url
stringlengths 58
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 72
75
| comments_url
stringlengths 67
70
| events_url
stringlengths 65
68
| html_url
stringlengths 48
51
| id
int64 600M
2.19B
| node_id
stringlengths 18
24
| number
int64 2
6.73k
| title
stringlengths 1
290
| user
dict | labels
listlengths 0
4
| state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
listlengths 0
4
| milestone
dict | comments
listlengths 0
30
| created_at
timestamp[s] | updated_at
timestamp[s] | closed_at
timestamp[s] | author_association
stringclasses 3
values | active_lock_reason
null | draft
null | pull_request
null | body
stringlengths 0
228k
⌀ | reactions
dict | timeline_url
stringlengths 67
70
| performed_via_github_app
null | state_reason
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/5323
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5323/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5323/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5323/events
|
https://github.com/huggingface/datasets/issues/5323
| 1,471,518,803 |
I_kwDODunzps5XtZhT
| 5,323 |
Duplicated Keys in Taskmaster-2 Dataset
|
{
"login": "liaeh",
"id": 52380283,
"node_id": "MDQ6VXNlcjUyMzgwMjgz",
"avatar_url": "https://avatars.githubusercontent.com/u/52380283?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/liaeh",
"html_url": "https://github.com/liaeh",
"followers_url": "https://api.github.com/users/liaeh/followers",
"following_url": "https://api.github.com/users/liaeh/following{/other_user}",
"gists_url": "https://api.github.com/users/liaeh/gists{/gist_id}",
"starred_url": "https://api.github.com/users/liaeh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/liaeh/subscriptions",
"organizations_url": "https://api.github.com/users/liaeh/orgs",
"repos_url": "https://api.github.com/users/liaeh/repos",
"events_url": "https://api.github.com/users/liaeh/events{/privacy}",
"received_events_url": "https://api.github.com/users/liaeh/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Thanks for reporting, @liaeh.\r\n\r\nWe are having a look at it. ",
"I have transferred the discussion to the Community tab of the dataset: https://huggingface.co/datasets/taskmaster2/discussions/1"
] | 2022-12-01T15:31:06 | 2022-12-01T16:26:06 | 2022-12-01T16:26:06 |
NONE
| null | null | null |
### Describe the bug
Loading certain splits () of the taskmaster-2 dataset fails because of a DuplicatedKeysError. This occurs for the following domains: `'hotels', 'movies', 'music', 'sports'`. The domains `'flights', 'food-ordering', 'restaurant-search'` load fine.
Output:
### Steps to reproduce the bug
```
from datasets import load_dataset
dataset = load_dataset("taskmaster2", "music")
```
Output:
```
---------------------------------------------------------------------------
DuplicatedKeysError Traceback (most recent call last)
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1532, in GeneratorBasedBuilder._prepare_split_single(self, arg)
[1531](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1530) example = self.info.features.encode_example(record) if self.info.features is not None else record
-> [1532](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1531) writer.write(example, key)
[1533](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1532) num_examples_progress_update += 1
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py:475, in ArrowWriter.write(self, example, key, writer_batch_size)
[474](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=473) if self._check_duplicates:
--> [475](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=474) self.check_duplicate_keys()
[476](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=475) # Re-intializing to empty list for next batch
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py:492, in ArrowWriter.check_duplicate_keys(self)
[486](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=485) duplicate_key_indices = [
[487](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=486) str(self._num_examples + index)
[488](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=487) for index, (duplicate_hash, _) in enumerate(self.hkey_record)
[489](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=488) if duplicate_hash == hash
[490](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=489) ]
--> [492](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=491) raise DuplicatedKeysError(key, duplicate_key_indices)
[493](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=492) else:
DuplicatedKeysError: Found multiple examples generated with the same key
The examples at index 858, 859 have the key dlg-89174425-d57a-4db7-a92b-165c3bff6735
During handling of the above exception, another exception occurred:
DuplicatedKeysError Traceback (most recent call last)
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1541, in GeneratorBasedBuilder._prepare_split_single(self, arg)
[1540](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1539) num_shards = shard_id + 1
-> [1541](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1540) num_examples, num_bytes = writer.finalize()
[1542](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1541) writer.close()
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py:563, in ArrowWriter.finalize(self, close_stream)
[562](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=561) if self._check_duplicates:
--> [563](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=562) self.check_duplicate_keys()
[564](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=563) # Re-intializing to empty list for next batch
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py:492, in ArrowWriter.check_duplicate_keys(self)
[486](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=485) duplicate_key_indices = [
[487](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=486) str(self._num_examples + index)
[488](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=487) for index, (duplicate_hash, _) in enumerate(self.hkey_record)
[489](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=488) if duplicate_hash == hash
[490](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=489) ]
--> [492](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=491) raise DuplicatedKeysError(key, duplicate_key_indices)
[493](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=492) else:
DuplicatedKeysError: Found multiple examples generated with the same key
The examples at index 858, 859 have the key dlg-89174425-d57a-4db7-a92b-165c3bff6735
The above exception was the direct cause of the following exception:
DatasetGenerationError Traceback (most recent call last)
Cell In[23], line 1
----> 1 dataset = load_dataset("taskmaster2", "music")
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py:1741, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, **config_kwargs)
[1738](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1737) try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES
[1740](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1739) # Download and prepare data
-> [1741](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1740) builder_instance.download_and_prepare(
[1742](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1741) download_config=download_config,
[1743](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1742) download_mode=download_mode,
[1744](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1743) ignore_verifications=ignore_verifications,
[1745](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1744) try_from_hf_gcs=try_from_hf_gcs,
[1746](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1745) use_auth_token=use_auth_token,
[1747](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1746) num_proc=num_proc,
[1748](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1747) )
[1750](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1749) # Build dataset for splits
[1751](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1750) keep_in_memory = (
[1752](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1751) keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
[1753](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1752) )
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:822, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)
[820](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=819) if num_proc is not None:
[821](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=820) prepare_split_kwargs["num_proc"] = num_proc
--> [822](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=821) self._download_and_prepare(
[823](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=822) dl_manager=dl_manager,
[824](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=823) verify_infos=verify_infos,
[825](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=824) **prepare_split_kwargs,
[826](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=825) **download_and_prepare_kwargs,
[827](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=826) )
[828](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=827) # Sync info
[829](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=828) self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1555, in GeneratorBasedBuilder._download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs)
[1554](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1553) def _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs):
-> [1555](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1554) super()._download_and_prepare(
[1556](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1555) dl_manager, verify_infos, check_duplicate_keys=verify_infos, **prepare_splits_kwargs
[1557](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1556) )
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:913, in DatasetBuilder._download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
[909](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=908) split_dict.add(split_generator.split_info)
[911](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=910) try:
[912](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=911) # Prepare split will record examples associated to the split
--> [913](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=912) self._prepare_split(split_generator, **prepare_split_kwargs)
[914](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=913) except OSError as e:
[915](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=914) raise OSError(
[916](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=915) "Cannot find data file. "
[917](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=916) + (self.manual_download_instructions or "")
[918](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=917) + "\nOriginal error:\n"
[919](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=918) + str(e)
[920](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=919) ) from None
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1396, in GeneratorBasedBuilder._prepare_split(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size)
[1394](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1393) gen_kwargs = split_generator.gen_kwargs
[1395](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1394) job_id = 0
-> [1396](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1395) for job_id, done, content in self._prepare_split_single(
[1397](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1396) {"gen_kwargs": gen_kwargs, "job_id": job_id, **_prepare_split_args}
[1398](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1397) ):
[1399](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1398) if done:
[1400](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1399) result = content
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1550, in GeneratorBasedBuilder._prepare_split_single(self, arg)
[1548](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1547) if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
[1549](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1548) e = e.__context__
-> [1550](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1549) raise DatasetGenerationError("An error occurred while generating the dataset") from e
[1552](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1551) yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)
DatasetGenerationError: An error occurred while generating the dataset
```
### Expected behavior
Loads the dataset
### Environment info
- `datasets` version: 2.7.1
- Platform: Linux-5.13.0-40-generic-x86_64-with-glibc2.31
- Python version: 3.9.7
- PyArrow version: 10.0.1
- Pandas version: 1.5.2
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5323/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5323/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5317
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5317/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5317/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5317/events
|
https://github.com/huggingface/datasets/issues/5317
| 1,470,390,164 |
I_kwDODunzps5XpF-U
| 5,317 |
`ImageFolder` performs poorly with large datasets
|
{
"login": "salieri",
"id": 1086393,
"node_id": "MDQ6VXNlcjEwODYzOTM=",
"avatar_url": "https://avatars.githubusercontent.com/u/1086393?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/salieri",
"html_url": "https://github.com/salieri",
"followers_url": "https://api.github.com/users/salieri/followers",
"following_url": "https://api.github.com/users/salieri/following{/other_user}",
"gists_url": "https://api.github.com/users/salieri/gists{/gist_id}",
"starred_url": "https://api.github.com/users/salieri/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/salieri/subscriptions",
"organizations_url": "https://api.github.com/users/salieri/orgs",
"repos_url": "https://api.github.com/users/salieri/repos",
"events_url": "https://api.github.com/users/salieri/events{/privacy}",
"received_events_url": "https://api.github.com/users/salieri/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false | null |
[] | null |
[
"Hi ! ImageFolder is made for small scale datasets indeed. For large scale image datasets you better group your images in TAR archives or Arrow/Parquet files. This is true not just for ImageFolder loading performance, but also because having millions of files is not ideal for your filesystem or when moving the data around.\r\n\r\nOption 1. use TAR archives\r\n\r\nI'd suggest you to take a look at how we load [Imagenet](https://huggingface.co/datasets/imagenet-1k/tree/main) for example. The dataset is sharded in multiple TAR archives and there is a [script](https://huggingface.co/datasets/imagenet-1k/blob/main/imagenet-1k.py) that iterates over the archives to load the images.\r\n\r\nOption 2. use Arrow/Parquet\r\n\r\nYou can load your images as an Arrow Dataset with\r\n```python\r\nfrom datasets import Dataset, Image, load_from_disk, load_dataset\r\n\r\nds = Dataset.from_dict({\"image\": list(glob.glob(\"path/to/dir/**/*.jpg\"))})\r\n\r\ndef add_metadata(example):\r\n ...\r\n\r\nds = ds.map(add_metadata, num_proc=16) # num_proc for multiprocessing\r\nds = ds.cast_column(\"image\", Image())\r\n\r\n# save as Arrow locally\r\nds.save_to_disk(\"output_dir\")\r\nreloaded = load_from_disk(\"output_dir\")\r\n\r\n# OR save as Parquet on the HF Hub\r\nds.push_to_hub(\"username/dataset_name\")\r\nreloaded = load_dataset(\"username/dataset_name\")\r\n# reloaded = load_dataset(\"username/dataset_name\", num_proc=16) # to use multiprocessing\r\n```\r\n\r\nPS: maybe we can actually have something similar to ImageFolder but for image archives at one point ?",
"@lhoestq Thanks!\r\n\r\nPerhaps it'd be worth adding a note on the documentation that `ImageFolder` is not intended for large datasets? This limitation is not intuitively obvious to someone who has not used it before, I think.",
"Thanks for the feedback @salieri! I opened #5329 to make it clear `ImageFolder` is not intended for large datasets. Please feel free to comment if you have any other feedback! 🙂 "
] | 2022-12-01T00:04:21 | 2022-12-01T21:49:26 | null |
NONE
| null | null | null |
### Describe the bug
While testing image dataset creation, I'm seeing significant performance bottlenecks with imagefolders when scanning a directory structure with large number of images.
## Setup
* Nested directories (5 levels deep)
* 3M+ images
* 1 `metadata.jsonl` file
## Performance Degradation Point 1
Degradation occurs because [`get_data_files_patterns`](https://github.com/huggingface/datasets/blob/main/src/datasets/data_files.py#L231-L243) runs the exact same scan for many different types of patterns, and there doesn't seem to be a way to easily limit this. It's controlled by the definition of [`ALL_DEFAULT_PATTERNS`](https://github.com/huggingface/datasets/blob/main/src/datasets/data_files.py#L82-L85).
One scan with 3M+ files takes about 10-15 minutes to complete on my setup, so having those extra scans really slows things down – from 10 minutes to 60+. Most of the scans return no matches, but they still take a significant amount of time to complete – hence the poor performance.
As a side effect, when this scan is run on 3M+ image files, Python also consumes up to 12 GB of RAM, which is not ideal.
## Performance Degradation Point 2
The second performance bottleneck is in [`PackagedDatasetModuleFactory.get_module`](https://github.com/huggingface/datasets/blob/d7dfbc83d68e87ba002c5eb2555f7a932e59038a/src/datasets/load.py#L707-L711), which calls `DataFilesDict.from_local_or_remote`.
It runs for a long time (60min+), consuming significant amounts of RAM – even more than the point 1 above. Based on `iostat -d 2`, it performs **zero** disk operations, which to me suggests that there is a code based bottleneck there that could be sorted out.
### Steps to reproduce the bug
```python
from datasets import load_dataset
import os
import huggingface_hub
dataset = load_dataset(
'imagefolder',
data_dir='/some/path',
# just to spell it out:
split=None,
drop_labels=True,
keep_in_memory=False
)
dataset.push_to_hub('account/dataset', private=True)
```
### Expected behavior
While it's certainly possible to write a custom loader to replace `ImageFolder` with, it'd be great if the off-the-shelf `ImageFolder` would by default have a setup that can scale to large datasets.
Or perhaps there could be a dedicated loader just for large datasets that trades off flexibility for performance? As in, maybe you have to define explicitly how you want it to work rather than it trying to guess your data structure like `_get_data_files_patterns()` does?
### Environment info
- `datasets` version: 2.7.1
- Platform: Linux-4.14.296-222.539.amzn2.x86_64-x86_64-with-glibc2.2.5
- Python version: 3.7.10
- PyArrow version: 10.0.1
- Pandas version: 1.3.5
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5317/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5317/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5316
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5316/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5316/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5316/events
|
https://github.com/huggingface/datasets/issues/5316
| 1,470,115,681 |
I_kwDODunzps5XoC9h
| 5,316 |
Bug in sample_by="paragraph"
|
{
"login": "adampauls",
"id": 1243668,
"node_id": "MDQ6VXNlcjEyNDM2Njg=",
"avatar_url": "https://avatars.githubusercontent.com/u/1243668?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/adampauls",
"html_url": "https://github.com/adampauls",
"followers_url": "https://api.github.com/users/adampauls/followers",
"following_url": "https://api.github.com/users/adampauls/following{/other_user}",
"gists_url": "https://api.github.com/users/adampauls/gists{/gist_id}",
"starred_url": "https://api.github.com/users/adampauls/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/adampauls/subscriptions",
"organizations_url": "https://api.github.com/users/adampauls/orgs",
"repos_url": "https://api.github.com/users/adampauls/repos",
"events_url": "https://api.github.com/users/adampauls/events{/privacy}",
"received_events_url": "https://api.github.com/users/adampauls/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Thanks for reporting, @adampauls.\r\n\r\nWe are having a look at it. "
] | 2022-11-30T19:24:13 | 2022-12-01T15:19:02 | 2022-12-01T15:19:02 |
NONE
| null | null | null |
### Describe the bug
I think [this line](https://github.com/huggingface/datasets/blob/main/src/datasets/packaged_modules/text/text.py#L96) is wrong and should be `batch = f.read(self.config.chunksize)`. Otherwise it will never terminate because even when `f` is finished reading, `batch` will still be truthy from the last iteration.
### Steps to reproduce the bug
```
> cat test.txt
a b c
d e f
````
```python
>>> import datasets
>>> datasets.load_dataset("text", data_files={"train":"test.txt"}, sample_by="paragraph")
```
This will go on forever.
### Expected behavior
Terminates very quickly.
### Environment info
`version = "2.6.1"` but I think the bug is still there on main.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5316/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5316/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5315
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5315/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5315/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5315/events
|
https://github.com/huggingface/datasets/issues/5315
| 1,470,026,797 |
I_kwDODunzps5XntQt
| 5,315 |
Adding new splits to a dataset script with existing old splits info in metadata's `dataset_info` fails
|
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] |
open
| false |
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"EDIT:\r\nI think in this case, the metadata files (either README or JSON) should not be read (i.e. `self.info.splits` should be None).\r\n\r\nOne idea: \r\n- I think ideally we should set this behavior when we pass `--save_info` to the CLI `test`\r\n- However, currently, the builder is unaware of this: `save_info` arg is not passed to it",
"> I think in this case\r\n\r\n@albertvillanova You mean in cases when the script was changed? \r\n\r\nI suggest that we:\r\n* add a check on the slice (like 'split_name[n%]) kind of format here: https://github.com/huggingface/datasets/blob/main/src/datasets/splits.py#L523 to catch things like this. \r\n* Error here happens before splits verification, but in `_prepare_split`, and `_prepare_split` doesn't perform any verification and don't know about it. so we can pass this parameter and take splits from `split_generator`, not from `split.info` in case when `verify_infos` is False\r\n* we can check if split **names** from split_generators and self.info.splits are the same **before** preparing splits (if `verify_info=True`) so that we don't spend time on generating unwanted data. \r\n* provide some user-friendly warnings about `ignore_verifications` parameter so that users know that if something is not matching they can ignore it\r\n\r\nI started it here: https://github.com/huggingface/datasets/pull/5327/files\r\n\r\nWhat do you think @albertvillanova ?",
"I edited my previous comment:\r\n- First I proposed setting `self.info.splits` to None when `ignore_verifications=True`\r\n - I thought it was the easiest implementation because `ignore_verifications` is passed to `DatasetBuilder.download_and_prepare`\r\n - However, afterwards, I realized this might not be a good idea for this use case:\r\n - A user wants to optimize the loading of the dataset, and passes `ignore_verifications=False` to avoid all the verifications\r\n - In this case, we want `self.info.splits` to be read from metadata file\r\n- Then, I thought that it might be better to set `self.info.splits` to None when we pass `--save_info` to the CLI test: if we are going to save the info to the metadata file, it makes no sense to read the info from the metadata file\r\n - This implementation is not so easy because the Builder knows nothing about `--save_info`\r\n\r\nI agree with you there are 2 things to be addressed here:\r\n- One is what I have just commented: `self.info.splits` should be None in this case\r\n- The other, a validation should be implemented when calling `make_file_instructions` and/or `SplitDict.__getitem__`, so that when passing \"training\" to it, we get a more descriptive error other than `TypeError: expected str, bytes or os.PathLike object, not NoneType` "
] | 2022-11-30T18:02:15 | 2022-12-02T07:02:53 | null |
CONTRIBUTOR
| null | null | null |
### Describe the bug
If you first create a custom dataset with a specific set of splits, generate metadata with `datasets-cli test ... --save_info`, then change your script to include more splits, it fails.
That's what happened in https://huggingface.co/datasets/mrdbourke/food_vision_199_classes/discussions/2#6385fd1269634850f8ddff48.
### Steps to reproduce the bug
1. create a dataset with a custom split that returns, for example, only `"train"` split in `_splits_generators'`. specifically, if really want to reproduce, copy `https://huggingface.co/datasets/mrdbourke/food_vision_199_classes/blob/main/food_vision_199_classes.py
2. run `datasets-cli test dataset_script.py --save_info --all_configs` - this would generate metadata yaml in `README.md` that would contain info about splits, for example, like this:
```
splits:
- name: train
num_bytes: 2973286
num_examples: 19747
```
3. make changes to your script so that it returns another set of splits, for example, `"train"` and `"test"` (uncomment [these lines](https://huggingface.co/datasets/mrdbourke/food_vision_199_classes/blob/main/food_vision_199_classes.py#L271))
4. run `load_dataset` and get the following error:
```python
Traceback (most recent call last):
File "/home/daniel/code/pytorch/env/bin/datasets-cli", line 8, in <module>
sys.exit(main())
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/commands/datasets_cli.py", line 39, in main
service.run()
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/commands/test.py", line 141, in run
builder.download_and_prepare(
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/builder.py", line 822, in download_and_prepare
self._download_and_prepare(
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/builder.py", line 1555, in _download_and_prepare
super()._download_and_prepare(
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/builder.py", line 913, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/builder.py", line 1356, in _prepare_split
split_info = self.info.splits[split_generator.name]
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/splits.py", line 525, in __getitem__
instructions = make_file_instructions(
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/arrow_reader.py", line 111, in make_file_instructions
name2filenames = {
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/arrow_reader.py", line 112, in <dictcomp>
info.name: filenames_for_dataset_split(
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/naming.py", line 78, in filenames_for_dataset_split
prefix = filename_prefix_for_split(dataset_name, split)
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/naming.py", line 57, in filename_prefix_for_split
if os.path.basename(name) != name:
File "/home/daniel/code/pytorch/env/lib/python3.8/posixpath.py", line 143, in basename
p = os.fspath(p)
TypeError: expected str, bytes or os.PathLike object, not NoneType
```
5. bonus: try to regenerate metadata in `README.md` with `datasets-cli` as in step 2 and get the same error.
This is because `dataset.info.splits` contains only `"train"` split so when we are doing `self.info.splits[split_generator.name]` it tries to infer smth like `info.splits['train[50%]']` and that's not the case and it fails.
### Expected behavior
to be discussed?
This can be solved by removing splits information from metadata file first. But I wonder if there is a better way.
### Environment info
- Datasets version: 2.7.1
- Python version: 3.8.13
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5315/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5315/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5314
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5314/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5314/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5314/events
|
https://github.com/huggingface/datasets/issues/5314
| 1,469,685,118 |
I_kwDODunzps5XmZ1-
| 5,314 |
Datasets: classification_report() got an unexpected keyword argument 'suffix'
|
{
"login": "JonathanAlis",
"id": 42126634,
"node_id": "MDQ6VXNlcjQyMTI2NjM0",
"avatar_url": "https://avatars.githubusercontent.com/u/42126634?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/JonathanAlis",
"html_url": "https://github.com/JonathanAlis",
"followers_url": "https://api.github.com/users/JonathanAlis/followers",
"following_url": "https://api.github.com/users/JonathanAlis/following{/other_user}",
"gists_url": "https://api.github.com/users/JonathanAlis/gists{/gist_id}",
"starred_url": "https://api.github.com/users/JonathanAlis/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/JonathanAlis/subscriptions",
"organizations_url": "https://api.github.com/users/JonathanAlis/orgs",
"repos_url": "https://api.github.com/users/JonathanAlis/repos",
"events_url": "https://api.github.com/users/JonathanAlis/events{/privacy}",
"received_events_url": "https://api.github.com/users/JonathanAlis/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"This seems similar to https://github.com/huggingface/datasets/issues/2512 Can you try to update seqeval ? ",
"@JonathanAlis also note that the metrics are deprecated in our `datasets` library.\r\n\r\nPlease, use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate"
] | 2022-11-30T14:01:03 | 2023-07-21T14:40:31 | 2023-07-21T14:40:31 |
NONE
| null | null | null |
https://github.com/huggingface/datasets/blob/main/metrics/seqeval/seqeval.py
> import datasets
predictions = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
references = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
seqeval = datasets.load_metric("seqeval")
results = seqeval.compute(predictions=predictions, references=references)
print(list(results.keys()))
print(results["overall_f1"])
print(results["PER"]["f1"])
It raises the error:
> TypeError: classification_report() got an unexpected keyword argument 'suffix'
For context, versions on my pip list -v
> datasets 1.12.1
seqeval 1.2.2
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5314/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5314/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5306
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5306/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5306/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5306/events
|
https://github.com/huggingface/datasets/issues/5306
| 1,465,968,639 |
I_kwDODunzps5XYOf_
| 5,306 |
Can't use custom feature description when loading a dataset
|
{
"login": "clefourrier",
"id": 22726840,
"node_id": "MDQ6VXNlcjIyNzI2ODQw",
"avatar_url": "https://avatars.githubusercontent.com/u/22726840?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/clefourrier",
"html_url": "https://github.com/clefourrier",
"followers_url": "https://api.github.com/users/clefourrier/followers",
"following_url": "https://api.github.com/users/clefourrier/following{/other_user}",
"gists_url": "https://api.github.com/users/clefourrier/gists{/gist_id}",
"starred_url": "https://api.github.com/users/clefourrier/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/clefourrier/subscriptions",
"organizations_url": "https://api.github.com/users/clefourrier/orgs",
"repos_url": "https://api.github.com/users/clefourrier/repos",
"events_url": "https://api.github.com/users/clefourrier/events{/privacy}",
"received_events_url": "https://api.github.com/users/clefourrier/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Forgot to actually convert the feature dict to a Feature object. Closing."
] | 2022-11-28T07:55:44 | 2022-11-28T08:11:45 | 2022-11-28T08:11:44 |
MEMBER
| null | null | null |
### Describe the bug
I have created a feature dictionary to describe my datasets' column types, to use when loading the dataset, following [the doc](https://huggingface.co/docs/datasets/main/en/about_dataset_features). It crashes at dataset load.
### Steps to reproduce the bug
```python
# Creating features
task_list = [f"motif_G{i}" for i in range(19, 53)]
features = {t: Sequence(feature=Value(dtype="float64")) for t in task_list}
for col_name in ["class_label"]:
features[col_name] = Sequence(feature=Value(dtype="int64"))
for col_name in ["num_nodes"]:
features[col_name] = Value(dtype="int64")
for col_name in ["num_bridges", "num_cycles", "avg_shortest_path_len"]:
features[col_name] = Sequence(feature=Value(dtype="float64"))
for col_name in ["edge_attr", "node_feat", "edge_index"]:
features[col_name] = Sequence(feature=Sequence(feature=Value(dtype="int64")))
print(features)
dataset = load_dataset(path=f"graphs-datasets/unbalanced-motifs-500K", split="train", features=features)
```
Last line will crash and say 'TypeError: argument of type 'Sequence' is not iterable'.
Full stack:
```
Traceback (most recent call last):
File "pretrain_tokengt.py", line 131, in <module>
main(output_folder = "../workspace/pretraining",
File "pretrain_tokengt.py", line 52, in main
dataset = load_dataset(path=f"graphs-datasets/{dataset_name}", split="train", features=features)
File "huggingface_env/lib/python3.8/site-packages/datasets/load.py", line 1718, in load_dataset
builder_instance = load_dataset_builder(
File "huggingface_env/lib/python3.8/site-packages/datasets/load.py", line 1514, in load_dataset_builder
builder_instance: DatasetBuilder = builder_cls(
File "huggingface_env/lib/python3.8/site-packages/datasets/builder.py", line 321, in __init__
info.update(self._info())
File "huggingface_env/lib/python3.8/site-packages/datasets/packaged_modules/json/json.py", line 62, in _info
return datasets.DatasetInfo(features=self.config.features)
File "<string>", line 20, in __init__
File "huggingface_env/lib/python3.8/site-packages/datasets/info.py", line 155, in __post_init__
self.features = Features.from_dict(self.features)
File "huggingface_env/lib/python3.8/site-packages/datasets/features/features.py", line 1599, in from_dict
obj = generate_from_dict(dic)
File "huggingface_env/lib/python3.8/site-packages/datasets/features/features.py", line 1282, in generate_from_dict
return {key: generate_from_dict(value) for key, value in obj.items()}
File "huggingface_env/lib/python3.8/site-packages/datasets/features/features.py", line 1282, in <dictcomp>
return {key: generate_from_dict(value) for key, value in obj.items()}
File "huggingface_env/lib/python3.8/site-packages/datasets/features/features.py", line 1281, in generate_from_dict
if "_type" not in obj or isinstance(obj["_type"], dict):
TypeError: argument of type 'Sequence' is not iterable
```
### Expected behavior
For it not to crash.
### Environment info
- `datasets` version: 2.7.1
- Platform: Linux-5.14.0-1054-oem-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyArrow version: 8.0.0
- Pandas version: 1.4.3
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5306/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5306/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5305
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5305/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5305/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5305/events
|
https://github.com/huggingface/datasets/issues/5305
| 1,465,627,826 |
I_kwDODunzps5XW7Sy
| 5,305 |
Dataset joelito/mc4_legal does not work with multiple files
|
{
"login": "JoelNiklaus",
"id": 3775944,
"node_id": "MDQ6VXNlcjM3NzU5NDQ=",
"avatar_url": "https://avatars.githubusercontent.com/u/3775944?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/JoelNiklaus",
"html_url": "https://github.com/JoelNiklaus",
"followers_url": "https://api.github.com/users/JoelNiklaus/followers",
"following_url": "https://api.github.com/users/JoelNiklaus/following{/other_user}",
"gists_url": "https://api.github.com/users/JoelNiklaus/gists{/gist_id}",
"starred_url": "https://api.github.com/users/JoelNiklaus/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/JoelNiklaus/subscriptions",
"organizations_url": "https://api.github.com/users/JoelNiklaus/orgs",
"repos_url": "https://api.github.com/users/JoelNiklaus/repos",
"events_url": "https://api.github.com/users/JoelNiklaus/events{/privacy}",
"received_events_url": "https://api.github.com/users/JoelNiklaus/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Thanks for reporting @JoelNiklaus.\r\n\r\nPlease note that since we moved all dataset loading scripts to the Hub, the issues and pull requests relative to specific datasets are directly handled on the Hub, in their Community tab. I'm transferring this issue there: https://huggingface.co/datasets/joelito/mc4_legal/discussions\r\n\r\nI am also having a look at the bug in your script.",
"Issue transferred to: https://huggingface.co/datasets/joelito/mc4_legal/discussions/1"
] | 2022-11-28T00:16:16 | 2022-11-28T07:22:42 | 2022-11-28T07:22:42 |
CONTRIBUTOR
| null | null | null |
### Describe the bug
The dataset https://huggingface.co/datasets/joelito/mc4_legal works for languages like bg with a single data file, but not for languages with multiple files like de. It shows zero rows for the de dataset.
joelniklaus@Joels-MacBook-Pro ~/N/P/C/L/p/m/mc4_legal (main) [1]> python test_mc4_legal.py (debug)
Found cached dataset mc4_legal (/Users/joelniklaus/.cache/huggingface/datasets/mc4_legal/de/0.0.0/fb6952a097180f8c936e2a7605525ff670354a344fc1a2c70107684d3f7cb02f)
Dataset({
features: ['index', 'url', 'timestamp', 'matches', 'text'],
num_rows: 0
})
joelniklaus@Joels-MacBook-Pro ~/N/P/C/L/p/m/mc4_legal (main)> python test_mc4_legal.py (debug)
Downloading and preparing dataset mc4_legal/bg to /Users/joelniklaus/.cache/huggingface/datasets/mc4_legal/bg/0.0.0/fb6952a097180f8c936e2a7605525ff670354a344fc1a2c70107684d3f7cb02f...
Downloading data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1240.55it/s]
Dataset mc4_legal downloaded and prepared to /Users/joelniklaus/.cache/huggingface/datasets/mc4_legal/bg/0.0.0/fb6952a097180f8c936e2a7605525ff670354a344fc1a2c70107684d3f7cb02f. Subsequent calls will reuse this data.
Dataset({
features: ['index', 'url', 'timestamp', 'matches', 'text'],
num_rows: 204
})
### Steps to reproduce the bug
import datasets
from datasets import load_dataset, get_dataset_config_names
language = "bg"
test = load_dataset("joelito/mc4_legal", language, split='train')
### Expected behavior
It should display the correct number of rows for the de dataset which should be a large number (thousands or more).
