metadata
license: apache-2.0
task_categories:
- text-classification
language:
- en
tags:
- data-preprocessing
- automl
- quality-issues
- benchmarks
size_categories:
- 1K<n<10K
- 10K<n<100K
Data Preprocessing AutoML Benchmarks
This repository contains text classification datasets with known data quality issues for preprocessing research in AutoML.
Dataset Categories
Redundancy Issues
- ag_news: News categorization with topic overlap
- twenty_newsgroups: Newsgroup posts with cross-posting
Class Imbalance Issues
- yelp_polarity: Sentiment analysis with rating bias
- sms_spam: Spam detection with severe imbalance
Label Noise Issues
- imdb: Movie reviews with subjective labels
- amazon_polarity: Product reviews with rating inconsistencies
Outlier Issues
- emotion: Twitter emotion with length outliers
- financial_phrasebank: Financial sentiment with domain outliers
Clean Baselines
- trec: Question classification with clean labels
Dataset Structure
Each dataset contains:
train.csv
: Training split (~75% of original training data)validation.csv
: Validation split (~25% of original training data)test.csv
: Test split (original test set preserved)
All datasets have consistent columns:
text
: Input textlabel
: Target label (integer encoded)
Important: Original test sets are preserved to maintain methodological integrity and enable comparison with published benchmarks.
Usage
from datasets import load_dataset
# Load a specific dataset
dataset = load_dataset("MothMalone/data-preprocessing-automl-benchmarks", "ag_news")
# Access splits
train_data = dataset["train"]
val_data = dataset["validation"]
test_data = dataset["test"]
Metadata
ag_news: class_names:
- World
- Sports
- Business
- Technology description: News categorization with 4 classes, known for similar content across categories name: AG News Classification num_classes: 4 original_test_samples: 7600 original_train_samples: 120000 quality_issues:
- redundancy
- similar_content
- topic_overlap target_column: label task_type: multi_classification test_samples: 7600 text_columns:
- text total_samples: 127600 train_samples: 90000 validation_samples: 30000 amazon_polarity: class_names:
- negative
- positive description: Amazon reviews with noisy sentiment labels name: Amazon Product Reviews num_classes: 2 original_test_samples: 400000 original_train_samples: 3600000 quality_issues:
- label_noise
- rating_inconsistency target_column: label task_type: binary_classification test_samples: 400000 text_columns:
- text total_samples: 4000000 train_samples: 2700000 validation_samples: 900000 emotion: class_names:
- sadness
- joy
- love
- anger
- fear
- surprise description: Twitter emotion classification with text length outliers name: Emotion Classification num_classes: 6 original_test_samples: 41681 original_train_samples: 333447 quality_issues:
- length_outliers
- text_anomalies target_column: label task_type: multi_classification test_samples: 41681 text_columns:
- text total_samples: 375128 train_samples: 250085 validation_samples: 83362 imdb: class_names:
- negative
- positive description: Movie reviews with subjective sentiment labels and borderline cases name: IMDB Movie Reviews num_classes: 2 original_test_samples: 25000 original_train_samples: 25000 quality_issues:
- label_noise
- subjective_labels
- borderline_cases target_column: label task_type: binary_classification test_samples: 25000 text_columns:
- text total_samples: 50000 train_samples: 18750 validation_samples: 6250 twenty_newsgroups: class_names:
- alt.atheism
- comp.graphics
- comp.os.ms-windows.misc
- comp.sys.ibm.pc.hardware
- comp.sys.mac.hardware
- comp.windows.x
- misc.forsale
- rec.autos
- rec.motorcycles
- rec.sport.baseball
- rec.sport.hockey
- sci.crypt
- sci.electronics
- sci.med
- sci.space
- soc.religion.christian
- talk.politics.guns
- talk.politics.mideast
- talk.politics.misc
- talk.religion.misc description: Newsgroup posts with overlapping topics and cross-posting name: 20 Newsgroups num_classes: 20 original_test_samples: 7532 original_train_samples: 11314 quality_issues:
- redundancy
- cross_posting
- similar_topics target_column: label task_type: multi_classification test_samples: 7532 text_columns:
- text total_samples: 18846 train_samples: 8485 validation_samples: 2829 yelp_polarity: class_names:
- negative
- positive description: Yelp reviews with positive/negative sentiment, naturally imbalanced name: Yelp Review Polarity num_classes: 2 original_test_samples: 38000 original_train_samples: 560000 quality_issues:
- moderate_imbalance
- rating_bias target_column: label task_type: binary_classification test_samples: 38000 text_columns:
- text total_samples: 598000 train_samples: 420000 validation_samples: 140000
Citation
If you use these datasets in your research, please cite the original sources and this collection:
@misc{mothmalone2024preprocessing,
title={Data Preprocessing AutoML Benchmarks},
author={MothMalone},
year={2024},
url={https://huggingface.co/datasets/MothMalone/data-preprocessing-automl-benchmarks}
}