url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
have Hx := Hz _ hx
|
case refine_1
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ DifferentiableWithinAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
|
case refine_1
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
⊢ DifferentiableWithinAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
refine DifferentiableAt.differentiableWithinAt ?_
|
case refine_1
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
⊢ DifferentiableWithinAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
|
case refine_1
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
⊢ DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
replace hf := ((hf x Hx).congr (fun _ hz ↦ H hz) (H Hx)).differentiableAt
(Metric.isOpen_ball.mem_nhds Hx) |>.comp_ofReal
|
case refine_1
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
⊢ DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
case refine_1
f : ℂ → ℂ
r c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
hf : DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (↑x - ↑c) ^ n) x
⊢ DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
simp_rw [hd, ← ofReal_sub, ← ofReal_natCast, ← ofReal_inv, ← ofReal_pow, ← ofReal_mul,
← ofReal_tsum] at hf
|
case refine_1
f : ℂ → ℂ
r c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
hf : DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (↑x - ↑c) ^ n) x
⊢ DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
case refine_1
f : ℂ → ℂ
r c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
hf : DifferentiableAt ℝ (fun x => ↑(∑' (a : ℕ), (↑a !)⁻¹ * D a * (x - c) ^ a)) x
⊢ DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
exact DifferentiableAt.ofReal_comp_iff.mp hf
|
case refine_1
f : ℂ → ℂ
r c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
Hx : ↑x ∈ Metric.ball (↑c) r
hf : DifferentiableAt ℝ (fun x => ↑(∑' (a : ℕ), (↑a !)⁻¹ * D a * (x - c) ^ a)) x
⊢ DifferentiableAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
simp only [Function.comp_apply, ← H (Hz _ hx), hd, ofReal_tsum]
|
case refine_2
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ (f ∘ ofReal') x = (ofReal' ∘ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
case refine_2
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (↑x - ↑c) ^ n = ∑' (a : ℕ), ↑((↑a !)⁻¹ * D a * (x - c) ^ a)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
push_cast
|
case refine_2
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (↑x - ↑c) ^ n = ∑' (a : ℕ), ↑((↑a !)⁻¹ * D a * (x - c) ^ a)
|
case refine_2
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a = ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
rfl
|
case refine_2
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a = ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
have H (z : ℂ) := taylorSeries_eq_of_entire' c z hf
|
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
⊢ ∃ F, Differentiable ℝ F ∧ f ∘ ofReal' = ofReal' ∘ F
|
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
⊢ ∃ F, Differentiable ℝ F ∧ f ∘ ofReal' = ofReal' ∘ F
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
simp_rw [hd] at H
|
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
⊢ ∃ F, Differentiable ℝ F ∧ f ∘ ofReal' = ofReal' ∘ F
|
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
⊢ ∃ F, Differentiable ℝ F ∧ f ∘ ofReal' = ofReal' ∘ F
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
refine ⟨fun x ↦ ∑' (n : ℕ), (↑n !)⁻¹ * (D n) * (x - c) ^ n, ?_, ?_⟩
|
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
⊢ ∃ F, Differentiable ℝ F ∧ f ∘ ofReal' = ofReal' ∘ F
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
⊢ Differentiable ℝ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
case refine_2
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
⊢ f ∘ ofReal' = ofReal' ∘ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
have := hf.comp_ofReal
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
⊢ Differentiable ℝ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
this : Differentiable ℝ fun x => f ↑x
