|
--- |
|
dataset_info: |
|
features: |
|
- name: truth |
|
dtype: string |
|
- name: error |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 947772001 |
|
num_examples: 2030784 |
|
- name: test |
|
num_bytes: 105304042 |
|
num_examples: 225643 |
|
download_size: 512288701 |
|
dataset_size: 1053076043 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
license: mit |
|
task_categories: |
|
- text-classification |
|
- token-classification |
|
- translation |
|
language: |
|
- dv |
|
tags: |
|
- dhivehi |
|
- thaana |
|
- thaana-typo |
|
- dhivehi-typo |
|
pretty_name: dhivehi-typo |
|
size_categories: |
|
- 1M<n<10M |
|
--- |
|
|
|
# Dhivehi Text Errors Dataset |
|
|
|
This dataset provides **truth–error pairs** for Dhivehi (Maldivian) text, intended for evaluating and analyzing Automatic Speech Recognition (ASR) systems. The focus is on **common transcription errors** made by models fine-tuned on **Whisper**, **MMS**, and **Wav2Vec2**. |
|
|
|
## Dataset Structure |
|
|
|
* **train**: 90% of the data for training or error analysis |
|
* **test**: 10% of the data reserved for evaluation |
|
|
|
## Usage |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("alakxender/dhivehi-asr-errors-ext") |
|
|
|
# Inspect an example |
|
example = dataset["train"][0] |
|
print("Truth :", example["truth"]) |
|
print("Error :", example["error"]) |
|
``` |
|
|
|
### Example Output |
|
|
|
``` |
|
Truth : މިކަމުގައި ޝިރުކު ހިމެނޭ ބައެއް ގޮތްތަކަކީ: ތަޢާލާއަށް ޚާއްޞަވެގެންވާ ޣައިބުގެ ޢިލްމު އެނގޭކަމަށް އެފަދަ މީހުން ދަޢުވާކުރުން |
|
Error : މިކަމުގައި ޝިރުކު ހިމެނޭ ބައެއް ވައްތަކަކީ ތަޢާލާއަށް ޚާއްސަ ވެގެން ވާގައިބުގެ އިލްމު އިނގޭ ކަމަށް އެފަދަ މީހުން ދައުވާ ކުރުން |
|
``` |
|
|
|
## Data Fields |
|
|
|
* **truth**: Accurate human transcription of the spoken Dhivehi audio |
|
* **error**: Machine-generated transcription from fine-tuned ASR models (Whisper, MMS, or Wav2Vec2) |
|
|
|
## Applications |
|
|
|
* **ASR Evaluation**: Benchmark Dhivehi ASR models by measuring error patterns and rates |
|
* **Error Analysis**: Identify systematic mistakes made by Whisper, MMS, and Wav2Vec2 fine-tunes |
|
* **Text Correction**: Develop or fine-tune models for Dhivehi error correction and post-processing |
|
* **NLP Research**: Support Dhivehi text quality improvement tasks such as grammar checking and normalization |
|
|
|
## Notes |
|
|
|
This dataset contains **text-level errors only** (no audio). It is best used as a complementary resource for improving Dhivehi ASR systems and building correction pipelines tailored to common failure cases. |