url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul_aux
|
[21, 1]
|
[23, 90]
|
rw [mul_comm_div, div_div, ← mul_div_assoc, mul_comm (m : ℂ), natCast_mul_natCast_cpow]
|
a b : ℂ
m n : ℕ
s : ℂ
⊢ a / ↑m ^ s * (b / ↑n ^ s) = a * b / (↑m * ↑n) ^ s
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul
|
[25, 1]
|
[30, 100]
|
rcases eq_or_ne (m * n) 0 with H | H
|
f₁ f₂ f : ℕ → ℂ
m n : ℕ
h : f (m * n) = f₁ m * f₂ n
s : ℂ
⊢ term f s (m * n) = term f₁ s m * term f₂ s n
|
case inl
f₁ f₂ f : ℕ → ℂ
m n : ℕ
h : f (m * n) = f₁ m * f₂ n
s : ℂ
H : m * n = 0
⊢ term f s (m * n) = term f₁ s m * term f₂ s n
case inr
f₁ f₂ f : ℕ → ℂ
m n : ℕ
h : f (m * n) = f₁ m * f₂ n
s : ℂ
H : m * n ≠ 0
⊢ term f s (m * n) = term f₁ s m * term f₂ s n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul
|
[25, 1]
|
[30, 100]
|
rcases mul_eq_zero.mp H with rfl | rfl <;> simp only [term_zero, mul_zero, zero_mul]
|
case inl
f₁ f₂ f : ℕ → ℂ
m n : ℕ
h : f (m * n) = f₁ m * f₂ n
s : ℂ
H : m * n = 0
⊢ term f s (m * n) = term f₁ s m * term f₂ s n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul
|
[25, 1]
|
[30, 100]
|
obtain ⟨hm, hn⟩ := mul_ne_zero_iff.mp H
|
case inr
f₁ f₂ f : ℕ → ℂ
m n : ℕ
h : f (m * n) = f₁ m * f₂ n
s : ℂ
H : m * n ≠ 0
⊢ term f s (m * n) = term f₁ s m * term f₂ s n
|
case inr.intro
f₁ f₂ f : ℕ → ℂ
m n : ℕ
h : f (m * n) = f₁ m * f₂ n
s : ℂ
H : m * n ≠ 0
hm : m ≠ 0
hn : n ≠ 0
⊢ term f s (m * n) = term f₁ s m * term f₂ s n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul
|
[25, 1]
|
[30, 100]
|
simp only [ne_eq, H, not_false_eq_true, term_of_ne_zero, Nat.cast_mul, hm, hn, h, term_mul_aux]
|
case inr.intro
f₁ f₂ f : ℕ → ℂ
m n : ℕ
h : f (m * n) = f₁ m * f₂ n
s : ℂ
H : m * n ≠ 0
hm : m ≠ 0
hn : n ≠ 0
⊢ term f s (m * n) = term f₁ s m * term f₂ s n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_at_one
|
[44, 1]
|
[45, 72]
|
rw [term_of_ne_zero one_ne_zero, h₁, Nat.cast_one, one_cpow, div_one]
|
f : ℕ → ℂ
h₁ : f 1 = 1
s : ℂ
⊢ term f s 1 = 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.toFun_on_nat_map_one
|
[86, 1]
|
[87, 32]
|
simp only [cast_one, map_one]
|
N : ℕ
χ : DirichletCharacter ℂ N
⊢ (fun n => χ ↑n) 1 = 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.toFun_on_nat_map_mul
|
[89, 1]
|
[91, 32]
|
simp only [cast_mul, map_mul]
|
N : ℕ
χ : DirichletCharacter ℂ N
m n : ℕ
⊢ (fun n => χ ↑n) (m * n) = (fun n => χ ↑n) m * (fun n => χ ↑n) n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct
|
[94, 1]
|
[99, 87]
|
refine Tendsto.congr (fun n ↦ Finset.prod_congr rfl fun p hp ↦ ?_) <|
eulerProduct_of_completelyMultiplicative (toFun_on_nat_map_one χ) (toFun_on_nat_map_mul χ) <|
LSeriesSummable_of_one_lt_re χ hs
|
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
⊢ Tendsto (fun n => ∏ p ∈ n.primesBelow, (1 - χ ↑p * ↑p ^ (-s))⁻¹) atTop (𝓝 (L (fun n => χ ↑n) s))
|
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
n p : ℕ
hp : p ∈ n.primesBelow
⊢ (1 - term (fun n => χ ↑n) s p)⁻¹ = (1 - χ ↑p * ↑p ^ (-s))⁻¹
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct
|
[94, 1]
|
[99, 87]
|
rw [term_of_ne_zero (prime_of_mem_primesBelow hp).ne_zero, cpow_neg, div_eq_mul_inv]
|
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
n p : ℕ
hp : p ∈ n.primesBelow
⊢ (1 - term (fun n => χ ↑n) s p)⁻¹ = (1 - χ ↑p * ↑p ^ (-s))⁻¹
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[102, 1]
|
[110, 61]
|
rw [LSeries]
|
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
⊢ cexp (∑' (p : Primes), -(1 - χ ↑↑p * ↑↑p ^ (-s)).log) = L (fun n => χ ↑n) s
|
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
⊢ cexp (∑' (p : Primes), -(1 - χ ↑↑p * ↑↑p ^ (-s)).log) = ∑' (n : ℕ), term (fun n => χ ↑n) s n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[102, 1]
