url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.monotoneOn_of_iteratedDeriv_nonneg
[227, 1]
[250, 17]
change 0 ≤ deriv (f ∘ ofReal') x at H
case intro.intro f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n) F : ℝ → ℝ hFd : Differentiable ℝ F hF : f ∘ ofReal' = ofReal' ∘ F x : ℝ hx✝ : x ∈ interior (Set.Ici 0) hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0 hf' : Differentiable ℂ (deriv f) hx : 0 ≤ ↑x H : 0 ≤ deriv (fun x => f ↑x) x ⊢ 0 ≤ deriv F x
case intro.intro f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n) F : ℝ → ℝ hFd : Differentiable ℝ F hF : f ∘ ofReal' = ofReal' ∘ F x : ℝ hx✝ : x ∈ interior (Set.Ici 0) hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0 hf' : Differentiable ℂ (deriv f) hx : 0 ≤ ↑x H : 0 ≤ deriv (f ∘ ofReal') x ⊢ 0 ≤ deriv F x
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.monotoneOn_of_iteratedDeriv_nonneg
[227, 1]
[250, 17]
erw [hF, deriv.ofReal_comp] at H
case intro.intro f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n) F : ℝ → ℝ hFd : Differentiable ℝ F hF : f ∘ ofReal' = ofReal' ∘ F x : ℝ hx✝ : x ∈ interior (Set.Ici 0) hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0 hf' : Differentiable ℂ (deriv f) hx : 0 ≤ ↑x H : 0 ≤ deriv (f ∘ ofReal') x ⊢ 0 ≤ deriv F x
case intro.intro f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n) F : ℝ → ℝ hFd : Differentiable ℝ F hF : f ∘ ofReal' = ofReal' ∘ F x : ℝ hx✝ : x ∈ interior (Set.Ici 0) hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0 hf' : Differentiable ℂ (deriv f) hx : 0 ≤ ↑x H : 0 ≤ ↑(deriv (fun y => F y) x) ⊢ 0 ≤ deriv F x
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.monotoneOn_of_iteratedDeriv_nonneg
[227, 1]
[250, 17]
norm_cast at H
case intro.intro f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n) F : ℝ → ℝ hFd : Differentiable ℝ F hF : f ∘ ofReal' = ofReal' ∘ F x : ℝ hx✝ : x ∈ interior (Set.Ici 0) hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0 hf' : Differentiable ℂ (deriv f) hx : 0 ≤ ↑x H : 0 ≤ ↑(deriv (fun y => F y) x) ⊢ 0 ≤ deriv F x
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.monotoneOn_of_iteratedDeriv_nonneg
[227, 1]
[250, 17]
refine Complex.ext rfl ?_
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re n : ℕ ⊢ iteratedDeriv n f 0 = ↑(D n)
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re n : ℕ ⊢ (iteratedDeriv n f 0).im = (↑(D n)).im
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.monotoneOn_of_iteratedDeriv_nonneg
[227, 1]
[250, 17]
simp only [ofReal_im]
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re n : ℕ ⊢ (iteratedDeriv n f 0).im = (↑(D n)).im
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re n : ℕ ⊢ (iteratedDeriv n f 0).im = 0
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.monotoneOn_of_iteratedDeriv_nonneg
[227, 1]
[250, 17]
exact (le_def.mp (h n)).2.symm
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re n : ℕ ⊢ (iteratedDeriv n f 0).im = 0
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.monotoneOn_of_iteratedDeriv_nonneg
[227, 1]
[250, 17]
rw [← iteratedDeriv_succ']
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n) F : ℝ → ℝ hFd : Differentiable ℝ F hF : f ∘ ofReal' = ofReal' ∘ F x : ℝ hx : x ∈ interior (Set.Ici 0) n : ℕ ⊢ 0 ≤ iteratedDeriv n (deriv f) 0
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n) F : ℝ → ℝ hFd : Differentiable ℝ F hF : f ∘ ofReal' = ofReal' ∘ F x : ℝ hx : x ∈ interior (Set.Ici 0) n : ℕ ⊢ 0 ≤ iteratedDeriv (n + 1) f 0
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.monotoneOn_of_iteratedDeriv_nonneg
[227, 1]
[250, 17]
exact h (n + 1)
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n) F : ℝ → ℝ hFd : Differentiable ℝ F hF : f ∘ ofReal' = ofReal' ∘ F x : ℝ hx : x ∈ interior (Set.Ici 0) n : ℕ ⊢ 0 ≤ iteratedDeriv (n + 1) f 0
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.monotoneOn_of_iteratedDeriv_nonneg
[227, 1]
[250, 17]
norm_cast
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n) F : ℝ → ℝ hFd : Differentiable ℝ F hF : f ∘ ofReal' = ofReal' ∘ F x : ℝ hx : x ∈ interior (Set.Ici 0) hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0 hf' : Differentiable ℂ (deriv f) ⊢ 0 ≤ ↑x
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n) F : ℝ → ℝ hFd : Differentiable ℝ F hF : f ∘ ofReal' = ofReal' ∘ F x : ℝ hx : x ∈ interior (Set.Ici 0) hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0 hf' : Differentiable ℂ (deriv f) ⊢ 0 ≤ x
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.monotoneOn_of_iteratedDeriv_nonneg
