"], True)) def test_whitespace_flags(self): fix = SameBookendingWhitespace() unit = MockUnit(source="str", flags="ignore-begin-space") self.assertEqual(fix.fix_target([" str"], unit), ([" str"], False)) unit = MockUnit(source="str", flags="ignore-end-space") self.assertEqual(fix.fix_target([" str "], unit), (["str "], True)) def test_html(self): fix = BleachHTML() unit = MockUnit(source='<a href="script:foo()">link</a>', flags="safe-html") self.assertEqual( fix.fix_target(['<a href="script:foo()">link</a>'], unit), (["<a>link</a>"], True), ) self.assertEqual( fix.fix_target(['<a href="#" onclick="foo()">link</a>'], unit), (['<a href="#">link</a>'], True), ) self.assertEqual( fix.fix_target(["<https://weblate.org>"], unit), ([""], True), ) def test_html_markdown(self): fix = BleachHTML() unit = MockUnit( source='<a href="script:foo()">link</a>', flags="safe-html,md-text" ) self.assertEqual( fix.fix_target( ['<a href="script:foo()">link</a><https://weblate.org>'], unit ), (["<a>link</a><https://weblate.org>"], True), ) self.assertEqual( fix.fix_target(["<https://weblate.org>"], unit), (["<https://weblate.org>"], False), ) def test_zerospace(self): unit = MockUnit(source="Foo\u200b") fix = RemoveZeroSpace() self.assertEqual(fix.fix_target(["Bar"], unit), (["Bar"], False)) self.assertEqual(fix.fix_target(["Bar\u200b"], unit), (["Bar\u200b"], False)) def test_no_zerospace(self): unit = MockUnit(source="Foo") fix = RemoveZeroSpace() self.assertEqual(fix.fix_target(["Bar"], unit), (["Bar"], False)) self.assertEqual(fix.fix_target(["Bar\u200b"], unit), (["Bar"], True)) def METHOD_NAME(self): unit = MockUnit(source="Foo\x1b") fix = RemoveControlChars() self.assertEqual(fix.fix_target(["Bar"], unit), (["Bar"], False)) self.assertEqual(fix.fix_target(["Bar\x1b"], unit), (["Bar"], True)) self.assertEqual(fix.fix_target(["Bar\n"], unit), (["Bar\n"], False)) def test_no_controlchars(self): unit = MockUnit(source="Foo") fix = RemoveControlChars() self.assertEqual(fix.fix_target(["Bar"], unit), (["Bar"], False)) self.assertEqual(fix.fix_target(["Bar\x1b"], unit), (["Bar"], True)) self.assertEqual(fix.fix_target(["Bar\n"], unit), (["Bar\n"], False)) def test_fix_target(self): unit = MockUnit(source="Foo…") fixed, fixups = fix_target(["Bar..."], unit) self.assertEqual(fixed, ["Bar…"]) self.assertEqual(len(fixups), 1) self.assertEqual(str(fixups[0]), "Trailing ellipsis") def test_apostrophes(self): unit = MockUnit(source="Foo") fix = DoubleApostrophes() # No flags self.assertEqual(fix.fix_target(["Bar"], unit), (["Bar"], False)) # No format string, but forced unit.flags = "java-format" self.assertEqual(fix.fix_target(["Bar"], unit), (["Bar"], False)) # No format string unit.flags = "auto-java-messageformat" self.assertEqual(fix.fix_target(["Bar"], unit), (["Bar"], False)) unit.source = "test {0}" unit.sources = [unit.source] # Nothing to fix self.assertEqual(fix.fix_target(["r {0}"], unit), (["r {0}"], False)) # Correct string self.assertEqual(fix.fix_target(["''r'' {0}"], unit), (["''r'' {0}"], False)) # String with quoted format string self.assertEqual( fix.fix_target(["''r'' '{0}'"], unit), (["''r'' '{0}'"], False) ) # Fixes self.assertEqual(fix.fix_target(["'r''' {0}"], unit), (["''r'' {0}"], True)) # Fixes keeping double ones self.assertEqual( fix.fix_target(["'''''''r'''' {0}"], unit), (["''''r'''' {0}"], True) ) # Quoted format self.assertEqual(fix.fix_target(["'r''' {0}"], unit), (["''r'' {0}"], True)) unit.source = "foo" unit.sources = [unit.source] unit.flags = "java-format" self.assertEqual(fix.fix_target(["bar'"], unit), (["bar''"], True)) def test_devanagaridanda(self): non_unit = MockUnit(source="Foo", code="bn") bn_unit = MockUnit(source="Foo.", code="bn") cs_unit = MockUnit(source="Foo.", code="cs") fix = DevanagariDanda() self.assertEqual(fix.fix_target(["Bar."], non_unit), (["Bar."], False)) self.assertEqual(fix.fix_target(["Bar."], bn_unit), (["Bar।"], True)) self.assertEqual(fix.fix_target(["Bar|"], bn_unit), (["Bar।"], True)) self.assertEqual(fix.fix_target(["Bar।"], bn_unit), (["Bar।"], False)) self.assertEqual(fix.fix_target(["Bar."], cs_unit), (["Bar."], False))
2,343
exists
import logging import slugify from flask_mongoengine import Document from mongoengine.fields import StringField from mongoengine.signals import pre_save, post_delete from .queryset import UDataQuerySet from udata.utils import is_uuid log = logging.getLogger(__name__) class SlugField(StringField): ''' A field that that produces a slug from the inputs and auto- increments the slug if the value already exists. ''' # Do not remove, this is required to trigger field population _auto_gen = True def __init__(self, populate_from=None, update=False, lower_case=True, separator='-', follow=False, **kwargs): kwargs.setdefault('unique', True) self.populate_from = populate_from self.update = update self.lower_case = lower_case self.separator = separator self.follow = follow self.instance = None super(SlugField, self).__init__(**kwargs) def __get__(self, instance, owner): # mongoengine calls this after document initialization # We register signals handlers here to have a owner reference if not hasattr(self, 'owner'): self.owner = owner pre_save.connect(self.populate_on_pre_save, sender=owner) if self.follow: post_delete.connect(self.cleanup_on_delete, sender=owner) return super(SlugField, self).__get__(instance, owner) def __deepcopy__(self, memo): # Fixes no_dereference by avoiding deep copying instance attribute copied = self.__class__() copied.__dict__.update(self.__dict__) return copied # Do not remove, this is required when field population is triggered def generate(self): pass def slugify(self, value): ''' Apply slugification according to specified field rules ''' if value is None: return return slugify.slugify(value, max_length=self.max_length, separator=self.separator, to_lower=self.lower_case) def latest(self, value): ''' Get the latest object for a given old slug ''' namespace = self.owner_document.__name__ follow = SlugFollow.objects(namespace=namespace, old_slug=value).first() if follow: return self.owner_document.objects(slug=follow.new_slug).first() return None def cleanup_on_delete(self, sender, document, **kwargs): ''' Clean up slug redirections on object deletion ''' if not self.follow or sender is not self.owner_document: return slug = getattr(document, self.db_field) namespace = self.owner_document.__name__ SlugFollow.objects(namespace=namespace, new_slug=slug).delete() def populate_on_pre_save(self, sender, document, **kwargs): field = document._fields.get(self.name) if field: populate_slug(document, field) class SlugFollow(Document): ''' Keeps track of slug changes for a given namespace/class. Fields are: * namespace - A namespace under which this slug falls (e.g. match, team, user etc) * old_slug - Before change slug. * new_slug - After change slug ''' namespace = StringField(required=True) old_slug = StringField(required=True) new_slug = StringField(required=True) meta = { 'indexes': [ ('namespace', 'old_slug'), ], 'queryset_class': UDataQuerySet, } def populate_slug(instance, field): ''' Populate a slug field if needed. ''' value = getattr(instance, field.db_field) try: previous = instance.__class__.objects.get(id=instance.id) except Exception: previous = None # Field value has changed changed = field.db_field in instance._get_changed_fields() # Field initial value has been manually set manual = not previous and value or changed if not manual and field.populate_from: # value to slugify is extracted from populate_from parameter value = getattr(instance, field.populate_from) if previous and value == getattr(previous, field.populate_from): return value if previous and getattr(previous, field.db_field) == value: # value is unchanged from DB return value if previous and not changed and not field.update: # Field is not manually set and slug should not update on change return value slug = field.slugify(value) # This can happen when serializing an object which does not contain # the properties used to generate the slug. Typically, when such # an object is passed to one of the Celery workers (see issue #20). if slug is None: return old_slug = getattr(previous, field.db_field, None) if slug == old_slug: return slug # Ensure uniqueness if field.unique: base_slug = slug index = 1 qs = instance.__class__.objects if previous: qs = qs(id__ne=previous.id) def METHOD_NAME(s): return qs(**{field.db_field: s}).clear_cls_query().limit(1).count(True) > 0 while METHOD_NAME(slug): # keep space for index suffix, trim slug if needed slug_overflow = len('{0}-{1}'.format(base_slug, index)) - field.max_length if slug_overflow >= 1: base_slug = base_slug[:-slug_overflow] slug = '{0}-{1}'.format(base_slug, index) index += 1 if is_uuid(slug): slug = '{0}-uuid'.format(slug) # Track old slugs for this class if field.follow and old_slug != slug: ns = instance.__class__.__name__ # Destroy redirections from this new slug SlugFollow.objects(namespace=ns, old_slug=slug).delete() if old_slug: # Create a redirect for previous slug slug_follower, created = SlugFollow.objects.get_or_create( namespace=ns, old_slug=old_slug, auto_save=False, ) slug_follower.new_slug = slug slug_follower.save() # Maintain previous redirects SlugFollow.objects(namespace=ns, new_slug=old_slug).update(new_slug=slug) setattr(instance, field.db_field, slug) return slug
2,344
test full random misc balances
from random import Random from eth2spec.test.context import ( with_altair_and_later, spec_test, spec_state_test, with_custom_state, single_phase, low_balances, misc_balances, ) from eth2spec.test.helpers.inactivity_scores import randomize_inactivity_scores from eth2spec.test.helpers.rewards import leaking import eth2spec.test.helpers.rewards as rewards_helpers @with_altair_and_later @spec_state_test def test_random_inactivity_scores_0(spec, state): randomize_inactivity_scores(spec, state, rng=Random(9999)) yield from rewards_helpers.run_test_full_random(spec, state, rng=Random(9999)) @with_altair_and_later @spec_state_test def test_random_inactivity_scores_1(spec, state): randomize_inactivity_scores(spec, state, rng=Random(10000)) yield from rewards_helpers.run_test_full_random(spec, state, rng=Random(10000)) @with_altair_and_later @spec_state_test def test_half_zero_half_random_inactivity_scores(spec, state): randomize_inactivity_scores(spec, state, rng=Random(10101)) half_val_point = len(state.validators) // 2 state.inactivity_scores = [0] * half_val_point + state.inactivity_scores[half_val_point:] yield from rewards_helpers.run_test_full_random(spec, state, rng=Random(10101)) @with_altair_and_later @spec_state_test def test_random_high_inactivity_scores(spec, state): randomize_inactivity_scores(spec, state, minimum=500000, maximum=5000000, rng=Random(9998)) yield from rewards_helpers.run_test_full_random(spec, state, rng=Random(9998)) @with_altair_and_later @with_custom_state(balances_fn=low_balances, threshold_fn=lambda spec: spec.config.EJECTION_BALANCE) @spec_test @single_phase def test_random_inactivity_scores_low_balances_0(spec, state): randomize_inactivity_scores(spec, state, rng=Random(11111)) yield from rewards_helpers.run_test_full_random(spec, state) @with_altair_and_later @with_custom_state(balances_fn=low_balances, threshold_fn=lambda spec: spec.config.EJECTION_BALANCE) @spec_test @single_phase def test_random_inactivity_scores_low_balances_1(spec, state): randomize_inactivity_scores(spec, state, rng=Random(22222)) yield from rewards_helpers.run_test_full_random(spec, state) @with_altair_and_later @with_custom_state(balances_fn=misc_balances, threshold_fn=lambda spec: spec.config.EJECTION_BALANCE) @spec_test @single_phase def METHOD_NAME(spec, state): randomize_inactivity_scores(spec, state, rng=Random(33333)) yield from rewards_helpers.run_test_full_random(spec, state) # # Leaking variants # @with_altair_and_later @spec_state_test @leaking() def test_random_inactivity_scores_leaking_0(spec, state): randomize_inactivity_scores(spec, state, rng=Random(9999)) yield from rewards_helpers.run_test_full_random(spec, state, rng=Random(9999)) @with_altair_and_later @spec_state_test @leaking() def test_random_inactivity_scores_leaking_1(spec, state): randomize_inactivity_scores(spec, state, rng=Random(10000)) yield from rewards_helpers.run_test_full_random(spec, state, rng=Random(10000)) @with_altair_and_later @spec_state_test @leaking() def test_half_zero_half_random_inactivity_scores_leaking(spec, state): randomize_inactivity_scores(spec, state, rng=Random(10101)) half_val_point = len(state.validators) // 2 state.inactivity_scores = [0] * half_val_point + state.inactivity_scores[half_val_point:] yield from rewards_helpers.run_test_full_random(spec, state, rng=Random(10101)) @with_altair_and_later @spec_state_test @leaking() def test_random_high_inactivity_scores_leaking(spec, state): randomize_inactivity_scores(spec, state, minimum=500000, maximum=5000000, rng=Random(9998)) yield from rewards_helpers.run_test_full_random(spec, state, rng=Random(9998)) @with_altair_and_later @spec_state_test @leaking(epochs=8) def test_random_high_inactivity_scores_leaking_8_epochs(spec, state): randomize_inactivity_scores(spec, state, minimum=500000, maximum=5000000, rng=Random(9998)) yield from rewards_helpers.run_test_full_random(spec, state, rng=Random(9998))
2,345
create init cells
"""Cell factory for Otter Assign""" import nbformat from .assignment import Assignment from .feature_toggle import FeatureToggle from .utils import lock class CellFactory: """ A factory for cells that make use of Otter's client package (e.g. init cell, check cell). All (non-static cell-generating) methods in this factory should return a ``list[nbformat.NotebookNode]``. Args: assignment (``otter.assign.assignment.Assignment``): the assignment config """ assignment: Assignment """the assignment config""" def __init__(self, assignment): self.assignment = assignment def check_feature_toggle(self, feature_toggle: FeatureToggle): """ Check whether the specified feature is enabled for this assignment. Args: feature_toggle (``otter.assign.feature_toggle.FeatureToggle``): the feature Returns: ``bool``: whether the feature is enabled """ return feature_toggle.value.is_enabled(self.assignment) def METHOD_NAME(self): """ Generate a cell to initialize Otter in the notebook. Returns: ``list[nbformat.NotebookNode]``: the init cell """ if self.assignment.runs_on == "colab": args = "colab=True" elif self.assignment.runs_on == "jupyterlite": args = "jupyterlite=True" else: args = f"\"{self.assignment.master.name}\"" if self.assignment.tests.url_prefix: args += f", tests_url_prefix=\"{self.assignment.tests.url_prefix}\"" contents = f'# Initialize Otter\nimport otter\ngrader = otter.Notebook({args})' cell = nbformat.v4.new_code_cell(contents) lock(cell) return [cell] def create_check_cells(self, question): """ Create a cell calling ``otter.Notebook.check`` for the specified question. Args: question (``otter.assign.question_config.QuestionConfig``): the question config Returns: ``list[nbformat.NotebookNode]``: the check cell """ cell = nbformat.v4.new_code_cell() cell.source = ['grader.check("{}")'.format(question.name)] lock(cell) return [cell] def create_check_all_cells(self): """ Generate a check-all cell and a Markdown cell with instructions to run all tests in the notebook. Returns: ``list[nbformat.NotebookNode]``: the check-all cells """ instructions = nbformat.v4.new_markdown_cell() instructions.source = "---\n\nTo double-check your work, the cell below will rerun all " \ "of the autograder tests." check_all = nbformat.v4.new_code_cell("grader.check_all()") lock(instructions) lock(check_all) return [instructions, check_all] def create_export_cells(self): """ Generate export cells that instruct the student the run a code cell calling ``otter.Notebook.export`` to generate and download their submission. Returns: ``list[nbformat.NotebookNode]``: the export cells """ if not self.assignment.export_cell: return [] instructions = nbformat.v4.new_markdown_cell() instructions.source = "## Submission\n\nMake sure you have run all cells in your " \ "notebook in order before running the cell below, so that all images/graphs appear " \ "in the output. The cell below will generate a zip file for you to submit." # only include save text if force_save is false if not self.assignment.export_cell.force_save: instructions.source += " **Please save before exporting!**" if self.assignment.export_cell.instructions: instructions.source += '\n\n' + self.assignment.export_cell.instructions export = nbformat.v4.new_code_cell() source_lines = [] # only include save text if force_save is false if not self.assignment.export_cell.force_save: source_lines.append( "# Save your notebook first, then run this cell to export your submission.") args = [] if not self.assignment.export_cell.filtering: args += ["filtering=False"] if not self.assignment.export_cell.pdf: args += ["pdf=False"] if self.assignment.export_cell.force_save: args += ["force_save=True"] if self.assignment.export_cell.run_tests: args += ["run_tests=True"] if len(self.assignment.export_cell.files) != 0: args += [f"files={self.assignment.export_cell.files}"] source_lines.append(f"grader.export({', '.join(args)})") export.source = "\n".join(source_lines) lock(instructions) lock(export) cells = [instructions, export] if self.check_feature_toggle(FeatureToggle.EMPTY_MD_BOUNDARY_CELLS): cells.append(nbformat.v4.new_markdown_cell(" ")) # add buffer cell return cells @staticmethod def create_markdown_response_cell(): """ Generate a Markdown response cell with the following contents: .. code-block:: markdown _Type your answer here, replacing this text._ Note that, unlike the other methods, this method returns a single cell rather than a list of cells (since it is not used in the same context). Returns: ``nbformat.NotebookNode``: the response cell """ return nbformat.v4.new_markdown_cell("_Type your answer here, replacing this text._")
2,346
process end
from udapi.core.block import Block from collections import Counter class Stats(Block): """Block corefud.Stats prints various coreference-related statistics.""" def __init__(self, m_len_max=5, c_len_max=5, report_mentions=True, report_entities=True, report_details=True, selected_upos='NOUN PRON PROPN DET ADJ VERB ADV NUM', exclude_singletons=False, exclude_nonsingletons=False, style='human', **kwargs): super().__init__(**kwargs) self.m_len_max = m_len_max self.c_len_max = c_len_max self.report_mentions = report_mentions self.report_entities = report_entities self.report_details = report_details self.exclude_singletons = exclude_singletons self.exclude_nonsingletons = exclude_nonsingletons self.style = style if style not in 'tex human'.split(): raise ValueError(f'Unknown style f{style}') self.counter = Counter() self.mentions = 0 self.entities = 0 self.total_nodes = 0 self.longest_mention = 0 self.longest_entity = 0 self.m_words = 0 self.selected_upos = None if selected_upos == 'all' else selected_upos.split() def process_document(self, doc): self.total_nodes += len(list(doc.nodes)) for entity in doc.coref_entities: len_mentions = len(entity.mentions) if len_mentions == 1 and self.exclude_singletons: continue elif len_mentions > 1 and self.exclude_nonsingletons: continue self.longest_entity = max(len_mentions, self.longest_entity) self.counter['c_total_len'] += len_mentions self.counter[f"c_len_{min(len_mentions, self.c_len_max)}"] += 1 self.entities += 1 if not self.report_mentions and not self.report_details: continue for mention in entity.mentions: self.mentions += 1 all_words = len(mention.words) non_empty = len([w for w in mention.words if not w.is_empty()]) self.m_words += all_words self.longest_mention = max(non_empty, self.longest_mention) self.counter['m_total_len'] += non_empty self.counter[f"m_len_{min(non_empty, self.m_len_max)}"] += 1 if self.report_details: upos = 'other' if not self.selected_upos or mention.head.upos in self.selected_upos: upos = mention.head.upos self.counter['m_head_upos_' + upos] += 1 self.counter['m_with_empty'] += 1 if all_words > non_empty else 0 self.counter['m_with_gaps'] += 1 if ',' in mention.span else 0 heads, mwords = 0, set(mention.words) for w in mention.words: if w.parent: heads += 0 if w.parent in mwords else 1 else: heads += 0 if any(d['parent'] in mwords for d in w.deps) else 1 self.counter['m_nontreelet'] += 1 if heads > 1 else 0 def METHOD_NAME(self): mentions_nonzero = 1 if self.mentions == 0 else self.mentions entities_nonzero = 1 if self.entities == 0 else self.entities total_nodes_nonzero = 1 if self.total_nodes == 0 else self.total_nodes columns =[ ] if self.report_entities: columns += [('entities', f"{self.entities:7,}"), ('entities_per1k', f"{1000 * self.entities / total_nodes_nonzero:6.0f}"), ('longest_entity', f"{self.longest_entity:6}"), ('avg_entity', f"{self.counter['c_total_len'] / entities_nonzero:5.1f}")] for i in range(1, self.c_len_max + 1): percent = 100 * self.counter[f"c_len_{i}"] / entities_nonzero columns.append((f"c_len_{i}{'' if i < self.c_len_max else '+'}", f"{percent:5.1f}")) if self.report_mentions: columns += [('mentions', f"{self.mentions:7,}"), ('mentions_per1k', f"{1000 * self.mentions / total_nodes_nonzero:6.0f}"), ('longest_mention', f"{self.longest_mention:6}"), ('avg_mention', f"{self.counter['m_total_len'] / mentions_nonzero:5.1f}")] for i in range(0, self.m_len_max + 1): percent = 100 * self.counter[f"m_len_{i}"] / mentions_nonzero columns.append((f"m_len_{i}{'' if i < self.m_len_max else '+'}", f"{percent:5.1f}")) if self.report_details: columns += [('with_empty', f"{100 * self.counter['m_with_empty'] / mentions_nonzero:5.1f}"), ('with_gaps', f"{100 * self.counter['m_with_gaps'] / mentions_nonzero:5.1f}"), ('nontreelet', f"{100 * self.counter['m_nontreelet'] / mentions_nonzero:5.1f}"),] if self.selected_upos: upos_list = self.selected_upos + ['other'] else: upos_list = [x[12:] for x in self.counter if x.startswith('m_head_upos_')] for upos in upos_list: columns.append(('head_upos=' + upos, f"{100 * self.counter['m_head_upos_' + upos] / mentions_nonzero:5.1f}")) if self.style == 'tex': print(" & ".join(c[1] for c in columns)) elif self.style == 'human': for c in columns: print(f"{c[0]:>15} = {c[1].strip():>10}")
2,347
save
import csv import gzip import json import logging import os import traceback from io import StringIO from typing import ClassVar, List, Optional import pendulum from calitp_data_infra.storage import ( GTFSDownloadConfig, PartitionedGCSArtifact, ProcessingOutcome, get_fs, ) from utils import GTFSScheduleFeedFileHourly, get_schedule_files_in_hour from airflow.models import BaseOperator SCHEDULE_PARSED_BUCKET = os.environ["CALITP_BUCKET__GTFS_SCHEDULE_PARSED_HOURLY"] SCHEDULE_UNZIPPED_BUCKET = os.environ["CALITP_BUCKET__GTFS_SCHEDULE_UNZIPPED_HOURLY"] GTFS_PARSE_ERROR_THRESHOLD = 0.95 class GTFSScheduleFeedJSONL(PartitionedGCSArtifact): bucket: ClassVar[str] = SCHEDULE_PARSED_BUCKET partition_names: ClassVar[List[str]] = GTFSScheduleFeedFileHourly.partition_names ts: pendulum.DateTime extract_config: GTFSDownloadConfig gtfs_filename: str csv_dialect: Optional[ str ] # dialect would be a better name but we have an old field with that name... num_lines: Optional[int] # if you try to set table directly, you get an error because it "shadows a BaseModel attribute" # so set as a property instead @property def table(self) -> str: return self.gtfs_filename @property def dt(self) -> pendulum.Date: return self.ts.date() @property def base64_url(self) -> str: return self.extract_config.base64_encoded_url class GTFSScheduleParseOutcome(ProcessingOutcome): feed_file: GTFSScheduleFeedFileHourly fields: Optional[List[str]] parsed_file: Optional[GTFSScheduleFeedJSONL] class ScheduleParseResult(PartitionedGCSArtifact): bucket: ClassVar[str] = SCHEDULE_PARSED_BUCKET partition_names: ClassVar[List[str]] = ["dt", "ts"] ts: pendulum.DateTime outcomes: List[GTFSScheduleParseOutcome] @property def dt(self): return self.ts.date() @property def successes(self) -> List[GTFSScheduleParseOutcome]: return [outcome for outcome in self.outcomes if outcome.success] @property def table(self) -> str: return f"{self.outcomes[0].feed_file.table}_parsing_results" @property def failures(self) -> List[GTFSScheduleParseOutcome]: return [outcome for outcome in self.outcomes if not outcome.success] def METHOD_NAME(self, fs): self.save_content( fs=fs, content="\n".join(o.json() for o in self.outcomes).encode(), exclude={"outcomes"}, ) def parse_csv_str(contents: str): lines = [] reader = csv.DictReader(StringIO(contents), restkey="calitp_unknown_fields") field_names = reader.fieldnames if len(field_names) == 1: # we probably have a tab-delimited file; check that, but proceed with default tab_reader = csv.DictReader( StringIO(contents), dialect="excel-tab", restkey="calitp_unknown_fields" ) if len(tab_reader.fieldnames) > 1: reader = tab_reader field_names = tab_reader.fieldnames for line_number, row in enumerate(reader, start=1): row["_line_number"] = line_number lines.append(row) return lines, field_names, reader.dialect def parse_individual_file( fs, input_file: GTFSScheduleFeedFileHourly, gtfs_filename: str, ) -> GTFSScheduleParseOutcome: logging.info(f"Processing {input_file.path}") field_names = None try: with fs.open(input_file.path, newline="", mode="r", encoding="utf-8-sig") as f: contents = f.read() lines, field_names, dialect = parse_csv_str(contents) num_lines = len(lines) jsonl_content = gzip.compress( "\n".join(json.dumps(line) for line in lines).encode() ) del lines jsonl_file = GTFSScheduleFeedJSONL( ts=input_file.ts, extract_config=input_file.extract_config, filename=gtfs_filename + ".jsonl.gz", gtfs_filename=gtfs_filename, csv_dialect=dialect, num_lines=num_lines, ) jsonl_file.save_content(content=jsonl_content, fs=fs) del jsonl_content except Exception as e: logging.warn(f"Failed to process {input_file.path}: {traceback.format_exc()}") return GTFSScheduleParseOutcome( success=False, exception=e, feed_file=input_file, fields=field_names, ) logging.info(f"Parsed {input_file.path}") return GTFSScheduleParseOutcome( success=True, feed_file=input_file, fields=field_names, parsed_file=jsonl_file, ) def parse_files(period: pendulum.Period, input_table_name: str, gtfs_filename: str): fs = get_fs() extract_map = get_schedule_files_in_hour( cls=GTFSScheduleFeedFileHourly, bucket=SCHEDULE_UNZIPPED_BUCKET, table=input_table_name, period=period, ) if not extract_map: logging.warn(f"No files found for {input_table_name} for {period}") return for ts, files in extract_map.items(): logging.info(f"Processing {len(files)} {input_table_name} records for {ts}") outcomes = [] for file in files: outcome = parse_individual_file(fs, file, gtfs_filename) outcomes.append(outcome) assert ( len({outcome.feed_file.table for outcome in outcomes}) == 1 ), "somehow you're processing multiple input tables" result = ScheduleParseResult(filename="results.jsonl", ts=ts, outcomes=outcomes) result.METHOD_NAME(fs) assert len(files) == len( result.outcomes ), f"ended up with {len(outcomes)} outcomes from {len(files)} files" success_rate = len(result.successes) / len(files) if success_rate < GTFS_PARSE_ERROR_THRESHOLD: raise RuntimeError( f"Success rate: {success_rate:.3f} was below error threshold: {GTFS_PARSE_ERROR_THRESHOLD}" ) class GtfsGcsToJsonlOperatorHourly(BaseOperator): def __init__(self, input_table_name, gtfs_filename=None, *args, **kwargs): self.input_table_name = input_table_name self.gtfs_filename = ( gtfs_filename if gtfs_filename else input_table_name.replace(".txt", "") ) super().__init__(*args, **kwargs) def execute(self, context): period = ( context["data_interval_end"].subtract(microseconds=1) - context["data_interval_start"] ) print(f"Processing {period=}") parse_files( period, self.input_table_name, self.gtfs_filename, ) if __name__ == "__main__": with open("/Users/laurie/Downloads/bad_routes.txt", newline="") as f: content = "\n".join(json.dumps(o) for o in csv.DictReader(f)).encode() print(content)
2,348
test undefined occupancy
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8 # # MDAnalysis --- https://www.mdanalysis.org # Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors # (see the file AUTHORS for the full list of names) # # Released under the GNU Public Licence, v2 or any higher version # # Please cite your use of MDAnalysis in published work: # # R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, # D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein. # MDAnalysis: A Python package for the rapid analysis of molecular dynamics # simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th # Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy. # doi: 10.25080/majora-629e541a-00e # # N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. # MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. # J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787 # import pickle import pytest import numpy as np import MDAnalysis as mda from MDAnalysis import NoDataError from MDAnalysisTests.datafiles import ( PSF, DCD, XYZ_mini, ) from numpy.testing import assert_almost_equal class TestAtom(object): # Legacy tests from before 363 """Tests of Atom.""" """Set up the standard AdK system in implicit solvent.""" @staticmethod @pytest.fixture() def universe(): return mda.Universe(PSF, DCD) @staticmethod @pytest.fixture() def atom(universe): # Leu67:CG return universe.atoms[1000] def test_attributes_names(self, atom): a = atom assert a.name == 'CG' assert a.resname == 'LEU' def test_setting_attribute_name(self, atom): atom.name = 'AA' assert atom.name == 'AA' def test_setting_attribute_type(self, atom): atom.type = 'Z' assert atom.type == 'Z' def test_setting_attribute_mass(self, atom): atom.mass = 13 assert atom.mass == 13 def test_setting_attributes_charge(self, atom): atom.charge = 6 assert atom.charge == 6 def test_attributes_positions(self, atom): known_pos = np.array([3.94543672, -12.4060812, -7.26820087], dtype=np.float32) a = atom # new position property (mutable) assert_almost_equal(a.position, known_pos) pos = a.position + 3.14 a.position = pos assert_almost_equal(a.position, pos) def test_atom_selection(self, universe, atom): asel = universe.select_atoms('atom 4AKE 67 CG').atoms[0] assert atom == asel def test_hierarchy(self, universe, atom): u = universe a = atom assert a.segment == u.select_atoms('segid 4AKE').segments[0] assert a.residue == u.residues[66] def test_bad_add(self, atom): with pytest.raises(TypeError): atom + 1 def test_add_AG(self, universe, atom): ag = universe.atoms[:2] ag2 = atom + ag for at in [atom, ag[0], ag[1]]: assert at in ag2 def test_no_velo(self, atom): with pytest.raises(NoDataError): atom.velocity def test_bonded_atoms(self, universe): at = universe.atoms[0] ref = [b.partner(at) for b in at.bonds] assert ref == list(at.bonded_atoms) def METHOD_NAME(self, universe): with pytest.raises(AttributeError): universe.atoms[0].occupancy @pytest.mark.parametrize("ix", (1, -1)) def test_atom_pickle(self, universe, ix): atm_out = universe.atoms[ix] atm_in = pickle.loads(pickle.dumps(atm_out)) assert atm_in == atm_out class TestAtomNoForceNoVel(object): @staticmethod @pytest.fixture() def a(): u = mda.Universe(XYZ_mini) return u.atoms[0] def test_velocity_fail(self, a): with pytest.raises(NoDataError): getattr(a, 'velocity') def test_force_fail(self, a): with pytest.raises(NoDataError): getattr(a, 'force') def test_velocity_set_fail(self, a): with pytest.raises(NoDataError): setattr(a, 'velocity', [1.0, 1.0, 1.0]) def test_force_set_fail(self, a): with pytest.raises(NoDataError): setattr(a, 'force', [1.0, 1.0, 1.0])
2,349
update ckpt
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utils function for program.py.""" import os import lingvo.compat as tf def SummaryToCsv(summaries): """Convert summary (Dict[str, tf.Summary]) to csv format.""" res = '' for k, s in summaries.items(): res += f'{k},{s.value[0].simple_value}\n' return res def CsvToSummary(csv): """Convert csv format to summary (Dict[str, tf.Summary]).""" summaries = {} for l in csv.split('\n'): row = l.split(',') if len(row) != 2: tf.logging.warn(f'Failed to parse csv line: {l}, will ignore it.') continue s = tf.Summary() v = s.value.add() v.tag, v.simple_value = row[0], float(row[1]) summaries.update({v.tag: s}) return summaries class DecodeStatusCache: """Maintain status file to keep decoding datasets status. Status file should have following format: - 1st line is checkpoint key, e.g. ckpt-123 - the rest lines are dataset names that has been decoded. Here's an example: ckpt-123 Dev Test """ def __init__(self, program_dir): self.ckpt_key = '' self.decoded_datasets = [] self.status_file = os.path.join(program_dir, 'decoded_datasets.txt') # TODO(xingwu): Consider add a TTL. self.cache_dir = os.path.join(program_dir, 'cache') tf.io.gfile.makedirs(self.cache_dir) if tf.io.gfile.exists(self.status_file): with tf.io.gfile.GFile(self.status_file, 'r') as f: content = list(l.strip() for l in f.readlines()) if content: self.ckpt_key = content[0] if len(content) > 1: self.decoded_datasets = content[1:] def METHOD_NAME(self, ckpt_key): """Update checkpoint key in the status.""" if ckpt_key != self.ckpt_key: self.ckpt_key = ckpt_key self.decoded_datasets = [] with tf.io.gfile.GFile(self.status_file, 'w') as f: f.write(self.ckpt_key) def UpdateDataset(self, dataset_name, summaries): """Update decoded dataset in the status.""" cache_file = os.path.join(self.cache_dir, f'{dataset_name}.csv') with tf.io.gfile.GFile(cache_file, 'w') as f: f.write(SummaryToCsv(summaries)) with tf.io.gfile.GFile(self.status_file, 'w+') as f: f.write(f.read().strip() + '\n' + dataset_name) def TryLoadCache(self, ckpt_key, dataset_name): """Try load summary cache for ckpt_key, dataset_name. Args: ckpt_key: str, checkpoint key, e.g. ckpt-123 dataset_name: str, the dataset name, e.g. Test Returns: summaries if load successful, otherwise, return None """ if ckpt_key == self.ckpt_key and dataset_name in self.decoded_datasets: cache_file = os.path.join(self.cache_dir, f'{dataset_name}.csv') if not tf.io.gfile.exists(cache_file): tf.logging.warn(f'cached summary {cache_file} is gone!') return None with tf.io.gfile.GFile(cache_file, 'r') as f: summaries = CsvToSummary(f.read()) with tf.io.gfile.GFile(self.status_file, 'w+') as f: f.write(f.read().strip() + '\n' + dataset_name) return summaries return None class TriggerScheduler: """A trigger scheduler with offset, and interval. Maintains an counter, incremented when Trigger() called. ShouldRun() only returns True when (counter - offset) % interval == 0. """ def __init__(self, offset, interval): self.offset = offset self.interval = interval self.counter = -offset def Trigger(self): self.counter += 1 if self.counter >= self.interval: self.counter = 0 def ShouldRun(self): return self.counter == 0
2,350
connectiondatahelper