⊢ Differentiable ℝ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
simp_rw [← H, ← ofReal_sub, ← ofReal_natCast, ← ofReal_inv, ← ofReal_pow, ← ofReal_mul,
← ofReal_tsum] at this
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
this : Differentiable ℝ fun x => f ↑x
⊢ Differentiable ℝ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
this : Differentiable ℝ fun x => ↑(∑' (a : ℕ), (↑a !)⁻¹ * D a * (x - c) ^ a)
⊢ Differentiable ℝ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
exact Differentiable.ofReal_comp_iff.mp this
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
this : Differentiable ℝ fun x => ↑(∑' (a : ℕ), (↑a !)⁻¹ * D a * (x - c) ^ a)
⊢ Differentiable ℝ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
ext x
|
case refine_2
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
⊢ f ∘ ofReal' = ofReal' ∘ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n
|
case refine_2.h
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
x : ℝ
⊢ (f ∘ ofReal') x = (ofReal' ∘ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
simp only [Function.comp_apply, ofReal_eq_coe, ← H, ofReal_tsum]
|
case refine_2.h
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
x : ℝ
⊢ (f ∘ ofReal') x = (ofReal' ∘ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
case refine_2.h
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
x : ℝ
⊢ ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (↑x - ↑c) ^ n = ∑' (a : ℕ), ↑((↑a !)⁻¹ * D a * (x - c) ^ a)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
push_cast
|
case refine_2.h
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
x : ℝ
⊢ ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (↑x - ↑c) ^ n = ∑' (a : ℕ), ↑((↑a !)⁻¹ * D a * (x - c) ^ a)
|
case refine_2.h
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
x : ℝ
⊢ ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a = ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
rfl
|
case refine_2.h
f : ℂ → ℂ
hf : Differentiable ℂ f
c : ℝ
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
H : ∀ (z : ℂ), ∑' (n : ℕ), (↑n !)⁻¹ * ↑(D n) * (z - ↑c) ^ n = f z
x : ℝ
⊢ ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a = ∑' (a : ℕ), (↑a !)⁻¹ * ↑(D a) * (↑x - ↑c) ^ a
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
have H := taylorSeries_eq_of_entire' 0 z hf
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ z
⊢ 0 ≤ f z
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ z
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
⊢ 0 ≤ f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
have hz' := eq_re_of_ofReal_le hz
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ z
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
⊢ 0 ≤ f z
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ z
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
hz' : z = ↑z.re
⊢ 0 ≤ f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
rw [hz'] at hz H ⊢
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ z
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
hz' : z = ↑z.re
⊢ 0 ≤ f z
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
⊢ 0 ≤ f ↑z.re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
obtain ⟨D, hD⟩ : ∃ D : ℕ → ℝ, ∀ n, 0 ≤ D n ∧ iteratedDeriv n f 0 = D n
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
⊢ 0 ≤ f ↑z.re
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
⊢ ∃ D, ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
⊢ 0 ≤ f ↑z.re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
simp_rw [← H, hD, ← ofReal_natCast, sub_zero, ← ofReal_pow, ← ofReal_inv, ← ofReal_mul,
← ofReal_tsum]
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
⊢ 0 ≤ f ↑z.re
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
⊢ 0 ≤ ↑(∑' (a : ℕ), (↑a !)⁻¹ * D a * z.re ^ a)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
norm_cast
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
⊢ 0 ≤ ↑(∑' (a : ℕ), (↑a !)⁻¹ * D a * z.re ^ a)
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
⊢ 0 ≤ ∑' (a : ℕ), (↑a !)⁻¹ * D a * z.re ^ a
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
