url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aₚdₚ2_nonneg
[191, 1]
[193, 55]
fin_cases i <;> (dsimp [aₚ, dₚ]; norm_num)
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ 0 i ≤ (aₚ • dₚ ^ 2) i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aₚdₚ2_nonneg
[191, 1]
[193, 55]
dsimp [aₚ, dₚ]
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ⟨9, ⋯⟩ ≤ (aₚ • dₚ ^ 2) ⟨9, ⋯⟩
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ≤ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, ⋯⟩ ^ 2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aₚdₚ2_nonneg
[191, 1]
[193, 55]
norm_num
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ≤ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, ⋯⟩ ^ 2
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
have h_di_pos := h_d_pos i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n ⊢ d i / (d i / s i) = s i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n h_di_pos : 0 i < d i ⊢ d i / (d i / s i) = s i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
simp at h_di_pos
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n h_di_pos : 0 i < d i ⊢ d i / (d i / s i) = s i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n h_di_pos : 0 < d i ⊢ d i / (d i / s i) = s i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
have h_di_nonzero : d i ≠ 0 := by linarith
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n h_di_pos : 0 < d i ⊢ d i / (d i / s i) = s i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n h_di_pos : 0 < d i h_di_nonzero : d i ≠ 0 ⊢ d i / (d i / s i) = s i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
rw [← div_mul, div_self h_di_nonzero, one_mul]
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n h_di_pos : 0 < d i h_di_nonzero : d i ≠ 0 ⊢ d i / (d i / s i) = s i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
linarith
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n h_di_pos : 0 < d i ⊢ d i ≠ 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.fold_partial_sum
[49, 1]
[53, 22]
simp [Vec.cumsum]
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ hn : Fact (0 < n) t : Fin n → ℝ i : Fin n ⊢ ∑ j ∈ [[0, i]], t j = Vec.cumsum t i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ hn : Fact (0 < n) t : Fin n → ℝ i : Fin n ⊢ ∑ j ∈ [[0, i]], t j = if h : 0 < n then ∑ j ∈ [[⟨0, h⟩, i]], t j else 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.fold_partial_sum
[49, 1]
[53, 22]
split_ifs
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ hn : Fact (0 < n) t : Fin n → ℝ i : Fin n ⊢ ∑ j ∈ [[0, i]], t j = if h : 0 < n then ∑ j ∈ [[⟨0, h⟩, i]], t j else 0
case pos n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ hn : Fact (0 < n) t : Fin n → ℝ i : Fin n h✝ : 0 < n ⊢ ∑ j ∈ [[0, i]], t j = ∑ j ∈ [[⟨0, h✝⟩, i]], t j case neg n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ hn : Fact (0 < n) t : Fin n → ℝ i : Fin n h✝ : ¬0 < n ⊢ ∑ j ∈ [[0, i]], t j = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.fold_partial_sum
[49, 1]
[53, 22]
rfl
case pos n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ hn : Fact (0 < n) t : Fin n → ℝ i : Fin n h✝ : 0 < n ⊢ ∑ j ∈ [[0, i]], t j = ∑ j ∈ [[⟨0, h✝⟩, i]], t j
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.fold_partial_sum
[49, 1]
[53, 22]
linarith [hn.out]
case neg n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ hn : Fact (0 < n) t : Fin n → ℝ i : Fin n h✝ : ¬0 < n ⊢ ∑ j ∈ [[0, i]], t j = 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.nₚ_pos
[148, 1]
[148, 48]
unfold nₚ
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 < nₚ
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 < 10
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.nₚ_pos
[148, 1]
[148, 48]
norm_num
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 < 10
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.dₚ_pos
[154, 1]
[155, 50]
intro i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ StrongLT 0 dₚ
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ 0 i < dₚ i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.dₚ_pos
[154, 1]
[155, 50]
fin_cases i <;> (dsimp [dₚ]; norm_num)
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ 0 i < dₚ i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.dₚ_pos
[154, 1]
[155, 50]
dsimp [dₚ]
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ⟨9, ⋯⟩ < dₚ ⟨9, ⋯⟩
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 < ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, ⋯⟩
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.dₚ_pos
[154, 1]
[155, 50]
norm_num
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 < ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, ⋯⟩
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminₚ_pos
[173, 1]
[174, 36]
intro i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ StrongLT 0 sminₚ
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ 0 i < sminₚ i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminₚ_pos
[173, 1]
[174, 36]