[227, 1]
[250, 17]
simp only [Set.nonempty_Iio, interior_Ici', Set.mem_Ioi] at hx
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n) F : ℝ → ℝ hFd : Differentiable ℝ F hF : f ∘ ofReal' = ofReal' ∘ F x : ℝ hx : x ∈ interior (Set.Ici 0) hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0 hf' : Differentiable ℂ (deriv f) ⊢ 0 ≤ x
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n) F : ℝ → ℝ hFd : Differentiable ℝ F hF : f ∘ ofReal' = ofReal' ∘ F x : ℝ hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0 hf' : Differentiable ℂ (deriv f) hx : 0 < x ⊢ 0 ≤ x
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.monotoneOn_of_iteratedDeriv_nonneg
[227, 1]
[250, 17]
exact hx.le
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0 D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n) F : ℝ → ℝ hFd : Differentiable ℝ F hF : f ∘ ofReal' = ofReal' ∘ F x : ℝ hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0 hf' : Differentiable ℂ (deriv f) hx : 0 < x ⊢ 0 ≤ x
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.at_zero_le_of_iteratedDeriv_nonneg
[255, 1]
[266, 83]
exact sub_nonneg.mp <| nonneg_of_iteratedDeriv_nonneg (hf.sub_const (f 0)) h' hz
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ iteratedDeriv n f 0 z : ℂ hz : 0 ≤ z h' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (fun x => f x - f 0) 0 ⊢ f 0 ≤ f z
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.at_zero_le_of_iteratedDeriv_nonneg
[255, 1]
[266, 83]
cases n with | zero => simp only [iteratedDeriv_zero, sub_self, le_refl] | succ n => specialize h n.succ <| succ_ne_zero n rw [iteratedDeriv_succ'] at h ⊢ convert h using 2 ext w exact deriv_sub_const (f 0)
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ iteratedDeriv n f 0 z : ℂ hz : 0 ≤ z n : ℕ ⊢ 0 ≤ iteratedDeriv n (fun x => f x - f 0) 0
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.at_zero_le_of_iteratedDeriv_nonneg
[255, 1]
[266, 83]
simp only [iteratedDeriv_zero, sub_self, le_refl]
case zero f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ iteratedDeriv n f 0 z : ℂ hz : 0 ≤ z ⊢ 0 ≤ iteratedDeriv 0 (fun x => f x - f 0) 0
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.at_zero_le_of_iteratedDeriv_nonneg
[255, 1]
[266, 83]
specialize h n.succ <| succ_ne_zero n
case succ f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ iteratedDeriv n f 0 z : ℂ hz : 0 ≤ z n : ℕ ⊢ 0 ≤ iteratedDeriv (n + 1) (fun x => f x - f 0) 0
case succ f : ℂ → ℂ hf : Differentiable ℂ f z : ℂ hz : 0 ≤ z n : ℕ h : 0 ≤ iteratedDeriv n.succ f 0 ⊢ 0 ≤ iteratedDeriv (n + 1) (fun x => f x - f 0) 0
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.at_zero_le_of_iteratedDeriv_nonneg
[255, 1]
[266, 83]
rw [iteratedDeriv_succ'] at h ⊢
case succ f : ℂ → ℂ hf : Differentiable ℂ f z : ℂ hz : 0 ≤ z n : ℕ h : 0 ≤ iteratedDeriv n.succ f 0 ⊢ 0 ≤ iteratedDeriv (n + 1) (fun x => f x - f 0) 0
case succ f : ℂ → ℂ hf : Differentiable ℂ f z : ℂ hz : 0 ≤ z n : ℕ h : 0 ≤ iteratedDeriv n (deriv f) 0 ⊢ 0 ≤ iteratedDeriv n (deriv fun x => f x - f 0) 0
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.at_zero_le_of_iteratedDeriv_nonneg
[255, 1]
[266, 83]
convert h using 2
case succ f : ℂ → ℂ hf : Differentiable ℂ f z : ℂ hz : 0 ≤ z n : ℕ h : 0 ≤ iteratedDeriv n (deriv f) 0 ⊢ 0 ≤ iteratedDeriv n (deriv fun x => f x - f 0) 0
case h.e'_4.h.e'_7 f : ℂ → ℂ hf : Differentiable ℂ f z : ℂ hz : 0 ≤ z n : ℕ h : 0 ≤ iteratedDeriv n (deriv f) 0 ⊢ (deriv fun x => f x - f 0) = deriv f
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.at_zero_le_of_iteratedDeriv_nonneg
[255, 1]
[266, 83]
ext w
case h.e'_4.h.e'_7 f : ℂ → ℂ hf : Differentiable ℂ f z : ℂ hz : 0 ≤ z n : ℕ h : 0 ≤ iteratedDeriv n (deriv f) 0 ⊢ (deriv fun x => f x - f 0) = deriv f
case h.e'_4.h.e'_7.h f : ℂ → ℂ hf : Differentiable ℂ f z : ℂ hz : 0 ≤ z n : ℕ h : 0 ≤ iteratedDeriv n (deriv f) 0 w : ℂ ⊢ deriv (fun x => f x - f 0) w = deriv f w
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.at_zero_le_of_iteratedDeriv_nonneg
[255, 1]
[266, 83]
exact deriv_sub_const (f 0)
case h.e'_4.h.e'_7.h f : ℂ → ℂ hf : Differentiable ℂ f z : ℂ hz : 0 ≤ z n : ℕ h : 0 ≤ iteratedDeriv n (deriv f) 0 w : ℂ ⊢ deriv (fun x => f x - f 0) w = deriv f w
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.at_zero_le_of_iteratedDeriv_alternating
[271, 1]
[278, 66]
let F : ℂ → ℂ := fun z ↦ f (-z)
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0 z : ℂ hz : z ≤ 0 ⊢ f 0 ≤ f z
