--- license: mit tags: - symbolic-music - music-information-retrieval - classification - retrieval - benchmark --- # SyMuRBench Datasets and Precomputed Features This repository contains datasets and precomputed features for [SyMuRBench](https://github.com/Mintas/SyMuRBench), a benchmark for symbolic music understanding models. It includes metadata and MIDI files for multiple classification and retrieval tasks, along with pre-extracted **music21** and **jSymbolic** features. You can install and use the full pipeline via: 👉 [https://github.com/Mintas/SyMuRBench](https://github.com/Mintas/SyMuRBench) --- ## Overview SyMuRBench supports evaluation across diverse symbolic music tasks, including composer, genre, emotion, and instrument classification, as well as score-performance retrieval. This Hugging Face dataset provides: - Dataset metadata (CSV files) - MIDI files organized by task - Precomputed **music21** and **jSymbolic** features - Configuration-ready structure for immediate use in benchmarking --- ## Tasks Description | Task Name | Source Dataset | Task Type | # of Classes | # of Files | Default Metrics | |----------|----------------|-----------|--------------|------------|-----------------| | ComposerClassificationASAP | ASAP | Multiclass Classification | 7 | 197 | weighted f1 score, balanced accuracy | | GenreClassificationMMD | MetaMIDI | Multiclass Classification | 7 | 2,795 | weighted f1 score, balanced accuracy | | GenreClassificationWMTX | WikiMT-X | Multiclass Classification | 8 | 985 | weighted f1 score, balanced accuracy | | EmotionClassificationEMOPIA | Emopia | Multiclass Classification | 4 | 191 | weighted f1 score, balanced accuracy | | EmotionClassificationMIREX | MIREX | Multiclass Classification | 5 | 163 | weighted f1 score, balanced accuracy | | InstrumentDetectionMMD | MetaMIDI | Multilabel Classification | 128 | 4,675 | weighted f1 score | | ScorePerformanceRetrievalASAP | ASAP | Retrieval | - | 438 (219 pairs) | R@1, R@5, R@10, Median Rank | --- ## Precomputed Features Precomputed features are available in the `data/features/` folder: - `music21_full_dataset.parquet` - `jsymbolic_full_dataset.parquet` Each file contains a unified table with: - `midi_file`: Filename of the MIDI - `task`: Corresponding task name - `E_0` to `E_N`: Feature vector ### Example | midi_file | task | E_0 | E_1 | ... | E_672 | E_673 | |----------|------|-----|-----|-----|-------|-------| | Q1_0vLPYiPN7qY_1.mid | EmotionClassificationEMOPIA | 0.0 | 0.0 | ... | 0.0 | 0.0 | | Q1_4dXC1cC7crw_0.mid | EmotionClassificationEMOPIA | 0.0 | 0.0 | ... | 0.0 | 0.0 | ## File Structure The dataset is distributed as a ZIP archive: `data/datasets.zip` After extraction, the structure is: ``` datasets/ ├── composer_and_retrieval_datasets/ │ ├── metadata_composer_dataset.csv │ ├── metadata_retrieval_dataset.csv │ └── ... (MIDI files organized in subfolders) ├── genre_dataset/ │ ├── metadata_genre_dataset.csv │ └── midis/ ├── wikimtx_dataset/ │ ├── metadata_wikimtx_dataset.csv │ └── midis/ ├── emopia_dataset/ │ ├── metadata_emopia_dataset.csv │ └── midis/ ├── mirex_dataset/ │ ├── metadata_mirex_dataset.csv │ └── midis/ └── instrument_dataset/ ├── metadata_instrument_dataset.csv └── midis/ ``` * CSV files: Contain `filename` and `label` (or pair info for retrieval). * MIDI files: Used as input for feature extractors. --- ## How to Use You can download and extract everything using the built-in utility: ```python from symurbench.utils import load_datasets load_datasets(output_folder="./data", load_features=True) ``` This will: * Download datasets.zip and extract it * Optionally download precomputed features * Update config paths automatically --- ## License This dataset is released under the MIT License. --- ## Citation If you use SyMuRBench in your work, please cite: ```bibtex @inproceedings{symurbench2025, author = {Petr Strepetov and Dmitrii Kovalev}, title = {SyMuRBench: Benchmark for Symbolic Music Representations}, booktitle = {Proceedings of the 3rd International Workshop on Multimedia Content Generation and Evaluation: New Methods and Practice (McGE '25)}, year = {2025}, pages = {9}, publisher = {ACM}, address = {Dublin, Ireland}, doi = {10.1145/3746278.3759392} } ```