|
[110, 61]
|
convert exp_sum_primes_log_eq_tsum (f := dirichletSummandHom χ <| ne_zero_of_one_lt_re hs) <|
summable_dirichletSummand χ hs
|
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
⊢ cexp (∑' (p : Primes), -(1 - χ ↑↑p * ↑↑p ^ (-s)).log) = ∑' (n : ℕ), term (fun n => χ ↑n) s n
|
case h.e'_3.h.e'_5.h.h.e
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ : ℕ
⊢ term (fun n => χ ↑n) s = ⇑(dirichletSummandHom χ ⋯)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[102, 1]
|
[110, 61]
|
ext n
|
case h.e'_3.h.e'_5.h.h.e
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ : ℕ
⊢ term (fun n => χ ↑n) s = ⇑(dirichletSummandHom χ ⋯)
|
case h.e'_3.h.e'_5.h.h.e.h
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ n : ℕ
⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[102, 1]
|
[110, 61]
|
rcases eq_or_ne n 0 with rfl | hn
|
case h.e'_3.h.e'_5.h.h.e.h
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ n : ℕ
⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n
|
case h.e'_3.h.e'_5.h.h.e.h.inl
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ : ℕ
⊢ term (fun n => χ ↑n) s 0 = (dirichletSummandHom χ ⋯) 0
case h.e'_3.h.e'_5.h.h.e.h.inr
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ n : ℕ
hn : n ≠ 0
⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[102, 1]
|
[110, 61]
|
simp only [term_zero, map_zero]
|
case h.e'_3.h.e'_5.h.h.e.h.inl
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ : ℕ
⊢ term (fun n => χ ↑n) s 0 = (dirichletSummandHom χ ⋯) 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[102, 1]
|
[110, 61]
|
simp [hn, dirichletSummandHom, div_eq_mul_inv, cpow_neg]
|
case h.e'_3.h.e'_5.h.h.e.h.inr
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ n : ℕ
hn : n ≠ 0
⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
ArithmeticFunction.LSeries_zeta_eulerProduct'
|
[117, 1]
|
[120, 62]
|
convert modOne_eq_one (R := ℂ) ▸ LSeries_eulerProduct' (1 : DirichletCharacter ℂ 1) hs using 7
|
s : ℂ
hs : 1 < s.re
⊢ cexp (∑' (p : Primes), -(1 - ↑↑p ^ (-s)).log) = L 1 s
|
case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6
s : ℂ
hs : 1 < s.re
x✝ : Primes
⊢ ↑↑x✝ ^ (-s) = 1 ↑↑x✝ * ↑↑x✝ ^ (-s)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
ArithmeticFunction.LSeries_zeta_eulerProduct'
|
[117, 1]
|
[120, 62]
|
rw [MulChar.one_apply <| isUnit_of_subsingleton _, one_mul]
|
case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6
s : ℂ
hs : 1 < s.re
x✝ : Primes
⊢ ↑↑x✝ ^ (-s) = 1 ↑↑x✝ * ↑↑x✝ ^ (-s)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
rw [isBigO_iff', isBigO_iff']
|
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
⊢ (fun x => f x * g x) =O[l] h ↔ g =O[l] fun x => h x / f x
|
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
⊢ (∃ c > 0, ∀ᶠ (x : α) in l, ‖f x * g x‖ ≤ c * ‖h x‖) ↔ ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
refine ⟨fun ⟨c, hc, H⟩ ↦ ⟨c, hc, ?_⟩, fun ⟨c, hc, H⟩ ↦ ⟨c, hc, ?_⟩⟩ <;>
{ refine H.congr <| Eventually.mp hf <| eventually_of_forall fun x hx ↦ ?_
rw [norm_mul, norm_div, ← mul_div_assoc, mul_comm]
have hx' : ‖f x‖ > 0 := norm_pos_iff.mpr hx
rw [le_div_iff hx', mul_comm] }
|
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
⊢ (∃ c > 0, ∀ᶠ (x : α) in l, ‖f x * g x‖ ≤ c * ‖h x‖) ↔ ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
refine H.congr <| Eventually.mp hf <| eventually_of_forall fun x hx ↦ ?_
|
case refine_2
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
c : ℝ
hc : c > 0
H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
⊢ ∀ᶠ (x : α) in l, ‖f x * g x‖ ≤ c * ‖h x‖
|
case refine_2