refine tsum_nonneg fun n ↦ ?_
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
⊢ 0 ≤ ∑' (a : ℕ), (↑a !)⁻¹ * D a * z.re ^ a
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
n : ℕ
⊢ 0 ≤ (↑n !)⁻¹ * D n * z.re ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
norm_cast at hz
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
n : ℕ
⊢ 0 ≤ (↑n !)⁻¹ * D n * z.re ^ n
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
n : ℕ
hz : 0 ≤ z.re
⊢ 0 ≤ (↑n !)⁻¹ * D n * z.re ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
have := (hD n).1
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
n : ℕ
hz : 0 ≤ z.re
⊢ 0 ≤ (↑n !)⁻¹ * D n * z.re ^ n
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
n : ℕ
hz : 0 ≤ z.re
this : 0 ≤ D n
⊢ 0 ≤ (↑n !)⁻¹ * D n * z.re ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
positivity
|
case intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
D : ℕ → ℝ
hD : ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
n : ℕ
hz : 0 ≤ z.re
this : 0 ≤ D n
⊢ 0 ≤ (↑n !)⁻¹ * D n * z.re ^ n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
refine ⟨fun n ↦ (iteratedDeriv n f 0).re, fun n ↦ ⟨?_, ?_⟩⟩
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
⊢ ∃ D, ∀ (n : ℕ), 0 ≤ D n ∧ iteratedDeriv n f 0 = ↑(D n)
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
n : ℕ
⊢ 0 ≤ (fun n => (iteratedDeriv n f 0).re) n
case refine_2
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
n : ℕ
⊢ iteratedDeriv n f 0 = ↑((fun n => (iteratedDeriv n f 0).re) n)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
have := eq_re_of_ofReal_le (h n) ▸ h n
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
n : ℕ
⊢ 0 ≤ (fun n => (iteratedDeriv n f 0).re) n
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
n : ℕ
this : 0 ≤ ↑(iteratedDeriv n f 0).re
⊢ 0 ≤ (fun n => (iteratedDeriv n f 0).re) n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
norm_cast at this
|
case refine_1
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
n : ℕ
this : 0 ≤ ↑(iteratedDeriv n f 0).re
⊢ 0 ≤ (fun n => (iteratedDeriv n f 0).re) n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
rw [eq_re_of_ofReal_le (h n)]
|
case refine_2
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ ↑z.re
H : ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f 0 * (↑z.re - 0) ^ n = f ↑z.re
hz' : z = ↑z.re
n : ℕ
⊢ iteratedDeriv n f 0 = ↑((fun n => (iteratedDeriv n f 0).re) n)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
let D : ℕ → ℝ := fun n ↦ (iteratedDeriv n f 0).re
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
⊢ MonotoneOn (f ∘ ofReal') (Set.Ici 0)
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
⊢ MonotoneOn (f ∘ ofReal') (Set.Ici 0)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have hD (n : ℕ) : iteratedDeriv n f 0 = D n := by
refine Complex.ext rfl ?_
simp only [ofReal_im]
exact (le_def.mp (h n)).2.symm
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
⊢ MonotoneOn (f ∘ ofReal') (Set.Ici 0)
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
⊢ MonotoneOn (f ∘ ofReal') (Set.Ici 0)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
obtain ⟨F, hFd, hF⟩ := realValued_of_iteratedDeriv_real hf hD
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
⊢ MonotoneOn (f ∘ ofReal') (Set.Ici 0)
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
⊢ MonotoneOn (f ∘ ofReal') (Set.Ici 0)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
rw [hF]
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
⊢ MonotoneOn (f ∘ ofReal') (Set.Ici 0)
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
⊢ MonotoneOn (ofReal' ∘ F) (Set.Ici 0)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
refine monotone_ofReal.comp_monotoneOn <| monotoneOn_of_deriv_nonneg (convex_Ici 0)
hFd.continuous.continuousOn hFd.differentiableOn fun x hx ↦ ?_
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
⊢ MonotoneOn (ofReal' ∘ F) (Set.Ici 0)
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
⊢ 0 ≤ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have hD' (n : ℕ) : 0 ≤ iteratedDeriv n (deriv f) 0 := by
rw [← iteratedDeriv_succ']
