symurbench_datasets / README.md
ai-forever's picture
Update README.md
e87e8d7 verified
---
license: mit
tags:
- symbolic-music
- music-information-retrieval
- classification
- retrieval
- benchmark
---
# SyMuRBench Datasets and Precomputed Features
This repository contains datasets and precomputed features for [SyMuRBench](https://github.com/Mintas/SyMuRBench), a benchmark for symbolic music understanding models. It includes metadata and MIDI files for multiple classification and retrieval tasks, along with pre-extracted **music21** and **jSymbolic** features.
You can install and use the full pipeline via:
👉 [https://github.com/Mintas/SyMuRBench](https://github.com/Mintas/SyMuRBench)
---
## Overview
SyMuRBench supports evaluation across diverse symbolic music tasks, including composer, genre, emotion, and instrument classification, as well as score-performance retrieval. This Hugging Face dataset provides:
- Dataset metadata (CSV files)
- MIDI files organized by task
- Precomputed **music21** and **jSymbolic** features
- Configuration-ready structure for immediate use in benchmarking
---
## Tasks Description
| Task Name | Source Dataset | Task Type | # of Classes | # of Files | Default Metrics |
|----------|----------------|-----------|--------------|------------|-----------------|
| ComposerClassificationASAP | ASAP | Multiclass Classification | 7 | 197 | weighted f1 score, balanced accuracy |
| GenreClassificationMMD | MetaMIDI | Multiclass Classification | 7 | 2,795 | weighted f1 score, balanced accuracy |
| GenreClassificationWMTX | WikiMT-X | Multiclass Classification | 8 | 985 | weighted f1 score, balanced accuracy |
| EmotionClassificationEMOPIA | Emopia | Multiclass Classification | 4 | 191 | weighted f1 score, balanced accuracy |
| EmotionClassificationMIREX | MIREX | Multiclass Classification | 5 | 163 | weighted f1 score, balanced accuracy |
| InstrumentDetectionMMD | MetaMIDI | Multilabel Classification | 128 | 4,675 | weighted f1 score |
| ScorePerformanceRetrievalASAP | ASAP | Retrieval | - | 438 (219 pairs) | R@1, R@5, R@10, Median Rank |
---
## Precomputed Features
Precomputed features are available in the `data/features/` folder:
- `music21_full_dataset.parquet`
- `jsymbolic_full_dataset.parquet`
Each file contains a unified table with:
- `midi_file`: Filename of the MIDI
- `task`: Corresponding task name
- `E_0` to `E_N`: Feature vector
### Example
| midi_file | task | E_0 | E_1 | ... | E_672 | E_673 |
|----------|------|-----|-----|-----|-------|-------|
| Q1_0vLPYiPN7qY_1.mid | EmotionClassificationEMOPIA | 0.0 | 0.0 | ... | 0.0 | 0.0 |
| Q1_4dXC1cC7crw_0.mid | EmotionClassificationEMOPIA | 0.0 | 0.0 | ... | 0.0 | 0.0 |
## File Structure
The dataset is distributed as a ZIP archive:
`data/datasets.zip`
After extraction, the structure is:
```
datasets/
├── composer_and_retrieval_datasets/
│ ├── metadata_composer_dataset.csv
│ ├── metadata_retrieval_dataset.csv
│ └── ... (MIDI files organized in subfolders)
├── genre_dataset/
│ ├── metadata_genre_dataset.csv
│ └── midis/
├── wikimtx_dataset/
│ ├── metadata_wikimtx_dataset.csv
│ └── midis/
├── emopia_dataset/
│ ├── metadata_emopia_dataset.csv
│ └── midis/
├── mirex_dataset/
│ ├── metadata_mirex_dataset.csv
│ └── midis/
└── instrument_dataset/
├── metadata_instrument_dataset.csv
└── midis/
```
* CSV files: Contain `filename` and `label` (or pair info for retrieval).
* MIDI files: Used as input for feature extractors.
---
## How to Use
You can download and extract everything using the built-in utility:
```python
from symurbench.utils import load_datasets
load_datasets(output_folder="./data", load_features=True)
```
This will:
* Download datasets.zip and extract it
* Optionally download precomputed features
* Update config paths automatically
---
## License
This dataset is released under the MIT License.
---
## Citation
If you use SyMuRBench in your work, please cite:
```bibtex
@inproceedings{symurbench2025,
author = {Petr Strepetov and Dmitrii Kovalev},
title = {SyMuRBench: Benchmark for Symbolic Music Representations},
booktitle = {Proceedings of the 3rd International Workshop on Multimedia Content Generation and Evaluation: New Methods and Practice (McGE '25)},
year = {2025},
pages = {9},
publisher = {ACM},
address = {Dublin, Ireland},
doi = {10.1145/3746278.3759392}
}
```