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
c : ℝ
hc : c > 0
H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
x : α
hx : f x ≠ 0
⊢ ‖g x‖ ≤ c * ‖h x / f x‖ ↔ ‖f x * g x‖ ≤ c * ‖h x‖
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
rw [norm_mul, norm_div, ← mul_div_assoc, mul_comm]
|
case refine_2
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
c : ℝ
hc : c > 0
H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
x : α
hx : f x ≠ 0
⊢ ‖g x‖ ≤ c * ‖h x / f x‖ ↔ ‖f x * g x‖ ≤ c * ‖h x‖
|
case refine_2
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
c : ℝ
hc : c > 0
H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
x : α
hx : f x ≠ 0
⊢ ‖g x‖ ≤ ‖h x‖ * c / ‖f x‖ ↔ ‖f x‖ * ‖g x‖ ≤ ‖h x‖ * c
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
have hx' : ‖f x‖ > 0 := norm_pos_iff.mpr hx
|
case refine_2
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
c : ℝ
hc : c > 0
H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
x : α
hx : f x ≠ 0
⊢ ‖g x‖ ≤ ‖h x‖ * c / ‖f x‖ ↔ ‖f x‖ * ‖g x‖ ≤ ‖h x‖ * c
|
case refine_2
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
c : ℝ
hc : c > 0
H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
x : α
hx : f x ≠ 0
hx' : ‖f x‖ > 0
⊢ ‖g x‖ ≤ ‖h x‖ * c / ‖f x‖ ↔ ‖f x‖ * ‖g x‖ ≤ ‖h x‖ * c
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
rw [le_div_iff hx', mul_comm]
|
case refine_2
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
c : ℝ
hc : c > 0
H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
x : α
hx : f x ≠ 0
hx' : ‖f x‖ > 0
⊢ ‖g x‖ ≤ ‖h x‖ * c / ‖f x‖ ↔ ‖f x‖ * ‖g x‖ ≤ ‖h x‖ * c
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.isBigO_of_eq_zero
|
[50, 1]
|
[54, 73]
|
rw [← zero_add z] at hf
|
f : ℂ → ℂ
z : ℂ
hf : DifferentiableAt ℂ f z
hz : f z = 0
⊢ (fun w => f (w + z)) =O[𝓝 0] id
|
f : ℂ → ℂ
z : ℂ
hf : DifferentiableAt ℂ f (0 + z)
hz : f z = 0
⊢ (fun w => f (w + z)) =O[𝓝 0] id
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.isBigO_of_eq_zero
|
[50, 1]
|
[54, 73]
|
simpa only [zero_add, hz, sub_zero]
using (hf.hasDerivAt.comp_add_const 0 z).differentiableAt.isBigO_sub
|
f : ℂ → ℂ
z : ℂ
hf : DifferentiableAt ℂ f (0 + z)
hz : f z = 0
⊢ (fun w => f (w + z)) =O[𝓝 0] id
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
rw [isBigO_iff']
|
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt f z
⊢ (fun w => f (w + z)) =O[𝓝 0] fun x => 1
|
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt f z
⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp_rw [Metric.continuousAt_iff', dist_eq_norm_sub, zero_add] at hf
|
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt (fun w => f (w + z)) 0
⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
|
f : ℂ → ℂ
z : ℂ
hf : ∀ ε > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < ε
⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
specialize hf 1 zero_lt_one
|
f : ℂ → ℂ
z : ℂ
hf : ∀ ε > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < ε
⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
refine ⟨‖f z‖ + 1, by positivity, ?_⟩
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
⊢ ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ (‖f z‖ + 1) * ‖1‖
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
refine Eventually.mp hf <| eventually_of_forall fun w hw ↦ le_of_lt ?_
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
⊢ ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ (‖f z‖ + 1) * ‖1‖
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
w : ℂ
hw : ‖f (w + z) - f z‖ < 1
⊢ ‖f (w + z)‖ < (‖f z‖ + 1) * ‖1‖
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
calc ‖f (w + z)‖
_ ≤ ‖f z‖ + ‖f (w + z) - f z‖ := norm_le_insert' ..
