Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,3 +1,232 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- text-classification
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
tags:
|
| 8 |
+
- data-preprocessing
|
| 9 |
+
- automl
|
| 10 |
+
- quality-issues
|
| 11 |
+
- benchmarks
|
| 12 |
+
size_categories:
|
| 13 |
+
- 1K<n<10K
|
| 14 |
+
- 10K<n<100K
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# Data Preprocessing AutoML Benchmarks
|
| 18 |
+
|
| 19 |
+
This repository contains text classification datasets with known data quality issues for preprocessing research in AutoML.
|
| 20 |
+
|
| 21 |
+
## Dataset Categories
|
| 22 |
+
|
| 23 |
+
### Redundancy Issues
|
| 24 |
+
- **ag_news**: News categorization with topic overlap
|
| 25 |
+
- **twenty_newsgroups**: Newsgroup posts with cross-posting
|
| 26 |
+
|
| 27 |
+
### Class Imbalance Issues
|
| 28 |
+
- **yelp_polarity**: Sentiment analysis with rating bias
|
| 29 |
+
- **sms_spam**: Spam detection with severe imbalance
|
| 30 |
+
|
| 31 |
+
### Label Noise Issues
|
| 32 |
+
- **imdb**: Movie reviews with subjective labels
|
| 33 |
+
- **amazon_polarity**: Product reviews with rating inconsistencies
|
| 34 |
+
|
| 35 |
+
### Outlier Issues
|
| 36 |
+
- **emotion**: Twitter emotion with length outliers
|
| 37 |
+
- **financial_phrasebank**: Financial sentiment with domain outliers
|
| 38 |
+
|
| 39 |
+
### Clean Baselines
|
| 40 |
+
- **trec**: Question classification with clean labels
|
| 41 |
+
|
| 42 |
+
## Dataset Structure
|
| 43 |
+
|
| 44 |
+
Each dataset contains:
|
| 45 |
+
- `train.csv`: Training split (~75% of original training data)
|
| 46 |
+
- `validation.csv`: Validation split (~25% of original training data)
|
| 47 |
+
- `test.csv`: Test split (original test set preserved)
|
| 48 |
+
|
| 49 |
+
All datasets have consistent columns:
|
| 50 |
+
- `text`: Input text
|
| 51 |
+
- `label`: Target label (integer encoded)
|
| 52 |
+
|
| 53 |
+
**Important**: Original test sets are preserved to maintain methodological integrity and enable comparison with published benchmarks.
|
| 54 |
+
|
| 55 |
+
## Usage
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
from datasets import load_dataset
|
| 59 |
+
|
| 60 |
+
# Load a specific dataset
|
| 61 |
+
dataset = load_dataset("MothMalone/data-preprocessing-automl-benchmarks", "ag_news")
|
| 62 |
+
|
| 63 |
+
# Access splits
|
| 64 |
+
train_data = dataset["train"]
|
| 65 |
+
val_data = dataset["validation"]
|
| 66 |
+
test_data = dataset["test"]
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
## Metadata
|
| 70 |
+
|
| 71 |
+
ag_news:
|
| 72 |
+
class_names:
|
| 73 |
+
- World
|
| 74 |
+
- Sports
|
| 75 |
+
- Business
|
| 76 |
+
- Technology
|
| 77 |
+
description: News categorization with 4 classes, known for similar content across
|
| 78 |
+
categories
|
| 79 |
+
name: AG News Classification
|
| 80 |
+
num_classes: 4
|
| 81 |
+
original_test_samples: 7600
|
| 82 |
+
original_train_samples: 120000
|
| 83 |
+
quality_issues:
|
| 84 |
+
- redundancy
|
| 85 |
+
- similar_content
|
| 86 |
+
- topic_overlap
|
| 87 |
+
target_column: label
|
| 88 |
+
task_type: multi_classification
|
| 89 |
+
test_samples: 7600
|
| 90 |
+
text_columns:
|
| 91 |
+
- text
|
| 92 |
+
total_samples: 127600
|
| 93 |
+
train_samples: 90000
|
| 94 |
+
validation_samples: 30000
|
| 95 |
+
amazon_polarity:
|
| 96 |
+
class_names:
|
| 97 |
+
- negative
|
| 98 |
+
- positive
|
| 99 |
+
description: Amazon reviews with noisy sentiment labels
|
| 100 |
+
name: Amazon Product Reviews
|
| 101 |
+
num_classes: 2
|
| 102 |
+
original_test_samples: 400000
|
| 103 |
+
original_train_samples: 3600000
|
| 104 |
+
quality_issues:
|
| 105 |
+
- label_noise
|
| 106 |
+
- rating_inconsistency
|
| 107 |
+
target_column: label
|
| 108 |
+
task_type: binary_classification
|
| 109 |
+
test_samples: 400000
|
| 110 |
+
text_columns:
|
| 111 |
+
- text
|
| 112 |
+
total_samples: 4000000
|
| 113 |
+
