url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aₚdₚ2_nonneg
|
[191, 1]
|
[193, 55]
|
fin_cases i <;> (dsimp [aₚ, dₚ]; norm_num)
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
i : Fin nₚ
⊢ 0 i ≤ (aₚ • dₚ ^ 2) i
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aₚdₚ2_nonneg
|
[191, 1]
|
[193, 55]
|
dsimp [aₚ, dₚ]
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 ⟨9, ⋯⟩ ≤ (aₚ • dₚ ^ 2) ⟨9, ⋯⟩
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 ≤ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, ⋯⟩ ^ 2
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aₚdₚ2_nonneg
|
[191, 1]
|
[193, 55]
|
norm_num
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 ≤ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, ⋯⟩ ^ 2
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.simp_vec_fraction
|
[43, 1]
|
[47, 49]
|
have h_di_pos := h_d_pos i
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
h_d_pos : StrongLT 0 d
s : Fin n → ℝ
i : Fin n
⊢ d i / (d i / s i) = s i
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
h_d_pos : StrongLT 0 d
s : Fin n → ℝ
i : Fin n
h_di_pos : 0 i < d i
⊢ d i / (d i / s i) = s i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.simp_vec_fraction
|
[43, 1]
|
[47, 49]
|
simp at h_di_pos
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
h_d_pos : StrongLT 0 d
s : Fin n → ℝ
i : Fin n
h_di_pos : 0 i < d i
⊢ d i / (d i / s i) = s i
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
h_d_pos : StrongLT 0 d
s : Fin n → ℝ
i : Fin n
h_di_pos : 0 < d i
⊢ d i / (d i / s i) = s i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.simp_vec_fraction
|
[43, 1]
|
[47, 49]
|
have h_di_nonzero : d i ≠ 0 := by linarith
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
h_d_pos : StrongLT 0 d
s : Fin n → ℝ
i : Fin n
h_di_pos : 0 < d i
⊢ d i / (d i / s i) = s i
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
h_d_pos : StrongLT 0 d
s : Fin n → ℝ
i : Fin n
h_di_pos : 0 < d i
h_di_nonzero : d i ≠ 0
⊢ d i / (d i / s i) = s i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.simp_vec_fraction
|
[43, 1]
|
[47, 49]
|
rw [← div_mul, div_self h_di_nonzero, one_mul]
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
h_d_pos : StrongLT 0 d
s : Fin n → ℝ
i : Fin n
h_di_pos : 0 < d i
h_di_nonzero : d i ≠ 0
⊢ d i / (d i / s i) = s i
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.simp_vec_fraction
|
[43, 1]
|
[47, 49]
|
linarith
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
h_d_pos : StrongLT 0 d
s : Fin n → ℝ
i : Fin n
h_di_pos : 0 < d i
⊢ d i ≠ 0
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.fold_partial_sum
|
[49, 1]
|
[53, 22]
|
simp [Vec.cumsum]
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
hn : Fact (0 < n)
t : Fin n → ℝ
i : Fin n
⊢ ∑ j ∈ [[0, i]], t j = Vec.cumsum t i
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
hn : Fact (0 < n)
t : Fin n → ℝ
i : Fin n
⊢ ∑ j ∈ [[0, i]], t j = if h : 0 < n then ∑ j ∈ [[⟨0, h⟩, i]], t j else 0
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.fold_partial_sum
|
[49, 1]
|
[53, 22]
|
split_ifs
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
hn : Fact (0 < n)
t : Fin n → ℝ
i : Fin n
⊢ ∑ j ∈ [[0, i]], t j = if h : 0 < n then ∑ j ∈ [[⟨0, h⟩, i]], t j else 0
|
case pos
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
hn : Fact (0 < n)
t : Fin n → ℝ
i : Fin n
h✝ : 0 < n
⊢ ∑ j ∈ [[0, i]], t j = ∑ j ∈ [[⟨0, h✝⟩, i]], t j
case neg
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
hn : Fact (0 < n)
t : Fin n → ℝ
i : Fin n
h✝ : ¬0 < n
⊢ ∑ j ∈ [[0, i]], t j = 0
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.fold_partial_sum
|
[49, 1]
|
[53, 22]
|
rfl
|
case pos
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
hn : Fact (0 < n)
t : Fin n → ℝ
i : Fin n
h✝ : 0 < n
⊢ ∑ j ∈ [[0, i]], t j = ∑ j ∈ [[⟨0, h✝⟩, i]], t j
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.fold_partial_sum
|
[49, 1]
|
[53, 22]
|
linarith [hn.out]
|
case neg
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
hn : Fact (0 < n)
t : Fin n → ℝ
i : Fin n
h✝ : ¬0 < n
⊢ ∑ j ∈ [[0, i]], t j = 0
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.nₚ_pos
|
[148, 1]
|
[148, 48]
|
unfold nₚ
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 < nₚ