exact h (n + 1)
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
⊢ 0 ≤ deriv F x
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
⊢ 0 ≤ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have hf' := (contDiff_succ_iff_deriv.mp <| hf.contDiff (n := 2)).2.differentiable rfl.le
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
⊢ 0 ≤ deriv F x
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
⊢ 0 ≤ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have hx : (0 : ℂ) ≤ x := by
norm_cast
simp only [Set.nonempty_Iio, interior_Ici', Set.mem_Ioi] at hx
exact hx.le
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
⊢ 0 ≤ deriv F x
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
⊢ 0 ≤ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have H := nonneg_of_iteratedDeriv_nonneg hf' hD' hx
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
⊢ 0 ≤ deriv F x
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
H : 0 ≤ deriv f ↑x
⊢ 0 ≤ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
rw [← deriv.comp_ofReal hf.differentiableAt] at H
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
H : 0 ≤ deriv f ↑x
⊢ 0 ≤ deriv F x
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
H : 0 ≤ deriv (fun x => f ↑x) x
⊢ 0 ≤ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
change 0 ≤ deriv (f ∘ ofReal') x at H
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
H : 0 ≤ deriv (fun x => f ↑x) x
⊢ 0 ≤ deriv F x
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
H : 0 ≤ deriv (f ∘ ofReal') x
⊢ 0 ≤ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
erw [hF, deriv.ofReal_comp] at H
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
H : 0 ≤ deriv (f ∘ ofReal') x
⊢ 0 ≤ deriv F x
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
H : 0 ≤ ↑(deriv (fun y => F y) x)
⊢ 0 ≤ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
norm_cast at H
|
case intro.intro
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx✝ : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 ≤ ↑x
H : 0 ≤ ↑(deriv (fun y => F y) x)
⊢ 0 ≤ deriv F x
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
refine Complex.ext rfl ?_
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
n : ℕ
⊢ iteratedDeriv n f 0 = ↑(D n)
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
n : ℕ
⊢ (iteratedDeriv n f 0).im = (↑(D n)).im
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
simp only [ofReal_im]
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
n : ℕ
⊢ (iteratedDeriv n f 0).im = (↑(D n)).im
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
n : ℕ
⊢ (iteratedDeriv n f 0).im = 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
exact (le_def.mp (h n)).2.symm
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
n : ℕ
⊢ (iteratedDeriv n f 0).im = 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
rw [← iteratedDeriv_succ']
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
n : ℕ
⊢ 0 ≤ iteratedDeriv n (deriv f) 0
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
n : ℕ
⊢ 0 ≤ iteratedDeriv (n + 1) f 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
exact h (n + 1)
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
n : ℕ
⊢ 0 ≤ iteratedDeriv (n + 1) f 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
norm_cast
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
⊢ 0 ≤ ↑x
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
⊢ 0 ≤ x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
simp only [Set.nonempty_Iio, interior_Ici', Set.mem_Ioi] at hx
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hx : x ∈ interior (Set.Ici 0)
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
⊢ 0 ≤ x
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 < x
⊢ 0 ≤ x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
exact hx.le
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0
D : ℕ → ℝ := fun n => (iteratedDeriv n f 0).re
hD : ∀ (n : ℕ), iteratedDeriv n f 0 = ↑(D n)
F : ℝ → ℝ
hFd : Differentiable ℝ F
hF : f ∘ ofReal' = ofReal' ∘ F
x : ℝ
hD' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (deriv f) 0