train_samples: 2700000
|
| 114 |
+
validation_samples: 900000
|
| 115 |
+
emotion:
|
| 116 |
+
class_names:
|
| 117 |
+
- sadness
|
| 118 |
+
- joy
|
| 119 |
+
- love
|
| 120 |
+
- anger
|
| 121 |
+
- fear
|
| 122 |
+
- surprise
|
| 123 |
+
description: Twitter emotion classification with text length outliers
|
| 124 |
+
name: Emotion Classification
|
| 125 |
+
num_classes: 6
|
| 126 |
+
original_test_samples: 41681
|
| 127 |
+
original_train_samples: 333447
|
| 128 |
+
quality_issues:
|
| 129 |
+
- length_outliers
|
| 130 |
+
- text_anomalies
|
| 131 |
+
target_column: label
|
| 132 |
+
task_type: multi_classification
|
| 133 |
+
test_samples: 41681
|
| 134 |
+
text_columns:
|
| 135 |
+
- text
|
| 136 |
+
total_samples: 375128
|
| 137 |
+
train_samples: 250085
|
| 138 |
+
validation_samples: 83362
|
| 139 |
+
imdb:
|
| 140 |
+
class_names:
|
| 141 |
+
- negative
|
| 142 |
+
- positive
|
| 143 |
+
description: Movie reviews with subjective sentiment labels and borderline cases
|
| 144 |
+
name: IMDB Movie Reviews
|
| 145 |
+
num_classes: 2
|
| 146 |
+
original_test_samples: 25000
|
| 147 |
+
original_train_samples: 25000
|
| 148 |
+
quality_issues:
|
| 149 |
+
- label_noise
|
| 150 |
+
- subjective_labels
|
| 151 |
+
- borderline_cases
|
| 152 |
+
target_column: label
|
| 153 |
+
task_type: binary_classification
|
| 154 |
+
test_samples: 25000
|
| 155 |
+
text_columns:
|
| 156 |
+
- text
|
| 157 |
+
total_samples: 50000
|
| 158 |
+
train_samples: 18750
|
| 159 |
+
validation_samples: 6250
|
| 160 |
+
twenty_newsgroups:
|
| 161 |
+
class_names:
|
| 162 |
+
- alt.atheism
|
| 163 |
+
- comp.graphics
|
| 164 |
+
- comp.os.ms-windows.misc
|
| 165 |
+
- comp.sys.ibm.pc.hardware
|
| 166 |
+
- comp.sys.mac.hardware
|
| 167 |
+
- comp.windows.x
|
| 168 |
+
- misc.forsale
|
| 169 |
+
- rec.autos
|
| 170 |
+
- rec.motorcycles
|
| 171 |
+
- rec.sport.baseball
|
| 172 |
+
- rec.sport.hockey
|
| 173 |
+
- sci.crypt
|
| 174 |
+
- sci.electronics
|
| 175 |
+
- sci.med
|
| 176 |
+
- sci.space
|
| 177 |
+
- soc.religion.christian
|
| 178 |
+
- talk.politics.guns
|
| 179 |
+
- talk.politics.mideast
|
| 180 |
+
- talk.politics.misc
|
| 181 |
+
- talk.religion.misc
|
| 182 |
+
description: Newsgroup posts with overlapping topics and cross-posting
|
| 183 |
+
name: 20 Newsgroups
|
| 184 |
+
num_classes: 20
|
| 185 |
+
original_test_samples: 7532
|
| 186 |
+
original_train_samples: 11314
|
| 187 |
+
quality_issues:
|
| 188 |
+
- redundancy
|
| 189 |
+
- cross_posting
|
| 190 |
+
- similar_topics
|
| 191 |
+
target_column: label
|
| 192 |
+
task_type: multi_classification
|
| 193 |
+
test_samples: 7532
|
| 194 |
+
text_columns:
|
| 195 |
+
- text
|
| 196 |
+
total_samples: 18846
|
| 197 |
+
train_samples: 8485
|
| 198 |
+
validation_samples: 2829
|
| 199 |
+
yelp_polarity:
|
| 200 |
+
class_names:
|
| 201 |
+
- negative
|
| 202 |
+
- positive
|
| 203 |
+
description: Yelp reviews with positive/negative sentiment, naturally imbalanced
|
| 204 |
+
name: Yelp Review Polarity
|
| 205 |
+
num_classes: 2
|
| 206 |
+
original_test_samples: 38000
|
| 207 |
+
original_train_samples: 560000
|
| 208 |
+
quality_issues:
|
| 209 |
+
- moderate_imbalance
|
| 210 |
+
- rating_bias
|
| 211 |
+
target_column: label
|
| 212 |
+
task_type: binary_classification
|
| 213 |
+
test_samples: 38000
|
| 214 |
+
text_columns:
|
| 215 |
+
- text
|
| 216 |
+
total_samples: 598000
|
| 217 |
+
train_samples: 420000
|
| 218 |
+
validation_samples: 140000
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
## Citation
|
| 222 |
+
|
| 223 |
+
If you use these datasets in your research, please cite the original sources and this collection:
|
| 224 |
+
|
| 225 |
+
```bibtex
|
| 226 |
+
@misc{mothmalone2024preprocessing,
|
| 227 |
+
title={Data Preprocessing AutoML Benchmarks},
|
| 228 |
+
author={MothMalone},
|
| 229 |
+
year={2024},
|
| 230 |
+
url={https://huggingface.co/datasets/MothMalone/data-preprocessing-automl-benchmarks}
|
| 231 |
+
}
|
| 232 |
+
```
|