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0 z : ℂ hz : z ≤ 0 F : ℂ → ℂ := fun z => f (-z) ⊢ f 0 ≤ f z
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.at_zero_le_of_iteratedDeriv_alternating
[271, 1]
[278, 66]
convert at_zero_le_of_iteratedDeriv_nonneg (f := F) (hf.comp <| differentiable_neg) (fun n hn ↦ ?_) (neg_nonneg.mpr hz) using 1
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0 z : ℂ hz : z ≤ 0 F : ℂ → ℂ := fun z => f (-z) ⊢ f 0 ≤ f z
case h.e'_3 f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0 z : ℂ hz : z ≤ 0 F : ℂ → ℂ := fun z => f (-z) ⊢ f 0 = F 0 case h.e'_4 f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0 z : ℂ hz : z ≤ 0 F : ℂ → ℂ := fun z => f (-z) ⊢ f z = F (-z) f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0 z : ℂ hz : z ≤ 0 F : ℂ → ℂ := fun z => f (-z) n : ℕ hn : n ≠ 0 ⊢ 0 ≤ iteratedDeriv n F 0
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.at_zero_le_of_iteratedDeriv_alternating
[271, 1]
[278, 66]
simp only [F, neg_zero]
case h.e'_3 f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0 z : ℂ hz : z ≤ 0 F : ℂ → ℂ := fun z => f (-z) ⊢ f 0 = F 0
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.at_zero_le_of_iteratedDeriv_alternating
[271, 1]
[278, 66]
simp only [F, neg_neg]
case h.e'_4 f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0 z : ℂ hz : z ≤ 0 F : ℂ → ℂ := fun z => f (-z) ⊢ f z = F (-z)
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.at_zero_le_of_iteratedDeriv_alternating
[271, 1]
[278, 66]
simpa only [F, iteratedDeriv_comp_neg, neg_zero] using h n hn
f : ℂ → ℂ hf : Differentiable ℂ f h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0 z : ℂ hz : z ≤ 0 F : ℂ → ℂ := fun z => f (-z) n : ℕ hn : n ≠ 0 ⊢ 0 ≤ iteratedDeriv n F 0
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
Complex.cpow_natCast_add_one_ne_zero
[8, 1]
[9, 67]
norm_cast at H
n : ℕ z : ℂ H : ↑n + 1 = 0 ∧ z ≠ 0 ⊢ False
n : ℕ z : ℂ H : False ∧ ¬z = 0 ⊢ False
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
Complex.cpow_natCast_add_one_ne_zero
[8, 1]
[9, 67]
exact H.1
n : ℕ z : ℂ H : False ∧ ¬z = 0 ⊢ False
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.abscissaOfAbsConv_binop_le
[13, 1]
[24, 59]
refine abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable' fun x hx ↦ hF ?_ ?_
F : (ℕ → ℂ) → (ℕ → ℂ) → ℕ → ℂ hF : ∀ {f g : ℕ → ℂ} {s : ℂ}, LSeriesSummable f s → LSeriesSummable g s → LSeriesSummable (F f g) s f g : ℕ → ℂ ⊢ abscissaOfAbsConv (F f g) ≤ max (abscissaOfAbsConv f) (abscissaOfAbsConv g)
case refine_1 F : (ℕ → ℂ) → (ℕ → ℂ) → ℕ → ℂ hF : ∀ {f g : ℕ → ℂ} {s : ℂ}, LSeriesSummable f s → LSeriesSummable g s → LSeriesSummable (F f g) s f g : ℕ → ℂ x : ℝ hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < ↑x ⊢ LSeriesSummable f ↑x case refine_2 F : (ℕ → ℂ) → (ℕ → ℂ) → ℕ → ℂ hF : ∀ {f g : ℕ → ℂ} {s : ℂ}, LSeriesSummable f s → LSeriesSummable g s → LSeriesSummable (F f g) s f g : ℕ → ℂ x : ℝ hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < ↑x ⊢ LSeriesSummable g ↑x
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.abscissaOfAbsConv_binop_le
[13, 1]
[24, 59]
exact LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm ▸ (le_max_left ..).trans_lt hx
case refine_1 F : (ℕ → ℂ) → (ℕ → ℂ) → ℕ → ℂ hF : ∀ {f g : ℕ → ℂ} {s : ℂ}, LSeriesSummable f s → LSeriesSummable g s → LSeriesSummable (F f g) s f g : ℕ → ℂ x : ℝ hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < ↑x ⊢ LSeriesSummable f ↑x
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.abscissaOfAbsConv_binop_le
[13, 1]
[24, 59]
exact LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm ▸ (le_max_right ..).trans_lt hx
case refine_2 F : (ℕ → ℂ) → (ℕ → ℂ) → ℕ → ℂ hF : ∀ {f g : ℕ → ℂ} {s : ℂ}, LSeriesSummable f s → LSeriesSummable g s → LSeriesSummable (F f g) s f g : ℕ → ℂ x : ℝ hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < ↑x ⊢ LSeriesSummable g ↑x
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
foo
[38, 1]
[52, 78]
have Hm : (0 : ℝ) ≤ m := m.cast_nonneg
m n : ℕ z : ℂ x : ℝ ⊢ (↑n + 1) ^ ↑x * (z / ↑m ^ ↑x) = z / (↑m / (↑n + 1)) ^ ↑x
m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m ⊢ (↑n + 1) ^ ↑x * (z / ↑m ^ ↑x) = z / (↑m / (↑n + 1)) ^ ↑x
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
foo
[38, 1]
[52, 78]
have Hn : (0 : ℝ) ≤ (n + 1 : ℝ)⁻¹ := by positivity
m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m ⊢ (↑n + 1) ^ ↑x * (z / ↑m ^ ↑x) = z / (↑m / (↑n + 1)) ^ ↑x