from selenium import webdriver from bs4 import BeautifulSoup import json import time from selenium.webdriver.common.by import By import csv browser = webdriver.Chrome() pageurl = "https://www.linkedin.com/uas/login?session_redirect=https%3A%2F%2Fwww%2Elinkedin%2Ecom%2Fsearch%2Fresults%2Fpeople%2F%3Fnetwork%3D%255B%2522F%2522%255D%26origin%3DMEMBER_PROFILE_CANNED_SEARCH&fromSignIn=true&trk=cold_join_sign_in" paginationurl = "https://www.linkedin.com/search/results/people/?network=%5B%22F%22%5D&origin=MEMBER_PROFILE_CANNED_SEARCH&page=" # Function to read username and password from file def read_creds(filename): """This function reads username and password from creddentials.json Arguments: filename: name of the file which stores the credentials :return: returns the credentials """ with open(filename) as f: credentials = json.load(f) return credentials # function to find skills def find_skills(url): """This function find the skills from the linkedin profile of the connection Arguments: url: url of the profile :return: returns the list contsining skills """ browser.get(url) time.sleep(3) skill_set = [] last_height = browser.execute_script("return document.body.scrollHeight") while True: browser.execute_script("window.scrollTo(0, window.scrollY + 400);") time.sleep(2) new_height = browser.execute_script("return window.scrollY + 400") if new_height == last_height: break last_height = new_height time.sleep(2) Skills = browser.find_elements_by_class_name("pv-skill-category-entity") if len(Skills) == 0: skill_set.append("Any Skill is not mentioned in the Linkedin Profile") else: show_more_button = browser.find_elements_by_class_name( "pv-skills-section__additional-skills" ) if len(show_more_button) > 0: browser.execute_script("arguments[0].click();", show_more_button[0]) pagesource = browser.page_source content = BeautifulSoup(pagesource, "html.parser") Skills = content.find_all("li", class_="pv-skill-category-entity") for skill in Skills: skill_text = skill.find( "p", class_="pv-skill-category-entity__name" ).text.strip() skill_set.append(skill_text.split("\n")[0]) return skill_set # Function to login def login_and_npage(): """This function login to the linkedin page return the number of pages of connection :return: number of pages """ creds = read_creds("credentials.json") # open login page browser.get(pageurl) elementID = browser.find_element_by_id("username") elementID.send_keys(creds["username"]) elementID = browser.find_element_by_id("password") elementID.send_keys(creds["password"]) elementID.submit() url = browser.current_url browser.get(url) connectionclass = "mn-connection-card__details" numberofpages = 0 time.sleep(2) last_height = browser.execute_script("return document.body.scrollHeight") while True: # Scroll down to bottom browser.execute_script("window.scrollTo(0, document.body.scrollHeight);") elements = browser.find_elements_by_class_name( "artdeco-pagination__indicator--number" ) if len(elements) > 0: numberofpages = int(elements[-1].text) return numberofpages # Wait to load page time.sleep(2) # Calculate new scroll height and compare with last scroll height new_height = browser.execute_script("return document.body.scrollHeight") if new_height == last_height: break last_height = new_height return 0 # function to find connection data containing name and profileurl only def METHOD_NAME(numberofpages): """This function returns the data of connections containg name and profile url Arguments: numberofpages:number of pages of connections :return: connectiondata """ connectiondata = [] for j in range(1, numberofpages + 1): browser.get(paginationurl + str(j)) time.sleep(3) pagesource = browser.page_source soup = BeautifulSoup(pagesource, "html.parser") connections = soup.find_all("div", class_="entity-result__content") for connection in connections: titlecontainer = connection.find(class_="entity-result__title-text") nameelement = titlecontainer.find("a", class_="app-aware-link") nametext = nameelement.find("span", {"dir": "ltr"}).text.split("View")[0] url = nameelement["href"] connectionobj = {"name": nametext, "profileurl": url} connectiondata.append(connectionobj) return connectiondata # '''function for finding required data of connection''' def finalconnectiondata(connectiondata): """This function returns the list containing the data of all connections Arguments: connectiondata: list containing the name and profileurl of the connections :return: finalconnectiondata """ final_connectiondata = [] for connection in connectiondata: skill_set = find_skills(connection["profileurl"]) browser.get(connection["profileurl"]) time.sleep(3) pagesource = browser.page_source soup = BeautifulSoup(pagesource, "html.parser") experiencecontainer = soup.find( "a", {"data-control-name": "background_details_company"} ) if experiencecontainer is None: l_jobtitile = "Don't Have any Job Experience" else: l_jobtitile = experiencecontainer.find("h3").text.strip() last_height = browser.execute_script("return document.body.scrollHeight") time.sleep(2) linken_connection = { "Name": connection["name"], "Linkedin_URL": connection["profileurl"], "Latest_JOB_Position": l_jobtitile, "Skills": skill_set, } final_connectiondata.append(linken_connection) return final_connectiondata def main(): """function of execution""" browser.maximize_window() numberofpages = login_and_npage() smalldata_of_connections = METHOD_NAME(numberofpages) final_connectiondata = finalconnectiondata(smalldata_of_connections) browser.quit() keys = final_connectiondata[0].keys() with open("output.csv", "w", newline="") as output_file: dict_writer = csv.DictWriter(output_file, keys) dict_writer.writeheader() dict_writer.writerows(final_connectiondata) if __name__ == "__main__": main()
2,351
monotone fn inverter
""" Empirical CDF Functions """ import numpy as np from scipy.interpolate import interp1d def _conf_set(F, alpha=.05): r""" Constructs a Dvoretzky-Kiefer-Wolfowitz confidence band for the eCDF. Parameters ---------- F : array_like The empirical distributions alpha : float Set alpha for a (1 - alpha) % confidence band. Notes ----- Based on the DKW inequality. .. math:: P \left( \sup_x \left| F(x) - \hat(F)_n(X) \right| > \epsilon \right) \leq 2e^{-2n\epsilon^2} References ---------- Wasserman, L. 2006. `All of Nonparametric Statistics`. Springer. """ nobs = len(F) epsilon = np.sqrt(np.log(2./alpha) / (2 * nobs)) lower = np.clip(F - epsilon, 0, 1) upper = np.clip(F + epsilon, 0, 1) return lower, upper class StepFunction: """ A basic step function. Values at the ends are handled in the simplest way possible: everything to the left of x[0] is set to ival; everything to the right of x[-1] is set to y[-1]. Parameters ---------- x : array_like y : array_like ival : float ival is the value given to the values to the left of x[0]. Default is 0. sorted : bool Default is False. side : {'left', 'right'}, optional Default is 'left'. Defines the shape of the intervals constituting the steps. 'right' correspond to [a, b) intervals and 'left' to (a, b]. Examples -------- >>> import numpy as np >>> from statsmodels.distributions.empirical_distribution import ( >>> StepFunction) >>> >>> x = np.arange(20) >>> y = np.arange(20) >>> f = StepFunction(x, y) >>> >>> print(f(3.2)) 3.0 >>> print(f([[3.2,4.5],[24,-3.1]])) [[ 3. 4.] [ 19. 0.]] >>> f2 = StepFunction(x, y, side='right') >>> >>> print(f(3.0)) 2.0 >>> print(f2(3.0)) 3.0 """ def __init__(self, x, y, ival=0., sorted=False, side='left'): # noqa if side.lower() not in ['right', 'left']: msg = "side can take the values 'right' or 'left'" raise ValueError(msg) self.side = side _x = np.asarray(x) _y = np.asarray(y) if _x.shape != _y.shape: msg = "x and y do not have the same shape" raise ValueError(msg) if len(_x.shape) != 1: msg = 'x and y must be 1-dimensional' raise ValueError(msg) self.x = np.r_[-np.inf, _x] self.y = np.r_[ival, _y] if not sorted: asort = np.argsort(self.x) self.x = np.take(self.x, asort, 0) self.y = np.take(self.y, asort, 0) self.n = self.x.shape[0] def __call__(self, time): tind = np.searchsorted(self.x, time, self.side) - 1 return self.y[tind] class ECDF(StepFunction): """ Return the Empirical CDF of an array as a step function. Parameters ---------- x : array_like Observations side : {'left', 'right'}, optional Default is 'right'. Defines the shape of the intervals constituting the steps. 'right' correspond to [a, b) intervals and 'left' to (a, b]. Returns ------- Empirical CDF as a step function. Examples -------- >>> import numpy as np >>> from statsmodels.distributions.empirical_distribution import ECDF >>> >>> ecdf = ECDF([3, 3, 1, 4]) >>> >>> ecdf([3, 55, 0.5, 1.5]) array([ 0.75, 1. , 0. , 0.25]) """ def __init__(self, x, side='right'): x = np.array(x, copy=True) x.sort() nobs = len(x) y = np.linspace(1./nobs, 1, nobs) super(ECDF, self).__init__(x, y, side=side, sorted=True) # TODO: make `step` an arg and have a linear interpolation option? # This is the path with `step` is True # If `step` is False, a previous version of the code read # `return interp1d(x,y,drop_errors=False,fill_values=ival)` # which would have raised a NameError if hit, so would need to be # fixed. See GH#5701. class ECDFDiscrete(StepFunction): """ Return the Empirical Weighted CDF of an array as a step function. Parameters ---------- x : array_like Data values. If freq_weights is None, then x is treated as observations and the ecdf is computed from the frequency counts of unique values using nunpy.unique. If freq_weights is not None, then x will be taken as the support of the mass point distribution with freq_weights as counts for x values. The x values can be arbitrary sortable values and need not be integers. freq_weights : array_like Weights of the observations. sum(freq_weights) is interpreted as nobs for confint. If freq_weights is None, then the frequency counts for unique values will be computed from the data x. side : {'left', 'right'}, optional Default is 'right'. Defines the shape of the intervals constituting the steps. 'right' correspond to [a, b) intervals and 'left' to (a, b]. Returns ------- Weighted ECDF as a step function. Examples -------- >>> import numpy as np >>> from statsmodels.distributions.empirical_distribution import ( >>> ECDFDiscrete) >>> >>> ewcdf = ECDFDiscrete([3, 3, 1, 4]) >>> ewcdf([3, 55, 0.5, 1.5]) array([0.75, 1. , 0. , 0.25]) >>> >>> ewcdf = ECDFDiscrete([3, 1, 4], [1.25, 2.5, 5]) >>> >>> ewcdf([3, 55, 0.5, 1.5]) array([0.42857143, 1., 0. , 0.28571429]) >>> print('e1 and e2 are equivalent ways of defining the same ECDF') e1 and e2 are equivalent ways of defining the same ECDF >>> e1 = ECDFDiscrete([3.5, 3.5, 1.5, 1, 4]) >>> e2 = ECDFDiscrete([3.5, 1.5, 1, 4], freq_weights=[2, 1, 1, 1]) >>> print(e1.x, e2.x) [-inf 1. 1.5 3.5 4. ] [-inf 1. 1.5 3.5 4. ] >>> print(e1.y, e2.y) [0. 0.2 0.4 0.8 1. ] [0. 0.2 0.4 0.8 1. ] """ def __init__(self, x, freq_weights=None, side='right'): if freq_weights is None: x, freq_weights = np.unique(x, return_counts=True) else: x = np.asarray(x) assert len(freq_weights) == len(x) w = np.asarray(freq_weights) sw = np.sum(w) assert sw > 0 ax = x.argsort() x = x[ax] y = np.cumsum(w[ax]) y = y / sw super(ECDFDiscrete, self).__init__(x, y, side=side, sorted=True) def METHOD_NAME(fn, x, vectorized=True, **keywords): """ Given a monotone function fn (no checking is done to verify monotonicity) and a set of x values, return an linearly interpolated approximation to its inverse from its values on x. """ x = np.asarray(x) if vectorized: y = fn(x, **keywords) else: y = [] for _x in x: y.append(fn(_x, **keywords)) y = np.array(y) a = np.argsort(y) return interp1d(y[a], x[a])
2,352
compute center
import os, os.path import socket import lbann import lbann.launcher from lbann.util import make_iterable, nvprof_command # ============================================== # Detect the current compute center # ============================================== def is_lc_center(): """Current system is operated by Livermore Computing at Lawrence Livermore National Laboratory. Checks whether the domain name ends with ".llnl.gov". """ domain = socket.getfqdn().split('.') return (len(domain) > 2 and domain[-2] == 'llnl' and domain[-1] == 'gov') def is_nersc_center(): """Current system is operated by the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. Checks whether the environment variable NERSC_HOST is set. """ return bool(os.getenv('NERSC_HOST')) def is_olcf_center(): """Current system is operated by the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory. Checks whether the domain name ends with ".ornl.gov". Checks whether the environment variable OLCF_MODULEPATH_ROOT is set. """ domain = socket.getfqdn().split('.') return (len(domain) > 2 and domain[-2] == 'ornl' and domain[-1] == 'gov') # return bool(os.getenv('OLCF_MODULEPATH_ROOT')) def is_riken_center(): """Current system is operated by RIKEN. Checks if the system is using a Fujitsu compiler """ return bool(os.getenv('FJSVXTCLANGA')) # Detect compute center and choose launcher _center = 'unknown' launcher = lbann.launcher if is_lc_center(): _center = 'lc' import lbann.contrib.lc.systems if lbann.contrib.lc.systems.is_lc_system(): import lbann.contrib.lc.launcher launcher = lbann.contrib.lc.launcher elif is_nersc_center(): _center = 'nersc' import lbann.contrib.nersc.systems if lbann.contrib.nersc.systems.is_nersc_system(): import lbann.contrib.nersc.launcher launcher = lbann.contrib.nersc.launcher elif is_olcf_center(): _center = 'olcf' import lbann.contrib.olcf.systems if lbann.contrib.olcf.systems.is_olcf_system(): import lbann.contrib.olcf.launcher launcher = lbann.contrib.olcf.launcher elif is_riken_center(): _center = 'riken' import lbann.contrib.riken.systems if lbann.contrib.riken.systems.is_riken_system(): import lbann.contrib.riken.launcher launcher = lbann.contrib.riken.launcher def METHOD_NAME(): """Name of organization that operates current system.""" return _center # ============================================== # Launcher functions # ============================================== def run( trainer, model, data_reader, optimizer, lbann_exe=lbann.lbann_exe(), lbann_args=[], procs_per_trainer=None, overwrite_script=False, setup_only=False, batch_job=False, proto_file_name=None, nvprof=False, nvprof_output_name=None, binary_protobuf=False, *args, **kwargs, ): """Run LBANN with system-specific optimizations. This is intended to match the behavior of `lbann.run`, with defaults and optimizations for the current system. See that function for a full list of options. """ # Create batch script generator script = make_batch_script(*args, **kwargs) # Batch script prints start time script.add_command('echo "Started at $(date)"') # Set default file name and extension if proto_file_name is None: proto_file_name = ('experiment.protobin' if binary_protobuf else 'experiment.prototext') # Batch script invokes LBANN lbann_command = [lbann_exe] if nvprof: lbann_command = nvprof_command( work_dir=script.work_dir, output_name=nvprof_output_name) + lbann_command lbann_command.extend(make_iterable(lbann_args)) proto_file = os.path.join(script.work_dir, proto_file_name) lbann.proto.save_prototext(proto_file, binary=binary_protobuf, trainer=trainer, model=model, data_reader=data_reader, optimizer=optimizer) lbann_command.append('--prototext={}'.format(proto_file)) if procs_per_trainer is not None: lbann_command.append(f'--procs_per_trainer={procs_per_trainer}') script.add_parallel_command(lbann_command) script.add_command('status=$?') # Batch script prints finish time and returns status script.add_command('echo "Finished at $(date)"') script.add_command('exit ${status}') # Write, run, or submit batch script status = 0 if setup_only: script.write(overwrite=overwrite_script) elif batch_job: status = script.submit(overwrite=overwrite_script) else: status = script.run(overwrite=overwrite_script) return status def make_batch_script(*args, **kwargs): """Construct batch script manager with system-specific optimizations. This is intended to match the behavior of `lbann.launcher.make_batch_script`, with defaults and optimizations for the current system. """ return launcher.make_batch_script(*args, **kwargs)
2,353
test recursive inst
import cPickle import unittest from cStringIO import StringIO from test.pickletester import AbstractPickleTests, AbstractPickleModuleTests from test import test_support class ApproxFloat(unittest.TestCase): # FIXME for Jython: remove this class - and its use from bases in # subsequent test classes - when we can guarantee that floats that # are pickled by cPickle are exact in the same way they are on # CPython def test_float(self): from test.pickletester import protocols test_values = [0.0, 4.94e-324, 1e-310, 7e-308, 6.626e-34, 0.1, 0.5, 3.14, 263.44582062374053, 6.022e23, 1e30] test_values = test_values + [-x for x in test_values] for proto in protocols: for value in test_values: pickle = self.dumps(value, proto) got = self.loads(pickle) self.assertAlmostEqual(value, got) class cPickleTests(ApproxFloat, AbstractPickleTests, AbstractPickleModuleTests): def setUp(self): self.dumps = cPickle.dumps self.loads = cPickle.loads error = cPickle.BadPickleGet module = cPickle @unittest.skipIf(test_support.is_jython, "FIXME: not working on Jython") def test_callapi(self): pass @unittest.skipIf(test_support.is_jython, "FIXME: not working on Jython") def test_dynamic_class(self): pass class cPicklePicklerTests(ApproxFloat, AbstractPickleTests): def dumps(self, arg, proto=0): f = StringIO() p = cPickle.Pickler(f, proto) p.dump(arg) f.seek(0) return f.read() def loads(self, buf): f = StringIO(buf) p = cPickle.Unpickler(f) return p.load() error = cPickle.BadPickleGet @unittest.skipIf(test_support.is_jython, "FIXME: not working on Jython") def test_dynamic_class(self): pass class cPickleListPicklerTests(AbstractPickleTests): def dumps(self, arg, proto=0): p = cPickle.Pickler(proto) p.dump(arg) return p.getvalue() def loads(self, *args): f = StringIO(args[0]) p = cPickle.Unpickler(f) return p.load() error = cPickle.BadPickleGet class cPickleFastPicklerTests(ApproxFloat, AbstractPickleTests): def dumps(self, arg, proto=0): f = StringIO() p = cPickle.Pickler(f, proto) p.fast = 1 p.dump(arg) f.seek(0) return f.read() def loads(self, *args): f = StringIO(args[0]) p = cPickle.Unpickler(f) return p.load() error = cPickle.BadPickleGet def test_recursive_list(self): self.assertRaises(ValueError, AbstractPickleTests.test_recursive_list, self) def METHOD_NAME(self): self.assertRaises(ValueError, AbstractPickleTests.METHOD_NAME, self) def test_recursive_dict(self): self.assertRaises(ValueError, AbstractPickleTests.test_recursive_dict, self) def test_recursive_multi(self): self.assertRaises(ValueError, AbstractPickleTests.test_recursive_multi, self) def test_nonrecursive_deep(self): # If it's not cyclic, it should pickle OK even if the nesting # depth exceeds PY_CPICKLE_FAST_LIMIT. That happens to be # 50 today. Jack Jansen reported stack overflow on Mac OS 9 # at 64. a = [] for i in range(60): a = [a] b = self.loads(self.dumps(a)) self.assertEqual(a, b) @unittest.skipIf(test_support.is_jython, "FIXME: not working on Jython") def test_dynamic_class(self): pass def test_main(): tests = [ cPickleTests, cPicklePicklerTests, cPickleListPicklerTests, cPickleFastPicklerTests ] if test_support.is_jython: # FIXME Jython currently doesn't support list based picklers tests.remove(cPickleListPicklerTests) # FIXME these cause NullPointerException on Jython del cPickleFastPicklerTests.test_recursive_list del cPickleFastPicklerTests.METHOD_NAME del cPickleFastPicklerTests.test_recursive_dict del cPickleFastPicklerTests.test_recursive_multi test_support.run_unittest(*tests) if __name__ == "__main__": test_main()
2,354
id
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'GetSecretRotationResult', 'AwaitableGetSecretRotationResult', 'get_secret_rotation', 'get_secret_rotation_output', ] @pulumi.output_type class GetSecretRotationResult: """ A collection of values returned by getSecretRotation. """ def __init__(__self__, METHOD_NAME=None, rotation_enabled=None, rotation_lambda_arn=None, rotation_rules=None, secret_id=None): if METHOD_NAME and not isinstance(METHOD_NAME, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", METHOD_NAME) if rotation_enabled and not isinstance(rotation_enabled, bool): raise TypeError("Expected argument 'rotation_enabled' to be a bool") pulumi.set(__self__, "rotation_enabled", rotation_enabled) if rotation_lambda_arn and not isinstance(rotation_lambda_arn, str): raise TypeError("Expected argument 'rotation_lambda_arn' to be a str") pulumi.set(__self__, "rotation_lambda_arn", rotation_lambda_arn) if rotation_rules and not isinstance(rotation_rules, list): raise TypeError("Expected argument 'rotation_rules' to be a list") pulumi.set(__self__, "rotation_rules", rotation_rules) if secret_id and not isinstance(secret_id, str): raise TypeError("Expected argument 'secret_id' to be a str") pulumi.set(__self__, "secret_id", secret_id) @property @pulumi.getter def METHOD_NAME(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter(name="rotationEnabled") def rotation_enabled(self) -> bool: """ ARN of the secret. """ return pulumi.get(self, "rotation_enabled") @property @pulumi.getter(name="rotationLambdaArn") def rotation_lambda_arn(self) -> str: """ Decrypted part of the protected secret information that was originally provided as a string. """ return pulumi.get(self, "rotation_lambda_arn") @property @pulumi.getter(name="rotationRules") def rotation_rules(self) -> Sequence['outputs.GetSecretRotationRotationRuleResult']: """ Decrypted part of the protected secret information that was originally provided as a binary. Base64 encoded. """ return pulumi.get(self, "rotation_rules") @property @pulumi.getter(name="secretId") def secret_id(self) -> str: return pulumi.get(self, "secret_id") class AwaitableGetSecretRotationResult(GetSecretRotationResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetSecretRotationResult( METHOD_NAME=self.METHOD_NAME, rotation_enabled=self.rotation_enabled, rotation_lambda_arn=self.rotation_lambda_arn, rotation_rules=self.rotation_rules, secret_id=self.secret_id) def get_secret_rotation(secret_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSecretRotationResult: """ Retrieve information about a Secrets Manager secret rotation. To retrieve secret metadata, see the `secretsmanager.Secret` data source. To retrieve a secret value, see the `secretsmanager.SecretVersion` data source. ## Example Usage ### Retrieve Secret Rotation Configuration ```python import pulumi import pulumi_aws as aws example = aws.secretsmanager.get_secret_rotation(secret_id=data["aws_secretsmanager_secret"]["example"]["id"]) ``` :param str secret_id: Specifies the secret containing the version that you want to retrieve. You can specify either the ARN or the friendly name of the secret. """ __args__ = dict() __args__['secretId'] = secret_id opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('aws:secretsmanager/getSecretRotation:getSecretRotation', __args__, opts=opts, typ=GetSecretRotationResult).value return AwaitableGetSecretRotationResult( METHOD_NAME=pulumi.get(__ret__, 'id'), rotation_enabled=pulumi.get(__ret__, 'rotation_enabled'), rotation_lambda_arn=pulumi.get(__ret__, 'rotation_lambda_arn'), rotation_rules=pulumi.get(__ret__, 'rotation_rules'), secret_id=pulumi.get(__ret__, 'secret_id')) @_utilities.lift_output_func(get_secret_rotation) def get_secret_rotation_output(secret_id: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetSecretRotationResult]: """ Retrieve information about a Secrets Manager secret rotation. To retrieve secret metadata, see the `secretsmanager.Secret` data source. To retrieve a secret value, see the `secretsmanager.SecretVersion` data source. ## Example Usage ### Retrieve Secret Rotation Configuration ```python import pulumi import pulumi_aws as aws example = aws.secretsmanager.get_secret_rotation(secret_id=data["aws_secretsmanager_secret"]["example"]["id"]) ``` :param str secret_id: Specifies the secret containing the version that you want to retrieve. You can specify either the ARN or the friendly name of the secret. """ ...
2,355
test check events warnings null duration
""" Test the design_matrix utilities. Note that the tests just look whether the data produced has correct dimension, not whether it is exact. """ import os import numpy as np import pandas as pd import pytest from numpy.testing import assert_array_equal from nilearn._utils.data_gen import basic_paradigm from nilearn.glm.first_level import check_events from ._utils import ( block_paradigm, design_with_nan_durations, design_with_nan_onsets, design_with_null_durations, duplicate_events_paradigm, modulated_block_paradigm, modulated_event_paradigm, ) def test_check_events(): events = basic_paradigm() trial_type, _, _, modulation = check_events(events) # Check that given trial type is right assert_array_equal( trial_type, ["c0", "c0", "c0", "c1", "c1", "c1", "c2", "c2", "c2"] ) # Check that missing modulation yields an array one ones assert_array_equal(modulation, np.ones(len(events))) # Modulation is provided events["modulation"] = np.ones(len(events)) _, _, _, mod = check_events(events) assert_array_equal(mod, events["modulation"]) def test_check_events_errors(): """Test the function which tests that the events data describes a valid experimental paradigm. """ events = basic_paradigm() # Errors checkins # Wrong type with pytest.raises( TypeError, match="Events should be a Pandas DataFrame." ): check_events([]) # Missing onset missing_onset = events.drop(columns=["onset"]) with pytest.raises( ValueError, match="The provided events data has no onset column." ): check_events(missing_onset) # Missing duration missing_duration = events.drop(columns=["duration"]) with pytest.raises( ValueError, match="The provided events data has no duration column." ): check_events(missing_duration) # Duration wrong type wrong_duration = events.copy() wrong_duration["duration"] = "foo" with pytest.raises(ValueError, match="Could not cast duration to float"): check_events(wrong_duration) def test_check_events_warnings(): """Test the function which tests that the events data describes a valid experimental paradigm. """ events = basic_paradigm() # Warnings checkins # Missing trial type events = events.drop(columns=["trial_type"]) with pytest.warns(UserWarning, match="'trial_type' column not found"): trial_type, onset, duration, modulation = check_events(events) # Check that missing trial type yields a 'dummy' array assert len(np.unique(trial_type)) == 1 assert trial_type[0] == "dummy" # An unexpected field is provided events["foo"] = np.zeros(len(events)) with pytest.warns( UserWarning, match=( "The following unexpected columns " "in events data will be ignored: foo" ), ): trial_type2, onset2, duration2, modulation2 = check_events(events) assert_array_equal(trial_type, trial_type2) assert_array_equal(onset, onset2) assert_array_equal(duration, duration2) assert_array_equal(modulation, modulation2) def test_duplicate_events(): """Test the function check_events when the paradigm contains duplicate events. """ events = duplicate_events_paradigm() # Check that a warning is given to the user with pytest.warns(UserWarning, match="Duplicated events were detected."): trial_type, onset, duration, modulation = check_events(events) assert_array_equal(trial_type, ["c0", "c0", "c0", "c1", "c1"]) assert_array_equal(onset, [10, 30, 70, 10, 30]) assert_array_equal(duration, [1.0, 1.0, 1.0, 1.0, 1.0]) # Modulation was updated assert_array_equal(modulation, [1, 1, 2, 1, 1]) def write_events(events, tmpdir): """Function to write events of an experimental paradigm to a file and return the address. """ tsvfile = os.path.join(tmpdir, "events.tsv") events.to_csv(tsvfile, sep="\t") return tsvfile @pytest.mark.parametrize( "events", [ block_paradigm(), modulated_event_paradigm(), modulated_block_paradigm(), basic_paradigm(), ], ) def test_read_events(events, tmp_path): """Test that a events for an experimental paradigm are correctly read.""" csvfile = write_events(events, tmp_path) read_paradigm = pd.read_table(csvfile) assert (read_paradigm["onset"] == events["onset"]).all() def METHOD_NAME(): """Test that events with null duration throw a warning.""" with pytest.warns( UserWarning, match="The following conditions contain events with null duration", ): check_events(design_with_null_durations()) @pytest.mark.parametrize( "design", [ design_with_nan_durations, design_with_nan_onsets, ], ) def test_check_events_nan_designs(design): """Test that events with nan values.""" with pytest.raises( ValueError, match=("The following column must not contain nan values:") ): check_events(design())
2,356
decode
#!/usr/bin/env python3 import argparse import os import re import shlex import sys from subprocess import run, SubprocessError, DEVNULL, PIPE from tempfile import NamedTemporaryFile DESC = """ A `csmith` fuzzing driver for `bindgen`. Generates random C source files with `csmith` and then passes them to `bindgen` (via `predicate.py`). If `bindgen` can't emit bindings, `rustc` can't compile those bindings, or the compiled bindings' layout tests fail, then the driver has found a bug, and will report the problematic test case to you. """ parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=DESC.strip()) parser.add_argument( "--keep-going", action="store_true", help="Do not stop after finding a test case that exhibits a bug in `bindgen`. Instead, keep going.") CSMITH_ARGS="\ --no-checksum \ --nomain \ --max-block-size 1 \ --max-block-depth 1" parser.add_argument( "--csmith-args", type=str, default=CSMITH_ARGS, help="Pass this argument string to `csmith`. By default, very small functions are generated.") BINDGEN_ARGS = "--with-derive-partialeq \ --with-derive-eq \ --with-derive-partialord \ --with-derive-ord \ --with-derive-hash \ --with-derive-default" parser.add_argument( "--bindgen-args", type=str, default=BINDGEN_ARGS, help="Pass this argument string to `bindgen`. By default, all traits are derived.") parser.add_argument( "--no-creduce", action="store_false", dest="creduce", help="Do not run `creduce` on any buggy test case(s) discovered.") ################################################################################ def cat(path, title=None): if not title: title = path print("-------------------- {} --------------------".format(title)) print() print() run(["cat", path]) def METHOD_NAME(f): return f.METHOD_NAME(encoding="utf-8", errors="ignore") def run_logged(cmd): result = run(cmd, stdin=DEVNULL, stdout=PIPE, stderr=PIPE) result.stdout = METHOD_NAME(result.stdout) result.stderr = METHOD_NAME(result.stderr) if result.returncode != 0: print() print() print("Error: {} exited with code {}".format(cmd, result.returncode)) print() print() for line in result.stdout.splitlines(): sys.stdout.write("+") sys.stdout.write(line) sys.stdout.write("\n") for line in result.stderr.splitlines(): sys.stderr.write("+") sys.stderr.write(line) sys.stderr.write("\n") return result def main(): os.environ["RUST_BACKTRACE"] = "full" args = parser.parse_args() bindgen_args = args.bindgen_args if bindgen_args.find(" -- ") == -1: bindgen_args = bindgen_args + " -- " bindgen_args = bindgen_args + " -I{}".format(os.path.abspath(os.path.dirname(sys.argv[0]))) args.bindgen_args = bindgen_args print() print() print("Fuzzing `bindgen` with C-Smith...") print() print() iterations = 0 while True: print("\rIteration: {}".format(iterations), end="", flush=True) iterations += 1 input = NamedTemporaryFile(delete=False, prefix="input-", suffix=".h") input.close() result = run_logged(["csmith", "-o", input.name] + shlex.split(args.csmith_args)) if result.returncode != 0: exit(1) predicate_command = [ "./predicate.py", "--bindgen-args", args.bindgen_args, input.name ] result = run_logged(predicate_command) if result.returncode != 0: print() print() cat(input.name, title="Failing test case: {}".format(input.name)) print() print() if args.creduce: creduce(args, input.name, result) print_issue_template(args, input.name, predicate_command, result) if args.keep_going: continue exit(1) os.remove(input.name) RUSTC_ERROR_REGEX = re.compile(r".*(error\[.*].*)") LAYOUT_TEST_FAILURE = re.compile(r".*(test bindgen_test_layout_.* \.\.\. FAILED)") def creduce(args, failing_test_case, result): print() print() print("Reducing failing test case with `creduce`...") match = re.search(RUSTC_ERROR_REGEX, result.stderr) if match: error_msg = match.group(1) print("...searching for \"{}\".".format(error_msg)) return creduce_with_predicate_flags( args, failing_test_case, "--bindgen-args '{}' --expect-compile-fail --rustc-grep '{}'".format( args.bindgen_args, re.escape(error_msg) ) ) match = re.search(LAYOUT_TEST_FAILURE, result.stdout) if match: layout_failure = match.group(1) struct_name = layout_failure[len("test bindgen_test_layout_"):layout_failure.rindex(" ... FAILED")] print("...searching for \"{}\".".format(layout_failure)) return creduce_with_predicate_flags( args, failing_test_case, "--bindgen-args '{}' --expect-layout-tests-fail --bindings-grep '{}' --layout-tests-grep '{}'".format( args.bindgen_args, re.escape(struct_name), re.escape(layout_failure) ) ) print("...nevermind, don't know how to `creduce` this bug. Skipping.") def creduce_with_predicate_flags(args, failing_test_case, predicate_flags): predicate = """ #!/usr/bin/env bash set -eu {} {} {} """.format( os.path.abspath(os.path.join(os.path.dirname(sys.argv[0]), "predicate.py")), predicate_flags, os.path.basename(failing_test_case) ) print("...and reducing with this script:") print() print() print(predicate) print() print() predicate_path = failing_test_case + ".predicate.sh" with open(predicate_path, "w") as p: p.write(predicate) os.chmod(predicate_path, 0o755) creduce_command = ["creduce", "--n", str(os.cpu_count()), predicate_path, failing_test_case] print("Running:", creduce_command) result = run(creduce_command) if result.returncode == 0: print() print() print("`creduce` reduced the failing test case to:") print() print() cat(failing_test_case) print() print() else: print() print() print("`creduce` failed!") if not args.keep_going: sys.exit(1) def print_issue_template(args, failing_test_case, predicate_command, result): test_case_contents = None with open(failing_test_case, "r") as f: test_case_contents = f.read() print(""" ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! File this issue at https://github.com/rust-lang/rust-bindgen/issues/new ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! --------------- 8< --------------- 8< --------------- 8< --------------- This bug was found with `csmith` and `driver.py`. ### Input Header ```c {} ``` ### `bindgen` Invocation ``` $ {} ``` ### Actual Results <details> ``` {} ``` </details> ### Expected Results `bindgen` emits bindings OK, then `rustc` compiles those bindings OK, then the compiled bindings' layout tests pass OK. --------------- 8< --------------- 8< --------------- 8< --------------- <3 <3 <3 Thank you! <3 <3 <3 """.format( test_case_contents, " ".join(map(lambda s: "'{}'".format(s), predicate_command)), result.stdout + result.stderr )) if __name__ == "__main__": try: os.chdir(os.path.abspath(os.path.dirname(sys.argv[0]))) main() except KeyboardInterrupt: exit()
2,357
split
from typing import * from typing_extensions import Literal import pandas as pd pi: float def array(x: Union[Sequence[Any], Iterable[Any], ndarray], **kwargs) -> ndarray: ... class int32: ... class float32: ... class ndarray(List): shape: Sequence[int] T: 'ndarray' ndim: int def __setitem__(self, idx, value) -> None: ... def __len__(self) -> int: ... def __iter__(self) -> Iterator: ... def __invert__(self) -> 'ndarray': ... def __eq__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __ne__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __lt__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __le__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __gt__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __ge__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __div__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __truediv__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __mul__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __imul__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __sub__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __rsub__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __add__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __pow__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __or__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __xor__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden def __and__(self, other: Any) -> ndarray[bool]: ... # type: ignore # already defined in typeshed - does not like being overriden # can't really overload this as depends on dimensions of array def __getitem__(self, # type: ignore # already defined in typeshed - does not like being overriden key: Union[int, slice, Sequence[Union[int, bool]], Iterable[Union[int, bool]], Tuple[Union[slice, int, Iterable[Union[int, bool]]], Union[slice, int, Iterable[Union[int, bool]]]], ]) -> Union['ndarray', str, int, bool]: ... def tolist(self) -> List: ... @overload def sum(self, axis: Literal[None] = ..., **kwargs) -> float: ... @overload def sum(self, axis: int, **kwargs) -> ndarray: ... @overload def min(self, axis: Literal[None] = ..., **kwargs) -> float: ... @overload def min(self, axis: int, **kwargs) -> ndarray: ... @overload def max(self, axis: Literal[None] = ..., **kwargs) -> float: ... @overload def max(self, axis: int, **kwargs) -> ndarray: ... @overload def mean(self, axis: Literal[None] = ..., **kwargs) -> float: ... @overload def mean(self, axis: int, **kwargs) -> ndarray: ... @overload def any(self, axis: Literal[None] = ..., **kwargs) -> float: ... @overload def any(self, axis: int, **kwargs) -> ndarray: ... @overload def astype(self, ty: Literal[str], **kwargs) -> 'ndarray[str]': ... @overload def astype(self, ty: Literal[int], **kwargs) -> 'ndarray[int]': ... @overload def astype(self, ty: Literal[float], **kwargs) -> 'ndarray[float]': ... @overload def astype(self, ty: Literal[bool], **kwargs) -> 'ndarray[bool]': ... def reshape(self, shape: Tuple, **kwargs) -> 'ndarray': ... def linspace(*args, **kwargs) -> ndarray: ... def insert(*args, **kwargs) -> ndarray: ... def diff(*args, **kwargs) -> ndarray: ... def cumsum(*args, **kwargs) -> ndarray: ... def sum(*args, **kwargs) -> ndarray: ... @overload def nansum(*args, axis: Literal[None], **kwargs) -> float: ... @overload def nansum(*args, axis: int, **kwargs) -> ndarray: ... def min(*args, **kwargs) -> ndarray: ... def max(*args, **kwargs) -> ndarray: ... def mean(*args, **kwargs) -> ndarray: ... def exp(*args, **kwargs) -> ndarray: ... def sqrt(*args, **kwargs) -> ndarray: ... def vstack(*args, **kwargs) -> ndarray: ... def zeros(*args, **kwargs) -> ndarray: ... def round(*args, **kwargs) -> ndarray: ... def unique(*args, **kwargs) -> ndarray: ... def any(*args, **kwargs) -> ndarray: ... def append(*args, **kwargs) -> ndarray: ... def empty(*args, **kwargs) -> ndarray: ... def isnan(*args, **kwargs) -> ndarray: ... def arange(*args, **kwargs) -> ndarray: ... def argmin(*args, **kwargs) -> ndarray: ... def remainder(*args, **kwargs) -> ndarray: ... def METHOD_NAME(*args, **kwargs) -> ndarray: ... def sin(*args, **kwargs) -> ndarray: ... def cos(*args, **kwargs) -> ndarray: ... def ones(*args, **kwargs) -> ndarray: ... def outer(*args, **kwargs) -> ndarray: ... def size(*args, **kwargs) -> ndarray: ... def where(*args, **kwargs) -> ndarray: ...