_ < ‖f z‖ + 1 := add_lt_add_left hw _
_ = _ := by simp only [norm_one, mul_one]
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
w : ℂ
hw : ‖f (w + z) - f z‖ < 1
⊢ ‖f (w + z)‖ < (‖f z‖ + 1) * ‖1‖
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
convert (Homeomorph.comp_continuousAt_iff' (Homeomorph.addLeft (-z)) _ z).mp ?_
|
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt f z
⊢ ContinuousAt (fun w => f (w + z)) 0
|
case h.e'_1
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt f z
⊢ 0 = (Homeomorph.addLeft (-z)) z
case convert_4
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt f z
⊢ ContinuousAt ((fun w => f (w + z)) ∘ ⇑(Homeomorph.addLeft (-z))) z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp
|
case h.e'_1
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt f z
⊢ 0 = (Homeomorph.addLeft (-z)) z
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp [Function.comp_def, hf]
|
case convert_4
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt f z
⊢ ContinuousAt ((fun w => f (w + z)) ∘ ⇑(Homeomorph.addLeft (-z))) z
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
positivity
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
⊢ ‖f z‖ + 1 > 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp only [norm_one, mul_one]
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
w : ℂ
hw : ‖f (w + z) - f z‖ < 1
⊢ ‖f z‖ + 1 = (‖f z‖ + 1) * ‖1‖
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
lift u to ℝ
|
z : ℝ
f : ℝ → ℝ
u : ℂ
hf : HasDerivAt (fun y => ↑(f y)) u z
⊢ ∃ u', u = ↑u' ∧ HasDerivAt f u' z
|
z : ℝ
f : ℝ → ℝ
u : ℂ
hf : HasDerivAt (fun y => ↑(f y)) u z
⊢ u.im = 0
case intro
z : ℝ
f : ℝ → ℝ
u : ℝ
hf : HasDerivAt (fun y => ↑(f y)) (↑u) z
⊢ ∃ u', ↑u = ↑u' ∧ HasDerivAt f u' z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
refine ⟨u, rfl, ?_⟩
|
case intro
z : ℝ
f : ℝ → ℝ
u : ℝ
hf : HasDerivAt (fun y => ↑(f y)) (↑u) z
⊢ ∃ u', ↑u = ↑u' ∧ HasDerivAt f u' z
|
case intro
z : ℝ
f : ℝ → ℝ
u : ℝ
hf : HasDerivAt (fun y => ↑(f y)) (↑u) z
⊢ HasDerivAt f u z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
convert (reCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt
|
case intro
z : ℝ
f : ℝ → ℝ
u : ℝ
hf : HasDerivAt (fun y => ↑(f y)) (↑u) z
⊢ HasDerivAt f u z
|
case h.e'_7
z : ℝ
f : ℝ → ℝ
u : ℝ
hf : HasDerivAt (fun y => ↑(f y)) (↑u) z
⊢ u = (reCLM.comp (smulRight 1 ↑u)) 1
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
rw [comp_apply, smulRight_apply, one_apply, one_smul, reCLM_apply, ofReal_re]
|
case h.e'_7
z : ℝ
f : ℝ → ℝ
u : ℝ
hf : HasDerivAt (fun y => ↑(f y)) (↑u) z
⊢ u = (reCLM.comp (smulRight 1 ↑u)) 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
have H := (imCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt.deriv
|
z : ℝ
f : ℝ → ℝ
u : ℂ
hf : HasDerivAt (fun y => ↑(f y)) u z
⊢ u.im = 0
|
z : ℝ
f : ℝ → ℝ
u : ℂ
hf : HasDerivAt (fun y => ↑(f y)) u z
H : _root_.deriv (⇑imCLM ∘ fun y => ↑(f y)) z = (imCLM.comp (smulRight 1 u)) 1
⊢ u.im = 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
simp only [Function.comp_def, imCLM_apply, ofReal_im, deriv_const] at H
|
z : ℝ
f : ℝ → ℝ
u : ℂ
hf : HasDerivAt (fun y => ↑(f y)) u z
H : _root_.deriv (⇑imCLM ∘ fun y => ↑(f y)) z = (imCLM.comp (smulRight 1 u)) 1
⊢ u.im = 0
|
z : ℝ
f : ℝ → ℝ
u : ℂ
hf : HasDerivAt (fun y => ↑(f y)) u z
H : 0 = (imCLM.comp (smulRight 1 u)) 1
⊢ u.im = 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
rwa [eq_comm, comp_apply, imCLM_apply, smulRight_apply, one_apply, one_smul] at H
|
z : ℝ
f : ℝ → ℝ
u : ℂ
hf : HasDerivAt (fun y => ↑(f y)) u z
H : 0 = (imCLM.comp (smulRight 1 u)) 1
⊢ u.im = 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.ofReal_comp_iff
|
[136, 1]
|
[140, 40]
|
refine ⟨fun H ↦ ?_, ofReal_comp⟩
|
z : ℝ
f : ℝ → ℝ
⊢ DifferentiableAt ℝ (fun y => ↑(f y)) z ↔ DifferentiableAt ℝ f z
|
z : ℝ
f : ℝ → ℝ
H : DifferentiableAt ℝ (fun y => ↑(f y)) z
⊢ DifferentiableAt ℝ f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.ofReal_comp_iff
|
[136, 1]
|
[140, 40]
|
obtain ⟨u, _, hu₂⟩ := H.hasDerivAt.of_hasDerivAt_ofReal_comp
|
z : ℝ
f : ℝ → ℝ
H : DifferentiableAt ℝ (fun y => ↑(f y)) z