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 < 10
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.nₚ_pos
|
[148, 1]
|
[148, 48]
|
norm_num
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 < 10
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.dₚ_pos
|
[154, 1]
|
[155, 50]
|
intro i
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ StrongLT 0 dₚ
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
i : Fin nₚ
⊢ 0 i < dₚ i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.dₚ_pos
|
[154, 1]
|
[155, 50]
|
fin_cases i <;> (dsimp [dₚ]; norm_num)
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
i : Fin nₚ
⊢ 0 i < dₚ i
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.dₚ_pos
|
[154, 1]
|
[155, 50]
|
dsimp [dₚ]
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 ⟨9, ⋯⟩ < dₚ ⟨9, ⋯⟩
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 < ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, ⋯⟩
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.dₚ_pos
|
[154, 1]
|
[155, 50]
|
norm_num
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 < ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, ⋯⟩
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.sminₚ_pos
|
[173, 1]
|
[174, 36]
|
intro i
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ StrongLT 0 sminₚ
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
i : Fin nₚ
⊢ 0 i < sminₚ i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.sminₚ_pos
|
[173, 1]
|
[174, 36]
|
fin_cases i <;> norm_num
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
i : Fin nₚ
⊢ 0 i < sminₚ i
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.sminₚ_le_smaxₚ
|
[179, 1]
|
[180, 60]
|
intro i
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ sminₚ ≤ smaxₚ
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
i : Fin nₚ
⊢ sminₚ i ≤ smaxₚ i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.sminₚ_le_smaxₚ
|
[179, 1]
|
[180, 60]
|
fin_cases i <;> (dsimp [sminₚ, smaxₚ]; norm_num)
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
i : Fin nₚ
⊢ sminₚ i ≤ smaxₚ i
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.sminₚ_le_smaxₚ
|
[179, 1]
|
[180, 60]
|
dsimp [sminₚ, smaxₚ]
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ sminₚ ⟨9, ⋯⟩ ≤ smaxₚ ⟨9, ⋯⟩
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] ⟨9, ⋯⟩ ≤
![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803] ⟨9, ⋯⟩
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.sminₚ_le_smaxₚ
|
[179, 1]
|
[180, 60]
|
norm_num
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] ⟨9, ⋯⟩ ≤
![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803] ⟨9, ⋯⟩
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aₚ_nonneg
|
[188, 1]
|
[189, 51]
|
unfold aₚ
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 ≤ aₚ
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 ≤ 1
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aₚ_nonneg
|
[188, 1]
|
[189, 51]
|
norm_num
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 ≤ 1
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aₚdₚ2_nonneg
|
[191, 1]
|
[193, 55]
|
intros i
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 ≤ aₚ • dₚ ^ 2
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
i : Fin nₚ
⊢ 0 i ≤ (aₚ • dₚ ^ 2) i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aₚdₚ2_nonneg
|
[191, 1]
|
[193, 55]
|
fin_cases i <;> (dsimp [aₚ, dₚ]; norm_num)
|
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
i : Fin nₚ
⊢ 0 i ≤ (aₚ • dₚ ^ 2) i
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aₚdₚ2_nonneg
|
[191, 1]
|
[193, 55]
|
dsimp [aₚ, dₚ]
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 ⟨9, ⋯⟩ ≤ (aₚ • dₚ ^ 2) ⟨9, ⋯⟩
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 ≤ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, ⋯⟩ ^ 2
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aₚdₚ2_nonneg
|
[191, 1]
|
[193, 55]
|
norm_num
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : ℕ
d τmin τmax smin smax : Fin n → ℝ
F : ℝ → ℝ
⊢ 0 ≤ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, ⋯⟩ ^ 2
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
|
LinearMap.spectral_theorem'
|
[15, 1]
|
[29, 78]
|