2,358
test instance of operation
from __future__ import annotations from typing import Optional import pytest import ibis import ibis.expr.datashape as ds import ibis.expr.datatypes as dt import ibis.expr.operations as ops import ibis.expr.rules as rlz import ibis.expr.types as ir from ibis.common.annotations import ValidationError from ibis.common.patterns import EqualTo t = ibis.table([("a", "int64")], name="t") true = ir.literal(True) false = ir.literal(False) two = ir.literal(2) three = ir.literal(3) class Expr: def __init__(self, op): self.op = op class Base(ops.Node): def to_expr(self): return Expr(self) class Name(Base): name: str class NamedValue(Base): value: int name: Name class Values(Base): lst: tuple[ops.Node, ...] one = NamedValue(value=1, name=Name("one")) two = NamedValue(value=2, name=Name("two")) three = NamedValue(value=3, name=Name("three")) values = Values((one, two, three)) def test_node_base(): assert hasattr(one, "__slots__") assert not hasattr(one, "__dict__") assert one.__args__ == (1, Name("one")) assert values.__args__ == ((one, two, three),) calls = [] returns = { Name("one"): "Name_one", Name("two"): "Name_two", Name("three"): "Name_three", NamedValue(1, Name("one")): "NamedValue_1_one", NamedValue(2, Name("two")): "NamedValue_2_two", NamedValue(3, Name("three")): "NamedValue_3_three", values: "final", } def record(node, _, *args, **kwargs): calls.append((node, args, kwargs)) return returns[node] results = values.map(record) assert results == returns assert calls == [ (Name("one"), (), {"name": "one"}), (Name("two"), (), {"name": "two"}), (Name("three"), (), {"name": "three"}), (one, (), {"value": 1, "name": "Name_one"}), (two, (), {"value": 2, "name": "Name_two"}), (three, (), {"value": 3, "name": "Name_three"}), ( values, (), {"lst": ("NamedValue_1_one", "NamedValue_2_two", "NamedValue_3_three")}, ), ] def test_node_subtitution(): class Aliased(Base): arg: ops.Node name: str ketto = Aliased(one, "ketto") first_rule = EqualTo(Name("one")) >> Name("zero") second_rule = EqualTo(two) >> ketto new_values = values.replace(first_rule | second_rule) expected = Values((NamedValue(value=1, name=Name("zero")), ketto, three)) assert expected == new_values def test_value_annotations(): class Op1(ops.Value): arg: ops.Value dtype = dt.int64 shape = ds.scalar class Op2(ops.Value): arg: ops.Value[dt.Any, ds.Any] dtype = dt.int64 shape = ds.scalar class Op3(ops.Value): arg: ops.Value[dt.Integer, ds.Any] dtype = dt.int64 shape = ds.scalar class Op4(ops.Value): arg: ops.Value[dt.Integer, ds.Scalar] dtype = dt.int64 shape = ds.scalar assert Op1(1).arg.dtype == dt.int8 assert Op2(1).arg.dtype == dt.int8 assert Op3(1).arg.dtype == dt.int8 assert Op4(1).arg.dtype == dt.int8 def test_operation_definition(): class Logarithm(ir.Expr): pass class Log(ops.Node): arg: ops.Value[dt.Float64, ds.Any] base: Optional[ops.Value[dt.Float64, ds.Any]] = None def to_expr(self): return Logarithm(self) assert Log(1, base=2).arg == ops.Literal(1, dtype=dt.float64) assert Log(1, base=2).base == ops.Literal(2, dtype=dt.float64) assert Log(arg=10).arg == ops.Literal(10, dtype=dt.float64) assert Log(arg=10).base is None assert isinstance(Log(arg=100).to_expr(), Logarithm) def METHOD_NAME(): class MyOperation(ops.Node): arg: ir.IntegerValue def to_expr(self): return ir.IntegerScalar(self) MyOperation(ir.literal(5)) with pytest.raises(ValidationError): MyOperation(ir.literal("string")) def test_array_input(): class MyOp(ops.Value): value: ops.Value[dt.Array[dt.Float64], ds.Any] dtype = rlz.dtype_like("value") shape = rlz.shape_like("value") raw_value = [1.0, 2.0, 3.0] op = MyOp(raw_value) expected = ibis.literal(raw_value) assert op.value == expected.op() def test_custom_table_expr(): class MyTable(ir.Table): pass class SpecialTable(ops.UnboundTable): def to_expr(self): return MyTable(self) node = SpecialTable(name="foo", schema=ibis.schema([("a", "int64")])) expr = node.to_expr() assert isinstance(expr, MyTable) def test_too_many_or_too_few_args_not_allowed(): class DummyOp(ops.Value): arg: ops.Value with pytest.raises(TypeError): DummyOp(1, 2) with pytest.raises(TypeError): DummyOp() def test_getitem_on_column_is_error(): t = ibis.table(dict(a="int")) with pytest.raises(TypeError, match="#ibis-for-pandas-users"): t.a[0] with pytest.raises(TypeError, match="#ibis-for-pandas-users"): t.a[:1] def test_operation_class_aliases(): assert ops.ValueOp is ops.Value assert ops.UnaryOp is ops.Unary assert ops.BinaryOp is ops.Binary assert ops.WindowOp is ops.Window assert ops.AnalyticOp is ops.Analytic def test_expression_class_aliases(): assert ir.TableExpr is ir.Table assert ir.ValueExpr is ir.Value assert ir.ScalarExpr is ir.Scalar assert ir.ColumnExpr is ir.Column assert ir.AnyValue is ir.Value assert ir.AnyScalar is ir.Scalar assert ir.AnyColumn is ir.Column
2,359
checkpoint
# Copyright 2022 The DLRover Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import time from dlrover.python.common.log import default_logger as logger from dlrover.python.master.shard.base_dataset_manager import ( DatasetManger, DatasetShardCheckpoint, DoingTask, Task, ) from dlrover.python.master.shard.dataset_splitter import DatasetSplitter, Shard _MAX_TASK_RETRIES = 3 class BatchDatasetManager(DatasetManger): """BatchDatasetManager create tasks with shards in a static dataset. Attributes: task_type: the type of computation task like "training", "evaluation" and "prediction". batch_size: the size of a batch. dataset_splitter: DatasetSplitter instace to split the dataset into shards. """ def __init__( self, task_type, batch_size, dataset_splitter: DatasetSplitter, ): super(BatchDatasetManager, self).__init__( task_type, batch_size, dataset_splitter ) self._max_task_completed_time = 0 self._task_id = 0 self._completed_step = 0 def get_task(self, node_type, node_id) -> Task: """Return next Task""" if not self.todo and not self._dataset_splitter.epoch_finished(): # Start a new epoch # num_epochs <= 0 indicates that the master will create data # shards infinitely. So, the worker can use the dataset like # `dataset.repeat()`. shards = self._dataset_splitter.create_shards() self._create_todo_tasks(shards) if not self.todo: # No more tasks return Task.create_invalid_task() task: Task = self.todo.pop(0) self.doing[task.task_id] = DoingTask( task, node_type, node_id, int(time.time()) ) logger.info( "Assign task %s of dataset %s to %s %s", task.task_id, self._dataset_splitter.dataset_name, node_type, node_id, ) return task def get_epoch(self): return self._dataset_splitter.get_epoch() def completed(self): return ( self._dataset_splitter.epoch_finished() and not self.todo and not self.doing ) def _create_todo_tasks(self, shards): tasks = [] for shard in shards: task = Task(self._task_id, self._task_type, shard) tasks.append(task) self._task_id += 1 logger.info( "todo.extend: %d tasks created for dataset = %s.", len(tasks), self._dataset_splitter.dataset_name, ) self.todo.extend(tasks) def report_task_status(self, task_id, success): doing_task = self.doing.pop(task_id, None) if not doing_task: logger.warning( "Unknown task_id: %d of dataset %s" % (task_id, self._dataset_splitter.dataset_name) ) success = False elif not success: logger.warning( "Task %d of %s failed " % (task_id, self._dataset_splitter.dataset_name) ) self.recover_task(doing_task.task) else: self._update_completed_step(doing_task.task) logger.info( "Task:%d completed, %d doing tasks and %d todo " "tasks of dataset %s", task_id, len(self.doing), len(self.todo), self._dataset_splitter.dataset_name, ) task_completed_time = time.time() - doing_task.start_time if task_completed_time > self._max_task_completed_time: self._max_task_completed_time = task_completed_time return success, doing_task def _update_completed_step(self, task: Task): record_count = task.shard.end - task.shard.start batch_count = math.ceil(record_count / self._batch_size) self._completed_step += batch_count self._latest_task_end_time = int(time.time()) def get_completed_step(self): return self._completed_step def recover_task(self, task): if not self._check_exceed_max_task_retries(task): self.todo.append(task) def _check_exceed_max_task_retries(self, task: Task): task.retry_count += 1 if task.retry_count > _MAX_TASK_RETRIES: logger.error( "A task %s of failed with %d retries " % (task.shard.name, _MAX_TASK_RETRIES) ) return True return False def get_doing_tasks(self): return self.doing def METHOD_NAME(self): todo_shards = [] for task in self.todo: shard = [task.shard.start, task.shard.end] if task.shard.record_indices: shard.append(task.shard.record_indices) todo_shards.append(shard) doing_shards = [] for task_id in self.doing: task = self.doing[task_id].task shard = [task.shard.start, task.shard.end] if task.shard.record_indices: shard.append(task.shard.record_indices) doing_shards.append(shard) return DatasetShardCheckpoint( dataset_name=self._dataset_splitter.dataset_name, todo=todo_shards, doing=doing_shards, epoch=self._dataset_splitter.epoch, ) def restore_checkpoint(self, METHOD_NAME: DatasetShardCheckpoint): """Restore the task manager from a checkpoint""" self._dataset_splitter.epoch = METHOD_NAME.epoch self.todo = [] self.doing = {} for shard_indices in METHOD_NAME.doing + METHOD_NAME.todo: record_indices = None if len(shard_indices) > 2: record_indices = shard_indices[2] shard = Shard( name=self._dataset_splitter.dataset_name, start=shard_indices[0], end=shard_indices[1], record_indices=record_indices, ) self.todo.append( Task( self._task_id, self._task_type, shard, ) ) self._task_id += 1 logger.info("Restore %s todo tasks", len(self.todo))
2,360
is packed layout
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument """Dense operator declaration and schedule registration for VTA.""" import numpy as np import tvm from tvm import te from tvm import autotvm from tvm import topi from ..environment import get_env def METHOD_NAME(layout): """Check if layout is packed layout""" if layout == "NCHW": return False if "n" in layout and "c" in layout: return True return False @autotvm.register_topi_compute("dense_packed.vta") def dense_packed(cfg, data, weight, bias=None, out_dtype=None): """Dense function declaration.""" # Make sure that the dense operator is packed if len(data.shape) != 4 or len(weight.shape) != 4: raise topi.InvalidShapeError() # Derive shapes ishape = topi.utils.get_const_tuple(data.shape) wshape = topi.utils.get_const_tuple(weight.shape) oshape = (data.shape[0], weight.shape[0], data.shape[2], weight.shape[2]) # Reduction axes (input channel) assert ishape[1] == wshape[1] assert ishape[3] == wshape[3] k_o = te.reduce_axis((0, ishape[1]), name="k_o") k_i = te.reduce_axis((0, ishape[3]), name="k_i") res = te.compute( oshape, lambda b_o, c_o, b_i, c_i: te.sum( data[b_o, k_o, b_i, k_i].astype(out_dtype) * weight[c_o, k_o, c_i, k_i].astype(out_dtype), axis=[k_o, k_i], ), name="res", tag="dense_pack", ) cfg.add_flop(2 * np.prod(topi.utils.get_const_tuple(oshape)) * ishape[1] * ishape[3]) return res @autotvm.register_topi_schedule("dense_packed.vta") def schedule_dense_packed(cfg, outs): """Packed dense schedule.""" assert len(outs) == 1 output = outs[0] const_ops = [] ewise_inputs = [] ewise_ops = [] dense_res = [] assert "int" in output.op.input_tensors[0].dtype def _traverse(op): if topi.tag.is_broadcast(op.tag): if not op.same_as(output.op): if not op.axis: const_ops.append(op) else: ewise_ops.append(op) for tensor in op.input_tensors: if isinstance(tensor.op, tvm.te.PlaceholderOp): ewise_inputs.append((op, tensor)) else: _traverse(tensor.op) else: assert op.tag == "dense_pack" dense_res.append(op) _traverse(output.op) assert len(dense_res) == 1 dense_stage = dense_res[0].output(0) s = te.create_schedule(output.op) ##### space definition begin ##### b, c_o, _, _ = s[dense_stage].op.axis c_i, _ = s[dense_stage].op.reduce_axis cfg.define_split("tile_b", b, num_outputs=2) cfg.define_split("tile_ci", c_i, num_outputs=2) cfg.define_split("tile_co", c_o, num_outputs=2) cfg.define_knob("oc_nthread", [1, 2]) ###### space definition end ###### data, weight = dense_stage.op.input_tensors env = get_env() cdata = s.cache_read(data, env.inp_scope, [dense_stage]) cweight = s.cache_read(weight, env.wgt_scope, [dense_stage]) s[dense_stage].set_scope(env.acc_scope) # cache read input cache_read_ewise = [] for consumer, tensor in ewise_inputs: cache_read_ewise.append(s.cache_read(tensor, env.acc_scope, [consumer])) # set ewise scope for op in ewise_ops: s[op].set_scope(env.acc_scope) s[op].pragma(s[op].op.axis[0], env.alu) for op in const_ops: s[op].compute_inline() # apply tiling for SRAM reuse x_b, x_c, _, _ = s[output].op.axis x_bo, x_bi = cfg["tile_b"].apply(s, output, x_b) x_co, x_ci = cfg["tile_co"].apply(s, output, x_c) s[output].reorder(x_bo, x_co, x_bi, x_ci) store_pt = x_co # set all compute scopes s[dense_stage].compute_at(s[output], store_pt) for op in ewise_ops: s[op].compute_at(s[output], store_pt) for tensor in cache_read_ewise: s[tensor].compute_at(s[output], store_pt) s[tensor].pragma(s[tensor].op.axis[0], env.dma_copy) # virtual threading along output channel axes if cfg["oc_nthread"].val > 1: _, v_t = s[output].split(x_co, factor=cfg["oc_nthread"].val) s[output].reorder(v_t, x_bo) s[output].bind(v_t, te.thread_axis("cthread")) x_bo, x_co, x_bi, _ = s[dense_stage].op.axis k_o, _ = s[dense_stage].op.reduce_axis s[dense_stage].reorder(x_bo, k_o, x_co) k_o, _ = cfg["tile_ci"].apply(s, dense_stage, k_o) s[cdata].compute_at(s[dense_stage], k_o) s[cweight].compute_at(s[dense_stage], k_o) # Use VTA instructions s[cdata].pragma(s[cdata].op.axis[0], env.dma_copy) s[cweight].pragma(s[cweight].op.axis[0], env.dma_copy) s[dense_stage].tensorize(x_bi, env.gemm) s[output].pragma(x_ci, env.dma_copy) return s
2,361
save cognition data
import os from fastapi import UploadFile, File, Security, APIRouter from starlette.responses import FileResponse from kairon.api.models import Response, TextData, CognitiveDataRequest from kairon.events.definitions.faq_importer import FaqDataImporterEvent from kairon.shared.auth import Authentication from kairon.shared.constants import DESIGNER_ACCESS from kairon.shared.data.processor import MongoProcessor from kairon.shared.models import User from kairon.shared.utils import Utility router = APIRouter() processor = MongoProcessor() @router.post("/faq/upload", response_model=Response) def upload_faq_files( csv_file: UploadFile = File(...), overwrite: bool = True, current_user: User = Security(Authentication.get_current_user_and_bot, scopes=DESIGNER_ACCESS), ): """ Uploads faq csv/excel file """ event = FaqDataImporterEvent( current_user.get_bot(), current_user.get_user(), overwrite=overwrite ) event.validate(training_data_file=csv_file) event.enqueue() return {"message": "Upload in progress! Check logs."} @router.get("/faq/download", response_model=Response) async def download_faq_files( current_user: User = Security(Authentication.get_current_user_and_bot, scopes=DESIGNER_ACCESS), ): """ Downloads faq into csv file """ qna = list(processor.flatten_qna(bot=current_user.get_bot(), fetch_all=True)) file, _ = Utility.download_csv(qna, filename="faq.csv") response = FileResponse( file, filename=os.path.basename(file) ) response.headers[ "Content-Disposition" ] = "attachment; filename=" + os.path.basename(file) return response @router.post("/text/faq", response_model=Response) def save_bot_text( text: TextData, current_user: User = Security(Authentication.get_current_user_and_bot, scopes=DESIGNER_ACCESS), ): """ Saves text content into the bot """ return { "message": "Text saved!", "data": { "_id": processor.save_content( text.data, current_user.get_user(), current_user.get_bot(), ) } } @router.put("/text/faq/{text_id}", response_model=Response) def update_bot_text( text_id: str, text: TextData, current_user: User = Security(Authentication.get_current_user_and_bot, scopes=DESIGNER_ACCESS), ): """ Updates text content into the bot """ return { "message": "Text updated!", "data": { "_id": processor.update_content( text_id, text.data, current_user.get_user(), current_user.get_bot(), ) } } @router.delete("/text/faq/{text_id}", response_model=Response) def delete_bot_text( text_id: str, current_user: User = Security(Authentication.get_current_user_and_bot, scopes=DESIGNER_ACCESS), ): """ Deletes text content of the bot """ processor.delete_content(text_id, current_user.get_user(), current_user.get_bot()) return { "message": "Text deleted!" } @router.get("/text/faq", response_model=Response) def get_text( current_user: User = Security(Authentication.get_current_user_and_bot, scopes=DESIGNER_ACCESS), ): """ Fetches text content of the bot """ return {"data": list(processor.get_content(current_user.get_bot()))} @router.post("/cognition", response_model=Response) def METHOD_NAME( cognition: CognitiveDataRequest, current_user: User = Security(Authentication.get_current_user_and_bot, scopes=DESIGNER_ACCESS), ): """ Saves cognition content into the bot """ return { "message": "Record saved!", "data": { "_id": processor.METHOD_NAME( cognition.dict(), current_user.get_user(), current_user.get_bot(), ) } } @router.put("/cognition/{cognition_id}", response_model=Response) def update_cognition_data( cognition_id: str, cognition: CognitiveDataRequest, current_user: User = Security(Authentication.get_current_user_and_bot, scopes=DESIGNER_ACCESS), ): """ Updates cognition content into the bot """ return { "message": "Record updated!", "data": { "_id": processor.update_cognition_data( cognition_id, cognition.dict(), current_user.get_user(), current_user.get_bot(), ) } } @router.delete("/cognition/{cognition_id}", response_model=Response) def delete_cognition_data( cognition_id: str, current_user: User = Security(Authentication.get_current_user_and_bot, scopes=DESIGNER_ACCESS), ): """ Deletes cognition content of the bot """ processor.delete_cognition_data(cognition_id, current_user.get_bot()) return { "message": "Record deleted!" } @router.get("/cognition", response_model=Response) def list_cognition_data( current_user: User = Security(Authentication.get_current_user_and_bot, scopes=DESIGNER_ACCESS), ): """ Fetches cognition content of the bot """ return {"data": list(processor.list_cognition_data(current_user.get_bot()))}
2,362
teardown module
################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # # Copyright (c) 2018-2023 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. ################################################################################# """ Test the 'relations' connecting Resource instances, which spans the modules idaes.core.dmf.{dmf, resource, resourcedb} """ # stdlib import logging from pathlib import Path from tempfile import TemporaryDirectory from typing import Union # third-party import pytest # local from idaes.core.dmf import experiment, resource, DMF from idaes.core.dmf.resource import Predicates # for testing from .util import init_logging __author__ = "Dan Gunter" init_logging() _log = logging.getLogger(__name__) scratch_dir: Union[str, None] = None scratch_path: Union[Path, None] = None def setup_module(module): global scratch_dir, scratch_path scratch_dir = TemporaryDirectory(prefix="idaes.core.dmf_") # easier to remove later scratch_path = Path(scratch_dir.name) def METHOD_NAME(module): global scratch_dir del scratch_dir @pytest.mark.unit def test_create_relation_in_resource(): a = resource.Resource() b = resource.Resource() resource.create_relation(a, "contains", b) assert len(a.v["relations"]) == 1 assert len(b.v["relations"]) == 1 # bad type with pytest.raises(TypeError): resource.create_relation("foo", "contains", b) @pytest.mark.unit def test_relation_in_experiment(): tmp_dir = scratch_path / "relation_in_experiment" dmf = DMF(path=tmp_dir, create=True) e1 = experiment.Experiment(dmf, name="1") a = resource.Resource(value={"name": "foo"}) e1.add(a) assert len(a.v["relations"]) == 1 assert len(e1.v["relations"]) == 1 @pytest.mark.unit def test_relation_with_remove(): tmp_dir = scratch_path / "relation_with_remove" dmf = DMF(path=tmp_dir, create=True) e1 = experiment.Experiment(dmf, name="1") n, added = 10, [] for i in range(n): a = resource.Resource({"name": "foo"}) e1.add(a) added.append(a) assert len(e1.v["relations"]) == n # remove, then update e1 for a in added: dmf.remove(identifier=a.id) e1.update() # relation to removed 'a' should be gone n -= 1 assert (len(e1.v["relations"])) == n @pytest.mark.unit def test_find_related(): # # r0 # | uses # v # r1 # | version # v # r2 # /\ # / \ derived # v v # r3 r4 # tmp_dir = scratch_path / "find_related" dmf = DMF(path=tmp_dir, create=True) r = [resource.Resource({"name": "r{}".format(i)}) for i in range(5)] # r3 <-- derived <-- r2 <-- version <-- r1 cr = resource.create_relation # shortcut cr(r[2], Predicates.derived, r[3]) cr(r[1], Predicates.version, r[2]) # r4 <-- derived <-- r2 cr(r[2], Predicates.derived, r[4]) # r0 -- Uses --> r1 cr(r[0], Predicates.uses, r[1]) # add to dmf for i in range(5): dmf.add(r[i]) # outgoing from r0 should include 1,2,3,4 names = [] for d, rr, m in dmf.find_related(r[0], meta=["aliases"]): names.append(m["aliases"][0]) names.sort() assert names == ["r1", "r2", "r3", "r4"] # incoming to r4 should include r0, r1, r2 names = [] for d, rr, m in dmf.find_related(r[4], meta=["aliases"], outgoing=False): names.append(m["aliases"][0]) names.sort() assert names == ["r0", "r1", "r2"] @pytest.mark.unit def test_circular(): # # r0 -> derived -> r1 -> derived >- r2 -+ # ^ | # +------------------------------------+ # uses tmp_dir = scratch_path / "circular" dmf = DMF(path=tmp_dir, create=True) r = [resource.Resource({"name": "r{}".format(i)}) for i in range(3)] resource.create_relation(r[0], Predicates.derived, r[1]) resource.create_relation(r[1], Predicates.derived, r[2]) resource.create_relation(r[2], Predicates.uses, r[0]) for rr in r: dmf.add(rr) # outgoing from r0 names = [] for d, rr, m in dmf.find_related(r[0], meta=["aliases"]): names.append(m["aliases"][0]) names.sort() assert names == ["r0", "r1", "r2"] # incoming to r1 names = [] for d, rr, m in dmf.find_related(r[0], meta=["aliases"], outgoing=False): names.append(m["aliases"][0]) names.sort() assert names == ["r0", "r1", "r2"] # reducing depth shortens output names = [] for d, rr, m in dmf.find_related(r[0], meta=["aliases"], maxdepth=2): names.append(m["aliases"][0]) names.sort() assert names == ["r1", "r2"] names = [] for d, rr, m in dmf.find_related(r[0], meta=["aliases"], maxdepth=1): names.append(m["aliases"][0]) names.sort() assert names == ["r1"]
2,363
get prs
import requests, json, datetime, os from enum import Enum from github import Github ORG_NAME = 'kubevirt' REPO_NAME = 'hyperconverged-cluster-operator' GITHUB_BASE_API = 'https://api.github.com/repos' class Result(Enum): Success = 0 Overridden = 1 Failure = 2 Pending = 3 Error = 4 Aborted = 5 Invalid = 6 class OverrideBot: def __init__(self): self.pr_list = [] self.start_time = datetime.datetime.now() self.finish_time = None github_token = os.environ['HCO_BOT_TOKEN'] gh = Github(github_token) repo_name = f'{ORG_NAME}/{REPO_NAME}' self.repo_obj = gh.get_repo(repo_name) def METHOD_NAME(self): get_prs_req = requests.get(f'{GITHUB_BASE_API}/{ORG_NAME}/{REPO_NAME}/pulls') pr_full_list = json.loads(get_prs_req.text) for pr in pr_full_list: if 'do-not-merge/hold' not in [label['name'] for label in pr['labels']]: self.pr_list.append(PullRequest(pr['number'], pr['title'], pr['url'], pr['_links']['statuses']['href'])) def get_ci_tests(self): for pr in self.pr_list: pr.get_ci_tests() def nominate_lanes_for_override(self): for pr in self.pr_list: pr.nominate_lanes_for_override() def comment_overrides(self): for pr in self.pr_list: pr.comment_overrides(self.repo_obj.get_pull(pr.number)) class PullRequest: def __init__(self, number, title, gh_url, statuses_url): self.number = number self.title = title self.gh_url = gh_url self.statuses_url = statuses_url self.ci_tests_list = [] self.override_list = [] def get_ci_tests(self): statuses_raw = requests.get(self.statuses_url).text statuses = json.loads(statuses_raw) for status in statuses: context = status['context'] if 'ci-index' in context or 'images' in context or 'prow' not in context: continue splitted = context.split('/')[-1].split('-') provider = splitted[-1] test_name = '-'.join(splitted[:-1]) state = status['state'] overridden = status['description'] and 'Overridden' in status['description'] test_obj = self.get_test_obj(test_name) if not test_obj: test_obj = CiTest(test_name, []) self.ci_tests_list.append(test_obj) rl = RedundantLane(context, provider, state, overridden, test_obj) if not self.lane_exists(rl.name): test_obj.lanes_list.append(rl) def get_test_obj(self, test_name): for test_obj in self.ci_tests_list: if test_name == test_obj.name: return test_obj return None def lane_exists(self, name_to_check): for test in self.ci_tests_list: for lane in test.lanes_list: if lane.name == name_to_check: return True return False def nominate_lanes_for_override(self): for test in self.ci_tests_list: if test.succeeded_any: for lane in test.lanes_list: if lane.result in [Result.Failure, Result.Error, Result.Pending]: self.override_list.append((lane, test.succeeded_lanes)) def comment_overrides(self, gh_pr): if not self.override_list: return comment = '' for override in self.override_list: for passed in override[1]: comment += passed.name.split('/')[-1] + ', ' comment = comment[:-2] # removing comma at the end plural = 's' if len(override[1]) > 1 else '' comment += f' lane{plural} succeeded.\n' comment += f'/override {override[0].name}\n' print (f'comment for PR #{self.number} is:\n{comment}') gh_pr.create_issue_comment(comment) class CiTest: def __init__(self, name, lanes_list): self.name = name self.lanes_list = lanes_list self.succeeded_any = False self.succeeded_lanes = [] class RedundantLane: def __init__(self, name, provider, state, overridden, ci_test): self.name = name self.provider = provider self.state = state self.overriden = overridden if state == 'success' and not overridden: self.result = Result.Success ci_test.succeeded_any = True ci_test.succeeded_lanes.append(self) elif state == 'success' and overridden: self.result = Result.Overridden elif state == 'failure': self.result = Result.Failure elif state == 'pending': self.result = Result.Pending elif state == 'error': self.result = Result.Error elif state == 'aborted': self.result = Result.Aborted else: self.result = Result.Invalid def main(): ob = OverrideBot() ob.METHOD_NAME() ob.get_ci_tests() ob.nominate_lanes_for_override() ob.comment_overrides() ob.finish_time = datetime.datetime.now() if __name__ == '__main__': main(
2,364
assert pixels equal
"""Test the final, drawn results and compare PNG images pixel per pixel.""" import io import os from itertools import zip_longest from PIL import Image from ..testing_utils import FakeHTML, resource_filename # NOTE: "r" is not half red on purpose. In the pixel strings it has # better contrast with "B" than does "R". eg. "rBBBrrBrB" vs "RBBBRRBRB". PIXELS_BY_CHAR = dict( _=(255, 255, 255), # white R=(255, 0, 0), # red B=(0, 0, 255), # blue G=(0, 255, 0), # lime green V=(191, 0, 64), # average of 1*B and 3*R. S=(255, 63, 63), # R above R above _ K=(0, 0, 0), # black r=(255, 0, 0), # red g=(0, 128, 0), # half green b=(0, 0, 128), # half blue v=(128, 0, 128), # average of B and R. s=(255, 127, 127), # R above _ t=(127, 255, 127), # G above _ u=(128, 0, 127), # r above B above _ h=(64, 0, 64), # half average of B and R. a=(0, 0, 254), # R in lossy JPG p=(192, 0, 63), # R above R above B above _ z=None, ) def parse_pixels(pixels): lines = (line.split('#')[0].strip() for line in pixels.splitlines()) lines = tuple(line for line in lines if line) widths = {len(line) for line in lines} assert len(widths) == 1, 'All lines of pixels must have the same width' width = widths.pop() height = len(lines) pixels = tuple(PIXELS_BY_CHAR[char] for line in lines for char in line) return width, height, pixels def assert_pixels(name, expected_pixels, html): """Helper testing the size of the image and the pixels values.""" expected_width, expected_height, expected_pixels = parse_pixels( expected_pixels) width, height, pixels = html_to_pixels(html) assert (expected_width, expected_height) == (width, height), ( 'Images do not have the same sizes:\n' f'- expected: {expected_width} × {expected_height}\n' f'- result: {width} × {height}') METHOD_NAME(name, width, height, pixels, expected_pixels) def assert_same_renderings(name, *documents, tolerance=0): """Render HTML documents to PNG and check that they're the same.""" pixels_list = [] for html in documents: width, height, pixels = html_to_pixels(html) pixels_list.append(pixels) reference = pixels_list[0] for i, pixels in enumerate(pixels_list[1:], start=1): METHOD_NAME( f'{name}_{i}', width, height, pixels, reference, tolerance) def assert_different_renderings(name, *documents): """Render HTML documents to PNG and check that they’re different.""" pixels_list = [] for html in documents: width, height, pixels = html_to_pixels(html) pixels_list.append(pixels) for i, pixels_1 in enumerate(pixels_list, start=1): for j, pixels_2 in enumerate(pixels_list[i:], start=i+1): if pixels_1 == pixels_2: # pragma: no cover name_1, name_2 = f'{name}_{i}', f'{name}_{j}' write_png(name_1, pixels_1, width, height) assert False, f'{name_1} and {name_2} are the same' def METHOD_NAME(name, width, height, raw, expected_raw, tolerance=0): """Take 2 matrices of pixels and assert that they are the same.""" if raw != expected_raw: # pragma: no cover pixels = zip_longest(raw, expected_raw, fillvalue=(-1, -1, -1)) for i, (value, expected) in enumerate(pixels): if expected is None: continue if any(abs(value - expected) > tolerance for value, expected in zip(value, expected)): actual_height = len(raw) // width write_png(name, raw, width, actual_height) expected_raw = [ pixel or (255, 255, 255) for pixel in expected_raw] write_png(f'{name}.expected', expected_raw, width, height) x = i % width y = i // width assert 0, ( f'Pixel ({x}, {y}) in {name}: ' f'expected rgba{expected}, got rgba{value}') def write_png(basename, pixels, width, height): # pragma: no cover """Take a pixel matrix and write a PNG file.""" directory = os.path.join(os.path.dirname(__file__), 'results') if not os.path.isdir(directory): os.mkdir(directory) filename = os.path.join(directory, f'{basename}.png') image = Image.new('RGB', (width, height)) image.putdata(pixels) image.save(filename) def html_to_pixels(html): """Render an HTML document to PNG, checks its size and return pixel data. Also return the document to aid debugging. """ document = FakeHTML( string=html, # Dummy filename, but in the right directory. base_url=resource_filename('<test>')) return document_to_pixels(document) def document_to_pixels(document): """Render an HTML document to PNG, check its size and return pixel data.""" image = Image.open(io.BytesIO(document.write_png())) return image.width, image.height, image.getdata()
2,365
main
# Copyright © 2021 United States Government as represented by the Administrator of the National Aeronautics and Space Administration. All Rights Reserved. from io import StringIO from os.path import dirname, join from numpy import array from numpy.testing import assert_array_equal import pandas as pd import sys import unittest from unittest.mock import patch sys.path.append(join(dirname(__file__), "..")) # Needed to access examples from examples import dataset, sim_battery_eol, ensemble, custom_model from prog_models.datasets import nasa_cmapss, nasa_battery """ This file includes tests that are too long to be run as part of the automated tests. Instead, these tests are run manually as part of the release process. """ class TestManual(unittest.TestCase): def setUp(self): # set stdout (so it won't print) sys.stdout = StringIO() def tearDown(self): sys.stdout = sys.__stdout__ def test_nasa_battery_download(self): (desc, data) = nasa_battery.load_data(1) # Verifying desc self.assertEqual(desc['procedure'], "Uniform random walk discharge at room temperature with variable recharge duration") self.assertEqual(desc['description'], "Experiment consisting of repeated iteration of a randomized series of discharging pulses followed by a recharging period of variable length. Batteries are charged and discharged at room temperature") self.assertDictEqual(desc['runs'][0], {'type': 'D', 'desc': 'low current discharge at 0.04A', 'date': '30-Dec-2013 15:53:29'}) self.assertDictEqual(desc['runs'][8532], {'type': 'R', 'desc': 'rest (random walk)', 'date': '22-Feb-2014 07:45:49'}) self.assertDictEqual(desc['runs'][-1], {'type': 'D', 'desc': 'discharge (random walk)', 'date': '02-Jun-2014 16:43:48'}) # Verifying data assert_array_equal(data[0].columns, pd.core.indexes.base.Index(['relativeTime', 'current', 'voltage', 'temperature'], dtype='object')) self.assertEqual(data[0]['current'][15], 0.04) assert_array_equal(data[0].iloc[-1], array([1.8897668e+05, 4.0000000e-02, 3.2000000e+00, 1.7886300e+01])) assert_array_equal(data[8532].iloc[0], array([1.000000e-02, 0.000000e+00, 3.645000e+00, 3.124247e+01])) assert_array_equal(data[8532].iloc[-1], array([0.54, 0, 3.716, 31.24247])) assert_array_equal(data[-1].iloc[0], array([0.04, 3.004, 3.647, 28.08937])) assert_array_equal(data[-1].iloc[-1], array([178.38, 3, 3.2, 32.53947])) def test_nasa_cmapss_download(self): (train, test, results) = nasa_cmapss.load_data(1) # Testing train data assert_array_equal(train.iloc[0], array([1.00000e+00, 1.00000e+00, 2.30000e-03, 3.00000e-04, 1.00000e+02, 5.18670e+02, 6.43020e+02, 1.58529e+03, 1.39821e+03, 1.46200e+01, 2.16100e+01, 5.53900e+02, 2.38804e+03, 9.05017e+03, 1.30000e+00, 4.72000e+01, 5.21720e+02, 2.38803e+03, 8.12555e+03, 8.40520e+00, 3.00000e-02, 3.92000e+02, 2.38800e+03, 1.00000e+02, 3.88600e+01, 2.33735e+01])) assert_array_equal(train.iloc[-1], array([1.00000e+02, 1.98000e+02, 1.30000e-03, 3.00000e-04, 1.00000e+02, 5.18670e+02, 6.42950e+02, 1.60162e+03, 1.42499e+03, 1.46200e+01, 2.16100e+01, 5.52480e+02, 2.38806e+03, 9.15503e+03, 1.30000e+00, 4.78000e+01, 5.21070e+02, 2.38805e+03, 8.21464e+03, 8.49030e+00, 3.00000e-02, 3.96000e+02, 2.38800e+03, 1.00000e+02, 3.87000e+01, 2.31855e+01])) assert_array_equal(train.iloc[6548], array([5.20000e+01, 6.60000e+01, -1.90000e-03, -0.00000e+00, 1.00000e+02, 5.18670e+02, 6.42070e+02, 1.58397e+03, 1.39125e+03, 1.46200e+01, 2.16100e+01, 5.54590e+02, 2.38804e+03, 9.05261e+03, 1.30000e+00, 4.71200e+01, 5.22480e+02, 2.38803e+03, 8.13633e+03, 8.39150e+00, 3.00000e-02, 3.92000e+02, 2.38800e+03, 1.00000e+02, 3.90500e+01, 2.34304e+01])) # Testing test data assert_array_equal(test.iloc[0], array([ 1.00000e+00, 1.00000e+00, -7.00000e-04, -4.00000e-04, 1.00000e+02, 5.18670e+02, 6.41820e+02, 1.58970e+03, 1.40060e+03, 1.46200e+01, 2.16100e+01, 5.54360e+02, 2.38806e+03, 9.04619e+03, 1.30000e+00, 4.74700e+01, 5.21660e+02, 2.38802e+03, 8.13862e+03, 8.41950e+00, 3.00000e-02, 3.92000e+02, 2.38800e+03, 1.00000e+02, 3.90600e+01, 2.34190e+01])) assert_array_equal(test.iloc[-1], array([ 1.00000e+02, 2.00000e+02, -3.20000e-03, -5.00000e-04, 1.00000e+02, 5.18670e+02, 6.43850e+02, 1.60038e+03, 1.43214e+03, 1.46200e+01, 2.16100e+01, 5.50790e+02, 2.38826e+03, 9.06148e+03, 1.30000e+00, 4.82000e+01, 5.19300e+02, 2.38826e+03, 8.13733e+03, 8.50360e+00, 3.00000e-02, 3.96000e+02, 2.38800e+03, 1.00000e+02, 3.83700e+01, 2.30522e+01])) assert_array_equal(test.iloc[6548], array([3.30000e+01, 1.37000e+02, 1.70000e-03, 2.00000e-04, 1.00000e+02, 5.18670e+02, 6.42380e+02, 1.58655e+03, 1.41089e+03, 1.46200e+01, 2.16100e+01, 5.53960e+02, 2.38807e+03, 9.06359e+03, 1.30000e+00, 4.74500e+01, 5.21950e+02, 2.38805e+03, 8.14151e+03, 8.43050e+00, 3.00000e-02, 3.91000e+02, 2.38800e+03, 1.00000e+02, 3.90000e+01, 2.33508e+01])) # Testing results assert_array_equal(results, array([112., 98., 69., 82., 91., 93., 91., 95., 111., 96., 97., 124., 95., 107., 83., 84., 50., 28., 87., 16., 57., 111., 113., 20., 145., 119., 66., 97., 90., 115., 8., 48., 106., 7., 11., 19., 21., 50., 142., 28., 18., 10., 59., 109., 114., 47., 135., 92., 21., 79., 114., 29., 26., 97., 137., 15., 103., 37., 114., 100., 21., 54., 72., 28., 128., 14., 77., 8., 121., 94., 118., 50., 131., 126., 113., 10., 34., 107., 63., 90., 8., 9., 137., 58., 118., 89., 116., 115., 136., 28., 38., 20., 85., 55., 128., 137., 82., 59., 117., 20.])) def test_dataset_example(self): with patch('matplotlib.pyplot.show'): dataset.run_example() def test_sim_battery_eol_example(self): with patch('matplotlib.pyplot.show'): sim_battery_eol.run_example() def test_ensemble_example(self): with patch('matplotlib.pyplot.show'): ensemble.run_example() def test_custom_model_example(self): with patch('matplotlib.pyplot.show'): custom_model.run_example() # This allows the module to be executed directly def METHOD_NAME(): load_test = unittest.TestLoader() runner = unittest.TextTestRunner() print("\n\nTesting Manual") result = runner.run(load_test.loadTestsFromTestCase(TestManual)).wasSuccessful() if not result: raise Exception("Failed test") if __name__ == '__main__': METHOD_NAME()
2,366