hf' : Differentiable ℂ (deriv f)
hx : 0 < x
⊢ 0 ≤ x
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.at_zero_le_of_iteratedDeriv_nonneg
|
[255, 1]
|
[266, 83]
|
exact sub_nonneg.mp <| nonneg_of_iteratedDeriv_nonneg (hf.sub_const (f 0)) h' hz
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ z
h' : ∀ (n : ℕ), 0 ≤ iteratedDeriv n (fun x => f x - f 0) 0
⊢ f 0 ≤ f z
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.at_zero_le_of_iteratedDeriv_nonneg
|
[255, 1]
|
[266, 83]
|
cases n with
| zero => simp only [iteratedDeriv_zero, sub_self, le_refl]
| succ n =>
specialize h n.succ <| succ_ne_zero n
rw [iteratedDeriv_succ'] at h ⊢
convert h using 2
ext w
exact deriv_sub_const (f 0)
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ z
n : ℕ
⊢ 0 ≤ iteratedDeriv n (fun x => f x - f 0) 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.at_zero_le_of_iteratedDeriv_nonneg
|
[255, 1]
|
[266, 83]
|
simp only [iteratedDeriv_zero, sub_self, le_refl]
|
case zero
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ z
⊢ 0 ≤ iteratedDeriv 0 (fun x => f x - f 0) 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.at_zero_le_of_iteratedDeriv_nonneg
|
[255, 1]
|
[266, 83]
|
specialize h n.succ <| succ_ne_zero n
|
case succ
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ iteratedDeriv n f 0
z : ℂ
hz : 0 ≤ z
n : ℕ
⊢ 0 ≤ iteratedDeriv (n + 1) (fun x => f x - f 0) 0
|
case succ
f : ℂ → ℂ
hf : Differentiable ℂ f
z : ℂ
hz : 0 ≤ z
n : ℕ
h : 0 ≤ iteratedDeriv n.succ f 0
⊢ 0 ≤ iteratedDeriv (n + 1) (fun x => f x - f 0) 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.at_zero_le_of_iteratedDeriv_nonneg
|
[255, 1]
|
[266, 83]
|
rw [iteratedDeriv_succ'] at h ⊢
|
case succ
f : ℂ → ℂ
hf : Differentiable ℂ f
z : ℂ
hz : 0 ≤ z
n : ℕ
h : 0 ≤ iteratedDeriv n.succ f 0
⊢ 0 ≤ iteratedDeriv (n + 1) (fun x => f x - f 0) 0
|
case succ
f : ℂ → ℂ
hf : Differentiable ℂ f
z : ℂ
hz : 0 ≤ z
n : ℕ
h : 0 ≤ iteratedDeriv n (deriv f) 0
⊢ 0 ≤ iteratedDeriv n (deriv fun x => f x - f 0) 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.at_zero_le_of_iteratedDeriv_nonneg
|
[255, 1]
|
[266, 83]
|
convert h using 2
|
case succ
f : ℂ → ℂ
hf : Differentiable ℂ f
z : ℂ
hz : 0 ≤ z
n : ℕ
h : 0 ≤ iteratedDeriv n (deriv f) 0
⊢ 0 ≤ iteratedDeriv n (deriv fun x => f x - f 0) 0
|
case h.e'_4.h.e'_7
f : ℂ → ℂ
hf : Differentiable ℂ f
z : ℂ
hz : 0 ≤ z
n : ℕ
h : 0 ≤ iteratedDeriv n (deriv f) 0
⊢ (deriv fun x => f x - f 0) = deriv f
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.at_zero_le_of_iteratedDeriv_nonneg
|
[255, 1]
|
[266, 83]
|
ext w
|
case h.e'_4.h.e'_7
f : ℂ → ℂ
hf : Differentiable ℂ f
z : ℂ
hz : 0 ≤ z
n : ℕ
h : 0 ≤ iteratedDeriv n (deriv f) 0
⊢ (deriv fun x => f x - f 0) = deriv f
|
case h.e'_4.h.e'_7.h
f : ℂ → ℂ
hf : Differentiable ℂ f
z : ℂ
hz : 0 ≤ z
n : ℕ
h : 0 ≤ iteratedDeriv n (deriv f) 0
w : ℂ
⊢ deriv (fun x => f x - f 0) w = deriv f w
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.at_zero_le_of_iteratedDeriv_nonneg
|
[255, 1]
|
[266, 83]
|
exact deriv_sub_const (f 0)
|
case h.e'_4.h.e'_7.h
f : ℂ → ℂ
hf : Differentiable ℂ f
z : ℂ
hz : 0 ≤ z
n : ℕ
h : 0 ≤ iteratedDeriv n (deriv f) 0
w : ℂ
⊢ deriv (fun x => f x - f 0) w = deriv f w
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.at_zero_le_of_iteratedDeriv_alternating
|
[271, 1]
|
[278, 66]
|
let F : ℂ → ℂ := fun z ↦ f (-z)
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0
z : ℂ
hz : z ≤ 0
⊢ f 0 ≤ f z
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0
z : ℂ
hz : z ≤ 0
F : ℂ → ℂ := fun z => f (-z)
⊢ f 0 ≤ f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.at_zero_le_of_iteratedDeriv_alternating
|
[271, 1]
|
[278, 66]
|
convert at_zero_le_of_iteratedDeriv_nonneg (f := F) (hf.comp <| differentiable_neg)
(fun n hn ↦ ?_) (neg_nonneg.mpr hz) using 1
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0
z : ℂ
hz : z ≤ 0
F : ℂ → ℂ := fun z => f (-z)
⊢ f 0 ≤ f z
|
case h.e'_3
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0
z : ℂ
hz : z ≤ 0
F : ℂ → ℂ := fun z => f (-z)
⊢ f 0 = F 0
case h.e'_4
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0