fin_cases i <;> norm_num
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ 0 i < sminₚ i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminₚ_le_smaxₚ
[179, 1]
[180, 60]
intro i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ sminₚ ≤ smaxₚ
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ sminₚ i ≤ smaxₚ i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminₚ_le_smaxₚ
[179, 1]
[180, 60]
fin_cases i <;> (dsimp [sminₚ, smaxₚ]; norm_num)
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ sminₚ i ≤ smaxₚ i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminₚ_le_smaxₚ
[179, 1]
[180, 60]
dsimp [sminₚ, smaxₚ]
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ sminₚ ⟨9, ⋯⟩ ≤ smaxₚ ⟨9, ⋯⟩
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] ⟨9, ⋯⟩ ≤ ![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803] ⟨9, ⋯⟩
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminₚ_le_smaxₚ
[179, 1]
[180, 60]
norm_num
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] ⟨9, ⋯⟩ ≤ ![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803] ⟨9, ⋯⟩
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aₚ_nonneg
[188, 1]
[189, 51]
unfold aₚ
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ≤ aₚ
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ≤ 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aₚ_nonneg
[188, 1]
[189, 51]
norm_num
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ≤ 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aₚdₚ2_nonneg
[191, 1]
[193, 55]
intros i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ≤ aₚ • dₚ ^ 2
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ 0 i ≤ (aₚ • dₚ ^ 2) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aₚdₚ2_nonneg
[191, 1]
[193, 55]
fin_cases i <;> (dsimp [aₚ, dₚ]; norm_num)
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ 0 i ≤ (aₚ • dₚ ^ 2) i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aₚdₚ2_nonneg
[191, 1]
[193, 55]
dsimp [aₚ, dₚ]
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ⟨9, ⋯⟩ ≤ (aₚ • dₚ ^ 2) ⟨9, ⋯⟩
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ≤ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, ⋯⟩ ^ 2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aₚdₚ2_nonneg
[191, 1]
[193, 55]
norm_num
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ≤ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, ⋯⟩ ^ 2
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
LinearMap.spectral_theorem'
[15, 1]
[29, 78]
suffices hsuff : ∀ (w : EuclideanSpace 𝕜 (Fin n)), T (xs.repr.symm w) = xs.repr.symm (fun i => as i * w i) by simpa only [LinearIsometryEquiv.symm_apply_apply, LinearIsometryEquiv.apply_symm_apply] using congr_arg (fun (v : E) => (xs.repr) v i) (hsuff ((xs.repr) v))
𝕜 : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : DecidableEq 𝕜 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E n : ℕ hn : FiniteDimensional.finrank 𝕜 E = n T : E →ₗ[𝕜] E v : E i : Fin n xs : OrthonormalBasis (Fin n) 𝕜 E as : Fin n → ℝ hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j) ⊢ xs.repr (T v) i = ↑(as i) * xs.repr v i
𝕜 : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : DecidableEq 𝕜 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E n : ℕ hn : FiniteDimensional.finrank 𝕜 E = n T : E →ₗ[𝕜] E v : E i : Fin n xs : OrthonormalBasis (Fin n) 𝕜 E as : Fin n → ℝ hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j) ⊢ ∀ (w : EuclideanSpace 𝕜 (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
LinearMap.spectral_theorem'
[15, 1]
[29, 78]
intros w
𝕜 : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : DecidableEq 𝕜 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E n : ℕ hn : FiniteDimensional.finrank 𝕜 E = n T : E →ₗ[𝕜] E v : E i : Fin n xs : OrthonormalBasis (Fin n) 𝕜 E as : Fin n → ℝ hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j) ⊢ ∀ (w : EuclideanSpace 𝕜 (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i
𝕜 : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : DecidableEq 𝕜 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E n : ℕ hn : FiniteDimensional.finrank 𝕜 E = n T : E →ₗ[𝕜] E v : E i : Fin n xs : OrthonormalBasis (Fin n) 𝕜 E as : Fin n → ℝ hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j) w : EuclideanSpace 𝕜 (Fin n) ⊢ T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
LinearMap.spectral_theorem'
[15, 1]
[29, 78]
simp_rw [← OrthonormalBasis.sum_repr_symm, map_sum, LinearMap.map_smul, fun j => Module.End.mem_eigenspace_iff.mp (hxs j).1, smul_smul, mul_comm]
𝕜 : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : DecidableEq 𝕜 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E n : ℕ hn : FiniteDimensional.finrank 𝕜 E = n T : E →ₗ[𝕜] E v : E i : Fin n xs : OrthonormalBasis (Fin n) 𝕜 E as : Fin n → ℝ hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j) w : EuclideanSpace 𝕜 (Fin n) ⊢ T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
LinearMap.spectral_theorem'
[15, 1]
[29, 78]