⊢ DifferentiableAt ℝ f z
|
case intro.intro
z : ℝ
f : ℝ → ℝ
H : DifferentiableAt ℝ (fun y => ↑(f y)) z
u : ℝ
left✝ : deriv (fun y => ↑(f y)) z = ↑u
hu₂ : HasDerivAt (fun y => f y) u z
⊢ DifferentiableAt ℝ f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.ofReal_comp_iff
|
[136, 1]
|
[140, 40]
|
exact HasDerivAt.differentiableAt hu₂
|
case intro.intro
z : ℝ
f : ℝ → ℝ
H : DifferentiableAt ℝ (fun y => ↑(f y)) z
u : ℝ
left✝ : deriv (fun y => ↑(f y)) z = ↑u
hu₂ : HasDerivAt (fun y => f y) u z
⊢ DifferentiableAt ℝ f z
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
by_cases hf : DifferentiableAt ℝ f z
|
z : ℝ
f : ℝ → ℝ
⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
|
case pos
z : ℝ
f : ℝ → ℝ
hf : DifferentiableAt ℝ f z
⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
case neg
z : ℝ
f : ℝ → ℝ
hf : ¬DifferentiableAt ℝ f z
⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
exact hf.hasDerivAt.ofReal_comp.deriv
|
case pos
z : ℝ
f : ℝ → ℝ
hf : DifferentiableAt ℝ f z
⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
have hf' := mt DifferentiableAt.ofReal_comp_iff.mp hf
|
case neg
z : ℝ
f : ℝ → ℝ
hf : ¬DifferentiableAt ℝ f z
⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
|
case neg
z : ℝ
f : ℝ → ℝ
hf : ¬DifferentiableAt ℝ f z
hf' : ¬DifferentiableAt ℝ (fun y => ↑(f y)) z
⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
rw [deriv_zero_of_not_differentiableAt hf, deriv_zero_of_not_differentiableAt hf',
Complex.ofReal_zero]
|
case neg
z : ℝ
f : ℝ → ℝ
hf : ¬DifferentiableAt ℝ f z
hf' : ¬DifferentiableAt ℝ (fun y => ↑(f y)) z
⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
have Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), (x : ℂ) ∈ Metric.ball (c : ℂ) r := by
intro x hx
refine Metric.mem_ball.mpr ?_
rw [dist_eq, ← ofReal_sub, abs_ofReal, abs_sub_lt_iff, sub_lt_iff_lt_add', sub_lt_comm]
exact and_comm.mpr hx
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
have H ⦃z : ℂ⦄ (hz : z ∈ Metric.ball (c : ℂ) r) := taylorSeries_eq_on_ball' hz hf
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
refine ⟨fun x ↦ ∑' (n : ℕ), (↑n !)⁻¹ * (D n) * (x - c) ^ n, fun x hx ↦ ?_, fun x hx ↦ ?_⟩
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
|
case refine_1
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ DifferentiableWithinAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
case refine_2
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ (f ∘ ofReal') x = (ofReal' ∘ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
intro x hx
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
⊢ ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ ↑x ∈ Metric.ball (↑c) r
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
refine Metric.mem_ball.mpr ?_
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ ↑x ∈ Metric.ball (↑c) r
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ dist ↑x ↑c < r
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
rw [dist_eq, ← ofReal_sub, abs_ofReal, abs_sub_lt_iff, sub_lt_iff_lt_add', sub_lt_comm]
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ dist ↑x ↑c < r
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ x < c + r ∧ c - r < x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
exact and_comm.mpr hx
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ x < c + r ∧ c - r < x
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
have Hx := Hz _ hx
|
case refine_1
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ DifferentiableWithinAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
|
case refine_1
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
⊢ DifferentiableWithinAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
refine DifferentiableAt.differentiableWithinAt ?_
|
case refine_1
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
⊢ DifferentiableWithinAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
|
case refine_1
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
⊢ DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
replace hf := ((hf x Hx).congr (fun _ hz ↦ H hz) (H Hx)).differentiableAt