### Environment info
Package Version
------------------------ --------------
absl-py 1.3.0
aiohttp 3.8.1
aiosignal 1.2.0
astunparse 1.6.3
async-timeout 4.0.2
attrs 22.1.0
beautifulsoup4 4.11.1
blinker 1.4
blis 0.7.8
Bottleneck 1.3.4
brotlipy 0.7.0
cachetools 5.2.0
catalogue 2.0.7
certifi 2022.5.18.1
cffi 1.15.1
chardet 4.0.0
charset-normalizer 2.1.0
click 8.0.4
conllu 4.5.2
cryptography 38.0.1
cymem 2.0.6
datasets 2.6.1
dill 0.3.5.1
docker-pycreds 0.4.0
fasttext 0.9.2
fasttext-langdetect 1.0.3
filelock 3.0.12
flatbuffers 20210226132247
frozenlist 1.3.0
fsspec 2022.5.0
gast 0.4.0
gcloud 0.18.3
gitdb 4.0.9
GitPython 3.1.27
google-auth 2.9.0
google-auth-oauthlib 0.4.6
google-pasta 0.2.0
googleapis-common-protos 1.57.0
grpcio 1.47.0
h5py 3.7.0
httplib2 0.21.0
huggingface-hub 0.8.1
idna 3.4
importlib-metadata 4.12.0
Jinja2 3.1.2
joblib 1.0.1
keras 2.9.0
Keras-Preprocessing 1.1.2
langcodes 3.3.0
lxml 4.9.1
Markdown 3.3.7
MarkupSafe 2.1.1
mkl-fft 1.3.1
mkl-random 1.2.2
mkl-service 2.4.0
multidict 6.0.2
multiprocess 0.70.13
murmurhash 1.0.7
numexpr 2.8.1
numpy 1.22.3
oauth2client 4.1.3
oauthlib 3.2.1
opt-einsum 3.3.0
packaging 21.3
pandas 1.4.2
pathtools 0.1.2
pathy 0.6.1
pip 21.1.2
preshed 3.0.6
promise 2.3
protobuf 4.21.9
psutil 5.9.1
pyarrow 8.0.0
pyasn1 0.4.8
pyasn1-modules 0.2.8
pybind11 2.9.2
pycountry 22.3.5
pycparser 2.21
pydantic 1.8.2
PyJWT 2.4.0
pylzma 0.5.0
pyOpenSSL 22.0.0
pyparsing 3.0.4
PySocks 1.7.1
python-dateutil 2.8.2
pytz 2021.3
PyYAML 6.0
regex 2021.4.4
requests 2.28.1
requests-oauthlib 1.3.1
responses 0.18.0
rsa 4.8
sacremoses 0.0.45
scikit-learn 1.1.1
scipy 1.8.1
sentencepiece 0.1.96
sentry-sdk 1.6.0
setproctitle 1.2.3
setuptools 65.5.0
shortuuid 1.0.9
six 1.16.0
smart-open 5.2.1
smmap 5.0.0
soupsieve 2.3.2.post1
spacy 3.3.1
spacy-legacy 3.0.9
spacy-loggers 1.0.2
srsly 2.4.3
tabulate 0.8.9
tensorboard 2.9.1
tensorboard-data-server 0.6.1
tensorboard-plugin-wit 1.8.1
tensorflow 2.9.1
tensorflow-estimator 2.9.0
termcolor 2.1.0
thinc 8.0.17
threadpoolctl 3.1.0
tokenizers 0.12.1
torch 1.13.0
tqdm 4.64.0
transformers 4.20.1
typer 0.4.1
typing-extensions 4.3.0
Unidecode 1.3.6
urllib3 1.26.12
wandb 0.12.20
wasabi 0.9.1
web-anno-tsv 0.0.1
Werkzeug 2.1.2
wget 3.2
wheel 0.35.1
wrapt 1.14.1
xxhash 3.0.0
yarl 1.8.1
zipp 3.8.0
Python 3.8.10
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5305/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5305/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5304
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5304/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5304/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5304/events
|
https://github.com/huggingface/datasets/issues/5304
| 1,465,110,367 |
I_kwDODunzps5XU89f
| 5,304 |
timit_asr doesn't load the test split.
|
{
"login": "seyong92",
"id": 17842800,
"node_id": "MDQ6VXNlcjE3ODQyODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/17842800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/seyong92",
"html_url": "https://github.com/seyong92",
"followers_url": "https://api.github.com/users/seyong92/followers",
"following_url": "https://api.github.com/users/seyong92/following{/other_user}",
"gists_url": "https://api.github.com/users/seyong92/gists{/gist_id}",
"starred_url": "https://api.github.com/users/seyong92/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/seyong92/subscriptions",
"organizations_url": "https://api.github.com/users/seyong92/orgs",
"repos_url": "https://api.github.com/users/seyong92/repos",
"events_url": "https://api.github.com/users/seyong92/events{/privacy}",
"received_events_url": "https://api.github.com/users/seyong92/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"The [timit_asr.py](https://huggingface.co/datasets/timit_asr/blob/main/timit_asr.py) script iterates over the WAV files per split directory using this:\r\n```python\r\nwav_paths = sorted(Path(data_dir).glob(f\"**/{split}/**/*.wav\"))\r\nwav_paths = wav_paths if wav_paths else sorted(Path(data_dir).glob(f\"**/{split.upper()}/**/*.WAV\"))\r\n```\r\n\r\nCan you check that there is a directory named \"test\" somewhere in your timit data directory ?"
] | 2022-11-26T10:18:22 | 2023-02-10T16:33:21 | 2023-02-10T16:33:21 |
NONE
| null | null | null |
### Describe the bug
When I use the function ```timit = load_dataset('timit_asr', data_dir=data_dir)```, it only loads train split, not test split.
I tried to change the directory and filename to lower case to upper case for the test split, but it does not work at all.
```python
DatasetDict({
train: Dataset({
features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'],
num_rows: 4620
})
test: Dataset({
features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'],
num_rows: 0
})
})
```
The directory structure of both splits are same. (DIALECT_REGION / SPEAKER_CODE / DATA_FILES)
### Steps to reproduce the bug
1. just use ```timit = load_dataset('timit_asr', data_dir=data_dir)```
### Expected behavior
```python
DatasetDict({
train: Dataset({
features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'],
num_rows: 4620
})
test: Dataset({
features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'],
num_rows: 1680
})
})
```
### Environment info
- ubuntu 20.04
- python 3.9.13
- datasets 2.7.1
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5304/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5304/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5298
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5298/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5298/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5298/events
|
https://github.com/huggingface/datasets/issues/5298
| 1,464,681,871 |
I_kwDODunzps5XTUWP
| 5,298 |
Bug in xopen with Windows pathnames
|
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[] | 2022-11-25T15:21:32 | 2022-11-29T08:21:25 | 2022-11-29T08:21:25 |
MEMBER
| null | null | null |
Currently, `xopen` function has a bug with local Windows pathnames:
From its implementation:
```python
def xopen(file: str, mode="r", *args, **kwargs):
file = _as_posix(PurePath(file))
main_hop, *rest_hops = file.split("::")
if is_local_path(main_hop):
return open(file, mode, *args, **kwargs)
```
On a Windows machine, if we pass the argument:
```python
xopen("C:\\Users\\USERNAME\\filename.txt")
```
it returns
```python
open("C:/Users/USERNAME/filename.txt")
```
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5298/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5298/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5296
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5296/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5296/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5296/events
|
https://github.com/huggingface/datasets/issues/5296
| 1,464,553,580 |
I_kwDODunzps5XS1Bs
| 5,296 |
Bug in xjoin with Windows pathnames
|
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[] | 2022-11-25T13:29:33 | 2022-11-29T08:05:13 | 2022-11-29T08:05:13 |
MEMBER
| null | null | null |
Currently, `xjoin` function has a bug with local Windows pathnames: instead of returning the OS-dependent join pathname, it always returns it in POSIX format.
```python
from datasets.download.streaming_download_manager import xjoin
path = xjoin("C:\\Users\\USERNAME", "filename.txt")
```
Join path should be:
```python
"C:\\Users\\USERNAME\\filename.txt"
```
However it is:
```python
"C:/Users/USERNAME/filename.txt"
```
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5296/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5296/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5295
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5295/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5295/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5295/events
|
https://github.com/huggingface/datasets/issues/5295
| 1,464,006,743 |
I_kwDODunzps5XQvhX
| 5,295 |
Extractions failed when .zip file located on read-only path (e.g., SageMaker FastFile mode)
|
{
"login": "verdimrc",
"id": 2340781,
"node_id": "MDQ6VXNlcjIzNDA3ODE=",
"avatar_url": "https://avatars.githubusercontent.com/u/2340781?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/verdimrc",
"html_url": "https://github.com/verdimrc",
"followers_url": "https://api.github.com/users/verdimrc/followers",
"following_url": "https://api.github.com/users/verdimrc/following{/other_user}",
"gists_url": "https://api.github.com/users/verdimrc/gists{/gist_id}",
"starred_url": "https://api.github.com/users/verdimrc/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/verdimrc/subscriptions",
"organizations_url": "https://api.github.com/users/verdimrc/orgs",
"repos_url": "https://api.github.com/users/verdimrc/repos",
"events_url": "https://api.github.com/users/verdimrc/events{/privacy}",
"received_events_url": "https://api.github.com/users/verdimrc/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false |
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Hi ! Thanks for reporting. Indeed the lock file should be placed in a directory with write permission (e.g. in the directory where the archive is extracted).",
"I opened https://github.com/huggingface/datasets/pull/5320 to fix this - it places the lock file in the cache directory instead of trying to put in next to the ZIP where it's read-only"
] | 2022-11-25T03:59:43 | 2023-07-21T14:39:09 | 2023-07-21T14:39:09 |
NONE
| null | null | null |
### Describe the bug
Hi,
`load_dataset()` does not work .zip files located on a read-only directory. Looks like it's because Dataset creates a lock file in the [same directory](https://github.com/huggingface/datasets/blob/df4bdd365f2abb695f113cbf8856a925bc70901b/src/datasets/utils/extract.py) as the .zip file.
Encountered this when attempting `load_dataset()` on a datadir with SageMaker FastFile mode.
### Steps to reproduce the bug
```python
# Showing relevant lines only.
hyperparameters = {
"dataset_name": "ydshieh/coco_dataset_script",
"dataset_config_name": 2017,
"data_dir": "/opt/ml/input/data/coco",
"cache_dir": "/tmp/huggingface-cache", # Fix dataset complains out-of-space.
...
}
estimator = PyTorch(
base_job_name="clip",
source_dir="../src/sm-entrypoint",
entry_point="run_clip.py", # Transformers/src/examples/pytorch/contrastive-image-text/run_clip.py
framework_version="1.12",
py_version="py38",
hyperparameters=hyperparameters,
instance_count=1,
instance_type="ml.p3.16xlarge",
volume_size=100,
distribution={"smdistributed": {"dataparallel": {"enabled": True}}},
)
fast_file = lambda x: TrainingInput(x, input_mode='FastFile')
estimator.fit(
{
"pre-trained": fast_file("s3://vm-sagemakerr-us-east-1/clip/pre-trained-checkpoint/"),
"coco": fast_file("s3://vm-sagemakerr-us-east-1/clip/coco-zip-files/"),
}
)
```
Error message:
```text
ErrorMessage "OSError: [Errno 30] Read-only file system: '/opt/ml/input/data/coco/image_info_test2017.zip.lock'
"""
The above exception was the direct cause of the following exception
Traceback (most recent call last)
File "/opt/conda/lib/python3.8/runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/opt/conda/lib/python3.8/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/opt/conda/lib/python3.8/site-packages/mpi4py/__main__.py", line 7, in <module>
main()
File "/opt/conda/lib/python3.8/site-packages/mpi4py/run.py", line 198, in main
run_command_line(args)
File "/opt/conda/lib/python3.8/site-packages/mpi4py/run.py", line 47, in run_command_line
run_path(sys.argv[0], run_name='__main__')
File "/opt/conda/lib/python3.8/runpy.py", line 265, in run_path
return _run_module_code(code, init_globals, run_name,
File "/opt/conda/lib/python3.8/runpy.py", line 97, in _run_module_code
_run_code(code, mod_globals, init_globals,
File "run_clip_smddp.py", line 594, in <module>
File "run_clip_smddp.py", line 327, in main
dataset = load_dataset(
File "/opt/conda/lib/python3.8/site-packages/datasets/load.py", line 1741, in load_dataset
builder_instance.download_and_prepare(
File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 822, in download_and_prepare
self._download_and_prepare(
File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 1555, in _download_and_prepare
super()._download_and_prepare(
File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 891, in _download_and_prepare
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
File "/root/.cache/huggingface/modules/datasets_modules/datasets/ydshieh--coco_dataset_script/e033205c0266a54c10be132f9264f2a39dcf893e798f6756d224b1ff5078998f/coco_dataset_script.py", line 123, in _split_generators
archive_path = dl_manager.download_and_extract(_DL_URLS)
File "/opt/conda/lib/python3.8/site-packages/datasets/download/download_manager.py", line 447, in download_and_extract
return self.extract(self.download(url_or_urls))
File "/opt/conda/lib/python3.8/site-packages/datasets/download/download_manager.py", line 419, in extract
extracted_paths = map_nested(
File "/opt/conda/lib/python3.8/site-packages/datasets/utils/py_utils.py", line 472, in map_nested
mapped = pool.map(_single_map_nested, split_kwds)
File "/opt/conda/lib/python3.8/multiprocessing/pool.py", line 364, in map
return self._map_async(func, iterable, mapstar, chunksize).get()
File "/opt/conda/lib/python3.8/multiprocessing/pool.py", line 771, in get
raise self._value
OSError: [Errno 30] Read-only file system: '/opt/ml/input/data/coco/image_info_test2017.zip.lock'"
```
### Expected behavior
`load_dataset()` to succeed, just like when .zip file is passed in SageMaker File mode.
### Environment info
* datasets-2.7.1
* transformers-4.24.0
* python-3.8
* torch-1.12
* SageMaker PyTorch DLC
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5295/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5295/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5293
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5293/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5293/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5293/events
|
https://github.com/huggingface/datasets/issues/5293
| 1,463,669,201 |
I_kwDODunzps5XPdHR
| 5,293 |
Support streaming datasets with pathlib.Path.with_suffix
|
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[] | 2022-11-24T17:52:08 | 2022-11-29T07:06:33 | 2022-11-29T07:06:33 |
MEMBER
| null | null | null |
Extend support for streaming datasets that use `pathlib.Path.with_suffix`.
This feature will be useful e.g. for datasets containing text files and annotated files with the same name but different extension.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5293/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5293/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5292
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5292/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5292/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5292/events
|
https://github.com/huggingface/datasets/issues/5292
| 1,463,053,832 |
I_kwDODunzps5XNG4I
| 5,292 |
Missing documentation build for versions 2.7.1 and 2.6.2
|
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 4296013012,
"node_id": "LA_kwDODunzps8AAAABAA_01A",
"url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance",
"name": "maintenance",
"color": "d4c5f9",
"default": false,
"description": "Maintenance tasks"
}
] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"- Build docs for 2.6.2:\r\n - Commit: a6a5a1cf4cdf1e0be65168aed5a327f543001fe8\r\n - Build docs GH Action: https://github.com/huggingface/datasets/actions/runs/3539470622/jobs/5941404044\r\n- Build docs for 2.7.1:\r\n - Commit: 5ef1ab1cc06c2b7a574bf2df454cd9fcb071ccb2\r\n - Build docs GH Action: https://github.com/huggingface/datasets/actions/runs/3539574442/jobs/5941636792"
] | 2022-11-24T09:42:10 | 2022-11-24T10:10:02 | 2022-11-24T10:10:02 |
MEMBER
| null | null | null |
After the patch releases [2.7.1](https://github.com/huggingface/datasets/releases/tag/2.7.1) and [2.6.2](https://github.com/huggingface/datasets/releases/tag/2.6.2), the online docs were not properly built (the build_documentation workflow was not triggered).
There was a fix by:
- #5291
However, both documentations were built from main branch, instead of their corresponding version branch.
We are rebuilding them.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5292/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5292/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5288
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5288/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5288/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5288/events
|
https://github.com/huggingface/datasets/issues/5288
| 1,462,134,067 |
I_kwDODunzps5XJmUz
| 5,288 |
Lossy json serialization - deserialization of dataset info
|
{
"login": "anuragprat1k",
"id": 57542204,
"node_id": "MDQ6VXNlcjU3NTQyMjA0",
"avatar_url": "https://avatars.githubusercontent.com/u/57542204?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/anuragprat1k",
"html_url": "https://github.com/anuragprat1k",
"followers_url": "https://api.github.com/users/anuragprat1k/followers",
"following_url": "https://api.github.com/users/anuragprat1k/following{/other_user}",
"gists_url": "https://api.github.com/users/anuragprat1k/gists{/gist_id}",
"starred_url": "https://api.github.com/users/anuragprat1k/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/anuragprat1k/subscriptions",
"organizations_url": "https://api.github.com/users/anuragprat1k/orgs",
"repos_url": "https://api.github.com/users/anuragprat1k/repos",
"events_url": "https://api.github.com/users/anuragprat1k/events{/privacy}",
"received_events_url": "https://api.github.com/users/anuragprat1k/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false | null |
[] | null |
[
"Hi ! JSON is a lossy format indeed. If you want to keep the feature types or other metadata I'd encourage you to store them as well. For example you can use `dataset.info.write_to_directory` and `DatasetInfo.from_directory` to store the feature types, split info, description, license etc."
] | 2022-11-23T17:20:15 | 2022-11-25T12:53:51 | null |
NONE
| null | null | null |
### Describe the bug
Saving a dataset to disk as json (using `to_json`) and then loading it again (using `load_dataset`) results in features whose labels are not type-cast correctly. In the code snippet below, `features.label` should have a label of type `ClassLabel` but has type `Value` instead.
### Steps to reproduce the bug
```
from datasets import load_dataset
def test_serdes_from_json(d):
dataset = load_dataset(d, split="train")
dataset.to_json('_test')
dataset_loaded = load_dataset("json", data_files='_test', split='train')
try:
assert dataset_loaded.info.features == dataset.info.features, "features unequal!"
except Exception as ex:
print(f'{ex}')
print(f'expected {dataset.info.features}, \nactual { dataset_loaded.info.features }')
test_serdes_from_json('rotten_tomatoes')
```
Output
```
features unequal!
expected {'text': Value(dtype='string', id=None), 'label': ClassLabel(names=['neg', 'pos'], id=None)},
actual {'text': Value(dtype='string', id=None), 'label': Value(dtype='int64', id=None)}
```
### Expected behavior
The deserialized `features.label` should have type `ClassLabel`.
### Environment info
- `datasets` version: 2.6.1
- Platform: Linux-5.10.144-127.601.amzn2.x86_64-x86_64-with-glibc2.17
- Python version: 3.7.13
- PyArrow version: 7.0.0
- Pandas version: 1.2.3
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5288/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5288/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5286
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5286/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5286/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5286/events
|
https://github.com/huggingface/datasets/issues/5286
| 1,461,908,087 |
I_kwDODunzps5XIvJ3
| 5,286 |
FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/enwiki/20220301/dumpstatus.json
|
{
"login": "roritol",
"id": 32490135,
"node_id": "MDQ6VXNlcjMyNDkwMTM1",
"avatar_url": "https://avatars.githubusercontent.com/u/32490135?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/roritol",
"html_url": "https://github.com/roritol",
"followers_url": "https://api.github.com/users/roritol/followers",
"following_url": "https://api.github.com/users/roritol/following{/other_user}",
"gists_url": "https://api.github.com/users/roritol/gists{/gist_id}",
"starred_url": "https://api.github.com/users/roritol/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/roritol/subscriptions",
"organizations_url": "https://api.github.com/users/roritol/orgs",
"repos_url": "https://api.github.com/users/roritol/repos",
"events_url": "https://api.github.com/users/roritol/events{/privacy}",
"received_events_url": "https://api.github.com/users/roritol/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"I found a solution \r\n\r\nIf you specifically install datasets==1.18 and then run\r\n\r\nimport datasets\r\nwiki = datasets.load_dataset('wikipedia', '20200501.en')\r\nthen this should work (it worked for me.)",
"I have the same problem here but installing datasets==1.18 wont work for me\r\n"
] | 2022-11-23T14:54:15 | 2023-10-03T19:46:44 | 2022-11-25T11:33:14 |
NONE
| null | null | null |
### Describe the bug
I follow the steps provided on the website [https://huggingface.co/datasets/wikipedia](https://huggingface.co/datasets/wikipedia)
$ pip install apache_beam mwparserfromhell
>>> from datasets import load_dataset
>>> load_dataset("wikipedia", "20220301.en")
however this results in the following error:
raise MissingBeamOptions(
datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/
If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory).
Example of usage:
`load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner')`
If I then prompt the system with:
>>> load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner')
the following error occurs:
raise FileNotFoundError(f"Couldn't find file at {url}")
FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/enwiki/20220301/dumpstatus.json
Here is the exact code:
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from datasets import load_dataset
>>> load_dataset('wikipedia', '20220301.en')
Downloading and preparing dataset wikipedia/20220301.en to /home/[EDITED]/.cache/huggingface/datasets/wikipedia/20220301.en/2.0.0/aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559...
Downloading: 100%|████████████████████████████████████████████████████████████████████████████| 15.3k/15.3k [00:00<00:00, 22.2MB/s]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 1741, in load_dataset
builder_instance.download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 822, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1879, in _download_and_prepare
raise MissingBeamOptions(
datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/
If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory).
Example of usage:
`load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner')`
>>> load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner')
Downloading and preparing dataset wikipedia/20220301.en to /home/[EDITED]/.cache/huggingface/datasets/wikipedia/20220301.en/2.0.0/aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559...
Downloading: 100%|████████████████████████████████████████████████████████████████████████████| 15.3k/15.3k [00:00<00:00, 18.8MB/s]
Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 1741, in load_dataset
builder_instance.download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 822, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1909, in _download_and_prepare
super()._download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 891, in _download_and_prepare
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
File "/home/rorytol/.cache/huggingface/modules/datasets_modules/datasets/wikipedia/aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559/wikipedia.py", line 945, in _split_generators
downloaded_files = dl_manager.download_and_extract({"info": info_url})
File "/usr/local/lib/python3.10/dist-packages/datasets/download/download_manager.py", line 447, in download_and_extract
return self.extract(self.download(url_or_urls))
File "/usr/local/lib/python3.10/dist-packages/datasets/download/download_manager.py", line 311, in download
downloaded_path_or_paths = map_nested(
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py", line 444, in map_nested
mapped = [
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py", line 445, in <listcomp>
_single_map_nested((function, obj, types, None, True, None))
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py", line 346, in _single_map_nested
return function(data_struct)
File "/usr/local/lib/python3.10/dist-packages/datasets/download/download_manager.py", line 338, in _download
return cached_path(url_or_filename, download_config=download_config)
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/file_utils.py", line 183, in cached_path
output_path = get_from_cache(
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/file_utils.py", line 530, in get_from_cache
raise FileNotFoundError(f"Couldn't find file at {url}")
FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/enwiki/20220301/dumpstatus.json
### Steps to reproduce the bug
$ pip install apache_beam mwparserfromhell
>>> from datasets import load_dataset
>>> load_dataset("wikipedia", "20220301.en")
>>> load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner')
### Expected behavior
Download the dataset
### Environment info
Running linux on a remote workstation operated through a macbook terminal
Python 3.10.6
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5286/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5286/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5284
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5284/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5284/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5284/events
|
https://github.com/huggingface/datasets/issues/5284
| 1,461,519,733 |
I_kwDODunzps5XHQV1
| 5,284 |
Features of IterableDataset set to None by remove column
|
{
"login": "sanchit-gandhi",
"id": 93869735,
"node_id": "U_kgDOBZhWpw",
"avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sanchit-gandhi",
"html_url": "https://github.com/sanchit-gandhi",
"followers_url": "https://api.github.com/users/sanchit-gandhi/followers",
"following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}",
"gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions",
"organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs",
"repos_url": "https://api.github.com/users/sanchit-gandhi/repos",
"events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}",
"received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
},
{
"id": 3287858981,
"node_id": "MDU6TGFiZWwzMjg3ODU4OTgx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/streaming",
"name": "streaming",
"color": "fef2c0",
"default": false,
"description": ""
}
] |
closed
| false |
{
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Related to https://github.com/huggingface/datasets/issues/5245",
"#self-assign",
"Thanks @lhoestq and @alvarobartt!\r\n\r\nThis would be extremely helpful to have working for the Whisper fine-tuning event - we're **only** training using streaming mode, so it'll be quite important to have this feature working to make training as easy as possible!\r\n\r\n_c.f._ https://twitter.com/sanchitgandhi99/status/1592188332171493377",
"> Thanks @lhoestq and @alvarobartt!\n> \n> \n> \n> This would be extremely helpful to have working for the Whisper fine-tuning event - we're **only** training using streaming mode, so it'll be quite important to have this feature working to make training as easy as possible!\n> \n> \n> \n> _c.f._ https://twitter.com/sanchitgandhi99/status/1592188332171493377\n\nI'm almost done with at least a temporary fix to `rename_column`, `rename_columns`, and `remove_columns`, just trying to figure out how to extend it to the `map` function itself!\n\nI'll probably open the PR for review either tomorrow or Sunday hopefully! Glad I can help you and HuggingFace 🤗 ",
"Awesome - thank you so much for this PR @alvarobartt! Is much appreciated!",
"@sanchit-gandhi PR is ready and open for review at #5287, but there's still one issue I may need @lhoestq's input :hugs:",
"Let us know @sanchit-gandhi if you need a new release of `datasets` soon with this fix included :)",
"Thanks for the fix guys! We can direct people to install `datasets` from main if that's easier!",
"Hey guys, any update around this? I'm facing the same issue with a streamable dataset. ",
"Hi @asennoussi so this was already fixed and released as part of https://github.com/huggingface/datasets/releases/tag/2.8.0, so you should be able to install it as `pip install datasets==2.8.0` or just to use `pip install datasets --upgrade` to get the latest version, as of now, the https://github.com/huggingface/datasets/releases/tag/2.9.0 released last week! 🤗",
"Still facing the same issue though: \r\n```\r\nfrom datasets import IterableDatasetDict, load_dataset\r\n\r\nraw_datasets = vectorized_datasets = IterableDatasetDict()\r\n\r\n\r\nraw_datasets[\"train\"] = load_dataset(\"asennoussi/private\", split=\"train\", use_auth_token=True, streaming=True)\r\nraw_datasets[\"test\"] = load_dataset(\"asennoussi/private\", split=\"test\", use_auth_token=True, streaming=True)\r\n\r\nprint(\"Original features: \", raw_datasets['train'].features.keys())\r\n\r\n...\r\n\r\ndef prepare_dataset(batch):\r\n\r\n # load and (possibly) resample audio datato 16kHz\r\n audio = batch[\"audio\"]\r\n\r\n # compute log-Mel input features from input audio array \r\n batch[\"input_features\"] = processor.feature_extractor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_features[0]\r\n # compute input length of audio sample in seconds\r\n batch[\"input_length\"] = len(audio[\"array\"]) / audio[\"sampling_rate\"]\r\n \r\n # optional pre-processing steps\r\n transcription = batch[\"sentence\"]\r\n \r\n # encode target text to label ids\r\n batch[\"labels\"] = processor.tokenizer(transcription).input_ids\r\n batch[\"labels_length\"] = len(batch[\"labels\"])\r\n return batch\r\n...\r\nvectorized_datasets = vectorized_datasets.remove_columns(['input_length', 'labels_length']+list(next(iter(raw_datasets.values())).features))\r\nprint(\"Processed features: \", vectorized_datasets['train'].features)\r\nprint(\"First sample:\", next(iter(vectorized_datasets['train'])))\r\n\r\n```\r\n\r\nOutput: \r\n```\r\nOriginal features: dict_keys(['path', 'audio', 'sentence'])\r\nProcessed features: None\r\n```",
"Hmm weird, could you try to print\r\n\r\n```python\r\nprint(\"Processed features: \", vectorized_datasets['train'].features)\r\n```\r\n\r\nagain after iterating over the `vectorized_datasets`? In the code above, should be last line :)",
"Didn't seem to fix it: \r\n```\r\nOriginal features: dict_keys(['path', 'audio', 'sentence'])\r\nProcessed features: None\r\nProcessed features: None\r\n```",
"Actually the culprit looks to be this one: \r\n`vectorized_datasets = raw_datasets.map(prepare_dataset).with_format(\"torch\")`\r\nWhen I remove this line: `vectorized_datasets = vectorized_datasets.remove_columns(['input_length', 'labels_length']+list(next(iter(raw_datasets.values())).features))`\r\n\r\nI still get \r\n```\r\nProcessed features: None\r\n```",
"The culprit is definitely `.map` \r\nJust validated it. \r\nAny idea please? ",
"> The culprit is definitely `.map` Just validated it. Any idea please?\r\n\r\nYes, indeed `.map` losses the features, because AFAIK pre-fetching the data to infer the features is expensive and not ideal, that's part of this issue https://github.com/huggingface/datasets/issues/3888\r\n\r\nAnyway, now you can pass the `features` as a param to `.map` as follows:\r\n\r\n```python\r\nfrom datasets import Features\r\nvectorized_datasets = raw_datasets.map(\r\n prepare_dataset,\r\n features=Features(\r\n {\"path\": raw_datasets[\"train\"].info.features[\"path\"], \"audio\": raw_datasets[\"train\"].info.features[\"audio\"], \"sentence\": raw_datasets[\"train\"].info.features[\"sentence\"]}\r\n ),\r\n).with_format(\"torch\")\r\n```\r\n\r\nAlso, to let you know, when calling `.remove_columns` over an `IterableDataset`, the `features` are not lost, as well as `.rename_column` and `rename_columns` :)\r\n\r\nMore information about the latter at https://github.com/huggingface/datasets/pull/5287",
"@asennoussi alternatively you can just call `._resolve_features()` from your `IterableDataset` and it will pre-fetch the data to resolve the features, but note that feature-inference is not as accurate as if you manually specify which features and feature-types the `IterableDataset` has, as mentioned in the comment above, the alternative is to provide `features` param to `.map` :hugs:",
"Got it thanks a lot! "
] | 2022-11-23T10:54:59 | 2023-02-02T09:05:51 | 2022-11-28T12:53:24 |
CONTRIBUTOR
| null | null | null |
### Describe the bug
The `remove_column` method of the IterableDataset sets the dataset features to None.
### Steps to reproduce the bug
```python
from datasets import Audio, load_dataset
# load LS in streaming mode
dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True)
# check original features
print("Original features: ", dataset.features.keys())
# define features to remove: we KEEP audio and text
COLUMNS_TO_REMOVE = ['chapter_id', 'speaker_id', 'file', 'id']
dataset = dataset.remove_columns(COLUMNS_TO_REMOVE)
# check processed features, uh-oh!
print("Processed features: ", dataset.features)
# streaming the first audio sample still works
print("First sample:", next(iter(ds)))
```
**Print Output:**
```
Original features: dict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id'])
Processed features: None
First sample: {'audio': {'path': '2277-149896-0000.flac', 'array': array([ 0.00186157, 0.0005188 , 0.00024414, ..., -0.00097656,
-0.00109863, -0.00146484]), 'sampling_rate': 16000}, 'text': "HE WAS IN A FEVERED STATE OF MIND OWING TO THE BLIGHT HIS WIFE'S ACTION THREATENED TO CAST UPON HIS ENTIRE FUTURE"}
```
### Expected behavior
The features should be those **not** removed by the `remove_column` method, i.e. audio and text.