test is url in portal
from Acquisition import aq_parent from plone.base.interfaces import ILoginSchema from plone.registry.interfaces import IRegistry from Products.CMFCore.tests.base.dummy import DummyContent from Products.CMFCore.tests.base.dummy import DummyFolder from Products.CMFCore.tests.base.dummy import DummySite from zope.component import getSiteManager import unittest class DummyFolder(DummyFolder): def absolute_url(self): return "/".join([aq_parent(self).absolute_url(), self.getId()]) class DummyLoginSettings: allow_external_login_sites = [ "http://external1", "http://external2/", "http://external3/site", "http://external4/site/", ] class DummyRegistry(DummyContent): def __getitem__(self, name, default=None): if name == "plone.allow_external_login_sites": return DummyLoginSettings().allow_external_login_sites return default def forInterface(self, iface, prefix=""): if iface == ILoginSchema: return DummyLoginSettings() class TestURLTool(unittest.TestCase): def setUp(self): self.site = DummySite(id="foo") self.site._setObject("foo", DummyFolder(id="foo")) self.site.foo._setObject("doc1", DummyContent(id="doc1")) mock_registry = DummyRegistry(id="portal_registry") self.site.portal_registry = mock_registry sm = getSiteManager() sm.registerUtility(component=mock_registry, provided=IRegistry) def _makeOne(self, *args, **kw): from Products.CMFPlone.URLTool import URLTool url_tool = URLTool(*args, **kw) return url_tool.__of__(self.site) def METHOD_NAME(self): # First test what the absolute url of the site is, otherwise these # tests look really weird. Apparently our domain is www.foobar.com. self.assertEqual(self.site.absolute_url(), "http://www.foobar.com/bar/foo") url_tool = self._makeOne() iURLiP = url_tool.isURLInPortal self.assertTrue(iURLiP("http://www.foobar.com/bar/foo/folder")) self.assertTrue(iURLiP("http://www.foobar.com/bar/foo")) self.assertFalse(iURLiP("http://www.foobar.com/bar2/foo")) self.assertTrue(iURLiP("https://www.foobar.com/bar/foo/folder")) self.assertFalse(iURLiP("http://www.foobar.com:8080/bar/foo/folder")) self.assertFalse(iURLiP("http://www.foobar.com/bar")) self.assertTrue(iURLiP("//www.foobar.com/bar/foo")) self.assertFalse(iURLiP("/images")) self.assertTrue(iURLiP("/bar/foo/foo")) def test_isURLInPortalRelative(self): url_tool = self._makeOne() iURLiP = url_tool.isURLInPortal # non-root relative urls will need a current context to be passed in self.assertTrue(iURLiP("images/img1.jpg")) self.assertTrue(iURLiP("./images/img1.jpg")) # /bar/foo/something self.assertTrue(iURLiP("../something", self.site.foo.doc1)) # /bar/afolder self.assertFalse(iURLiP("../../afolder", self.site.foo.doc1)) # /afolder self.assertFalse(iURLiP("../../../afolder", self.site.foo.doc1)) # /../afolder? How do we have more ../'s than there are parts in # the URL? self.assertFalse(iURLiP("../../../../afolder", self.site.foo.doc1)) # /bar/foo/afolder self.assertTrue(iURLiP("../../foo/afolder", self.site.foo.doc1)) def test_isURLInPortalExternal(self): url_tool = self._makeOne() iURLiP = url_tool.isURLInPortal self.assertTrue(iURLiP("http://external1")) self.assertTrue(iURLiP("http://external1/")) self.assertTrue(iURLiP("http://external1/something")) self.assertTrue(iURLiP("http://external2")) self.assertTrue(iURLiP("http://external2/")) self.assertTrue(iURLiP("http://external2/something")) self.assertTrue(iURLiP("http://external3/site")) self.assertTrue(iURLiP("http://external3/site/")) self.assertTrue(iURLiP("http://external3/site/something")) self.assertTrue(iURLiP("http://external4/site")) self.assertTrue(iURLiP("http://external4/site/")) self.assertTrue(iURLiP("http://external4/site/something")) self.assertFalse(iURLiP("http://external3/other")) self.assertFalse(iURLiP("http://external4/other")) self.assertFalse(iURLiP("http://external5")) self.assertFalse(iURLiP("http://external11")) def test_script_tag_url_not_in_portal(self): url_tool = self._makeOne() iURLiP = url_tool.isURLInPortal self.assertFalse(iURLiP('<script>alert("hi");</script>')) self.assertFalse(iURLiP('<sCript>alert("hi");</script>')) self.assertFalse(iURLiP("%3Cscript%3Ealert(%22hi%22)%3B%3C%2Fscript%3E")) self.assertFalse(iURLiP("%3CsCript%3Ealert(%22hi%22)%3B%3C%2Fscript%3E")) def test_inline_url_not_in_portal(self): url_tool = self._makeOne() iURLiP = url_tool.isURLInPortal self.assertFalse(iURLiP("javascript%3Aalert(3)")) self.assertFalse(iURLiP("jaVascript%3Aalert(3)")) self.assertFalse(iURLiP("javascript:alert(3)")) self.assertFalse(iURLiP("jaVascript:alert(3)")) def test_double_back_slash(self): url_tool = self._makeOne() iURLiP = url_tool.isURLInPortal self.assertFalse(iURLiP("\\\\www.example.com")) def test_escape(self): url_tool = self._makeOne() iURLiP = url_tool.isURLInPortal self.assertFalse(iURLiP(r"\/\/www.example.com")) self.assertFalse(iURLiP(r"\%2F\%2Fwww.example.com")) self.assertFalse(iURLiP(r"\%2f\%2fwww.example.com")) self.assertFalse(iURLiP("%2F%2Fwww.example.com")) self.assertFalse(iURLiP("%2f%2fwww.example.com")) def test_regression_absolute_url_in_portal(self): url_tool = self._makeOne() iURLiP = url_tool.isURLInPortal self.assertTrue(iURLiP(url_tool())) self.assertTrue(iURLiP(url_tool() + "/shrubbery?knights=ni#ekki-ekki")) def test_mailto_simple_not_in_portal(self): url_tool = self._makeOne() iURLiP = url_tool.isURLInPortal self.assertFalse(iURLiP("mailto:[email protected]")) def test_mailto_complex_not_in_portal(self): url_tool = self._makeOne() iURLiP = url_tool.isURLInPortal self.assertFalse( iURLiP( "mailto&#58;192&#46;168&#46;163&#46;154&#58;8080&#47;Plone&apos;" "&quot;&gt;&lt;html&gt;&lt;svg&#32;onload&#61;alert&#40;document" "&#46;domain&#41;&gt;&lt;&#47;html&gt;" ) ) def test_data_not_in_portal(self): url_tool = self._makeOne() iURLiP = url_tool.isURLInPortal self.assertFalse( iURLiP("data:text/html%3bbase64,PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4K") ) def test_double_slash(self): # I wondered if this might be a problem after reading # https://bugs.python.org/issue23505 # Apparently not, but let's test it. url_tool = self._makeOne() iURLiP = url_tool.isURLInPortal self.assertFalse(iURLiP("//www.google.com")) self.assertFalse(iURLiP("////www.google.com"))
2,367
test simple
#!/usr/bin/env python import os import re import stat import subprocess import pytest from subprocess import Popen from pathlib import Path import lief from lief.ELF import Segment from utils import get_sample, has_recent_glibc, is_linux, is_x86_64, is_aarch64 is_updated_linux = pytest.mark.skipif(not (is_linux() and is_x86_64() and has_recent_glibc()), reason="needs a recent x86-64 Linux system") is_linux_x64 = pytest.mark.skipif(not (is_linux() and is_x86_64()), reason="needs a Linux x86-64") lief.logging.set_level(lief.logging.LOGGING_LEVEL.INFO) CWD = Path(__file__).parent @is_updated_linux def METHOD_NAME(tmp_path: Path): sample_path = get_sample('ELF/ELF64_x86-64_binary_ls.bin') stub = lief.parse((CWD / "hello_lief.bin").as_posix()) output = tmp_path / "ls.segment" target = lief.parse(sample_path) for _ in range(4): segment = stub.segments[0] original_va = segment.virtual_address segment.virtual_address = 0 segment = target.add(segment) new_ep = (stub.header.entrypoint - original_va) + segment.virtual_address target.header.entrypoint = new_ep target.write(output.as_posix()) st = os.stat(output) os.chmod(output, st.st_mode | stat.S_IEXEC) with Popen(output.as_posix(), stdout=subprocess.PIPE, stderr=subprocess.STDOUT) as P: stdout = P.stdout.read().decode("utf8") print(stdout) assert re.search(r'LIEF is Working', stdout) is not None @is_updated_linux def test_gcc(tmp_path: Path): sample_path = get_sample('ELF/ELF64_x86-64_binary_gcc.bin') stub = lief.parse((CWD / "hello_lief.bin").as_posix()) output = tmp_path / "gcc.segment" target = lief.parse(sample_path) segment = stub.segments[0] original_va = segment.virtual_address segment.virtual_address = 0 segment = target.add(segment) new_ep = (stub.header.entrypoint - original_va) + segment.virtual_address target.header.entrypoint = new_ep target.write(output.as_posix()) st = os.stat(output) os.chmod(output, st.st_mode | stat.S_IEXEC) with Popen(output.as_posix(), stdout=subprocess.PIPE, stderr=subprocess.STDOUT) as P: stdout = P.stdout.read().decode("utf8") print(stdout) assert re.search(r'LIEF is Working', stdout) is not None @is_linux_x64 def test_static(tmp_path: Path): sample_path = get_sample('ELF/ELF64_x86-64_binary_static-binary.bin') stub = lief.parse((CWD / "hello_lief.bin").as_posix()) output = tmp_path / "static.segment" target = lief.parse(sample_path) segment = stub.segments[0] original_va = segment.virtual_address segment.virtual_address = 0 segment = target.add(segment) new_ep = (stub.header.entrypoint - original_va) + segment.virtual_address target.header.entrypoint = new_ep target.write(output.as_posix()) st = os.stat(output) os.chmod(output, st.st_mode | stat.S_IEXEC) with Popen(output.as_posix(), stdout=subprocess.PIPE, stderr=subprocess.STDOUT) as P: stdout = P.stdout.read().decode("utf8") print(stdout) assert re.search(r'LIEF is Working', stdout) is not None @pytest.mark.skipif(not is_linux(), reason="needs a Linux system") @pytest.mark.parametrize("binpath", [ '/usr/bin/ls', '/bin/ls', '/usr/bin/ssh', '/usr/bin/nm', '/usr/bin/openssl', '/usr/bin/bc', '/usr/bin/bzip2', '/bin/bzip2', '/usr/bin/cp', '/bin/cp', '/usr/bin/find', '/usr/bin/file', ]) def test_add_segment(tmp_path: Path, binpath): target = Path(binpath) if not target.is_file(): print(f"{target} does not exists. Skip!") return stub = None if is_x86_64(): stub = lief.parse((CWD / "hello_lief.bin").as_posix()) elif is_aarch64(): stub = lief.parse((CWD / "hello_lief_aarch64.bin").as_posix()) name = target.name target = lief.parse(target.as_posix()) output = tmp_path / f"{name}.segment" for _ in range(6): stub_segment = stub.segments[0] segment = lief.ELF.Segment() segment.content = stub.segments[0].content segment.type = stub_segment.type segment.alignment = stub_segment.alignment segment.flags = stub_segment.flags new_segment = target.add(segment) new_ep = (stub.header.entrypoint - stub.imagebase - stub_segment.file_offset) + new_segment.virtual_address target.header.entrypoint = new_ep target.write(output.as_posix()) st = os.stat(output) os.chmod(output, st.st_mode | stat.S_IEXEC) with Popen(output.as_posix(), stdout=subprocess.PIPE, stderr=subprocess.STDOUT) as P: stdout = P.stdout.read().decode("utf8") print(stdout) assert re.search(r'LIEF is Working', stdout) is not None
2,368
real np types
import numpy as np from numba.core.compiler import compile_isolated from numba import jit from numba.core import types from numba.tests.support import TestCase, tag import unittest def dobool(a): return bool(a) def doint(a): return int(a) def dofloat(a): return float(a) def docomplex(a): return complex(a) def docomplex2(a, b): return complex(a, b) def complex_calc(a): z = complex(a) return z.real ** 2 + z.imag ** 2 def complex_calc2(a, b): z = complex(a, b) return z.real ** 2 + z.imag ** 2 def converter(tp): def f(a): return tp(a) return f def METHOD_NAME(): for tp_name in ('int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64', 'intc', 'uintc', 'intp', 'uintp', 'float32', 'float64', 'bool_'): yield tp_name def complex_np_types(): for tp_name in ('complex64', 'complex128'): yield tp_name class TestScalarNumberCtor(TestCase): """ Test <number class>(some scalar) """ def check_int_constructor(self, pyfunc): x_types = [ types.boolean, types.int32, types.int64, types.float32, types.float64 ] x_values = [1, 0, 1000, 12.2, 23.4] for ty, x in zip(x_types, x_values): cres = compile_isolated(pyfunc, [ty]) cfunc = cres.entry_point self.assertPreciseEqual(pyfunc(x), cfunc(x)) def test_bool(self): self.check_int_constructor(dobool) def test_int(self): self.check_int_constructor(doint) def test_float(self): pyfunc = dofloat x_types = [ types.int32, types.int64, types.float32, types.float64 ] x_values = [1, 1000, 12.2, 23.4] for ty, x in zip(x_types, x_values): cres = compile_isolated(pyfunc, [ty]) cfunc = cres.entry_point self.assertPreciseEqual(pyfunc(x), cfunc(x), prec='single' if ty is types.float32 else 'exact') def test_complex(self): pyfunc = docomplex x_types = [ types.int32, types.int64, types.float32, types.float64, types.complex64, types.complex128, ] x_values = [1, 1000, 12.2, 23.4, 1.5-5j, 1-4.75j] for ty, x in zip(x_types, x_values): cres = compile_isolated(pyfunc, [ty]) cfunc = cres.entry_point got = cfunc(x) expected = pyfunc(x) self.assertPreciseEqual(pyfunc(x), cfunc(x), prec='single' if ty is types.float32 else 'exact') # Check that complex(float32) really creates a complex64, # by checking the accuracy of computations. pyfunc = complex_calc x = 1.0 + 2**-50 cres = compile_isolated(pyfunc, [types.float32]) cfunc = cres.entry_point self.assertPreciseEqual(cfunc(x), 1.0) # Control (complex128) cres = compile_isolated(pyfunc, [types.float64]) cfunc = cres.entry_point self.assertGreater(cfunc(x), 1.0) def test_complex2(self): pyfunc = docomplex2 x_types = [ types.int32, types.int64, types.float32, types.float64 ] x_values = [1, 1000, 12.2, 23.4] y_values = [x - 3 for x in x_values] for ty, x, y in zip(x_types, x_values, y_values): cres = compile_isolated(pyfunc, [ty, ty]) cfunc = cres.entry_point self.assertPreciseEqual(pyfunc(x, y), cfunc(x, y), prec='single' if ty is types.float32 else 'exact') # Check that complex(float32, float32) really creates a complex64, # by checking the accuracy of computations. pyfunc = complex_calc2 x = 1.0 + 2**-50 cres = compile_isolated(pyfunc, [types.float32, types.float32]) cfunc = cres.entry_point self.assertPreciseEqual(cfunc(x, x), 2.0) # Control (complex128) cres = compile_isolated(pyfunc, [types.float64, types.float32]) cfunc = cres.entry_point self.assertGreater(cfunc(x, x), 2.0) def check_type_converter(self, tp, np_type, values): pyfunc = converter(tp) cfunc = jit(nopython=True)(pyfunc) if issubclass(np_type, np.integer): # Converting from a Python int to a small Numpy int on 32-bit # builds can raise "OverflowError: Python int too large to # convert to C long". Work around by going through a large # Numpy int first. np_converter = lambda x: np_type(np.int64(x)) else: np_converter = np_type dtype = np.dtype(np_type) for val in values: if dtype.kind == 'u' and isinstance(val, float) and val < 0.0: # Converting negative float to unsigned int yields undefined # behaviour (and concretely different on ARM vs. x86) continue expected = np_converter(val) got = cfunc(val) self.assertPreciseEqual(got, expected, msg="for type %s with arg %s" % (np_type, val)) def check_number_types(self, tp_factory): values = [0, 1, -1, 100003, 10000000000007, -100003, -10000000000007, 1.5, -3.5] for tp_name in METHOD_NAME(): np_type = getattr(np, tp_name) tp = tp_factory(tp_name) self.check_type_converter(tp, np_type, values) values.append(1.5+3j) for tp_name in complex_np_types(): np_type = getattr(np, tp_name) tp = tp_factory(tp_name) self.check_type_converter(tp, np_type, values) def test_numba_types(self): """ Test explicit casting to Numba number types. """ def tp_factory(tp_name): return getattr(types, tp_name) self.check_number_types(tp_factory) def test_numpy_types(self): """ Test explicit casting to Numpy number types. """ def tp_factory(tp_name): return getattr(np, tp_name) self.check_number_types(tp_factory) class TestArrayNumberCtor(TestCase): """ Test <number class>(some sequence) """ def check_type_constructor(self, np_type, values): pyfunc = converter(np_type) cfunc = jit(nopython=True)(pyfunc) for val in values: expected = np_type(val) got = cfunc(val) self.assertPreciseEqual(got, expected) def test_1d(self): values = [ (1.0, 2.5), (1, 2.5), [1.0, 2.5], (), ] for tp_name in METHOD_NAME(): np_type = getattr(np, tp_name) self.check_type_constructor(np_type, values) values = [ (1j, 2.5), [1.0, 2.5], ] for tp_name in complex_np_types(): np_type = getattr(np, tp_name) self.check_type_constructor(np_type, values) def test_2d(self): values = [ ((1.0, 2.5), (3.5, 4)), [(1.0, 2.5), (3.5, 4.0)], ([1.0, 2.5], [3.5, 4.0]), [(), ()], ] for tp_name in METHOD_NAME(): np_type = getattr(np, tp_name) self.check_type_constructor(np_type, values) for tp_name in complex_np_types(): np_type = getattr(np, tp_name) self.check_type_constructor(np_type, values) if __name__ == '__main__': unittest.main()
2,369
drop block2d
import torch import torch.fx import torch.nn.functional as F from torch import nn, Tensor from ..utils import _log_api_usage_once def METHOD_NAME( input: Tensor, p: float, block_size: int, inplace: bool = False, eps: float = 1e-06, training: bool = True ) -> Tensor: """ Implements DropBlock2d from `"DropBlock: A regularization method for convolutional networks" <https://arxiv.org/abs/1810.12890>`. Args: input (Tensor[N, C, H, W]): The input tensor or 4-dimensions with the first one being its batch i.e. a batch with ``N`` rows. p (float): Probability of an element to be dropped. block_size (int): Size of the block to drop. inplace (bool): If set to ``True``, will do this operation in-place. Default: ``False``. eps (float): A value added to the denominator for numerical stability. Default: 1e-6. training (bool): apply dropblock if is ``True``. Default: ``True``. Returns: Tensor[N, C, H, W]: The randomly zeroed tensor after dropblock. """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(METHOD_NAME) if p < 0.0 or p > 1.0: raise ValueError(f"drop probability has to be between 0 and 1, but got {p}.") if input.ndim != 4: raise ValueError(f"input should be 4 dimensional. Got {input.ndim} dimensions.") if not training or p == 0.0: return input N, C, H, W = input.size() block_size = min(block_size, W, H) # compute the gamma of Bernoulli distribution gamma = (p * H * W) / ((block_size**2) * ((H - block_size + 1) * (W - block_size + 1))) noise = torch.empty((N, C, H - block_size + 1, W - block_size + 1), dtype=input.dtype, device=input.device) noise.bernoulli_(gamma) noise = F.pad(noise, [block_size // 2] * 4, value=0) noise = F.max_pool2d(noise, stride=(1, 1), kernel_size=(block_size, block_size), padding=block_size // 2) noise = 1 - noise normalize_scale = noise.numel() / (eps + noise.sum()) if inplace: input.mul_(noise).mul_(normalize_scale) else: input = input * noise * normalize_scale return input def drop_block3d( input: Tensor, p: float, block_size: int, inplace: bool = False, eps: float = 1e-06, training: bool = True ) -> Tensor: """ Implements DropBlock3d from `"DropBlock: A regularization method for convolutional networks" <https://arxiv.org/abs/1810.12890>`. Args: input (Tensor[N, C, D, H, W]): The input tensor or 5-dimensions with the first one being its batch i.e. a batch with ``N`` rows. p (float): Probability of an element to be dropped. block_size (int): Size of the block to drop. inplace (bool): If set to ``True``, will do this operation in-place. Default: ``False``. eps (float): A value added to the denominator for numerical stability. Default: 1e-6. training (bool): apply dropblock if is ``True``. Default: ``True``. Returns: Tensor[N, C, D, H, W]: The randomly zeroed tensor after dropblock. """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(drop_block3d) if p < 0.0 or p > 1.0: raise ValueError(f"drop probability has to be between 0 and 1, but got {p}.") if input.ndim != 5: raise ValueError(f"input should be 5 dimensional. Got {input.ndim} dimensions.") if not training or p == 0.0: return input N, C, D, H, W = input.size() block_size = min(block_size, D, H, W) # compute the gamma of Bernoulli distribution gamma = (p * D * H * W) / ((block_size**3) * ((D - block_size + 1) * (H - block_size + 1) * (W - block_size + 1))) noise = torch.empty( (N, C, D - block_size + 1, H - block_size + 1, W - block_size + 1), dtype=input.dtype, device=input.device ) noise.bernoulli_(gamma) noise = F.pad(noise, [block_size // 2] * 6, value=0) noise = F.max_pool3d( noise, stride=(1, 1, 1), kernel_size=(block_size, block_size, block_size), padding=block_size // 2 ) noise = 1 - noise normalize_scale = noise.numel() / (eps + noise.sum()) if inplace: input.mul_(noise).mul_(normalize_scale) else: input = input * noise * normalize_scale return input torch.fx.wrap("drop_block2d") class DropBlock2d(nn.Module): """ See :func:`drop_block2d`. """ def __init__(self, p: float, block_size: int, inplace: bool = False, eps: float = 1e-06) -> None: super().__init__() self.p = p self.block_size = block_size self.inplace = inplace self.eps = eps def forward(self, input: Tensor) -> Tensor: """ Args: input (Tensor): Input feature map on which some areas will be randomly dropped. Returns: Tensor: The tensor after DropBlock layer. """ return METHOD_NAME(input, self.p, self.block_size, self.inplace, self.eps, self.training) def __repr__(self) -> str: s = f"{self.__class__.__name__}(p={self.p}, block_size={self.block_size}, inplace={self.inplace})" return s torch.fx.wrap("drop_block3d") class DropBlock3d(DropBlock2d): """ See :func:`drop_block3d`. """ def __init__(self, p: float, block_size: int, inplace: bool = False, eps: float = 1e-06) -> None: super().__init__(p, block_size, inplace, eps) def forward(self, input: Tensor) -> Tensor: """ Args: input (Tensor): Input feature map on which some areas will be randomly dropped. Returns: Tensor: The tensor after DropBlock layer. """ return drop_block3d(input, self.p, self.block_size, self.inplace, self.eps, self.training)
2,370
schedule registration reminder
from django.conf import settings from django.db.models.signals import post_delete, post_save from django.utils import timezone from events.models import Event, EventRegistration from members.models import Member from utils.models.signals import suspendingreceiver from ..models import Category, EventStartReminderMessage, RegistrationReminderMessage @suspendingreceiver( post_save, sender=Event, dispatch_uid="schedule_event_start_reminder" ) def schedule_event_start_reminder(sender, instance, **kwargs): """Create, update or delete a scheduled start reminder for the event if necessary.""" message = getattr(instance, "start_reminder", None) if not instance.published: # Remove existing not-sent notification if the event isn't published. if message is not None and not message.sent: instance.start_reminder = None message.delete() else: reminder_time = instance.start - timezone.timedelta(hours=1) # Delete reminder if the event is changed so that the reminder time has now passed. if ( message is not None and message.time != reminder_time and reminder_time < timezone.now() ): instance.start_reminder = None message.delete() return # Don't update if the message has already been sent or the reminder time has passed. if (message is not None and message.sent) or reminder_time < timezone.now(): return if message is None: message = EventStartReminderMessage(event=instance) message.title = "Event" message.body = f"'{instance.title}' starts in 1 hour" message.url = f"{settings.BASE_URL}{instance.get_absolute_url()}" message.category = Category.objects.get(key=Category.EVENT) message.time = reminder_time message.save() if instance.registration_required: message.users.set([r.member for r in instance.participants if r.member]) else: message.users.set(Member.current_members.all()) @suspendingreceiver( post_save, sender=Event, dispatch_uid="schedule_registration_reminder" ) def METHOD_NAME(sender, instance, **kwargs): """Create, update or delete a registration reminder for the event if necessary.""" message = getattr(instance, "registration_reminder", None) if not instance.published or not instance.registration_required: # Remove existing not-sent notification if the event # isn't published or registration isn't required. if message is not None and not message.sent: instance.registration_reminder = None message.delete() else: reminder_time = instance.registration_start - timezone.timedelta(hours=1) # Delete reminder if the event is changed so that the reminder time has now passed. if ( message is not None and message.time != reminder_time and reminder_time < timezone.now() ): instance.registration_reminder = None message.delete() return # Don't update if the message has already been sent or the reminder time has passed. if (message is not None and message.sent) or reminder_time < timezone.now(): return if message is None: message = RegistrationReminderMessage(event=instance) message.title = "Event registration" message.body = f"Registration for '{instance.title}' starts in 1 hour" message.url = f"{settings.BASE_URL}{instance.get_absolute_url()}" message.category = Category.objects.get(key=Category.EVENT) message.time = reminder_time message.save() message.users.set(Member.current_members.all()) @suspendingreceiver( post_save, sender=EventRegistration, dispatch_uid="update_event_start_reminder_users_on_registration_save", ) def update_event_start_reminder_users_on_registration_save(sender, instance, **kwargs): """Add or remove the member from the event start reminder.""" message = getattr(instance.event, "start_reminder", None) if message is None or message.sent: return if instance.member is not None: if instance.event.registration_required: if instance.date_cancelled: message.users.remove(instance.member) else: message.users.add(instance.member) @suspendingreceiver( post_delete, sender=EventRegistration, dispatch_uid="update_event_start_reminder_users_on_registration_delete", ) def update_event_start_reminder_users_on_registration_delete( sender, instance, **kwargs ): """Remove the member from the event start reminder if registration is required.""" message = getattr(instance.event, "start_reminder", None) if message is None or message.sent: return if instance.member is not None: if instance.event.registration_required: message.users.remove(instance.member)
2,371
resnet calibration reader
# # Copyright (C) 2023, Advanced Micro Devices, Inc. All rights reserved. # SPDX-License-Identifier: MIT # # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------- import torch from onnxruntime.quantization.calibrate import CalibrationDataReader from torch.utils.data import DataLoader, Dataset from torchvision import transforms from torchvision.datasets import CIFAR10 import onnx import onnxruntime from onnxruntime.quantization import CalibrationDataReader, QuantType, QuantFormat, CalibrationMethod, quantize_static import vai_q_onnx class CIFAR10DataSet: def __init__( self, data_dir, **kwargs, ): super().__init__() self.train_path = data_dir self.vld_path = data_dir self.setup("fit") def setup(self, stage: str): transform = transforms.Compose( [transforms.Pad(4), transforms.RandomHorizontalFlip(), transforms.RandomCrop(32), transforms.ToTensor()] ) self.train_dataset = CIFAR10(root=self.train_path, train=True, transform=transform, download=False) self.val_dataset = CIFAR10(root=self.vld_path, train=True, transform=transform, download=False) class PytorchResNetDataset(Dataset): def __init__(self, dataset): self.dataset = dataset def __len__(self): return len(self.dataset) def __getitem__(self, index): sample = self.dataset[index] input_data = sample[0] label = sample[1] return input_data, label def create_dataloader(data_dir, batch_size): cifar10_dataset = CIFAR10DataSet(data_dir) _, val_set = torch.utils.data.random_split(cifar10_dataset.val_dataset, [49000, 1000]) benchmark_dataloader = DataLoader(PytorchResNetDataset(val_set), batch_size=batch_size, drop_last=True) return benchmark_dataloader class ResnetCalibrationDataReader(CalibrationDataReader): def __init__(self, data_dir: str, batch_size: int = 16): super().__init__() self.iterator = iter(create_dataloader(data_dir, batch_size)) def get_next(self) -> dict: try: images, labels = next(self.iterator) return {"input": images.numpy()} except Exception: return None def METHOD_NAME(data_dir, batch_size=16): return ResnetCalibrationDataReader(data_dir, batch_size=batch_size) def main(): # `input_model_path` is the path to the original, unquantized ONNX model. input_model_path = "models/resnet_trained_for_cifar10.onnx" # `output_model_path` is the path where the quantized model will be saved. output_model_path = "models/resnet.qdq.U8S8.onnx" # `calibration_dataset_path` is the path to the dataset used for calibration during quantization. calibration_dataset_path = "data/" # `dr` (Data Reader) is an instance of ResNet50DataReader, which is a utility class that # reads the calibration dataset and prepares it for the quantization process. dr = METHOD_NAME(calibration_dataset_path) # `quantize_static` is a function that applies static quantization to the model. # The parameters of this function are: # - `input_model_path`: the path to the original, unquantized model. # - `output_model_path`: the path where the quantized model will be saved. # - `dr`: an instance of a data reader utility, which provides data for model calibration. # - `quant_format`: the format of quantization operators. Need to set to QDQ or QOperator. # - `activation_type`: the data type of activation tensors after quantization. In this case, it's QUInt8 (Quantized Unsigned Int 8). # - `weight_type`: the data type of weight tensors after quantization. In this case, it's QInt8 (Quantized Int 8). vai_q_onnx.quantize_static( input_model_path, output_model_path, dr, quant_format=QuantFormat.QDQ, calibrate_method=vai_q_onnx.PowerOfTwoMethod.MinMSE, activation_type=QuantType.QUInt8, weight_type=QuantType.QInt8, ) print('Calibrated and quantized model saved at:', output_model_path) if __name__ == '__main__': main()
2,372
merge candidates