(Metric.isOpen_ball.mem_nhds Hx) |>.comp_ofReal
|
case refine_1
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
⊢ DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
case refine_1
f : ℂ → ℂ
r c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
hf : DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (↑x - ↑c) ^ n) x
⊢ DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
simp_rw [hd, ← ofReal_sub, ← ofReal_natCast, ← ofReal_inv, ← ofReal_pow, ← ofReal_mul,
← ofReal_tsum] at hf
|
case refine_1
f : ℂ → ℂ
r c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
hf : DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (↑x - ↑c) ^ n) x
⊢ DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
case refine_1
f : ℂ → ℂ
r c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
hf : DifferentiableAt ℝ (fun x => ↑(∑' (a : ℕ), (↑a !)⁻¹ * D a * (x - c) ^ a)) x
⊢ DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
exact DifferentiableAt.ofReal_comp_iff.mp hf
|
case refine_1
f : ℂ → ℂ
r c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
hf : DifferentiableAt ℝ (fun x => ↑(∑' (a : ℕ), (↑a !)⁻¹ * D a * (x - c) ^ a)) x
⊢ DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
simp only [Function.comp_apply, ← H (Hz _ hx), hd, ofReal_tsum]
|
case refine_2
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ (f ∘ ofReal') x = (ofReal' ∘ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
case refine_2
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (↑x - ↑c) ^ n = ∑' (a : ℕ), ↑((↑a !)⁻¹ * D a * (x - c) ^ a)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
push_cast
|
case refine_2
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (↑x - ↑c) ^ n = ∑' (a : ℕ), ↑((↑a !)⁻¹ * D a * (x - c) ^ a)
|
case refine_2
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a = ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
rfl
|
case refine_2
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a = ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
have H (z : ℂ) := taylorSeries_eq_of_entire' c z hf
|
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
⊢ ∃ F, Differentiable ℝ F ∧ f ∘ ofReal' = ofReal' ∘ F
|
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
⊢ ∃ F, Differentiable ℝ F ∧ f ∘ ofReal' = ofReal' ∘ F
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
simp_rw [hd] at H
|
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
⊢ ∃ F, Differentiable ℝ F ∧ f ∘ ofReal' = ofReal' ∘ F
|
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
⊢ ∃ F, Differentiable ℝ F ∧ f ∘ ofReal' = ofReal' ∘ F
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
refine ⟨fun x ↦ ∑' (n : ℕ), (↑n !)⁻¹ * (D n) * (x - c) ^ n, ?_, ?_⟩
|
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
⊢ ∃ F, Differentiable ℝ F ∧ f ∘ ofReal' = ofReal' ∘ F
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
⊢ Differentiable ℝ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
case refine_2
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
⊢ f ∘ ofReal' = ofReal' ∘ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
have := hf.comp_ofReal
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
⊢ Differentiable ℝ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
this : Differentiable ℝ fun x => f ↑x
⊢ Differentiable ℝ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
simp_rw [← H, ← ofReal_sub, ← ofReal_natCast, ← ofReal_inv, ← ofReal_pow, ← ofReal_mul,
← ofReal_tsum] at this
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
this : Differentiable ℝ fun x => f ↑x
⊢ Differentiable ℝ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
this : Differentiable ℝ fun x => ↑(∑' (a : ℕ), (↑a !)⁻¹ * D a * (x - c) ^ a)
⊢ Differentiable ℝ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
exact Differentiable.ofReal_comp_iff.mp this
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
this : Differentiable ℝ fun x => ↑(∑' (a : ℕ), (↑a !)⁻¹ * D a * (x - c) ^ a)
⊢ Differentiable ℝ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
ext x
|
case refine_2
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
⊢ f ∘ ofReal' = ofReal' ∘ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