### Environment info
- `datasets` version: 2.7.1
- Platform: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.7.15
- PyArrow version: 9.0.0
- Pandas version: 1.3.5
(Running on Google Colab for a blog post: https://colab.research.google.com/drive/1ySCQREPZEl4msLfxb79pYYOWjUZhkr9y#scrollTo=8pRDGiVmH2ml)
cc @polinaeterna @lhoestq
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5284/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5284/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5281
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5281/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5281/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5281/events
|
https://github.com/huggingface/datasets/issues/5281
| 1,459,930,271 |
I_kwDODunzps5XBMSf
| 5,281 |
Support cloud storage in load_dataset
|
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 3761482852,
"node_id": "LA_kwDODunzps7gM6xk",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20second%20issue",
"name": "good second issue",
"color": "BDE59C",
"default": false,
"description": "Issues a bit more difficult than \"Good First\" issues"
}
] |
open
| false | null |
[] | null |
[
"Or for example an archive on GitHub releases! Before I added support for JXL (locally only, PR still pending) I was considering hosting my files on GitHub instead...",
"+1 to this. I would like to use 'audiofolder' with a data_dir that's on S3, for example. I don't want to upload my dataset to the Hub, but I would find all the fingerprinting/caching features useful.",
"Adding to the conversation, Dask also uses `fsspec` for this feature.\r\n\r\n[Dask: How to connect to remote data](https://docs.dask.org/en/stable/how-to/connect-to-remote-data.html)\r\n\r\nHappy to help on this feature :D ",
"+1 to this feature request since I think it also tackles my use-case. I am collaborating with a team, working with a loading script which takes some time to generate the dataset artifacts. It would be very handy to use this as a cloud cache to avoid duplicating the effort. \r\n\r\nCurrently we could use `builder.download_and_prepare(path_to_cloud_storage, storage_options, ...)` to cache the artifacts to cloud storage, but then `builder.as_dataset()` yields `NotImplementedError: Loading a dataset cached in SomeCloudFileSystem is not supported`",
"Makes sense ! If you want to load locally a dataset that you download_and_prepared on a cloud storage, you would use `load_dataset(path_to_cloud_storage)` indeed. It would download the data from the cloud storage, cache them locally, and return a `Dataset`.",
"It seems currently the `cached_path` function handles all URLs by `get_from_cache` that only supports `ftp` and `http(s)` here:\r\nhttps://github.com/huggingface/datasets/blob/b5672a956d5de864e6f5550e493527d962d6ae55/src/datasets/utils/file_utils.py#L181\r\n\r\nI guess one can add another condition that handles `s3://` or `gs://` URLs via `fsspec` here.",
"I could use this functionality, so I put together a PR using @kyamagu's suggestion to use `fsspec` in `datasets.utils.file_utils`\r\n\r\nhttps://github.com/huggingface/datasets/pull/5580",
"Thanks @dwyatte for adding support for fsspec urls\r\n\r\nLet me just reopen this since the original issue is not resolved",
"I'm not yet understanding how to use https://github.com/huggingface/datasets/pull/5580 in order to use `load_dataset(data_files=\"s3://...\")`. Any help/example would be much appreciated :) thanks! ",
"It's still not officially supported x) But you can try to update `request_etag` in `file_utils.py` to use `fsspec_head` instead of `http_head`. It is responsible of getting the ETags of the remote files for caching. This change may do the trick for S3 urls",
"Thank you for your guys help on this and merging in #5580. I manually pulled the changes to my local datasets package (datasets.utils.file_utils.py) since it only seemed to be this file that was changed in the PR and I'm getting the error: \r\nInvalidSchema: No connection adapters were found for 's3://bucket/folder/'. I'm calling load_dataset using the S3 URI. When I use the S3 URL I get HTTPError: 403 Client Error. \r\nAm I not supposed to use the S3 URI? How do I pull in the changes from this merge? I'm running datasets 2.10.1. ",
"The current implementation depends on gcsfs/s3fs being able to authenticate through some other means e.g., environmental variables. For AWS, it looks like you can set `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN`\r\n\r\nNote that while testing this just now, I did note a discrepancy between gcsfs and s3fs that we might want to address where gcsfs passes the timeout from `storage_options` [here](https://github.com/huggingface/datasets/blob/3e6269979fc80ae8939294d26298897f0db5b84d/src/datasets/utils/file_utils.py#L333) down into the `aiohttp.ClientSession.request`, but s3fs does not handle this (tries to pass to the `aiobotocore.session.AioSession` constructor raising `TypeError: __init__() got an unexpected keyword argument 'requests_timeout'`).\r\n\r\nIt seems like some work trying to unify kwargs across different fsspec implementations, so if the plan is to pass down `storage_options`, I wonder if we should just let users control the timeout (and other kwargs) using that and if not specified, use the default?",
"> Note that while testing this just now, I did note a discrepancy between gcsfs and s3fs that we might want to address where gcsfs passes the timeout from storage_options [here](https://github.com/huggingface/datasets/blob/3e6269979fc80ae8939294d26298897f0db5b84d/src/datasets/utils/file_utils.py#L333) down into the aiohttp.ClientSession.request, but s3fs does not handle this (tries to pass to the aiobotocore.session.AioSession constructor raising TypeError: __init__() got an unexpected keyword argument 'requests_timeout').\r\n\r\n> It seems like some work trying to unify kwargs across different fsspec implementations, so if the plan is to pass down storage_options, I wonder if we should just let users control the timeout (and other kwargs) and if not specified, use the default?\r\n\r\n@lhoestq here's a small PR for this: https://github.com/huggingface/datasets/pull/5673\r\n\r\n",
"@lhoestq sorry for being a little dense here but I am very keen to use fsspec / adlfs for for a larger image dataset I have for object detection. I have to keep it on Azure storage and would also like to avoid a full download or zipping (so use `load_dataset(..., streaming=True)`. So this development is godsend :) only... I am unable to make it work.\r\n\r\nWould you expect the setup to work for:\r\n- azure blob storage\r\n- image files (not the standard formats `json`, `parquet`....\r\n\r\n? I appreciate that you mostly focus on s3 but it seems that, similar to the [remaining cloud storage functionality](https://huggingface.co/docs/datasets/filesystems#cloud-storage), it should also work for Azure blob storage.\r\n\r\n\r\nI would imagine that something like (Streaming true or false):\r\n```python\r\nd = load_dataset(\"new_dataset.py\", storage_options=storage_options, split=\"train\")\r\n```\r\nwould work with \r\n```python\r\n# new_dataset.py\r\n....\r\n_URL=\"abfs://container/image_folder``` \r\n\r\narchive_path = dl_manager.download(_URL)\r\nsplit_metadata_paths = dl_manager.download(_METADATA_URLS)\r\nreturn [\r\n datasets.SplitGenerator(\r\n name=datasets.Split.TRAIN,\r\n gen_kwargs={\r\n \"annotation_file_path\": split_metadata_paths[\"train\"],\r\n \"files\": dl_manager.iter_files(archive_path)\r\n},\r\n ),\r\n...\r\n```\r\nbut I get \r\n```\r\nTraceback (most recent call last):\r\n... ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"~/miniconda3/envs/hf/lib/python3.11/site-packages/datasets/load.py\", line 1797, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"~/miniconda3/envs/hf/lib/python3.11/site-packages/datasets/builder.py\", line 890, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"~/miniconda3/envs/hf/lib/python3.11/site-packages/datasets/builder.py\", line 1649, in _download_and_prepare\r\n super()._download_and_prepare(\r\n File \"~/miniconda3/envs/hf/lib/python3.11/site-packages/datasets/builder.py\", line 963, in _download_and_prepare\r\n split_generators = self._split_generators(dl_manager, **split_generators_kwargs)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"~/.cache/huggingface/modules/datasets_modules/datasets/new_dataset/dd26a081eab90074f41fa2c821b458424fde393cc73d3d8241aca956d1fb3aa0/new_dataset_script.py\", line 56, in _split_generators\r\n archive_path = dl_manager.download(_URL)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"~/miniconda3/envs/hf/lib/python3.11/site-packages/datasets/download/download_manager.py\", line 427, in download\r\n downloaded_path_or_paths = map_nested(\r\n ^^^^^^^^^^^\r\n File \"~/miniconda3/envs/hf/lib/python3.11/site-packages/datasets/utils/py_utils.py\", line 435, in map_nested\r\n return function(data_struct)\r\n ^^^^^^^^^^^^^^^^^^^^^\r\n File \"~/miniconda3/envs/hf/lib/python3.11/site-packages/datasets/download/download_manager.py\", line 453, in _download\r\n return cached_path(url_or_filename, download_config=download_config)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"~/miniconda3/envs/hf/lib/python3.11/site-packages/datasets/utils/file_utils.py\", line 206, in cached_path\r\n raise ValueError(f\"unable to parse {url_or_filename} as a URL or as a local path\")\r\nValueError: unable to parse abfs://container/image_folder as a URL or as a local path\r\n\r\n```\r\n",
"What version of `datasets` are you using ?",
"@lhoestq \r\nhello, i still have problem with loading json from S3:\r\n\r\n\r\nstorage_options = {\r\n \"key\": xxxx,\r\n \"secret\": xxx,\r\n \"endpoint_url\": xxxx\r\n}\r\npath = 's3://xxx/xxxxxxx.json'\r\ndataset = load_dataset(\"json\", data_files=path, storage_options=storage_options)\r\n\r\nand it throws an error:\r\nTypeError: AioSession.__init__() got an unexpected keyword argument 'hf'\r\nand I use the lastest 2.14.4_dev0 version",
"Hi @lhoestq, thanks for getting back to me :) you have been busy over the summer I see... I was on `2.12.0`. I have updated to `2.14.4`. \r\n\r\nNow `d = load_dataset(\"new_dataset.py\", storage_options=storage_options, split=\"train\", streaming=True)` works for Azure blob storage (with a local data loader script) when I explicitly list all blobs (I am struggling to make `fs.ls(<path>)` work in the script to make the list available to the download manager).\r\n\r\n Any chance that it could work out-of-the-box by supplying just the image folder, not the full list of image filenames? It seems that `dl_manager.download(_URL)` always wants one or more (possibly archived) files. In my situation, where I don't want to archive or download, it would be great to just supply the folder (seems reasonably doable with fsspec).\r\n\r\nLet me know if there is anything I can do to help.\r\n\r\nThanks,",
"> Any chance that it could work out-of-the-box by supplying just the image folder, not the full list of image filenames? It seems that dl_manager.download(_URL) always wants one or more (possibly archived) files. In my situation, where I don't want to archive or download, it would be great to just supply the folder (seems reasonably doable with fsspec).\r\n\r\n@mayorblock This is not supported right now, you have to use archives or implement a way to get the list by yourself\r\n\r\n> TypeError: AioSession.init() got an unexpected keyword argument 'hf'\r\n\r\n@hjq133 Can you update `fsspec` and try again ?\r\n\r\n```python\r\npip install -U fsspec\r\n```",
"thanks for your suggestion,it works now ! ",
"I'm seeing same problem as @hjq133 with following versions:\r\n\r\n```\r\ndatasets==2.15.0\r\n(venv) ➜ finetuning-llama2 git:(main) ✗ pip freeze | grep s3fs \r\ns3fs==2023.10.0\r\n(venv) ➜ finetuning-llama2 git:(main) ✗ pip freeze | grep fsspec\r\nfsspec==2023.10.0\r\n```",
"> @lhoestq hello, i still have problem with loading json from S3:\r\n> \r\n> storage_options = { \"key\": xxxx, \"secret\": xxx, \"endpoint_url\": xxxx } path = 's3://xxx/xxxxxxx.json' dataset = load_dataset(\"json\", data_files=path, storage_options=storage_options)\r\n> \r\n> and it throws an error: TypeError: AioSession.**init**() got an unexpected keyword argument 'hf' and I use the lastest 2.14.4_dev0 version\r\n\r\nI am trying to do the same thing, but the loading is just hanging, without any error. \r\n@lhoestq is there any documentation how to load from private s3 buckets?\r\n",
"Hi ! S3 support is still experimental. It seems like there is an extra `hf` field passed to the `s3fs` storage_options that causes this error. I just check the source code of `_prepare_single_hop_path_and_storage_options` and I think you can try passing explicitly your own `storage_options={\"s3\": {...}}`. Also note that it's generally better to load datasets from HF (we run extensive tests and benchmarks for speed and robustness)",
"That worked! Thanks\r\nIt seems thought that `data_dir=...` doesn't work on s3, only `data_files`.\r\n",
"@lhoestq Would this work either with an Azure Blob Storage Container or its respective Azure Machine Learning Datastore? If yes, what would that look like in code? I've tried a couple of combinations but no success so far, on the latest version of `datasets`. I need to migrate a dataset to the Azure cloud, `load_dataset(\"path_to_data\")` worked perfectly while the files were local only. Thank you!\r\n\r\n@mayorblock would you mind sharing how you got it to work? What did you pass as `storage_options`? Would it maybe work without a custom data loader script?",
"This ticket would be of so much help.",
"@lhoestq I've been using this feature for the last year on GCS without problem, but I think we need to fix an issue with S3 and then document the supported calling patterns to reduce confusion\r\n\r\nIt looks like `datasets` uses a default `DownloadConfig` which is where some potentially unintended storage options are getting passed to fsspec\r\n\r\n```\r\nDownloadConfig(\r\n\tcache_dir=None, \r\n\tforce_download=False, \r\n\tresume_download=False, \r\n\tlocal_files_only=False, \r\n\tproxies=None, \r\n\tuser_agent=None, \r\n\textract_compressed_file=False, \r\n\tforce_extract=False, \r\n\tdelete_extracted=False, \r\n\tuse_etag=True, \r\n\tnum_proc=None, \r\n\tmax_retries=1, \r\n\ttoken=None, \r\n\tignore_url_params=False, \r\n\tstorage_options={'hf': {'token': None, 'endpoint': 'https://huggingface.co'}}, \r\n\tdownload_desc=None\r\n)\r\n```\r\n(specifically the `storage_options={'hf': {'token': None, 'endpoint': 'https://huggingface.co'}}` part)\r\n\r\n`gcsfs` is robust to the extra key in storage options for whatever reason, but `s3fs` is not (haven't dug into why). I'm unable to test `adlfs` but it looks like people here got it working\r\n\r\nIs this an issue that needs fixed with s3fs? Or can we avoid passing these default storage options in some cases?\r\n\r\nUpdate: I think probably https://github.com/huggingface/datasets/pull/6127 is where these default storage options were introduced",
"Hmm not sure, maybe it has to do with `_prepare_single_hop_path_and_storage_options` returning the \"hf\" storage options when it shouldn't",
"Also running into this issue downloading a parquet dataset from S3 (Upload worked fine using [current main branch](https://github.com/huggingface/datasets/commit/90b896193a0a315789022580eb4c80305d168d4d)).\r\n`dataset = Dataset.from_parquet('s3://path-to-file')`\r\nraises \r\n`TypeError: AioSession.__init__() got an unexpected keyword argument 'hf'`\r\nFound that the issue is introduced in [#6028](https://github.com/huggingface/datasets/commit/14f6edd9222e577dccb962ed5338b79b73502fa5#diff-8a868b8c1127c5cbe7870bbeec30bd2cbec6696a378e65b66782a6935e3f412e)\r\n\r\nWhen commenting out the __post_init__ part to set 'hf', I am able to download the dataset."
] | 2022-11-22T14:00:10 | 2024-03-11T15:38:14 | null |
MEMBER
| null | null | null |
Would be nice to be able to do
```python
data_files=["s3://..."] # or gs:// or any cloud storage path
storage_options = {...}
load_dataset(..., data_files=data_files, storage_options=storage_options)
```
The idea would be to use `fsspec` as in `download_and_prepare` and `save_to_disk`.
This has been requested several times already. Some users want to use their data from private cloud storage to train models
related:
https://github.com/huggingface/datasets/issues/3490
https://github.com/huggingface/datasets/issues/5244
[forum](https://discuss.huggingface.co/t/how-to-use-s3-path-with-load-dataset-with-streaming-true/25739/2)
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5281/reactions",
"total_count": 44,
"+1": 26,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 18,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5281/timeline
| null |
reopened
|
https://api.github.com/repos/huggingface/datasets/issues/5280
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5280/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5280/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5280/events
|
https://github.com/huggingface/datasets/issues/5280
| 1,459,823,179 |
I_kwDODunzps5XAyJL
| 5,280 |
Import error
|
{
"login": "feketedavid1012",
"id": 40760055,
"node_id": "MDQ6VXNlcjQwNzYwMDU1",
"avatar_url": "https://avatars.githubusercontent.com/u/40760055?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/feketedavid1012",
"html_url": "https://github.com/feketedavid1012",
"followers_url": "https://api.github.com/users/feketedavid1012/followers",
"following_url": "https://api.github.com/users/feketedavid1012/following{/other_user}",
"gists_url": "https://api.github.com/users/feketedavid1012/gists{/gist_id}",
"starred_url": "https://api.github.com/users/feketedavid1012/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/feketedavid1012/subscriptions",
"organizations_url": "https://api.github.com/users/feketedavid1012/orgs",
"repos_url": "https://api.github.com/users/feketedavid1012/repos",
"events_url": "https://api.github.com/users/feketedavid1012/events{/privacy}",
"received_events_url": "https://api.github.com/users/feketedavid1012/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Hi ! Can you \r\n```python\r\nimport platform\r\nprint(platform.python_version())\r\n```\r\nto see that it returns ?",
"Hi,\n\n3.8.13\n\nGet Outlook for Android<https://aka.ms/AAb9ysg>\n________________________________\nFrom: Quentin Lhoest ***@***.***>\nSent: Tuesday, November 22, 2022 2:37:02 PM\nTo: huggingface/datasets ***@***.***>\nCc: feketedavid1012 ***@***.***>; Author ***@***.***>\nSubject: Re: [huggingface/datasets] Import error (Issue #5280)\n\n\nHi ! Can you\n\nimport platform\nprint(platform.python_version())\n\nto see that it returns ?\n\n—\nReply to this email directly, view it on GitHub<https://github.com/huggingface/datasets/issues/5280#issuecomment-1323691385>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/AJW7F5YGG32W6WABYC25NJTWJTD75ANCNFSM6AAAAAASHZJ2AU>.\nYou are receiving this because you authored the thread.Message ID: ***@***.***>\n",
"Then it should work as expected if you use the same python when using `datasets`\r\n\r\nPlease make sure you're running your code in the right environment",
"It's the right environment. But in if statement I have\n\"3.8.13\" < 3.7\nAnd in the error message is Python>=3.7 which is true in my case (3.8.13 is greater then 3.7), so I don't understand my python should be below the 3.7 which case the if statement is right, but the message is wrong, or above 3.7 which case if statement is wrong, error message is right.\n\nGet Outlook for Android<https://aka.ms/AAb9ysg>\n________________________________\nFrom: Quentin Lhoest ***@***.***>\nSent: Tuesday, November 22, 2022 2:41:43 PM\nTo: huggingface/datasets ***@***.***>\nCc: feketedavid1012 ***@***.***>; Author ***@***.***>\nSubject: Re: [huggingface/datasets] Import error (Issue #5280)\n\n\nThen it should work as expected if you use the same python when using datasets\n\nPlease make sure you're running your code in the right environment\n\n—\nReply to this email directly, view it on GitHub<https://github.com/huggingface/datasets/issues/5280#issuecomment-1323697094>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/AJW7F54JURTAJJWWDO2QGI3WJTERPANCNFSM6AAAAAASHZJ2AU>.\nYou are receiving this because you authored the thread.Message ID: ***@***.***>\n",
"If you're having an error then you're not running your code in the right environment."
] | 2022-11-22T12:56:43 | 2022-12-15T19:57:40 | 2022-12-15T19:57:40 |
NONE
| null | null | null |
https://github.com/huggingface/datasets/blob/cd3d8e637cfab62d352a3f4e5e60e96597b5f0e9/src/datasets/__init__.py#L28
Hy,
I have error at the above line. I have python version 3.8.13, the message says I need python>=3.7, which is True, but I think the if statement not working properly (or the message wrong)
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5280/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5280/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5278
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5278/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5278/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5278/events
|
https://github.com/huggingface/datasets/issues/5278
| 1,459,574,490 |
I_kwDODunzps5W_1ba
| 5,278 |
load_dataset does not read jsonl metadata file properly
|
{
"login": "065294847",
"id": 81414263,
"node_id": "MDQ6VXNlcjgxNDE0MjYz",
"avatar_url": "https://avatars.githubusercontent.com/u/81414263?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/065294847",
"html_url": "https://github.com/065294847",
"followers_url": "https://api.github.com/users/065294847/followers",
"following_url": "https://api.github.com/users/065294847/following{/other_user}",
"gists_url": "https://api.github.com/users/065294847/gists{/gist_id}",
"starred_url": "https://api.github.com/users/065294847/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/065294847/subscriptions",
"organizations_url": "https://api.github.com/users/065294847/orgs",
"repos_url": "https://api.github.com/users/065294847/repos",
"events_url": "https://api.github.com/users/065294847/events{/privacy}",
"received_events_url": "https://api.github.com/users/065294847/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Can you try to remove \"drop_labels=false\" ? It may force the loader to infer the labels instead of reading the metadata",
"Hi, thanks for responding. I tried that, but it does not change anything.",
"Can you try updating `datasets` ? Metadata support was added in `datasets` 2.4",
"Probably the issue, will report back asap!",
"Okay, now it seems to actually load the metadata and create the train_split, but it still says only returns \"image\" and \"label\", which is always 0 since all images are from same folder",
"> Can you try updating `datasets` ? Metadata support was added in `datasets` 2.4\r\n\r\nUpdate: This was the issue."
] | 2022-11-22T10:24:46 | 2023-02-14T14:48:16 | 2022-11-23T11:38:35 |
NONE
| null | null | null |
### Describe the bug
Hi, I'm following [this page](https://huggingface.co/docs/datasets/image_dataset) to create a dataset of images and captions via an image folder and a metadata.json file, but I can't seem to get the dataloader to recognize the "text" column. It just spits out "image" and "label" as features.
Below is code to reproduce my exact example/problem.
### Steps to reproduce the bug
```ruby
dataset_link="19Unu89Ih_kP6zsE7f9Mkw8dy3NwHopRF"
id = dataset_link
output = 'Godardv01.zip'
gdown.download(id=id, output=output, quiet=False)
ds = load_dataset("imagefolder", data_dir="/kaggle/working/Volumes/TOSHIBA/Godard_imgs/Volumes/TOSHIBA/Godard_imgs/Full/train", split="train", drop_labels=False)
print(ds)
```
### Expected behavior
I would expect that it returned "image" and "text" columns from the code above.
### Environment info
- `datasets` version: 2.1.0
- Platform: Linux-5.15.65+-x86_64-with-debian-bullseye-sid
- Python version: 3.7.12
- PyArrow version: 5.0.0
- Pandas version: 1.3.5
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5278/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5278/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5276
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5276/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5276/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5276/events
|
https://github.com/huggingface/datasets/issues/5276
| 1,459,363,442 |
I_kwDODunzps5W_B5y
| 5,276 |
Bug in downloading common_voice data and snall chunk of it to one's own hub
|
{
"login": "capsabogdan",
"id": 48530104,
"node_id": "MDQ6VXNlcjQ4NTMwMTA0",
"avatar_url": "https://avatars.githubusercontent.com/u/48530104?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/capsabogdan",
"html_url": "https://github.com/capsabogdan",
"followers_url": "https://api.github.com/users/capsabogdan/followers",
"following_url": "https://api.github.com/users/capsabogdan/following{/other_user}",
"gists_url": "https://api.github.com/users/capsabogdan/gists{/gist_id}",
"starred_url": "https://api.github.com/users/capsabogdan/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/capsabogdan/subscriptions",
"organizations_url": "https://api.github.com/users/capsabogdan/orgs",
"repos_url": "https://api.github.com/users/capsabogdan/repos",
"events_url": "https://api.github.com/users/capsabogdan/events{/privacy}",
"received_events_url": "https://api.github.com/users/capsabogdan/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Sounds like one of the file is not a valid one, can you make sure you uploaded valid mp3 files ?",
"Well I just sharded the original commonVoice dataset and pushed a small chunk of it in a private rep\n\nWhat did go wrong?\n\nHolen Sie sich Outlook für iOS<https://aka.ms/o0ukef>\n________________________________\nVon: Quentin Lhoest ***@***.***>\nGesendet: Tuesday, November 22, 2022 3:03:40 PM\nAn: huggingface/datasets ***@***.***>\nCc: capsabogdan ***@***.***>; Author ***@***.***>\nBetreff: Re: [huggingface/datasets] Bug in downloading common_voice data and snall chunk of it to one's own hub (Issue #5276)\n\n\nSounds like one of the file is not a valid one, can you make sure you uploaded valid mp3 files ?\n\n—\nReply to this email directly, view it on GitHub<https://github.com/huggingface/datasets/issues/5276#issuecomment-1323727434>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/ALSIFOAPAL2V4TBJTSPMAULWJTHDZANCNFSM6AAAAAASHQJ63U>.\nYou are receiving this because you authored the thread.Message ID: ***@***.***>\n",
"It should be all good then !\r\nCould you share a link to your repository for me to investigate what went wrong ?",
"https://huggingface.co/datasets/DTU54DL/common-voice-test16k\n\nAm Di., 22. Nov. 2022 um 16:43 Uhr schrieb Quentin Lhoest <\n***@***.***>:\n\n> It should be all good then !\n> Could you share a link to your repository for me to investigate what went\n> wrong ?\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/5276#issuecomment-1323876682>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/ALSIFOEUJRZWXAM7DYA5VJDWJTS3NANCNFSM6AAAAAASHQJ63U>\n> .\n> You are receiving this because you authored the thread.Message ID:\n> ***@***.***>\n>\n",
"I see ! This is a bug with MP3 files.\r\n\r\nWhen we store audio data in parquet, we store the bytes and the file name. From the file name extension we know if it's a WAV, an MP3 or else. But here it looks like the paths are all None.\r\n\r\nIt looks like it comes from here:\r\n\r\nhttps://github.com/huggingface/datasets/blob/7feeb5648a63b6135a8259dedc3b1e19185ee4c7/src/datasets/features/audio.py#L212\r\n\r\nCc @polinaeterna maybe we should simply put the file name instead of None values ?",
"@lhoestq I remember we wanted to avoid storing redundant data but maybe it's not that crucial indeed to store one more string value. \r\nOr we can store paths only for mp3s, considering that for other formats we don't have such a problem with reading from bytes without format specified. ",
"It doesn't cost much to always store the file name IMO",
"thanks for the help!\n\ncan I do anything on my side? we are doing a DL project and we need the\ndata really quick.\n\nthanks\nbogdan\n\n> Message ID: ***@***.***>\n>\n",
"I opened a pull requests here: https://github.com/huggingface/datasets/pull/5285, we'll do a new release soon with this fix.\r\n\r\nOtherwise if you're really in a hurry you can install `datasets` from this PR",
"[image: image.png]\n\n> Message ID: ***@***.***>\n>\n",
"any idea on what's going wrong here?\n\nthanks\n\nAm So., 27. Nov. 2022 um 13:53 Uhr schrieb Bogdan Capsa <\n***@***.***>:\n\n> [image: image.png]\n>\n>> Message ID: ***@***.***>\n>>\n>\n",
"hi @capsabogdan! \r\ncould you please share more specifically what problem do you have now?",
"I have attached this screenshot above . can u pls help? So can not pip from pull request\r\n\r\n\r\n",
"The pull request has been merged on `main`.\r\nYou can install `datasets` from `main` using\r\n```\r\npip install git+https://github.com/huggingface/datasets.git\r\n```",
"I've tried to load this dataset DTU54DL/common-voice-test16k, but am\ngetting the same error.\n\nSo the bug fix will fix only if I upload a new dataset, or also loading\npreviously uploaded datasets?\n\nthanks\n\nAm Mo., 28. Nov. 2022 um 19:51 Uhr schrieb Quentin Lhoest <\n***@***.***>:\n\n> The pull request has been merged on main.\n> You can install datasets from main using\n>\n> pip install git+https://github.com/huggingface/datasets.git\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/5276#issuecomment-1329587334>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/ALSIFOCNYYIGHM2EX3ZIO6DWKT5MXANCNFSM6AAAAAASHQJ63U>\n> .\n> You are receiving this because you were mentioned.Message ID:\n> ***@***.***>\n>\n",
"> So the bug fix will fix only if I upload a new dataset, or also loading\r\npreviously uploaded datasets?\r\n\r\nYou have to reupload the dataset, sorry for the inconvenience",
"thank you so much for the help! works like a charm!\n\nAm Di., 29. Nov. 2022 um 12:15 Uhr schrieb Quentin Lhoest <\n***@***.***>:\n\n> So the bug fix will fix only if I upload a new dataset, or also loading\n> previously uploaded datasets?\n>\n> You have to reupload the dataset, sorry for the inconvenience\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/5276#issuecomment-1330468393>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/ALSIFOBKEFZO57BAKY4IGW3WKXQUZANCNFSM6AAAAAASHQJ63U>\n> .\n> You are receiving this because you were mentioned.Message ID:\n> ***@***.***>\n>\n"
] | 2022-11-22T08:17:53 | 2023-07-21T14:33:10 | 2023-07-21T14:33:10 |
NONE
| null | null | null |
### Describe the bug
I'm trying to load the common voice dataset. Currently there is no implementation to download just par tof the data, and I need just one part of it, without downloading the entire dataset
Help please?

### Steps to reproduce the bug
So here is what I have done:
1. Download common_voice data
2. Trim part of it and publish it to my own repo.
3. Download data from my own repo, but am getting this error.
### Expected behavior
There shouldn't be an error in downloading part of the data and publishing it to one's own repo
### Environment info
common_voice 11
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5276/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5276/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5275
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5275/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5275/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5275/events
|
https://github.com/huggingface/datasets/issues/5275
| 1,459,358,919 |
I_kwDODunzps5W_AzH
| 5,275 |
YAML integer keys are not preserved Hub server-side
|
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"@huggingface/datasets if you agree, I can make the bulk edit on the Hub to fix integer keys into strings.",
"Ok for me, and we can merge (internal) https://github.com/huggingface/moon-landing/pull/4609",
"FYI there are still 2k+ weekly users on `datasets` 2.6.1 which doesn't support the string label format for class labels. And among those, some are using datasets with class labels like imdb (60 users), conllpp (40), msra_ner (40), peoples_daily_enr (40), weibo_ner (30), conll2003 (20), etc. And renaming to string would break these users code.",
"but isn't `datasets 2.6.1` downloading files from the Hub with the corresponding tag? I thought we had something like this before",
"We're using `main` as models do. Some datasets need to be updated from time to time, e.g. when a link to download the data is dead.\r\n\r\nBut yea a year ago we had those tags, we just ended up not using them",
"I opened https://github.com/huggingface/datasets/issues/5406 to communicate on this. Let me know what you think, and if it sounds good to you I can pin this issue",
"So, is it OK to make the bulk edit on the Hub now or should we wait longer? If the latter, how long?",
"I think we can do it. If you want to be extra cautious you can do it for all datasets except imdb and conllpp for now which are actively used by 2.6.1 users. For those two we can keep the YAML like this for some more time, or alternatively use the old dataset_infos.json file",
"The bulk edit of canonical datasets (except imdb and conllpp) is running. \r\n\r\nSee e.g.: https://huggingface.co/datasets/acronym_identification/discussions/3\r\n\r\nEDITED: \r\nDone, except for \"universal_morphologies\", where I get\r\n```\r\nHTTPError: 413 Client Error: Payload Too Large for url: https://huggingface.co/api/validate-yaml\r\n```\r\n\r\nAlso not done for the datasets missing matadata \"dataset_info\":\r\n- mc4: https://huggingface.co/datasets/mc4/discussions/3\r\n- the_pile: https://huggingface.co/datasets/the_pile/discussions/6\r\n- timit_asr: https://huggingface.co/datasets/timit_asr/discussions/1",
"Thank you !",
"@lhoestq, there are 6 community datasets with YAML integer keys in their `dataset_info` `class_label`:\r\n- indonlp/indonlu\r\n- rcds/swiss_judgment_prediction\r\n- Jean-Baptiste/wikiner_fr\r\n- Bingsu/Cat_and_Dog\r\n- taskydata/tasky_or_not\r\n- RCC-MSU/collection3\r\n\r\nMaybe we could open a PR on them as well?",
"Let's do this then:\r\n\r\n- [x] [indonlp/indonlu](https://huggingface.co/datasets/indonlp/indonlu/discussions/3)\r\n- [x] rcds/swiss_judgment_prediction\r\n- [x] Jean-Baptiste/wikiner_fr\r\n- [x] Bingsu/Cat_and_Dog -> merged\r\n- [x] taskydata/tasky_or_not (was already using quotes)\r\n- [x] RCC-MSU/collection3\r\n\r\nEDIT: all done :)",
"@lhoestq I was not asking you to do it, but asking if you agree me to do it... :man_facepalming: \r\nAs I self-assigned this issue... :sweat_smile: "
] | 2022-11-22T08:14:47 | 2023-01-26T10:52:35 | 2023-01-26T10:40:21 |
MEMBER
| null | null | null |
After an internal discussion (https://github.com/huggingface/moon-landing/issues/4563):
- YAML integer keys are not preserved server-side: they are transformed to strings
- See for example this Hub PR: https://huggingface.co/datasets/acronym_identification/discussions/1/files
- Original:
```yaml
class_label:
names:
0: B-long
1: B-short
```
- Returned by the server:
```yaml
class_label:
names:
'0': B-long
'1': B-short
```
- They are planning to enforce only string keys
- Other projects already use interger-transformed-to string keys: e.g. `transformers` models `id2label`: https://huggingface.co/roberta-large-mnli/blob/main/config.json
```yaml
"id2label": {
"0": "CONTRADICTION",
"1": "NEUTRAL",
"2": "ENTAILMENT"
}
```
On the other hand, at `datasets` we are currently using YAML integer keys for `dataset_info` `class_label`.