m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ (↑n + 1) ^ ↑x * (z / ↑m ^ ↑x) = z / (↑m / (↑n + 1)) ^ ↑x
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
foo
[38, 1]
[52, 78]
rw [← mul_div_assoc, mul_comm, div_eq_mul_inv z, mul_div_assoc]
m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ (↑n + 1) ^ ↑x * (z / ↑m ^ ↑x) = z / (↑m / (↑n + 1)) ^ ↑x
m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ z * ((↑n + 1) ^ ↑x / ↑m ^ ↑x) = z * ((↑m / (↑n + 1)) ^ ↑x)⁻¹
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
foo
[38, 1]
[52, 78]
congr
m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ z * ((↑n + 1) ^ ↑x / ↑m ^ ↑x) = z * ((↑m / (↑n + 1)) ^ ↑x)⁻¹
case e_a m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ (↑n + 1) ^ ↑x / ↑m ^ ↑x = ((↑m / (↑n + 1)) ^ ↑x)⁻¹
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
foo
[38, 1]
[52, 78]
simp_rw [div_eq_mul_inv]
case e_a m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ (↑n + 1) ^ ↑x / ↑m ^ ↑x = ((↑m / (↑n + 1)) ^ ↑x)⁻¹
case e_a m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ (↑n + 1) ^ ↑x * (↑m ^ ↑x)⁻¹ = ((↑m * (↑n + 1)⁻¹) ^ ↑x)⁻¹
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
foo
[38, 1]
[52, 78]
rw [show (n + 1 : ℂ)⁻¹ = (n + 1 : ℝ)⁻¹ by simp only [ofReal_inv, ofReal_add, ofReal_natCast, ofReal_one], show (n + 1 : ℂ) = (n + 1 : ℝ) by norm_cast, show (m : ℂ) = (m : ℝ) by norm_cast, mul_cpow_ofReal_nonneg Hm Hn, mul_inv, mul_comm]
case e_a m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ (↑n + 1) ^ ↑x * (↑m ^ ↑x)⁻¹ = ((↑m * (↑n + 1)⁻¹) ^ ↑x)⁻¹
case e_a m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ (↑↑m ^ ↑x)⁻¹ * ↑(↑n + 1) ^ ↑x = (↑↑m ^ ↑x)⁻¹ * (↑(↑n + 1)⁻¹ ^ ↑x)⁻¹
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
foo
[38, 1]
[52, 78]
congr
case e_a m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ (↑↑m ^ ↑x)⁻¹ * ↑(↑n + 1) ^ ↑x = (↑↑m ^ ↑x)⁻¹ * (↑(↑n + 1)⁻¹ ^ ↑x)⁻¹
case e_a.e_a m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ ↑(↑n + 1) ^ ↑x = (↑(↑n + 1)⁻¹ ^ ↑x)⁻¹
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
foo
[38, 1]
[52, 78]
rw [← cpow_neg, show (-x : ℂ) = (-1 : ℝ) * x by simp only [ofReal_neg, ofReal_one, neg_mul, one_mul], cpow_mul_ofReal_nonneg Hn, Real.rpow_neg_one, inv_inv]
case e_a.e_a m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ ↑(↑n + 1) ^ ↑x = (↑(↑n + 1)⁻¹ ^ ↑x)⁻¹
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
foo
[38, 1]
[52, 78]
positivity
m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m ⊢ 0 ≤ (↑n + 1)⁻¹
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
foo
[38, 1]
[52, 78]
simp only [ofReal_inv, ofReal_add, ofReal_natCast, ofReal_one]
m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ (↑n + 1)⁻¹ = ↑(↑n + 1)⁻¹
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
foo
[38, 1]
[52, 78]
norm_cast
m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ ↑n + 1 = ↑(↑n + 1)
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
foo
[38, 1]
[52, 78]
norm_cast
m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ ↑m = ↑↑m
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
foo
[38, 1]
[52, 78]
simp only [ofReal_neg, ofReal_one, neg_mul, one_mul]
m n : ℕ z : ℂ x : ℝ Hm : 0 ≤ ↑m Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ -↑x = ↑(-1) * ↑x
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.pow_mul_term_eq
[54, 1]
[58, 20]
simp only [term, add_eq_zero, one_ne_zero, and_false, ↓reduceIte, Nat.cast_add, Nat.cast_one, mul_div_assoc', ne_eq, cpow_natCast_add_one_ne_zero n _, not_false_eq_true, div_eq_iff, mul_comm (f _)]
f : ℕ → ℂ s : ℂ n : ℕ ⊢ (↑n + 1) ^ s * term f s (n + 1) = f (n + 1)
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
obtain ⟨y, hay, hyt⟩ := exists_between ha
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1)))
case intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : EReal hay : abscissaOfAbsConv f < y hyt : y < ⊤ ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1)))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
lift y to ℝ using ⟨hyt.ne, ((OrderBot.bot_le _).trans_lt hay).ne'⟩
case intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : EReal hay : abscissaOfAbsConv f < y hyt : y < ⊤ ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1)))
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1)))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
let F := fun (x : ℝ) ↦ {m | n + 1 < m}.indicator (fun m ↦ f m / (m / (n + 1) : ℂ) ^ (x : ℂ))
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1)))