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Encode using wordpiece models. Implements the segmentation algorithm described in the last paragraph of p. 5150, in the following publication: M. Schuster and K. Nakajima, "Japanese and Korean voice search," 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, 2012 https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37842.pdf """ import lingvo.compat as tf from lingvo.core import ops from lingvo.core import py_utils import six # Must be a large ID. NO_TOKEN = 1 << 31 - 1 NO_TOKEN_STRING = '<unk>' SENTENCE_START_STRING = '<s>' SENTENCE_END_STRING = '</s>' BOW_STR = '▁' class WpmEncoder: """WPM encoder.""" def __init__(self, wpm_filepath, merge_prob=1.): """Create a WPM encoder. Args: wpm_filepath: a path to the file containing the vocabulary. merge_prob: the probability of merging tokens while encoding. """ # Load vocabulary file. lines = py_utils.ReadFileLines(wpm_filepath) self._pieces = [] for line in lines: if isinstance(line, bytes): line = six.ensure_text(line, 'utf-8') piece = line.strip().split('\t')[0] self._pieces.append(piece) self._merge_prob = merge_prob def _TokenToString(self, token): return ops.vocab_id_to_token(token, vocab=self._pieces) def _StringToToken(self, tokstr): return tf.where( ops.token_in_vocab(tokstr, vocab=self._pieces), ops.vocab_token_to_id(tokstr, vocab=self._pieces), tf.broadcast_to(NO_TOKEN, tf.shape(tokstr))) def _MergeTokens(self, tokens): return self._StringToToken( self._TokenToString(tokens[0]) + self._TokenToString(tokens[1])) def _EncodeToIds(self, word): # Below: # * a token is a wordpiece ID. # * the tokens array will be merged in-place. # * the candidates array is an array of size len(tokens) - 1. # It contains the token for the merged wordpiece, if it exists, # -1 otherwise. For instance, candidate[3] = id(token[3] + token[4]). # First, split into basic UTF-8 characters (letters). chars = tf.strings.unicode_split(word, 'UTF-8') tokens = self._StringToToken(chars) tokens = tf.where( tf.equal(tokens, NO_TOKEN), # Unseen character. tf.broadcast_to(self.unk_id, tf.shape(tokens)), tokens) # Create initial candidate list. candidates = tf.map_fn( self._MergeTokens, (tokens[:-1], tokens[1:]), dtype=tokens.dtype) def _ShouldMerge(unused_tokens, candidates): """Merge until not possible, or we abort early according to merge_prob.""" return tf.math.logical_and( tf.reduce_any(tf.not_equal(candidates, NO_TOKEN)), tf.random.uniform([]) < self._merge_prob) def _MergeOneToken(tokens, i): return tf.expand_dims( self._MergeTokens((tokens[i], tokens[i + 1])), axis=-1) def METHOD_NAME(tokens, candidates): """Merge in the reverse binary tree.""" best_id = tf.argmin(candidates, output_type=tf.int32) # Perform the merge at position best_id. tokens = tf.concat( [tokens[:best_id], [candidates[best_id]], tokens[best_id + 2:]], axis=0) # Recompute the merge candidates. # Only the neighbors of best_id need to be recomputed. empty = tf.zeros([0], dtype=candidates.dtype) def _MergeLeft(): return tf.concat( [candidates[:best_id - 1], _MergeOneToken(tokens, best_id - 1)], axis=0) left_candidates = tf.cond(tf.equal(best_id, 0), lambda: empty, _MergeLeft) def _MergeRight(): return tf.concat( [_MergeOneToken(tokens, best_id), candidates[best_id + 2:]], axis=0) right_candidates = tf.cond( tf.greater_equal(best_id, tf.size(tokens) - 1), lambda: empty, _MergeRight) candidates = tf.concat([left_candidates, right_candidates], axis=0) return tokens, candidates return tf.while_loop( _ShouldMerge, METHOD_NAME, (tokens, candidates), parallel_iterations=1, back_prop=False)[0] def Encode(self, text): """Converts string `text` to integer ids and the encoded string. Encoding includes prefixing the beginning-of-word token to each word. Returns: (ids, tokens) where ids is the encoded integer ids and tokens is the encoded string. """ words = tf.sparse.to_dense(tf.strings.split([text]), default_value='')[0] num_words = tf.size(words) ids_ta = tf.TensorArray(tf.int32, 0, dynamic_size=True) def _WordsToIds(i, words, ids_ta): encoded_ids = self._EncodeToIds(BOW_STR + words[i]) ids_ta = ids_ta.scatter( tf.range(ids_ta.size(), ids_ta.size() + tf.size(encoded_ids)), encoded_ids) return i + 1, words, ids_ta _, _, ids_ta = tf.while_loop( lambda i, *_: i < num_words, _WordsToIds, loop_vars=(tf.constant(0, tf.int32), words, ids_ta), parallel_iterations=30, back_prop=False) ids = ids_ta.stack() return ids, self._TokenToString(ids) def Decode(self, ids): txt = tf.strings.reduce_join(self._TokenToString(ids)) txt = tf.strings.regex_replace(txt, BOW_STR, ' ') # Note that this strips spaces from the end of the input as well. # We assume no inputs rely on the existence of trailing whitespace. txt = tf.strings.strip(txt) return txt @property def sentence_start_id(self): return self._pieces.index(SENTENCE_START_STRING) @property def sentence_start_string(self): return SENTENCE_START_STRING @property def sentence_end_id(self): return self._pieces.index(SENTENCE_END_STRING) @property def sentence_end_string(self): return SENTENCE_END_STRING @property def unk_id(self): return self._pieces.index(NO_TOKEN_STRING)
2,373
test is ipaddress false
from __future__ import annotations import ssl import typing from unittest import mock import pytest from urllib3.exceptions import ProxySchemeUnsupported, SSLError from urllib3.util import ssl_ class TestSSL: @pytest.mark.parametrize( "addr", [ # IPv6 "::1", "::", "FE80::8939:7684:D84b:a5A4%251", # IPv4 "127.0.0.1", "8.8.8.8", b"127.0.0.1", # IPv6 w/ Zone IDs "FE80::8939:7684:D84b:a5A4%251", b"FE80::8939:7684:D84b:a5A4%251", "FE80::8939:7684:D84b:a5A4%19", b"FE80::8939:7684:D84b:a5A4%19", ], ) def test_is_ipaddress_true(self, addr: bytes | str) -> None: assert ssl_.is_ipaddress(addr) @pytest.mark.parametrize( "addr", [ "www.python.org", b"www.python.org", "v2.sg.media-imdb.com", b"v2.sg.media-imdb.com", ], ) def METHOD_NAME(self, addr: bytes | str) -> None: assert not ssl_.is_ipaddress(addr) def test_create_urllib3_context_set_ciphers( self, monkeypatch: pytest.MonkeyPatch ) -> None: ciphers = "ECDH+AESGCM:ECDH+CHACHA20" context = mock.create_autospec(ssl_.SSLContext) context.set_ciphers = mock.Mock() context.options = 0 monkeypatch.setattr(ssl_, "SSLContext", lambda *_, **__: context) assert ssl_.create_urllib3_context(ciphers=ciphers) is context assert context.set_ciphers.call_count == 1 assert context.set_ciphers.call_args == mock.call(ciphers) def test_create_urllib3_no_context(self) -> None: with mock.patch("urllib3.util.ssl_.SSLContext", None): with pytest.raises(TypeError): ssl_.create_urllib3_context() def test_wrap_socket_given_context_no_load_default_certs(self) -> None: context = mock.create_autospec(ssl_.SSLContext) context.load_default_certs = mock.Mock() sock = mock.Mock() ssl_.ssl_wrap_socket(sock, ssl_context=context) context.load_default_certs.assert_not_called() def test_wrap_socket_given_ca_certs_no_load_default_certs( self, monkeypatch: pytest.MonkeyPatch ) -> None: context = mock.create_autospec(ssl_.SSLContext) context.load_default_certs = mock.Mock() context.options = 0 monkeypatch.setattr(ssl_, "SSLContext", lambda *_, **__: context) sock = mock.Mock() ssl_.ssl_wrap_socket(sock, ca_certs="/tmp/fake-file") context.load_default_certs.assert_not_called() context.load_verify_locations.assert_called_with("/tmp/fake-file", None, None) def test_wrap_socket_default_loads_default_certs( self, monkeypatch: pytest.MonkeyPatch ) -> None: context = mock.create_autospec(ssl_.SSLContext) context.load_default_certs = mock.Mock() context.options = 0 monkeypatch.setattr(ssl_, "SSLContext", lambda *_, **__: context) sock = mock.Mock() ssl_.ssl_wrap_socket(sock) context.load_default_certs.assert_called_with() def test_wrap_socket_no_ssltransport(self) -> None: with mock.patch("urllib3.util.ssl_.SSLTransport", None): with pytest.raises(ProxySchemeUnsupported): sock = mock.Mock() ssl_.ssl_wrap_socket(sock, tls_in_tls=True) @pytest.mark.parametrize( ["pha", "expected_pha"], [(None, None), (False, True), (True, True)] ) def test_create_urllib3_context_pha( self, monkeypatch: pytest.MonkeyPatch, pha: bool | None, expected_pha: bool | None, ) -> None: context = mock.create_autospec(ssl_.SSLContext) context.set_ciphers = mock.Mock() context.options = 0 context.post_handshake_auth = pha monkeypatch.setattr(ssl_, "SSLContext", lambda *_, **__: context) assert ssl_.create_urllib3_context() is context assert context.post_handshake_auth == expected_pha def test_create_urllib3_context_default_ciphers( self, monkeypatch: pytest.MonkeyPatch ) -> None: context = mock.create_autospec(ssl_.SSLContext) context.set_ciphers = mock.Mock() context.options = 0 monkeypatch.setattr(ssl_, "SSLContext", lambda *_, **__: context) ssl_.create_urllib3_context() context.set_ciphers.assert_not_called() @pytest.mark.parametrize( "kwargs", [ { "ssl_version": ssl.PROTOCOL_TLSv1, "ssl_minimum_version": ssl.TLSVersion.MINIMUM_SUPPORTED, }, { "ssl_version": ssl.PROTOCOL_TLSv1, "ssl_maximum_version": ssl.TLSVersion.TLSv1, }, { "ssl_version": ssl.PROTOCOL_TLSv1, "ssl_minimum_version": ssl.TLSVersion.MINIMUM_SUPPORTED, "ssl_maximum_version": ssl.TLSVersion.MAXIMUM_SUPPORTED, }, ], ) def test_create_urllib3_context_ssl_version_and_ssl_min_max_version_errors( self, kwargs: dict[str, typing.Any] ) -> None: with pytest.raises(ValueError) as e: ssl_.create_urllib3_context(**kwargs) assert str(e.value) == ( "Can't specify both 'ssl_version' and either 'ssl_minimum_version' or 'ssl_maximum_version'" ) @pytest.mark.parametrize( "kwargs", [ { "ssl_version": ssl.PROTOCOL_TLS, "ssl_minimum_version": ssl.TLSVersion.MINIMUM_SUPPORTED, }, { "ssl_version": ssl.PROTOCOL_TLS_CLIENT, "ssl_minimum_version": ssl.TLSVersion.MINIMUM_SUPPORTED, }, { "ssl_version": None, "ssl_minimum_version": ssl.TLSVersion.MINIMUM_SUPPORTED, }, ], ) def test_create_urllib3_context_ssl_version_and_ssl_min_max_version_no_warning( self, kwargs: dict[str, typing.Any] ) -> None: ssl_.create_urllib3_context(**kwargs) @pytest.mark.parametrize( "kwargs", [ {"ssl_version": ssl.PROTOCOL_TLSv1, "ssl_minimum_version": None}, {"ssl_version": ssl.PROTOCOL_TLSv1, "ssl_maximum_version": None}, { "ssl_version": ssl.PROTOCOL_TLSv1, "ssl_minimum_version": None, "ssl_maximum_version": None, }, ], ) def test_create_urllib3_context_ssl_version_and_ssl_min_max_version_no_error( self, kwargs: dict[str, typing.Any] ) -> None: with pytest.warns( DeprecationWarning, match=r"'ssl_version' option is deprecated and will be removed in " r"urllib3 v2\.1\.0\. Instead use 'ssl_minimum_version'", ): ssl_.create_urllib3_context(**kwargs) def test_assert_fingerprint_raises_exception_on_none_cert(self) -> None: with pytest.raises(SSLError): ssl_.assert_fingerprint( cert=None, fingerprint="55:39:BF:70:05:12:43:FA:1F:D1:BF:4E:E8:1B:07:1D" )
2,374
type
# coding=utf-8 # *** WARNING: this file was generated by pulumi. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetVideoAnalyzerResult', 'AwaitableGetVideoAnalyzerResult', 'get_video_analyzer', 'get_video_analyzer_output', ] @pulumi.output_type class GetVideoAnalyzerResult: """ A Video Analyzer account. """ def __init__(__self__, encryption=None, endpoints=None, id=None, identity=None, location=None, name=None, storage_accounts=None, system_data=None, tags=None, METHOD_NAME=None): if encryption and not isinstance(encryption, dict): raise TypeError("Expected argument 'encryption' to be a dict") pulumi.set(__self__, "encryption", encryption) if endpoints and not isinstance(endpoints, list): raise TypeError("Expected argument 'endpoints' to be a list") pulumi.set(__self__, "endpoints", endpoints) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if identity and not isinstance(identity, dict): raise TypeError("Expected argument 'identity' to be a dict") pulumi.set(__self__, "identity", identity) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if storage_accounts and not isinstance(storage_accounts, list): raise TypeError("Expected argument 'storage_accounts' to be a list") pulumi.set(__self__, "storage_accounts", storage_accounts) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if METHOD_NAME and not isinstance(METHOD_NAME, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", METHOD_NAME) @property @pulumi.getter def encryption(self) -> 'outputs.AccountEncryptionResponse': """ The account encryption properties. """ return pulumi.get(self, "encryption") @property @pulumi.getter def endpoints(self) -> Sequence['outputs.EndpointResponse']: """ The list of endpoints associated with this resource. """ return pulumi.get(self, "endpoints") @property @pulumi.getter def id(self) -> str: """ Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} """ return pulumi.get(self, "id") @property @pulumi.getter def identity(self) -> Optional['outputs.VideoAnalyzerIdentityResponse']: """ The set of managed identities associated with the Video Analyzer resource. """ return pulumi.get(self, "identity") @property @pulumi.getter def location(self) -> str: """ The geo-location where the resource lives """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter(name="storageAccounts") def storage_accounts(self) -> Sequence['outputs.StorageAccountResponse']: """ The storage accounts for this resource. """ return pulumi.get(self, "storage_accounts") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ The system data of the Video Analyzer account. """ return pulumi.get(self, "system_data") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def METHOD_NAME(self) -> str: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type") class AwaitableGetVideoAnalyzerResult(GetVideoAnalyzerResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetVideoAnalyzerResult( encryption=self.encryption, endpoints=self.endpoints, id=self.id, identity=self.identity, location=self.location, name=self.name, storage_accounts=self.storage_accounts, system_data=self.system_data, tags=self.tags, METHOD_NAME=self.METHOD_NAME) def get_video_analyzer(account_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetVideoAnalyzerResult: """ Get the details of the specified Video Analyzer account :param str account_name: The Video Analyzer account name. :param str resource_group_name: The name of the resource group. The name is case insensitive. """ __args__ = dict() __args__['accountName'] = account_name __args__['resourceGroupName'] = resource_group_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:videoanalyzer/v20210501preview:getVideoAnalyzer', __args__, opts=opts, typ=GetVideoAnalyzerResult).value return AwaitableGetVideoAnalyzerResult( encryption=pulumi.get(__ret__, 'encryption'), endpoints=pulumi.get(__ret__, 'endpoints'), id=pulumi.get(__ret__, 'id'), identity=pulumi.get(__ret__, 'identity'), location=pulumi.get(__ret__, 'location'), name=pulumi.get(__ret__, 'name'), storage_accounts=pulumi.get(__ret__, 'storage_accounts'), system_data=pulumi.get(__ret__, 'system_data'), tags=pulumi.get(__ret__, 'tags'), METHOD_NAME=pulumi.get(__ret__, 'type')) @_utilities.lift_output_func(get_video_analyzer) def get_video_analyzer_output(account_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetVideoAnalyzerResult]: """ Get the details of the specified Video Analyzer account :param str account_name: The Video Analyzer account name. :param str resource_group_name: The name of the resource group. The name is case insensitive. """ ...
2,375
parse simple
from __future__ import annotations import contextlib import os import re import urllib.parse from pathlib import Path from typing import TYPE_CHECKING from typing import Dict from typing import List from typing import TypeVar from typing import Union from typing import cast from poetry.core.packages.dependency import Dependency from tomlkit.items import InlineTable from poetry.packages.direct_origin import DirectOrigin if TYPE_CHECKING: from poetry.core.packages.vcs_dependency import VCSDependency from poetry.utils.cache import ArtifactCache from poetry.utils.env import Env DependencySpec = Dict[str, Union[str, bool, Dict[str, Union[str, bool]], List[str]]] BaseSpec = TypeVar("BaseSpec", DependencySpec, InlineTable) GIT_URL_SCHEMES = {"git+http", "git+https", "git+ssh"} def dependency_to_specification( dependency: Dependency, specification: BaseSpec ) -> BaseSpec: if dependency.is_vcs(): dependency = cast("VCSDependency", dependency) assert dependency.source_url is not None specification[dependency.vcs] = dependency.source_url if dependency.reference: specification["rev"] = dependency.reference elif dependency.is_file() or dependency.is_directory(): assert dependency.source_url is not None specification["path"] = dependency.source_url elif dependency.is_url(): assert dependency.source_url is not None specification["url"] = dependency.source_url elif dependency.pretty_constraint != "*" and not dependency.constraint.is_empty(): specification["version"] = dependency.pretty_constraint if not dependency.marker.is_any(): specification["markers"] = str(dependency.marker) if dependency.extras: specification["extras"] = sorted(dependency.extras) return specification class RequirementsParser: def __init__( self, *, artifact_cache: ArtifactCache, env: Env | None = None, cwd: Path | None = None, ) -> None: self._direct_origin = DirectOrigin(artifact_cache) self._env = env self._cwd = cwd or Path.cwd() def parse(self, requirement: str) -> DependencySpec: requirement = requirement.strip() specification = self._parse_pep508(requirement) if specification is not None: return specification extras = [] extras_m = re.search(r"\[([\w\d,-_ ]+)\]$", requirement) if extras_m: extras = [e.strip() for e in extras_m.group(1).split(",")] requirement, _ = requirement.split("[") specification = ( self._parse_url(requirement) or self._parse_path(requirement) or self.METHOD_NAME(requirement) ) if specification: if extras and "extras" not in specification: specification["extras"] = extras return specification raise ValueError(f"Invalid dependency specification: {requirement}") def _parse_pep508(self, requirement: str) -> DependencySpec | None: if " ; " not in requirement and re.search(r"@[\^~!=<>\d]", requirement): # this is of the form package@<semver>, do not attempt to parse it return None with contextlib.suppress(ValueError): dependency = Dependency.create_from_pep_508(requirement) specification: DependencySpec = {} specification = dependency_to_specification(dependency, specification) if specification: specification["name"] = dependency.name return specification return None def _parse_git_url(self, requirement: str) -> DependencySpec | None: from poetry.core.vcs.git import Git from poetry.core.vcs.git import ParsedUrl parsed = ParsedUrl.parse(requirement) url = Git.normalize_url(requirement) pair = {"name": parsed.name, "git": url.url} if parsed.rev: pair["rev"] = url.revision if parsed.subdirectory: pair["subdirectory"] = parsed.subdirectory source_root = self._env.path.joinpath("src") if self._env else None package = self._direct_origin.get_package_from_vcs( "git", url=url.url, rev=pair.get("rev"), subdirectory=parsed.subdirectory, source_root=source_root, ) pair["name"] = package.name return pair def _parse_url(self, requirement: str) -> DependencySpec | None: url_parsed = urllib.parse.urlparse(requirement) if not (url_parsed.scheme and url_parsed.netloc): return None if url_parsed.scheme in GIT_URL_SCHEMES: return self._parse_git_url(requirement) if url_parsed.scheme in ["http", "https"]: package = self._direct_origin.get_package_from_url(requirement) assert package.source_url is not None return {"name": package.name, "url": package.source_url} return None def _parse_path(self, requirement: str) -> DependencySpec | None: if (os.path.sep in requirement or "/" in requirement) and ( self._cwd.joinpath(requirement).exists() or Path(requirement).expanduser().exists() and Path(requirement).expanduser().is_absolute() ): path = Path(requirement).expanduser() is_absolute = path.is_absolute() if not path.is_absolute(): path = self._cwd.joinpath(requirement) if path.is_file(): package = self._direct_origin.get_package_from_file(path.resolve()) else: package = self._direct_origin.get_package_from_directory(path.resolve()) return { "name": package.name, "path": ( path.relative_to(self._cwd).as_posix() if not is_absolute else path.as_posix() ), } return None def METHOD_NAME( self, requirement: str, ) -> DependencySpec | None: extras: list[str] = [] pair = re.sub( "^([^@=: ]+)(?:@|==|(?<![<>~!])=|:| )(.*)$", "\\1 \\2", requirement ) pair = pair.strip() require: DependencySpec = {} if " " in pair: name, version = pair.split(" ", 1) extras_m = re.search(r"\[([\w\d,-_]+)\]$", name) if extras_m: extras = [e.strip() for e in extras_m.group(1).split(",")] name, _ = name.split("[") require["name"] = name if version != "latest": require["version"] = version else: m = re.match( r"^([^><=!: ]+)((?:>=|<=|>|<|!=|~=|~|\^).*)$", requirement.strip() ) if m: name, constraint = m.group(1), m.group(2) extras_m = re.search(r"\[([\w\d,-_]+)\]$", name) if extras_m: extras = [e.strip() for e in extras_m.group(1).split(",")] name, _ = name.split("[") require["name"] = name require["version"] = constraint else: extras_m = re.search(r"\[([\w\d,-_]+)\]$", pair) if extras_m: extras = [e.strip() for e in extras_m.group(1).split(",")] pair, _ = pair.split("[") require["name"] = pair if extras: require["extras"] = extras return require
2,376
test traffic violation max statute
""" Rules for 800 Level charges are as follows: 800 level misdemeanors and felonies are eligible Only If the case was dismissed 800 level cases of any kind that are convicted are not eligible 800 level infractions do not block other cases 800 level misdemeanor and felony convictions do block 800 level misdemeanor and felony arrests block like other arrests 800 level convictions of any kind are not type eligible """ from expungeservice.models.charge_types.dismissed_charge import DismissedCharge from expungeservice.models.disposition import DispositionCreator from expungeservice.models.expungement_result import EligibilityStatus from expungeservice.models.charge_types.traffic_violation import TrafficViolation from expungeservice.models.charge_types.duii import DivertedDuii from tests.factories.charge_factory import ChargeFactory from tests.models.test_charge import Dispositions # TODO: we can separate these three types to different test files too. def test_traffic_violation_min_statute(): charge = ChargeFactory.create(statute="801.000", level="Violation") assert isinstance(charge.charge_type, TrafficViolation) def METHOD_NAME(): charge = ChargeFactory.create(statute="825.999", level="Violation") assert isinstance(charge.charge_type, TrafficViolation) def test_convicted_violation_is_not_type_eligible(): charge = ChargeFactory.create( statute="801.000", level="Class C Traffic Violation", disposition=Dispositions.CONVICTED ) assert isinstance(charge.charge_type, TrafficViolation) assert charge.type_eligibility.status is EligibilityStatus.INELIGIBLE assert charge.type_eligibility.reason == "Ineligible under 137.225(7)(a)" assert not charge.charge_type.blocks_other_charges def test_dismissed_violation_is_not_type_eligible(): charge = ChargeFactory.create( statute="801.000", level="Class C Traffic Violation", disposition=Dispositions.DISMISSED ) assert isinstance(charge.charge_type, TrafficViolation) assert charge.type_eligibility.status is EligibilityStatus.NEEDS_MORE_ANALYSIS assert ( charge.type_eligibility.reason == "Dismissed violations are eligible under 137.225(1)(b) but administrative reasons may make this difficult to expunge." ) assert not charge.charge_type.blocks_other_charges def test_convicted_infraction_is_not_type_eligible(): charge = ChargeFactory.create(statute="811135", level="Infraction Class B", disposition=Dispositions.CONVICTED) assert isinstance(charge.charge_type, TrafficViolation) assert charge.type_eligibility.status is EligibilityStatus.INELIGIBLE assert charge.type_eligibility.reason == "Ineligible under 137.225(7)(a)" assert not charge.charge_type.blocks_other_charges def test_dismissed_infraction_is_not_type_eligible(): charge = ChargeFactory.create(statute="811135", level="Infraction Class B", disposition=Dispositions.DISMISSED) assert isinstance(charge.charge_type, TrafficViolation) assert charge.type_eligibility.status is EligibilityStatus.NEEDS_MORE_ANALYSIS assert ( charge.type_eligibility.reason == "Dismissed violations are eligible under 137.225(1)(b) but administrative reasons may make this difficult to expunge." ) assert not charge.charge_type.blocks_other_charges def test_traffic_infraction_without_statute(): charge = ChargeFactory.create(level="Infraction Class B") assert isinstance(charge.charge_type, TrafficViolation) def test_old_traffic_statute(): charge = ChargeFactory.create( statute="483050", name="Defective Equipment", level="Infraction Class B", disposition=Dispositions.DISMISSED ) assert isinstance(charge.charge_type, TrafficViolation) assert charge.type_eligibility.status is EligibilityStatus.NEEDS_MORE_ANALYSIS assert ( charge.type_eligibility.reason == "Dismissed violations are eligible under 137.225(1)(b) but administrative reasons may make this difficult to expunge." ) assert not charge.charge_type.blocks_other_charges """ 800 level misdemeanors and felonies are eligible Only If the case was dismissed """ def test_misdemeanor_conviction_is_not_eligible(): charge = ChargeFactory.create(statute="814.010(4)", level="Misdemeanor Class A", disposition=Dispositions.CONVICTED) assert charge.type_eligibility.status is EligibilityStatus.INELIGIBLE assert charge.type_eligibility.reason == "Ineligible under 137.225(7)(a)" assert charge.charge_type.blocks_other_charges def test_misdemeanor_dismissal_is_eligible(): charge = ChargeFactory.create(statute="814.010(4)", level="Misdemeanor Class A", disposition=Dispositions.DISMISSED) assert charge.type_eligibility.status is EligibilityStatus.ELIGIBLE assert charge.type_eligibility.reason == "Dismissals are generally eligible under 137.225(1)(d)" assert charge.charge_type.blocks_other_charges def test_felony_conviction_is_not_eligible(): charge = ChargeFactory.create(statute="819.300", level="Felony Class C", disposition=Dispositions.CONVICTED) assert charge.type_eligibility.status is EligibilityStatus.INELIGIBLE assert charge.type_eligibility.reason == "Ineligible under 137.225(7)(a)" assert charge.charge_type.blocks_other_charges def test_felony_dismissal_is_eligible(): charge = ChargeFactory.create(statute="819.300", level="Felony Class C", disposition=Dispositions.DISMISSED) assert charge.type_eligibility.status is EligibilityStatus.ELIGIBLE assert charge.type_eligibility.reason == "Dismissals are generally eligible under 137.225(1)(d)" assert charge.charge_type.blocks_other_charges def test_duii(): charges = ChargeFactory.create_ambiguous_charge(statute="813.010", disposition=Dispositions.DISMISSED) assert isinstance(charges[0].charge_type, DivertedDuii) assert isinstance(charges[1].charge_type, DismissedCharge) def test_pedestrian_jwalking(): charge = ChargeFactory.create(name="Pedestrian J-Walking", statute="1634020", level="Infraction Unclassified") assert isinstance(charge.charge_type, TrafficViolation)
2,377
fieldvalue test1
import os import sys from shapeworks import * import numpy as np success = True def METHOD_NAME(): dist = Mesh(os.environ["DATA"] + "/meshdistance2.vtk") a = dist.getFieldValue("distance", 0) b = dist.getFieldValue("distance", 1000) c = dist.getFieldValue("distance", dist.numPoints()-1) return abs(a - 0.375761) < 1e-4 and abs(b - 2.18114) < 1e-4 and abs(c - 6.915) < 1e-4 success &= utils.test(METHOD_NAME) def fieldvalueTest2(): mesh = Mesh(os.environ["DATA"] + "/mesh1.vtk") a = mesh.getFieldValue("scalars", 0) b = mesh.getFieldValue("scalars", 1000) c = mesh.getFieldValue("Normals", 4231) # returns first value of vector fields d = mesh.getFieldValue("Normals", 5634) return (abs(a - 0.35219) < 1e-4 and abs(b - 0.46825) < 1e-4 and abs(c - 0.85125) < 1e-4 and abs(d - -0.47862) < 1e-4) success &= utils.test(fieldvalueTest2) def multifieldvalueTest(): mesh = Mesh(os.environ["DATA"] + "/mesh1.vtk") a = mesh.getMultiFieldValue("Normals", 1024) c = mesh.getMultiFieldValue("Normals", 768) return (np.allclose(a, np.array([ 0.21653531, 0.34913558, -0.91171086])) and np.allclose(c, np.array([ 0., 0., -1. ]))) success &= utils.test(multifieldvalueTest) def fieldrangeTest(): mesh = Mesh(os.environ["DATA"] + "/mesh1.vtk") scalarRange = range(mesh.getField("scalars", Mesh.Point)) return abs(scalarRange[0] - -4.21119) < 1e-4 and abs(scalarRange[1] - 4.52366) < 1e-4 success &= utils.test(fieldrangeTest) def missingfieldTest(): mesh = Mesh(os.environ["DATA"] + "/ellipsoid_01.vtk") field = range(mesh.getField("nonexistent_fieldname", Mesh.Point)) success &= utils.expectException(missingfieldTest, ValueError) def getfieldTest1(): mesh = Mesh(os.environ["DATA"] + "/mesh1.vtk") field = mesh.getField("scalars", Mesh.Point) return abs(field[640] - -0.91761) < 1e-4 and abs(field[4800] - 0.56277) < 1e-4 success &= utils.test(getfieldTest1) def getfieldTest2(): mesh = Mesh(os.environ["DATA"] + "/mesh1.vtk") field = mesh.getField("scalars", Mesh.Point) return field.shape == (36599,) success &= utils.test(getfieldTest2) def getfieldTest3(): mesh = Mesh(os.environ["DATA"] + "/ellipsoid_01.vtk") field = mesh.getField("Normals", Mesh.Point) return field.shape == (530, 3) success &= utils.test(getfieldTest3) def getfieldTest4(): mesh = Mesh(os.environ["DATA"] + "/ellipsoid_01.vtk") field = mesh.getField("Normals", Mesh.Point) return field.strides == (12, 4) success &= utils.test(getfieldTest4) def getfieldTest5(): mesh = Mesh(os.environ["DATA"] + "/ellipsoid_01.vtk") field = mesh.getField("Normals", Mesh.Point) return field.flags["OWNDATA"] == False success &= utils.test(getfieldTest5) def getfieldTest6(): mesh = Mesh(os.environ["DATA"] + "/ellipsoid_01.vtk") field = mesh.getField("Normals", Mesh.Point) return field.flags["C_CONTIGUOUS"] == True and field.flags["F_CONTIGUOUS"] == False success &= utils.test(getfieldTest6) def getfieldTest7(): mesh = Mesh(os.environ["DATA"] + "/mesh1.vtk") field = mesh.getField("scalars", Mesh.Point) return field[3456] == mesh.getFieldValue("scalars", 3456) # (it's 0.1789221419275439) success &= utils.test(getfieldTest7) def getfieldTest8(): mesh = Mesh(os.environ["DATA"] + "/mesh1.vtk") field = mesh.getField("scalars", Mesh.Point) origval = field[6543] field[6543] = 42 return origval != mesh.getFieldValue("scalars", 6543) and mesh.getFieldValue("scalars", 6543) == 42 success &= utils.test(getfieldTest8) def setfieldTest1(): mesh = Mesh(os.environ["DATA"] + "/ellipsoid_01.vtk") field = mesh.getField("Normals", Mesh.Point) mesh.setField("newfieldname", field, Mesh.Point) # python doesn't own field, so it can't be transferred success &= utils.expectException(setfieldTest1, ValueError) def setfieldTest2(): mesh = Mesh(os.environ["DATA"] + "/ellipsoid_01.vtk") field = mesh.getField("Normals", Mesh.Point) mesh.setField("newfieldname", field.copy(), Mesh.Point) return "newfieldname" in mesh.getFieldNames() success &= utils.test(setfieldTest2) def setfieldTest3(): mesh = Mesh(os.environ["DATA"] + "/ellipsoid_01.vtk") field = np.zeros(1000) assert(field.flags["OWNDATA"] == True) mesh.setField("newfieldname", field, Mesh.Point) return field.flags["OWNDATA"] == False and "newfieldname" in mesh.getFieldNames() success &= utils.test(setfieldTest3) sys.exit(not success)
2,378
selected repositories
############################ Copyrights and license ############################ # # # Copyright 2023 Mauricio Martinez <[email protected]> # # # # This file is part of PyGithub. # # http://pygithub.readthedocs.io/ # # # # PyGithub is free software: you can redistribute it and/or modify it under # # the terms of the GNU Lesser General Public License as published by the Free # # Software Foundation, either version 3 of the License, or (at your option) # # any later version. # # # # PyGithub is distributed in the hope that it will be useful, but WITHOUT ANY # # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # # details. # # # # You should have received a copy of the GNU Lesser General Public License # # along with PyGithub. If not, see <http://www.gnu.org/licenses/>. # # # ################################################################################ from datetime import datetime from typing import Any, Dict from github.GithubObject import Attribute, NotSet from github.PaginatedList import PaginatedList from github.Repository import Repository from github.Variable import Variable class OrganizationVariable(Variable): """ This class represents a org level GitHub variable. The reference can be found here https://docs.github.com/en/rest/actions/variables """ def _initAttributes(self) -> None: self._name: Attribute[str] = NotSet self._created_at: Attribute[datetime] = NotSet self._updated_at: Attribute[datetime] = NotSet self._visibility: Attribute[str] = NotSet self._selected_repositories: Attribute[PaginatedList[Repository]] = NotSet self._selected_repositories_url: Attribute[str] = NotSet self._url: Attribute[str] = NotSet @property def visibility(self) -> str: """ :type: string """ self._completeIfNotSet(self._visibility) return self._visibility.value @property def METHOD_NAME(self) -> PaginatedList[Repository]: return PaginatedList( Repository, self._requester, self._selected_repositories_url.value, None, list_item="repositories", ) def edit( self, value: str, visibility: str = "all", ) -> bool: """ :calls: `PATCH /orgs/{org}/actions/variables/{variable_name} <https://docs.github.com/en/rest/reference/actions/variables#update-an-organization-variable>`_ :param variable_name: string :param value: string :param visibility: string :rtype: bool """ assert isinstance(value, str), value assert isinstance(visibility, str), visibility patch_parameters: Dict[str, Any] = { "name": self.name, "value": value, "visibility": visibility, } status, _, _ = self._requester.requestJson( "PATCH", f"{self.url}/actions/variables/{self.name}", input=patch_parameters, ) return status == 204 def add_repo(self, repo: Repository) -> bool: """ :calls: 'PUT {org_url}/actions/variables/{variable_name} <https://docs.github.com/en/rest/actions/variables#add-selected-repository-to-an-organization-secret>`_ :param repo: github.Repository.Repository :rtype: bool """ if self.visibility != "selected": return False self._requester.requestJsonAndCheck("PUT", f"{self._selected_repositories_url.value}/{repo.id}") return True def remove_repo(self, repo: Repository) -> bool: """ :calls: 'DELETE {org_url}/actions/variables/{variable_name} <https://docs.github.com/en/rest/actions/variables#add-selected-repository-to-an-organization-secret>`_ :param repo: github.Repository.Repository :rtype: bool """ if self.visibility != "selected": return False self._requester.requestJsonAndCheck("DELETE", f"{self._selected_repositories_url.value}/{repo.id}") return True def _useAttributes(self, attributes: Dict[str, Any]) -> None: if "name" in attributes: self._name = self._makeStringAttribute(attributes["name"]) if "created_at" in attributes: self._created_at = self._makeDatetimeAttribute(attributes["created_at"]) if "updated_at" in attributes: self._updated_at = self._makeDatetimeAttribute(attributes["updated_at"]) if "visibility" in attributes: self._visibility = self._makeStringAttribute(attributes["visibility"]) if "selected_repositories_url" in attributes: self._selected_repositories_url = self._makeStringAttribute(attributes["selected_repositories_url"]) if "url" in attributes: self._url = self._makeStringAttribute(attributes["url"])
2,379
save image
