File size: 5,142 Bytes
dae248a
d4c0aa0
 
42bb8c0
d4c0aa0
42bb8c0
d4c0aa0
42bb8c0
 
 
d4c0aa0
42bb8c0
 
 
 
6070876
55ffdf2
 
 
 
 
 
 
 
 
 
 
 
 
6070876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0a638d
55ffdf2
 
 
 
 
 
 
 
39e36bf
 
 
 
 
 
 
 
42bb8c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
937948f
4809104
 
937948f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d589504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
937948f
d589504
937948f
 
42bb8c0
 
 
937948f
 
d589504
937948f
 
42bb8c0
 
 
937948f
 
d589504
937948f
 
42bb8c0
 
 
d589504
937948f
d589504
937948f
 
42bb8c0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
---
license: apache-2.0
task_categories:
- text-classification
language:
- en
tags:
- data-preprocessing
- automl
- benchmarks
size_categories:
- n<1K
- 1K<n<10K
- 10K<n<100K
- 100K<n<1M
dataset_info:
- config_name: imdb
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_examples: 18750
  - name: test
    num_examples: 25000
  - name: validation
    num_examples: 6250
- config_name: twenty_newsgroups
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  - name: label_text
    dtype: string
  splits:
  - name: train
    num_examples: 8485
  - name: test
    num_examples: 7532    
  - name: validation
    num_examples: 2829
- config_name: banking77
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_examples: 7502
  - name: test
    num_examples: 3080
  - name: validation
    num_examples: 2501
- config_name: trec
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_examples: 4089
  - name: test
    num_examples: 500
  - name: validation
    num_examples: 1363
- config_name: financial_phrasebank
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_examples: 1358
  - name: test
    num_examples: 453
  - name: validation
    num_examples: 453
- config_name: MASSIVE
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_examples: 11514
  - name: test
    num_examples: 2974
  - name: validation
    num_examples: 2033
configs:
- config_name: imdb
  data_files:
  - split: train
    path: imdb/train.csv
  - split: test
    path: imdb/test.csv
  - split: validation
    path: imdb/validation.csv
- config_name: twenty_newsgroups
  data_files:
  - split: train
    path: twenty_newsgroups/train.csv
  - split: test
    path: twenty_newsgroups/test.csv
  - split: validation
    path: twenty_newsgroups/validation.csv
- config_name: banking77
  data_files:
  - split: train
    path: banking77/train.csv
  - split: test
    path: banking77/test.csv
  - split: validation
    path: banking77/validation.csv
- config_name: trec
  data_files:
  - split: train
    path: trec/train.csv
  - split: test
    path: trec/test.csv
  - split: validation
    path: trec/validation.csv
- config_name: financial_phrasebank
  data_files:
  - split: train
    path: financial_phrasebank/train.csv
  - split: test
    path: financial_phrasebank/test.csv
  - split: validation
    path: financial_phrasebank/validation.csv
- config_name: MASSIVE
  data_files:
  - split: train
    path: MASSIVE/train.csv
  - split: test
    path: MASSIVE/test.csv
  - split: validation
    path: MASSIVE/validation.csv
---


# Data Preprocessing AutoML Benchmarks

This repository contains text classification datasets with known data quality issues for preprocessing research in AutoML.

## Usage

Load a specific dataset configuration like this:

```python
from datasets import load_dataset
# Example for loading the TREC dataset
dataset = load_dataset("MothMalone/data-preprocessing-automl-benchmarks", "trec")
```

## Available Datasets

Below are the details for each dataset configuration available in this repository.

Of course. Here are the completed descriptions for your dataset card.

### imdb
- Description: A large movie review dataset for binary sentiment classification, containing 25,000 highly polarized movie reviews for training and 25,000 for testing.
- Data Quality Issue: N/A
- Classes: 2
- Training Samples: 18750
- Validation Samples: 6250
- Test Samples: 25000

### twenty_newsgroups
- Description: A collection of approximately 20,000 newsgroup documents, partitioned evenly across 20 different newsgroups, making it a classic benchmark for text classification.
- Data Quality Issue: N/A
- Classes: 20
- Training Samples: 8485
- Validation Samples: 2829
- Test Samples: 7532

### banking77
- Description: A fine-grained dataset of 13,083 customer service queries from the banking domain, annotated with 77 distinct intents.
- Data Quality Issue: N/A
- Classes: 77
- Training Samples: 7502
- Validation Samples: 2501
- Test Samples: 3080

### trec
- Description:  The Text REtrieval Conference (TREC) question classification dataset, containing questions categorized by their answer type (e.g., Person, Location, Number).
- Data Quality Issue: N/A
- Classes: 6
- Training Samples: 4089
- Validation Samples: 1363
- Test Samples: 500

### financial_phrasebank
- Description:  A collection of sentences from English financial news, annotated for sentiment (positive, negative, or neutral) by financial experts.
- Data Quality Issue: N/A
- Classes: 3
- Training Samples: 1358
- Validation Samples: 453
- Test Samples: 453
- 
### MASSIVE
- Description: A multilingual dataset of 1 million utterances for intent classification and slot filling, covering 52 languages. The en-US configuration is used here.
- Data Quality Issue: N/A
- Classes: 60
- Training Samples: 11514
- Validation Samples: 2033
- Test Samples: 2974