z : ℂ
hz : z ≤ 0
F : ℂ → ℂ := fun z => f (-z)
⊢ f z = F (-z)
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0
z : ℂ
hz : z ≤ 0
F : ℂ → ℂ := fun z => f (-z)
n : ℕ
hn : n ≠ 0
⊢ 0 ≤ iteratedDeriv n F 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.at_zero_le_of_iteratedDeriv_alternating
|
[271, 1]
|
[278, 66]
|
simp only [F, neg_zero]
|
case h.e'_3
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0
z : ℂ
hz : z ≤ 0
F : ℂ → ℂ := fun z => f (-z)
⊢ f 0 = F 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.at_zero_le_of_iteratedDeriv_alternating
|
[271, 1]
|
[278, 66]
|
simp only [F, neg_neg]
|
case h.e'_4
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0
z : ℂ
hz : z ≤ 0
F : ℂ → ℂ := fun z => f (-z)
⊢ f z = F (-z)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.at_zero_le_of_iteratedDeriv_alternating
|
[271, 1]
|
[278, 66]
|
simpa only [F, iteratedDeriv_comp_neg, neg_zero] using h n hn
|
f : ℂ → ℂ
hf : Differentiable ℂ f
h : ∀ (n : ℕ), n ≠ 0 → 0 ≤ (-1) ^ n * iteratedDeriv n f 0
z : ℂ
hz : z ≤ 0
F : ℂ → ℂ := fun z => f (-z)
n : ℕ
hn : n ≠ 0
⊢ 0 ≤ iteratedDeriv n F 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
convert (Finset.sum_indicator_subset f Finset.mem_of_mem_filter).symm using 2 with _ _ m hm
|
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n : ℕ
⊢ ∑ p ∈ n.primesBelow, f p = ∑ m ∈ Finset.range n, {p | p.Prime}.indicator f m
|
case h.e'_3.a
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
⊢ {p | p.Prime}.indicator f m = (↑(Finset.filter (fun p => p.Prime) (Finset.range n))).indicator f m
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
simp only [Set.mem_setOf_eq, Finset.mem_range, Finset.coe_filter, not_and, Set.indicator_apply]
|
case h.e'_3.a
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
⊢ {p | p.Prime}.indicator f m = (↑(Finset.filter (fun p => p.Prime) (Finset.range n))).indicator f m
|
case h.e'_3.a
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
⊢ (if m.Prime then f m else 0) = if m < n ∧ m.Prime then f m else 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
split_ifs with h₁ h₂ h₃
|
case h.e'_3.a
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
⊢ (if m.Prime then f m else 0) = if m < n ∧ m.Prime then f m else 0
|
case pos
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : m.Prime
h₂ : m < n ∧ m.Prime
⊢ f m = f m
case neg
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : m.Prime
h₂ : ¬(m < n ∧ m.Prime)
⊢ f m = 0
case pos
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : ¬m.Prime
h₃ : m < n ∧ m.Prime
⊢ 0 = f m
case neg
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : ¬m.Prime
h₃ : ¬(m < n ∧ m.Prime)
⊢ 0 = 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
rfl
|
case pos
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : m.Prime
h₂ : m < n ∧ m.Prime
⊢ f m = f m
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
exact (h₂ ⟨Finset.mem_range.mp hm, h₁⟩).elim
|
case neg
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : m.Prime
h₂ : ¬(m < n ∧ m.Prime)
⊢ f m = 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
exact (h₁ h₃.2).elim
|
case pos
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : ¬m.Prime
h₃ : m < n ∧ m.Prime
⊢ 0 = f m
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
rfl
|
case neg
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : ¬m.Prime
h₃ : ¬(m < n ∧ m.Prime)
⊢ 0 = 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
tendsto_sum_primesBelow_tsum
|
[62, 1]
|
[69, 94]
|
rw [(show ∑' p : Nat.Primes, f p = ∑' p : {p : ℕ | p.Prime}, f p from rfl)]
|
R : Type u_1
inst✝⁴ : AddCommGroup R
inst✝³ : UniformSpace R
inst✝² : UniformAddGroup R
inst✝¹ : CompleteSpace R
inst✝ : T2Space R
f : ℕ → R
hsum : Summable f
⊢ Tendsto (fun n => ∑ p ∈ n.primesBelow, f p) atTop (𝓝 (∑' (p : Nat.Primes), f ↑p))
|
R : Type u_1
inst✝⁴ : AddCommGroup R
inst✝³ : UniformSpace R
inst✝² : UniformAddGroup R
inst✝¹ : CompleteSpace R
inst✝ : T2Space R
f : ℕ → R
hsum : Summable f
⊢ Tendsto (fun n => ∑ p ∈ n.primesBelow, f p) atTop (𝓝 (∑' (p : ↑{p | p.Prime}), f ↑p))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