# This file is part of Trackma. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import os import threading import urllib.request from io import BytesIO from gi.repository import GLib, GdkPixbuf, Gtk from trackma import utils try: from PIL import Image imaging_available = True except ImportError: imaging_available = False class ImageThread(threading.Thread): def __init__(self, url, filename, width, height, callback): threading.Thread.__init__(self) self._url = url self._filename = filename self._width = width self._height = height self._callback = callback self._stop_request = threading.Event() def run(self): self.METHOD_NAME(self._download_file()) if self._stop_request.is_set(): return if os.path.exists(self._filename): GLib.idle_add(self._callback, self._filename) def _download_file(self): request = urllib.request.Request(self._url) request.add_header( "User-Agent", "TrackmaImage/{}".format(utils.VERSION)) return BytesIO(urllib.request.urlopen(request).read()) def METHOD_NAME(self, img_bytes): if imaging_available: image = Image.open(img_bytes) image.thumbnail((self._width, self._height), Image.BICUBIC) image.convert("RGB").save(self._filename) else: with open(self._filename, 'wb') as img_file: img_file.write(img_bytes.read()) def stop(self): self._stop_request.set() class ImageBox(Gtk.HBox): def __init__(self, width, height): Gtk.HBox.__init__(self) self._width = width self._height = height self._image = Gtk.Image() self._image.set_size_request(width, height) self._label_holder = Gtk.Label() self._label_holder.set_size_request(width, height) self._image_thread = None if imaging_available: self.pack_start(self._label_holder, False, False, 0) self.pack_start(self._image, False, False, 0) else: self.pack_start(self._label_holder, False, False, 0) self.reset() def reset(self): if imaging_available: self.set_image(utils.DATADIR + '/icon.png') else: self.set_text("PIL library\nnot available") def set_text(self, text): self._label_holder.set_text(text) self._label_holder.show() self._image.hide() def set_image(self, filename): if not imaging_available: return pixbuf = GdkPixbuf.Pixbuf.new_from_file(filename) width, height = scale(pixbuf.get_width(), pixbuf.get_height(), self._width, self._height) scaled_buf = pixbuf.scale_simple( width, height, GdkPixbuf.InterpType.BILINEAR) self._image.set_from_pixbuf(scaled_buf) self._image.show() self._label_holder.hide() def set_image_remote(self, url, filename): if not imaging_available: return if self._image_thread: self._image_thread.stop() self.set_text("Loading...") self._image_thread = ImageThread( url, filename, self._width, self._height, self.set_image) self._image_thread.start() def scale(w, h, x, y, maximum=True): nw = y * w / h nh = x * h / w if maximum ^ (nw >= x): return nw or 1, y return x, nh or 1
2,380
outputs format
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from functools import partial from django.utils.translation import ugettext_lazy as _ from .execute_task_base import JobExecuteTaskServiceBase from ..base import GetJobHistoryResultMixin, get_job_tagged_ip_dict_complex from pipeline.component_framework.component import Component from pipeline.core.flow.io import StringItemSchema from gcloud.conf import settings from gcloud.utils.handlers import handle_api_error __group_name__ = _("作业平台(JOB)") get_client_by_user = settings.ESB_GET_CLIENT_BY_USER job_handle_api_error = partial(handle_api_error, __group_name__) class JobExecuteTaskService(JobExecuteTaskServiceBase, GetJobHistoryResultMixin): need_get_sops_var = True need_is_tagged_ip = True def METHOD_NAME(self): return super().METHOD_NAME() + [ self.OutputItem( name=_("JOB执行IP分组"), key="job_tagged_ip_dict", type="string", schema=StringItemSchema( description=_( '按照执行结果将 IP 进行分组:1. 使用 job_tagged_ip_dict["value"]["SUCCESS"]["TAGS"]["ALL"] 获取「执行成功」的 IP, ' "ALL 代表所有 IP,可指定分组名获取特定分组的 IP ;" '2. 使用 job_tagged_ip_dict["value"]["SCRIPT_NOT_ZERO_EXIT_CODE"]["TAGS"]["ALL"]' " 获取「脚本返回值非零」的 IP" ) ), ), ] def is_need_log_outputs_even_fail(self, data): """ 默认开启失败时提取变量 """ return True def check_ip_is_exist(self, data): """ 默认不校验IP """ return False def build_ip_list(self, biz_across, val, executor, biz_cc_id, data, ip_is_exist): result, ip_list = self.get_target_server_hybrid(executor, biz_cc_id, data, val, logger_handle=self.logger) if not result: return {} return ip_list def get_tagged_ip_dict(self, data, parent_data, job_instance_id): """ 默认使用ip新版分组 """ result, tagged_ip_dict = get_job_tagged_ip_dict_complex( data.outputs.client, self.logger, job_instance_id, data.get_one_of_inputs("biz_cc_id", parent_data.inputs.biz_cc_id), job_scope_type=self.biz_scope_type, ) return result, tagged_ip_dict def execute(self, data, parent_data): job_success_id = data.get_one_of_inputs("job_success_id") if not job_success_id: return super().execute(data, parent_data) history_result = self.get_job_history_result(data, parent_data) self.logger.info(history_result) if history_result: self.__need_schedule__ = False return history_result class JobExecuteTaskComponent(Component): name = _("执行作业") code = "job_execute_task" bound_service = JobExecuteTaskService form = "%scomponents/atoms/job/execute_task/v1_2.js" % settings.STATIC_URL output_form = "%scomponents/atoms/job/job_execute_task_output.js" % settings.STATIC_URL version = "1.2" desc = _( "1.当用户选择JOB成功历史后,插件将不再创建新的JOB实例,直接继承JOB成功状态. \n" "2.在接收到用户编辑的全局变量后,v1.0及v1.1会默认用英文双引号将默认变量值包裹起来,再将得到的字符串作为一个整体在调用API时进行传参。\n" "如果不需要双引号包裹,可以使用legacy或v1.2版本插件,也可以手动在表格中去掉。\n" "3. 去除IP存在性校验,默认开启新版IP tag分组, 默认开启失败时提取变量,job成功历史调整为只在重试时显示" )
2,381
get node config
import h5py import json from nndct_shared.nndct_graph.base_tensor import Tensor def save_graph(nndct_graph, hdf5_path='graph.hdf5'): GraphHDF5Saver(nndct_graph).save(hdf5_path) class GraphHDF5Saver(): def __init__(self, nndct_graph): self.graph = nndct_graph def METHOD_NAME(self, node): node_info = dict() node_info['idx'] = node.idx node_info['name'] = node.name node_info['dtype'] = str(node.dtype) for idx, tensor in enumerate(node.in_tensors): node_info['in_tensors{}.name'.format(idx)] = tensor.name node_info['in_tensors{}.shape'.format(idx)] = tensor.shape node_info['in_tensors{}.dtype'.format(idx)] = tensor.dtype for idx, tensor in enumerate(node.out_tensors): node_info['out_tensors{}.name'.format(idx)] = tensor.name node_info['out_tensors{}.shape'.format(idx)] = tensor.shape node_info['out_tensors{}.dtype'.format(idx)] = tensor.dtype for attr_enum, attr in node.op.attrs.items(): if isinstance(attr.value, Tensor): continue elif isinstance(attr.value, (tuple, list)): has_tensor = False for val in attr.value: if isinstance(val, Tensor): has_tensor = True break if not has_tensor: node_info['Attr.{}'.format(attr_enum.name)] = attr.value else: node_info['Attr.{}'.format(attr_enum.name)] = attr.value return node_info def get_model_config(self): model_config = {'name': self.graph.name} model_config['layers'] = list() for node in self.graph.nodes: node_info = dict() node_info['class_name'] = node.op_type node_info['name'] = node.name node_info['inbound_nodes'] = [[[i, 0, 0, {}] for i in node.in_nodes]] node_info['config'] = self.METHOD_NAME(node) model_config['layers'].append(node_info) return model_config def save(self, hdf5_path): config = self.get_model_config() model_config = {'class_name': 'Functional', 'config': config} metadata = dict(model_config=model_config) f = h5py.File(hdf5_path, mode='w') try: for k, v in metadata.items(): if isinstance(v, (dict, list, tuple)): f.attrs[k] = json.dumps(v).encode('utf8') else: f.attrs[k] = v f.flush() finally: f.close() class GraphConvertToCFG(): # Visualizing network structure with multiple inputs is not supported. def __init__(self, nndct_graph, cfg_savepath='test.cfg'): self.graph = nndct_graph self.cfg_path = cfg_savepath self.content = [] def read_node(self, node): self.content.append('name={}'.format(node.name)) self.content.append('scope_name={}'.format(node.scope_name)) self.content.append('idx={}'.format(str(node.idx))) self.content.append('dtype={}'.format(node.dtype)) self.content.append('in_nodes={}'.format(str(node.in_nodes))) self.content.append('out_nodes={}'.format(str(node.out_nodes))) for idx, tensor in enumerate(node.in_tensors): self.content.append('in_tensors{}.name={}'.format(str(idx), tensor.name)) self.content.append('in_tensors{}.shape={}'.format( str(idx), str(tensor.shape))) self.content.append('in_tensors{}.dtype={}'.format( str(idx), str(tensor.dtype))) for idx, tensor in enumerate(node.out_tensors): self.content.append('out_tensors{}.name={}'.format(str(idx), tensor.name)) self.content.append('out_tensors{}.shape={}'.format( str(idx), str(tensor.shape))) self.content.append('out_tensors{}.dtype={}'.format( str(idx), str(tensor.dtype))) for name, attr in node.op.attrs.items(): self.content.append('op_{}={}'.format(name, attr.value)) def convert(self): # Traverse every node in graph sequentially once. And all input nodes of the current node must have been traversed before. index = 0 nodename_index = {} last_nodename = None is_first_layer = True for node in self.graph.nodes: nodename = node.name op_type = node.op.type if is_first_layer: self.content.append('height={}'.format(node.out_tensors[0].shape[1])) self.content.append('width={}'.format(node.out_tensors[0].shape[2])) self.content.append('channels={}'.format(node.out_tensors[0].shape[3])) self.read_node(node) is_first_layer = False last_nodename = nodename continue num_innodes = len(node.in_nodes) nodename_index[nodename] = index index += 1 if num_innodes == 0: self.content.append('[{}]'.format(op_type)) self.read_node(node) elif num_innodes == 1: in_nodename = node.in_nodes[0] if in_nodename == last_nodename: self.content.append('[{}]'.format(op_type)) self.read_node(node) else: self.content.append('[route]') self.content.append('layers={}'.format( str(nodename_index[in_nodename]))) nodename_index[nodename] = index index += 1 self.content.append('[{}]'.format(op_type)) self.read_node(node) else: self.content.append('[route]') str_layers = 'layers=' for i in range(len(node.in_nodes)): if i == 0: str_layers += str(nodename_index[node.in_nodes[i]]) else: str_layers += ',' + str(nodename_index[node.in_nodes[i]]) self.content.append(str_layers) self.content.append('op_type={}'.format(op_type)) self.read_node(node) last_nodename = nodename with open(self.cfg_path, 'w') as f: f.write('[net]' + '\n') f.writelines(line + '\n' for line in self.content)
2,382
setup model loss criterion
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import random import unittest from multiprocessing import Manager import torch import torch.nn as nn from fairseq import distributed_utils, optim from omegaconf import OmegaConf class Model(nn.Module): def __init__(self, input_size, output_size): super(Model, self).__init__() self.fc = nn.Linear(input_size, output_size) def forward(self, input): output = self.fc(input) return output def METHOD_NAME(cfg, args, rank, is_cuda): """ setup model, criterion and optimizer based on input args """ args.distributed_rank = rank cfg.distributed_training.distributed_rank = args.distributed_rank if cfg.distributed_training.distributed_world_size > 1: distributed_utils.distributed_init(cfg) torch.manual_seed(1) model = Model(args.input_size, args.nb_classes) loss_fn = nn.CrossEntropyLoss() if is_cuda: model = model.cuda() loss_fn = loss_fn.cuda() optimizer = optim.sgd.SGD(args, model.parameters()) optimizer = optim.FairseqBMUF( cfg=cfg.bmuf, optimizer=optimizer ) return model, loss_fn, optimizer def train_step(input, target, model, loss_fn, optimizer, **unused): """Do forward, backward and parameter update.""" model.train() output = model(input) loss = loss_fn(output, target) optimizer.backward(loss) optimizer.step() def single_gpu_training(cfg, args, rank, iterations, shared_results): is_cuda = torch.cuda.is_available() if is_cuda: torch.cuda.set_device(rank) model, loss_fn, optimizer = METHOD_NAME(cfg, args, rank, is_cuda) for _ in range(iterations): input = torch.randn(1, args.input_size) target = torch.empty(args.batch_size, dtype=torch.long).random_(args.nb_classes) if is_cuda: input = input.cuda() target = target.cuda() train_step(input, target, model, loss_fn, optimizer) results = [] for param in model.parameters(): if len(results) == 0: results = param.flatten().cpu().data else: results = torch.cat((results, param.flatten().cpu().data), 0) shared_results[rank] = results def setup_args(): args = argparse.Namespace() args.global_sync_iter = 20 args.block_momentum = 0.875 args.block_lr = 0.5 args.input_size = 5 args.nb_classes = 2 args.batch_size = 1 args.lr = [1e-3] args.momentum = 0 args.weight_decay = 0 args.warmup_iterations = 0 args.use_nbm = True args.average_sync = True args.global_sync_iter = 1 args.model_parallel_size = 1 args.distributed_backend = "gloo" args.distributed_world_size = 2 port = random.randint(10000, 20000) args.distributed_init_method = "tcp://localhost:{port}".format(port=port) args.distributed_init_host = "localhost" args.distributed_port = port + 1 args.local_world_size = args.distributed_world_size cfg = OmegaConf.create() cfg.optimization = OmegaConf.create() cfg.common = OmegaConf.create() cfg.distributed_training = OmegaConf.create() cfg.dataset = OmegaConf.create() cfg.bmuf = OmegaConf.create() cfg.optimizer = OmegaConf.create() cfg.bmuf.global_sync_iter = args.global_sync_iter cfg.bmuf.block_momentum = args.block_momentum cfg.bmuf.block_lr = args.block_lr cfg.dataset.batch_size = args.batch_size cfg.optimization.lr = args.lr cfg.optimizer.momentum = args.momentum cfg.optimizer.weight_decay = args.weight_decay cfg.bmuf.warmup_iterations = args.warmup_iterations cfg.bmuf.use_nbm = args.use_nbm cfg.bmuf.average_sync = args.average_sync cfg.common.model_parallel_size = args.model_parallel_size cfg.distributed_training.distributed_backend = args.distributed_backend cfg.distributed_training.distributed_world_size = args.distributed_world_size cfg.bmuf.distributed_world_size = args.distributed_world_size cfg.distributed_training.distributed_init_method = args.distributed_init_method cfg.distributed_training.distributed_port = args.distributed_port return cfg, args @unittest.skipIf(torch.cuda.device_count() < 2, "test requires 2 GPUs") class TestBMUF(unittest.TestCase): def bmuf_process(self, cfg, args, iterations): processes = [] results = Manager().dict() ctx = torch.multiprocessing.get_context("spawn") for rank in range(args.distributed_world_size): p = ctx.Process( target=single_gpu_training, args=(cfg, args, rank, iterations, results) ) p.start() processes.append(p) for p in processes: p.join() return results def test_bmuf_sync(self): # Train model for 1 iteration and do bmuf sync without doing warmup cfg, args = setup_args() iterations = 1 results = self.bmuf_process(cfg, args, iterations) # Make sure params in both machines are same assert len(results) == 2 self.assertAlmostEqual(results[0], results[1]) def test_warmup_sync(self): # Train model for 20 iteration and do warmup sync without doing bmuf sync cfg, args = setup_args() args.warmup_iterations = 20 cfg.bmuf.warmup_iterations = args.warmup_iterations iterations = 20 results = self.bmuf_process(cfg, args, iterations) # Make sure params in both machines are same assert len(results) == 2 self.assertAlmostEqual(results[0], results[1]) def test_warmup_sync_bmuf_sync(self): # Train model for 25 iteration and do warmup sync after 20 iteration # and bmuf sync after 25 iteration cfg, args = setup_args() args.warmup_iterations = 20 args.global_sync_iter = 5 cfg.bmuf.warmup_iterations = args.warmup_iterations cfg.bmuf.global_sync_iter = args.global_sync_iter iterations = 25 results = self.bmuf_process(cfg, args, iterations) # Make sure params in both machines are same assert len(results) == 2 self.assertAlmostEqual(results[0], results[1]) def test_single_gpu_bmuf(self): # Train model for 5 iterations and use GPU 1 cfg, args = setup_args() args.distributed_world_size = 1 args.warmup_iterations = 5 cfg.distributed_training.distributed_world_size = args.distributed_world_size cfg.bmuf.distributed_world_size = args.distributed_world_size cfg.bmuf.warmup_iterations = args.warmup_iterations iterations = 20 results = self.bmuf_process(cfg, args, iterations) assert len(results) == 1 def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-4) if __name__ == "__main__": unittest.main()
2,383
normalize analyzer type
import logging import re from pathlib import Path from pprint import pformat from typing import Union, Sequence import cpyMSpec try: from typing import Literal except ImportError: from typing_extensions import Literal logger = logging.getLogger(__name__) PolarityType = Literal['positive', 'negative'] ANALYZER_TYPES = ('tof', 'orbitrap', 'ft-icr') AnalyzerType = Literal['tof', 'orbitrap', 'ft-icr'] DefaultType = Literal['default'] DEFAULT: DefaultType = 'default' DB_ROOT = Path(__file__).parent / 'dbs' MATRIX_DBS = [f.stem for f in DB_ROOT.glob('matrix_*.csv')] PARSED_MATRIX_DBS = sorted([matrix_db.split('_')[1:] for matrix_db in MATRIX_DBS]) MATRIXES = set(matrix for matrix, polarity in PARSED_MATRIX_DBS) FORMATTED_MATRIXES = ', '.join( f'{matrix} ({"/".join(pols[::-1])})' for matrix in MATRIXES for pols in [[p for m, p in PARSED_MATRIX_DBS if m == matrix]] ) BUILTIN_DBS = { 'hmdb': DB_ROOT / 'HMDB-v4.csv', 'cm3': DB_ROOT / 'CoreMetabolome-v3.csv', 'lipid_maps': DB_ROOT / 'lipidmaps_2017-12-12-v2.tsv', **{matrix_db: DB_ROOT / f'{matrix_db}.csv' for matrix_db in MATRIX_DBS}, } def METHOD_NAME(analyzer) -> AnalyzerType: """Detects analyzer type from a string and returns an MSIWarp-compatible analyzer string""" analyzer = (analyzer or '').lower() if 'orbitrap' in analyzer: return 'orbitrap' if any(phrase in analyzer for phrase in ['fticr', 'ft-icr', 'ftms', 'ft-ms']): return 'ft-icr' if 'tof' in analyzer: return 'tof' raise AssertionError(f'Unrecognized analyzer type "{analyzer}"') def _default_adducts(polarity, source): if polarity.lower() == 'positive': if source.lower() == 'maldi': return ['', '+H', '+Na', '+K'] else: return ['', '+H', '+Na', '-Cl', '+NH4'] else: if source.lower() == 'maldi': return ['', '-H', '+Cl'] else: return ['', '-H', '+Cl', '+HCO2'] class RecalParams: def __init__( self, analyzer: str = 'orbitrap', source: str = 'maldi', matrix: str = DEFAULT, polarity: PolarityType = 'positive', rp: float = 140000.0, base_mz: float = 200.0, peak_width_ppm: Union[float, DefaultType] = DEFAULT, jitter_ppm: float = 3.0, adducts: Union[Sequence[str], DefaultType] = DEFAULT, profile_mode: bool = False, dbs: Union[Sequence[Union[Path, str]], DefaultType] = DEFAULT, targeted_dbs: Union[Sequence[Union[Path, str]], DefaultType] = (), transforms: Union[Sequence[Sequence[str]], DefaultType] = DEFAULT, ): from msi_recal.math import ppm_to_sigma_1 # Avoid circular import assert polarity in ('positive', 'negative'), f'Invalid polarity "{polarity}"' self.analyzer = analyzer = METHOD_NAME(analyzer) self.rp = rp self.base_mz = base_mz if peak_width_ppm is DEFAULT: self.peak_width_ppm = 15 if profile_mode else 0 else: self.peak_width_ppm = peak_width_ppm self.peak_width_sigma_1 = ppm_to_sigma_1(self.peak_width_ppm, analyzer, base_mz) self.jitter_ppm = jitter_ppm self.jitter_sigma_1 = ppm_to_sigma_1(self.jitter_ppm, analyzer, base_mz) if adducts is DEFAULT: adducts = _default_adducts(polarity, source) if matrix is DEFAULT: if 'maldi' in source.lower(): matrix = {'positive': 'dhb', 'negative': 'dan'}.get(polarity.lower()) else: matrix = None if dbs is DEFAULT: dbs = ['cm3'] if matrix is not None and matrix.lower() != 'none': for mat in re.split('[,;/|]', matrix): norm_mat = mat.lower().strip() norm_mat = {'norharmane': 'nor'}.get(norm_mat, norm_mat) matrix_db = f'matrix_{norm_mat}_{polarity[:3]}' if matrix_db in BUILTIN_DBS: dbs.append(matrix_db) else: logger.warning( f'No peak database available for matrix {mat}. Supported MALDI matrices:' + FORMATTED_MATRIXES ) self.charge = {'positive': 1, 'negative': -1}[polarity] self.adducts = adducts self.profile_mode = profile_mode self.db_paths = [Path(BUILTIN_DBS.get(db, db)) for db in dbs] for db_path in self.db_paths: assert db_path.exists(), f'{db_path} not found' self.targeted_dbs = [Path(BUILTIN_DBS.get(db, db)) for db in targeted_dbs] if transforms is DEFAULT: transforms = [ ['align_msiwarp', '5', '1', '0.2'], ['recal_ransac', '50'], # ['recal_msiwarp', '20', '4', '0.1'], ] self.transforms = transforms if analyzer == 'ft-icr': self.instrument_model = cpyMSpec.InstrumentModel('fticr', rp, base_mz) else: self.instrument_model = cpyMSpec.InstrumentModel(analyzer, rp, base_mz) def __repr__(self): return 'RecalParams ' + pformat(self.__dict__, sort_dicts=False)
2,384
get insight selectors
"""Handles incoming cloudtrail requests, invokes methods, returns responses.""" import json from typing import Any, Dict from moto.core.responses import BaseResponse from .models import cloudtrail_backends, CloudTrailBackend from .exceptions import InvalidParameterCombinationException class CloudTrailResponse(BaseResponse): """Handler for CloudTrail requests and responses.""" def __init__(self) -> None: super().__init__(service_name="cloudtrail") @property def cloudtrail_backend(self) -> CloudTrailBackend: """Return backend instance specific for this region.""" return cloudtrail_backends[self.current_account][self.region] def create_trail(self) -> str: name = self._get_param("Name") bucket_name = self._get_param("S3BucketName") is_global = self._get_bool_param("IncludeGlobalServiceEvents", True) is_multi_region = self._get_bool_param("IsMultiRegionTrail", False) if not is_global and is_multi_region: raise InvalidParameterCombinationException( "Multi-Region trail must include global service events." ) s3_key_prefix = self._get_param("S3KeyPrefix") sns_topic_name = self._get_param("SnsTopicName") log_validation = self._get_bool_param("EnableLogFileValidation", False) is_org_trail = self._get_bool_param("IsOrganizationTrail", False) cw_log_group_arn = self._get_param("CloudWatchLogsLogGroupArn") cw_role_arn = self._get_param("CloudWatchLogsRoleArn") kms_key_id = self._get_param("KmsKeyId") tags_list = self._get_param("TagsList", []) trail = self.cloudtrail_backend.create_trail( name, bucket_name, s3_key_prefix, sns_topic_name, is_global, is_multi_region, log_validation, is_org_trail, cw_log_group_arn, cw_role_arn, kms_key_id, tags_list, ) return json.dumps(trail.description()) def get_trail(self) -> str: name = self._get_param("Name") trail = self.cloudtrail_backend.get_trail(name) return json.dumps({"Trail": trail.description()}) def get_trail_status(self) -> str: name = self._get_param("Name") status = self.cloudtrail_backend.get_trail_status(name) return json.dumps(status.description()) def describe_trails(self) -> str: include_shadow_trails = self._get_bool_param("includeShadowTrails", True) trails = self.cloudtrail_backend.describe_trails(include_shadow_trails) return json.dumps( {"trailList": [t.description(include_region=True) for t in trails]} ) def list_trails(self) -> str: all_trails = self.cloudtrail_backend.list_trails() return json.dumps({"Trails": [t.short() for t in all_trails]}) def start_logging(self) -> str: name = self._get_param("Name") self.cloudtrail_backend.start_logging(name) return json.dumps({}) def stop_logging(self) -> str: name = self._get_param("Name") self.cloudtrail_backend.stop_logging(name) return json.dumps({}) def delete_trail(self) -> str: name = self._get_param("Name") self.cloudtrail_backend.delete_trail(name) return json.dumps({}) def update_trail(self) -> str: name = self._get_param("Name") s3_bucket_name = self._get_param("S3BucketName") s3_key_prefix = self._get_param("S3KeyPrefix") sns_topic_name = self._get_param("SnsTopicName") include_global_service_events = self._get_param("IncludeGlobalServiceEvents") is_multi_region_trail = self._get_param("IsMultiRegionTrail") enable_log_file_validation = self._get_param("EnableLogFileValidation") is_organization_trail = self._get_param("IsOrganizationTrail") cw_log_group_arn = self._get_param("CloudWatchLogsLogGroupArn") cw_role_arn = self._get_param("CloudWatchLogsRoleArn") kms_key_id = self._get_param("KmsKeyId") trail = self.cloudtrail_backend.update_trail( name=name, s3_bucket_name=s3_bucket_name, s3_key_prefix=s3_key_prefix, sns_topic_name=sns_topic_name, include_global_service_events=include_global_service_events, is_multi_region_trail=is_multi_region_trail, enable_log_file_validation=enable_log_file_validation, is_organization_trail=is_organization_trail, cw_log_group_arn=cw_log_group_arn, cw_role_arn=cw_role_arn, kms_key_id=kms_key_id, ) return json.dumps(trail.description()) def put_event_selectors(self) -> str: params = json.loads(self.body) trail_name = params.get("TrailName") event_selectors = params.get("EventSelectors") advanced_event_selectors = params.get("AdvancedEventSelectors") ( trail_arn, event_selectors, advanced_event_selectors, ) = self.cloudtrail_backend.put_event_selectors( trail_name=trail_name, event_selectors=event_selectors, advanced_event_selectors=advanced_event_selectors, ) return json.dumps( dict( TrailARN=trail_arn, EventSelectors=event_selectors, AdvancedEventSelectors=advanced_event_selectors, ) ) def get_event_selectors(self) -> str: params = json.loads(self.body) trail_name = params.get("TrailName") ( trail_arn, event_selectors, advanced_event_selectors, ) = self.cloudtrail_backend.get_event_selectors(trail_name=trail_name) return json.dumps( dict( TrailARN=trail_arn, EventSelectors=event_selectors, AdvancedEventSelectors=advanced_event_selectors, ) ) def add_tags(self) -> str: params = json.loads(self.body) resource_id = params.get("ResourceId") tags_list = params.get("TagsList") self.cloudtrail_backend.add_tags(resource_id=resource_id, tags_list=tags_list) return json.dumps(dict()) def remove_tags(self) -> str: resource_id = self._get_param("ResourceId") tags_list = self._get_param("TagsList") self.cloudtrail_backend.remove_tags( resource_id=resource_id, tags_list=tags_list ) return json.dumps(dict()) def list_tags(self) -> str: params = json.loads(self.body) resource_id_list = params.get("ResourceIdList") resource_tag_list = self.cloudtrail_backend.list_tags( resource_id_list=resource_id_list ) return json.dumps(dict(ResourceTagList=resource_tag_list)) def put_insight_selectors(self) -> str: trail_name = self._get_param("TrailName") insight_selectors = self._get_param("InsightSelectors") trail_arn, insight_selectors = self.cloudtrail_backend.put_insight_selectors( trail_name=trail_name, insight_selectors=insight_selectors ) return json.dumps(dict(TrailARN=trail_arn, InsightSelectors=insight_selectors)) def METHOD_NAME(self) -> str: trail_name = self._get_param("TrailName") trail_arn, insight_selectors = self.cloudtrail_backend.METHOD_NAME( trail_name=trail_name ) resp: Dict[str, Any] = {"TrailARN": trail_arn} if insight_selectors: resp["InsightSelectors"] = insight_selectors return json.dumps(resp)
2,385
generate arguments
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests fuzzers.builtin.""" import os import unittest import parameterized from pyfakefs import fake_filesystem_unittest from clusterfuzz._internal.bot.fuzzers import builtin from clusterfuzz._internal.system import environment from clusterfuzz._internal.tests.test_libs import helpers from clusterfuzz._internal.tests.test_libs import test_utils class TestEngineFuzzer(builtin.EngineFuzzer): """A test engine fuzzer.""" def METHOD_NAME(self, *_): # pylint: disable=arguments-differ return '-arg1 -arg2' class BaseEngineFuzzerTest(fake_filesystem_unittest.TestCase): """Engine fuzzer tests.""" def setUp(self): """Setup for base engine fuzzer test.""" helpers.patch_environ(self) helpers.patch(self, [ 'clusterfuzz._internal.base.utils.default_project_name', 'clusterfuzz._internal.bot.fuzzers.builtin.fuzzers_utils.get_fuzz_targets' ]) test_utils.set_up_pyfakefs(self) self.fs.create_dir('/input') self.fs.create_dir('/output') environment.set_value('BUILD_DIR', '/build_dir') environment.set_value('FAIL_RETRIES', 1) environment.set_value('PROJECT_NAME', 'proj') self.mock.default_project_name.return_value = 'default-proj' self.mock.get_fuzz_targets.return_value = [ '/build_dir/target', ] self.fs.create_file( '/build_dir/target.owners', contents='[email protected]\[email protected]') class EngineFuzzerTest(BaseEngineFuzzerTest): """Engine fuzzer tests.""" def test_run(self): """Test running an engine fuzzer.""" fuzzer = TestEngineFuzzer() result = fuzzer.run('/input', '/output', 1) self.assertEqual( 'Generated 1 testcase for fuzzer target.\n' 'metadata::fuzzer_binary_name: target\n' 'metadata::issue_owners: [email protected],[email protected]\n', result.output) self.assertEqual('/input/proj_target', result.corpus_directory) self.assertTrue(os.path.exists('/output/fuzz-0')) self.assertTrue(os.path.exists('/output/flags-0')) with open('/output/fuzz-0') as f: self.assertEqual(' ', f.read()) with open('/output/flags-0') as f: self.assertEqual('%TESTCASE% target -arg1 -arg2', f.read()) def test_run_with_labels(self): """Test running an engine fuzzer with a labels file.""" self.fs.create_file('/build_dir/target.labels', contents='label1\nlabel2\n') fuzzer = TestEngineFuzzer() result = fuzzer.run('/input', '/output', 1) self.assertEqual( 'Generated 1 testcase for fuzzer target.\n' 'metadata::fuzzer_binary_name: target\n' 'metadata::issue_owners: [email protected],[email protected]\n' 'metadata::issue_labels: label1,label2\n', result.output) def test_run_no_build_dir(self): """Test running without a build dir.""" environment.set_value('BUILD_DIR', '') fuzzer = TestEngineFuzzer() with self.assertRaisesRegex(builtin.BuiltinFuzzerError, 'BUILD_DIR'): fuzzer.run('/input', '/output', 1) def test_run_no_fuzzers(self): """Test running without fuzzers.""" self.mock.get_fuzz_targets.return_value = [] fuzzer = TestEngineFuzzer() with self.assertRaises(builtin.BuiltinFuzzerError): fuzzer.run('/input', '/output', 1) def _generate_targets_list(self, count): """Generate a targets list.""" fake_targets_list = [] for i in range(count): fake_targets_list.append('/build_dir/target' + str(i)) return fake_targets_list def test_run_chosen_fuzz_target(self): """Test running with chosen fuzz target.""" os.environ['FUZZ_TARGET'] = 'chosen_target' fake_targets_list = self._generate_targets_list(100) fake_targets_list.append('/build_dir/chosen_target') self.mock.get_fuzz_targets.return_value = fake_targets_list fuzzer = TestEngineFuzzer() result = fuzzer.run('/input', '/output', 1) self.assertEqual( 'Generated 1 testcase for fuzzer chosen_target.\n' 'metadata::fuzzer_binary_name: chosen_target\n', result.output) self.assertEqual('/input/proj_chosen_target', result.corpus_directory) def test_sanitizer_options_from_options_file(self): """Tests that sanitizer options are set in *SAN_OPTIONS using the overrides provided in .options file.""" environment.set_value('ASAN_OPTIONS', 'fake_option1=1') with open('/build_dir/target.options', 'w') as f: f.write('[asan]\nfake_option2=1\n[msan]\nfake_options3=1') fuzzer = TestEngineFuzzer() fuzzer.run('/input', '/output', 1) self.assertEqual('fake_option1=1:fake_option2=1', environment.get_value('ASAN_OPTIONS')) self.assertEqual(None, environment.get_value('MSAN_OPTIONS')) class GetFuzzerPath(unittest.TestCase): """_get_fuzzer_path Tests.""" @parameterized.parameterized.expand([('fuzzer', 'LINUX'), ('fuzzer.exe', 'WINDOWS')]) def test_get_fuzzer_path(self, target_name, mock_platform): """Test that get_fuzzer_path returns the path of a fuzzer.""" target_path = os.path.join('path', 'to', target_name) helpers.patch(self, ['clusterfuzz._internal.system.environment.platform']) self.mock.platform.return_value = mock_platform result = builtin._get_fuzzer_path(['a', target_path], 'fuzzer') # pylint: disable=protected-access self.assertEqual(result, target_path)
2,386
test half
################################################################################ # # Copyright (C) 2019-2022 Advanced Micro Devices, Inc. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ################################################################################ from __future__ import print_function import pytest from Tensile.DataType import DataType def test_init_single(): expected = DataType('S') assert DataType('single') == expected assert DataType('Float') == expected assert DataType('tensileDataTypeFloat') == expected def test_init_double(): expected = DataType('D') assert DataType('double') == expected assert DataType('Double') == expected assert DataType('tensileDataTypeDouble') == expected def test_init_complexSingle(): expected = DataType('C') assert DataType('complexSingle') == expected assert DataType('complexFloat') == expected assert DataType('tensileDataTypeComplexFloat') == expected def test_init_complexDouble(): expected = DataType('Z') assert DataType('complexDouble') == expected assert DataType('complexDouble') == expected assert DataType('tensileDataTypeComplexDouble') == expected def test_init_half(): expected = DataType('H') assert DataType('half') == expected assert DataType('Half') == expected assert DataType('tensileDataTypeHalf') == expected def test_init_i8(): expected = DataType('4xi8') assert DataType('int8x4') == expected assert DataType('Int8x4') == expected assert DataType('tensileDataTypeInt8x4') == expected def test_init_i32(): expected = DataType('I') assert DataType('int32') == expected assert DataType('Int32') == expected assert DataType('tensileDataTypeInt32') == expected def test_single(): obj = DataType(0) assert obj.toChar() == 'S' assert obj.toName() == 'single' assert obj.toEnum() == 'Float' assert obj.toOpenCL() == 'float' assert obj.toHIP() == 'float' assert obj.toDevice("") == 'float' assert obj.toCpp() == 'float' assert obj.getLibString() == 'tensileDataTypeFloat' assert obj.numBytes() == 4 assert obj.isReal() def test_double(): obj = DataType(1) assert obj.toChar() == 'D' assert obj.toName() == 'double' assert obj.toEnum() == 'Double' assert obj.toOpenCL() == 'double' assert obj.toHIP() == 'double' assert obj.toDevice("") == 'double' assert obj.toCpp() == 'double' assert obj.getLibString() == 'tensileDataTypeDouble' assert obj.numBytes() == 8 assert obj.isReal() def test_complexSingle(): obj = DataType(2) assert obj.toChar() == 'C' assert obj.toName() == 'complexSingle' assert obj.toEnum() == 'ComplexFloat' assert obj.toOpenCL() == 'float2' assert obj.toHIP() == 'TensileComplexFloat' assert obj.toDevice("") == 'TensileComplexFloat' assert obj.toCpp() == 'TensileComplexFloat' assert obj.getLibString() == 'tensileDataTypeComplexFloat' assert obj.numBytes() == 8 assert not obj.isReal() def test_complexDouble(): obj = DataType(3) assert obj.toChar() == 'Z' assert obj.toName() == 'complexDouble' assert obj.toEnum() == 'ComplexDouble' assert obj.toOpenCL() == 'double2' assert obj.toHIP() == 'TensileComplexDouble' assert obj.toDevice("") == 'TensileComplexDouble' assert obj.toCpp() == 'TensileComplexDouble' assert obj.getLibString() == 'tensileDataTypeComplexDouble' assert obj.numBytes() == 16 assert not obj.isReal() def METHOD_NAME(): obj = DataType(4) assert obj.toChar() == 'H' assert obj.toName() == 'half' assert obj.toEnum() == 'Half' assert obj.toOpenCL() == 'ERROR' assert obj.toHIP() == 'tensile_half' assert obj.toDevice("OCL") == 'ERROR' assert obj.toDevice("") == 'tensile_half' assert obj.toCpp() == 'TensileHalf' assert obj.getLibString() == 'tensileDataTypeHalf' assert obj.numBytes() == 2 assert obj.isReal() def test_int8(): obj = DataType(5) assert obj.toChar() == '4xi8' assert obj.toName() == 'int8x4' assert obj.toEnum() == 'Int8x4' assert obj.toOpenCL() == 'ERROR' assert obj.toHIP() == 'uint32_t' assert obj.toDevice("OCL") == 'ERROR' assert obj.toDevice("") == 'uint32_t' assert obj.toCpp() == 'TensileInt8x4' assert obj.getLibString() == 'tensileDataTypeInt8x4' assert obj.numBytes() == 4 assert obj.isReal() def test_int32(): obj = DataType(6) assert obj.toChar() == 'I' assert obj.toName() == 'int32' assert obj.toEnum() == 'Int32' assert obj.toOpenCL() == 'ERROR' assert obj.toHIP() == 'int32_t' assert obj.toDevice("OCL") == 'ERROR' assert obj.toDevice("") == 'int32_t' assert obj.toCpp() == 'TensileInt32' assert obj.getLibString() == 'tensileDataTypeInt32' assert obj.numBytes() == 4 assert obj.isReal() def test_cmp(): assert DataType('single') == DataType('S') assert not DataType('S') != DataType(0) assert DataType('Float') < DataType('Double') assert not DataType('tensileDataTypeFloat') > DataType('Z') assert DataType('half') >= DataType('ComplexFloat') assert not DataType('int32') <= DataType('tensileDataTypeInt8x4') def test_bounds(): with pytest.raises(Exception): DataType(14)
