metadata
dataset_info:
features:
- name: truth
dtype: string
- name: error
dtype: string
splits:
- name: train
num_bytes: 947772001
num_examples: 2030784
- name: test
num_bytes: 105304042
num_examples: 225643
download_size: 512288701
dataset_size: 1053076043
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
license: mit
task_categories:
- text-classification
- token-classification
- translation
language:
- dv
tags:
- dhivehi
- thaana
- thaana-typo
- dhivehi-typo
pretty_name: dhivehi-typo
size_categories:
- 1M<n<10M
Dhivehi Text Errors Dataset
This dataset provides truth–error pairs for Dhivehi (Maldivian) text, intended for evaluating and analyzing Automatic Speech Recognition (ASR) systems. The focus is on common transcription errors made by models fine-tuned on Whisper, MMS, and Wav2Vec2.
Dataset Structure
- train: 90% of the data for training or error analysis
- test: 10% of the data reserved for evaluation
Usage
from datasets import load_dataset
dataset = load_dataset("alakxender/dhivehi-asr-errors-ext")
# Inspect an example
example = dataset["train"][0]
print("Truth :", example["truth"])
print("Error :", example["error"])
Example Output
Truth : މިކަމުގައި ޝިރުކު ހިމެނޭ ބައެއް ގޮތްތަކަކީ: ތަޢާލާއަށް ޚާއްޞަވެގެންވާ ޣައިބުގެ ޢިލްމު އެނގޭކަމަށް އެފަދަ މީހުން ދަޢުވާކުރުން
Error : މިކަމުގައި ޝިރުކު ހިމެނޭ ބައެއް ވައްތަކަކީ ތަޢާލާއަށް ޚާއްސަ ވެގެން ވާގައިބުގެ އިލްމު އިނގޭ ކަމަށް އެފަދަ މީހުން ދައުވާ ކުރުން
Data Fields
- truth: Accurate human transcription of the spoken Dhivehi audio
- error: Machine-generated transcription from fine-tuned ASR models (Whisper, MMS, or Wav2Vec2)
Applications
- ASR Evaluation: Benchmark Dhivehi ASR models by measuring error patterns and rates
- Error Analysis: Identify systematic mistakes made by Whisper, MMS, and Wav2Vec2 fine-tunes
- Text Correction: Develop or fine-tune models for Dhivehi error correction and post-processing
- NLP Research: Support Dhivehi text quality improvement tasks such as grammar checking and normalization
Notes
This dataset contains text-level errors only (no audio). It is best used as a complementary resource for improving Dhivehi ASR systems and building correction pipelines tailored to common failure cases.