Datasets:
Tasks:
Sentence Similarity
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
License:
metadata
license: apache-2.0
task_categories:
- sentence-similarity
language:
- en
tags:
- doi
- bibliography
- literature
- crossref
pretty_name: crossref 2025
size_categories:
- 10M<n<100M
Created vector embeddings for the abstract
field for the dataset: bluuebunny/crossref_metadata_2025_split using mixedbread-ai/mxbai-embed-large-v1 and binarised it using:
# Function to binarise float embeddings
def binarise(row):
# Make it a numpy array, since batching sends it as list
float_vector = np.array(row['vector'], dtype=np.float32)
# Binarise
binary_vector = np.where(float_vector >= 0, 1, 0)
# Pack it to make it milvus compatible
row['vector'] = np.packbits(binary_vector).tobytes()
return row