simpa only [LinearIsometryEquiv.symm_apply_apply, LinearIsometryEquiv.apply_symm_apply] using congr_arg (fun (v : E) => (xs.repr) v i) (hsuff ((xs.repr) v))
𝕜 : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : DecidableEq 𝕜 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E n : ℕ hn : FiniteDimensional.finrank 𝕜 E = n T : E →ₗ[𝕜] E v : E i : Fin n xs : OrthonormalBasis (Fin n) 𝕜 E as : Fin n → ℝ hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j) hsuff : ∀ (w : EuclideanSpace 𝕜 (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i ⊢ xs.repr (T v) i = ↑(as i) * xs.repr v i
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
sum_primesBelow_eq_sum_range_indicator
[49, 1]
[58, 8]
convert (Finset.sum_indicator_subset f Finset.mem_of_mem_filter).symm using 2 with _ _ m hm
R : Type u_1 inst✝ : AddCommMonoid R f : ℕ → R n : ℕ ⊢ ∑ p ∈ n.primesBelow, f p = ∑ m ∈ Finset.range n, {p | p.Prime}.indicator f m
case h.e'_3.a R : Type u_1 inst✝ : AddCommMonoid R f : ℕ → R n m : ℕ hm : m ∈ Finset.range n ⊢ {p | p.Prime}.indicator f m = (↑(Finset.filter (fun p => p.Prime) (Finset.range n))).indicator f m
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
sum_primesBelow_eq_sum_range_indicator
[49, 1]
[58, 8]
simp only [Set.mem_setOf_eq, Finset.mem_range, Finset.coe_filter, not_and, Set.indicator_apply]
case h.e'_3.a R : Type u_1 inst✝ : AddCommMonoid R f : ℕ → R n m : ℕ hm : m ∈ Finset.range n ⊢ {p | p.Prime}.indicator f m = (↑(Finset.filter (fun p => p.Prime) (Finset.range n))).indicator f m
case h.e'_3.a R : Type u_1 inst✝ : AddCommMonoid R f : ℕ → R n m : ℕ hm : m ∈ Finset.range n ⊢ (if m.Prime then f m else 0) = if m < n ∧ m.Prime then f m else 0
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
sum_primesBelow_eq_sum_range_indicator
[49, 1]
[58, 8]
split_ifs with h₁ h₂ h₃
case h.e'_3.a R : Type u_1 inst✝ : AddCommMonoid R f : ℕ → R n m : ℕ hm : m ∈ Finset.range n ⊢ (if m.Prime then f m else 0) = if m < n ∧ m.Prime then f m else 0
case pos R : Type u_1 inst✝ : AddCommMonoid R f : ℕ → R n m : ℕ hm : m ∈ Finset.range n h₁ : m.Prime h₂ : m < n ∧ m.Prime ⊢ f m = f m case neg R : Type u_1 inst✝ : AddCommMonoid R f : ℕ → R n m : ℕ hm : m ∈ Finset.range n h₁ : m.Prime h₂ : ¬(m < n ∧ m.Prime) ⊢ f m = 0 case pos R : Type u_1 inst✝ : AddCommMonoid R f : ℕ → R n m : ℕ hm : m ∈ Finset.range n h₁ : ¬m.Prime h₃ : m < n ∧ m.Prime ⊢ 0 = f m case neg R : Type u_1 inst✝ : AddCommMonoid R f : ℕ → R n m : ℕ hm : m ∈ Finset.range n h₁ : ¬m.Prime h₃ : ¬(m < n ∧ m.Prime) ⊢ 0 = 0
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
sum_primesBelow_eq_sum_range_indicator
[49, 1]
[58, 8]
rfl
case pos R : Type u_1 inst✝ : AddCommMonoid R f : ℕ → R n m : ℕ hm : m ∈ Finset.range n h₁ : m.Prime h₂ : m < n ∧ m.Prime ⊢ f m = f m
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
sum_primesBelow_eq_sum_range_indicator
[49, 1]
[58, 8]
exact (h₂ ⟨Finset.mem_range.mp hm, h₁⟩).elim
case neg R : Type u_1 inst✝ : AddCommMonoid R f : ℕ → R n m : ℕ hm : m ∈ Finset.range n h₁ : m.Prime h₂ : ¬(m < n ∧ m.Prime) ⊢ f m = 0
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
sum_primesBelow_eq_sum_range_indicator
[49, 1]
[58, 8]
exact (h₁ h₃.2).elim
case pos R : Type u_1 inst✝ : AddCommMonoid R f : ℕ → R n m : ℕ hm : m ∈ Finset.range n h₁ : ¬m.Prime h₃ : m < n ∧ m.Prime ⊢ 0 = f m
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
sum_primesBelow_eq_sum_range_indicator
[49, 1]
[58, 8]
rfl
case neg R : Type u_1 inst✝ : AddCommMonoid R f : ℕ → R n m : ℕ hm : m ∈ Finset.range n h₁ : ¬m.Prime h₃ : ¬(m < n ∧ m.Prime) ⊢ 0 = 0
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
tendsto_sum_primesBelow_tsum
[62, 1]
[69, 94]
rw [(show ∑' p : Nat.Primes, f p = ∑' p : {p : ℕ | p.Prime}, f p from rfl)]
R : Type u_1 inst✝⁴ : AddCommGroup R inst✝³ : UniformSpace R inst✝² : UniformAddGroup R inst✝¹ : CompleteSpace R inst✝ : T2Space R f : ℕ → R hsum : Summable f ⊢ Tendsto (fun n => ∑ p ∈ n.primesBelow, f p) atTop (𝓝 (∑' (p : Nat.Primes), f ↑p))
R : Type u_1 inst✝⁴ : AddCommGroup R inst✝³ : UniformSpace R inst✝² : UniformAddGroup R inst✝¹ : CompleteSpace R inst✝ : T2Space R f : ℕ → R hsum : Summable f ⊢ Tendsto (fun n => ∑ p ∈ n.primesBelow, f p) atTop (𝓝 (∑' (p : ↑{p | p.Prime}), f ↑p))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
tendsto_sum_primesBelow_tsum
[62, 1]
[69, 94]
simp_rw [tsum_subtype, sum_primesBelow_eq_sum_range_indicator]
R : Type u_1 inst✝⁴ : AddCommGroup R inst✝³ : UniformSpace R inst✝² : UniformAddGroup R inst✝¹ : CompleteSpace R inst✝ : T2Space R f : ℕ → R hsum : Summable f ⊢ Tendsto (fun n => ∑ p ∈ n.primesBelow, f p) atTop (𝓝 (∑' (p : ↑{p | p.Prime}), f ↑p))
R : Type u_1 inst✝⁴ : AddCommGroup R inst✝³ : UniformSpace R inst✝² : UniformAddGroup R inst✝¹ : CompleteSpace R inst✝ : T2Space R f : ℕ → R hsum : Summable f ⊢ Tendsto (fun n => ∑ m ∈ Finset.range n, {p | p.Prime}.indicator (fun p => f p) m) atTop (𝓝 (∑' (x : ℕ), {p | p.Prime}.indicator f x))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