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1)))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
have hF₀ (x : ℝ) {m : ℕ} (hm : m ≤ n + 1) : F x m = 0 := by simp only [Set.mem_setOf_eq, not_lt_of_le hm, not_false_eq_true, Set.indicator_of_not_mem, F]
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1)))
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1)))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
have hs {x : ℝ} (hx : x ≥ y) : Summable fun m ↦ (n + 1) ^ (x : ℂ) * term f x m := by refine (summable_mul_left_iff <| cpow_natCast_add_one_ne_zero n _).mpr <| LSeriesSummable_of_abscissaOfAbsConv_lt_re ?_ simpa only [ofReal_re] using hay.trans_le <| EReal.coe_le_coe_iff.mpr hx
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1)))
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1)))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
conv => enter [3, 1]; rw [← add_zero (f _)]
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1)))
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1) + 0))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
refine Tendsto.congr' (eventuallyEq_of_mem (s := {x | y ≤ x}) (mem_atTop y) key).symm <| tendsto_const_nhds.add ?_
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m ⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1) + 0))
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m ⊢ Tendsto (fun x => ∑' (m : ℕ), F x m) atTop (nhds 0)
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
rw [show (0 : ℂ) = tsum (fun _ : ℕ ↦ 0) from tsum_zero.symm]
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) ⊢ Tendsto (fun x => ∑' (m : ℕ), F x m) atTop (nhds 0)
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) ⊢ Tendsto (fun x => ∑' (m : ℕ), F x m) atTop (nhds (∑' (x : ℕ), 0))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
refine tendsto_tsum_of_dominated_convergence hys.norm hc <| eventually_iff.mpr ?_
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) ⊢ Tendsto (fun x => ∑' (m : ℕ), F x m) atTop (nhds (∑' (x : ℕ), 0))
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) ⊢ {x | ∀ (k : ℕ), ‖F x k‖ ≤ ‖F y k‖} ∈ atTop
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
filter_upwards [mem_atTop y] with y' hy' k
case intro.intro.intro f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) ⊢ {x | ∀ (k : ℕ), ‖F x k‖ ≤ ‖F y k‖} ∈ atTop
case h f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ ⊢ ‖F y' k‖ ≤ ‖F y k‖
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
rcases lt_or_le (n + 1) k with H | H
case h f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ ⊢ ‖F y' k‖ ≤ ‖F y k‖
case h.inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ H : n + 1 < k ⊢ ‖F y' k‖ ≤ ‖F y k‖ case h.inr f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ H : k ≤ n + 1 ⊢ ‖F y' k‖ ≤ ‖F y k‖
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
simp only [Set.mem_setOf_eq, not_lt_of_le hm, not_false_eq_true, Set.indicator_of_not_mem, F]
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x x : ℝ m : ℕ hm : m ≤ n + 1 ⊢ F x m = 0
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
rcases lt_trichotomy m (n + 1) with H | rfl | H
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 x : ℝ m : ℕ hm : m ≠ n + 1 ⊢ F x m = (↑n + 1) ^ ↑x * term f (↑x) m
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 x : ℝ m : ℕ hm : m ≠ n + 1 H : m < n + 1 ⊢ F x m = (↑n + 1) ^ ↑x * term f (↑x) m case inr.inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 x : ℝ hm : n + 1 ≠ n + 1 ⊢ F x (n + 1) = (↑n + 1) ^ ↑x * term f (↑x) (n + 1) case inr.inr f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 x : ℝ m : ℕ hm : m ≠ n + 1 H : n + 1 < m ⊢ F x m = (↑n + 1) ^ ↑x * term f (↑x) m
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
simp only [Set.mem_setOf_eq, Nat.not_lt_of_gt H, not_false_eq_true, Set.indicator_of_not_mem, term, h m <| Nat.lt_succ_iff.mp H, zero_div, ite_self, mul_zero, F]
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 x : ℝ m : ℕ hm : m ≠ n + 1 H : m < n + 1 ⊢ F x m = (↑n + 1) ^ ↑x * term f (↑x) m
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
exact (hm rfl).elim
case inr.inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 x : ℝ hm : n + 1 ≠ n + 1 ⊢ F x (n + 1) = (↑n + 1) ^ ↑x * term f (↑x) (n + 1)
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
simp only [Set.mem_setOf_eq, H, Set.indicator_of_mem, term, (n.zero_lt_succ.trans H).ne', ↓reduceIte, foo, F]