suffices hsuff : ∀ (w : EuclideanSpace 𝕜 (Fin n)),
T (xs.repr.symm w) = xs.repr.symm (fun i => as i * w i) by
simpa only [LinearIsometryEquiv.symm_apply_apply,
LinearIsometryEquiv.apply_symm_apply]
using congr_arg (fun (v : E) => (xs.repr) v i) (hsuff ((xs.repr) v))
|
𝕜 : Type u_2
inst✝⁴ : RCLike 𝕜
inst✝³ : DecidableEq 𝕜
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : FiniteDimensional 𝕜 E
n : ℕ
hn : FiniteDimensional.finrank 𝕜 E = n
T : E →ₗ[𝕜] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) 𝕜 E
as : Fin n → ℝ
hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j)
⊢ xs.repr (T v) i = ↑(as i) * xs.repr v i
|
𝕜 : Type u_2
inst✝⁴ : RCLike 𝕜
inst✝³ : DecidableEq 𝕜
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : FiniteDimensional 𝕜 E
n : ℕ
hn : FiniteDimensional.finrank 𝕜 E = n
T : E →ₗ[𝕜] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) 𝕜 E
as : Fin n → ℝ
hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j)
⊢ ∀ (w : EuclideanSpace 𝕜 (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
|
LinearMap.spectral_theorem'
|
[15, 1]
|
[29, 78]
|
intros w
|
𝕜 : Type u_2
inst✝⁴ : RCLike 𝕜
inst✝³ : DecidableEq 𝕜
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : FiniteDimensional 𝕜 E
n : ℕ
hn : FiniteDimensional.finrank 𝕜 E = n
T : E →ₗ[𝕜] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) 𝕜 E
as : Fin n → ℝ
hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j)
⊢ ∀ (w : EuclideanSpace 𝕜 (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i
|
𝕜 : Type u_2
inst✝⁴ : RCLike 𝕜
inst✝³ : DecidableEq 𝕜
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : FiniteDimensional 𝕜 E
n : ℕ
hn : FiniteDimensional.finrank 𝕜 E = n
T : E →ₗ[𝕜] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) 𝕜 E
as : Fin n → ℝ
hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j)
w : EuclideanSpace 𝕜 (Fin n)
⊢ T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
|
LinearMap.spectral_theorem'
|
[15, 1]
|
[29, 78]
|
simp_rw [← OrthonormalBasis.sum_repr_symm, map_sum, LinearMap.map_smul,
fun j => Module.End.mem_eigenspace_iff.mp (hxs j).1, smul_smul, mul_comm]
|
𝕜 : Type u_2
inst✝⁴ : RCLike 𝕜
inst✝³ : DecidableEq 𝕜
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : FiniteDimensional 𝕜 E
n : ℕ
hn : FiniteDimensional.finrank 𝕜 E = n
T : E →ₗ[𝕜] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) 𝕜 E
as : Fin n → ℝ
hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j)
w : EuclideanSpace 𝕜 (Fin n)
⊢ T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
|
LinearMap.spectral_theorem'
|
[15, 1]
|
[29, 78]
|
simpa only [LinearIsometryEquiv.symm_apply_apply,
LinearIsometryEquiv.apply_symm_apply]
using congr_arg (fun (v : E) => (xs.repr) v i) (hsuff ((xs.repr) v))
|
𝕜 : Type u_2
inst✝⁴ : RCLike 𝕜
inst✝³ : DecidableEq 𝕜
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : FiniteDimensional 𝕜 E
n : ℕ
hn : FiniteDimensional.finrank 𝕜 E = n
T : E →ₗ[𝕜] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) 𝕜 E
as : Fin n → ℝ
hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j)
hsuff : ∀ (w : EuclideanSpace 𝕜 (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i
⊢ xs.repr (T v) i = ↑(as i) * xs.repr v i
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
convert (Finset.sum_indicator_subset f Finset.mem_of_mem_filter).symm using 2 with _ _ m hm
|
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n : ℕ
⊢ ∑ p ∈ n.primesBelow, f p = ∑ m ∈ Finset.range n, {p | p.Prime}.indicator f m
|
case h.e'_3.a
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
⊢ {p | p.Prime}.indicator f m = (↑(Finset.filter (fun p => p.Prime) (Finset.range n))).indicator f m
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
simp only [Set.mem_setOf_eq, Finset.mem_range, Finset.coe_filter, not_and, Set.indicator_apply]
|
case h.e'_3.a
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
⊢ {p | p.Prime}.indicator f m = (↑(Finset.filter (fun p => p.Prime) (Finset.range n))).indicator f m
|
case h.e'_3.a
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
⊢ (if m.Prime then f m else 0) = if m < n ∧ m.Prime then f m else 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
split_ifs with h₁ h₂ h₃
|
case h.e'_3.a
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