2,387
test get weight channel axis
# Copyright (c) 2023 Intel Corporation # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from typing import Callable, Dict import numpy as np import openvino.runtime as ov import pytest import torch from nncf.openvino.graph.layer_attributes import OVLayerAttributes from nncf.openvino.graph.metatypes.openvino_metatypes import OVConvolutionMetatype from nncf.openvino.graph.metatypes.openvino_metatypes import OVMatMulMetatype from nncf.quantization.algorithms.smooth_quant.openvino_backend import OVSmoothQuantAlgoBackend from tests.post_training.test_templates.test_smooth_quant import TemplateTestSQAlgorithm from tests.shared.command import Command class TestOVSQAlgorithm(TemplateTestSQAlgorithm): @staticmethod def fn_to_type(tensor) -> np.ndarray: return np.array(tensor) @staticmethod def get_transform_fn() -> Callable: def transform_fn(data_item): tensor, _ = data_item return {"input.1": tensor} return transform_fn @staticmethod def get_backend() -> OVSmoothQuantAlgoBackend: return OVSmoothQuantAlgoBackend() @staticmethod def backend_specific_model(model: torch.nn.Module, tmp_dir: str) -> ov.Model: onnx_path = Path(f"{tmp_dir}/model.onnx") torch.onnx.export(model, torch.rand(model.INPUT_SIZE), onnx_path, opset_version=13, input_names=["input.1"]) ov_path = Path(f"{tmp_dir}/model.xml") runner = Command(f"mo -m {onnx_path} -o {tmp_dir} -n model --compress_to_fp16=False") runner.run() core = ov.Core() ov_model = core.read_model(ov_path) return ov_model @staticmethod def check_scales(model: ov.Model, reference_values: Dict[str, np.ndarray]) -> None: ops_list = {op.get_friendly_name(): op for op in model.get_ops()} for ref_name, ref_value in reference_values.items(): node = ops_list[ref_name] const_node = node.input(1).get_source_output().get_node() assert const_node.get_type_name() == "Constant" value = const_node.data ref_value = np.array(ref_value) assert value.shape == ref_value.shape assert np.all(np.isclose(value, ref_value, atol=0.0001)), f"{value} != {ref_value}" @pytest.mark.parametrize( "node_metatype, layer_attributes, port_id, reference_value", ( (OVMatMulMetatype, OVLayerAttributes({}, inputs_attributes={"transpose": False}), 0, -1), (OVMatMulMetatype, OVLayerAttributes({}, inputs_attributes={"transpose": True}), 0, -2), (OVMatMulMetatype, OVLayerAttributes({}, inputs_attributes={"transpose": False}), 1, -2), (OVMatMulMetatype, OVLayerAttributes({}, inputs_attributes={"transpose": True}), 1, -1), (OVMatMulMetatype, OVLayerAttributes({}, inputs_attributes={"transpose": False}), 2, RuntimeError), (OVConvolutionMetatype, OVLayerAttributes({}, inputs_attributes={}), 0, 1), ), ) def test_get_activation_channel_axis(self, node_metatype, layer_attributes, port_id, reference_value): return super().test_get_activation_channel_axis(node_metatype, layer_attributes, port_id, reference_value) @pytest.mark.parametrize( "node_metatype, layer_attributes, port_id, reference_value", ( (OVMatMulMetatype, OVLayerAttributes({1: {"transpose": False}}), 1, -2), (OVMatMulMetatype, OVLayerAttributes({1: {"transpose": True}}), 1, -1), (OVMatMulMetatype, OVLayerAttributes({0: {"transpose": False}}), 0, -1), (OVMatMulMetatype, OVLayerAttributes({0: {"transpose": True}}), 0, -2), (OVMatMulMetatype, OVLayerAttributes({1: {"transpose": False}}), 2, RuntimeError), (OVConvolutionMetatype, OVLayerAttributes({1: {}}), 1, 0), ), ) def METHOD_NAME(self, node_metatype, layer_attributes, port_id, reference_value): return super().METHOD_NAME(node_metatype, layer_attributes, port_id, reference_value) @staticmethod def get_matmul_metatype(): return OVMatMulMetatype
2,388
handle old salt host resource
""" Dynamic roster from terraform current state =========================================== This roster module allows you dynamically generate the roster from the terraform resources defined with the `Terraform Salt`_ provider. It exposes all salt_host resources with the same attributes to the salt-ssh roster, making it completely independent of the type of terraform resource, and providing the integration using terraform constructs with interpolation. Basic Example ------------- Given a simple salt-ssh tree with a Saltfile: .. code-block:: yaml salt-ssh: config_dir: etc/salt max_procs: 30 wipe_ssh: True and ``etc/salt/master``: .. code-block:: yaml root_dir: . file_roots: base: - srv/salt pillar_roots: base: - srv/pillar roster: terraform In the same folder as your ``Saltfile``, create terraform file with resources like cloud instances, virtual machines, etc. For every single one of those that you want to manage with Salt, create a ``salt_host`` resource: .. code-block:: text resource "salt_host" "dbminion" { salt_id = "dbserver" host = "${libvirt_domain.vm-db.network_interface.0.addresses.0}" user = "root" passwd = "linux" } You can use the count attribute to create multiple roster entries with a single definition. Please refer to the `Terraform Salt`_ provider for more detailed examples. .. _Terraform Salt: https://github.com/dmacvicar/terraform-provider-salt """ import logging import os.path import salt.utils.files import salt.utils.json log = logging.getLogger(__name__) TF_OUTPUT_PREFIX = "salt.roster." TF_ROSTER_ATTRS = { "host": "s", "user": "s", "passwd": "s", "port": "i", "sudo": "b", "sudo_user": "s", "tty": "b", "priv": "s", "timeout": "i", "minion_opts": "m", "thin_dir": "s", "cmd_umask": "i", } MINION_ID = "salt_id" def METHOD_NAME(resource): """ Handles salt_host resources. See https://github.com/dmacvicar/terraform-provider-salt Returns roster attributes for the resource or None """ ret = {} attrs = resource.get("primary", {}).get("attributes", {}) ret[MINION_ID] = attrs.get(MINION_ID) valid_attrs = set(attrs.keys()).intersection(TF_ROSTER_ATTRS.keys()) for attr in valid_attrs: ret[attr] = _cast_output_to_type(attrs.get(attr), TF_ROSTER_ATTRS.get(attr)) return ret def _handle_new_salt_host_resource(resource): """ Handles salt_host resources. See https://github.com/dmacvicar/terraform-provider-salt Returns roster attributes for the resource or None """ rets = [] instances = resource.get("instances", []) for instance in instances: ret = {} attrs = instance.get("attributes", {}) ret[MINION_ID] = attrs.get(MINION_ID) valid_attrs = set(attrs.keys()).intersection(TF_ROSTER_ATTRS.keys()) for attr in valid_attrs: ret[attr] = _cast_output_to_type(attrs.get(attr), TF_ROSTER_ATTRS.get(attr)) log.info(ret) rets.append(ret) return rets def _add_ssh_key(ret): """ Setups the salt-ssh minion to be accessed with salt-ssh default key """ priv = None if __opts__.get("ssh_use_home_key") and os.path.isfile( os.path.expanduser("~/.ssh/id_rsa") ): priv = os.path.expanduser("~/.ssh/id_rsa") else: priv = __opts__.get( "ssh_priv", os.path.abspath(os.path.join(__opts__["pki_dir"], "ssh", "salt-ssh.rsa")), ) if priv and os.path.isfile(priv): ret["priv"] = priv def _cast_output_to_type(value, typ): """cast the value depending on the terraform type""" if value is None: return value if typ == "b": return bool(value) if typ == "i": return int(value) return value def _parse_state_file(state_file_path="terraform.tfstate"): """ Parses the terraform state file passing different resource types to the right handler """ with salt.utils.files.fopen(state_file_path, "r") as fh_: tfstate = salt.utils.json.load(fh_) if "resources" in tfstate: return _do_parse_new_state_file(tfstate) elif "modules" in tfstate: return _do__parse_old_state_file(tfstate) else: log.error("Malformed tfstate file.") return {} def _do_parse_new_state_file(tfstate): """ Parses the terraform state file passing different resource types to the right handler terraform version >= v0.13.0 """ ret = {} resources = tfstate.get("resources") if not resources: log.error("Malformed tfstate file. No resources found") return ret for resource in resources: if resource["type"] == "salt_host": roster_entrys = _handle_new_salt_host_resource(resource) if not roster_entrys or len(roster_entrys) < 1: continue for roster_entry in roster_entrys: if not roster_entry: continue minion_id = roster_entry.get(MINION_ID, resource.get("id")) if not minion_id: continue if MINION_ID in roster_entry: del roster_entry[MINION_ID] _add_ssh_key(roster_entry) ret[minion_id] = roster_entry return ret def _do__parse_old_state_file(tfstate): """ Parses the terraform state file passing different resource types to the right handler terraform version < v0.13.0 """ ret = {} modules = tfstate.get("modules") if not modules: log.error("Malformed tfstate file. No modules found") return ret for module in modules: resources = module.get("resources", []) for resource_name, resource in resources.items(): roster_entry = None if resource["type"] == "salt_host": roster_entry = METHOD_NAME(resource) if not roster_entry: continue minion_id = roster_entry.get(MINION_ID, resource.get("id")) if not minion_id: continue if MINION_ID in roster_entry: del roster_entry[MINION_ID] _add_ssh_key(roster_entry) ret[minion_id] = roster_entry return ret def targets(tgt, tgt_type="glob", **kwargs): # pylint: disable=W0613 """ Returns the roster from the terraform state file, checks opts for location, but defaults to terraform.tfstate """ roster_file = os.path.abspath("terraform.tfstate") if __opts__.get("roster_file"): roster_file = os.path.abspath(__opts__["roster_file"]) if not os.path.isfile(roster_file): log.error("Can't find terraform state file '%s'", roster_file) return {} log.debug("terraform roster: using %s state file", roster_file) if not roster_file.endswith(".tfstate"): log.error("Terraform roster can only be used with terraform state files") return {} raw = _parse_state_file(roster_file) log.debug("%s hosts in terraform state file", len(raw)) return __utils__["roster_matcher.targets"](raw, tgt, tgt_type, "ipv4")
2,389
get token
import json from rest_framework.exceptions import APIException from django.conf import settings from users.utils import construct_user_email from common.utils.common import get_logger from common.sdk.im.utils import digest from common.sdk.im.mixin import RequestMixin, BaseRequest logger = get_logger(__name__) class URL: # https://open.feishu.cn/document/ukTMukTMukTM/uEDO4UjLxgDO14SM4gTN @property def host(self): if settings.FEISHU_VERSION == 'feishu': h = 'https://open.feishu.cn' else: h = 'https://open.larksuite.com' return h @property def authen(self): return f'{self.host}/open-apis/authen/v1/index' @property def METHOD_NAME(self): return f'{self.host}/open-apis/auth/v3/tenant_access_token/internal/' @property def get_user_info_by_code(self): return f'{self.host}/open-apis/authen/v1/access_token' @property def send_message(self): return f'{self.host}/open-apis/im/v1/messages' def get_user_detail(self, user_id): return f'{self.host}/open-apis/contact/v3/users/{user_id}' class ErrorCode: INVALID_APP_ACCESS_TOKEN = 99991664 INVALID_USER_ACCESS_TOKEN = 99991668 INVALID_TENANT_ACCESS_TOKEN = 99991663 class FeishuRequests(BaseRequest): """ 处理系统级错误,抛出 API 异常,直接生成 HTTP 响应,业务代码无需关心这些错误 - 确保 status_code == 200 - 确保 access_token 无效时重试 """ invalid_token_errcodes = ( ErrorCode.INVALID_USER_ACCESS_TOKEN, ErrorCode.INVALID_TENANT_ACCESS_TOKEN, ErrorCode.INVALID_APP_ACCESS_TOKEN ) code_key = 'code' msg_key = 'msg' def __init__(self, app_id, app_secret, timeout=None): self._app_id = app_id self._app_secret = app_secret super().__init__(timeout=timeout) def get_access_token_cache_key(self): return digest(self._app_id, self._app_secret) def request_access_token(self): data = {'app_id': self._app_id, 'app_secret': self._app_secret} response = self.raw_request('post', url=URL().METHOD_NAME, data=data) self.check_errcode_is_0(response) access_token = response['tenant_access_token'] expires_in = response['expire'] return access_token, expires_in def add_token(self, kwargs: dict): headers = kwargs.setdefault('headers', {}) headers['Authorization'] = f'Bearer {self.access_token}' class FeiShu(RequestMixin): """ 非业务数据导致的错误直接抛异常,说明是系统配置错误,业务代码不用理会 """ def __init__(self, app_id, app_secret, timeout=None): self._app_id = app_id or '' self._app_secret = app_secret or '' self._requests = FeishuRequests( app_id=app_id, app_secret=app_secret, timeout=timeout ) def get_user_id_by_code(self, code): # https://open.feishu.cn/document/ukTMukTMukTM/uEDO4UjLxgDO14SM4gTN body = { 'grant_type': 'authorization_code', 'code': code } data = self._requests.post(URL().get_user_info_by_code, json=body, check_errcode_is_0=False) self._requests.check_errcode_is_0(data) return data['data']['user_id'], data['data'] def send_text(self, user_ids, msg): params = { 'receive_id_type': 'user_id' } """ https://open.feishu.cn/document/common-capabilities/message-card/message-cards-content /using-markdown-tags """ body = { 'msg_type': 'interactive', 'content': json.dumps({'elements': [{'tag': 'markdown', 'content': msg}]}) } invalid_users = [] for user_id in user_ids: body['receive_id'] = user_id try: logger.info(f'Feishu send text: user_ids={user_ids} msg={msg}') self._requests.post(URL().send_message, params=params, json=body) except APIException as e: # 只处理可预知的错误 logger.exception(e) invalid_users.append(user_id) return invalid_users @staticmethod def get_user_detail(user_id, **kwargs): # get_user_id_by_code 已经返回个人信息,这里直接解析 data = kwargs['other_info'] username = user_id name = data.get('name', username) email = data.get('email') or data.get('enterprise_email') email = construct_user_email(username, email) return { 'username': username, 'name': name, 'email': email }
2,390
getcalculate sigma
#------------------------------------------------------------------------------- # ArtificialViscosity base class #------------------------------------------------------------------------------- from PYB11Generator import * from ArtificialViscosityAbstractMethods import * from RestartMethods import * @PYB11template("Dimension") @PYB11module("SpheralArtificialViscosity") class ArtificialViscosity: PYB11typedefs = """ typedef typename %(Dimension)s::Scalar Scalar; typedef typename %(Dimension)s::Vector Vector; typedef typename %(Dimension)s::Tensor Tensor; typedef typename %(Dimension)s::SymTensor SymTensor; typedef typename %(Dimension)s::ThirdRankTensor ThirdRankTensor; """ #........................................................................... # Constructors def pyinit(self, Clinear = "const Scalar", Cquadratic = "const Scalar", QcorrectionOrder = ("const RKOrder", "RKOrder::LinearOrder")): "ArtificialViscosity constructor" #........................................................................... # Methods @PYB11const def curlVelocityMagnitude(self, DvDx="const Tensor&"): "Calculate the curl of the velocity given the stress tensor." return "Scalar" @PYB11const def calculateLimiter(self, vi = "const Vector&", vj = "const Vector&", ci = "const Scalar", cj = "const Scalar", hi = "const Scalar", hj = "const Scalar", nodeListID = "const int", nodeID = "const int"): "Method to return the limiter magnitude for the given node." return "Tensor" @PYB11const def shockDirection(self, ci = "const Scalar", hi = "const Scalar", nodeListID = "const int", nodeID = "const int"): "Helper for the limiter, calculate the unit grad div v term for the given node" return "Vector" @PYB11const def sigmaWeighting(self, r="const Vector&"): "Helper method to calculate the weighting based on the given position for use in the sigma calculation." return "Vector" @PYB11const def sigmaij(self, rji = "const Vector&", rjiUnit = "const Vector&", vji = "const Vector&", hi2 = "const Scalar&", nodeListID = "const int", nodeID = "const int"): "Figure out the total stress-strain tensor for a given node pair based on the stored average value and the given (position, velocity) pair." return "Tensor" #........................................................................... # Properties Cl = PYB11property("Scalar", "Cl", "Cl", doc="The linear coefficient") Cq = PYB11property("Scalar", "Cq", "Cq", doc="The quadratic coefficient") QcorrectionOrder = PYB11property("RKOrder", "QcorrectionOrder", "QcorrectionOrder", doc="The RK correction order used for computing gradients in the viscosity") balsaraShearCorrection = PYB11property("bool", "balsaraShearCorrection", "balsaraShearCorrection", doc="Toggle whether to use the Balsara suppression for shear flows") ClMultiplier = PYB11property("const FieldList<%(Dimension)s, Scalar>&", "ClMultiplier", doc="Correction multiplier for the linear term") CqMultiplier = PYB11property("const FieldList<%(Dimension)s, Scalar>&", "CqMultiplier", doc="Correction multiplier for the quadratic term") shearCorrection = PYB11property("const FieldList<%(Dimension)s, Scalar>&", "shearCorrection", doc="Correction multiplier for Balsara shear suppression") sigma = PYB11property("const FieldList<%(Dimension)s, Tensor>&", "sigma", doc="Access the internally computed estimate of sigma: sig^ab = partial v^a / partial x^b") gradDivVelocity = PYB11property("const FieldList<%(Dimension)s, Vector>&", "gradDivVelocity", doc="Access the internally computed estimate of the velocity gradient and grad div velocity") limiter = PYB11property("bool", "limiter", "limiter", doc="Toggle whether to apply the del^2 velocity limiter") epsilon2 = PYB11property("Scalar", "epsilon2", "epsilon2", doc="Safety factor in denominator for Q") negligibleSoundSpeed = PYB11property("Scalar", "negligibleSoundSpeed", "negligibleSoundSpeed", doc="The negligible sound speed parameter for use in the limiter") csMultiplier = PYB11property("Scalar", "csMultiplier", "csMultiplier", doc="The multiplier for sound speed in the limiter") energyMultiplier = PYB11property("Scalar", "energyMultiplier", "energyMultiplier", doc="The multiplier for energy in the limiter.") # This one is a protected property! @PYB11const @PYB11ignore @PYB11protected @PYB11cppname("calculateSigma") def METHOD_NAME(self): return "bool" @PYB11ignore @PYB11protected @PYB11cppname("calculateSigma") def setcalculateSigma(self, val="bool"): return "void" calculateSigma = property(METHOD_NAME, setcalculateSigma, doc="Toggle if sigma should be computed") #------------------------------------------------------------------------------- # Inject abstract interface #------------------------------------------------------------------------------- PYB11inject(ArtificialViscosityAbstractMethods, ArtificialViscosity, pure_virtual=True) PYB11inject(RestartMethods, ArtificialViscosity)
2,391
test property diffuse color
import pytest import pyvista as pv from pyvista.plotting._property import _check_range @pytest.fixture() def prop(): return pv.Property() def test_check_range(): with pytest.raises(ValueError, match="outside the acceptable"): _check_range(-1, (0, 1), 'parm') with pytest.raises(ValueError, match="outside the acceptable"): _check_range(2, (0, 1), 'parm') assert _check_range(0, (0, 1), 'parm') is None def test_property_init(): prop = pv.Property() # copy but equal assert prop._theme is not pv.global_theme assert prop._theme == pv.global_theme def test_property_style(prop): style = 'Surface' prop.style = style assert prop.style == style def test_property_edge_color(prop): prop.edge_color = 'b' assert prop.edge_color.float_rgb == (0, 0, 1) def test_property_opacity(prop): opacity = 0.5 prop.opacity = opacity assert prop.opacity == opacity with pytest.raises(ValueError): prop.opacity = 2 def test_property_show_edges(prop): value = False prop.show_edges = value assert prop.show_edges == value def test_property_lighting(prop): value = False prop.lighting = value assert prop.lighting == value def test_property_ambient(prop): value = 0.45 prop.ambient = value assert prop.ambient == value with pytest.raises(ValueError): prop.ambient = -1 def test_property_diffuse(prop): value = 0.5 prop.diffuse = value assert prop.diffuse == value with pytest.raises(ValueError): prop.diffuse = 2 def test_property_specular(prop): value = 0.5 prop.specular = value assert prop.specular == value with pytest.raises(ValueError): prop.specular = 2 def test_property_specular_power(prop): value = 0.5 prop.specular_power = value assert prop.specular_power == value with pytest.raises(ValueError): prop.specular = 200 def test_property_metallic(prop): value = 0.1 prop.metallic = value assert prop.metallic == value with pytest.raises(ValueError): prop.metallic = -1 def test_property_roughness(prop): value = 0.1 prop.roughness = value assert prop.roughness == value def test_property_interpolation(prop): value = 'Gouraud' prop.interpolation = value assert prop.interpolation == pv.opts.InterpolationType.from_any(value) with pytest.raises(ValueError, match='InterpolationType has no value matching'): prop.interpolation = 'foo' def test_property_render_points_as_spheres(prop): value = True prop.render_points_as_spheres = value assert prop.render_points_as_spheres is value def test_property_render_lines_as_tubes(prop): value = True prop.render_lines_as_tubes = value assert prop.render_lines_as_tubes is value def test_property_point_size(prop): value = 10.0 prop.point_size = value assert prop.point_size == value def test_property_line_width(prop): assert isinstance(prop.line_width, float) value = 10.0 prop.line_width = value assert prop.line_width == value @pytest.mark.parametrize("value", ['back', 'front', 'none']) def test_property_culling(prop, value): prop.culling = value assert prop.culling == value with pytest.raises(ValueError, match='Invalid culling'): prop.culling = 'foo' def METHOD_NAME(prop): prop.diffuse_color = 'b' assert prop.diffuse_color.float_rgb == (0, 0, 1) def test_property_ambient_color(prop): prop.ambient_color = 'b' assert prop.ambient_color.float_rgb == (0, 0, 1) def test_property_specular_color(prop): prop.specular_color = 'b' assert prop.specular_color.float_rgb == (0, 0, 1) def test_property_anisotropy(prop): value = 0.1 if pv.vtk_version_info < (9, 1, 0): with pytest.raises(pv.core.errors.VTKVersionError): prop.anisotropy = value return assert isinstance(prop.anisotropy, float) prop.anisotropy = value assert prop.anisotropy == value
2,392
test perturb real volatility below
import numpy import pytest from base import RNGStub, TrialStub from orion.algo.pbt.explore import PerturbExplore, PipelineExplore, ResampleExplore from orion.algo.space import Categorical, Dimension from orion.core.utils.flatten import flatten class TestPipelineExplore: def test_no_explore(self): params = object() assert PipelineExplore([])(RNGStub(), None, params) is params def test_explore_otherwise_next(self): for i in range(4): explore = PipelineExplore( [ dict(of_type="explorestub", rval=None if j < i else i, some="args") for j in range(4) ] ) assert explore(RNGStub(), TrialStub(), None) == i def test_configuration(self): explore_configs = [ dict(of_type="explorestub", some="args", rval=1, no_call=False), dict(of_type="explorestub", other="args", rval=None, no_call=True), ] explore = PipelineExplore(explore_configs) assert explore.configuration == dict( of_type="pipelineexplore", explore_configs=explore_configs ) class TestPerturb: @pytest.mark.parametrize("factor", [0.5, 1, 1.5]) def test_perturb_real_factor(self, factor): explore = PerturbExplore(factor=factor) rng = RNGStub() rng.random = lambda: 1.0 assert explore.perturb_real(rng, 1.0, (0.1, 2.0)) == factor rng.random = lambda: 0.0 assert explore.perturb_real(rng, 1.0, (0.1, 2.0)) == 1.0 / factor def test_perturb_real_below_interval_cap(self): explore = PerturbExplore(factor=0.0, volatility=0) rng = RNGStub() rng.random = lambda: 1.0 rng.normal = lambda mean, variance: variance assert explore.perturb_real(rng, 0.0, (1.0, 2.0)) == 1.0 explore.volatility = 1000 assert explore.perturb_real(rng, 0.0, (1.0, 2.0)) == 2.0 def test_perturb_real_above_interval_cap(self): explore = PerturbExplore(factor=1.0, volatility=0) rng = RNGStub() rng.random = lambda: 1.0 rng.normal = lambda mean, variance: variance assert explore.perturb_real(rng, 3.0, (1.0, 2.0)) == 2.0 explore.volatility = 1000 assert explore.perturb_real(rng, 3.0, (1.0, 2.0)) == 1.0 @pytest.mark.parametrize("volatility", [0.0, 0.05, 1.0]) def METHOD_NAME(self, volatility): explore = PerturbExplore(factor=1.0, volatility=volatility) rng = RNGStub() rng.random = lambda: 1.0 rng.normal = lambda mean, variance: variance assert explore.perturb_real(rng, 0.0, (1.0, 2.0)) == 1.0 + volatility @pytest.mark.parametrize("volatility", [0.0, 0.05, 1.0]) def test_perturb_real_volatility_above(self, volatility): explore = PerturbExplore(factor=1.0, volatility=volatility) rng = RNGStub() rng.random = lambda: 1.0 rng.normal = lambda mean, variance: variance assert explore.perturb_real(rng, 3.0, (1.0, 2.0)) == 2.0 - volatility @pytest.mark.parametrize("factor", [0.5, 0.75, 1, 1.5]) def test_perturb_int_factor(self, factor): explore = PerturbExplore(factor=factor) rng = RNGStub() rng.random = lambda: 1.0 assert explore.perturb_int(rng, 5, (0, 10)) == int(numpy.round(5 * factor)) rng.random = lambda: 0.0 assert explore.perturb_int(rng, 5, (0, 10)) == int(numpy.round(5 / factor)) def test_perturb_int_duplicate_equal(self): explore = PerturbExplore(factor=1.0) rng = RNGStub() rng.random = lambda: 1.0 assert explore.perturb_int(rng, 1, (0, 10)) == 1 def test_perturb_int_no_duplicate_below(self): explore = PerturbExplore(factor=0.75) rng = RNGStub() rng.random = lambda: 1.0 assert explore.perturb_int(rng, 1, (0, 10)) == 0 def test_perturb_int_no_duplicate_above(self): explore = PerturbExplore(factor=0.75) rng = RNGStub() rng.random = lambda: 0.0 assert explore.perturb_int(rng, 1, (0, 10)) == 2 def test_perturb_int_no_out_of_bounds(self): explore = PerturbExplore(factor=0.75, volatility=0) rng = RNGStub() rng.random = lambda: 1.0 rng.normal = lambda mean, variance: variance assert explore.perturb_int(rng, 0, (0, 10)) == 0 rng.random = lambda: 0.0 rng.normal = lambda mean, variance: variance assert explore.perturb_int(rng, 10, (0, 10)) == 10 def test_perturb_cat(self): explore = PerturbExplore() rng = RNGStub() rng.randint = lambda low, high=None, size=None: [1] if size else 1 dim = Categorical("name", ["one", "two", 3, 4.0]) assert explore.perturb_cat(rng, "whatever", dim) in dim def test_perturb(self, space): explore = PerturbExplore() rng = RNGStub() rng.randint = lambda low, high=None, size=None: numpy.ones(size) if size else 1 rng.random = lambda: 1.0 rng.normal = lambda mean, variance: 0.0 params = {"x": 1.0, "y": 2, "z": 0, "f": 10} new_params = explore(rng, space, params) for key in space.keys(): assert new_params[key] in space[key] def test_perturb_hierarchical_params(self, hspace): explore = PerturbExplore() rng = RNGStub() rng.randint = lambda low, high=None, size=None: numpy.ones(size) if size else 1 rng.random = lambda: 1.0 rng.normal = lambda mean, variance: 0.0 params = {"numerical": {"x": 1.0, "y": 2, "f": 10}, "z": 0} new_params = explore(rng, hspace, params) assert "numerical" in new_params assert "x" in new_params["numerical"] for key in hspace.keys(): assert flatten(new_params)[key] in hspace[key] def test_perturb_with_invalid_dim(self, space, monkeypatch): explore = PerturbExplore() monkeypatch.setattr(Dimension, "type", "type_that_dont_exist") with pytest.raises( ValueError, match="Unsupported dimension type type_that_dont_exist" ): explore(RNGStub(), space, {"x": 1.0, "y": 2, "z": 0, "f": 10}) def test_configuration(self): explore = PerturbExplore(factor=2.0, volatility=10.0) assert explore.configuration == dict( of_type="perturbexplore", factor=2.0, volatility=10.0 ) class TestResample: def test_resample_probability(self, space): explore = ResampleExplore(probability=0.5) rng = RNGStub() rng.randint = lambda low, high, size: [1] rng.random = lambda: 0.5 params = {"x": 1.0, "y": 2, "z": 0, "f": 10} assert explore(rng, space, params) is params rng.random = lambda: 0.4 assert explore(rng, space, params) is not params def test_configuration(self): explore = ResampleExplore(probability=0.5) assert explore.configuration == dict(of_type="resampleexplore", probability=0.5)
2,393
id
# coding=utf-8 # *** WARNING: this file was generated by pulumi. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetPrivateEndpointConnectionResult', 'AwaitableGetPrivateEndpointConnectionResult', 'get_private_endpoint_connection', 'get_private_endpoint_connection_output', ] @pulumi.output_type class GetPrivateEndpointConnectionResult: def __init__(__self__, group_ids=None, METHOD_NAME=None, name=None, private_endpoint=None, private_link_service_connection_state=None, provisioning_state=None, type=None): if group_ids and not isinstance(group_ids, list): raise TypeError("Expected argument 'group_ids' to be a list") pulumi.set(__self__, "group_ids", group_ids) if METHOD_NAME and not isinstance(METHOD_NAME, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", METHOD_NAME) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if private_endpoint and not isinstance(private_endpoint, dict): raise TypeError("Expected argument 'private_endpoint' to be a dict") pulumi.set(__self__, "private_endpoint", private_endpoint) if private_link_service_connection_state and not isinstance(private_link_service_connection_state, dict): raise TypeError("Expected argument 'private_link_service_connection_state' to be a dict") pulumi.set(__self__, "private_link_service_connection_state", private_link_service_connection_state) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="groupIds") def group_ids(self) -> Optional[Sequence[str]]: """ GroupIds from the private link service resource. """ return pulumi.get(self, "group_ids") @property @pulumi.getter def METHOD_NAME(self) -> str: """ Fully qualified identifier of the resource. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> str: """ Name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="privateEndpoint") def private_endpoint(self) -> Optional['outputs.PrivateEndpointResponse']: """ The Private Endpoint resource for this Connection. """ return pulumi.get(self, "private_endpoint") @property @pulumi.getter(name="privateLinkServiceConnectionState") def private_link_service_connection_state(self) -> Optional['outputs.ConnectionStateResponse']: """ Details about the state of the connection. """ return pulumi.get(self, "private_link_service_connection_state") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Provisioning state of the Private Endpoint Connection. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def type(self) -> str: """ Type of the resource. """ return pulumi.get(self, "type") class AwaitableGetPrivateEndpointConnectionResult(GetPrivateEndpointConnectionResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetPrivateEndpointConnectionResult( group_ids=self.group_ids, METHOD_NAME=self.METHOD_NAME, name=self.name, private_endpoint=self.private_endpoint, private_link_service_connection_state=self.private_link_service_connection_state, provisioning_state=self.provisioning_state, type=self.type) def get_private_endpoint_connection(parent_name: Optional[str] = None, parent_type: Optional[str] = None, private_endpoint_connection_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetPrivateEndpointConnectionResult: """ Get a specific private endpoint connection under a topic, domain, or partner namespace or namespace. :param str parent_name: The name of the parent resource (namely, either, the topic name, domain name, or partner namespace name or namespace name). :param str parent_type: The type of the parent resource. This can be either \\'topics\\', \\'domains\\', or \\'partnerNamespaces\\' or \\'namespaces\\'. :param str private_endpoint_connection_name: The name of the private endpoint connection connection. :param str resource_group_name: The name of the resource group within the user's subscription. """ __args__ = dict() __args__['parentName'] = parent_name __args__['parentType'] = parent_type __args__['privateEndpointConnectionName'] = private_endpoint_connection_name __args__['resourceGroupName'] = resource_group_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:eventgrid/v20230601preview:getPrivateEndpointConnection', __args__, opts=opts, typ=GetPrivateEndpointConnectionResult).value return AwaitableGetPrivateEndpointConnectionResult( group_ids=pulumi.get(__ret__, 'group_ids'), METHOD_NAME=pulumi.get(__ret__, 'id'), name=pulumi.get(__ret__, 'name'), private_endpoint=pulumi.get(__ret__, 'private_endpoint'), private_link_service_connection_state=pulumi.get(__ret__, 'private_link_service_connection_state'), provisioning_state=pulumi.get(__ret__, 'provisioning_state'), type=pulumi.get(__ret__, 'type')) @_utilities.lift_output_func(get_private_endpoint_connection) def get_private_endpoint_connection_output(parent_name: Optional[pulumi.Input[str]] = None, parent_type: Optional[pulumi.Input[str]] = None, private_endpoint_connection_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetPrivateEndpointConnectionResult]: """ Get a specific private endpoint connection under a topic, domain, or partner namespace or namespace. :param str parent_name: The name of the parent resource (namely, either, the topic name, domain name, or partner namespace name or namespace name). :param str parent_type: The type of the parent resource. This can be either \\'topics\\', \\'domains\\', or \\'partnerNamespaces\\' or \\'namespaces\\'. :param str private_endpoint_connection_name: The name of the private endpoint connection connection. :param str resource_group_name: The name of the resource group within the user's subscription. """ ...
