|
--- |
|
license: mit |
|
tags: |
|
- symbolic-music |
|
- music-information-retrieval |
|
- classification |
|
- retrieval |
|
- benchmark |
|
--- |
|
|
|
# SyMuRBench Datasets and Precomputed Features |
|
|
|
This repository contains datasets and precomputed features for [SyMuRBench](https://github.com/Mintas/SyMuRBench), a benchmark for symbolic music understanding models. It includes metadata and MIDI files for multiple classification and retrieval tasks, along with pre-extracted **music21** and **jSymbolic** features. |
|
|
|
You can install and use the full pipeline via: |
|
👉 [https://github.com/Mintas/SyMuRBench](https://github.com/Mintas/SyMuRBench) |
|
|
|
--- |
|
|
|
## Overview |
|
|
|
SyMuRBench supports evaluation across diverse symbolic music tasks, including composer, genre, emotion, and instrument classification, as well as score-performance retrieval. This Hugging Face dataset provides: |
|
|
|
- Dataset metadata (CSV files) |
|
- MIDI files organized by task |
|
- Precomputed **music21** and **jSymbolic** features |
|
- Configuration-ready structure for immediate use in benchmarking |
|
|
|
--- |
|
|
|
## Tasks Description |
|
|
|
| Task Name | Source Dataset | Task Type | # of Classes | # of Files | Default Metrics | |
|
|----------|----------------|-----------|--------------|------------|-----------------| |
|
| ComposerClassificationASAP | ASAP | Multiclass Classification | 7 | 197 | weighted f1 score, balanced accuracy | |
|
| GenreClassificationMMD | MetaMIDI | Multiclass Classification | 7 | 2,795 | weighted f1 score, balanced accuracy | |
|
| GenreClassificationWMTX | WikiMT-X | Multiclass Classification | 8 | 985 | weighted f1 score, balanced accuracy | |
|
| EmotionClassificationEMOPIA | Emopia | Multiclass Classification | 4 | 191 | weighted f1 score, balanced accuracy | |
|
| EmotionClassificationMIREX | MIREX | Multiclass Classification | 5 | 163 | weighted f1 score, balanced accuracy | |
|
| InstrumentDetectionMMD | MetaMIDI | Multilabel Classification | 128 | 4,675 | weighted f1 score | |
|
| ScorePerformanceRetrievalASAP | ASAP | Retrieval | - | 438 (219 pairs) | R@1, R@5, R@10, Median Rank | |
|
|
|
--- |
|
|
|
## Precomputed Features |
|
|
|
Precomputed features are available in the `data/features/` folder: |
|
- `music21_full_dataset.parquet` |
|
- `jsymbolic_full_dataset.parquet` |
|
|
|
Each file contains a unified table with: |
|
- `midi_file`: Filename of the MIDI |
|
- `task`: Corresponding task name |
|
- `E_0` to `E_N`: Feature vector |
|
|
|
### Example |
|
|
|
| midi_file | task | E_0 | E_1 | ... | E_672 | E_673 | |
|
|----------|------|-----|-----|-----|-------|-------| |
|
| Q1_0vLPYiPN7qY_1.mid | EmotionClassificationEMOPIA | 0.0 | 0.0 | ... | 0.0 | 0.0 | |
|
| Q1_4dXC1cC7crw_0.mid | EmotionClassificationEMOPIA | 0.0 | 0.0 | ... | 0.0 | 0.0 | |
|
|
|
## File Structure |
|
|
|
The dataset is distributed as a ZIP archive: |
|
|
|
`data/datasets.zip` |
|
|
|
After extraction, the structure is: |
|
|
|
``` |
|
datasets/ |
|
├── composer_and_retrieval_datasets/ |
|
│ ├── metadata_composer_dataset.csv |
|
│ ├── metadata_retrieval_dataset.csv |
|
│ └── ... (MIDI files organized in subfolders) |
|
├── genre_dataset/ |
|
│ ├── metadata_genre_dataset.csv |
|
│ └── midis/ |
|
├── wikimtx_dataset/ |
|
│ ├── metadata_wikimtx_dataset.csv |
|
│ └── midis/ |
|
├── emopia_dataset/ |
|
│ ├── metadata_emopia_dataset.csv |
|
│ └── midis/ |
|
├── mirex_dataset/ |
|
│ ├── metadata_mirex_dataset.csv |
|
│ └── midis/ |
|
└── instrument_dataset/ |
|
├── metadata_instrument_dataset.csv |
|
└── midis/ |
|
``` |
|
* CSV files: Contain `filename` and `label` (or pair info for retrieval). |
|
* MIDI files: Used as input for feature extractors. |
|
|
|
--- |
|
|
|
## How to Use |
|
|
|
You can download and extract everything using the built-in utility: |
|
|
|
```python |
|
from symurbench.utils import load_datasets |
|
|
|
load_datasets(output_folder="./data", load_features=True) |
|
``` |
|
|
|
This will: |
|
|
|
* Download datasets.zip and extract it |
|
* Optionally download precomputed features |
|
* Update config paths automatically |
|
|
|
--- |
|
|
|
## License |
|
|
|
This dataset is released under the MIT License. |
|
|
|
--- |
|
|
|
## Citation |
|
|
|
If you use SyMuRBench in your work, please cite: |
|
|
|
```bibtex |
|
@inproceedings{symurbench2025, |
|
author = {Petr Strepetov and Dmitrii Kovalev}, |
|
title = {SyMuRBench: Benchmark for Symbolic Music Representations}, |
|
booktitle = {Proceedings of the 3rd International Workshop on Multimedia Content Generation and Evaluation: New Methods and Practice (McGE '25)}, |
|
year = {2025}, |
|
pages = {9}, |
|
publisher = {ACM}, |
|
address = {Dublin, Ireland}, |
|
doi = {10.1145/3746278.3759392} |
|
} |
|
``` |