⊢ (if m.Prime then f m else 0) = if m < n ∧ m.Prime then f m else 0
|
case pos
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : m.Prime
h₂ : m < n ∧ m.Prime
⊢ f m = f m
case neg
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : m.Prime
h₂ : ¬(m < n ∧ m.Prime)
⊢ f m = 0
case pos
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : ¬m.Prime
h₃ : m < n ∧ m.Prime
⊢ 0 = f m
case neg
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : ¬m.Prime
h₃ : ¬(m < n ∧ m.Prime)
⊢ 0 = 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
rfl
|
case pos
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : m.Prime
h₂ : m < n ∧ m.Prime
⊢ f m = f m
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
exact (h₂ ⟨Finset.mem_range.mp hm, h₁⟩).elim
|
case neg
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : m.Prime
h₂ : ¬(m < n ∧ m.Prime)
⊢ f m = 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
exact (h₁ h₃.2).elim
|
case pos
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : ¬m.Prime
h₃ : m < n ∧ m.Prime
⊢ 0 = f m
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
rfl
|
case neg
R : Type u_1
inst✝ : AddCommMonoid R
f : ℕ → R
n m : ℕ
hm : m ∈ Finset.range n
h₁ : ¬m.Prime
h₃ : ¬(m < n ∧ m.Prime)
⊢ 0 = 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
tendsto_sum_primesBelow_tsum
|
[62, 1]
|
[69, 94]
|
rw [(show ∑' p : Nat.Primes, f p = ∑' p : {p : ℕ | p.Prime}, f p from rfl)]
|
R : Type u_1
inst✝⁴ : AddCommGroup R
inst✝³ : UniformSpace R
inst✝² : UniformAddGroup R
inst✝¹ : CompleteSpace R
inst✝ : T2Space R
f : ℕ → R
hsum : Summable f
⊢ Tendsto (fun n => ∑ p ∈ n.primesBelow, f p) atTop (𝓝 (∑' (p : Nat.Primes), f ↑p))
|
R : Type u_1
inst✝⁴ : AddCommGroup R
inst✝³ : UniformSpace R
inst✝² : UniformAddGroup R
inst✝¹ : CompleteSpace R
inst✝ : T2Space R
f : ℕ → R
hsum : Summable f
⊢ Tendsto (fun n => ∑ p ∈ n.primesBelow, f p) atTop (𝓝 (∑' (p : ↑{p | p.Prime}), f ↑p))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
tendsto_sum_primesBelow_tsum
|
[62, 1]
|
[69, 94]
|
simp_rw [tsum_subtype, sum_primesBelow_eq_sum_range_indicator]
|
R : Type u_1
inst✝⁴ : AddCommGroup R
inst✝³ : UniformSpace R
inst✝² : UniformAddGroup R
inst✝¹ : CompleteSpace R
inst✝ : T2Space R
f : ℕ → R
hsum : Summable f
⊢ Tendsto (fun n => ∑ p ∈ n.primesBelow, f p) atTop (𝓝 (∑' (p : ↑{p | p.Prime}), f ↑p))
|
R : Type u_1
inst✝⁴ : AddCommGroup R
inst✝³ : UniformSpace R
inst✝² : UniformAddGroup R
inst✝¹ : CompleteSpace R
inst✝ : T2Space R
f : ℕ → R
hsum : Summable f
⊢ Tendsto (fun n => ∑ m ∈ Finset.range n, {p | p.Prime}.indicator (fun p => f p) m) atTop
(𝓝 (∑' (x : ℕ), {p | p.Prime}.indicator f x))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
tendsto_sum_primesBelow_tsum
|
[62, 1]
|
[69, 94]
|
exact (Summable.hasSum_iff_tendsto_nat <| hsum.indicator _).mp <| (hsum.indicator _).hasSum
|
R : Type u_1
inst✝⁴ : AddCommGroup R
inst✝³ : UniformSpace R
inst✝² : UniformAddGroup R
inst✝¹ : CompleteSpace R
inst✝ : T2Space R
f : ℕ → R
hsum : Summable f
⊢ Tendsto (fun n => ∑ m ∈ Finset.range n, {p | p.Prime}.indicator (fun p => f p) m) atTop
(𝓝 (∑' (x : ℕ), {p | p.Prime}.indicator f x))
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Complex.exp_tsum_primes
|
[71, 1]
|
[77, 81]
|
simpa only [← exp_sum] using Tendsto.cexp <| tendsto_sum_primesBelow_tsum hsum
|
f : ℕ → ℂ
hsum : Summable f
⊢ Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (f p)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), f ↑p)))
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
let g (z : ℂ) : ℂ := -log (1 - z)
|
α : Type u_1
f : α → ℂ
hsum : Summable f
⊢ Summable fun n => -(1 - f n).log
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
⊢ Summable fun n => -(1 - f n).log
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
have hg : DifferentiableAt ℂ g 0 :=
DifferentiableAt.neg <| ((differentiableAt_const 1).sub differentiableAt_id').clog <|
by simp only [sub_zero, one_mem_slitPlane]
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
⊢ Summable fun n => -(1 - f n).log
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
hg : DifferentiableAt ℂ g 0
⊢ Summable fun n => -(1 - f n).log
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
have : g =O[𝓝 0] id := by