Please note (thanks @lhoestq for pointing out) that previous versions (2.6 and 2.7) of `datasets` need being patched:
```python
In [18]: Features._from_yaml_list([{'dtype': {'class_label': {'names': {'0': 'neg', '1': 'pos'}}}, 'name': 'label'}])
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-18-974f07eea526> in <module>
----> 1 Features._from_yaml_list(ry)
~/Desktop/hf/nlp/src/datasets/features/features.py in _from_yaml_list(cls, yaml_data)
1743 raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}")
1744
-> 1745 return cls.from_dict(from_yaml_inner(yaml_data))
1746
1747 def encode_example(self, example):
~/Desktop/hf/nlp/src/datasets/features/features.py in from_yaml_inner(obj)
1739 elif isinstance(obj, list):
1740 names = [_feature.pop("name") for _feature in obj]
-> 1741 return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)}
1742 else:
1743 raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}")
~/Desktop/hf/nlp/src/datasets/features/features.py in <dictcomp>(.0)
1739 elif isinstance(obj, list):
1740 names = [_feature.pop("name") for _feature in obj]
-> 1741 return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)}
1742 else:
1743 raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}")
~/Desktop/hf/nlp/src/datasets/features/features.py in from_yaml_inner(obj)
1734 return {"_type": snakecase_to_camelcase(obj["dtype"])}
1735 else:
-> 1736 return from_yaml_inner(obj["dtype"])
1737 else:
1738 return {"_type": snakecase_to_camelcase(_type), **unsimplify(obj)[_type]}
~/Desktop/hf/nlp/src/datasets/features/features.py in from_yaml_inner(obj)
1736 return from_yaml_inner(obj["dtype"])
1737 else:
-> 1738 return {"_type": snakecase_to_camelcase(_type), **unsimplify(obj)[_type]}
1739 elif isinstance(obj, list):
1740 names = [_feature.pop("name") for _feature in obj]
~/Desktop/hf/nlp/src/datasets/features/features.py in unsimplify(feature)
1704 if isinstance(feature.get("class_label"), dict) and isinstance(feature["class_label"].get("names"), dict):
1705 label_ids = sorted(feature["class_label"]["names"])
-> 1706 if label_ids and label_ids != list(range(label_ids[-1] + 1)):
1707 raise ValueError(
1708 f"ClassLabel expected a value for all label ids [0:{label_ids[-1] + 1}] but some ids are missing."
TypeError: can only concatenate str (not "int") to str
```
TODO:
- [x] Remove YAML integer keys from `dataset_info` metadata
- [x] Make a patch release for affected `datasets` versions: 2.6 and 2.7
- [x] Communicate on the fix
- [x] Wait for adoption
- [x] Bulk edit the Hub to fix this in all canonical datasets
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5275/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5275/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5274
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5274/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5274/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5274/events
|
https://github.com/huggingface/datasets/issues/5274
| 1,458,646,455 |
I_kwDODunzps5W8S23
| 5,274 |
load_dataset possibly broken for gated datasets?
|
{
"login": "TristanThrush",
"id": 20826878,
"node_id": "MDQ6VXNlcjIwODI2ODc4",
"avatar_url": "https://avatars.githubusercontent.com/u/20826878?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/TristanThrush",
"html_url": "https://github.com/TristanThrush",
"followers_url": "https://api.github.com/users/TristanThrush/followers",
"following_url": "https://api.github.com/users/TristanThrush/following{/other_user}",
"gists_url": "https://api.github.com/users/TristanThrush/gists{/gist_id}",
"starred_url": "https://api.github.com/users/TristanThrush/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/TristanThrush/subscriptions",
"organizations_url": "https://api.github.com/users/TristanThrush/orgs",
"repos_url": "https://api.github.com/users/TristanThrush/repos",
"events_url": "https://api.github.com/users/TristanThrush/events{/privacy}",
"received_events_url": "https://api.github.com/users/TristanThrush/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"@BradleyHsu",
"Btw, thanks very much for finding the hub rollback temporary fix and bringing the issue to our attention @KhoomeiK!",
"I see the same issue when calling `load_dataset('poloclub/diffusiondb', 'large_random_1k')` with `datasets==2.7.1` and `huggingface-hub=0.11.0`. No issue with `datasets=2.6.1` and `huggingface_hub==0.10.1`.\r\n\r\nhttps://github.com/poloclub/diffusiondb/issues/7",
"I fixed my issue by specifying `repo_type` in `hf_hub_url()`. https://github.com/poloclub/diffusiondb/commit/9eb91c79aaca98b0515a0ce45778b8af65b84652\r\n\r\nI opened a PR on the Winoground's repo: https://huggingface.co/datasets/facebook/winoground/discussions/2",
"This is a bug in the script, indeed. The most robust fix is to use a relative path instead of `hf_hub_url`, which does not depend on `huggingface_hub`'s version 🙂. I've opened a PR here: https://huggingface.co/datasets/facebook/winoground/discussions/3.",
"Awesome, big thanks to both @xiaohk and @mariosasko!",
"so, if i reproduce the bug, what should i do ? with huggingface_hub0.13.3 dataset2.6.1",
"huggingface_hub.utils._validators.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name':\r\n\r\n tokenizer = AutoTokenizer.from_pretrained(ARGS.model_path, trust_remote_code=True)\r\n\r\nPlease handle automatically for local path and repo name inside, otherwise users always get confused about this",
"I think I'm also hitting this error, trying to load a model from a local path."
] | 2022-11-21T21:59:53 | 2023-05-27T00:06:14 | 2022-11-28T02:50:42 |
CONTRIBUTOR
| null | null | null |
### Describe the bug
When trying to download the [winoground dataset](https://huggingface.co/datasets/facebook/winoground), I get this error unless I roll back the version of huggingface-hub:
```
[/usr/local/lib/python3.7/dist-packages/huggingface_hub/utils/_validators.py](https://localhost:8080/#) in validate_repo_id(repo_id)
165 if repo_id.count("/") > 1:
166 raise HFValidationError(
--> 167 "Repo id must be in the form 'repo_name' or 'namespace/repo_name':"
168 f" '{repo_id}'. Use `repo_type` argument if needed."
169 )
HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name': 'datasets/facebook/winoground'. Use `repo_type` argument if needed
```
### Steps to reproduce the bug
Install requirements:
```
pip install transformers
pip install datasets
# It works if you uncomment the following line, rolling back huggingface hub:
# pip install huggingface-hub==0.10.1
```
Then:
```
from datasets import load_dataset
auth_token = "" # Replace with an auth token, which you can get from your huggingface account: Profile -> Settings -> Access Tokens -> New Token
winoground = load_dataset("facebook/winoground", use_auth_token=auth_token)["test"]
```
### Expected behavior
Downloading of the datset
### Environment info
Just a google colab; see here: https://colab.research.google.com/drive/15wwOSte2CjTazdnCWYUm2VPlFbk2NGc0?usp=sharing
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5274/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 1
}
|
https://api.github.com/repos/huggingface/datasets/issues/5274/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5273
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5273/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5273/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5273/events
|
https://github.com/huggingface/datasets/issues/5273
| 1,458,018,050 |
I_kwDODunzps5W55cC
| 5,273 |
download_mode="force_redownload" does not refresh cached dataset
|
{
"login": "nomisto",
"id": 28439912,
"node_id": "MDQ6VXNlcjI4NDM5OTEy",
"avatar_url": "https://avatars.githubusercontent.com/u/28439912?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nomisto",
"html_url": "https://github.com/nomisto",
"followers_url": "https://api.github.com/users/nomisto/followers",
"following_url": "https://api.github.com/users/nomisto/following{/other_user}",
"gists_url": "https://api.github.com/users/nomisto/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nomisto/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nomisto/subscriptions",
"organizations_url": "https://api.github.com/users/nomisto/orgs",
"repos_url": "https://api.github.com/users/nomisto/repos",
"events_url": "https://api.github.com/users/nomisto/events{/privacy}",
"received_events_url": "https://api.github.com/users/nomisto/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false | null |
[] | null |
[] | 2022-11-21T14:12:43 | 2022-11-21T14:13:03 | null |
NONE
| null | null | null |
### Describe the bug
`load_datasets` does not refresh dataset when features are imported from external file, even with `download_mode="force_redownload"`. The bug is not limited to nested fields, however it is more likely to occur with nested fields.
### Steps to reproduce the bug
To reproduce the bug 3 files are needed: `dataset.py` (contains dataset loading script), `schema.py` (contains features of dataset) and `main.py` (to run `load_datasets`)
`dataset.py`
```python
import datasets
from schema import features
class NewDataset(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
features=features
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN
)
]
def _generate_examples(self):
data = [
{"id": 0, "nested": []},
{"id": 1, "nested": []}
]
for key, example in enumerate(data):
yield key, example
```
`schema.py`
```python
import datasets
features = datasets.Features(
{
"id": datasets.Value("int32"),
"nested": [
{"text": datasets.Value("string")}
]
}
)
```
`main.py`
```python
import datasets
a = datasets.load_dataset("dataset.py")
print(a["train"].info.features)
```
Now if `main.py` is run it prints the following correct output: `{'id': Value(dtype='int32', id=None), 'nested': [{'text': Value(dtype='string', id=None)}]}`. However, if f.e. the label of the feature "text" is changed to something else, f.e. to
`schema.py`
```python
import datasets
features = datasets.Features(
{
"id": datasets.Value("int32"),
"nested": [
{"textfoo": datasets.Value("string")}
]
}
)
```
`main.py` still prints `{'id': Value(dtype='int32', id=None), 'nested': [{'text': Value(dtype='string', id=None)}]}`, even if run with `download_mode="force_redownload"`. The only fix is to delete the folder in the cache.
### Expected behavior
The cached dataset is deleted and refreshed when using `load_datasets` with `download_mode="force_redownload"`.
### Environment info
- `datasets` version: 2.7.0
- Platform: Windows-10-10.0.19041-SP0
- Python version: 3.7.9
- PyArrow version: 10.0.0
- Pandas version: 1.3.5
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5273/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5273/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5272
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5272/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5272/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5272/events
|
https://github.com/huggingface/datasets/issues/5272
| 1,456,940,021 |
I_kwDODunzps5W1yP1
| 5,272 |
Use pyarrow Tensor dtype
|
{
"login": "franz101",
"id": 18228395,
"node_id": "MDQ6VXNlcjE4MjI4Mzk1",
"avatar_url": "https://avatars.githubusercontent.com/u/18228395?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/franz101",
"html_url": "https://github.com/franz101",
"followers_url": "https://api.github.com/users/franz101/followers",
"following_url": "https://api.github.com/users/franz101/following{/other_user}",
"gists_url": "https://api.github.com/users/franz101/gists{/gist_id}",
"starred_url": "https://api.github.com/users/franz101/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/franz101/subscriptions",
"organizations_url": "https://api.github.com/users/franz101/orgs",
"repos_url": "https://api.github.com/users/franz101/repos",
"events_url": "https://api.github.com/users/franz101/events{/privacy}",
"received_events_url": "https://api.github.com/users/franz101/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
open
| false | null |
[] | null |
[
"Hi ! We're using the Arrow format for the datasets, and PyArrow tensors are not part of the Arrow format AFAIK:\r\n\r\n> There is no direct support in the arrow columnar format to store Tensors as column values.\r\n\r\nsource: https://github.com/apache/arrow/issues/4802#issuecomment-508494694",
"@wesm @rok its been around three years. any updates, regarding dataset arrow tensor support? 🙏 I know you must be very busy, would appreciate to learn what is the state of art. I saw the PR is still open [#8510](https://github.com/apache/arrow/pull/8510)",
"Hey @franz101 & @lhoestq!\r\nThere is a plan and a PR to create an [ExtensionArray of Tensors](https://github.com/apache/arrow/pull/8510) of equal sizes as well as a plan to do the same for Tensors of different sizes [ARROW-8714](https://issues.apache.org/jira/browse/ARROW-8714).",
"The work stalled a little because it was not clear where TensorArray would live. However Arrow community recently agreed to make a [well-known-extension-type document](https://lists.apache.org/thread/sxd5fhc42hb6svs79t3fd79gkqj83pfh) and I would like https://github.com/apache/arrow/pull/8510 to land there and add an implementation to C++/Python + another language. Is that something you would find beneficial to you?",
"that is a great update, thank you.\r\nit looks like this feature would benefit datasets implementation of [ArrayExtensionArray](https://github.com/huggingface/datasets/blob/9f2ff14673cac1f1ad56d80221a793f5938b68c7/src/datasets/features/features.py#L585-L641). Is that correct @eladsegal @lhoestq?\r\n\r\n",
"TensorArray sounds great ! Looking forward to it :)\r\n\r\nWe've had our own ExtensionArray for fixed shape tensors for a while now, hoping to see something more standardized by the arrow community.\r\n\r\nAlso super interested in the extension array for tensors of different sizes cc @mariosasko ",
"[FixedShapeTensor ExtensionType](https://github.com/apache/arrow/pull/8510) was merged and will be in Arrow 12.0.0 (release is planned mid April).\r\n",
"@rok Thanks for keeping us updated! I think it's best to introduce a new feature type that would use this extension type under the hood. I'll create an issue to discuss the design with the community in the coming days.\r\n\r\nAlso, is there a tentative time frame for the variable-shape Tensor extension type?",
"@mariosasko please tag me in the discussion, perhaps I can contribute.\r\n\r\nAs for the [variable shape tensor array](https://github.com/apache/arrow/issues/24868) - I'd be interested in working on it but didn't see much interest in community yet. Are you saying `huggingface/datasets` could use it?",
"pyarrow 12 is out 🎉, will have a look if I can work on it for the ExtensionArray",
"I think these two issues need to be fixed first on the Arrow side before adding the tensor feature type here: https://github.com/apache/arrow/issues/35573 and https://github.com/apache/arrow/issues/35599.\r\n\r\n@rok We've had a couple of requests for supporting variable-shape tensors on the forum/GH, but I did not manage to find the concrete issues using the search. TF/TFDS (and PyTorch with the `nested_tensor` API) support them, so it makes sense for us to do the same eventually (the Ray project has an [extension](https://github.com/ray-project/ray/blob/42a8d1489b37243f203120899a23d919dc85bf2a/python/ray/air/util/tensor_extensions/arrow.py#L634) type to support this case)",
"> @rok We've had a couple of requests for supporting variable-shape tensors on the forum/GH, but I did not manage to find the concrete issues using the search. TF/TFDS (and PyTorch with the `nested_tensor` API) support them, so it makes sense for us to do the same eventually (the Ray project has an [extension](https://github.com/ray-project/ray/blob/42a8d1489b37243f203120899a23d919dc85bf2a/python/ray/air/util/tensor_extensions/arrow.py#L634) type to support this case)\r\n\r\nThat does make sense indeed. We should probably also be careful about memory layout to enable zero-copy interface to TF/PyTorch.",
"So there is no way we can use [pyarrow.Tensor](https://arrow.apache.org/docs/python/generated/pyarrow.Tensor.html#pyarrow.Tensor) ?",
"Not with with the Arrow format, and therefore not in `datasets`. But they released a new [FixedShapeTensorArray](https://arrow.apache.org/docs/python/extending_types.html#fixed-size-tensor) to store tensors in Arrow format. We plan to support this in `datasets` at one point !",
"There is also an open issue to enable the conversion of `pyarrow.Tensor` to `pyarrow.FixedShapeTensorType`: https://github.com/apache/arrow/issues/35068. This way one could indirectly use `pyarrow.Tensor` in Arrow format.",
"We started a [mailing list discussion](https://lists.apache.org/thread/qc9qho0fg5ph1dns4hjq56hp4tj7rk1k) about potential `VariableShapeTensor` extension array, please check it out and give feedback. For more details here's also a PR https://github.com/apache/arrow/pull/37166."
] | 2022-11-20T15:18:41 | 2023-08-17T21:09:11 | null |
NONE
| null | null | null |
### Feature request
I was going the discussion of converting tensors to lists.
Is there a way to leverage pyarrow's Tensors for nested arrays / embeddings?
For example:
```python
import pyarrow as pa
import numpy as np
x = np.array([[2, 2, 4], [4, 5, 100]], np.int32)
pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"])
```
[Apache docs](https://arrow.apache.org/docs/python/generated/pyarrow.Tensor.html)
Maybe this belongs into the pyarrow features / repo.
### Motivation
Working with big data, we need to make sure to use the best data structures and IO out there
### Your contribution
Can try to a PR if code changes necessary
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5272/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5272/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5270
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5270/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5270/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5270/events
|
https://github.com/huggingface/datasets/issues/5270
| 1,456,508,990 |
I_kwDODunzps5W0JA-
| 5,270 |
When len(_URLS) > 16, download will hang
|
{
"login": "Freed-Wu",
"id": 32936898,
"node_id": "MDQ6VXNlcjMyOTM2ODk4",
"avatar_url": "https://avatars.githubusercontent.com/u/32936898?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Freed-Wu",
"html_url": "https://github.com/Freed-Wu",
"followers_url": "https://api.github.com/users/Freed-Wu/followers",
"following_url": "https://api.github.com/users/Freed-Wu/following{/other_user}",
"gists_url": "https://api.github.com/users/Freed-Wu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Freed-Wu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Freed-Wu/subscriptions",
"organizations_url": "https://api.github.com/users/Freed-Wu/orgs",
"repos_url": "https://api.github.com/users/Freed-Wu/repos",
"events_url": "https://api.github.com/users/Freed-Wu/events{/privacy}",
"received_events_url": "https://api.github.com/users/Freed-Wu/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false | null |
[] | null |
[
"It can fix the bug temporarily.\r\n```python\r\nfrom datasets import DownloadConfig\r\nconfig = DownloadConfig(num_proc=8)\r\nIn [5]: dataset = load_dataset('Freed-Wu/kodak', split='test', download_config=config)\r\nDownloading and preparing dataset kodak/default to /home/wzy/.cache/huggingface/datasets/Freed-Wu___kodak/default/0.0.1/6cf51f2b3d686d24a33fe86945f9e16802def212325f9345cf3cbb1b9f5f4a57...\r\nDownloading data files #4: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39obj/s]\r\nDownloading data files #2: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.38obj/s]\r\nDownloading data files #3: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.13obj/s]\r\nDownloading data files #7: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.09obj/s]\r\nDownloading data files #5: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.08obj/s]\r\nDownloading data files #0: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.08obj/s]\r\nDownloading data files #1: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:10<00:00, 3.36s/obj]\r\nDownloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 492k/492k [00:01<00:00, 253kB/s]\r\nDownloading data files #6: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:13<00:00, 4.63s/obj]\r\nExtracting data files #0: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1407.17obj/s]\r\nExtracting data files #1: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1325.91obj/s]\r\nExtracting data files #3: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1524.46obj/s]\r\nExtracting data files #2: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1404.66obj/s]\r\nExtracting data files #4: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1538.63obj/s]\r\nExtracting data files #6: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1711.73obj/s]\r\nExtracting data files #7: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 2144.33obj/s]\r\nExtracting data files #5: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1964.85obj/s]\r\nDataset kodak downloaded and prepared to /home/wzy/.cache/huggingface/datasets/Freed-Wu___kodak/default/0.0.1/6cf51f2b3d686d24a33fe86945f9e16802def212325f9345cf3cbb1b9f5f4a57. Subsequent calls will reuse this data.\r\n```",
"Thanks for reporting ! This sounds like an issue with python multiprocessing. If we switch to multithreading for the downloads it should be much more robust - let me know if this is something you'd like to contribute, I'd be happy to help and give you some pointers",
"> an issue with python multiprocessing\r\n\r\nIf it is an issue with multiprocessing, should we report it to upstream?",
"Debugging this would require quite some work in my opinion, and I've often failed to make reproducible examples, since it's pretty correlated to one's environment + hardware. So I wouldn't spend too much time on this unless we manage to reproduce this on another machine consistently.\r\n\r\nInstead I'd encourage a more pragmatic fix that is: not create tons of processes (on regular machines it may slow things down anyway), and instead use multithreading by default.",
"I am not expert of python. I hear about python has GIL, which result in multi processing is worse than multi threading. So I am not sure if this change makes sense?\r\n\r\nAnd if this is a bug of multi processing, why not report to upstream and let them fix? And even if change it to multi threading, how can we make sure it can truly fix this problem?",
"Just my 2c. No offense.",
"> Just my 2c. No offense.\r\n\r\nsure np ^^\r\n\r\n> I hear about python has GIL, which result in multi processing is worse than multi threading. So I am not sure if this change makes sense?\r\n\r\nHere the bottleneck speed is the bandwidth used to download the files. When downloading, the GIL is released, so multithreading gives the same speed as multiprocessing.\r\n\r\n> And if this is a bug of multi processing, why not report to upstream and let them fix?\r\n\r\nUsually to fix a bug it's important to be able to reproduce it. This way you can share it, experiment with it, and then make sure it's fixed. Here I'm afraid it's not easy to reproduce. Though I think that spawning too many processes for your machine can lead to this kind of issues.\r\n\r\n> And even if change it to multi threading, how can we make sure it can truly fix this problem?\r\n\r\nMultithreading is more robust in python because IIRC there are less locks involved which are often the cause of code hanging for no reason."
] | 2022-11-19T14:27:41 | 2022-11-21T15:27:16 | null |
NONE
| null | null | null |
### Describe the bug
```python
In [9]: dataset = load_dataset('Freed-Wu/kodak', split='test')
Downloading: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.53k/2.53k [00:00<00:00, 1.88MB/s]
[11/19/22 22:16:21] WARNING Using custom data configuration default builder.py:379
Downloading and preparing dataset kodak/default to /home/wzy/.cache/huggingface/datasets/Freed-Wu___kodak/default/0.0.1/bd1cc3434212e3e654f7e16ad618f8a1470b5982b086c91b1d6bc7187183c6e9...
Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 531k/531k [00:02<00:00, 239kB/s]
#10: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.06s/obj]
Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 534k/534k [00:02<00:00, 193kB/s]
#14: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.37s/obj]
Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 692k/692k [00:02<00:00, 269kB/s]
#12: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.44s/obj]
Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 566k/566k [00:02<00:00, 210kB/s]
#5: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.53s/obj]
Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 613k/613k [00:02<00:00, 235kB/s]
#13: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.53s/obj]
Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 786k/786k [00:02<00:00, 342kB/s]
#3: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.60s/obj]
Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 619k/619k [00:02<00:00, 254kB/s]
#4: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.68s/obj]
Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 737k/737k [00:02<00:00, 271kB/s]
Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 788k/788k [00:02<00:00, 285kB/s]
#6: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:05<00:00, 5.04s/obj]
Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 618k/618k [00:04<00:00, 153kB/s]
#0: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:11<00:00, 5.69s/obj]
^CProcess ForkPoolWorker-47:
Process ForkPoolWorker-46:
Process ForkPoolWorker-36:
Process ForkPoolWorker-38:██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:05<00:00, 5.04s/obj]
Process ForkPoolWorker-37:
Process ForkPoolWorker-45:
Process ForkPoolWorker-39:
Process ForkPoolWorker-43:
Process ForkPoolWorker-33:
Process ForkPoolWorker-18:
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker
task = get()
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get
with self._rlock:
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker
task = get()
File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker
task = get()
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get
with self._rlock:
File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker
task = get()
File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get
with self._rlock:
KeyboardInterrupt
File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
KeyboardInterrupt
File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker
task = get()
File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get
with self._rlock:
File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get
with self._rlock:
File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
KeyboardInterrupt
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker
task = get()
File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker
task = get()
File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker
task = get()
File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get
with self._rlock:
File "/usr/lib/python3.10/multiprocessing/queues.py", line 365, in get
res = self._reader.recv_bytes()
File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get
with self._rlock:
File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.10/multiprocessing/connection.py", line 221, in recv_bytes
buf = self._recv_bytes(maxlength)
KeyboardInterrupt
KeyboardInterrupt
File "/usr/lib/python3.10/multiprocessing/connection.py", line 419, in _recv_bytes
buf = self._recv(4)
File "/usr/lib/python3.10/multiprocessing/connection.py", line 384, in _recv
chunk = read(handle, remaining)
KeyboardInterrupt
Traceback (most recent call last):
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker
task = get()
File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get
with self._rlock:
File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
Process ForkPoolWorker-20:
Process ForkPoolWorker-44:
Process ForkPoolWorker-22:
Traceback (most recent call last):
File "/usr/lib/python3.10/site-packages/urllib3/util/connection.py", line 85, in create_connection
sock.connect(sa)
ConnectionRefusedError: [Errno 111] Connection refused
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.10/multiprocessing/pool.py", line 125, in worker
result = (True, func(*args, **kwds))
File "/usr/lib/python3.10/multiprocessing/pool.py", line 48, in mapstar
return list(map(*args))
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in _single_map_nested
mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar]
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in <listcomp>
mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar]
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 197, in _single_map_nested
return function(data_struct)
File "/usr/lib/python3.10/site-packages/datasets/utils/download_manager.py", line 217, in _download
return cached_path(url_or_filename, download_config=download_config)
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 298, in cached_path
output_path = get_from_cache(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 561, in get_from_cache
response = http_head(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 476, in http_head
response = _request_with_retry(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 405, in _request_with_retry
response = requests.request(method=method.upper(), url=url, timeout=timeout, **params)
File "/usr/lib/python3.10/site-packages/requests/api.py", line 59, in request
return session.request(method=method, url=url, **kwargs)
File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 587, in request
resp = self.send(prep, **send_kwargs)
File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 701, in send
r = adapter.send(request, **kwargs)
File "/usr/lib/python3.10/site-packages/requests/adapters.py", line 489, in send
resp = conn.urlopen(
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 703, in urlopen
httplib_response = self._make_request(
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 386, in _make_request
self._validate_conn(conn)
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 1042, in _validate_conn
conn.connect()
File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 358, in connect
self.sock = conn = self._new_conn()
File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 174, in _new_conn
conn = connection.create_connection(
File "/usr/lib/python3.10/site-packages/urllib3/util/connection.py", line 85, in create_connection
sock.connect(sa)
KeyboardInterrupt
#1: 0%| | 0/2 [03:00<?, ?obj/s]
Traceback (most recent call last):
Traceback (most recent call last):
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.10/multiprocessing/pool.py", line 125, in worker
result = (True, func(*args, **kwds))
File "/usr/lib/python3.10/multiprocessing/pool.py", line 48, in mapstar
return list(map(*args))
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in _single_map_nested
mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar]
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in <listcomp>
mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar]
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 197, in _single_map_nested
return function(data_struct)
File "/usr/lib/python3.10/site-packages/datasets/utils/download_manager.py", line 217, in _download
return cached_path(url_or_filename, download_config=download_config)
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 298, in cached_path
output_path = get_from_cache(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 659, in get_from_cache
http_get(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 442, in http_get
response = _request_with_retry(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 405, in _request_with_retry
response = requests.request(method=method.upper(), url=url, timeout=timeout, **params)
File "/usr/lib/python3.10/site-packages/requests/api.py", line 59, in request
return session.request(method=method, url=url, **kwargs)
File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 587, in request
resp = self.send(prep, **send_kwargs)
File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 701, in send
r = adapter.send(request, **kwargs)
File "/usr/lib/python3.10/site-packages/requests/adapters.py", line 489, in send
resp = conn.urlopen(
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 703, in urlopen
httplib_response = self._make_request(
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 386, in _make_request
self._validate_conn(conn)
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 1042, in _validate_conn
conn.connect()
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 358, in connect
self.sock = conn = self._new_conn()
File "/usr/lib/python3.10/multiprocessing/pool.py", line 125, in worker
result = (True, func(*args, **kwds))
File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 174, in _new_conn
conn = connection.create_connection(
File "/usr/lib/python3.10/multiprocessing/pool.py", line 48, in mapstar
return list(map(*args))
File "/usr/lib/python3.10/site-packages/urllib3/util/connection.py", line 72, in create_connection
for res in socket.getaddrinfo(host, port, family, socket.SOCK_STREAM):
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in _single_map_nested
mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar]
File "/usr/lib/python3.10/socket.py", line 955, in getaddrinfo
for res in _socket.getaddrinfo(host, port, family, type, proto, flags):
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in <listcomp>
mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar]
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 197, in _single_map_nested
return function(data_struct)
File "/usr/lib/python3.10/site-packages/datasets/utils/download_manager.py", line 217, in _download
return cached_path(url_or_filename, download_config=download_config)
KeyboardInterrupt
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 298, in cached_path
output_path = get_from_cache(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 561, in get_from_cache
response = http_head(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 476, in http_head
response = _request_with_retry(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 405, in _request_with_retry
response = requests.request(method=method.upper(), url=url, timeout=timeout, **params)
File "/usr/lib/python3.10/site-packages/requests/api.py", line 59, in request
return session.request(method=method, url=url, **kwargs)
File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 587, in request
resp = self.send(prep, **send_kwargs)
File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 701, in send
r = adapter.send(request, **kwargs)
File "/usr/lib/python3.10/site-packages/requests/adapters.py", line 489, in send
resp = conn.urlopen(
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 703, in urlopen
httplib_response = self._make_request(
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 386, in _make_request
self._validate_conn(conn)
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 1042, in _validate_conn
conn.connect()
File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 358, in connect
self.sock = conn = self._new_conn()
File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 174, in _new_conn
conn = connection.create_connection(
File "/usr/lib/python3.10/site-packages/urllib3/util/connection.py", line 72, in create_connection
for res in socket.getaddrinfo(host, port, family, socket.SOCK_STREAM):
File "/usr/lib/python3.10/socket.py", line 955, in getaddrinfo
for res in _socket.getaddrinfo(host, port, family, type, proto, flags):
KeyboardInterrupt
#3: 0%| | 0/2 [03:00<?, ?obj/s]
#11: 0%| | 0/1 [00:49<?, ?obj/s]
Traceback (most recent call last):
File "/usr/lib/python3.10/site-packages/urllib3/util/connection.py", line 85, in create_connection
sock.connect(sa)
ConnectionRefusedError: [Errno 111] Connection refused
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.10/multiprocessing/pool.py", line 125, in worker
result = (True, func(*args, **kwds))
File "/usr/lib/python3.10/multiprocessing/pool.py", line 48, in mapstar
return list(map(*args))
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in _single_map_nested
mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar]
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in <listcomp>
mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar]
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 197, in _single_map_nested
return function(data_struct)
File "/usr/lib/python3.10/site-packages/datasets/utils/download_manager.py", line 217, in _download
return cached_path(url_or_filename, download_config=download_config)
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 298, in cached_path
output_path = get_from_cache(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 561, in get_from_cache
response = http_head(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 476, in http_head
response = _request_with_retry(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 405, in _request_with_retry
response = requests.request(method=method.upper(), url=url, timeout=timeout, **params)
File "/usr/lib/python3.10/site-packages/requests/api.py", line 59, in request
return session.request(method=method, url=url, **kwargs)
File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 587, in request
resp = self.send(prep, **send_kwargs)
File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 723, in send
history = [resp for resp in gen]
File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 723, in <listcomp>
history = [resp for resp in gen]
File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 266, in resolve_redirects
resp = self.send(
File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 701, in send
r = adapter.send(request, **kwargs)
File "/usr/lib/python3.10/site-packages/requests/adapters.py", line 489, in send
resp = conn.urlopen(
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 703, in urlopen
httplib_response = self._make_request(
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 386, in _make_request
self._validate_conn(conn)
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 1042, in _validate_conn
conn.connect()
File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 358, in connect
self.sock = conn = self._new_conn()
File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 174, in _new_conn
conn = connection.create_connection(
File "/usr/lib/python3.10/site-packages/urllib3/util/connection.py", line 85, in create_connection
sock.connect(sa)
KeyboardInterrupt
#5: 0%| | 0/1 [03:00<?, ?obj/s]
KeyboardInterrupt
Process ForkPoolWorker-42:
Traceback (most recent call last):
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.10/multiprocessing/pool.py", line 125, in worker
result = (True, func(*args, **kwds))
File "/usr/lib/python3.10/multiprocessing/pool.py", line 48, in mapstar
return list(map(*args))
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in _single_map_nested
mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar]
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in <listcomp>
mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar]
File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 197, in _single_map_nested
return function(data_struct)
File "/usr/lib/python3.10/site-packages/datasets/utils/download_manager.py", line 217, in _download
return cached_path(url_or_filename, download_config=download_config)
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 298, in cached_path
output_path = get_from_cache(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 561, in get_from_cache
response = http_head(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 476, in http_head
response = _request_with_retry(
File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 405, in _request_with_retry
response = requests.request(method=method.upper(), url=url, timeout=timeout, **params)
File "/usr/lib/python3.10/site-packages/requests/api.py", line 59, in request
return session.request(method=method, url=url, **kwargs)
File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 587, in request
resp = self.send(prep, **send_kwargs)
File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 701, in send
r = adapter.send(request, **kwargs)
File "/usr/lib/python3.10/site-packages/requests/adapters.py", line 489, in send
resp = conn.urlopen(
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 703, in urlopen
httplib_response = self._make_request(
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 386, in _make_request
self._validate_conn(conn)
File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 1042, in _validate_conn
conn.connect()
File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 358, in connect
self.sock = conn = self._new_conn()
File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 174, in _new_conn
conn = connection.create_connection(
File "/usr/lib/python3.10/site-packages/urllib3/util/connection.py", line 72, in create_connection
for res in socket.getaddrinfo(host, port, family, socket.SOCK_STREAM):
File "/usr/lib/python3.10/socket.py", line 955, in getaddrinfo
for res in _socket.getaddrinfo(host, port, family, type, proto, flags):
KeyboardInterrupt
#9: 0%| | 0/1 [00:51<?, ?obj/s]
```
### Steps to reproduce the bug
```python
"""Kodak.
Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import datasets
NUMBER = 17
_DESCRIPTION = """\
The pictures below link to lossless, true color (24 bits per pixel, aka "full
color") images. It is my understanding they have been released by the Eastman
Kodak Company for unrestricted usage. Many sites use them as a standard test
suite for compression testing, etc. Prior to this site, they were only
available in the Sun Raster format via ftp. This meant that the images could
not be previewed before downloading. Since their release, however, the lossless
PNG format has been incorporated into all the major browsers. Since PNG
supports 24-bit lossless color (which GIF and JPEG do not), it is now possible
to offer this browser-friendly access to the images.
"""
_HOMEPAGE = "https://r0k.us/graphics/kodak/"
_LICENSE = "GPLv3"
_URLS = [
f"https://github.com/MohamedBakrAli/Kodak-Lossless-True-Color-Image-Suite/raw/master/PhotoCD_PCD0992/{i}.png"
for i in range(1, 1 + NUMBER)
]
class Kodak(datasets.GeneratorBasedBuilder):
"""Kodak datasets."""
VERSION = datasets.Version("0.0.1")
def _info(self):
features = datasets.Features(
{
"image": datasets.Image(),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
"""Return SplitGenerators."""
file_paths = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"file_paths": file_paths,
},
),
]
def _generate_examples(self, file_paths):
"""Yield examples."""
for file_path in file_paths:
yield file_path, {"image": file_path}
```
### Expected behavior
When `len(_URLS) < 16`, it works.
```python
In [3]: dataset = load_dataset('Freed-Wu/kodak', split='test')
Downloading: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.53k/2.53k [00:00<00:00, 3.02MB/s]
[11/19/22 22:04:28] WARNING Using custom data configuration default builder.py:379
Downloading and preparing dataset kodak/default to /home/wzy/.cache/huggingface/datasets/Freed-Wu___kodak/default/0.0.1/d26017602a592b5bfa7e008127cdf9dec5af220c9068005f1b4eda036031f475...
Downloading: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 593k/593k [00:00<00:00, 2.88MB/s]
Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 621k/621k [00:03<00:00, 166kB/s]
Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 531k/531k [00:01<00:00, 366kB/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 16/16 [00:13<00:00, 1.18it/s]
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 16/16 [00:00<00:00, 3832.38it/s]
Dataset kodak downloaded and prepared to /home/wzy/.cache/huggingface/datasets/Freed-Wu___kodak/default/0.0.1/d26017602a592b5bfa7e008127cdf9dec5af220c9068005f1b4eda036031f475. Subsequent calls will reuse this data.
```
### Environment info
- `datasets` version: 2.7.0
- Platform: Linux-6.0.8-arch1-1-x86_64-with-glibc2.36
- Python version: 3.10.8
- PyArrow version: 9.0.0
- Pandas version: 1.4.4
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5270/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5270/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5269
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5269/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5269/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5269/events
|
https://github.com/huggingface/datasets/issues/5269
| 1,456,485,799 |
I_kwDODunzps5W0DWn
| 5,269 |
Shell completions
|
{
"login": "Freed-Wu",
"id": 32936898,
"node_id": "MDQ6VXNlcjMyOTM2ODk4",
"avatar_url": "https://avatars.githubusercontent.com/u/32936898?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Freed-Wu",
"html_url": "https://github.com/Freed-Wu",
"followers_url": "https://api.github.com/users/Freed-Wu/followers",
"following_url": "https://api.github.com/users/Freed-Wu/following{/other_user}",
"gists_url": "https://api.github.com/users/Freed-Wu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Freed-Wu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Freed-Wu/subscriptions",
"organizations_url": "https://api.github.com/users/Freed-Wu/orgs",
"repos_url": "https://api.github.com/users/Freed-Wu/repos",
"events_url": "https://api.github.com/users/Freed-Wu/events{/privacy}",
"received_events_url": "https://api.github.com/users/Freed-Wu/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
closed
| false | null |
[] | null |
[
"I don't think we need completion on the datasets-cli, since we're mainly developing huggingface-cli",
"I see."
] | 2022-11-19T13:48:59 | 2022-11-21T15:06:15 | 2022-11-21T15:06:14 |
NONE
| null | null | null |
### Feature request
Like <https://github.com/huggingface/huggingface_hub/issues/1197>, datasets-cli maybe need it, too.
### Motivation
See above.
### Your contribution
Maybe.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5269/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5269/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5265
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5265/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5265/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5265/events
|
https://github.com/huggingface/datasets/issues/5265
| 1,455,274,864 |
I_kwDODunzps5Wvbtw
| 5,265 |
Get an IterableDataset from a map-style Dataset
|
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 3287858981,
"node_id": "MDU6TGFiZWwzMjg3ODU4OTgx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/streaming",
"name": "streaming",
"color": "fef2c0",
"default": false,
"description": ""
}
] |
closed
| false |
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"I think `stream` could be misleading since the data is not being streamed from remote endpoints (one could think that's the case when they see `load_dataset` followed by `stream`). Hence, I prefer the second option.\r\n\r\nPS: When we resolve https://github.com/huggingface/datasets/issues/4542, we could add `as_tf_dataset` to the API for consistency and deprecate `to_tf_dataset`."
] | 2022-11-18T14:54:40 | 2023-02-01T16:36:03 | 2023-02-01T16:36:03 |
MEMBER
| null | null | null |
This is useful to leverage iterable datasets specific features like:
- fast approximate shuffling
- lazy map, filter etc.
Iterating over the resulting iterable dataset should be at least as fast at iterating over the map-style dataset.
Here are some ideas regarding the API:
```python
# 1.
# - consistency with load_dataset(..., streaming=True)
# - gives intuition that map/filter/etc. are done on-the-fly
ids = ds.stream()
# 2.
# - more explicit on the output type
# - but maybe sounds like a conversion tool rather than a step in a processing pipeline
ids = ds.as_iterable_dataset()
```
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5265/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5265/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5264
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5264/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5264/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5264/events
|
https://github.com/huggingface/datasets/issues/5264
| 1,455,252,906 |
I_kwDODunzps5WvWWq
| 5,264 |
`datasets` can't read a Parquet file in Python 3.9.13
|
{
"login": "loubnabnl",
"id": 44069155,
"node_id": "MDQ6VXNlcjQ0MDY5MTU1",
"avatar_url": "https://avatars.githubusercontent.com/u/44069155?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/loubnabnl",
"html_url": "https://github.com/loubnabnl",
"followers_url": "https://api.github.com/users/loubnabnl/followers",
"following_url": "https://api.github.com/users/loubnabnl/following{/other_user}",
"gists_url": "https://api.github.com/users/loubnabnl/gists{/gist_id}",
"starred_url": "https://api.github.com/users/loubnabnl/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/loubnabnl/subscriptions",
"organizations_url": "https://api.github.com/users/loubnabnl/orgs",
"repos_url": "https://api.github.com/users/loubnabnl/repos",
"events_url": "https://api.github.com/users/loubnabnl/events{/privacy}",
"received_events_url": "https://api.github.com/users/loubnabnl/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] |
closed
| false | null |
[] | null |
[
"Could you share the full stack trace please ?\r\n\r\n\r\nCan you also try running this code ? It can be useful to determine if the issue comes from `datasets` or `fsspec` (streaming) or `pyarrow` (parquet reading):\r\n```python\r\nds = load_dataset(\"parquet\", data_files=a_parquet_file_url, use_auth_token=True)\r\n```",
"Here's the full trace\r\n```\r\nTraceback (most recent call last):\r\n File \"/home/loubna_huggingface_co/load.py\", line 15, in <module>\r\n ds_all = load_dataset(\"bigcode/the-stack-dedup-pjj\", data_dir=\"data/java\",use_auth_token=True, split=\"train\", revision=\"v1.1.a1\")\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/load.py\", line 1742, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/builder.py\", line 814, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/builder.py\", line 905, in _download_and_prepare\r\n self._prepare_split(split_generator, **prepare_split_kwargs)\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/builder.py\", line 1502, in _prepare_split\r\n for key, table in logging.tqdm(\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/tqdm/std.py\", line 1195, in __iter__\r\n for obj in iterable:\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py\", line 67, in _generate_tables\r\n parquet_file = pq.ParquetFile(f)\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/pyarrow/parquet/__init__.py\", line 286, in __init__\r\n self.reader.open(\r\n File \"pyarrow/_parquet.pyx\", line 1227, in pyarrow._parquet.ParquetReader.open\r\n File \"pyarrow/error.pxi\", line 100, in pyarrow.lib.check_status\r\npyarrow.lib.ArrowInvalid: Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\r\n```\r\n\r\nwhen running\r\n```python\r\nds = load_dataset(\"parquet\", data_files=\"https://huggingface.co/datasets/bigcode/the-stack-dedup-pjj/blob/v1.1.a1/data/java/data_0000.parquet\", use_auth_token=True)\r\n```\r\nI get 401 error, but that's the case for the python subset too which I can load properly\r\n```\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/load.py\", line 1719, in load_dataset\r\n builder_instance = load_dataset_builder(\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/load.py\", line 1497, in load_dataset_builder\r\n dataset_module = dataset_module_factory(\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/load.py\", line 1134, in dataset_module_factory\r\n return PackagedDatasetModuleFactory(\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/load.py\", line 707, in get_module\r\n data_files = DataFilesDict.from_local_or_remote(\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/data_files.py\", line 795, in from_local_or_remote\r\n DataFilesList.from_local_or_remote(\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/data_files.py\", line 764, in from_local_or_remote\r\n origin_metadata = _get_origin_metadata_locally_or_by_urls(data_files, use_auth_token=use_auth_token)\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/data_files.py\", line 710, in _get_origin_metadata_locally_or_by_urls\r\n return thread_map(\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/tqdm/contrib/concurrent.py\", line 94, in thread_map\r\n return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs)\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/tqdm/contrib/concurrent.py\", line 76, in _executor_map\r\n return list(tqdm_class(ex.map(fn, *iterables, **map_args), **kwargs))\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/tqdm/std.py\", line 1183, in __iter__\r\n for obj in iterable:\r\n File \"/opt/conda/envs/venv/lib/python3.9/concurrent/futures/_base.py\", line 609, in result_iterator\r\n yield fs.pop().result()\r\n File \"/opt/conda/envs/venv/lib/python3.9/concurrent/futures/_base.py\", line 446, in result\r\n return self.__get_result()\r\n File \"/opt/conda/envs/venv/lib/python3.9/concurrent/futures/_base.py\", line 391, in __get_result\r\n raise self._exception\r\n File \"/opt/conda/envs/venv/lib/python3.9/concurrent/futures/thread.py\", line 58, in run\r\n result = self.fn(*self.args, **self.kwargs)\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/data_files.py\", line 701, in _get_single_origin_metadata_locally_or_by_urls\r\n return (request_etag(data_file, use_auth_token=use_auth_token),)\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/utils/file_utils.py\", line 411, in request_etag\r\n response.raise_for_status()\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/requests/models.py\", line 960, in raise_for_status\r\n raise HTTPError(http_error_msg, response=self)\r\nrequests.exceptions.HTTPError: 401 Client Error: Unauthorized for url: https://huggingface.co/datasets/bigcode/the-stack-dedup-pjj/blob/v1.1.a1/data/python/data_0000.parquet```",
"Can you check you used the right token ? You shouldn't get a 401 using your token",
"I checked it’s the right token, when loading the full dataset I get the error after data extraction so I can access the files. \r\n```\r\nDownloading and preparing dataset parquet/bigcode--the-stack-dedup-pjj to /home/loubna_huggingface_co/.cache/huggingface/datasets/bigcode___parquet/bigcode--the-stack-dedup-pjj-872ffac7f4bb46ca/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...\r\nDownloading data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 22.38it/s]\r\nExtracting data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 49.91it/s]\r\nTraceback (most recent call last):\r\n File \"/home/loubna_huggingface_co/load_ds.py\", line 5, in <module>\r\n ds = load_dataset(\"bigcode/the-stack-dedup-pjj\", data_dir=\"data/java\", use_auth_token=True,split=\"train\", revision=\"v1.1.a1\")\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/load.py\", line 1742, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/builder.py\", line 814, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/builder.py\", line 905, in _download_and_prepare\r\n self._prepare_split(split_generator, **prepare_split_kwargs)\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/builder.py\", line 1502, in _prepare_split\r\n for key, table in logging.tqdm(\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/tqdm/std.py\", line 1195, in __iter__\r\n for obj in iterable:\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py\", line 67, in _generate_tables\r\n parquet_file = pq.ParquetFile(f)\r\n File \"/opt/conda/envs/venv/lib/python3.9/site-packages/pyarrow/parquet/__init__.py\", line 286, in __init__\r\n self.reader.open(\r\n File \"pyarrow/_parquet.pyx\", line 1227, in pyarrow._parquet.ParquetReader.open\r\n File \"pyarrow/error.pxi\", line 100, in pyarrow.lib.check_status\r\npyarrow.lib.ArrowInvalid: Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\r\n```\r\nCould it be that I'm using a wrong url, I just copied it from the address bar",
"The URL is wrong indeed, the right one is the one with \"resolve\" (the one you get when clicking on \"download\")- otherwise you try to download an html page ;)\r\n```\r\nhttps://huggingface.co/datasets/bigcode/the-stack-dedup-pjj/resolve/v1.1.a1/data/java/data_0000.parquet\r\n```",
"Ah thanks! So I tried it with the first parquet file and it works, is there a way to know which parquet file was causing the issue since there are a lot of shards?",
"I think you have to try them all :/\r\n\r\nAlternatively you can add a try/catch in `parquet.py` in `datasets` to raise the name of the file that fails at doing `parquet_file = pq.ParquetFile(f)` when you run your initial code\r\n```python\r\nload_dataset(\"bigcode/the-stack-dedup-pjj\", data_dir=\"data/java\", split=\"train\", revision=\"v1.1.a1\", use_auth_token=True)\r\n```\r\nbut it will still iterate on all the files until it fails",
"Ok I will do that",
"I did find the file, and I get the same error as before \r\n```\r\nDownloading data files: 100%|███████████████████| 1/1 [00:00<00:00, 8160.12it/s]\r\nExtracting data files: 100%|████████████████████| 1/1 [00:00<00:00, 1447.81it/s]\r\n \r\n---------------------------------------------------------------------------\r\nArrowInvalid Traceback (most recent call last)\r\nInput In [22], in <cell line: 7>()\r\n 4 data_features = (data[\"train\"].features)\r\n 6 url = \"/home/loubna_huggingface_co/.cache/huggingface/datasets/downloads/93431bc4380de07de8b0ab533666cb5a6120cbe266779e0a63c86bf7717475d7\"\r\n----> 7 data = load_dataset(\"parquet\", \r\n 8 data_files=url,\r\n 9 split=\"train\",\r\n 10 features=data_features,\r\n 11 use_auth_token=True)\r\n\r\nFile /opt/conda/envs/venv/lib/python3.9/site-packages/datasets/load.py:1742, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs)\r\n 1739 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES\r\n 1741 # Download and prepare data\r\n-> 1742 builder_instance.download_and_prepare(\r\n 1743 download_config=download_config,\r\n 1744 download_mode=download_mode,\r\n 1745 ignore_verifications=ignore_verifications,\r\n 1746 try_from_hf_gcs=try_from_hf_gcs,\r\n 1747 use_auth_token=use_auth_token,\r\n 1748 )\r\n 1750 # Build dataset for splits\r\n 1751 keep_in_memory = (\r\n 1752 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)\r\n 1753 )\r\n\r\nFile /opt/conda/envs/venv/lib/python3.9/site-packages/datasets/builder.py:814, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, storage_options, **download_and_prepare_kwargs)\r\n 808 if not downloaded_from_gcs:\r\n 809 prepare_split_kwargs = {\r\n 810 \"file_format\": file_format,\r\n 811 \"max_shard_size\": max_shard_size,\r\n 812 **download_and_prepare_kwargs,\r\n 813 }\r\n--> 814 self._download_and_prepare(\r\n 815 dl_manager=dl_manager,\r\n 816 verify_infos=verify_infos,\r\n 817 **prepare_split_kwargs,\r\n 818 **download_and_prepare_kwargs,\r\n 819 )\r\n 820 # Sync info\r\n 821 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())\r\n\r\nFile /opt/conda/envs/venv/lib/python3.9/site-packages/datasets/builder.py:905, in DatasetBuilder._download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)\r\n 901 split_dict.add(split_generator.split_info)\r\n 903 try:\r\n 904 # Prepare split will record examples associated to the split\r\n--> 905 self._prepare_split(split_generator, **prepare_split_kwargs)\r\n 906 except OSError as e:\r\n 907 raise OSError(\r\n 908 \"Cannot find data file. \"\r\n 909 + (self.manual_download_instructions or \"\")\r\n 910 + \"\\nOriginal error:\\n\"\r\n 911 + str(e)\r\n 912 ) from None\r\n\r\nFile /opt/conda/envs/venv/lib/python3.9/site-packages/datasets/builder.py:1502, in ArrowBasedBuilder._prepare_split(self, split_generator, file_format, max_shard_size)\r\n 1500 total_num_examples, total_num_bytes = 0, 0\r\n 1501 try:\r\n-> 1502 for key, table in logging.tqdm(\r\n 1503 generator,\r\n 1504 unit=\" tables\",\r\n 1505 leave=False,\r\n 1506 disable=not logging.is_progress_bar_enabled(),\r\n 1507 ):\r\n 1508 if max_shard_size is not None and writer._num_bytes > max_shard_size:\r\n 1509 num_examples, num_bytes = writer.finalize()\r\n\r\nFile /opt/conda/envs/venv/lib/python3.9/site-packages/tqdm/std.py:1195, in tqdm.__iter__(self)\r\n 1192 time = self._time\r\n 1194 try:\r\n-> 1195 for obj in iterable:\r\n 1196 yield obj\r\n 1197 # Update and possibly print the progressbar.\r\n 1198 # Note: does not call self.update(1) for speed optimisation.\r\n\r\nFile /opt/conda/envs/venv/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py:67, in Parquet._generate_tables(self, files)\r\n 65 for file_idx, file in enumerate(itertools.chain.from_iterable(files)):\r\n 66 with open(file, \"rb\") as f:\r\n---> 67 parquet_file = pq.ParquetFile(f)\r\n 68 try:\r\n 69 for batch_idx, record_batch in enumerate(\r\n 70 parquet_file.iter_batches(batch_size=self.config.batch_size, columns=self.config.columns)\r\n 71 ):\r\n\r\nFile /opt/conda/envs/venv/lib/python3.9/site-packages/pyarrow/parquet/__init__.py:286, in ParquetFile.__init__(self, source, metadata, common_metadata, read_dictionary, memory_map, buffer_size, pre_buffer, coerce_int96_timestamp_unit, decryption_properties, thrift_string_size_limit, thrift_container_size_limit)\r\n 280 def __init__(self, source, *, metadata=None, common_metadata=None,\r\n 281 read_dictionary=None, memory_map=False, buffer_size=0,\r\n 282 pre_buffer=False, coerce_int96_timestamp_unit=None,\r\n 283 decryption_properties=None, thrift_string_size_limit=None,\r\n 284 thrift_container_size_limit=None):\r\n 285 self.reader = ParquetReader()\r\n--> 286 self.reader.open(\r\n 287 source, use_memory_map=memory_map,\r\n 288 buffer_size=buffer_size, pre_buffer=pre_buffer,\r\n 289 read_dictionary=read_dictionary, metadata=metadata,\r\n 290 coerce_int96_timestamp_unit=coerce_int96_timestamp_unit,\r\n 291 decryption_properties=decryption_properties,\r\n 292 thrift_string_size_limit=thrift_string_size_limit,\r\n 293 thrift_container_size_limit=thrift_container_size_limit,\r\n 294 )\r\n 295 self.common_metadata = common_metadata\r\n 296 self._nested_paths_by_prefix = self._build_nested_paths()\r\n\r\nFile /opt/conda/envs/venv/lib/python3.9/site-packages/pyarrow/_parquet.pyx:1227, in pyarrow._parquet.ParquetReader.open()\r\n\r\nFile /opt/conda/envs/venv/lib/python3.9/site-packages/pyarrow/error.pxi:100, in pyarrow.lib.check_status()\r\n\r\nArrowInvalid: Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\r\n```",
"Can you check the JSON file associated to `/home/loubna_huggingface_co/.cache/huggingface/datasets/downloads/93431bc4380de07de8b0ab533666cb5a6120cbe266779e0a63c86bf7717475d7` ? In the JSON file we can know from where it was downloaded\r\n\r\nYou can find it at `/home/loubna_huggingface_co/.cache/huggingface/datasets/downloads/93431bc4380de07de8b0ab533666cb5a6120cbe266779e0a63c86bf7717475d7.json`",
"It's this file `https://huggingface.co/datasets/bigcode/the-stack-dedup-pjj/resolve/f48656daa9f3a3607dacf8b57a65810a6a7a7f73/data/java/data_0022.parquet` loading it gives the same error",
"I'm able to load it properly using\r\n```python\r\nds = load_dataset(\"parquet\", data_files=a_parquet_file_url, use_auth_token=token)\r\n```\r\n\r\nMy guess is that your download was corrupted. Please delete `93431bc4380de07de8b0ab533666cb5a6120cbe266779e0a63c86bf7717475d7` and `93431bc4380de07de8b0ab533666cb5a6120cbe266779e0a63c86bf7717475d7.json` locally and try again",
"That worked, thanks! But I thought if something went wrong with a download `datasets` creates new cache for all the files, that's not the case? (at some point I even changed dataset versions so it was still using that cache?)",
"Cool !\r\n\r\n> But I thought if something went wrong with a download datasets creates new cache for all the files\r\n\r\nWe don't perform integrity verifications if we don't know in advance the hash of the file to download.\r\n\r\n> at some point I even changed dataset versions so it was still using that cache?\r\n\r\n`datasets` caches the files by URL and ETag. If the content of a file changes, then the ETag changes and so it redownloads the file",
"I see, thank you!\r\n",
"I experience the same error in v 2.12.0. But found out it was due to one column from polars was a categorical dtype (related to the error from #5706. Temporarily resolved it by casting the column to str instead."
] | 2022-11-18T14:44:01 | 2023-05-07T09:52:59 | 2022-11-22T11:18:08 |
NONE
| null | null | null |
### Describe the bug
I have an error when trying to load this [dataset](https://huggingface.co/datasets/bigcode/the-stack-dedup-pjj) (it's private but I can add you to the bigcode org). `datasets` can't read one of the parquet files in the Java subset
```python
from datasets import load_dataset
ds = load_dataset("bigcode/the-stack-dedup-pjj", data_dir="data/java", split="train", revision="v1.1.a1", use_auth_token=True)
````
```
File "pyarrow/error.pxi", line 100, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.
```
It seems to be an issue with new Python versions, Because it works in these two environements:
```
- `datasets` version: 2.6.1
- Platform: Linux-5.4.0-131-generic-x86_64-with-glibc2.31
- Python version: 3.9.7
- PyArrow version: 9.0.0
- Pandas version: 1.3.4
```
```
- `datasets` version: 2.6.1
- Platform: Linux-4.19.0-22-cloud-amd64-x86_64-with-debian-10.13
- Python version: 3.7.12
- PyArrow version: 9.0.0
- Pandas version: 1.3.4
```
But not in this:
```
- `datasets` version: 2.6.1
- Platform: Linux-4.19.0-22-cloud-amd64-x86_64-with-glibc2.28
- Python version: 3.9.13
- PyArrow version: 9.0.0
- Pandas version: 1.3.4
```
### Steps to reproduce the bug
Load the dataset in python 3.9.13
### Expected behavior
Load the dataset without the pyarrow error.
### Environment info
```
- `datasets` version: 2.6.1
- Platform: Linux-4.19.0-22-cloud-amd64-x86_64-with-glibc2.28
- Python version: 3.9.13
- PyArrow version: 9.0.0
- Pandas version: 1.3.4
```
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5264/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5264/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5263
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5263/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5263/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5263/events
|
https://github.com/huggingface/datasets/issues/5263
| 1,455,252,626 |
I_kwDODunzps5WvWSS
| 5,263 |
Save a dataset in a determined number of shards
|
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
closed
| false |
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
] | null |
[] | 2022-11-18T14:43:54 | 2022-12-14T18:22:59 | 2022-12-14T18:22:59 |
MEMBER
| null | null | null |
This is useful to distribute the shards to training nodes.
This can be implemented in `save_to_disk` and can also leverage multiprocessing to speed up the process
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5263/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5263/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5262
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5262/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5262/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5262/events
|
https://github.com/huggingface/datasets/issues/5262
| 1,455,171,100 |
I_kwDODunzps5WvCYc
| 5,262 |
AttributeError: 'Value' object has no attribute 'names'
|
{
"login": "emnaboughariou",
"id": 102913847,
"node_id": "U_kgDOBiJXNw",
"avatar_url": "https://avatars.githubusercontent.com/u/102913847?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/emnaboughariou",
"html_url": "https://github.com/emnaboughariou",
"followers_url": "https://api.github.com/users/emnaboughariou/followers",
"following_url": "https://api.github.com/users/emnaboughariou/following{/other_user}",
"gists_url": "https://api.github.com/users/emnaboughariou/gists{/gist_id}",
"starred_url": "https://api.github.com/users/emnaboughariou/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/emnaboughariou/subscriptions",
"organizations_url": "https://api.github.com/users/emnaboughariou/orgs",
"repos_url": "https://api.github.com/users/emnaboughariou/repos",
"events_url": "https://api.github.com/users/emnaboughariou/events{/privacy}",
"received_events_url": "https://api.github.com/users/emnaboughariou/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Hi ! It looks like your \"isDif\" column is a Sequence of Value(\"string\"), not a Sequence of ClassLabel.\r\n\r\nYou can convert your Value(\"string\") feature type to a ClassLabel feature type this way:\r\n```python\r\nfrom datasets import ClassLabel, Sequence\r\n\r\n# provide the label_names yourself\r\nlabel_names = [...]\r\n# OR get them from the dataset\r\nlabel_names = sorted(set(label for labels in raw_datasets[\"train\"][\"isDif\"] for label in labels))\r\n\r\n# Cast to ClassLabel\r\nraw_datasets = raw_datasets.cast_column(\"isDif\", Sequence(ClassLabel(names=label_names)))\r\n```\r\n",
"thank you \r\nit works 💯 "
] | 2022-11-18T13:58:42 | 2022-11-22T10:09:24 | 2022-11-22T10:09:23 |
NONE
| null | null | null |
Hello
I'm trying to build a model for custom token classification
I already followed the token classification course on huggingface
while adapting the code to my work, this message occures :
'Value' object has no attribute 'names'
Here's my code:
`raw_datasets`
generates
DatasetDict({
train: Dataset({
features: ['isDisf', 'pos', 'tokens', 'id'],
num_rows: 14
})
})
`raw_datasets["train"][3]["isDisf"]`
generates
['B_RM', 'I_RM', 'I_RM', 'B_RP', 'I_RP', 'O', 'O']
`dis_feature = raw_datasets["train"].features["isDisf"]
dis_feature`
generates
Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)
and
`label_names = dis_feature.feature.names
label_names`
generates
AttributeError Traceback (most recent call last)
[<ipython-input-28-972fd54a869a>](https://localhost:8080/#) in <module>
----> 1 label_names = dis_feature.feature.names
2 label_names
AttributeError: 'Value' object has
AttributeError: 'Value' object has no attribute 'names'
Thank you for your help
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5262/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5262/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5261
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5261/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5261/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5261/events
|
https://github.com/huggingface/datasets/issues/5261
| 1,454,647,861 |
I_kwDODunzps5WtCo1
| 5,261 |
Add PubTables-1M
|
{
"login": "NielsRogge",
"id": 48327001,
"node_id": "MDQ6VXNlcjQ4MzI3MDAx",
"avatar_url": "https://avatars.githubusercontent.com/u/48327001?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/NielsRogge",
"html_url": "https://github.com/NielsRogge",
"followers_url": "https://api.github.com/users/NielsRogge/followers",
"following_url": "https://api.github.com/users/NielsRogge/following{/other_user}",
"gists_url": "https://api.github.com/users/NielsRogge/gists{/gist_id}",
"starred_url": "https://api.github.com/users/NielsRogge/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NielsRogge/subscriptions",
"organizations_url": "https://api.github.com/users/NielsRogge/orgs",
"repos_url": "https://api.github.com/users/NielsRogge/repos",
"events_url": "https://api.github.com/users/NielsRogge/events{/privacy}",
"received_events_url": "https://api.github.com/users/NielsRogge/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 2067376369,
"node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request",
"name": "dataset request",
"color": "e99695",
"default": false,
"description": "Requesting to add a new dataset"
}
] |
open
| false | null |
[] | null |
[
"cc @albertvillanova the author would like to add this dataset to the hub: https://github.com/microsoft/table-transformer/issues/68#issuecomment-1319114621. Could you help him out?"
