Datasets:
Tasks:
Sentence Similarity
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
License:
license: apache-2.0 | |
task_categories: | |
- sentence-similarity | |
language: | |
- en | |
tags: | |
- doi | |
- bibliography | |
- literature | |
- crossref | |
pretty_name: crossref 2025 | |
size_categories: | |
- 10M<n<100M | |
Created vector embeddings for the `abstract` field for the dataset: [bluuebunny/crossref_metadata_2025_split](https://huggingface.co/datasets/bluuebunny/crossref_metadata_2025_split) using [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) and binarised it using: | |
```python | |
# Function to binarise float embeddings | |
def binarise(row): | |
# Make it a numpy array, since batching sends it as list | |
float_vector = np.array(row['vector'], dtype=np.float32) | |
# Binarise | |
binary_vector = np.where(float_vector >= 0, 1, 0) | |
# Pack it to make it milvus compatible | |
row['vector'] = np.packbits(binary_vector).tobytes() | |
return row | |
``` |