tendsto_sum_primesBelow_tsum
[62, 1]
[69, 94]
exact (Summable.hasSum_iff_tendsto_nat <| hsum.indicator _).mp <| (hsum.indicator _).hasSum
R : Type u_1 inst✝⁴ : AddCommGroup R inst✝³ : UniformSpace R inst✝² : UniformAddGroup R inst✝¹ : CompleteSpace R inst✝ : T2Space R f : ℕ → R hsum : Summable f ⊢ Tendsto (fun n => ∑ m ∈ Finset.range n, {p | p.Prime}.indicator (fun p => f p) m) atTop (𝓝 (∑' (x : ℕ), {p | p.Prime}.indicator f x))
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
Complex.exp_tsum_primes
[71, 1]
[77, 81]
simpa only [← exp_sum] using Tendsto.cexp <| tendsto_sum_primesBelow_tsum hsum
f : ℕ → ℂ hsum : Summable f ⊢ Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (f p)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), f ↑p)))
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
Summable.neg_clog_one_sub
[82, 1]
[91, 51]
let g (z : ℂ) : ℂ := -log (1 - z)
α : Type u_1 f : α → ℂ hsum : Summable f ⊢ Summable fun n => -(1 - f n).log
α : Type u_1 f : α → ℂ hsum : Summable f g : ℂ → ℂ := fun z => -(1 - z).log ⊢ Summable fun n => -(1 - f n).log
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
Summable.neg_clog_one_sub
[82, 1]
[91, 51]
have hg : DifferentiableAt ℂ g 0 := DifferentiableAt.neg <| ((differentiableAt_const 1).sub differentiableAt_id').clog <| by simp only [sub_zero, one_mem_slitPlane]
α : Type u_1 f : α → ℂ hsum : Summable f g : ℂ → ℂ := fun z => -(1 - z).log ⊢ Summable fun n => -(1 - f n).log
α : Type u_1 f : α → ℂ hsum : Summable f g : ℂ → ℂ := fun z => -(1 - z).log hg : DifferentiableAt ℂ g 0 ⊢ Summable fun n => -(1 - f n).log
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
Summable.neg_clog_one_sub
[82, 1]
[91, 51]
have : g =O[𝓝 0] id := by simpa only [g, sub_zero, log_one, neg_zero] using DifferentiableAt.isBigO_sub hg
α : Type u_1 f : α → ℂ hsum : Summable f g : ℂ → ℂ := fun z => -(1 - z).log hg : DifferentiableAt ℂ g 0 ⊢ Summable fun n => -(1 - f n).log
α : Type u_1 f : α → ℂ hsum : Summable f g : ℂ → ℂ := fun z => -(1 - z).log hg : DifferentiableAt ℂ g 0 this : g =O[𝓝 0] id ⊢ Summable fun n => -(1 - f n).log
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
Summable.neg_clog_one_sub
[82, 1]
[91, 51]
exact Asymptotics.IsBigO.comp_summable this hsum
α : Type u_1 f : α → ℂ hsum : Summable f g : ℂ → ℂ := fun z => -(1 - z).log hg : DifferentiableAt ℂ g 0 this : g =O[𝓝 0] id ⊢ Summable fun n => -(1 - f n).log
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
Summable.neg_clog_one_sub
[82, 1]
[91, 51]
simp only [sub_zero, one_mem_slitPlane]
α : Type u_1 f : α → ℂ hsum : Summable f g : ℂ → ℂ := fun z => -(1 - z).log ⊢ 1 - 0 ∈ slitPlane
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
Summable.neg_clog_one_sub
[82, 1]
[91, 51]
simpa only [g, sub_zero, log_one, neg_zero] using DifferentiableAt.isBigO_sub hg
α : Type u_1 f : α → ℂ hsum : Summable f g : ℂ → ℂ := fun z => -(1 - z).log hg : DifferentiableAt ℂ g 0 ⊢ g =O[𝓝 0] id
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
EulerProduct.exp_sum_primes_log_eq_tsum
[96, 1]
[107, 77]
have hs {p : ℕ} (hp : 1 < p) : ‖f p‖ < 1 := hsum.of_norm.norm_lt_one (f := f.toMonoidHom) hp
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ ⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 ⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
EulerProduct.exp_sum_primes_log_eq_tsum
[96, 1]
[107, 77]
have H := Complex.exp_tsum_primes hsum.of_norm.neg_clog_one_sub
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 ⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 H : Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log))) ⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
EulerProduct.exp_sum_primes_log_eq_tsum
[96, 1]
[107, 77]
have help (n : ℕ) : n.primesBelow.prod (fun p ↦ cexp (-log (1 - f p))) = n.primesBelow.prod fun p ↦ (1 - f p)⁻¹ := by refine Finset.prod_congr rfl (fun p hp ↦ ?_) rw [exp_neg, exp_log ?_] rw [ne_eq, sub_eq_zero, ← ne_eq] exact fun h ↦ (norm_one (α := ℂ) ▸ h.symm ▸ hs (Nat.prime_of_mem_primesBelow hp).one_lt).false
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 H : Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log))) ⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 H : Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log))) help : ∀ (n : ℕ), ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹ ⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
EulerProduct.exp_sum_primes_log_eq_tsum
[96, 1]
[107, 77]
simp_rw [help] at H
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 H : Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log))) help : ∀ (n : ℕ), ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹ ⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 help : ∀ (n : ℕ), ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹ H : Tendsto (fun n => ∏ p ∈ n.primesBelow, (1 - f p)⁻¹) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log))) ⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
EulerProduct.exp_sum_primes_log_eq_tsum