tendsto_sum_primesBelow_tsum
|
[62, 1]
|
[69, 94]
|
simp_rw [tsum_subtype, sum_primesBelow_eq_sum_range_indicator]
|
R : Type u_1
inst✝⁴ : AddCommGroup R
inst✝³ : UniformSpace R
inst✝² : UniformAddGroup R
inst✝¹ : CompleteSpace R
inst✝ : T2Space R
f : ℕ → R
hsum : Summable f
⊢ Tendsto (fun n => ∑ p ∈ n.primesBelow, f p) atTop (𝓝 (∑' (p : ↑{p | p.Prime}), f ↑p))
|
R : Type u_1
inst✝⁴ : AddCommGroup R
inst✝³ : UniformSpace R
inst✝² : UniformAddGroup R
inst✝¹ : CompleteSpace R
inst✝ : T2Space R
f : ℕ → R
hsum : Summable f
⊢ Tendsto (fun n => ∑ m ∈ Finset.range n, {p | p.Prime}.indicator (fun p => f p) m) atTop
(𝓝 (∑' (x : ℕ), {p | p.Prime}.indicator f x))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
tendsto_sum_primesBelow_tsum
|
[62, 1]
|
[69, 94]
|
exact (Summable.hasSum_iff_tendsto_nat <| hsum.indicator _).mp <| (hsum.indicator _).hasSum
|
R : Type u_1
inst✝⁴ : AddCommGroup R
inst✝³ : UniformSpace R
inst✝² : UniformAddGroup R
inst✝¹ : CompleteSpace R
inst✝ : T2Space R
f : ℕ → R
hsum : Summable f
⊢ Tendsto (fun n => ∑ m ∈ Finset.range n, {p | p.Prime}.indicator (fun p => f p) m) atTop
(𝓝 (∑' (x : ℕ), {p | p.Prime}.indicator f x))
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Complex.exp_tsum_primes
|
[71, 1]
|
[77, 81]
|
simpa only [← exp_sum] using Tendsto.cexp <| tendsto_sum_primesBelow_tsum hsum
|
f : ℕ → ℂ
hsum : Summable f
⊢ Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (f p)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), f ↑p)))
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
let g (z : ℂ) : ℂ := -log (1 - z)
|
α : Type u_1
f : α → ℂ
hsum : Summable f
⊢ Summable fun n => -(1 - f n).log
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
⊢ Summable fun n => -(1 - f n).log
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
have hg : DifferentiableAt ℂ g 0 :=
DifferentiableAt.neg <| ((differentiableAt_const 1).sub differentiableAt_id').clog <|
by simp only [sub_zero, one_mem_slitPlane]
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
⊢ Summable fun n => -(1 - f n).log
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
hg : DifferentiableAt ℂ g 0
⊢ Summable fun n => -(1 - f n).log
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
have : g =O[𝓝 0] id := by
simpa only [g, sub_zero, log_one, neg_zero] using DifferentiableAt.isBigO_sub hg
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
hg : DifferentiableAt ℂ g 0
⊢ Summable fun n => -(1 - f n).log
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
hg : DifferentiableAt ℂ g 0
this : g =O[𝓝 0] id
⊢ Summable fun n => -(1 - f n).log
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
exact Asymptotics.IsBigO.comp_summable this hsum
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
hg : DifferentiableAt ℂ g 0
this : g =O[𝓝 0] id
⊢ Summable fun n => -(1 - f n).log
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
simp only [sub_zero, one_mem_slitPlane]
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
⊢ 1 - 0 ∈ slitPlane
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
simpa only [g, sub_zero, log_one, neg_zero] using DifferentiableAt.isBigO_sub hg
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
hg : DifferentiableAt ℂ g 0
⊢ g =O[𝓝 0] id
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
have hs {p : ℕ} (hp : 1 < p) : ‖f p‖ < 1 := hsum.of_norm.norm_lt_one (f := f.toMonoidHom) hp
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
have H := Complex.exp_tsum_primes hsum.of_norm.neg_clog_one_sub
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
have help (n : ℕ) : n.primesBelow.prod (fun p ↦ cexp (-log (1 - f p))) =
n.primesBelow.prod fun p ↦ (1 - f p)⁻¹ := by
refine Finset.prod_congr rfl (fun p hp ↦ ?_)
rw [exp_neg, exp_log ?_]
rw [ne_eq, sub_eq_zero, ← ne_eq]
exact fun h ↦ (norm_one (α := ℂ) ▸ h.symm ▸ hs (Nat.prime_of_mem_primesBelow hp).one_lt).false
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
help : ∀ (n : ℕ), ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
simp_rw [help] at H
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