simpa only [g, sub_zero, log_one, neg_zero] using DifferentiableAt.isBigO_sub hg
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
hg : DifferentiableAt ℂ g 0
⊢ Summable fun n => -(1 - f n).log
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
hg : DifferentiableAt ℂ g 0
this : g =O[𝓝 0] id
⊢ Summable fun n => -(1 - f n).log
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
exact Asymptotics.IsBigO.comp_summable this hsum
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
hg : DifferentiableAt ℂ g 0
this : g =O[𝓝 0] id
⊢ Summable fun n => -(1 - f n).log
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
simp only [sub_zero, one_mem_slitPlane]
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
⊢ 1 - 0 ∈ slitPlane
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
simpa only [g, sub_zero, log_one, neg_zero] using DifferentiableAt.isBigO_sub hg
|
α : Type u_1
f : α → ℂ
hsum : Summable f
g : ℂ → ℂ := fun z => -(1 - z).log
hg : DifferentiableAt ℂ g 0
⊢ g =O[𝓝 0] id
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
have hs {p : ℕ} (hp : 1 < p) : ‖f p‖ < 1 := hsum.of_norm.norm_lt_one (f := f.toMonoidHom) hp
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
have H := Complex.exp_tsum_primes hsum.of_norm.neg_clog_one_sub
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
have help (n : ℕ) : n.primesBelow.prod (fun p ↦ cexp (-log (1 - f p))) =
n.primesBelow.prod fun p ↦ (1 - f p)⁻¹ := by
refine Finset.prod_congr rfl (fun p hp ↦ ?_)
rw [exp_neg, exp_log ?_]
rw [ne_eq, sub_eq_zero, ← ne_eq]
exact fun h ↦ (norm_one (α := ℂ) ▸ h.symm ▸ hs (Nat.prime_of_mem_primesBelow hp).one_lt).false
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
help : ∀ (n : ℕ), ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
simp_rw [help] at H
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
help : ∀ (n : ℕ), ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
help : ∀ (n : ℕ), ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹
H : Tendsto (fun n => ∏ p ∈ n.primesBelow, (1 - f p)⁻¹) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
exact tendsto_nhds_unique H <| eulerProduct_completely_multiplicative hsum
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
help : ∀ (n : ℕ), ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹
H : Tendsto (fun n => ∏ p ∈ n.primesBelow, (1 - f p)⁻¹) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
refine Finset.prod_congr rfl (fun p hp ↦ ?_)
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
n : ℕ
⊢ ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
n p : ℕ
hp : p ∈ n.primesBelow
⊢ cexp (-(1 - f p).log) = (1 - f p)⁻¹
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
rw [exp_neg, exp_log ?_]
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
n p : ℕ
hp : p ∈ n.primesBelow
⊢ cexp (-(1 - f p).log) = (1 - f p)⁻¹
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
n p : ℕ
hp : p ∈ n.primesBelow
⊢ 1 - f p ≠ 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
rw [ne_eq, sub_eq_zero, ← ne_eq]
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
n p : ℕ
hp : p ∈ n.primesBelow
⊢ 1 - f p ≠ 0
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
n p : ℕ
hp : p ∈ n.primesBelow
⊢ 1 ≠ f p
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
exact fun h ↦ (norm_one (α := ℂ) ▸ h.symm ▸ hs (Nat.prime_of_mem_primesBelow hp).one_lt).false
|
f : ℕ →*₀ ℂ
hsum : Summable fun x => ‖f x‖
hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1
H :
Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log)))
n p : ℕ
hp : p ∈ n.primesBelow
⊢ 1 ≠ f p
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
rw [isBigO_iff', isBigO_iff']
|
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
⊢ (fun x => f x * g x) =O[l] h ↔ g =O[l] fun x => h x / f x
|
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
⊢ (∃ c > 0, ∀ᶠ (x : α) in l, ‖f x * g x‖ ≤ c * ‖h x‖) ↔ ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
refine ⟨fun ⟨c, hc, H⟩ ↦ ⟨c, hc, ?_⟩, fun ⟨c, hc, H⟩ ↦ ⟨c, hc, ?_⟩⟩ <;>
{ refine H.congr <| Eventually.mp hf <| eventually_of_forall fun x hx ↦ ?_
rw [norm_mul, norm_div, ← mul_div_assoc, mul_comm]
have hx' : ‖f x‖ > 0 := norm_pos_iff.mpr hx
rw [le_div_iff hx', mul_comm] }
|