[96, 1]
[107, 77]
exact tendsto_nhds_unique H <| eulerProduct_completely_multiplicative hsum
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 help : ∀ (n : ℕ), ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹ H : Tendsto (fun n => ∏ p ∈ n.primesBelow, (1 - f p)⁻¹) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log))) ⊢ cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log) = ∑' (n : ℕ), f n
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
EulerProduct.exp_sum_primes_log_eq_tsum
[96, 1]
[107, 77]
refine Finset.prod_congr rfl (fun p hp ↦ ?_)
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 H : Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log))) n : ℕ ⊢ ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log) = ∏ p ∈ n.primesBelow, (1 - f p)⁻¹
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 H : Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log))) n p : ℕ hp : p ∈ n.primesBelow ⊢ cexp (-(1 - f p).log) = (1 - f p)⁻¹
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
EulerProduct.exp_sum_primes_log_eq_tsum
[96, 1]
[107, 77]
rw [exp_neg, exp_log ?_]
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 H : Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log))) n p : ℕ hp : p ∈ n.primesBelow ⊢ cexp (-(1 - f p).log) = (1 - f p)⁻¹
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 H : Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log))) n p : ℕ hp : p ∈ n.primesBelow ⊢ 1 - f p ≠ 0
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
EulerProduct.exp_sum_primes_log_eq_tsum
[96, 1]
[107, 77]
rw [ne_eq, sub_eq_zero, ← ne_eq]
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 H : Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log))) n p : ℕ hp : p ∈ n.primesBelow ⊢ 1 - f p ≠ 0
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 H : Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log))) n p : ℕ hp : p ∈ n.primesBelow ⊢ 1 ≠ f p
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Logarithm.lean
EulerProduct.exp_sum_primes_log_eq_tsum
[96, 1]
[107, 77]
exact fun h ↦ (norm_one (α := ℂ) ▸ h.symm ▸ hs (Nat.prime_of_mem_primesBelow hp).one_lt).false
f : ℕ →*₀ ℂ hsum : Summable fun x => ‖f x‖ hs : ∀ {p : ℕ}, 1 < p → ‖f p‖ < 1 H : Tendsto (fun n => ∏ p ∈ n.primesBelow, cexp (-(1 - f p).log)) atTop (𝓝 (cexp (∑' (p : Nat.Primes), -(1 - f ↑p).log))) n p : ℕ hp : p ∈ n.primesBelow ⊢ 1 ≠ f p
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Asymptotics.isBigO_mul_iff_isBigO_div
[31, 1]
[39, 36]
rw [isBigO_iff', isBigO_iff']
α : Type u_1 F : Type u_2 inst✝ : NormedField F l : Filter α f g h : α → F hf : ∀ᶠ (x : α) in l, f x ≠ 0 ⊢ (fun x => f x * g x) =O[l] h ↔ g =O[l] fun x => h x / f x
α : Type u_1 F : Type u_2 inst✝ : NormedField F l : Filter α f g h : α → F hf : ∀ᶠ (x : α) in l, f x ≠ 0 ⊢ (∃ c > 0, ∀ᶠ (x : α) in l, ‖f x * g x‖ ≤ c * ‖h x‖) ↔ ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Asymptotics.isBigO_mul_iff_isBigO_div
[31, 1]
[39, 36]
refine ⟨fun ⟨c, hc, H⟩ ↦ ⟨c, hc, ?_⟩, fun ⟨c, hc, H⟩ ↦ ⟨c, hc, ?_⟩⟩ <;> { refine H.congr <| Eventually.mp hf <| eventually_of_forall fun x hx ↦ ?_ rw [norm_mul, norm_div, ← mul_div_assoc, mul_comm] have hx' : ‖f x‖ > 0 := norm_pos_iff.mpr hx rw [le_div_iff hx', mul_comm] }
α : Type u_1 F : Type u_2 inst✝ : NormedField F l : Filter α f g h : α → F hf : ∀ᶠ (x : α) in l, f x ≠ 0 ⊢ (∃ c > 0, ∀ᶠ (x : α) in l, ‖f x * g x‖ ≤ c * ‖h x‖) ↔ ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Asymptotics.isBigO_mul_iff_isBigO_div
[31, 1]
[39, 36]
refine H.congr <| Eventually.mp hf <| eventually_of_forall fun x hx ↦ ?_
case refine_2 α : Type u_1 F : Type u_2 inst✝ : NormedField F l : Filter α f g h : α → F hf : ∀ᶠ (x : α) in l, f x ≠ 0 x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ c : ℝ hc : c > 0 H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ ⊢ ∀ᶠ (x : α) in l, ‖f x * g x‖ ≤ c * ‖h x‖
case refine_2 α : Type u_1 F : Type u_2 inst✝ : NormedField F l : Filter α f g h : α → F hf : ∀ᶠ (x : α) in l, f x ≠ 0 x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ c : ℝ hc : c > 0 H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ x : α hx : f x ≠ 0 ⊢ ‖g x‖ ≤ c * ‖h x / f x‖ ↔ ‖f x * g x‖ ≤ c * ‖h x‖
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Asymptotics.isBigO_mul_iff_isBigO_div
[31, 1]
[39, 36]
rw [norm_mul, norm_div, ← mul_div_assoc, mul_comm]
case refine_2 α : Type u_1 F : Type u_2 inst✝ : NormedField F l : Filter α f g h : α → F hf : ∀ᶠ (x : α) in l, f x ≠ 0 x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ c : ℝ hc : c > 0 H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ x : α hx : f x ≠ 0 ⊢ ‖g x‖ ≤ c * ‖h x / f x‖ ↔ ‖f x * g x‖ ≤ c * ‖h x‖
case refine_2 α : Type u_1 F : Type u_2 inst✝ : NormedField F l : Filter α f g h : α → F hf : ∀ᶠ (x : α) in l, f x ≠ 0 x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ c : ℝ hc : c > 0 H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ x : α hx : f x ≠ 0 ⊢ ‖g x‖ ≤ ‖h x‖ * c / ‖f x‖ ↔ ‖f x‖ * ‖g x‖ ≤ ‖h x‖ * c