] | 2022-11-18T07:56:36 | 2022-11-18T08:02:18 | null |
CONTRIBUTOR
| null | null | null |
### Name
PubTables-1M
### Paper
https://openaccess.thecvf.com/content/CVPR2022/html/Smock_PubTables-1M_Towards_Comprehensive_Table_Extraction_From_Unstructured_Documents_CVPR_2022_paper.html
### Data
https://github.com/microsoft/table-transformer
### Motivation
Table Transformer is now available in 🤗 Transformer, and it was trained on PubTables-1M. It's a large dataset for table extraction and structure recognition in unstructured documents.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5261/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5261/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5260
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5260/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5260/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5260/events
|
https://github.com/huggingface/datasets/issues/5260
| 1,453,921,697 |
I_kwDODunzps5WqRWh
| 5,260 |
consumer-finance-complaints dataset not loading
|
{
"login": "adiprasad",
"id": 8098496,
"node_id": "MDQ6VXNlcjgwOTg0OTY=",
"avatar_url": "https://avatars.githubusercontent.com/u/8098496?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/adiprasad",
"html_url": "https://github.com/adiprasad",
"followers_url": "https://api.github.com/users/adiprasad/followers",
"following_url": "https://api.github.com/users/adiprasad/following{/other_user}",
"gists_url": "https://api.github.com/users/adiprasad/gists{/gist_id}",
"starred_url": "https://api.github.com/users/adiprasad/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/adiprasad/subscriptions",
"organizations_url": "https://api.github.com/users/adiprasad/orgs",
"repos_url": "https://api.github.com/users/adiprasad/repos",
"events_url": "https://api.github.com/users/adiprasad/events{/privacy}",
"received_events_url": "https://api.github.com/users/adiprasad/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Thanks for reporting, @adiprasad.\r\n\r\nWe are having a look at it.",
"I have opened an issue in that dataset Community tab on the Hub: https://huggingface.co/datasets/consumer-finance-complaints/discussions/1\r\n\r\nPlease note that in the meantime, you can load the dataset by passing `ignore_verifications=True`:\r\n```python\r\n>>> ds = load_dataset(\"consumer-finance-complaints\", ignore_verifications=True)\r\n>>> ds\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['Date Received', 'Product', 'Sub Product', 'Issue', 'Sub Issue', 'Complaint Text', 'Company Public Response', 'Company', 'State', 'Zip Code', 'Tags', 'Consumer Consent Provided', 'Submitted via', 'Date Sent To Company', 'Company Response To Consumer', 'Timely Response', 'Consumer Disputed', 'Complaint ID'],\r\n num_rows: 3079747\r\n })\r\n})\r\n```",
"PR fixing this issue: https://huggingface.co/datasets/consumer-finance-complaints/discussions/2"
] | 2022-11-17T20:10:26 | 2022-11-18T10:16:53 | null |
NONE
| null | null | null |
### Describe the bug
Error during dataset loading
### Steps to reproduce the bug
```
>>> import datasets
>>> cf_raw = datasets.load_dataset("consumer-finance-complaints")
Downloading builder script: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8.42k/8.42k [00:00<00:00, 3.33MB/s]
Downloading metadata: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5.60k/5.60k [00:00<00:00, 2.90MB/s]
Downloading readme: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 16.6k/16.6k [00:00<00:00, 510kB/s]
Downloading and preparing dataset consumer-finance-complaints/default to /root/.cache/huggingface/datasets/consumer-finance-complaints/default/0.0.0/30e483d37fb4b25bb98cad1bfd2dc48f6ed6d1f3371eb4568c625a61d1a79b69...
Downloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 511M/511M [00:04<00:00, 103MB/s]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/load.py", line 1741, in load_dataset
builder_instance.download_and_prepare(
File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 822, in download_and_prepare
self._download_and_prepare(
File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 1555, in _download_and_prepare
super()._download_and_prepare(
File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 931, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/utils/info_utils.py", line 74, in verify_splits
raise NonMatchingSplitsSizesError(str(bad_splits))
datasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=1605177353, num_examples=2455765, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=2043641693, num_examples=3079747, shard_lengths=[721000, 656000, 788000, 846000, 68747], dataset_name='consumer-finance-complaints')}]
```
### Expected behavior
dataset should load
### Environment info
>>> datasets.__version__
'2.7.0'
Python 3.8.10
"Ubuntu 20.04.4 LTS"
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5260/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5260/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5259
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5259/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5259/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5259/events
|
https://github.com/huggingface/datasets/issues/5259
| 1,453,555,923 |
I_kwDODunzps5Wo4DT
| 5,259 |
datasets 2.7 introduces sharding error
|
{
"login": "DCNemesis",
"id": 3616964,
"node_id": "MDQ6VXNlcjM2MTY5NjQ=",
"avatar_url": "https://avatars.githubusercontent.com/u/3616964?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/DCNemesis",
"html_url": "https://github.com/DCNemesis",
"followers_url": "https://api.github.com/users/DCNemesis/followers",
"following_url": "https://api.github.com/users/DCNemesis/following{/other_user}",
"gists_url": "https://api.github.com/users/DCNemesis/gists{/gist_id}",
"starred_url": "https://api.github.com/users/DCNemesis/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/DCNemesis/subscriptions",
"organizations_url": "https://api.github.com/users/DCNemesis/orgs",
"repos_url": "https://api.github.com/users/DCNemesis/repos",
"events_url": "https://api.github.com/users/DCNemesis/events{/privacy}",
"received_events_url": "https://api.github.com/users/DCNemesis/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"I notice a comment in the code says:\r\n`Having lists of different sizes makes sharding ambigious, raise an error in this case until we decide how to define sharding without ambiguity for users` \r\n \r\n ... which suggests this update was pushed knowing that it might break some things. But, it didn't seem to have a useful error message of an argument that could be passed to avoid the error.",
"Sorry for the inconvenience, I opened a PR in your repo to fix this: https://huggingface.co/datasets/sil-ai/bloom-speech/discussions/2\r\n\r\nBasically we've always considered lists in `gen_kwargs` to be a shard list that we can split and pass into different workers to generate the dataset (e.g. if you pass `num_proc=` in `load_dataset()` to generate the dataset in parallel), but it was documented only recently",
"@lhoestq Thanks for the help. It looks like that took care of it."
] | 2022-11-17T15:36:52 | 2022-12-24T01:44:02 | 2022-11-18T12:52:05 |
NONE
| null | null | null |
### Describe the bug
dataset fails to load with runtime error
`RuntimeError: Sharding is ambiguous for this dataset: we found several data sources lists of different lengths, and we don't know over which list we should parallelize:
- key audio_files has length 46
- key data has length 0
To fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.`
### Steps to reproduce the bug
With datasets[audio] 2.7 loaded, and logged into hugging face,
`data = datasets.load_dataset('sil-ai/bloom-speech', 'bis', use_auth_token=True)`
creates the error.
Full stack trace:
```---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
[<ipython-input-7-8cb9ca0f79f0>](https://localhost:8080/#) in <module>
----> 1 data = datasets.load_dataset('sil-ai/bloom-speech', 'bis', use_auth_token=True)
5 frames
[/usr/local/lib/python3.7/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, **config_kwargs)
1745 try_from_hf_gcs=try_from_hf_gcs,
1746 use_auth_token=use_auth_token,
-> 1747 num_proc=num_proc,
1748 )
1749
[/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in download_and_prepare(self, output_dir, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)
824 verify_infos=verify_infos,
825 **prepare_split_kwargs,
--> 826 **download_and_prepare_kwargs,
827 )
828 # Sync info
[/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs)
1554 def _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs):
1555 super()._download_and_prepare(
-> 1556 dl_manager, verify_infos, check_duplicate_keys=verify_infos, **prepare_splits_kwargs
1557 )
1558
[/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
911 try:
912 # Prepare split will record examples associated to the split
--> 913 self._prepare_split(split_generator, **prepare_split_kwargs)
914 except OSError as e:
915 raise OSError(
[/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size)
1362 fpath = path_join(self._output_dir, fname)
1363
-> 1364 num_input_shards = _number_of_shards_in_gen_kwargs(split_generator.gen_kwargs)
1365 if num_input_shards <= 1 and num_proc is not None:
1366 logger.warning(
[/usr/local/lib/python3.7/dist-packages/datasets/utils/sharding.py](https://localhost:8080/#) in _number_of_shards_in_gen_kwargs(gen_kwargs)
16 + "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items())
17 + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, "
---> 18 + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length."
19 )
20 )
RuntimeError: Sharding is ambiguous for this dataset: we found several data sources lists of different lengths, and we don't know over which list we should parallelize:
- key audio_files has length 46
- key data has length 0
To fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.```
### Expected behavior
the dataset loads in datasets version 2.6.1 and should load with datasets 2.7
### Environment info
- `datasets` version: 2.7.0
- Platform: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.7.15
- PyArrow version: 6.0.1
- Pandas version: 1.3.5
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5259/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5259/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5258
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5258/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5258/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5258/events
|
https://github.com/huggingface/datasets/issues/5258
| 1,453,516,636 |
I_kwDODunzps5Woudc
| 5,258 |
Restore order of split names in dataset_info for canonical datasets
|
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 4564477500,
"node_id": "LA_kwDODunzps8AAAABEBBmPA",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution",
"name": "dataset contribution",
"color": "0e8a16",
"default": false,
"description": "Contribution to a dataset script"
}
] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"The bulk edit is running...\r\n\r\nSee for example: \r\n- A single config: https://huggingface.co/datasets/acronym_identification/discussions/2\r\n- Multiple configs: https://huggingface.co/datasets/babi_qa/discussions/1",
"TODO: Add \"dataset_info\" YAML metadata to:\r\n- [x] \"chr_en\" has no metadata JSON file, nor \"dataset_info\" YAML tag in its card\r\n - Fixing PR: https://huggingface.co/datasets/chr_en/discussions/1 \r\n- [x] \"conll2000\" has no metadata JSON file, but it has \"dataset_info\" YAML tag in its card\r\n- [x] \"crime_and_punish\" has no metadata JSON file, but it has \"dataset_info\" YAML tag in its card\r\n- [x] \"dart\" has no metadata JSON file, but it has \"dataset_info\" YAML tag in its card\r\n- [x] \"iwslt2017\" has no metadata JSON file, but it has \"dataset_info\" YAML tag in its card\r\n- [ ] \"mc4\" has no metadata JSON file, nor \"dataset_info\" YAML tag in its card\r\n- [ ] \"the_pile\" has no metadata JSON file, nor \"dataset_info\" YAML tag in its card\r\n- [ ] \"timit_asr\" has no metadata JSON file, nor \"dataset_info\" YAML tag in its card",
"The bulk edit is finished."
] | 2022-11-17T15:13:15 | 2023-02-16T09:49:05 | 2022-11-19T06:51:37 |
MEMBER
| null | null | null |
After a bulk edit of canonical datasets to create the YAML `dataset_info` metadata, the split names were accidentally sorted alphabetically. See for example:
- https://huggingface.co/datasets/bc2gm_corpus/commit/2384629484401ecf4bb77cd808816719c424e57c
Note that this order is the one appearing in the preview of the datasets.
I'm making a bulk edit to align the order of the splits appearing in the metadata info with the order appearing in the loading script.
Related to:
- #5202
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5258/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5258/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5255
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5255/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5255/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5255/events
|
https://github.com/huggingface/datasets/issues/5255
| 1,452,631,517 |
I_kwDODunzps5WlWXd
| 5,255 |
Add a Depth Estimation dataset - DIODE / NYUDepth / KITTI
|
{
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 2067376369,
"node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request",
"name": "dataset request",
"color": "e99695",
"default": false,
"description": "Requesting to add a new dataset"
}
] |
closed
| false |
{
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Also cc @mariosasko and @lhoestq ",
"Cool ! Let us know if you have questions or if we can help :)\r\n\r\nI guess we'll also have to create the NYU CS Department on the Hub ?",
"> I guess we'll also have to create the NYU CS Department on the Hub ?\r\n\r\nYes, you're right! Let me add it to my profile first, and then we can transfer. Meanwhile, if it's recommended to loop the dataset author in here, let me know. \r\n\r\nAlso, the NYU Depth dataset seems big. Any example scripts for creating image datasets that I could refer? ",
"You can check the imagenet-1k one.\r\n\r\nPS: If the licenses allows it, it'b be nice to host the dataset as sharded TAR archives (like imagenet-1k) instead of the ZIP format they use:\r\n- it will make streaming much faster\r\n- ZIP compression is not well suited for images\r\n- it will allow parallel processing of the dataset (you can pass a subset of shards to each worker)\r\n\r\n> if it's recommended to loop the dataset author in here, let me know.\r\n\r\nIt's recommended indeed, you can send them an email once you have the dataset ready and invite them to the org on the Hub",
"> You can check the imagenet-1k one.\r\n\r\nWhere can I find the script? Are you referring to https://huggingface.co/docs/datasets/image_process ? Or is there anything more specific? ",
"You can find it here: https://huggingface.co/datasets/imagenet-1k/blob/main/imagenet-1k.py",
"Update: started working on it here: https://huggingface.co/datasets/sayakpaul/nyu_depth_v2. \r\n\r\nI am facing an issue and I have detailed it here: https://huggingface.co/datasets/sayakpaul/nyu_depth_v2/discussions/1\r\n\r\nEdit: The issue is gone. \r\n\r\nHowever, since the dataset is distributed as a single TAR archive (following the [URL used in TensorFlow Datasets](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/nyu_depth_v2/nyu_depth_v2_dataset_builder.py)) the loading is taking longer. How would suggest to shard the single TAR archive? \r\n\r\n@lhoestq \r\n\r\n",
"A Colab Notebook demonstrating the dataset loading part: \r\n\r\nhttps://colab.research.google.com/gist/sayakpaul/aa0958c8d4ad8518d52a78f28044d871/scratchpad.ipynb\r\n\r\n@osanseviero @lhoestq \r\n\r\nI will work on a notebook to work with the dataset including data visualization.",
"@osanseviero @lhoestq things seem to work fine with the current version of the dataset [here](https://huggingface.co/datasets/sayakpaul/nyu_depth_v2). Here's a notebook I developed to help with visualization: https://colab.research.google.com/drive/1K3ZU8XUPRDOYD38MQS9nreQXJYitlKSW?usp=sharing. \r\n\r\n@lhoestq I need your help with the following:\r\n\r\n> However, since the dataset is distributed as a single TAR archive (following the [URL used in TensorFlow Datasets](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/nyu_depth_v2/nyu_depth_v2_dataset_builder.py)) the loading is taking longer. How would suggest to shard the single TAR archive?\r\n\r\n@osanseviero @lhoestq question for you:\r\n\r\nWhere should we host the dataset? I think hosting it under hf.co/datasets (that is HF is the org) is fine as we have ImageNet-1k hosted similarly. We could then reach out to Diana Wofk (author of [Fast Depth](https://github.com/dwofk/fast-depth) and the owner of the repo on which TFDS NYU Depth V2 is based) for a review. WDYT? ",
"> However, since the dataset is distributed as a single TAR archive (following the [URL used in TensorFlow Datasets](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/nyu_depth_v2/nyu_depth_v2_dataset_builder.py)) the loading is taking longer. How would suggest to shard the single TAR archive?\r\n\r\nFirst you can separate the train data and the validation data.\r\n\r\nThen since the dataset is quite big, you can even shard the train split and the validation split in multiple TAR archives. Something around 16 archives for train and 4 for validation would be fine for example.\r\n\r\nAlso no need to gzip the TAR archives, the images are already compressed in png or jpeg.",
"> Then since the dataset is quite big, you can even shard the train split and the validation split in multiple TAR archives. Something around 16 archives for train and 4 for validation would be fine for example.\r\n\r\nYes, I got you. But this process seems to be manual and should be tailored for the given dataset. Do you have any script that you used to create the ImageNet-1k shards? \r\n\r\n> Also no need to gzip the TAR archives, the images are already compressed in png or jpeg.\r\n\r\nI was not going to do that. Not sure what brought it up. ",
"> Yes, I got you. But this process seems to be manual and should be tailored for the given dataset. Do you have any script that you used to create the ImageNet-1k shards?\r\n\r\nI don't, but I agree it'd be nice to have a script for that !\r\n\r\n> I was not going to do that. Not sure what brought it up.\r\n\r\nThe original dataset is gzipped for some reason",
"Oh, I am using this URL for the download: https://github.com/tensorflow/datasets/blob/master/tensorflow_datasets/datasets/nyu_depth_v2/nyu_depth_v2_dataset_builder.py#L24. ",
"> Where should we host the dataset? I think hosting it under hf.co/datasets (that is HF is the org) is fine as we have ImageNet-1k hosted similarly.\r\n\r\nMaybe you can create an org for NYU Courant (this is the institute of the lab of the main author of the dataset if I'm not mistaken), and invite the authors to join.\r\n\r\nWe don't add datasets without namespace anymore",
"Updates: https://huggingface.co/datasets/sayakpaul/nyu_depth_v2/discussions/5\r\n\r\nThe entire process (preparing multiple archives, preparing data loading script, etc.) was fun and engaging, thanks to the documentation. I believe we could work on a small blog post that would work as a reference for the future contributors following this path. What say? \r\n\r\nCc: @lhoestq @osanseviero ",
"> I believe we could work on a small blog post that would work as a reference for the future contributors following this path. What say?\r\n\r\n@polinaeterna already mentioned it would be nice to present this process for audio (it's exactly the same), I believe it can be useful to many people",
"Cool. Let's work on that after the NYU Depth Dataset is fully in on Hub (under the appropriate org). 🤗",
"@lhoestq need to discuss something while I am adding the dataset card to https://huggingface.co/datasets/sayakpaul/nyu_depth_v2/. \r\n\r\nAs per [Papers With Code](https://paperswithcode.com/dataset/nyuv2), NYU Depth v2 is used for many different tasks:\r\n\r\n* Monocular depth estimation\r\n* Depth estimation \r\n* Semantic segmentation\r\n* Plane instance segmentation \r\n* ...\r\n\r\nSo, while writing the supported task part of the dataset card, should we focus on all these? IMO, we could focus on just depth estimation and semantic segmentation for now since we have supported models for these two. WDYT?\r\n\r\nAlso, I am getting: \r\n\r\n\r\n```\r\nremote: Your push was accepted, but with warnings:\r\nremote: - Warning: The task_ids \"depth-estimation\" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-generation, dialogue-modeling, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering\r\nremote: ----------------------------------------------------------\r\nremote: Please find the documentation at:\r\nremote: https://huggingface.co/docs/hub/model-cards#model-card-metadata\r\n```\r\n\r\nWhat should be the plan of action for this?\r\n\r\nCc: @osanseviero \r\n\r\n",
"> What should be the plan of action for this?\r\n\r\nWhen you merged https://github.com/huggingface/hub-docs/pull/488, there is a JS Interfaces GitHub Actions workflow that runs https://github.com/huggingface/hub-docs/actions/workflows/js-interfaces-tests.yml. It has a step called [export-task scripts](https://github.com/huggingface/hub-docs/actions/runs/3622479064/jobs/6107238948) which exports an interface you can use in `dataset`. If you look at the logs, it prints out a map. This map can replace https://github.com/huggingface/datasets/blob/main/src/datasets/utils/resources/tasks.json (tasks.json was generated with this script), which should add depth estimation\r\n",
"Thanks @osanseviero. \r\n\r\nhttps://github.com/huggingface/datasets/pull/5335",
"Closing the issue as the dataset has been successfully added: https://huggingface.co/datasets/sayakpaul/nyu_depth_v2"
] | 2022-11-17T03:22:22 | 2022-12-17T12:20:38 | 2022-12-17T12:20:37 |
MEMBER
| null | null | null |
### Name
NYUDepth
### Paper
http://cs.nyu.edu/~silberman/papers/indoor_seg_support.pdf
### Data
https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
### Motivation
Depth estimation is an important problem in computer vision. We have a couple of Depth Estimation models on Hub as well:
* [GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)
* [DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
Would be nice to have a dataset for depth estimation. These datasets usually have three things: input image, depth map image, and depth mask (validity mask to indicate if a reading for a pixel is valid or not). Since we already have [semantic segmentation datasets on the Hub](https://huggingface.co/datasets?task_categories=task_categories:image-segmentation&sort=downloads), I don't think we need any extended utilities to support this addition.
Having this dataset would also allow us to author data preprocessing guides for depth estimation, particularly like the ones we have for other tasks ([example](https://huggingface.co/docs/datasets/image_classification)).
Ccing @osanseviero @nateraw @NielsRogge
Happy to work on adding it.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5255/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5255/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5251
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5251/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5251/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5251/events
|
https://github.com/huggingface/datasets/issues/5251
| 1,451,761,321 |
I_kwDODunzps5WiB6p
| 5,251 |
Docs are not generated after latest release
|
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 4296013012,
"node_id": "LA_kwDODunzps8AAAABAA_01A",
"url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance",
"name": "maintenance",
"color": "d4c5f9",
"default": false,
"description": "Maintenance tasks"
}
] |
closed
| false | null |
[] | null |
[
"After a discussion with @mishig25:\r\n- He said that this action should be triggered if we call our release branch according to the regex `v*-release`, as transformers does\r\n- I said that our procedure is different: our release branch is *temporary* and it is deleted just after the release PR is merged to main\r\n - Indeed the release tag is not yet created when we make the release PR (not event when this is merged to main), but when we make the Release itself.\r\n\r\nI was thinking that maybe we could change the triggering event: use `release` instead of `push`.\r\n\r\nWhat do you think, @huggingface/datasets?",
"Why is it an issue if our branch is temporary ?",
"He says not; but the branch has no tag yet; does the doc building require the tag? Or just the version number in `__init__.py` or setup.py?",
"It uses `module.__version__` (i.e. the one defined in `__init__.py`) - no need to have a tag\r\n\r\nhttps://github.com/huggingface/doc-builder/blob/81575cf081964c30ea5fd39450f4820db963f18e/src/doc_builder/commands/build.py#L69",
"Thanks, @lhoestq.\r\n\r\n@mishig25 has manually forced the generation of the docs, that are live for 2.7.0 version: https://huggingface.co/docs/datasets/v2.7.0/en/index ",
"Cool ! this can be closed then ?",
"I was waiting for #5250 to be merged to close this.",
"just to confirm, is there anything I need to do from my side ? Or is everything good here ?"
] | 2022-11-16T14:59:31 | 2022-11-22T16:27:50 | 2022-11-22T16:27:50 |
MEMBER
| null | null | null |
After the latest `datasets` release version 0.7.0, the docs were not generated.
As we have changed the release procedure (so that now we do not push directly to main branch), maybe we should also change the corresponding GitHub action:
https://github.com/huggingface/datasets/blob/edf1902f954c5568daadebcd8754bdad44b02a85/.github/workflows/build_documentation.yml#L3-L8
Related to:
- #5250
CC: @mishig25
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5251/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5251/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5249
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5249/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5249/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5249/events
|
https://github.com/huggingface/datasets/issues/5249
| 1,451,692,247 |
I_kwDODunzps5WhxDX
| 5,249 |
Protect the main branch from inadvertent direct pushes
|
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 4296013012,
"node_id": "LA_kwDODunzps8AAAABAA_01A",
"url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance",
"name": "maintenance",
"color": "d4c5f9",
"default": false,
"description": "Maintenance tasks"
}
] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"It seems all the tasks have been addressed, meaning this issue can be closed, no?"
] | 2022-11-16T14:19:03 | 2023-12-21T10:28:27 | 2023-12-21T10:28:26 |
MEMBER
| null | null | null |
We have decided to implement a protection mechanism in this repository, so that nobody (not even administrators) can inadvertently push accidentally directly to the main branch.
See context here:
- d7c942228b8dcf4de64b00a3053dce59b335f618
To do:
- [x] Protect main branch
- Settings > Branches > Branch protection rules > main > Edit
- [x] Check: Do not allow bypassing the above settings
- The above settings will apply to administrators and custom roles with the "bypass branch protections" permission.
- [x] Additionally, uncheck: Require approvals [under "Require a pull request before merging", which was already checked]
- Before, we could exceptionally merge a non-approved PR, using Administrator bypass
- Now that Administrator bypass is no longer possible, we would always need an approval to be able to merge; and pull request authors cannot approve their own pull requests. This could be an inconvenient in some exceptional circumstances when an urgent fix is needed
- Nevertheless, although it is no longer enforced, it is strongly recommended to merge PRs only if they have at least one approval
- [x] #5250
- So that direct pushes to main branch are no longer necessary
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5249/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5249/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5245
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5245/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5245/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5245/events
|
https://github.com/huggingface/datasets/issues/5245
| 1,450,376,433 |
I_kwDODunzps5Wcvzx
| 5,245 |
Unable to rename columns in streaming dataset
|
{
"login": "peregilk",
"id": 9079808,
"node_id": "MDQ6VXNlcjkwNzk4MDg=",
"avatar_url": "https://avatars.githubusercontent.com/u/9079808?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/peregilk",
"html_url": "https://github.com/peregilk",
"followers_url": "https://api.github.com/users/peregilk/followers",
"following_url": "https://api.github.com/users/peregilk/following{/other_user}",
"gists_url": "https://api.github.com/users/peregilk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/peregilk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/peregilk/subscriptions",
"organizations_url": "https://api.github.com/users/peregilk/orgs",
"repos_url": "https://api.github.com/users/peregilk/repos",
"events_url": "https://api.github.com/users/peregilk/events{/privacy}",
"received_events_url": "https://api.github.com/users/peregilk/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false |
{
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Hi @peregilk this bug is directly related to https://github.com/huggingface/datasets/issues/3888, and still not fixed... But I'll try to have a look!",
"Thanks @alvarobartt. It is great if you are able to fix it, but when reading the explanation it seems like it is possible to work around it.\r\n\r\nWe also tried keeping the 'info.features' and then adding a modified version back after the remove/rename. Unforutunately that leads to a dataset that is not possible to iterate over.",
"So if you iterate over the `IterableDataset` as `next(iter(ds))` and then run `rename_columns` when checking that data it will work, but in the end, it's just renaming the column one example/batch at a time, not renaming the column name for all the entries in the dataset, which is the ideal.",
"@alvarobartt Thanks. My use case was that I wanted to do multiple things, ie removing all unnecessary columns, renaming some valid columns, and then using cast (in my case checking if the audio is not 16K and casting it). It is just convenient to look into the info.features between each of these operations. Alternatively, I will just plan ahead...;) To me it seems like all the operations are working.\r\n\r\nThanks for the advice. It was very useful.",
"If we know the features before renaming, then we know the features after renaming, so we can pass the new features to the returned dataset in `rename_column` indeed ! If anyone is interested in contributing, feel free to open a PR and I'd be happy to help / give some pointers :)",
"Sure @lhoestq thanks! I’ll try to work on that",
"#self-assign"
] | 2022-11-15T21:04:41 | 2022-11-28T12:53:24 | 2022-11-28T12:53:24 |
NONE
| null | null | null |
### Describe the bug
Trying to rename column in a streaming datasets, destroys the features object.
### Steps to reproduce the bug
The following code illustrates the error:
```
from datasets import load_dataset
dataset = load_dataset('mc4', 'en', streaming=True, split='train')
dataset.info.features
# {'text': Value(dtype='string', id=None), 'timestamp': Value(dtype='string', id=None), 'url': Value(dtype='string', id=None)}
dataset = dataset.rename_column("text", "content")
dataset.info.features
# This returned object is now None!
```
### Expected behavior
This should just alter the renamed column.
### Environment info
datasets 2.6.1
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5245/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5245/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5244
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5244/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5244/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5244/events
|
https://github.com/huggingface/datasets/issues/5244
| 1,450,019,225 |
I_kwDODunzps5WbYmZ
| 5,244 |
Allow dataset streaming from private a private source when loading a dataset with a dataset loading script
|
{
"login": "Hubert-Bonisseur",
"id": 48770768,
"node_id": "MDQ6VXNlcjQ4NzcwNzY4",
"avatar_url": "https://avatars.githubusercontent.com/u/48770768?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Hubert-Bonisseur",
"html_url": "https://github.com/Hubert-Bonisseur",
"followers_url": "https://api.github.com/users/Hubert-Bonisseur/followers",
"following_url": "https://api.github.com/users/Hubert-Bonisseur/following{/other_user}",
"gists_url": "https://api.github.com/users/Hubert-Bonisseur/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Hubert-Bonisseur/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Hubert-Bonisseur/subscriptions",
"organizations_url": "https://api.github.com/users/Hubert-Bonisseur/orgs",
"repos_url": "https://api.github.com/users/Hubert-Bonisseur/repos",
"events_url": "https://api.github.com/users/Hubert-Bonisseur/events{/privacy}",
"received_events_url": "https://api.github.com/users/Hubert-Bonisseur/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
open
| false | null |
[] | null |
[
"Hi ! What kind of private source ? We're exploring adding support for cloud storage and URIs like s3://, gs:// etc. with authentication in the download manager",
"Hello! It's a google cloud storage, so gs://, but I'm using it with https.\r\nBeing able to provide a file system like [here](https://huggingface.co/docs/datasets/main/filesystems#load-serialized-datasets) would be even more practical indeed.\r\nI've found a quite complicated workaround which consists of monkey patching all of the functions in streaming_download_manager.py to use my own _get_authentication_headers_for_url_ . \r\n\r\nA support for this use case would be greatly appreciated!\r\n\r\nFor reference my _get_authentication_headers_for_url_ looks like this:\r\n```\r\nimport os\r\nfrom typing import Optional, Union\r\n\r\nfrom datasets import config\r\nfrom huggingface_hub import HfFolder\r\nfrom gcsfs.credentials import GoogleCredentials\r\n\r\nDEFAULT_PROJECT = os.environ.get(\"GCSFS_DEFAULT_PROJECT\", \"\")\r\naccess = \"full_control\"\r\ngcs_token = os.environ.get(\"GCS_TOKEN\")\r\n\r\n\r\ndef get_authentication_headers_for_url(url: str, use_auth_token: Optional[Union[str, bool]] = None) -> dict:\r\n \"\"\"Handle the HF authentication\"\"\"\r\n headers = {}\r\n if url.startswith(config.HF_ENDPOINT):\r\n if use_auth_token is False:\r\n token = None\r\n elif isinstance(use_auth_token, str):\r\n token = use_auth_token\r\n else:\r\n token = HfFolder.get_token()\r\n elif url.startswith(\"https://storage.googleapis.com\"):\r\n credentials = GoogleCredentials(DEFAULT_PROJECT, access, gcs_token)\r\n credentials.maybe_refresh()\r\n token = credentials.credentials.token\r\n else:\r\n token = None\r\n if token:\r\n headers[\"authorization\"] = f\"Bearer {token}\"\r\n return headers\r\n```",
"I would be a big fan of this feature! @Hubert-Bonisseur if this doesn't become a supported feature, would you mind sharing your code? Thanks!",
"> I would be a big fan of this feature! @Hubert-Bonisseur if this doesn't become a supported feature, would you mind sharing your code? Thanks!\r\n\r\nI published it here:\r\nhttps://github.com/Hubert-Bonisseur/private-dataset-hub\r\n\r\nI modified the names of a lot of functions for privacy and I don't have time to test it again so you may get import errors, but you have the code. The custom_load_dataset is the function you are interested in I think.\r\n\r\nIt relies a lot on patching, if you find a better way to do this, I'd be interested.",
"Given the amount of patching it does, this is likely to break at one point. I'd encourage you to wait for a proper support in `datasets` directly if you can wait."
] | 2022-11-15T16:02:10 | 2022-11-23T14:02:30 | null |
CONTRIBUTOR
| null | null | null |
### Feature request
Add arguments to the function _get_authentication_headers_for_url_ like custom_endpoint and custom_token in order to add flexibility when downloading files from a private source.
It should also be possible to provide these arguments from the dataset loading script, maybe giving them to the dl_manager
### Motivation
It is possible to share a dataset hosted on another platform by writing a dataset loading script. It works perfectly for publicly available resources.
For resources that require authentication, you can provide a [download_custom](https://huggingface.co/docs/datasets/package_reference/builder_classes#datasets.DownloadManager) method to the download_manager.
Unfortunately, this function doesn't work with **dataset streaming**.
A solution so as to allow dataset streaming from private sources would be a more flexible _get_authentication_headers_for_url_ function.
### Your contribution
Would you be interested in this improvement ?