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
⊢ (∃ c > 0, ∀ᶠ (x : α) in l, ‖f x * g x‖ ≤ c * ‖h x‖) ↔ ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
refine H.congr <| Eventually.mp hf <| eventually_of_forall fun x hx ↦ ?_
|
case refine_2
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
c : ℝ
hc : c > 0
H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
⊢ ∀ᶠ (x : α) in l, ‖f x * g x‖ ≤ c * ‖h x‖
|
case refine_2
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
c : ℝ
hc : c > 0
H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
x : α
hx : f x ≠ 0
⊢ ‖g x‖ ≤ c * ‖h x / f x‖ ↔ ‖f x * g x‖ ≤ c * ‖h x‖
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
rw [norm_mul, norm_div, ← mul_div_assoc, mul_comm]
|
case refine_2
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
c : ℝ
hc : c > 0
H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
x : α
hx : f x ≠ 0
⊢ ‖g x‖ ≤ c * ‖h x / f x‖ ↔ ‖f x * g x‖ ≤ c * ‖h x‖
|
case refine_2
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
c : ℝ
hc : c > 0
H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
x : α
hx : f x ≠ 0
⊢ ‖g x‖ ≤ ‖h x‖ * c / ‖f x‖ ↔ ‖f x‖ * ‖g x‖ ≤ ‖h x‖ * c
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
have hx' : ‖f x‖ > 0 := norm_pos_iff.mpr hx
|
case refine_2
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
c : ℝ
hc : c > 0
H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
x : α
hx : f x ≠ 0
⊢ ‖g x‖ ≤ ‖h x‖ * c / ‖f x‖ ↔ ‖f x‖ * ‖g x‖ ≤ ‖h x‖ * c
|
case refine_2
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
c : ℝ
hc : c > 0
H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
x : α
hx : f x ≠ 0
hx' : ‖f x‖ > 0
⊢ ‖g x‖ ≤ ‖h x‖ * c / ‖f x‖ ↔ ‖f x‖ * ‖g x‖ ≤ ‖h x‖ * c
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
rw [le_div_iff hx', mul_comm]
|
case refine_2
α : Type u_1
F : Type u_2
inst✝ : NormedField F
l : Filter α
f g h : α → F
hf : ∀ᶠ (x : α) in l, f x ≠ 0
x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
c : ℝ
hc : c > 0
H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
x : α
hx : f x ≠ 0
hx' : ‖f x‖ > 0
⊢ ‖g x‖ ≤ ‖h x‖ * c / ‖f x‖ ↔ ‖f x‖ * ‖g x‖ ≤ ‖h x‖ * c
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.isBigO_of_eq_zero
|
[50, 1]
|
[54, 73]
|
rw [← zero_add z] at hf
|
f : ℂ → ℂ
z : ℂ
hf : DifferentiableAt ℂ f z
hz : f z = 0
⊢ (fun w => f (w + z)) =O[𝓝 0] id
|
f : ℂ → ℂ
z : ℂ
hf : DifferentiableAt ℂ f (0 + z)
hz : f z = 0
⊢ (fun w => f (w + z)) =O[𝓝 0] id
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.isBigO_of_eq_zero
|
[50, 1]
|
[54, 73]
|
simpa only [zero_add, hz, sub_zero]
using (hf.hasDerivAt.comp_add_const 0 z).differentiableAt.isBigO_sub
|
f : ℂ → ℂ
z : ℂ
hf : DifferentiableAt ℂ f (0 + z)
hz : f z = 0
⊢ (fun w => f (w + z)) =O[𝓝 0] id
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
rw [isBigO_iff']
|
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt f z
⊢ (fun w => f (w + z)) =O[𝓝 0] fun x => 1
|
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt f z
⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp_rw [Metric.continuousAt_iff', dist_eq_norm_sub, zero_add] at hf
|
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt (fun w => f (w + z)) 0
⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
|
f : ℂ → ℂ
z : ℂ
hf : ∀ ε > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < ε
⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
specialize hf 1 zero_lt_one
|
f : ℂ → ℂ
z : ℂ
hf : ∀ ε > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < ε
⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
refine ⟨‖f z‖ + 1, by positivity, ?_⟩
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
⊢ ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ (‖f z‖ + 1) * ‖1‖
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
refine Eventually.mp hf <| eventually_of_forall fun w hw ↦ le_of_lt ?_
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
⊢ ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ (‖f z‖ + 1) * ‖1‖
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
w : ℂ
hw : ‖f (w + z) - f z‖ < 1
⊢ ‖f (w + z)‖ < (‖f z‖ + 1) * ‖1‖
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
calc ‖f (w + z)‖
_ ≤ ‖f z‖ + ‖f (w + z) - f z‖ := norm_le_insert' ..