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Asymptotics.isBigO_mul_iff_isBigO_div
[31, 1]
[39, 36]
have hx' : ‖f x‖ > 0 := norm_pos_iff.mpr hx
case refine_2 α : Type u_1 F : Type u_2 inst✝ : NormedField F l : Filter α f g h : α → F hf : ∀ᶠ (x : α) in l, f x ≠ 0 x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ c : ℝ hc : c > 0 H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ x : α hx : f x ≠ 0 ⊢ ‖g x‖ ≤ ‖h x‖ * c / ‖f x‖ ↔ ‖f x‖ * ‖g x‖ ≤ ‖h x‖ * c
case refine_2 α : Type u_1 F : Type u_2 inst✝ : NormedField F l : Filter α f g h : α → F hf : ∀ᶠ (x : α) in l, f x ≠ 0 x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ c : ℝ hc : c > 0 H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ x : α hx : f x ≠ 0 hx' : ‖f x‖ > 0 ⊢ ‖g x‖ ≤ ‖h x‖ * c / ‖f x‖ ↔ ‖f x‖ * ‖g x‖ ≤ ‖h x‖ * c
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Asymptotics.isBigO_mul_iff_isBigO_div
[31, 1]
[39, 36]
rw [le_div_iff hx', mul_comm]
case refine_2 α : Type u_1 F : Type u_2 inst✝ : NormedField F l : Filter α f g h : α → F hf : ∀ᶠ (x : α) in l, f x ≠ 0 x✝ : ∃ c > 0, ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ c : ℝ hc : c > 0 H : ∀ᶠ (x : α) in l, ‖g x‖ ≤ c * ‖h x / f x‖ x : α hx : f x ≠ 0 hx' : ‖f x‖ > 0 ⊢ ‖g x‖ ≤ ‖h x‖ * c / ‖f x‖ ↔ ‖f x‖ * ‖g x‖ ≤ ‖h x‖ * c
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
DifferentiableAt.isBigO_of_eq_zero
[50, 1]
[54, 73]
rw [← zero_add z] at hf
f : ℂ → ℂ z : ℂ hf : DifferentiableAt ℂ f z hz : f z = 0 ⊢ (fun w => f (w + z)) =O[𝓝 0] id
f : ℂ → ℂ z : ℂ hf : DifferentiableAt ℂ f (0 + z) hz : f z = 0 ⊢ (fun w => f (w + z)) =O[𝓝 0] id
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
DifferentiableAt.isBigO_of_eq_zero
[50, 1]
[54, 73]
simpa only [zero_add, hz, sub_zero] using (hf.hasDerivAt.comp_add_const 0 z).differentiableAt.isBigO_sub
f : ℂ → ℂ z : ℂ hf : DifferentiableAt ℂ f (0 + z) hz : f z = 0 ⊢ (fun w => f (w + z)) =O[𝓝 0] id
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
ContinuousAt.isBigO
[56, 1]
[70, 46]
rw [isBigO_iff']
f : ℂ → ℂ z : ℂ hf : ContinuousAt f z ⊢ (fun w => f (w + z)) =O[𝓝 0] fun x => 1
f : ℂ → ℂ z : ℂ hf : ContinuousAt f z ⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
ContinuousAt.isBigO
[56, 1]
[70, 46]
simp_rw [Metric.continuousAt_iff', dist_eq_norm_sub, zero_add] at hf
f : ℂ → ℂ z : ℂ hf : ContinuousAt (fun w => f (w + z)) 0 ⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
f : ℂ → ℂ z : ℂ hf : ∀ ε > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < ε ⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
ContinuousAt.isBigO
[56, 1]
[70, 46]
specialize hf 1 zero_lt_one
f : ℂ → ℂ z : ℂ hf : ∀ ε > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < ε ⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
f : ℂ → ℂ z : ℂ hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1 ⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
ContinuousAt.isBigO
[56, 1]
[70, 46]
refine ⟨‖f z‖ + 1, by positivity, ?_⟩
f : ℂ → ℂ z : ℂ hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1 ⊢ ∃ c > 0, ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ c * ‖1‖
f : ℂ → ℂ z : ℂ hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1 ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ (‖f z‖ + 1) * ‖1‖
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
ContinuousAt.isBigO
[56, 1]
[70, 46]
refine Eventually.mp hf <| eventually_of_forall fun w hw ↦ le_of_lt ?_
f : ℂ → ℂ z : ℂ hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1 ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z)‖ ≤ (‖f z‖ + 1) * ‖1‖
f : ℂ → ℂ z : ℂ hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1 w : ℂ hw : ‖f (w + z) - f z‖ < 1 ⊢ ‖f (w + z)‖ < (‖f z‖ + 1) * ‖1‖
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
ContinuousAt.isBigO
[56, 1]
[70, 46]
calc ‖f (w + z)‖ _ ≤ ‖f z‖ + ‖f (w + z) - f z‖ := norm_le_insert' .. _ < ‖f z‖ + 1 := add_lt_add_left hw _ _ = _ := by simp only [norm_one, mul_one]
f : ℂ → ℂ z : ℂ hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1 w : ℂ hw : ‖f (w + z) - f z‖ < 1 ⊢ ‖f (w + z)‖ < (‖f z‖ + 1) * ‖1‖
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
ContinuousAt.isBigO
[56, 1]
[70, 46]
convert (Homeomorph.comp_continuousAt_iff' (Homeomorph.addLeft (-z)) _ z).mp ?_
f : ℂ → ℂ z : ℂ hf : ContinuousAt f z ⊢ ContinuousAt (fun w => f (w + z)) 0
case h.e'_1 f : ℂ → ℂ z : ℂ hf : ContinuousAt f z ⊢ 0 = (Homeomorph.addLeft (-z)) z case convert_4 f : ℂ → ℂ z : ℂ hf : ContinuousAt f z ⊢ ContinuousAt ((fun w => f (w + z)) ∘ ⇑(Homeomorph.addLeft (-z))) z
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
ContinuousAt.isBigO
[56, 1]
[70, 46]
simp
case h.e'_1 f : ℂ → ℂ z : ℂ hf : ContinuousAt f z ⊢ 0 = (Homeomorph.addLeft (-z)) z
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
ContinuousAt.isBigO
[56, 1]
[70, 46]
simp [Function.comp_def, hf]
case convert_4 f : ℂ → ℂ z : ℂ hf : ContinuousAt f z ⊢ ContinuousAt ((fun w => f (w + z)) ∘ ⇑(Homeomorph.addLeft (-z))) z