help : ∀ (n : ℕ), ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
help : ∀ (n : ℕ), ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹
H : Tendsto (fun n => ∏ p ∈ n.primesBelow, (1 - f p)⁻¹) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
exact tendsto_nhds_unique H <| eulerProduct_completely_multiplicative hsum
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
help : ∀ (n : ℕ), ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹
H : Tendsto (fun n => ∏ p ∈ n.primesBelow, (1 - f p)⁻¹) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
refine Finset.prod_congr rfl (fun p hp ↦ ?_)
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
n : ℕ
⊢ ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
n p : ℕ
hp : p ∈ n.primesBelow
⊢ cexp (-(1 - f p).log) = (1 - f p)⁻¹
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
rw [exp_neg, exp_log ?_]
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
n p : ℕ
hp : p ∈ n.primesBelow
⊢ cexp (-(1 - f p).log) = (1 - f p)⁻¹
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
n p : ℕ
hp : p ∈ n.primesBelow
⊢ 1 - f p ≠ 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
rw [ne_eq, sub_eq_zero, ← ne_eq]
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
n p : ℕ
hp : p ∈ n.primesBelow
⊢ 1 - f p ≠ 0
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
n p : ℕ
hp : p ∈ n.primesBelow
⊢ 1 ≠ f p
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
exact fun h ↦ (norm_one (α := ℂ) ▸ h.symm ▸ hs (Nat.prime_of_mem_primesBelow hp).one_lt).false
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
n p : ℕ
hp : p ∈ n.primesBelow
⊢ 1 ≠ f p
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul_aux
|
[21, 1]
|
[23, 90]
|
rw [mul_comm_div, div_div, ← mul_div_assoc, mul_comm (m : ℂ), natCast_mul_natCast_cpow]
|
a b : ℂ
m n : ℕ
s : ℂ
⊢ a / ↑m ^ s * (b / ↑n ^ s) = a * b / (↑m * ↑n) ^ s
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul
|
[25, 1]
|
[30, 100]
|
rcases eq_or_ne (m * n) 0 with H | H
|
f₁ f₂ f : ℕ → ℂ
m n : ℕ
h : f (m * n) = f₁ m * f₂ n
s : ℂ
⊢ term f s (m * n) = term f₁ s m * term f₂ s n
|
case inl
f₁ f₂ f : ℕ → ℂ
m n : ℕ
h : f (m * n) = f₁ m * f₂ n
s : ℂ
H : m * n = 0
⊢ term f s (m * n) = term f₁ s m * term f₂ s n
case inr
f₁ f₂ f : ℕ → ℂ
m n : ℕ
h : f (m * n) = f₁ m * f₂ n
s : ℂ
H : m * n ≠ 0
⊢ term f s (m * n) = term f₁ s m * term f₂ s n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul
|
[25, 1]
|
[30, 100]
|
rcases mul_eq_zero.mp H with rfl | rfl <;> simp only [term_zero, mul_zero, zero_mul]
|
case inl
f₁ f₂ f : ℕ → ℂ
m n : ℕ
h : f (m * n) = f₁ m * f₂ n
s : ℂ
H : m * n = 0
⊢ term f s (m * n) = term f₁ s m * term f₂ s n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul
|
[25, 1]
|
[30, 100]
|
obtain ⟨hm, hn⟩ := mul_ne_zero_iff.mp H
|
case inr
f₁ f₂ f : ℕ → ℂ
m n : ℕ
h : f (m * n) = f₁ m * f₂ n
s : ℂ
H : m * n ≠ 0
⊢ term f s (m * n) = term f₁ s m * term f₂ s n
|
case inr.intro
f₁ f₂ f : ℕ → ℂ
m n : ℕ
h : f (m * n) = f₁ m * f₂ n
s : ℂ
H : m * n ≠ 0
hm : m ≠ 0
hn : n ≠ 0
⊢ term f s (m * n) = term f₁ s m * term f₂ s n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul
|
[25, 1]
|
[30, 100]
|
simp only [ne_eq, H, not_false_eq_true, term_of_ne_zero, Nat.cast_mul, hm, hn, h, term_mul_aux]
|
case inr.intro
f₁ f₂ f : ℕ → ℂ
m n : ℕ
h : f (m * n) = f₁ m * f₂ n
s : ℂ
H : m * n ≠ 0
hm : m ≠ 0
hn : n ≠ 0
⊢ term f s (m * n) = term f₁ s m * term f₂ s n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_at_one
|
[44, 1]
|
[45, 72]
|
rw [term_of_ne_zero one_ne_zero, h₁, Nat.cast_one, one_cpow, div_one]
|
f : ℕ → ℂ
h₁ : f 1 = 1
s : ℂ
⊢ term f s 1 = 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.toFun_on_nat_map_one
|
[86, 1]
|
[87, 32]
|
simp only [cast_one, map_one]
|
N : ℕ
χ : DirichletCharacter ℂ N
⊢ (fun n => χ ↑n) 1 = 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.toFun_on_nat_map_mul
|
[89, 1]
|
[91, 32]
|
simp only [cast_mul, map_mul]
|
N : ℕ
χ : DirichletCharacter ℂ N
m n : ℕ
⊢ (fun n => χ ↑n) (m * n) = (fun n => χ ↑n) m * (fun n => χ ↑n) n
|
no goals
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.