alakxender's picture
Update README.md
d1f0a49 verified
---
dataset_info:
features:
- name: truth
dtype: string
- name: error
dtype: string
splits:
- name: train
num_bytes: 947772001
num_examples: 2030784
- name: test
num_bytes: 105304042
num_examples: 225643
download_size: 512288701
dataset_size: 1053076043
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
license: mit
task_categories:
- text-classification
- token-classification
- translation
language:
- dv
tags:
- dhivehi
- thaana
- thaana-typo
- dhivehi-typo
pretty_name: dhivehi-typo
size_categories:
- 1M<n<10M
---
# Dhivehi Text Errors Dataset
This dataset provides **truth–error pairs** for Dhivehi (Maldivian) text, intended for evaluating and analyzing Automatic Speech Recognition (ASR) systems. The focus is on **common transcription errors** made by models fine-tuned on **Whisper**, **MMS**, and **Wav2Vec2**.
## Dataset Structure
* **train**: 90% of the data for training or error analysis
* **test**: 10% of the data reserved for evaluation
## Usage
```python
from datasets import load_dataset
dataset = load_dataset("alakxender/dhivehi-asr-errors-ext")
# Inspect an example
example = dataset["train"][0]
print("Truth :", example["truth"])
print("Error :", example["error"])
```
### Example Output
```
Truth : މިކަމުގައި ޝިރުކު ހިމެނޭ ބައެއް ގޮތްތަކަކީ: ތަޢާލާއަށް ޚާއްޞަވެގެންވާ ޣައިބުގެ ޢިލްމު އެނގޭކަމަށް އެފަދަ މީހުން ދަޢުވާކުރުން
Error : މިކަމުގައި ޝިރުކު ހިމެނޭ ބައެއް ވައްތަކަކީ ތަޢާލާއަށް ޚާއްސަ ވެގެން ވާގައިބުގެ އިލްމު އިނގޭ ކަމަށް އެފަދަ މީހުން ދައުވާ ކުރުން
```
## Data Fields
* **truth**: Accurate human transcription of the spoken Dhivehi audio
* **error**: Machine-generated transcription from fine-tuned ASR models (Whisper, MMS, or Wav2Vec2)
## Applications
* **ASR Evaluation**: Benchmark Dhivehi ASR models by measuring error patterns and rates
* **Error Analysis**: Identify systematic mistakes made by Whisper, MMS, and Wav2Vec2 fine-tunes
* **Text Correction**: Develop or fine-tune models for Dhivehi error correction and post-processing
* **NLP Research**: Support Dhivehi text quality improvement tasks such as grammar checking and normalization
## Notes
This dataset contains **text-level errors only** (no audio). It is best used as a complementary resource for improving Dhivehi ASR systems and building correction pipelines tailored to common failure cases.