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
ContinuousAt.isBigO
[56, 1]
[70, 46]
positivity
f : ℂ → ℂ z : ℂ hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1 ⊢ ‖f z‖ + 1 > 0
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
ContinuousAt.isBigO
[56, 1]
[70, 46]
simp only [norm_one, mul_one]
f : ℂ → ℂ z : ℂ hf : ∀ᶠ (x : ℂ) in 𝓝 0, ‖f (x + z) - f z‖ < 1 w : ℂ hw : ‖f (w + z) - f z‖ < 1 ⊢ ‖f z‖ + 1 = (‖f z‖ + 1) * ‖1‖
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
HasDerivAt.of_hasDerivAt_ofReal_comp
[125, 1]
[134, 80]
lift u to ℝ
z : ℝ f : ℝ → ℝ u : ℂ hf : HasDerivAt (fun y => ↑(f y)) u z ⊢ ∃ u', u = ↑u' ∧ HasDerivAt f u' z
z : ℝ f : ℝ → ℝ u : ℂ hf : HasDerivAt (fun y => ↑(f y)) u z ⊢ u.im = 0 case intro z : ℝ f : ℝ → ℝ u : ℝ hf : HasDerivAt (fun y => ↑(f y)) (↑u) z ⊢ ∃ u', ↑u = ↑u' ∧ HasDerivAt f u' z
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
HasDerivAt.of_hasDerivAt_ofReal_comp
[125, 1]
[134, 80]
refine ⟨u, rfl, ?_⟩
case intro z : ℝ f : ℝ → ℝ u : ℝ hf : HasDerivAt (fun y => ↑(f y)) (↑u) z ⊢ ∃ u', ↑u = ↑u' ∧ HasDerivAt f u' z
case intro z : ℝ f : ℝ → ℝ u : ℝ hf : HasDerivAt (fun y => ↑(f y)) (↑u) z ⊢ HasDerivAt f u z
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
HasDerivAt.of_hasDerivAt_ofReal_comp
[125, 1]
[134, 80]
convert (reCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt
case intro z : ℝ f : ℝ → ℝ u : ℝ hf : HasDerivAt (fun y => ↑(f y)) (↑u) z ⊢ HasDerivAt f u z
case h.e'_7 z : ℝ f : ℝ → ℝ u : ℝ hf : HasDerivAt (fun y => ↑(f y)) (↑u) z ⊢ u = (reCLM.comp (smulRight 1 ↑u)) 1
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
HasDerivAt.of_hasDerivAt_ofReal_comp
[125, 1]
[134, 80]
rw [comp_apply, smulRight_apply, one_apply, one_smul, reCLM_apply, ofReal_re]
case h.e'_7 z : ℝ f : ℝ → ℝ u : ℝ hf : HasDerivAt (fun y => ↑(f y)) (↑u) z ⊢ u = (reCLM.comp (smulRight 1 ↑u)) 1
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
HasDerivAt.of_hasDerivAt_ofReal_comp
[125, 1]
[134, 80]
have H := (imCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt.deriv
z : ℝ f : ℝ → ℝ u : ℂ hf : HasDerivAt (fun y => ↑(f y)) u z ⊢ u.im = 0
z : ℝ f : ℝ → ℝ u : ℂ hf : HasDerivAt (fun y => ↑(f y)) u z H : _root_.deriv (⇑imCLM ∘ fun y => ↑(f y)) z = (imCLM.comp (smulRight 1 u)) 1 ⊢ u.im = 0
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
HasDerivAt.of_hasDerivAt_ofReal_comp
[125, 1]
[134, 80]
simp only [Function.comp_def, imCLM_apply, ofReal_im, deriv_const] at H
z : ℝ f : ℝ → ℝ u : ℂ hf : HasDerivAt (fun y => ↑(f y)) u z H : _root_.deriv (⇑imCLM ∘ fun y => ↑(f y)) z = (imCLM.comp (smulRight 1 u)) 1 ⊢ u.im = 0
z : ℝ f : ℝ → ℝ u : ℂ hf : HasDerivAt (fun y => ↑(f y)) u z H : 0 = (imCLM.comp (smulRight 1 u)) 1 ⊢ u.im = 0
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
HasDerivAt.of_hasDerivAt_ofReal_comp
[125, 1]
[134, 80]
rwa [eq_comm, comp_apply, imCLM_apply, smulRight_apply, one_apply, one_smul] at H
z : ℝ f : ℝ → ℝ u : ℂ hf : HasDerivAt (fun y => ↑(f y)) u z H : 0 = (imCLM.comp (smulRight 1 u)) 1 ⊢ u.im = 0
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
DifferentiableAt.ofReal_comp_iff
[136, 1]
[140, 40]
refine ⟨fun H ↦ ?_, ofReal_comp⟩
z : ℝ f : ℝ → ℝ ⊢ DifferentiableAt ℝ (fun y => ↑(f y)) z ↔ DifferentiableAt ℝ f z
z : ℝ f : ℝ → ℝ H : DifferentiableAt ℝ (fun y => ↑(f y)) z ⊢ DifferentiableAt ℝ f z
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
DifferentiableAt.ofReal_comp_iff
[136, 1]
[140, 40]
obtain ⟨u, _, hu₂⟩ := H.hasDerivAt.of_hasDerivAt_ofReal_comp
z : ℝ f : ℝ → ℝ H : DifferentiableAt ℝ (fun y => ↑(f y)) z ⊢ DifferentiableAt ℝ f z
case intro.intro z : ℝ f : ℝ → ℝ H : DifferentiableAt ℝ (fun y => ↑(f y)) z u : ℝ left✝ : deriv (fun y => ↑(f y)) z = ↑u hu₂ : HasDerivAt (fun y => f y) u z ⊢ DifferentiableAt ℝ f z
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
DifferentiableAt.ofReal_comp_iff
[136, 1]
[140, 40]
exact HasDerivAt.differentiableAt hu₂
case intro.intro z : ℝ f : ℝ → ℝ H : DifferentiableAt ℝ (fun y => ↑(f y)) z u : ℝ left✝ : deriv (fun y => ↑(f y)) z = ↑u hu₂ : HasDerivAt (fun y => f y) u z ⊢ DifferentiableAt ℝ f z
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
deriv.ofReal_comp
[146, 1]
[152, 27]
by_cases hf : DifferentiableAt ℝ f z
z : ℝ f : ℝ → ℝ ⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
case pos z : ℝ f : ℝ → ℝ hf : DifferentiableAt ℝ f z ⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z) case neg z : ℝ f : ℝ → ℝ hf : ¬DifferentiableAt ℝ f z ⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
deriv.ofReal_comp
[146, 1]
[152, 27]
exact hf.hasDerivAt.ofReal_comp.deriv
case pos z : ℝ f : ℝ → ℝ hf : DifferentiableAt ℝ f z ⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
deriv.ofReal_comp
[146, 1]
[152, 27]
have hf' := mt DifferentiableAt.ofReal_comp_iff.mp hf
case neg z : ℝ f : ℝ → ℝ hf : ¬DifferentiableAt ℝ f z ⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
case neg z : ℝ f : ℝ → ℝ hf : ¬DifferentiableAt ℝ f z hf' : ¬DifferentiableAt ℝ (fun y => ↑(f y)) z ⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