2,394
get
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Optional, TypeVar, Union from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._flux_config_operation_status_operations import build_get_request T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class FluxConfigOperationStatusOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.kubernetesconfiguration.v2021_11_01_preview.aio.SourceControlConfigurationClient`'s :attr:`flux_config_operation_status` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace_async async def METHOD_NAME( self, resource_group_name: str, cluster_rp: Union[str, _models.Enum0], cluster_resource_name: Union[str, _models.Enum1], cluster_name: str, flux_configuration_name: str, operation_id: str, **kwargs: Any ) -> _models.OperationStatusResult: """Get Async Operation status. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param cluster_rp: The Kubernetes cluster RP - either Microsoft.ContainerService (for AKS clusters) or Microsoft.Kubernetes (for OnPrem K8S clusters). Known values are: "Microsoft.ContainerService" and "Microsoft.Kubernetes". Required. :type cluster_rp: str or ~azure.mgmt.kubernetesconfiguration.v2021_11_01_preview.models.Enum0 :param cluster_resource_name: The Kubernetes cluster resource name - either managedClusters (for AKS clusters) or connectedClusters (for OnPrem K8S clusters). Known values are: "managedClusters" and "connectedClusters". Required. :type cluster_resource_name: str or ~azure.mgmt.kubernetesconfiguration.v2021_11_01_preview.models.Enum1 :param cluster_name: The name of the kubernetes cluster. Required. :type cluster_name: str :param flux_configuration_name: Name of the Flux Configuration. Required. :type flux_configuration_name: str :param operation_id: operation Id. Required. :type operation_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: OperationStatusResult or the result of cls(response) :rtype: ~azure.mgmt.kubernetesconfiguration.v2021_11_01_preview.models.OperationStatusResult :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2021-11-01-preview")) cls: ClsType[_models.OperationStatusResult] = kwargs.pop("cls", None) request = build_get_request( resource_group_name=resource_group_name, cluster_rp=cluster_rp, cluster_resource_name=cluster_resource_name, cluster_name=cluster_name, flux_configuration_name=flux_configuration_name, operation_id=operation_id, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.METHOD_NAME.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("OperationStatusResult", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized METHOD_NAME.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{clusterRp}/{clusterResourceName}/{clusterName}/providers/Microsoft.KubernetesConfiguration/fluxConfigurations/{fluxConfigurationName}/operations/{operationId}" }
2,395
cla
#import sys;sys.path.insert(0,'/home/ccsmm/workdir/ccsmmutils');import img_utils as myiu import cv2 import numpy as np import matplotlib.pyplot as plt from ipdb import set_trace as BP from PIL import Image def image_crop( infilename , save_path): """ image file 와 crop한이미지를 저장할 path 을 입력받아 crop_img를 저장한다. :param infilename: crop할 대상 image file 입력으로 넣는다. :param save_path: crop_image file의 저장 경로를 넣는다. :return: """ img = Image.open( infilename ) (img_h, img_w) = img.size print(img.size) # crop 할 사이즈 : grid_w, grid_h grid_w = 96 # crop width grid_h = 96 # crop height range_w = (int)(img_w/grid_w) range_h = (int)(img_h/grid_h) print(range_w, range_h) i = 0 for w in range(range_w): for h in range(range_h): bbox = (h*grid_h, w*grid_w, (h+1)*(grid_h), (w+1)*(grid_w)) print(h*grid_h, w*grid_w, (h+1)*(grid_h), (w+1)*(grid_w)) # 가로 세로 시작, 가로 세로 끝 crop_img = img.crop(bbox) fname = "{}.jpg".format("{0:05d}".format(i)) savename = save_path + fname crop_img.save(savename) print('save file ' + savename + '....') i += 1 def concat_images(imga, imgb): """ Combines two color image ndarrays side-by-side. """ imga=imgreshape(imga) imgb=imgreshape(imgb) ha,wa = imga.shape[:2] hb,wb = imgb.shape[:2] max_height = np.max([ha, hb]) total_width = wa+wb new_img = np.zeros(shape=(max_height, total_width, 3)) new_img[:ha,:wa]=imga new_img[:hb,wa:wa+wb]=imgb return new_img def concat_n_images(image_path_list): """ Combines N color images from a list of image paths. """ output = None for i, img_path in enumerate(image_path_list): img = plt.imread(img_path)[:,:,:3] if i==0: output = img else: output = concat_images(output, img) return output def tonumpy(data): import numpy as np import torch try: data.type() except : return data # if ( ('torch' in type(data)) and ('Tensor' in type(data)) ): # if ('cuda' in type(data)): if ( ('torch' in data.type()) and ('Tensor' in data.type()) ): if ('cuda' in data.type()): data=data.detach().cpu().numpy() else: data=data.detach().numpy() return data def subplot(sp=111): plt.subplot(sp) def title(title="No title"): plt.title(title) def plot(x,sp=111,title="No title",t=0.000001,fdir='./',save=0): import matplotlib.pylab as plt import numpy as np import os import torch if len(np.shape(x)) != 1: print("dimension not matched, getting last element") x = x[-1] # return 0 data = tonumpy(x) plt.subplot(sp) plt.plot(data) plt.title(title) if(t>0): plt.draw() plt.pause(t) else: plt.show() if save: fname=os.path.join(fdir,title+'.png') plt.savefig(fname,bbox_inches='tight') def imshow(img,sp=111,title="No title",t=0.000001,fdir='./',save=0): import matplotlib.pylab as plt import numpy as np import os import torch if len(np.shape(img)) == 4: #batch_size * rgb img=img[-1] #Take last image(3,480,640) elif len(np.shape(img)) == 3: #rgb img=img elif len(np.shape(img)) == 2: #gray img=img else: print("dimension not matched") return 0 if isinstance(img, torch.Tensor): img=tonumpy(img) img=imgreshape(img) plt.subplot(sp) plt.imshow(img) plt.title(title) if(t>0): plt.draw() plt.pause(t) else: plt.show() if save: fname=os.path.join(fdir,title+'.png') plt.savefig(fname,bbox_inches='tight') def fig(num=0): if num: plt.figure(num) else: plt.figure() def METHOD_NAME(): plt.METHOD_NAME() def clf(): plt.clf() def imsshow(imgs): import torchvision imshow(torchvision.utils.make_grid(imgs)) def imgreshape(img): """img must be a tensor type data""" import numpy as np import torch if isinstance(img,torch.Tensor): img=img.squeeze() if len(img.shape) == 2: # img=img.unsqueeze(0) np.reshape(img,[1,np.shape(img)[0],np.shape(img)[1]]) if len(img.shape) == 3: if img.shape[0] <= 3: img=np.transpose(img,(1,2,0)) return img def imgnormalize(img): import cv2 return cv2.normalize(img,None,0,255,cv2.NORM_MINMAX) #Default color space in OpenCV is BGR, but matplotlib's is RGB. #So when we use matplotlib to disply it, we need to change the color space from bgr to rgb def bgr2rgb(img): return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) def rgb2bgr(img): return cv2.cvtColor(img, cv2.COLOR_RGB2BGR) def test_dispgen(model,imgL,imgR,idx): model.eval() # imgL = torch.FloatTensor(imgL).cuda() # imgR = torch.FloatTensor(imgR).cuda() imgL = imresize(imgL,(368,1232)) imgR = imresize(imgR,(368,1232)) imgL=imgL.astype(np.float32)/256 imgR=imgR.astype(np.float32)/256 imgL = imgL.transpose(2,0,1) imgR = imgR.transpose(2,0,1) imgL=imgL.reshape(1,3,368,1232) imgR=imgR.reshape(1,3,368,1232) imgL = Variable(torch.FloatTensor(imgL).cuda()) imgR = Variable(torch.FloatTensor(imgR).cuda()) with torch.no_grad(): output = model(imgL,imgR) output = torch.squeeze(output) pred_disp = output.data.cpu().numpy() display_save(imgL,imgR,pred_disp,idx) return pred_disp def display_save(imgL,imgR,dispL,inx): import os import skimage import skimage.io import skimage.transform # output_dir='output_eval_disp' output_dir=argsglb.output_dir plt.clf() img_utils.imshow(imgL,sp=221,title='Left') img_utils.imshow(imgR,222,'Right') img_utils.imshow(dispL.astype('uint16'),223,'Disp(est)') # img_utils.imshow(dispL_GT.astype('uint16'),224,'Disp(GT)') fname=os.path.join(output_dir,'psmnet_all_{}'.format(inx)) plt.savefig(fname,bbox_inches='tight') fname=os.path.join(output_dir,'psmnet_disp_{}.png'.format(inx)) # skimage.io.imsave(fname,(dispL.squeeze()*256).astype('uint16')) return 0
2,396
error
#!/usr/bin/env python3 # # Copyright (c) 2017 Intel Corporation # # SPDX-License-Identifier: Apache-2.0 """ gperf C file post-processor We use gperf to build up a perfect hashtable of pointer values. The way gperf does this is to create a table 'wordlist' indexed by a string representation of a pointer address, and then doing memcmp() on a string passed in for comparison We are exclusively working with 4-byte pointer values. This script adjusts the generated code so that we work with pointers directly and not strings. This saves a considerable amount of space. """ import sys import argparse import os import re from packaging import version # --- debug stuff --- def debug(text): if not args.verbose: return sys.stdout.write(os.path.basename(sys.argv[0]) + ": " + text + "\n") def METHOD_NAME(text): sys.exit(os.path.basename(sys.argv[0]) + " ERROR: " + text) def warn(text): sys.stdout.write( os.path.basename( sys.argv[0]) + " WARNING: " + text + "\n") def reformat_str(match_obj): addr_str = match_obj.group(0) # Nip quotes addr_str = addr_str[1:-1] addr_vals = [0, 0, 0, 0, 0, 0, 0 , 0] ctr = 7 i = 0 while True: if i >= len(addr_str): break if addr_str[i] == "\\": if addr_str[i + 1].isdigit(): # Octal escape sequence val_str = addr_str[i + 1:i + 4] addr_vals[ctr] = int(val_str, 8) i += 4 else: # Char value that had to be escaped by C string rules addr_vals[ctr] = ord(addr_str[i + 1]) i += 2 else: addr_vals[ctr] = ord(addr_str[i]) i += 1 ctr -= 1 return "(char *)0x%02x%02x%02x%02x%02x%02x%02x%02x" % tuple(addr_vals) def process_line(line, fp): if line.startswith("#"): fp.write(line) return # Set the lookup function to static inline so it gets rolled into # z_object_find(), nothing else will use it if re.search(args.pattern + " [*]$", line): fp.write("static inline " + line) return m = re.search("gperf version (.*) [*][/]$", line) if m: v = version.parse(m.groups()[0]) v_lo = version.parse("3.0") v_hi = version.parse("3.1") if (v < v_lo or v > v_hi): warn("gperf %s is not tested, versions %s through %s supported" % (v, v_lo, v_hi)) # Replace length lookups with constant len since we're always # looking at pointers line = re.sub(r'lengthtable\[key\]', r'sizeof(void *)', line) # Empty wordlist entries to have NULLs instead of "" line = re.sub(r'[{]["]["][}]', r'{}', line) # Suppress a compiler warning since this table is no longer necessary line = re.sub(r'static unsigned char lengthtable', r'static unsigned char __unused lengthtable', line) # drop all use of register keyword, let compiler figure that out, # we have to do this since we change stuff to take the address of some # parameters line = re.sub(r'register', r'', line) # Hashing the address of the string line = re.sub(r"hash [(]str, len[)]", r"hash((const char *)&str, len)", line) # Just compare pointers directly instead of using memcmp if re.search("if [(][*]str", line): fp.write(" if (str == s)\n") return # Take the strings with the binary information for the pointer values, # and just turn them into pointers line = re.sub(r'["].*["]', reformat_str, line) fp.write(line) def parse_args(): global args parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, allow_abbrev=False) parser.add_argument("-i", "--input", required=True, help="Input C file from gperf") parser.add_argument("-o", "--output", required=True, help="Output C file with processing done") parser.add_argument("-p", "--pattern", required=True, help="Search pattern for objects") parser.add_argument("-v", "--verbose", action="store_true", help="Print extra debugging information") args = parser.parse_args() if "VERBOSE" in os.environ: args.verbose = 1 def main(): parse_args() with open(args.input, "r") as in_fp, open(args.output, "w") as out_fp: for line in in_fp.readlines(): process_line(line, out_fp) if __name__ == "__main__": main()
2,397
id for
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the Apache 2.0 License. import infra.e2e_args import infra.network import infra.proc import infra.commit import http import cimetrics.upload from concurrent import futures from infra.log_capture import flush_info from infra.snp import IS_SNP import infra.jwt_issuer import time from loguru import logger as LOG DEFAULT_TIMEOUT_S = 10 if IS_SNP else 5 def submit_range(primary, id_pattern, start, end, format_width): LOG.info(f"Starting submission of {start:>{format_width}} to {end:>{format_width}}") def METHOD_NAME(i): return id_pattern[i % len(id_pattern)] first_seqno = None last_seqno = None view = None seqno = None with primary.client("user0") as c: for i in range(start, end): idx = METHOD_NAME(i) msg = f"Unique message {i}" r = c.post( "/app/log/public", { "id": idx, "msg": msg, }, # Print logs for every 1000th submission, to show progress log_capture=None if i % 1000 == 500 else [], ) assert r.status_code == http.HTTPStatus.OK seqno = r.seqno view = r.view if first_seqno is None: first_seqno = seqno last_seqno = seqno return (first_seqno, view, last_seqno) def get_all_entries( client, target_id, from_seqno=None, to_seqno=None, timeout=DEFAULT_TIMEOUT_S, log_on_success=False, headers=None, ): LOG.info( f"Getting historical entries{f' from {from_seqno}' if from_seqno is not None else ''}{f' to {to_seqno}' if to_seqno is not None else ''} for id {target_id}" ) logs = None if log_on_success else [] start_time = time.time() end_time = start_time + timeout entries = [] path = f"/app/log/public/historical/range?id={target_id}" if from_seqno is not None: path += f"&from_seqno={from_seqno}" if to_seqno is not None: path += f"&to_seqno={to_seqno}" while time.time() < end_time: r = client.get(path, headers=headers or {}) # , log_capture=logs) if r.status_code == http.HTTPStatus.OK: j_body = r.body.json() entries += j_body["entries"] if "@nextLink" in j_body: path = j_body["@nextLink"] continue else: # No @nextLink means we've reached end of range duration = time.time() - start_time LOG.info(f"Done! Fetched {len(entries)} entries in {duration:0.2f}s") return entries, duration elif r.status_code == http.HTTPStatus.ACCEPTED: # Ignore retry-after header, retry soon time.sleep(0.1) continue else: LOG.error("Printing historical/range logs on unexpected status") flush_info(logs, None) raise ValueError( f""" Unexpected status code from historical range query: {r.status_code} {r.body} """ ) LOG.error("Printing historical/range logs on timeout") flush_info(logs, None) raise TimeoutError(f"Historical range not available after {timeout}s") def test_historical_query_range(network, args): id_a = 2 id_b = 3 id_c = 4 # NB: Because we submit from multiple concurrent threads, the actual pattern # on the ledger will not match this but will be interleaved. But the final # ratio of transactions will match this id_pattern = [id_a, id_a, id_a, id_b, id_b, id_c] n_entries = 30000 format_width = len(str(n_entries)) jwt_issuer = infra.jwt_issuer.JwtIssuer() jwt_issuer.register(network) jwt = jwt_issuer.issue_jwt() primary, _ = network.find_primary() # Submit many transactions, overwriting the same IDs LOG.info(f"Submitting {n_entries} entries") submissions_per_job = 1000 assigned = 0 fs = [] with futures.ThreadPoolExecutor() as executor: while assigned < n_entries: start = assigned end = min(n_entries, assigned + submissions_per_job) fs.append( executor.submit( submit_range, primary, id_pattern, start, end, format_width ) ) assigned = end results = [f.result() for f in fs] first_seqno = min(res[0] for res in results) view = max(res[1] for res in results) last_seqno = max(res[2] for res in results) with primary.client("user0") as c: infra.commit.wait_for_commit(c, seqno=last_seqno, view=view, timeout=3) LOG.info( f"Total ledger contains {last_seqno} entries, of which we expect our transactions to be spread over a range of ~{last_seqno - first_seqno} transactions" ) # Total fetch time depends on number of entries. We expect to be much faster than this, but # to set a safe timeout allow for a rate as low as 100 fetches per second timeout = n_entries / 100 # Ensure all nodes have reached committed state before querying a backup for historical state network.wait_for_all_nodes_to_commit(primary=primary) entries = {} node = network.find_node_by_role(role=infra.network.NodeRole.BACKUP, log_capture=[]) with node.client(common_headers={"authorization": f"Bearer {jwt}"}) as c: # Index is currently built lazily to avoid impacting other perf tests using the same app # So pre-fetch to ensure index is fully constructed get_all_entries(c, id_a, timeout=timeout) get_all_entries(c, id_b, timeout=timeout) get_all_entries(c, id_c, timeout=timeout) entries[id_a], duration_a = get_all_entries(c, id_a, timeout=timeout) entries[id_b], duration_b = get_all_entries(c, id_b, timeout=timeout) entries[id_c], duration_c = get_all_entries(c, id_c, timeout=timeout) c.get("/node/memory") id_a_fetch_rate = len(entries[id_a]) / duration_a id_b_fetch_rate = len(entries[id_b]) / duration_b id_c_fetch_rate = len(entries[id_c]) / duration_c average_fetch_rate = (id_a_fetch_rate + id_b_fetch_rate + id_c_fetch_rate) / 3 with cimetrics.upload.metrics(complete=False) as metrics: upload_name = "hist_sgx_cft^" LOG.debug(f"Uploading metric: {upload_name} = {average_fetch_rate}") metrics.put(upload_name, average_fetch_rate) # NB: The similar test in e2e_logging checks correctness, so we make no duplicate # assertions here return network def run(args): with infra.network.network( args.nodes, args.binary_dir, args.debug_nodes, args.perf_nodes, pdb=args.pdb ) as network: network.start_and_open(args) network = test_historical_query_range(network, args) if __name__ == "__main__": def add(parser): pass args = infra.e2e_args.cli_args(add=add) args.package = "samples/apps/logging/liblogging" args.nodes = infra.e2e_args.max_nodes(args, f=0) args.initial_member_count = 1 args.sig_ms_interval = 1000 # Set to cchost default value run(args)
2,398
set up
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from copy import deepcopy from unittest import TestCase from unittest.mock import MagicMock from mmengine.registry import init_default_scope from mmocr.datasets import ConcatDataset, OCRDataset from mmocr.registry import TRANSFORMS class TestConcatDataset(TestCase): @TRANSFORMS.register_module() class MockTransform: def __init__(self, return_value): self.return_value = return_value def __call__(self, *args, **kwargs): return self.return_value def METHOD_NAME(self): init_default_scope('mmocr') dataset = OCRDataset # create dataset_a data_info = dict(filename='img_1.jpg', height=720, width=1280) dataset.parse_data_info = MagicMock(return_value=data_info) self.dataset_a = dataset( data_root=osp.join( osp.dirname(__file__), '../data/det_toy_dataset'), data_prefix=dict(img_path='imgs'), ann_file='textdet_test.json') self.dataset_a_with_pipeline = dataset( data_root=osp.join( osp.dirname(__file__), '../data/det_toy_dataset'), data_prefix=dict(img_path='imgs'), ann_file='textdet_test.json', pipeline=[dict(type='MockTransform', return_value=1)]) # create dataset_b data_info = dict(filename='img_2.jpg', height=720, width=1280) dataset.parse_data_info = MagicMock(return_value=data_info) self.dataset_b = dataset( data_root=osp.join( osp.dirname(__file__), '../data/det_toy_dataset'), data_prefix=dict(img_path='imgs'), ann_file='textdet_test.json') self.dataset_b_with_pipeline = dataset( data_root=osp.join( osp.dirname(__file__), '../data/det_toy_dataset'), data_prefix=dict(img_path='imgs'), ann_file='textdet_test.json', pipeline=[dict(type='MockTransform', return_value=2)]) def test_init(self): with self.assertRaises(TypeError): ConcatDataset(datasets=[0]) with self.assertRaises(ValueError): ConcatDataset( datasets=[ deepcopy(self.dataset_a_with_pipeline), deepcopy(self.dataset_b) ], pipeline=[dict(type='MockTransform', return_value=3)]) with self.assertRaises(ValueError): ConcatDataset( datasets=[ deepcopy(self.dataset_a), deepcopy(self.dataset_b_with_pipeline) ], pipeline=[dict(type='MockTransform', return_value=3)]) with self.assertRaises(ValueError): dataset_a = deepcopy(self.dataset_a) dataset_b = OCRDataset( metainfo=dict(dummy='dummy'), data_root=osp.join( osp.dirname(__file__), '../data/det_toy_dataset'), data_prefix=dict(img_path='imgs'), ann_file='textdet_test.json') ConcatDataset(datasets=[dataset_a, dataset_b]) # test lazy init ConcatDataset( datasets=[deepcopy(self.dataset_a), deepcopy(self.dataset_b)], pipeline=[dict(type='MockTransform', return_value=3)], lazy_init=True) def test_getitem(self): cat_datasets = ConcatDataset( datasets=[deepcopy(self.dataset_a), deepcopy(self.dataset_b)], pipeline=[dict(type='MockTransform', return_value=3)]) for datum in cat_datasets: self.assertEqual(datum, 3) cat_datasets = ConcatDataset( datasets=[ deepcopy(self.dataset_a_with_pipeline), deepcopy(self.dataset_b) ], pipeline=[dict(type='MockTransform', return_value=3)], force_apply=True) for datum in cat_datasets: self.assertEqual(datum, 3) cat_datasets = ConcatDataset(datasets=[ deepcopy(self.dataset_a_with_pipeline), deepcopy(self.dataset_b_with_pipeline) ]) self.assertEqual(cat_datasets[0], 1) self.assertEqual(cat_datasets[-1], 2)
2,399
worker
# Copyright 2009 Brian Quinlan. All Rights Reserved. # Licensed to PSF under a Contributor Agreement. """Implements ThreadPoolExecutor.""" import atexit from concurrent.futures import _base import itertools import Queue as queue import threading import weakref import sys try: from multiprocessing import cpu_count except ImportError: # some platforms don't have multiprocessing def cpu_count(): return None __author__ = 'Brian Quinlan ([email protected])' # Workers are created as daemon threads. This is done to allow the interpreter # to exit when there are still idle threads in a ThreadPoolExecutor's thread # pool (i.e. shutdown() was not called). However, allowing workers to die with # the interpreter has two undesirable properties: # - The workers would still be running during interpreter shutdown, # meaning that they would fail in unpredictable ways. # - The workers could be killed while evaluating a work item, which could # be bad if the callable being evaluated has external side-effects e.g. # writing to a file. # # To work around this problem, an exit handler is installed which tells the # workers to exit when their work queues are empty and then waits until the # threads finish. _threads_queues = weakref.WeakKeyDictionary() _shutdown = False def _python_exit(): global _shutdown _shutdown = True items = list(_threads_queues.items()) if _threads_queues else () for t, q in items: q.put(None) for t, q in items: t.join(sys.maxint) atexit.register(_python_exit) class _WorkItem(object): def __init__(self, future, fn, args, kwargs): self.future = future self.fn = fn self.args = args self.kwargs = kwargs def run(self): if not self.future.set_running_or_notify_cancel(): return try: result = self.fn(*self.args, **self.kwargs) except: e, tb = sys.exc_info()[1:] self.future.set_exception_info(e, tb) else: self.future.set_result(result) def METHOD_NAME(executor_reference, work_queue, initializer, initargs): if initializer is not None: try: initializer(*initargs) except BaseException: _base.LOGGER.critical('Exception in initializer:', exc_info=True) executor = executor_reference() if executor is not None: executor._initializer_failed() return try: while True: work_item = work_queue.get(block=True) if work_item is not None: work_item.run() # Delete references to object. See issue16284 del work_item # attempt to increment idle count executor = executor_reference() if executor is not None: executor._idle_semaphore.release() del executor continue executor = executor_reference() # Exit if: # - The interpreter is shutting down OR # - The executor that owns the worker has been collected OR # - The executor that owns the worker has been shutdown. if _shutdown or executor is None or executor._shutdown: # Notice other workers work_queue.put(None) return del executor except: _base.LOGGER.critical('Exception in worker', exc_info=True) class BrokenThreadPool(_base.BrokenExecutor): """ Raised when a worker thread in a ThreadPoolExecutor failed initializing. """ class ThreadPoolExecutor(_base.Executor): # Used to assign unique thread names when thread_name_prefix is not supplied. _counter = itertools.count().next def __init__(self, max_workers=None, thread_name_prefix='', initializer=None, initargs=()): """Initializes a new ThreadPoolExecutor instance. Args: max_workers: The maximum number of threads that can be used to execute the given calls. thread_name_prefix: An optional name prefix to give our threads. """ if max_workers is None: # Use this number because ThreadPoolExecutor is often # used to overlap I/O instead of CPU work. max_workers = (cpu_count() or 1) * 5 if max_workers <= 0: raise ValueError("max_workers must be greater than 0") self._max_workers = max_workers self._initializer = initializer self._initargs = initargs self._work_queue = queue.Queue() self._idle_semaphore = threading.Semaphore(0) self._threads = set() self._broken = False self._shutdown = False self._shutdown_lock = threading.Lock() self._thread_name_prefix = (thread_name_prefix or ("ThreadPoolExecutor-%d" % self._counter())) def submit(self, fn, *args, **kwargs): with self._shutdown_lock: if self._broken: raise BrokenThreadPool(self._broken) if self._shutdown: raise RuntimeError('cannot schedule new futures after shutdown') f = _base.Future() w = _WorkItem(f, fn, args, kwargs) self._work_queue.put(w) self._adjust_thread_count() return f submit.__doc__ = _base.Executor.submit.__doc__ def _adjust_thread_count(self): # if idle threads are available, don't spin new threads if self._idle_semaphore.acquire(False): return # When the executor gets lost, the weakref callback will wake up # the worker threads. def weakref_cb(_, q=self._work_queue): q.put(None) num_threads = len(self._threads) if num_threads < self._max_workers: thread_name = '%s_%d' % (self._thread_name_prefix or self, num_threads) t = threading.Thread(name=thread_name, target=METHOD_NAME, args=(weakref.ref(self, weakref_cb), self._work_queue, self._initializer, self._initargs)) t.daemon = True t.start() self._threads.add(t) _threads_queues[t] = self._work_queue def _initializer_failed(self): with self._shutdown_lock: self._broken = ('A thread initializer failed, the thread pool ' 'is not usable anymore') # Drain work queue and mark pending futures failed while True: try: work_item = self._work_queue.get_nowait() except queue.Empty: break if work_item is not None: work_item.future.set_exception(BrokenThreadPool(self._broken)) def shutdown(self, wait=True): with self._shutdown_lock: self._shutdown = True self._work_queue.put(None) if wait: for t in self._threads: t.join(sys.maxint) shutdown.__doc__ = _base.Executor.shutdown.__doc__