|
case refine_2.h
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
x : ℝ
⊢ (f ∘ ofReal') x = (ofReal' ∘ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
simp only [Function.comp_apply, ofReal_eq_coe, ← H, ofReal_tsum]
|
case refine_2.h
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
x : ℝ
⊢ (f ∘ ofReal') x = (ofReal' ∘ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
case refine_2.h
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
x : ℝ
⊢ ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (↑x - ↑c) ^ n = ∑' (a : ℕ), ↑((↑a !)⁻¹ * D a * (x - c) ^ a)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
push_cast
|
case refine_2.h
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
x : ℝ
⊢ ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (↑x - ↑c) ^ n = ∑' (a : ℕ), ↑((↑a !)⁻¹ * D a * (x - c) ^ a)
|
case refine_2.h
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
x : ℝ
⊢ ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a = ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
rfl
|
case refine_2.h
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
x : ℝ
⊢ ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a = ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
have H := taylorSeries_eq_of_entire' 0 z hf
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ z
⊢ 0 ≤ f z
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ z
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
⊢ 0 ≤ f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
have hz' := eq_re_of_ofReal_le hz
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ z
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
⊢ 0 ≤ f z
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ z
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
hz' : z = ↑z.re
⊢ 0 ≤ f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
rw [hz'] at hz H ⊢
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ z
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
hz' : z = ↑z.re
⊢ 0 ≤ f z
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
⊢ 0 ≤ f ↑z.re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
obtain ⟨D, hD⟩ : ∃ D : ℕ → ℝ, ∀ n, 0 ≤ D n ∧ iteratedDeriv n f 0 = D n
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
⊢ 0 ≤ f ↑z.re
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
⊢ ∃ D, ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
⊢ 0 ≤ f ↑z.re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
simp_rw [← H, hD, ← ofReal_natCast, sub_zero, ← ofReal_pow, ← ofReal_inv, ← ofReal_mul,
← ofReal_tsum]
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
⊢ 0 ≤ f ↑z.re
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
⊢ 0 ≤ ↑(∑' (a : ℕ), (↑a !)⁻¹ * D a * z.re ^ a)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
norm_cast
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
⊢ 0 ≤ ↑(∑' (a : ℕ), (↑a !)⁻¹ * D a * z.re ^ a)
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
⊢ 0 ≤ ∑' (a : ℕ), (↑a !)⁻¹ * D a * z.re ^ a
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
refine tsum_nonneg fun n ↦ ?_
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
⊢ 0 ≤ ∑' (a : ℕ), (↑a !)⁻¹ * D a * z.re ^ a
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
n : ℕ
⊢ 0 ≤ (↑n !)⁻¹ * D n * z.re ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
norm_cast at hz
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
n : ℕ
⊢ 0 ≤ (↑n !)⁻¹ * D n * z.re ^ n
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
n : ℕ
hz : 0 ≤ z.re
⊢ 0 ≤ (↑n !)⁻¹ * D n * z.re ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
have := (hD n).1
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
n : ℕ
hz : 0 ≤ z.re
⊢ 0 ≤ (↑n !)⁻¹ * D n * z.re ^ n
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
n : ℕ
hz : 0 ≤ z.re
this : 0 ≤ D n
⊢ 0 ≤ (↑n !)⁻¹ * D n * z.re ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
positivity
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
n : ℕ
hz : 0 ≤ z.re
this : 0 ≤ D n
⊢ 0 ≤ (↑n !)⁻¹ * D n * z.re ^ n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
refine ⟨fun n ↦ (iteratedDeriv n f 0).re, fun n ↦ ⟨?_, ?_⟩⟩