case inr.inr f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 x : ℝ m : ℕ hm : m ≠ n + 1 H : n + 1 < m ⊢ F x m = (↑n + 1) ^ ↑x * term f (↑x) m
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
refine (summable_mul_left_iff <| cpow_natCast_add_one_ne_zero n _).mpr <| LSeriesSummable_of_abscissaOfAbsConv_lt_re ?_
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y ⊢ Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y ⊢ abscissaOfAbsConv f < ↑(↑x).re
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
simpa only [ofReal_re] using hay.trans_le <| EReal.coe_le_coe_iff.mpr hx
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y ⊢ abscissaOfAbsConv f < ↑(↑x).re
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
intro x hx
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m ⊢ ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y ⊢ (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
rw [LSeries, ← tsum_mul_left, tsum_eq_add_tsum_ite (hs hx) (n + 1)]
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y ⊢ (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y ⊢ ((↑n + 1) ^ ↑x * term f (↑x) (n + 1) + ∑' (n_1 : ℕ), if n_1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) n_1) = f (n + 1) + ∑' (m : ℕ), F x m
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
congr
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y ⊢ ((↑n + 1) ^ ↑x * term f (↑x) (n + 1) + ∑' (n_1 : ℕ), if n_1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) n_1) = f (n + 1) + ∑' (m : ℕ), F x m
case e_a f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y ⊢ (↑n + 1) ^ ↑x * term f (↑x) (n + 1) = f (n + 1) case e_a.e_f f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y ⊢ (fun n_1 => if n_1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) n_1) = fun m => F x m
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
exact pow_mul_term_eq f x n
case e_a f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y ⊢ (↑n + 1) ^ ↑x * term f (↑x) (n + 1) = f (n + 1)
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
ext m
case e_a.e_f f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y ⊢ (fun n_1 => if n_1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) n_1) = fun m => F x m
case e_a.e_f.h f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y m : ℕ ⊢ (if m = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) m) = F x m
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
rcases eq_or_ne m (n + 1) with rfl | hm
case e_a.e_f.h f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y m : ℕ ⊢ (if m = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) m) = F x m
case e_a.e_f.h.inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y ⊢ (if n + 1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) (n + 1)) = F x (n + 1) case e_a.e_f.h.inr f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y m : ℕ hm : m ≠ n + 1 ⊢ (if m = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) m) = F x m
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
simp only [↓reduceIte, hF₀ x le_rfl]
case e_a.e_f.h.inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y ⊢ (if n + 1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) (n + 1)) = F x (n + 1)
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
simp only [hm, ↓reduceIte, ne_eq, not_false_eq_true, hF]
case e_a.e_f.h.inr f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m x : ℝ hx : x ≥ y m : ℕ hm : m ≠ n + 1 ⊢ (if m = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) m) = F x m
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
refine ((hs le_rfl).indicator {m | n + 1 < m}).congr fun m ↦ ?_
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m ⊢ Summable (F y)
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m m : ℕ ⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
by_cases hm : n + 1 < m
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m m : ℕ ⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m
case pos f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m m : ℕ hm : n + 1 < m ⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m case neg f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m m : ℕ hm : ¬n + 1 < m ⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
simp only [Set.mem_setOf_eq, hm, Set.indicator_of_mem, ne_eq, hm.ne', not_false_eq_true, hF]
case pos f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m m : ℕ hm : n + 1 < m ⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
