|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- text-classification |
|
language: |
|
- en |
|
tags: |
|
- data-preprocessing |
|
- automl |
|
- benchmarks |
|
size_categories: |
|
- n<1K |
|
- 1K<n<10K |
|
- 10K<n<100K |
|
- 100K<n<1M |
|
dataset_info: |
|
- config_name: imdb |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_examples: 18750 |
|
- name: test |
|
num_examples: 25000 |
|
- name: validation |
|
num_examples: 6250 |
|
- config_name: twenty_newsgroups |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
- name: label_text |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_examples: 8485 |
|
- name: test |
|
num_examples: 7532 |
|
- name: validation |
|
num_examples: 2829 |
|
- config_name: banking77 |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_examples: 7502 |
|
- name: test |
|
num_examples: 3080 |
|
- name: validation |
|
num_examples: 2501 |
|
- config_name: trec |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_examples: 4089 |
|
- name: test |
|
num_examples: 500 |
|
- name: validation |
|
num_examples: 1363 |
|
- config_name: financial_phrasebank |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_examples: 1358 |
|
- name: test |
|
num_examples: 453 |
|
- name: validation |
|
num_examples: 453 |
|
- config_name: MASSIVE |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_examples: 11514 |
|
- name: test |
|
num_examples: 2974 |
|
- name: validation |
|
num_examples: 2033 |
|
configs: |
|
- config_name: imdb |
|
data_files: |
|
- split: train |
|
path: imdb/train.csv |
|
- split: test |
|
path: imdb/test.csv |
|
- split: validation |
|
path: imdb/validation.csv |
|
- config_name: twenty_newsgroups |
|
data_files: |
|
- split: train |
|
path: twenty_newsgroups/train.csv |
|
- split: test |
|
path: twenty_newsgroups/test.csv |
|
- split: validation |
|
path: twenty_newsgroups/validation.csv |
|
- config_name: banking77 |
|
data_files: |
|
- split: train |
|
path: banking77/train.csv |
|
- split: test |
|
path: banking77/test.csv |
|
- split: validation |
|
path: banking77/validation.csv |
|
- config_name: trec |
|
data_files: |
|
- split: train |
|
path: trec/train.csv |
|
- split: test |
|
path: trec/test.csv |
|
- split: validation |
|
path: trec/validation.csv |
|
- config_name: financial_phrasebank |
|
data_files: |
|
- split: train |
|
path: financial_phrasebank/train.csv |
|
- split: test |
|
path: financial_phrasebank/test.csv |
|
- split: validation |
|
path: financial_phrasebank/validation.csv |
|
- config_name: MASSIVE |
|
data_files: |
|
- split: train |
|
path: MASSIVE/train.csv |
|
- split: test |
|
path: MASSIVE/test.csv |
|
- split: validation |
|
path: MASSIVE/validation.csv |
|
--- |
|
|
|
|
|
# Data Preprocessing AutoML Benchmarks |
|
|
|
This repository contains text classification datasets with known data quality issues for preprocessing research in AutoML. |
|
|
|
## Usage |
|
|
|
Load a specific dataset configuration like this: |
|
|
|
```python |
|
from datasets import load_dataset |
|
# Example for loading the TREC dataset |
|
dataset = load_dataset("MothMalone/data-preprocessing-automl-benchmarks", "trec") |
|
``` |
|
|
|
## Available Datasets |
|
|
|
Below are the details for each dataset configuration available in this repository. |
|
|
|
Of course. Here are the completed descriptions for your dataset card. |
|
|
|
### imdb |
|
- Description: A large movie review dataset for binary sentiment classification, containing 25,000 highly polarized movie reviews for training and 25,000 for testing. |
|
- Data Quality Issue: N/A |
|
- Classes: 2 |
|
- Training Samples: 18750 |
|
- Validation Samples: 6250 |
|
- Test Samples: 25000 |
|
|
|
### twenty_newsgroups |
|
- Description: A collection of approximately 20,000 newsgroup documents, partitioned evenly across 20 different newsgroups, making it a classic benchmark for text classification. |
|
- Data Quality Issue: N/A |
|
- Classes: 20 |
|
- Training Samples: 8485 |
|
- Validation Samples: 2829 |
|
- Test Samples: 7532 |
|
|
|
### banking77 |
|
- Description: A fine-grained dataset of 13,083 customer service queries from the banking domain, annotated with 77 distinct intents. |
|
- Data Quality Issue: N/A |
|
- Classes: 77 |
|
- Training Samples: 7502 |
|
- Validation Samples: 2501 |
|
- Test Samples: 3080 |
|
|
|
### trec |
|
- Description: The Text REtrieval Conference (TREC) question classification dataset, containing questions categorized by their answer type (e.g., Person, Location, Number). |
|
- Data Quality Issue: N/A |
|
- Classes: 6 |
|
- Training Samples: 4089 |
|
- Validation Samples: 1363 |
|
- Test Samples: 500 |
|
|
|
### financial_phrasebank |
|
- Description: A collection of sentences from English financial news, annotated for sentiment (positive, negative, or neutral) by financial experts. |
|
- Data Quality Issue: N/A |
|
- Classes: 3 |
|
- Training Samples: 1358 |
|
- Validation Samples: 453 |
|
- Test Samples: 453 |
|
- |
|
### MASSIVE |
|
- Description: A multilingual dataset of 1 million utterances for intent classification and slot filling, covering 52 languages. The en-US configuration is used here. |
|
- Data Quality Issue: N/A |
|
- Classes: 60 |
|
- Training Samples: 11514 |
|
- Validation Samples: 2033 |
|
- Test Samples: 2974 |
|
|