deriv.ofReal_comp
[146, 1]
[152, 27]
rw [deriv_zero_of_not_differentiableAt hf, deriv_zero_of_not_differentiableAt hf', Complex.ofReal_zero]
case neg z : ℝ f : ℝ → ℝ hf : ¬DifferentiableAt ℝ f z hf' : ¬DifferentiableAt ℝ (fun y => ↑(f y)) z ⊢ deriv (fun y => ↑(f y)) z = ↑(deriv f z)
no goals
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.realValued_of_iteratedDeriv_real_on_ball
[159, 1]
[183, 8]
have Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), (x : ℂ) ∈ Metric.ball (c : ℂ) r := by intro x hx refine Metric.mem_ball.mpr ?_ rw [dist_eq, ← ofReal_sub, abs_ofReal, abs_sub_lt_iff, sub_lt_iff_lt_add', sub_lt_comm] exact and_comm.mpr hx
f : ℂ → ℂ r c : ℝ hf : DifferentiableOn ℂ f (Metric.ball (↑c) r) D : ℕ → ℝ hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n) ⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
f : ℂ → ℂ r c : ℝ hf : DifferentiableOn ℂ f (Metric.ball (↑c) r) D : ℕ → ℝ hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n) Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r ⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.realValued_of_iteratedDeriv_real_on_ball
[159, 1]
[183, 8]
have H ⦃z : ℂ⦄ (hz : z ∈ Metric.ball (c : ℂ) r) := taylorSeries_eq_on_ball' hz hf
f : ℂ → ℂ r c : ℝ hf : DifferentiableOn ℂ f (Metric.ball (↑c) r) D : ℕ → ℝ hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n) Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r ⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
f : ℂ → ℂ r c : ℝ hf : DifferentiableOn ℂ f (Metric.ball (↑c) r) D : ℕ → ℝ hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n) Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z ⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.realValued_of_iteratedDeriv_real_on_ball
[159, 1]
[183, 8]
refine ⟨fun x ↦ ∑' (n : ℕ), (↑n !)⁻¹ * (D n) * (x - c) ^ n, fun x hx ↦ ?_, fun x hx ↦ ?_⟩
f : ℂ → ℂ r c : ℝ hf : DifferentiableOn ℂ f (Metric.ball (↑c) r) D : ℕ → ℝ hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n) Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z ⊢ ∃ F, DifferentiableOn ℝ F (Set.Ioo (c - r) (c + r)) ∧ Set.EqOn (f ∘ ofReal') (ofReal' ∘ F) (Set.Ioo (c - r) (c + r))
case refine_1 f : ℂ → ℂ r c : ℝ hf : DifferentiableOn ℂ f (Metric.ball (↑c) r) D : ℕ → ℝ hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n) Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z x : ℝ hx : x ∈ Set.Ioo (c - r) (c + r) ⊢ DifferentiableWithinAt ℝ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x case refine_2 f : ℂ → ℂ r c : ℝ hf : DifferentiableOn ℂ f (Metric.ball (↑c) r) D : ℕ → ℝ hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n) Hz : ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r H : ∀ ⦃z : ℂ⦄, z ∈ Metric.ball (↑c) r → ∑' (n : ℕ), (↑n !)⁻¹ * iteratedDeriv n f ↑c * (z - ↑c) ^ n = f z x : ℝ hx : x ∈ Set.Ioo (c - r) (c + r) ⊢ (f ∘ ofReal') x = (ofReal' ∘ fun x => ∑' (n : ℕ), (↑n !)⁻¹ * D n * (x - c) ^ n) x
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.realValued_of_iteratedDeriv_real_on_ball
[159, 1]
[183, 8]
intro x hx
f : ℂ → ℂ r c : ℝ hf : DifferentiableOn ℂ f (Metric.ball (↑c) r) D : ℕ → ℝ hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n) ⊢ ∀ x ∈ Set.Ioo (c - r) (c + r), ↑x ∈ Metric.ball (↑c) r
f : ℂ → ℂ r c : ℝ hf : DifferentiableOn ℂ f (Metric.ball (↑c) r) D : ℕ → ℝ hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n) x : ℝ hx : x ∈ Set.Ioo (c - r) (c + r) ⊢ ↑x ∈ Metric.ball (↑c) r
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.realValued_of_iteratedDeriv_real_on_ball
[159, 1]
[183, 8]
refine Metric.mem_ball.mpr ?_
f : ℂ → ℂ r c : ℝ hf : DifferentiableOn ℂ f (Metric.ball (↑c) r) D : ℕ → ℝ hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n) x : ℝ hx : x ∈ Set.Ioo (c - r) (c + r) ⊢ ↑x ∈ Metric.ball (↑c) r
f : ℂ → ℂ r c : ℝ hf : DifferentiableOn ℂ f (Metric.ball (↑c) r) D : ℕ → ℝ hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n) x : ℝ hx : x ∈ Set.Ioo (c - r) (c + r) ⊢ dist ↑x ↑c < r
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.realValued_of_iteratedDeriv_real_on_ball
[159, 1]
[183, 8]
rw [dist_eq, ← ofReal_sub, abs_ofReal, abs_sub_lt_iff, sub_lt_iff_lt_add', sub_lt_comm]
f : ℂ → ℂ r c : ℝ hf : DifferentiableOn ℂ f (Metric.ball (↑c) r) D : ℕ → ℝ hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n) x : ℝ hx : x ∈ Set.Ioo (c - r) (c + r) ⊢ dist ↑x ↑c < r
f : ℂ → ℂ r c : ℝ hf : DifferentiableOn ℂ f (Metric.ball (↑c) r) D : ℕ → ℝ hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n) x : ℝ hx : x ∈ Set.Ioo (c - r) (c + r) ⊢ x < c + r ∧ c - r < x
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/Auxiliary.lean
Complex.realValued_of_iteratedDeriv_real_on_ball
[159, 1]
[183, 8]
exact and_comm.mpr hx
f : ℂ → ℂ r c : ℝ hf : DifferentiableOn ℂ f (Metric.ball (↑c) r) D : ℕ → ℝ hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n) x : ℝ hx : x ∈ Set.Ioo (c - r) (c + r) ⊢ x < c + r ∧ c - r < x
no goals