simp only [Set.mem_setOf_eq, hm, not_false_eq_true, Set.indicator_of_not_mem, hF₀ _ (le_of_not_lt hm)]
case neg f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m m : ℕ hm : ¬n + 1 < m ⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
rcases lt_or_le (n + 1) k with H | H
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ ⊢ Tendsto (fun x => F x k) atTop (nhds 0)
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k ⊢ Tendsto (fun x => F x k) atTop (nhds 0) case inr f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : k ≤ n + 1 ⊢ Tendsto (fun x => F x k) atTop (nhds 0)
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
have H₀ : (0 : ℝ) ≤ k / (n + 1) := by positivity
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k ⊢ Tendsto (fun x => F x k) atTop (nhds 0)
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) ⊢ Tendsto (fun x => F x k) atTop (nhds 0)
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
have H₀' : (0 : ℝ) ≤ (n + 1) / k := by positivity
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) ⊢ Tendsto (fun x => F x k) atTop (nhds 0)
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k ⊢ Tendsto (fun x => F x k) atTop (nhds 0)
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
have H₁ : (k / (n + 1) : ℂ) = (k / (n + 1) : ℝ) := by simp only [ofReal_div, ofReal_natCast, ofReal_add, ofReal_one]
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k ⊢ Tendsto (fun x => F x k) atTop (nhds 0)
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1)) ⊢ Tendsto (fun x => F x k) atTop (nhds 0)
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
have H₂ : (n + 1) / k < (1 : ℝ) := (div_lt_one <| by exact_mod_cast n.succ_pos.trans H).mpr <| by exact_mod_cast H
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1)) ⊢ Tendsto (fun x => F x k) atTop (nhds 0)
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1)) H₂ : (↑n + 1) / ↑k < 1 ⊢ Tendsto (fun x => F x k) atTop (nhds 0)
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
simp only [Set.mem_setOf_eq, H, Set.indicator_of_mem, F]
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1)) H₂ : (↑n + 1) / ↑k < 1 ⊢ Tendsto (fun x => F x k) atTop (nhds 0)
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1)) H₂ : (↑n + 1) / ↑k < 1 ⊢ Tendsto (fun x => f k / (↑k / (↑n + 1)) ^ ↑x) atTop (nhds 0)
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
conv => enter [1, x] rw [div_eq_mul_inv, H₁, ← ofReal_cpow H₀, ← ofReal_inv, ← Real.inv_rpow H₀, inv_div]
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1)) H₂ : (↑n + 1) / ↑k < 1 ⊢ Tendsto (fun x => f k / (↑k / (↑n + 1)) ^ ↑x) atTop (nhds 0)
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1)) H₂ : (↑n + 1) / ↑k < 1 ⊢ Tendsto (fun x => f k * ↑(((↑n + 1) / ↑k) ^ x)) atTop (nhds 0)
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
conv => enter [3, 1]; rw [← mul_zero (f k)]
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1)) H₂ : (↑n + 1) / ↑k < 1 ⊢ Tendsto (fun x => f k * ↑(((↑n + 1) / ↑k) ^ x)) atTop (nhds 0)
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1)) H₂ : (↑n + 1) / ↑k < 1 ⊢ Tendsto (fun x => f k * ↑(((↑n + 1) / ↑k) ^ x)) atTop (nhds (f k * 0))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
exact (tendsto_rpow_atTop_of_base_lt_one _ (neg_one_lt_zero.trans_le H₀') H₂).ofReal.const_mul _
case inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1)) H₂ : (↑n + 1) / ↑k < 1 ⊢ Tendsto (fun x => f k * ↑(((↑n + 1) / ↑k) ^ x)) atTop (nhds (f k * 0))
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
positivity
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k ⊢ 0 ≤ ↑k / (↑n + 1)
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
positivity
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) ⊢ 0 ≤ (↑n + 1) / ↑k
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
simp only [ofReal_div, ofReal_natCast, ofReal_add, ofReal_one]
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k ⊢ ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
exact_mod_cast n.succ_pos.trans H
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1)) ⊢ 0 < ↑k
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
exact_mod_cast H
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : n + 1 < k H₀ : 0 ≤ ↑k / (↑n + 1) H₀' : 0 ≤ (↑n + 1) / ↑k H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1)) ⊢ ↑n + 1 < ↑k
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
simp only [hF₀ _ H, tendsto_const_nhds_iff]