If so I could provide a PR. I've got something working locally, but it's not very clean, I'd need some guidance regarding integration.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5244/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5244/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5243
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5243/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5243/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5243/events
|
https://github.com/huggingface/datasets/issues/5243
| 1,449,523,962 |
I_kwDODunzps5WZfr6
| 5,243 |
Download only split data
|
{
"login": "capsabogdan",
"id": 48530104,
"node_id": "MDQ6VXNlcjQ4NTMwMTA0",
"avatar_url": "https://avatars.githubusercontent.com/u/48530104?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/capsabogdan",
"html_url": "https://github.com/capsabogdan",
"followers_url": "https://api.github.com/users/capsabogdan/followers",
"following_url": "https://api.github.com/users/capsabogdan/following{/other_user}",
"gists_url": "https://api.github.com/users/capsabogdan/gists{/gist_id}",
"starred_url": "https://api.github.com/users/capsabogdan/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/capsabogdan/subscriptions",
"organizations_url": "https://api.github.com/users/capsabogdan/orgs",
"repos_url": "https://api.github.com/users/capsabogdan/repos",
"events_url": "https://api.github.com/users/capsabogdan/events{/privacy}",
"received_events_url": "https://api.github.com/users/capsabogdan/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
open
| false | null |
[] | null |
[
"Hi @capsabogdan! Unfortunately, it's hard to implement because quite often datasets data is being hosted in a single archive for all splits :( So we have to download the whole archive to split it into splits. This is the case for CommonVoice too. \r\n\r\nHowever, for cases when data is distributed in separate archives ащк different splits I suppose it can (and will) be implemented someday. \r\n\r\n\r\nBtw for quick check of the dataset you can use [streaming](https://huggingface.co/docs/datasets/stream):\r\n```python\r\ncv = load_dataset(\"mozilla-foundation/common_voice_11_0\", \"en\", split=\"test\", streaming=True)\r\ncv = iter(cv)\r\nprint(next(cv))\r\n\r\n>> {'client_id': 'a07b17f8234ded5e847443ea6f423cef745cbbc7537fb637d58326000aa751e829a21c4fd0a35fc17fb833aa7e95ebafce5efd19beeb8d843887b85e4eb35f5b',\r\n>> 'path': None,\r\n>> 'audio': {'path': 'cv-corpus-11.0-2022-09-21/en/clips/common_voice_en_100363.mp3',\r\n>> 'array': array([ 0.0000000e+00, 1.1748125e-14, 1.5450088e-14, ...,\r\n>> 1.3011958e-06, -6.3548953e-08, -9.9098514e-08], dtype=float32),\r\n>> ...}\r\n\r\n```",
"thank you for the answer but am not sure if this will not be helpful, as we\nneed maybe just 10% of the datasets for some experiment\n\ncan we get just a portion of the dataset with stream?\n\n\nis there really no solution? :(\n\nAm Di., 15. Nov. 2022 um 16:55 Uhr schrieb Polina Kazakova <\n***@***.***>:\n\n> Hi @capsabogdan <https://github.com/capsabogdan>! Unfortunately, it's\n> hard to implement because quite often datasets data is being hosted in a\n> single archive for all splits :( So we have to download the whole archive\n> to split it into splits. This is the case for CommonVoice too.\n>\n> However, for cases when data is distributed in separate archives in\n> different splits I suppose it can be implemented someday.\n>\n> Btw for quick check of the dataset you can use streaming\n> <https://huggingface.co/docs/datasets/stream>:\n>\n> cv = load_dataset(\"mozilla-foundation/common_voice_11_0\", \"en\", split=\"test\", streaming=True)cv = iter(cv)print(next(cv))\n> >> {'client_id': 'a07b17f8234ded5e847443ea6f423cef745cbbc7537fb637d58326000aa751e829a21c4fd0a35fc17fb833aa7e95ebafce5efd19beeb8d843887b85e4eb35f5b',>> 'path': None,>> 'audio': {'path': 'cv-corpus-11.0-2022-09-21/en/clips/common_voice_en_100363.mp3',>> 'array': array([ 0.0000000e+00, 1.1748125e-14, 1.5450088e-14, ...,>> 1.3011958e-06, -6.3548953e-08, -9.9098514e-08], dtype=float32),>> ...}\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/5243#issuecomment-1315512887>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/ALSIFOC3JYRCTH54OBRUJULWIOW6PANCNFSM6AAAAAASAYO2LY>\n> .\n> You are receiving this because you were mentioned.Message ID:\n> ***@***.***>\n>\n",
"maybe it would be nice if you guys ould do some sort of shard before\nloading the dataset, so users can download just chunks of data :)\n\nI think this would be very helpful\n\nAm Di., 15. Nov. 2022 um 19:24 Uhr schrieb Bogdan Capsa <\n***@***.***>:\n\n> thank you for the answer but am not sure if this will not be helpful, as\n> we need maybe just 10% of the datasets for some experiment\n>\n> can we get just a portion of the dataset with stream?\n>\n>\n> is there really no solution? :(\n>\n> Am Di., 15. Nov. 2022 um 16:55 Uhr schrieb Polina Kazakova <\n> ***@***.***>:\n>\n>> Hi @capsabogdan <https://github.com/capsabogdan>! Unfortunately, it's\n>> hard to implement because quite often datasets data is being hosted in a\n>> single archive for all splits :( So we have to download the whole archive\n>> to split it into splits. This is the case for CommonVoice too.\n>>\n>> However, for cases when data is distributed in separate archives in\n>> different splits I suppose it can be implemented someday.\n>>\n>> Btw for quick check of the dataset you can use streaming\n>> <https://huggingface.co/docs/datasets/stream>:\n>>\n>> cv = load_dataset(\"mozilla-foundation/common_voice_11_0\", \"en\", split=\"test\", streaming=True)cv = iter(cv)print(next(cv))\n>> >> {'client_id': 'a07b17f8234ded5e847443ea6f423cef745cbbc7537fb637d58326000aa751e829a21c4fd0a35fc17fb833aa7e95ebafce5efd19beeb8d843887b85e4eb35f5b',>> 'path': None,>> 'audio': {'path': 'cv-corpus-11.0-2022-09-21/en/clips/common_voice_en_100363.mp3',>> 'array': array([ 0.0000000e+00, 1.1748125e-14, 1.5450088e-14, ...,>> 1.3011958e-06, -6.3548953e-08, -9.9098514e-08], dtype=float32),>> ...}\n>>\n>> —\n>> Reply to this email directly, view it on GitHub\n>> <https://github.com/huggingface/datasets/issues/5243#issuecomment-1315512887>,\n>> or unsubscribe\n>> <https://github.com/notifications/unsubscribe-auth/ALSIFOC3JYRCTH54OBRUJULWIOW6PANCNFSM6AAAAAASAYO2LY>\n>> .\n>> You are receiving this because you were mentioned.Message ID:\n>> ***@***.***>\n>>\n>\n",
"+1 on this feature request - I am running into the same problem, where I only need the test set for a dataset that has a huge training set",
"Hey, I'm also interested in that as a feature. I'm having the same problem with Common Voice 13.0. The dataset is super big but I only want the test data to benchmark multilingual models, but I don't have much Terabytes to store all the dataset...",
"Consider this approach: Download and save individual audio files by streaming each split, then compile a CSV file that contains the file names and corresponding text.\r\n\r\n```python3\r\nimport os\r\nimport shutil\r\nfrom pathlib import Path\r\n\r\nimport datasets\r\nimport pandas as pd\r\nimport soundfile\r\nfrom datasets import Dataset, concatenate_datasets, load_dataset\r\n\r\n\r\ndataset = load_dataset(\"librispeech_asr\", 'clean', split=\"train.100\", streaming=True)\r\ndataset = iter(dataset)\r\n\r\ndownload_path = os.path.join(os.getcwd(), 'librispeech', 'clips')\r\ncsv_name = os.path.join(os.getcwd(), 'librispeech', 'clean_train_100.csv')\r\n\r\nrows = []\r\nfor i, row in enumerate(dataset):\r\n print(i)\r\n path = os.path.join(download_path, row['audio']['path'])\r\n soundfile.write(path, row['audio']['array'], row['audio']['sampling_rate'])\r\n\r\n del row['audio']\r\n rows.append(row)\r\n\r\ndf = pd.DataFrame(rows)\r\ndf.to_csv(csv_name, index=False, header=True)\r\n```"
] | 2022-11-15T10:15:54 | 2024-03-06T13:28:17 | null |
NONE
| null | null | null |
### Feature request
Is it possible to download only the data that I am requesting and not the entire dataset? I run out of disk spaceas it seems to download the entire dataset, instead of only the part needed.
common_voice["test"] = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test",
cache_dir="cache/path...",
use_auth_token=True,
download_config=DownloadConfig(delete_extracted='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')
)
### Motivation
efficiency improvement
### Your contribution
n/a
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5243/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5243/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5242
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5242/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5242/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5242/events
|
https://github.com/huggingface/datasets/issues/5242
| 1,449,069,382 |
I_kwDODunzps5WXwtG
| 5,242 |
Failed Data Processing upon upload with zip file full of images
|
{
"login": "scrambled2",
"id": 82735473,
"node_id": "MDQ6VXNlcjgyNzM1NDcz",
"avatar_url": "https://avatars.githubusercontent.com/u/82735473?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/scrambled2",
"html_url": "https://github.com/scrambled2",
"followers_url": "https://api.github.com/users/scrambled2/followers",
"following_url": "https://api.github.com/users/scrambled2/following{/other_user}",
"gists_url": "https://api.github.com/users/scrambled2/gists{/gist_id}",
"starred_url": "https://api.github.com/users/scrambled2/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/scrambled2/subscriptions",
"organizations_url": "https://api.github.com/users/scrambled2/orgs",
"repos_url": "https://api.github.com/users/scrambled2/repos",
"events_url": "https://api.github.com/users/scrambled2/events{/privacy}",
"received_events_url": "https://api.github.com/users/scrambled2/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false | null |
[] | null |
[
"cc @abhishekkrthakur @SBrandeis "
] | 2022-11-15T02:47:52 | 2022-11-15T17:59:23 | null |
NONE
| null | null | null |
I went to autotrain and under image classification arrived where it was time to prepare my dataset. Screenshot below

I chose the method 2 option. I have a csv file with two columns. ~23,000 files.
I uploaded this and chose the image_relpath, and target columns.
The image uploader said that I could only upload 10,000 singular images at a time so the 2nd option was to zip the images up and upload a zip archive which I did.
That all uploaded.
Now I have the message below. It appears the zip archive does just uncompress on the Hugging Face end?
What am I missing here?

|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5242/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5242/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5232
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5232/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5232/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5232/events
|
https://github.com/huggingface/datasets/issues/5232
| 1,446,294,165 |
I_kwDODunzps5WNLKV
| 5,232 |
Incompatible dill versions in datasets 2.6.1
|
{
"login": "vinaykakade",
"id": 10574123,
"node_id": "MDQ6VXNlcjEwNTc0MTIz",
"avatar_url": "https://avatars.githubusercontent.com/u/10574123?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/vinaykakade",
"html_url": "https://github.com/vinaykakade",
"followers_url": "https://api.github.com/users/vinaykakade/followers",
"following_url": "https://api.github.com/users/vinaykakade/following{/other_user}",
"gists_url": "https://api.github.com/users/vinaykakade/gists{/gist_id}",
"starred_url": "https://api.github.com/users/vinaykakade/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/vinaykakade/subscriptions",
"organizations_url": "https://api.github.com/users/vinaykakade/orgs",
"repos_url": "https://api.github.com/users/vinaykakade/repos",
"events_url": "https://api.github.com/users/vinaykakade/events{/privacy}",
"received_events_url": "https://api.github.com/users/vinaykakade/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Thanks for reporting, @vinaykakade.\r\n\r\nWe are discussing about making a release early this week.\r\n\r\nPlease note that in the meantime, in your specific case (as we also pointed out here: https://github.com/huggingface/datasets/issues/5162#issuecomment-1291720293), you can circumvent the issue by pinning `multiprocess` to 0.70.13 version (instead of using latest 0.70.14).\r\n\r\nDuplicate of:\r\n- https://github.com/huggingface/datasets/issues/5162",
"You can also make `pip-compile` work by using the backtracking resolver (instead of the legacy one): https://pip-tools.readthedocs.io/en/latest/#a-note-on-resolvers\r\n```\r\npip-compile --resolver=backtracking requirements.in\r\n```\r\nThis resolver will automatically use `multiprocess` 0.70.13 version.\r\n"
] | 2022-11-12T06:46:23 | 2022-11-14T08:24:43 | 2022-11-14T08:07:59 |
NONE
| null | null | null |
### Describe the bug
datasets version 2.6.1 has a dependency on dill<0.3.6. This causes a conflict with dill>=0.3.6 used by multiprocess dependency in datasets 2.6.1
This issue is already fixed in https://github.com/huggingface/datasets/pull/5166/files, but not yet been released. Please release a new version of the datasets library to fix this.
### Steps to reproduce the bug
1. Create requirements.in with only dependency being datasets (or datasets[s3])
2. Run pip-compile
3. The output is as follows:
```
Could not find a version that matches dill<0.3.6,>=0.3.6 (from datasets[s3]==2.6.1->-r requirements.in (line 1))
Tried: 0.2, 0.2, 0.2.1, 0.2.1, 0.2.2, 0.2.2, 0.2.3, 0.2.3, 0.2.4, 0.2.4, 0.2.5, 0.2.5, 0.2.6, 0.2.7, 0.2.7.1, 0.2.8, 0.2.8.1, 0.2.8.2, 0.2.9, 0.3.0, 0.3.1, 0.3.1.1, 0.3.2, 0.3.3, 0.3.3, 0.3.4, 0.3.4, 0.3.5, 0.3.5, 0.3.5.1, 0.3.5.1, 0.3.6, 0.3.6
Skipped pre-versions: 0.1a1, 0.2a1, 0.2a1, 0.2b1, 0.2b1
There are incompatible versions in the resolved dependencies:
dill<0.3.6 (from datasets[s3]==2.6.1->-r requirements.in (line 1))
dill>=0.3.6 (from multiprocess==0.70.14->datasets[s3]==2.6.1->-r requirements.in (line 1))
```
### Expected behavior
pip-compile produces requirements.txt without any conflicts
### Environment info
datasets version 2.6.1
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5232/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5232/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5231
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5231/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5231/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5231/events
|
https://github.com/huggingface/datasets/issues/5231
| 1,445,883,267 |
I_kwDODunzps5WLm2D
| 5,231 |
Using `set_format(type='torch', columns=columns)` makes Array2D/3D columns stop formatting correctly
|
{
"login": "plamb-viso",
"id": 99206017,
"node_id": "U_kgDOBenDgQ",
"avatar_url": "https://avatars.githubusercontent.com/u/99206017?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/plamb-viso",
"html_url": "https://github.com/plamb-viso",
"followers_url": "https://api.github.com/users/plamb-viso/followers",
"following_url": "https://api.github.com/users/plamb-viso/following{/other_user}",
"gists_url": "https://api.github.com/users/plamb-viso/gists{/gist_id}",
"starred_url": "https://api.github.com/users/plamb-viso/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/plamb-viso/subscriptions",
"organizations_url": "https://api.github.com/users/plamb-viso/orgs",
"repos_url": "https://api.github.com/users/plamb-viso/repos",
"events_url": "https://api.github.com/users/plamb-viso/events{/privacy}",
"received_events_url": "https://api.github.com/users/plamb-viso/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"In case others find this, the problem was not with set_format, but my usages of `to_pandas()` and `from_pandas()` which I was using during dataset splitting; somewhere in the chain of converting to and from pandas the `Array2D/Array3D` types get converted to series of `Sequence()` types"
] | 2022-11-11T18:54:36 | 2022-11-11T20:42:29 | 2022-11-11T18:59:50 |
NONE
| null | null | null |
I have a Dataset with two Features defined as follows:
```
'image': Array3D(dtype="int64", shape=(3, 224, 224)),
'bbox': Array2D(dtype="int64", shape=(512, 4)),
```
On said dataset, if I `dataset.set_format(type='torch')` and then use the dataset in a dataloader, these columns are correctly cast to Tensors of (batch_size, 3, 224, 244) for example.
However, if I `dataset.set_format(type='torch', columns=['image', 'bbox'])` these columns are cast to Lists of tensors and miss the batch size completely (the 3 dimension is the list length).
I'm currently digging through datasets formatting code to try and find out why, but was curious if someone knew an immediate solution for this.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5231/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5231/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5230
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5230/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5230/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5230/events
|
https://github.com/huggingface/datasets/issues/5230
| 1,445,507,580 |
I_kwDODunzps5WKLH8
| 5,230 |
dataclasses error when importing the library in python 3.11
|
{
"login": "yonikremer",
"id": 76044840,
"node_id": "MDQ6VXNlcjc2MDQ0ODQw",
"avatar_url": "https://avatars.githubusercontent.com/u/76044840?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yonikremer",
"html_url": "https://github.com/yonikremer",
"followers_url": "https://api.github.com/users/yonikremer/followers",
"following_url": "https://api.github.com/users/yonikremer/following{/other_user}",
"gists_url": "https://api.github.com/users/yonikremer/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yonikremer/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yonikremer/subscriptions",
"organizations_url": "https://api.github.com/users/yonikremer/orgs",
"repos_url": "https://api.github.com/users/yonikremer/repos",
"events_url": "https://api.github.com/users/yonikremer/events{/privacy}",
"received_events_url": "https://api.github.com/users/yonikremer/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false |
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"I opened [this issue](https://github.com/python/cpython/issues/99401).\r\nPython's maintainers say that the issue is caused by [this change](https://docs.python.org/3.11/whatsnew/3.11.html#dataclasses).\r\nI believe adding a `__hash__` method to `datasets.utils.version.Version` should solve (at least partially) this issue.",
"Has this been fixed? I am running into this issue now. \r\n\r\nIf this has been fixed, could have a new release with this?\r\n",
"Hi, I am getting error while training \r\n\r\n(tensorflow) C:\\tensorflow\\models\\research\\object_detection>python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/faster_rcnn_inception_v2_pets.config\r\nTraceback (most recent call last):\r\n File \"C:\\tensorflow\\models\\research\\object_detection\\train.py\", line 54, in <module>\r\n from object_detection.legacy import trainer\r\n File \"C:\\tensorflow\\models\\research\\object_detection\\legacy\\trainer.py\", line 27, in <module>\r\n from object_detection.builders import optimizer_builder\r\n File \"C:\\tensorflow\\models\\research\\object_detection\\builders\\optimizer_builder.py\", line 25, in <module>\r\n from official.modeling.optimization import ema_optimizer\r\n File \"C:\\tensorflow\\models\\official\\modeling\\optimization\\__init__.py\", line 19, in <module>\r\n from official.modeling.optimization.configs.optimization_config import *\r\n File \"C:\\tensorflow\\models\\official\\modeling\\optimization\\configs\\optimization_config.py\", line 31, in <module>\r\n @dataclasses.dataclass\r\n ^^^^^^^^^^^^^^^^^^^^^\r\n File \"C:\\Users\\x0133252\\AppData\\Local\\anaconda3\\envs\\tensorflow\\Lib\\dataclasses.py\", line 1223, in dataclass\r\n return wrap(cls)\r\n ^^^^^^^^^\r\n File \"C:\\Users\\x0133252\\AppData\\Local\\anaconda3\\envs\\tensorflow\\Lib\\dataclasses.py\", line 1213, in wrap\r\n return _process_class(cls, init, repr, eq, order, unsafe_hash,\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"C:\\Users\\x0133252\\AppData\\Local\\anaconda3\\envs\\tensorflow\\Lib\\dataclasses.py\", line 958, in _process_class\r\n cls_fields.append(_get_field(cls, name, type, kw_only))\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"C:\\Users\\x0133252\\AppData\\Local\\anaconda3\\envs\\tensorflow\\Lib\\dataclasses.py\", line 815, in _get_field\r\n raise ValueError(f'mutable default {type(f.default)} for field '\r\nValueError: mutable default <class 'official.modeling.optimization.configs.optimizer_config.SGDConfig'> for field sgd is not allowed: use default_factory",
"@Jayanth1812 and anyone else receiving a similar issue, it most likely has to do with your Python version. Downgrading to Python 3.9 works for me, but doing a downgrade might impact a lot of things. So to be safe and what worked for me was creating a new conda environment and following the installations here: https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html\r\n\r\nAnd for Tensorflow GPU compatibility, after installing TensorFlow follow the instructions in section 4 'GPU Setup' in this document: https://www.tensorflow.org/install/pip",
"@Jayanth1812, you can see in your error stack trace, that the error is caused by the `tensorflow` library, not by the `datasets` library. See:\r\n```\r\nFile \"C:\\Users\\x0133252\\AppData\\Local\\anaconda3\\envs\\tensorflow\\Lib\\dataclasses.py\"\r\n```\r\n\r\nYou should open an issue in their repository instead: https://github.com/tensorflow/tensorflow "
] | 2022-11-11T13:53:49 | 2023-05-25T04:37:05 | 2022-11-14T15:27:37 |
NONE
| null | null | null |
### Describe the bug
When I import datasets using python 3.11 the dataclasses standard library raises the following error:
`ValueError: mutable default <class 'datasets.utils.version.Version'> for field version is not allowed: use default_factory`
When I tried to import the library using the following jupyter notebook:
```
%%bash
# create python 3.11 conda env
conda create --yes --quiet -n myenv -c conda-forge python=3.11
# activate is
source activate myenv
# install pyarrow
/opt/conda/envs/myenv/bin/python -m pip install --quiet --extra-index-url https://pypi.fury.io/arrow-nightlies/ \
--prefer-binary --pre pyarrow
# install datasets
/opt/conda/envs/myenv/bin/python -m pip install --quiet datasets
```
```
# create a python file that only imports datasets
with open("import_datasets.py", 'w') as f:
f.write("import datasets")
# run it with the env
!/opt/conda/envs/myenv/bin/python import_datasets.py
```
I get the following error:
```
Traceback (most recent call last):
File "/kaggle/working/import_datasets.py", line 1, in <module>
import datasets
File "/opt/conda/envs/myenv/lib/python3.11/site-packages/datasets/__init__.py", line 45, in <module>
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
File "/opt/conda/envs/myenv/lib/python3.11/site-packages/datasets/builder.py", line 91, in <module>
@dataclass
^^^^^^^^^
File "/opt/conda/envs/myenv/lib/python3.11/dataclasses.py", line 1221, in dataclass
return wrap(cls)
^^^^^^^^^
File "/opt/conda/envs/myenv/lib/python3.11/dataclasses.py", line 1211, in wrap
return _process_class(cls, init, repr, eq, order, unsafe_hash,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/envs/myenv/lib/python3.11/dataclasses.py", line 959, in _process_class
cls_fields.append(_get_field(cls, name, type, kw_only))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/envs/myenv/lib/python3.11/dataclasses.py", line 816, in _get_field
raise ValueError(f'mutable default {type(f.default)} for field '
ValueError: mutable default <class 'datasets.utils.version.Version'> for field version is not allowed: use default_factory
```
This is probably due to one of the following changes in the [dataclasses standard library](https://docs.python.org/3/library/dataclasses.html) in version 3.11:
1. Changed in version 3.11: Instead of looking for and disallowing objects of type list, dict, or set, unhashable objects are now not allowed as default values. Unhashability is used to approximate mutability.
2. fields may optionally specify a default value, using normal Python syntax:
```
@dataclass
class C:
a: int # 'a' has no default value
b: int = 0 # assign a default value for 'b'
In this example, both a and b will be included in the added __init__() method, which will be defined as:
def __init__(self, a: int, b: int = 0):
```
3. Changed in version 3.11: If a field name is already included in the __slots__ of a base class, it will not be included in the generated __slots__ to prevent [overriding them](https://docs.python.org/3/reference/datamodel.html#datamodel-note-slots). Therefore, do not use __slots__ to retrieve the field names of a dataclass. Use [fields()](https://docs.python.org/3/library/dataclasses.html#dataclasses.fields) instead. To be able to determine inherited slots, base class __slots__ may be any iterable, but not an iterator.
4. weakref_slot: If true (the default is False), add a slot named “__weakref__”, which is required to make an instance weakref-able. It is an error to specify weakref_slot=True without also specifying slots=True.
[TypeError](https://docs.python.org/3/library/exceptions.html#TypeError) will be raised if a field without a default value follows a field with a default value. This is true whether this occurs in a single class, or as a result of class inheritance.
### Steps to reproduce the bug
Steps to reproduce the behavior:
1. go to [the notebook in kaggle](https://www.kaggle.com/yonikremer/repreducing-issue)
2. rub both of the cells
### Expected behavior
I'm expecting no issues.
This error should not occur.
### Environment info
kaggle kernels, with default settings:
pin to original environment, no accelerator.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5230/reactions",
"total_count": 3,
"+1": 3,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5230/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5229
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5229/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5229/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5229/events
|
https://github.com/huggingface/datasets/issues/5229
| 1,445,121,028 |
I_kwDODunzps5WIswE
| 5,229 |
Type error when calling `map` over dataset containing 0-d tensors
|
{
"login": "phipsgabler",
"id": 7878215,
"node_id": "MDQ6VXNlcjc4NzgyMTU=",
"avatar_url": "https://avatars.githubusercontent.com/u/7878215?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/phipsgabler",
"html_url": "https://github.com/phipsgabler",
"followers_url": "https://api.github.com/users/phipsgabler/followers",
"following_url": "https://api.github.com/users/phipsgabler/following{/other_user}",
"gists_url": "https://api.github.com/users/phipsgabler/gists{/gist_id}",
"starred_url": "https://api.github.com/users/phipsgabler/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/phipsgabler/subscriptions",
"organizations_url": "https://api.github.com/users/phipsgabler/orgs",
"repos_url": "https://api.github.com/users/phipsgabler/repos",
"events_url": "https://api.github.com/users/phipsgabler/events{/privacy}",
"received_events_url": "https://api.github.com/users/phipsgabler/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Hi! \r\n\r\nWe could address this by calling `.item()` on such tensors to extract the value, but this would lose us the type, which could lead to storing the generated dataset in a suboptimal format. Considering this, I think the only proper fix would be implementing support for 0-D tensors on Apache Arrow's side (Arrow is the underlying format we use to store datasets on disk/in memory). WDYT @lhoestq?",
"I think we can just convert the item to a numpy typed scalar using `.numpy()` ?\r\n\r\nFor example this works:\r\n```python\r\nimport numpy as np\r\nimport pyarrow as pa\r\n\r\nassert pa.array([np.float64(1.0)]).type == pa.float64()\r\nassert pa.array([np.float32(1.0)]).type == pa.float32()\r\nassert pa.array([np.int32(1)]).type == pa.int32()\r\nassert pa.array([np.int64(1)]).type == pa.int64()\r\n```\r\n\r\nAnd therefore it would work the same as for PyTorch N-D Tensors: convert to Numpy Array to keep the type in `_cast_to_python_objects`, then convert to Arrow"
] | 2022-11-11T08:27:28 | 2023-01-13T16:00:53 | 2023-01-13T16:00:53 |
NONE
| null | null | null |
### Describe the bug
0-dimensional tensors in a dataset lead to `TypeError: iteration over a 0-d array` when calling `map`. It is easy to generate such tensors by using `.with_format("...")` on the whole dataset.
### Steps to reproduce the bug
```
ds = datasets.Dataset.from_list([{"a": 1}, {"a": 1}]).with_format("torch")
ds.map(None)
```
### Expected behavior
Getting back `ds` without errors.
### Environment info
Python 3.10.8
datasets 2.6.
torch 1.13.0
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5229/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5229/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5228
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5228/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5228/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5228/events
|
https://github.com/huggingface/datasets/issues/5228
| 1,444,763,105 |
I_kwDODunzps5WHVXh
| 5,228 |
Loading a dataset from the hub fails if you happen to have a folder of the same name
|
{
"login": "dakinggg",
"id": 43149077,
"node_id": "MDQ6VXNlcjQzMTQ5MDc3",
"avatar_url": "https://avatars.githubusercontent.com/u/43149077?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/dakinggg",
"html_url": "https://github.com/dakinggg",
"followers_url": "https://api.github.com/users/dakinggg/followers",
"following_url": "https://api.github.com/users/dakinggg/following{/other_user}",
"gists_url": "https://api.github.com/users/dakinggg/gists{/gist_id}",
"starred_url": "https://api.github.com/users/dakinggg/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dakinggg/subscriptions",
"organizations_url": "https://api.github.com/users/dakinggg/orgs",
"repos_url": "https://api.github.com/users/dakinggg/repos",
"events_url": "https://api.github.com/users/dakinggg/events{/privacy}",
"received_events_url": "https://api.github.com/users/dakinggg/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false | null |
[] | null |
[
"`load_dataset` first checks for a local directory before checking for the Hub.\r\n\r\nTo make it explicit that it has to fetch the Hub, we could support the `hffs` syntax:\r\n```python\r\nload_dataset(\"hf://datasets/glue\")\r\n```\r\n\r\nwould that work for you ? Also cc @mariosasko who's leading the `hffs` project",
"yeah, that would be a fine solution.",
"This still has no proper solution in 2.11\r\n\r\nperhaps have a `download_config=\"force_remote\"` or just backtrack once you reach `EmptyDatasetError` locally and then try to load it from the hub (or a local cache, as that only gets checked if there is no local folder...?)"
] | 2022-11-11T00:51:54 | 2023-05-03T23:23:04 | null |
NONE
| null | null | null |
### Describe the bug
I'm not 100% sure this should be considered a bug, but it was certainly annoying to figure out the cause of. And perhaps I am just missing a specific argument needed to avoid this conflict. Basically I had a situation where multiple workers were downloading different parts of the glue dataset and then training on them. Additionally, they were writing their checkpoints to a folder called `glue`. This meant that once one worker had created the `glue` folder to write checkpoints to, the next worker to try to load a glue dataset would fail as shown in the minimal repro below. I'm not sure what the solution would be since I'm not super familiar with the `datasets` code, but I would expect `load_dataset` to not crash just because i have a local folder with the same name as a dataset from the hub.
### Steps to reproduce the bug
```
In [1]: import datasets
In [2]: rte = datasets.load_dataset('glue', 'rte')
Downloading and preparing dataset glue/rte to /Users/danielking/.cache/huggingface/datasets/glue/rte/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad...
Downloading data: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 697k/697k [00:00<00:00, 6.08MB/s]
Dataset glue downloaded and prepared to /Users/danielking/.cache/huggingface/datasets/glue/rte/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad. Subsequent calls will reuse this data.
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 773.81it/s]
In [3]: import os
In [4]: os.mkdir('glue')
In [5]: rte = datasets.load_dataset('glue', 'rte')
---------------------------------------------------------------------------
EmptyDatasetError Traceback (most recent call last)
<ipython-input-5-0d6b9ad8bbd0> in <cell line: 1>()
----> 1 rte = datasets.load_dataset('glue', 'rte')
~/miniconda3/envs/composer/lib/python3.9/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs)
1717
1718 # Create a dataset builder
-> 1719 builder_instance = load_dataset_builder(
1720 path=path,
1721 name=name,
~/miniconda3/envs/composer/lib/python3.9/site-packages/datasets/load.py in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, **config_kwargs)
1495 download_config = download_config.copy() if download_config else DownloadConfig()
1496 download_config.use_auth_token = use_auth_token
-> 1497 dataset_module = dataset_module_factory(
1498 path,
1499 revision=revision,
~/miniconda3/envs/composer/lib/python3.9/site-packages/datasets/load.py in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs)
1152 ).get_module()
1153 elif os.path.isdir(path):
-> 1154 return LocalDatasetModuleFactoryWithoutScript(
1155 path, data_dir=data_dir, data_files=data_files, download_mode=download_mode
1156 ).get_module()
~/miniconda3/envs/composer/lib/python3.9/site-packages/datasets/load.py in get_module(self)
624 base_path = os.path.join(self.path, self.data_dir) if self.data_dir else self.path
625 patterns = (
--> 626 sanitize_patterns(self.data_files) if self.data_files is not None else get_data_patterns_locally(base_path)
627 )
628 data_files = DataFilesDict.from_local_or_remote(
~/miniconda3/envs/composer/lib/python3.9/site-packages/datasets/data_files.py in get_data_patterns_locally(base_path)
458 return _get_data_files_patterns(resolver)
459 except FileNotFoundError:
--> 460 raise EmptyDatasetError(f"The directory at {base_path} doesn't contain any data files") from None
461
462
EmptyDatasetError: The directory at glue doesn't contain any data files
```
### Expected behavior
Dataset is still able to be loaded from the hub even if I have a local folder with the same name.
### Environment info
datasets version: 2.6.1
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5228/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5228/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5227
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5227/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5227/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5227/events
|
https://github.com/huggingface/datasets/issues/5227
| 1,444,620,094 |
I_kwDODunzps5WGyc-
| 5,227 |
datasets.data_files.EmptyDatasetError: The directory at wikisql doesn't contain any data files
|
{
"login": "ScottM-wizard",
"id": 102275116,
"node_id": "U_kgDOBhiYLA",
"avatar_url": "https://avatars.githubusercontent.com/u/102275116?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ScottM-wizard",
"html_url": "https://github.com/ScottM-wizard",
"followers_url": "https://api.github.com/users/ScottM-wizard/followers",
"following_url": "https://api.github.com/users/ScottM-wizard/following{/other_user}",
"gists_url": "https://api.github.com/users/ScottM-wizard/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ScottM-wizard/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ScottM-wizard/subscriptions",
"organizations_url": "https://api.github.com/users/ScottM-wizard/orgs",
"repos_url": "https://api.github.com/users/ScottM-wizard/repos",
"events_url": "https://api.github.com/users/ScottM-wizard/events{/privacy}",
"received_events_url": "https://api.github.com/users/ScottM-wizard/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Fixed. Please close.",
"how to fix?i need your help"
] | 2022-11-10T21:57:06 | 2023-10-07T05:04:41 | 2022-11-10T22:05:43 |
NONE
| null | null | null |
### Describe the bug
From these lines:
from datasets import list_datasets, load_dataset
dataset = load_dataset("wikisql","binary")
I get error message:
datasets.data_files.EmptyDatasetError: The directory at wikisql doesn't contain any data files
And yet the 'wikisql' is reported to exist via the list_datasets().