_ < ‖f z‖ + 1 := add_lt_add_left hw _
_ = _ := by simp only [norm_one, mul_one]
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
w : ℂ
hw : ‖f (w + z) - f z‖ < 1
⊢ ‖f (w + z)‖ < (‖f z‖ + 1) * ‖1‖
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
convert (Homeomorph.comp_continuousAt_iff' (Homeomorph.addLeft (-z)) _ z).mp ?_
|
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt f z
⊢ ContinuousAt (fun w => f (w + z)) 0
|
case h.e'_1
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt f z
⊢ 0 = (Homeomorph.addLeft (-z)) z
case convert_4
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt f z
⊢ ContinuousAt ((fun w => f (w + z)) ∘ ⇑(Homeomorph.addLeft (-z))) z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp
|
case h.e'_1
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt f z
⊢ 0 = (Homeomorph.addLeft (-z)) z
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp [Function.comp_def, hf]
|
case convert_4
f : ℂ → ℂ
z : ℂ
hf : ContinuousAt f z
⊢ ContinuousAt ((fun w => f (w + z)) ∘ ⇑(Homeomorph.addLeft (-z))) z
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
positivity
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
⊢ ‖f z‖ + 1 > 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp only [norm_one, mul_one]
|
f : ℂ → ℂ
z : ℂ
hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1
w : ℂ
hw : ‖f (w + z) - f z‖ < 1
⊢ ‖f z‖ + 1 = (‖f z‖ + 1) * ‖1‖
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
lift u to ℝ
|
z : ℝ
f : ℝ → ℝ
u : ℂ
hf : HasDerivAt (fun y => ↑(f y)) u z
⊢ ∃ u', u = ↑u' ∧ HasDerivAt f u' z
|
z : ℝ
f : ℝ → ℝ
u : ℂ
hf : HasDerivAt (fun y => ↑(f y)) u z
⊢ u.im = 0
case intro
z : ℝ
f : ℝ → ℝ
u : ℝ
hf : HasDerivAt (fun y => ↑(f y)) (↑u) z
⊢ ∃ u', ↑u = ↑u' ∧ HasDerivAt f u' z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
refine ⟨u, rfl, ?_⟩
|
case intro
z : ℝ
f : ℝ → ℝ
u : ℝ
hf : HasDerivAt (fun y => ↑(f y)) (↑u) z
⊢ ∃ u', ↑u = ↑u' ∧ HasDerivAt f u' z
|
case intro
z : ℝ
f : ℝ → ℝ
u : ℝ
hf : HasDerivAt (fun y => ↑(f y)) (↑u) z
⊢ HasDerivAt f u z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
convert (reCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt
|
case intro
z : ℝ
f : ℝ → ℝ
u : ℝ
hf : HasDerivAt (fun y => ↑(f y)) (↑u) z
⊢ HasDerivAt f u z
|
case h.e'_7
z : ℝ
f : ℝ → ℝ
u : ℝ
hf : HasDerivAt (fun y => ↑(f y)) (↑u) z
⊢ u = (reCLM.comp (smulRight 1 ↑u)) 1
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
rw [comp_apply, smulRight_apply, one_apply, one_smul, reCLM_apply, ofReal_re]
|
case h.e'_7
z : ℝ
f : ℝ → ℝ
u : ℝ
hf : HasDerivAt (fun y => ↑(f y)) (↑u) z
⊢ u = (reCLM.comp (smulRight 1 ↑u)) 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
have H := (imCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt.deriv
|
z : ℝ
f : ℝ → ℝ
u : ℂ
hf : HasDerivAt (fun y => ↑(f y)) u z
⊢ u.im = 0
|
z : ℝ
f : ℝ → ℝ
u : ℂ
hf : HasDerivAt (fun y => ↑(f y)) u z
H : _root_.deriv (⇑imCLM ∘ fun y => ↑(f y)) z = (imCLM.comp (smulRight 1 u)) 1
⊢ u.im = 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
simp only [Function.comp_def, imCLM_apply, ofReal_im, deriv_const] at H
|
z : ℝ
f : ℝ → ℝ
u : ℂ
hf : HasDerivAt (fun y => ↑(f y)) u z
H : _root_.deriv (⇑imCLM ∘ fun y => ↑(f y)) z = (imCLM.comp (smulRight 1 u)) 1
⊢ u.im = 0
|
z : ℝ
f : ℝ → ℝ
u : ℂ
hf : HasDerivAt (fun y => ↑(f y)) u z
H : 0 = (imCLM.comp (smulRight 1 u)) 1
⊢ u.im = 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
rwa [eq_comm, comp_apply, imCLM_apply, smulRight_apply, one_apply, one_smul] at H
|
z : ℝ
f : ℝ → ℝ
u : ℂ
hf : HasDerivAt (fun y => ↑(f y)) u z
H : 0 = (imCLM.comp (smulRight 1 u)) 1
⊢ u.im = 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.ofReal_comp_iff
|
[136, 1]
|
[140, 40]
|
refine ⟨fun H ↦ ?_, ofReal_comp⟩
|
z : ℝ
f : ℝ → ℝ
⊢ DifferentiableAt ℝ (fun y => ↑(f y)) z ↔ DifferentiableAt ℝ f z
|
z : ℝ