case inr f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) k : ℕ H : k ≤ n + 1 ⊢ Tendsto (fun x => F x k) atTop (nhds 0)
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
simp only [Set.mem_setOf_eq, H, Set.indicator_of_mem, norm_div, Complex.norm_eq_abs, abs_cpow_real, map_div₀, abs_natCast, F]
case h.inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ H : n + 1 < k ⊢ ‖F y' k‖ ≤ ‖F y k‖
case h.inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ H : n + 1 < k ⊢ Complex.abs (f k) / (↑k / Complex.abs (↑n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / Complex.abs (↑n + 1)) ^ y
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
rw [← Nat.cast_one, ← Nat.cast_add, abs_natCast]
case h.inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ H : n + 1 < k ⊢ Complex.abs (f k) / (↑k / Complex.abs (↑n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / Complex.abs (↑n + 1)) ^ y
case h.inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ H : n + 1 < k ⊢ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
have hkn : 1 ≤ (k / (n + 1 :) : ℝ) := (one_le_div (by positivity)).mpr <| by norm_cast; exact Nat.le_of_succ_le H
case h.inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ H : n + 1 < k ⊢ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y
case h.inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ H : n + 1 < k hkn : 1 ≤ ↑k / ↑(n + 1) ⊢ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
exact div_le_div_of_nonneg_left (Complex.abs.nonneg _) (rpow_pos_of_pos (zero_lt_one.trans_le hkn) _) <| rpow_le_rpow_of_exponent_le hkn hy'
case h.inl f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ H : n + 1 < k hkn : 1 ≤ ↑k / ↑(n + 1) ⊢ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
positivity
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ H : n + 1 < k ⊢ 0 < ↑(n + 1)
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
norm_cast
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ H : n + 1 < k ⊢ ↑(n + 1) ≤ ↑k
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ H : n + 1 < k ⊢ n + 1 ≤ k
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
exact Nat.le_of_succ_le H
f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ H : n + 1 < k ⊢ n + 1 ≤ k
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_pow_mul_atTop
[61, 1]
[132, 44]
simp only [hF₀ _ H, norm_zero, le_refl]
case h.inr f : ℕ → ℂ n : ℕ h : ∀ m ≤ n, f m = 0 ha : abscissaOfAbsConv f < ⊤ y : ℝ hay : abscissaOfAbsConv f < ↑y hyt : ↑y < ⊤ F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0 hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m hys : Summable (F y) hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0) y' : ℝ hy' : y ≤ y' k : ℕ H : k ≤ n + 1 ⊢ ‖F y' k‖ ≤ ‖F y k‖
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_atTop
[135, 1]
[145, 57]
let F (n : ℕ) : ℂ := if n = 0 then 0 else f n
f : ℕ → ℂ ha : abscissaOfAbsConv f < ⊤ ⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1))
f : ℕ → ℂ ha : abscissaOfAbsConv f < ⊤ F : ℕ → ℂ := fun n => if n = 0 then 0 else f n ⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_atTop
[135, 1]
[145, 57]
have hF₀ : F 0 = 0 := rfl
f : ℕ → ℂ ha : abscissaOfAbsConv f < ⊤ F : ℕ → ℂ := fun n => if n = 0 then 0 else f n ⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1))
f : ℕ → ℂ ha : abscissaOfAbsConv f < ⊤ F : ℕ → ℂ := fun n => if n = 0 then 0 else f n hF₀ : F 0 = 0 ⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_atTop
[135, 1]
[145, 57]
have hF {n : ℕ} (hn : n ≠ 0) : F n = f n := by simp only [hn, ↓reduceIte, F]
f : ℕ → ℂ ha : abscissaOfAbsConv f < ⊤ F : ℕ → ℂ := fun n => if n = 0 then 0 else f n hF₀ : F 0 = 0 ⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1))
f : ℕ → ℂ ha : abscissaOfAbsConv f < ⊤ F : ℕ → ℂ := fun n => if n = 0 then 0 else f n hF₀ : F 0 = 0 hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n ⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.tendsto_atTop
[135, 1]
[145, 57]
have ha' : abscissaOfAbsConv F < ⊤ := (abscissaOfAbsConv_congr hF).symm ▸ ha
f : ℕ → ℂ ha : abscissaOfAbsConv f < ⊤ F : ℕ → ℂ := fun n => if n = 0 then 0 else f n hF₀ : F 0 = 0 hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n ⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1))
f : ℕ → ℂ ha : abscissaOfAbsConv f < ⊤ F : ℕ → ℂ := fun n => if n = 0 then 0 else f n hF₀ : F 0 = 0 hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n ha' : abscissaOfAbsConv F < ⊤ ⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1))