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
⊢ ∃ D, ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
n : ℕ
⊢ 0 ≤ (fun n => (iteratedDeriv n f 0).re) n
case refine_2
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
n : ℕ
⊢ iteratedDeriv n f 0 = ↑((fun n => (iteratedDeriv n f 0).re) n)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
have := eq_re_of_ofReal_le (h n) ▸ h n
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
n : ℕ
⊢ 0 ≤ (fun n => (iteratedDeriv n f 0).re) n
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
n : ℕ
this : 0 ≤ ↑(iteratedDeriv n f 0).re
⊢ 0 ≤ (fun n => (iteratedDeriv n f 0).re) n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
norm_cast at this
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
n : ℕ
this : 0 ≤ ↑(iteratedDeriv n f 0).re
⊢ 0 ≤ (fun n => (iteratedDeriv n f 0).re) n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
rw [eq_re_of_ofReal_le (h n)]
|
case refine_2
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
n : ℕ
⊢ iteratedDeriv n f 0 = ↑((fun n => (iteratedDeriv n f 0).re) n)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
let D : ℕ → ℝ := fun n ↦ (iteratedDeriv n f 0).re
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
⊢ MonotoneOn (f ∘ ofReal') (Set.Ici 0)
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
⊢ MonotoneOn (f ∘ ofReal') (Set.Ici 0)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have hD (n : ℕ) : iteratedDeriv n f 0 = D n := by
refine Complex.ext rfl ?_
simp only [ofReal_im]
exact (le_def.mp (h n)).2.symm
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
⊢ MonotoneOn (f ∘ ofReal') (Set.Ici 0)
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
⊢ MonotoneOn (f ∘ ofReal') (Set.Ici 0)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
obtain ⟨F, hFd, hF⟩ := realValued_of_iteratedDeriv_real hf hD
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
⊢ MonotoneOn (f ∘ ofReal') (Set.Ici 0)
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
⊢ MonotoneOn (f ∘ ofReal') (Set.Ici 0)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
rw [hF]
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
⊢ MonotoneOn (f ∘ ofReal') (Set.Ici 0)
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
⊢ MonotoneOn (ofReal' ∘ F) (Set.Ici 0)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
refine monotone_ofReal.comp_monotoneOn <| monotoneOn_of_deriv_nonneg (convex_Ici 0)
hFd.continuous.continuousOn hFd.differentiableOn fun x hx ↦ ?_
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
⊢ MonotoneOn (ofReal' ∘ F) (Set.Ici 0)
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
⊢ 0 ≤ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have hD' (n : ℕ) : 0 ≤ iteratedDeriv n (deriv f) 0 := by
rw [← iteratedDeriv_succ']
exact h (n + 1)
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
⊢ 0 ≤ deriv F x
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
⊢ 0 ≤ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have hf' := (contDiff_succ_iff_deriv.mp <| hf.contDiff (n := 2)).2.differentiable rfl.le
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
⊢ 0 ≤ deriv F x
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
⊢ 0 ≤ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have hx : (0 : ℂ) ≤ x := by
norm_cast
simp only [Set.nonempty_Iio, interior_Ici', Set.mem_Ioi] at hx
exact hx.le
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
⊢ 0 ≤ deriv F x
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
⊢ 0 ≤ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have H := nonneg_of_iteratedDeriv_nonneg hf' hD' hx
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
⊢ 0 ≤ deriv F x
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
H : 0 ≤ deriv f ↑x
⊢ 0 ≤ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
rw [← deriv.comp_ofReal hf.differentiableAt] at H
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
H : 0 ≤ deriv f ↑x
⊢ 0 ≤ deriv F x
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
H : 0 ≤ deriv (fun x => f ↑x) x
⊢ 0 ≤ deriv F x
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.