f : ℝ → ℝ
H : DifferentiableAt ℝ (fun y => ↑(f y)) z
⊢ DifferentiableAt ℝ f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.ofReal_comp_iff
|
[136, 1]
|
[140, 40]
|
obtain ⟨u, _, hu₂⟩ := H.hasDerivAt.of_hasDerivAt_ofReal_comp
|
z : ℝ
f : ℝ → ℝ
H : DifferentiableAt ℝ (fun y => ↑(f y)) z
⊢ DifferentiableAt ℝ f z
|
case intro.intro
z : ℝ
f : ℝ → ℝ
H : DifferentiableAt ℝ (fun y => ↑(f y)) z
u : ℝ
left✝ : deriv (fun y => ↑(f y)) z = ↑u
hu₂ : HasDerivAt (fun y => f y) u z
⊢ DifferentiableAt ℝ f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.ofReal_comp_iff
|
[136, 1]
|
[140, 40]
|
exact HasDerivAt.differentiableAt hu₂
|
case intro.intro
z : ℝ
f : ℝ → ℝ
H : DifferentiableAt ℝ (fun y => ↑(f y)) z
u : ℝ
left✝ : deriv (fun y => ↑(f y)) z = ↑u
hu₂ : HasDerivAt (fun y => f y) u z
⊢ DifferentiableAt ℝ f z
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
by_cases hf : DifferentiableAt ℝ f z
|
z : ℝ
f : ℝ → ℝ
⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
|
case pos
z : ℝ
f : ℝ → ℝ
hf : DifferentiableAt ℝ f z
⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
case neg
z : ℝ
f : ℝ → ℝ
hf : ¬DifferentiableAt ℝ f z
⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
exact hf.hasDerivAt.ofReal_comp.deriv
|
case pos
z : ℝ
f : ℝ → ℝ
hf : DifferentiableAt ℝ f z
⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
have hf' := mt DifferentiableAt.ofReal_comp_iff.mp hf
|
case neg
z : ℝ
f : ℝ → ℝ
hf : ¬DifferentiableAt ℝ f z
⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
|
case neg
z : ℝ
f : ℝ → ℝ
hf : ¬DifferentiableAt ℝ f z
hf' : ¬DifferentiableAt ℝ (fun y => ↑(f y)) z
⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
rw [deriv_zero_of_not_differentiableAt hf, deriv_zero_of_not_differentiableAt hf',
Complex.ofReal_zero]
|
case neg
z : ℝ
f : ℝ → ℝ
hf : ¬DifferentiableAt ℝ f z
hf' : ¬DifferentiableAt ℝ (fun y => ↑(f y)) z
⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
have Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), (x : ℂ) ∈ Metric.ball (c : ℂ) r := by
intro x hx
refine Metric.mem_ball.mpr ?_
rw [dist_eq, ← ofReal_sub, abs_ofReal, abs_sub_lt_iff, sub_lt_iff_lt_add', sub_lt_comm]
exact and_comm.mpr hx
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
have H ⦃z : ℂ⦄ (hz : z ∈ Metric.ball (c : ℂ) r) := taylorSeries_eq_on_ball' hz hf
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
refine ⟨fun x ↦ ∑' (n : ℕ), (↑n !)⁻¹ * (D n) * (x - c) ^ n, fun x hx ↦ ?_, fun x hx ↦ ?_⟩
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
|
case refine_1
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ DifferentiableWithinAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
case refine_2
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ (f ∘ ofReal') x = (ofReal' ∘ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
intro x hx
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
⊢ ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ ↑x ∈ Metric.ball (↑c) r
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
refine Metric.mem_ball.mpr ?_
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ ↑x ∈ Metric.ball (↑c) r
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ dist ↑x ↑c < r
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
rw [dist_eq, ← ofReal_sub, abs_ofReal, abs_sub_lt_iff, sub_lt_iff_lt_add', sub_lt_comm]
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ dist ↑x ↑c < r
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ x < c + r ∧ c - r < x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
exact and_comm.mpr hx
|
f : ℂ → ℂ
r c : ℝ
hf : DifferentiableOn ℂ f (Metric.ball (↑c) r)
D : ℕ → ℝ
hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n)
x : ℝ
hx : x ∈ Set.Ioo (c - r) (c + r)
⊢ x < c + r ∧ c - r < x
|
no goals
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.