Any help appreciated.
### Steps to reproduce the bug
From these lines:
from datasets import list_datasets, load_dataset
dataset = load_dataset("wikisql","binary")
I get error message:
datasets.data_files.EmptyDatasetError: The directory at wikisql doesn't contain any data files
And yet the 'wikisql' is reported to exist via the list_datasets().
Any help appreciated.
### Expected behavior
Dataset should load. This same code used to work.
### Environment info
Mac OS
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5227/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5227/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5226
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5226/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5226/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5226/events
|
https://github.com/huggingface/datasets/issues/5226
| 1,444,385,148 |
I_kwDODunzps5WF5F8
| 5,226 |
Q: Memory release when removing the column?
|
{
"login": "bayartsogt-ya",
"id": 43239645,
"node_id": "MDQ6VXNlcjQzMjM5NjQ1",
"avatar_url": "https://avatars.githubusercontent.com/u/43239645?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bayartsogt-ya",
"html_url": "https://github.com/bayartsogt-ya",
"followers_url": "https://api.github.com/users/bayartsogt-ya/followers",
"following_url": "https://api.github.com/users/bayartsogt-ya/following{/other_user}",
"gists_url": "https://api.github.com/users/bayartsogt-ya/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bayartsogt-ya/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bayartsogt-ya/subscriptions",
"organizations_url": "https://api.github.com/users/bayartsogt-ya/orgs",
"repos_url": "https://api.github.com/users/bayartsogt-ya/repos",
"events_url": "https://api.github.com/users/bayartsogt-ya/events{/privacy}",
"received_events_url": "https://api.github.com/users/bayartsogt-ya/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Hi ! Datasets are memory mapped from your disk, i.e. they're not loaded in RAM. This is possible thanks to the Arrow data format.\r\n\r\nTherefore the column you remove is not in RAM, so removing it doesn't cause the RAM to decrease.",
"Thanks for the explanation! @lhoestq \r\nI wonder since it is memory mapped, can we reduce or remove this memory map?",
"Yes you can `del common_voice` for example or wait for it to be garbage collected"
] | 2022-11-10T18:35:27 | 2022-11-29T15:10:10 | 2022-11-29T15:10:10 |
NONE
| null | null | null |
### Describe the bug
How do I release memory when I use methods like `.remove_columns()` or `clear()` in notebooks?
```python
from datasets import load_dataset
common_voice = load_dataset("mozilla-foundation/common_voice_11_0", "ja", use_auth_token=True)
# check memory -> RAM Used (GB): 0.704 / Total (GB) 33.670
common_voice = common_voice.remove_columns(column_names=common_voice.column_names['train'])
common_voice.clear()
# check memory -> RAM Used (GB): 0.705 / Total (GB) 33.670
```
I tried `gc.collect()` but did not help
### Steps to reproduce the bug
1. load dataset
2. remove all the columns
3. check memory is reduced or not
[link to reproduce](https://www.kaggle.com/code/bayartsogtya/huggingface-dataset-memory-issue/notebook?scriptVersionId=110630567)
### Expected behavior
Memory released when I remove the column
### Environment info
- `datasets` version: 2.1.0
- Platform: Linux-5.15.65+-x86_64-with-debian-bullseye-sid
- Python version: 3.7.12
- PyArrow version: 8.0.0
- Pandas version: 1.3.5
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5226/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5226/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5225
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5225/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5225/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5225/events
|
https://github.com/huggingface/datasets/issues/5225
| 1,444,305,183 |
I_kwDODunzps5WFlkf
| 5,225 |
Add video feature
|
{
"login": "nateraw",
"id": 32437151,
"node_id": "MDQ6VXNlcjMyNDM3MTUx",
"avatar_url": "https://avatars.githubusercontent.com/u/32437151?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nateraw",
"html_url": "https://github.com/nateraw",
"followers_url": "https://api.github.com/users/nateraw/followers",
"following_url": "https://api.github.com/users/nateraw/following{/other_user}",
"gists_url": "https://api.github.com/users/nateraw/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nateraw/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nateraw/subscriptions",
"organizations_url": "https://api.github.com/users/nateraw/orgs",
"repos_url": "https://api.github.com/users/nateraw/repos",
"events_url": "https://api.github.com/users/nateraw/events{/privacy}",
"received_events_url": "https://api.github.com/users/nateraw/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 1935892884,
"node_id": "MDU6TGFiZWwxOTM1ODkyODg0",
"url": "https://api.github.com/repos/huggingface/datasets/labels/help%20wanted",
"name": "help wanted",
"color": "008672",
"default": true,
"description": "Extra attention is needed"
},
{
"id": 3608941089,
"node_id": "LA_kwDODunzps7XHBIh",
"url": "https://api.github.com/repos/huggingface/datasets/labels/vision",
"name": "vision",
"color": "bfdadc",
"default": false,
"description": "Vision datasets"
}
] |
open
| false | null |
[] | null |
[
"@NielsRogge @rwightman may have additional requirements regarding this feature.\r\n\r\nWhen adding a new (decodable) type, the hardest part is choosing the right decoding library. What I mean by \"right\" here is that it has all the features we need and is easy to install (with GPU support?).\r\n\r\nSome candidates/options:\r\n* [`decord`](https://github.com/dmlc/decord): no longer [maintained](https://github.com/dmlc/decord/issues/214), not trivial to install with GPU support\r\n* [`pyAV`](https://github.com/PyAV-Org/PyAV): used for CPU decoding in `torchvision`, GPU decoding not supported if I'm not mistaken, otherwise the best candidate probably\r\n* [`video_reader`](https://github.com/pytorch/vision/blob/de350bc01ad2193ea2888f0ce8a6a346d3cba5a9/torchvision/csrc/io/video_reader/video_reader.cpp): used for GPU decoding in `torchvision`, depends on `torch'\r\n* OpenCV: uses `ffmpeg` for video decoding under the hood\r\n* ...\r\n\r\nAnd the last resort is building our own library, which is the most flexible solution but also requires the most work.\r\n\r\nPS: I'm adding a link to an article that compares various video decoding libraries: https://towardsdatascience.com/lightning-fast-video-reading-in-python-c1438771c4e6",
"@mariosasko is GPU decoding a hard requirement here? Do we really need it? (I don't know)\r\n\r\nSomething to consider with `decord` is that it doesn't (AFAIK) support writing videos, so you'd still need something else for that. also I've noticed [issues](https://github.com/dmlc/decord/issues/242) with decord's ability to decode stereo audio streams along side the video (which you don't run into with PyAV).\r\n\r\n---\r\n\r\nI think PyAV should be able to do the job just fine to start. If we write the video io utilities as their own functions, we can hot swap them later if we find/write a different solution that's faster/better.",
"Video is still a bit of a mess, but I'd say pyAV is likely the best approach (or supporting all three via pytorchvideo, but that adds a middle man dependency).\r\n\r\nBeing able to decode on the GPU, into memory that could be passed off to a Tensor in whatever framework is being used would be the dream, I don't think there is any interop of that nature working right now. Number of decoder instances per GPU is limited so it's not clear if balancing load btw GPU decoders and CPUs would be needed in say large scale video training.\r\n\r\nAny of these solutions is less than ideal due to the nature of video, having a simple Python interface video / start -> end results in lots of extra memory (you need to decode whole range of the clips into a buffer before using anything). Any scalable video system would be streaming on the fly (issuing frames via callbacks as soon as the stream is far enough along to have re-ordered the frames and synced audio+video+other metadata (sensors, CC, etc).\r\n\r\n",
"For standalone usage, decoding on GPU could be ideal but isn't async processing of inputs on CPUs while letting the accelerator busy for training the de-facto? Of course, I am aware of other advanced mechanisms such as CPU offloading, but I think my point is conveyed. ",
"Here's a minimal implementation of the helper functions we'd need from PyAV, a lot of which I borrowed from `pytorchvideo`, stripping out the `torch` specific stuff:\r\n\r\n[](https://colab.research.google.com/gist/nateraw/c327cb6ff6b074e6ddc8068d19c0367d/pyav-io.ipynb)\r\n \r\nIt's not too much code...@mariosasko we could probably just maintain these helper fns within the `datasets` library, right? ",
"Also wanted to note I added a PR for video classification in `transformers` here, which uses `decord`. It's still open...should we make a decision now to align the libraries we are using between `datasets` and `transformers`? (CC @Narsil )\r\n\r\nhttps://github.com/huggingface/transformers/pull/20151",
"Fully agree on at least trying to unite things.\r\n\r\nMaking clear function boundaries to help us change dependency if needed seems like a good idea since there doesn't seem to be a clear winner.\r\n\r\nI also happen to like directly calling ffmpeg. For some reason it was a lot faster than pyav. "
] | 2022-11-10T17:36:11 | 2022-12-02T15:13:15 | null |
CONTRIBUTOR
| null | null | null |
### Feature request
Add a `Video` feature to the library so folks can include videos in their datasets.
### Motivation
Being able to load Video data would be quite helpful. However, there are some challenges when it comes to videos:
1. Videos, unlike images, can end up being extremely large files
2. Often times when training video models, you need to do some very specific sampling. Videos might end up needing to be broken down into X number of clips used for training/inference
3. Videos have an additional audio stream, which must be accounted for
4. The feature needs to be able to encode/decode videos (with right video settings) from bytes.
### Your contribution
I did work on this a while back in [this (now closed) PR](https://github.com/huggingface/datasets/pull/4532). It used a library I made called [encoded_video](https://github.com/nateraw/encoded-video), which is basically the utils from [pytorchvideo](https://github.com/facebookresearch/pytorchvideo), but without the `torch` dep. It included the ability to read/write from bytes, as we need to do here. We don't want to be using a sketchy library that I made as a dependency in this repo, though.
Would love to use this issue as a place to:
- brainstorm ideas on how to do this right
- list ways/examples to work around it for now
CC @sayakpaul @mariosasko @fcakyon
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5225/reactions",
"total_count": 3,
"+1": 3,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5225/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5224
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5224/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5224/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5224/events
|
https://github.com/huggingface/datasets/issues/5224
| 1,443,640,867 |
I_kwDODunzps5WDDYj
| 5,224 |
Seems to freeze when loading audio dataset with wav files from local folder
|
{
"login": "uriii3",
"id": 45894267,
"node_id": "MDQ6VXNlcjQ1ODk0MjY3",
"avatar_url": "https://avatars.githubusercontent.com/u/45894267?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/uriii3",
"html_url": "https://github.com/uriii3",
"followers_url": "https://api.github.com/users/uriii3/followers",
"following_url": "https://api.github.com/users/uriii3/following{/other_user}",
"gists_url": "https://api.github.com/users/uriii3/gists{/gist_id}",
"starred_url": "https://api.github.com/users/uriii3/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/uriii3/subscriptions",
"organizations_url": "https://api.github.com/users/uriii3/orgs",
"repos_url": "https://api.github.com/users/uriii3/repos",
"events_url": "https://api.github.com/users/uriii3/events{/privacy}",
"received_events_url": "https://api.github.com/users/uriii3/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"I just tried to do the same but changing the `.wav` files to `.mp3` files and that doesn't fix it.",
"I don't know if anyone will ever read this but I've tried to upload the same dataset with google colab and the output seems more clarifying. I didn't specify the train/test split so the dataset wasn't fully uploaded (or that is what I understood, might be wrong!!).\r\n\r\nNow, including the `drop_metadata` flag I can load the dataset normally (at least with colab notebook):\r\n\r\n```python\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset(\"audiofolder\", data_dir=\"../archive/Dataset\", , drop_metadata=True)\r\n```\r\n\r\nI'll close the issue.",
"@uriii3 Hello, I understand correctly that you converted your wav files to mp3?",
"Yes but it didn't matter. I don't remember which of them I ended up working with."
] | 2022-11-10T10:29:31 | 2023-04-25T09:54:05 | 2022-11-22T11:24:19 |
NONE
| null | null | null |
### Describe the bug
I'm following the instructions in [https://huggingface.co/docs/datasets/audio_load#audiofolder-with-metadata](url) to be able to load a dataset from a local folder.
I have everything into a folder, into a train folder and then the audios and csv. When I try to load the dataset and run from terminal, seems to work but then freezes with no apparent reason.
The metadata.csv file contains a few columns but the important ones, `file_name` with the filename and `transcription` with the transcription are okay.
The audios are `.wav` files, I don't know if that might be the problem (I will proceed to try to change them all to `.mp3` and try again).
### Steps to reproduce the bug
The code I'm using:
```python
from datasets import load_dataset
dataset = load_dataset("audiofolder", data_dir="../archive/Dataset")
dataset[0]["audio"]
```
The output I obtain:
```
Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 311135.43it/s]
Using custom data configuration default-38d4546ffd010f3e
Downloading and preparing dataset audiofolder/default to /Users/mine/.cache/huggingface/datasets/audiofolder/default-38d4546ffd010f3e/0.0.0/6cbdd16f8688354c63b4e2a36e1585d05de285023ee6443ffd71c4182055c0fc...
Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 166467.72it/s]
Using custom data configuration default-38d4546ffd010f3e
Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 187772.74it/s]
Using custom data configuration default-38d4546ffd010f3e
Resolving data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 59623.71it/s]
Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 138090.55it/s]
Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 106065.64it/s]
Resolving data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 56036.38it/s]
Resolving data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 74004.24it/s]
Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 162343.45it/s]
Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 101881.23it/s]
Using custom data configuration default-38d4546ffd010f3e
Resolving data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 60145.67it/s]
Resolving data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 80890.02it/s]
Resolving data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 54036.67it/s]
Resolving data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 95851.09it/s]
Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 155897.00it/s]
Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 137656.96it/s]
Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 131230.81it/s]
Using custom data configuration default-38d4546ffd010f3e
Using custom data configuration default-38d4546ffd010f3e
Using custom data configuration default-38d4546ffd010f3e
Using custom data configuration default-38d4546ffd010f3e
Using custom data configuration default-38d4546ffd010f3e
Using custom data configuration default-38d4546ffd010f3e
Using custom data configuration default-38d4546ffd010f3e
Using custom data configuration default-38d4546ffd010f3e
Using custom data configuration default-38d4546ffd010f3e
Using custom data configuration default-38d4546ffd010f3e
Using custom data configuration default-38d4546ffd010f3e
Using custom data configuration default-38d4546ffd010f3e
Using custom data configuration default-38d4546ffd010f3e
```
And then here it just freezes and nothing more happens.
### Expected behavior
Load the dataset.
### Environment info
Datasets version:
datasets 2.6.1 pypi_0 pypi
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5224/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5224/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5222
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5222/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5222/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5222/events
|
https://github.com/huggingface/datasets/issues/5222
| 1,442,412,507 |
I_kwDODunzps5V-Xfb
| 5,222 |
HuggingFace website is incorrectly reporting that my datasets are pickled
|
{
"login": "ProGamerGov",
"id": 10626398,
"node_id": "MDQ6VXNlcjEwNjI2Mzk4",
"avatar_url": "https://avatars.githubusercontent.com/u/10626398?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ProGamerGov",
"html_url": "https://github.com/ProGamerGov",
"followers_url": "https://api.github.com/users/ProGamerGov/followers",
"following_url": "https://api.github.com/users/ProGamerGov/following{/other_user}",
"gists_url": "https://api.github.com/users/ProGamerGov/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ProGamerGov/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ProGamerGov/subscriptions",
"organizations_url": "https://api.github.com/users/ProGamerGov/orgs",
"repos_url": "https://api.github.com/users/ProGamerGov/repos",
"events_url": "https://api.github.com/users/ProGamerGov/events{/privacy}",
"received_events_url": "https://api.github.com/users/ProGamerGov/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"cc @McPatate maybe you know what's happening ?",
"Yes I think I know what is happening. We check in zips for pickles, and the UI must display the pickle jar when a scan has an associated list of imports, even when empty.\r\n~I'll fix ASAP !~",
"> I'll fix ASAP !\r\n\r\nActually I'd rather leave it like that for now, as it indicates that we checked for pickles and nothing dangerous appeared :)",
"Closing the issue with the typical \"feature not a bug\" "
] | 2022-11-09T16:41:16 | 2022-11-09T18:10:46 | 2022-11-09T18:06:57 |
NONE
| null | null | null |
### Describe the bug
HuggingFace is incorrectly reporting that my datasets are pickled. They are not picked, they are simple ZIP files containing PNG images.
Hopefully this is the right location to report this bug.
### Steps to reproduce the bug
Inspect my dataset respository here: https://huggingface.co/datasets/ProGamerGov/StableDiffusion-v1-5-Regularization-Images
### Expected behavior
They should not be reported as being pickled.
### Environment info
N/A
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5222/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5222/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5221
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5221/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5221/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5221/events
|
https://github.com/huggingface/datasets/issues/5221
| 1,442,309,094 |
I_kwDODunzps5V9-Pm
| 5,221 |
Cannot push
|
{
"login": "bayartsogt-ya",
"id": 43239645,
"node_id": "MDQ6VXNlcjQzMjM5NjQ1",
"avatar_url": "https://avatars.githubusercontent.com/u/43239645?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bayartsogt-ya",
"html_url": "https://github.com/bayartsogt-ya",
"followers_url": "https://api.github.com/users/bayartsogt-ya/followers",
"following_url": "https://api.github.com/users/bayartsogt-ya/following{/other_user}",
"gists_url": "https://api.github.com/users/bayartsogt-ya/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bayartsogt-ya/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bayartsogt-ya/subscriptions",
"organizations_url": "https://api.github.com/users/bayartsogt-ya/orgs",
"repos_url": "https://api.github.com/users/bayartsogt-ya/repos",
"events_url": "https://api.github.com/users/bayartsogt-ya/events{/privacy}",
"received_events_url": "https://api.github.com/users/bayartsogt-ya/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Did you run `huggingface-cli lfs-enable-largefiles` before committing or before adding ? Maybe you can try before adding\r\n\r\nAnyway I'd encourage you to split your data into several TAR archives if possible, this way the dataset can loaded faster using multiprocessing (by giving each process a subset of shards to process)",
"@lhoestq \r\nThanks for the help!\r\n> Maybe you can try before adding\r\n\r\nIt did not help\r\n\r\nBut I totally got your point about split into multiple TAR archives. It really helped!"
] | 2022-11-09T15:32:05 | 2022-11-10T18:11:21 | 2022-11-10T18:11:11 |
NONE
| null | null | null |
### Describe the bug
I am facing the issue when I try to push the tar.gz file around 11G to HUB.
```
(venv) ╭─laptop@laptop ~/PersonalProjects/data/ulaanbal_v0 ‹main●›
╰─$ du -sh *
4.0K README.md
13G data
516K test.jsonl
18M train.jsonl
4.0K ulaanbal_v0.py
11G ulaanbal_v0.tar.gz
452K validation.jsonl
(venv) ╭─laptop@laptop~/PersonalProjects/data/ulaanbal_v0 ‹main●›
╰─$ git add ulaanbal_v0.tar.gz && git commit -m 'large version'
(venv) ╭─laptop@laptop ~/PersonalProjects/data/ulaanbal_v0 ‹main●›
╰─$ git push
EOFoading LFS objects: 0% (0/1), 0 B | 0 B/s
Uploading LFS objects: 0% (0/1), 0 B | 0 B/s, done.
error: failed to push some refs to 'https://huggingface.co/datasets/bayartsogt/ulaanbal_v0'
```
I have already tried pushing a small version of this and it was working fine. So my guess it is probably because of the big file.
Following I run before the commit:
```
╰─$ git lfs install
╰─$ huggingface-cli lfs-enable-largefiles .
```
### Steps to reproduce the bug
Create a private dataset on huggingface and push 12G tar.gz file
### Expected behavior
To be pushed with no issue
### Environment info
- `datasets` version: 2.6.1
- Platform: Darwin-21.6.0-x86_64-i386-64bit
- Python version: 3.7.11
- PyArrow version: 10.0.0
- Pandas version: 1.3.5
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5221/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5221/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5220
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5220/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5220/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5220/events
|
https://github.com/huggingface/datasets/issues/5220
| 1,441,664,377 |
I_kwDODunzps5V7g15
| 5,220 |
Implicit type conversion of lists in to_pandas
|
{
"login": "sanderland",
"id": 48946947,
"node_id": "MDQ6VXNlcjQ4OTQ2OTQ3",
"avatar_url": "https://avatars.githubusercontent.com/u/48946947?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sanderland",
"html_url": "https://github.com/sanderland",
"followers_url": "https://api.github.com/users/sanderland/followers",
"following_url": "https://api.github.com/users/sanderland/following{/other_user}",
"gists_url": "https://api.github.com/users/sanderland/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sanderland/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanderland/subscriptions",
"organizations_url": "https://api.github.com/users/sanderland/orgs",
"repos_url": "https://api.github.com/users/sanderland/repos",
"events_url": "https://api.github.com/users/sanderland/events{/privacy}",
"received_events_url": "https://api.github.com/users/sanderland/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"I think this behavior comes from PyArrow:\r\n```python\r\nimport pyarrow as pa\r\nt = pa.table({\"a\": [[0]]})\r\nt.to_pandas().a.values[0]\r\n# array([0])\r\n```\r\n\r\nI believe this has to do with zero-copy: you can get a pandas DataFrame without copying the buffers from arrow, and therefore end up with numpy arrays.",
"That's interesting, I guess not much to do here then."
] | 2022-11-09T08:40:18 | 2022-11-10T16:12:26 | 2022-11-10T16:12:26 |
CONTRIBUTOR
| null | null | null |
### Describe the bug
```
ds = Dataset.from_list([{'a':[1,2,3]}])
ds.to_pandas().a.values[0]
```
Results in `array([1, 2, 3])` -- a rather unexpected conversion of types which made downstream tools expecting lists not happy.
### Steps to reproduce the bug
See snippet
### Expected behavior
Keep the original type
### Environment info
datasets 2.6.1
python 3.8.10
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5220/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5220/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5219
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5219/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5219/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5219/events
|
https://github.com/huggingface/datasets/issues/5219
| 1,441,255,910 |
I_kwDODunzps5V59Hm
| 5,219 |
Delta Tables usage using Datasets Library
|
{
"login": "reichenbch",
"id": 23002137,
"node_id": "MDQ6VXNlcjIzMDAyMTM3",
"avatar_url": "https://avatars.githubusercontent.com/u/23002137?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/reichenbch",
"html_url": "https://github.com/reichenbch",
"followers_url": "https://api.github.com/users/reichenbch/followers",
"following_url": "https://api.github.com/users/reichenbch/following{/other_user}",
"gists_url": "https://api.github.com/users/reichenbch/gists{/gist_id}",
"starred_url": "https://api.github.com/users/reichenbch/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/reichenbch/subscriptions",
"organizations_url": "https://api.github.com/users/reichenbch/orgs",
"repos_url": "https://api.github.com/users/reichenbch/repos",
"events_url": "https://api.github.com/users/reichenbch/events{/privacy}",
"received_events_url": "https://api.github.com/users/reichenbch/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
open
| false | null |
[] | null |
[
"Hi ! Interesting :) Can you provide concrete examples of cases where it can be useful ?",
"Few example blogs and posts that might help on this - \r\n\r\n1. https://hevodata.com/learn/databricks-delta-tables/\r\n2. https://docs.databricks.com/delta/index.html\r\n\r\nBasically, we are looking at utility of Datasets library with Delta Lake Tables.\r\n",
"`datasets` can already read/write from parquet from/to a cloud storage using fsspec, if I understand correctly it's should be possible to load parquet files as delat lake tables no ? :) Or is there someting missing ?",
"@lhoestq Per my understanding, delta lake table is a bunch of paruqet files together with the meta to support ACID. For example file 1 contains v0.1 of record A while file 2 contains v0.2 of record A. I am assuming the Hugging face dataset would delegate the read/write delta table to 3rd party lib, maybe pyarrow. Correct me if I was wrong @reichenbch \r\n\r\nAnd I am assuming, people are asking the versioning of Hugging face datasets. But I am assuming Hugging face delegate this function to github and it is not the key requirement for Public Data set. It actually the key function of ML Ops, I am not sure whether hugging face would like expand to that area."
] | 2022-11-09T02:43:56 | 2023-03-02T19:29:12 | null |
NONE
| null | null | null |
### Feature request
Adding compatibility of Datasets library with Delta Format. Elevating the utilities of Datasets library from Machine Learning Scope to Data Engineering Scope as well.
### Motivation
We know datasets library can absorb csv, json, parquet, etc. file formats but it would be great if Datasets library could work with Delta Tables (with delta format) as it has different features such as time travelling, layout optimization, query performance, aids in Data Engineering.
This will help and enhance Datasets library from Machine Learning utility to Data Engineering utilities and expand horizons thereafter. I am totally using Datasets library in all my usecases and as my role expands so does the work, compatibility with Datasets library is something I don't want to lose.
### Your contribution
Would love to work on this feature, even if this has to picked up from scratch, including design paradigms and patterns.
I have basic idea about Delta Live Tables, would brush it easily for this feature.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5219/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5219/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5218
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5218/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5218/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5218/events
|
https://github.com/huggingface/datasets/issues/5218
| 1,441,254,194 |
I_kwDODunzps5V58sy
| 5,218 |
Delta Tables usage using Datasets Library
|
{
"login": "rcv-koo",
"id": 103188035,
"node_id": "U_kgDOBiaGQw",
"avatar_url": "https://avatars.githubusercontent.com/u/103188035?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/rcv-koo",
"html_url": "https://github.com/rcv-koo",
"followers_url": "https://api.github.com/users/rcv-koo/followers",
"following_url": "https://api.github.com/users/rcv-koo/following{/other_user}",
"gists_url": "https://api.github.com/users/rcv-koo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/rcv-koo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/rcv-koo/subscriptions",
"organizations_url": "https://api.github.com/users/rcv-koo/orgs",
"repos_url": "https://api.github.com/users/rcv-koo/repos",
"events_url": "https://api.github.com/users/rcv-koo/events{/privacy}",
"received_events_url": "https://api.github.com/users/rcv-koo/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
closed
| false | null |
[] | null |
[] | 2022-11-09T02:42:18 | 2022-11-09T02:42:36 | 2022-11-09T02:42:36 |
NONE
| null | null | null |
### Feature request
Adding compatibility of Datasets library with Delta Format. Elevating the utilities of Datasets library from Machine Learning Scope to Data Engineering Scope as well.
### Motivation
We know datasets library can absorb csv, json, parquet, etc. file formats but it would be great if Datasets library could work with Delta Tables (with delta format) as it has different features such as time travelling, layout optimization, query performance, aids in Data Engineering.
This will help and enhance Datasets library from Machine Learning utility to Data Engineering utilities and expand horizons thereafter. I am totally using Datasets library in all my usecases and as my role expands so does the work, compatibility with Datasets library is something I don't want to lose.
### Your contribution
Would love to work on this feature, even if this has to picked up from scratch, including design paradigms and patterns.
I have basic idea about Delta Live Tables, would brush it easily for this feature.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5218/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5218/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5216
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5216/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5216/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5216/events
|
https://github.com/huggingface/datasets/issues/5216
| 1,441,041,947 |
I_kwDODunzps5V5I4b
| 5,216 |
save_elasticsearch_index
|
{
"login": "amobash2",
"id": 12739718,
"node_id": "MDQ6VXNlcjEyNzM5NzE4",
"avatar_url": "https://avatars.githubusercontent.com/u/12739718?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/amobash2",
"html_url": "https://github.com/amobash2",
"followers_url": "https://api.github.com/users/amobash2/followers",
"following_url": "https://api.github.com/users/amobash2/following{/other_user}",
"gists_url": "https://api.github.com/users/amobash2/gists{/gist_id}",
"starred_url": "https://api.github.com/users/amobash2/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/amobash2/subscriptions",
"organizations_url": "https://api.github.com/users/amobash2/orgs",
"repos_url": "https://api.github.com/users/amobash2/repos",
"events_url": "https://api.github.com/users/amobash2/events{/privacy}",
"received_events_url": "https://api.github.com/users/amobash2/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false | null |
[] | null |
[
"Hi ! I think there exist tools to dump and reload an index in your elastic search but I'm not super familiar with it.\r\n\r\nAnyway after reloading an index in elastic search you can call `ds.load_elasticsearch_index` which will connect the index to the dataset without re-indexing"
] | 2022-11-08T23:06:52 | 2022-11-09T13:16:45 | null |
NONE
| null | null | null |
Hi,
I am new to Dataset and elasticsearch. I was wondering is there any equivalent approach to save elasticsearch index as of save_faiss_index locally for later use, to remove the need to re-index a dataset?
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5216/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5216/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5209
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5209/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5209/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5209/events
|
https://github.com/huggingface/datasets/issues/5209
| 1,438,367,678 |
I_kwDODunzps5Vu7--
| 5,209 |
Implement ability to define splits in metadata section of dataset card
|
{
"login": "merveenoyan",
"id": 53175384,
"node_id": "MDQ6VXNlcjUzMTc1Mzg0",
"avatar_url": "https://avatars.githubusercontent.com/u/53175384?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/merveenoyan",
"html_url": "https://github.com/merveenoyan",
"followers_url": "https://api.github.com/users/merveenoyan/followers",
"following_url": "https://api.github.com/users/merveenoyan/following{/other_user}",
"gists_url": "https://api.github.com/users/merveenoyan/gists{/gist_id}",
"starred_url": "https://api.github.com/users/merveenoyan/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/merveenoyan/subscriptions",
"organizations_url": "https://api.github.com/users/merveenoyan/orgs",
"repos_url": "https://api.github.com/users/merveenoyan/repos",
"events_url": "https://api.github.com/users/merveenoyan/events{/privacy}",
"received_events_url": "https://api.github.com/users/merveenoyan/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
closed
| false | null |
[] | null |
[
"@merveenoyan Do you want different files to be splits or configurations?\r\n\r\nFrom [what you specified in `Readme.md`](https://huggingface.co/datasets/inria-soda/tabular-benchmark/commit/fb4575853772c62a20203bdd6cc0202f5db4ce4e) I hypothesize that you want to have 4 **configs** corresponding to directories: `\"clf_cat\", \"clf_num\", \"reg_cat\", \"reg_num\"`. And inside each config you require to have as many splits as there are `csv` files\r\nso if you run \r\n```python\r\nload_dataset(\"inria-soda/tabular-benchmark\", \"clf_cat\", split=\"compass\")\r\n```\r\nyou will generate the data only from `compass.csv` file.\r\nIn this case, running `load_dataset(\"inria-soda/tabular-benchmark\", \"clf_cat\"`) without split parameter will return `DatasetDict` object with `\"KDDCup09_upselling\", \"cat_compass\", \"cat_covertype\", ... \"road_safety\"` keys (which values are splits - `Dataset` objects)\r\n\r\n**or**\r\ndo you want each file to be a separate config? Like:\r\n```python\r\nload_dataset(\"inria-soda/tabular-benchmark\", \"clf_cat_compass\") # returns DatasetDict with a single \"train\" split\r\n```\r\n**or**\r\nmaybe smth completely different? :smile: \r\n\r\nAnyway, now I have an impression that this is probably rather a matter of automatically inferring configs from repository structure rather than providing parameters in metadata yaml.\r\n",
"@polinaeterna I want the latter where you can think of every CSV file as a config, like MNLI from GLUE.",
"@merveenoyan @lhoestq I see two solutions to this case. \r\n1. Parse configurations automatically from directories names. That is, if you have data structure like:\r\n```\r\ntabular-benchmark\r\n └─clf_cat_compass\r\n └─compass.csv\r\n └─clf_cat_cat_covertype\r\n └─covertype.csv\r\n ...\r\n └─reg_cat_house_sales\r\n └─house_sales.csv\r\n```\r\nyou'll get \"clf_cat_compass\", \"clf_cat_cat_covertype\", ... \"reg_cat_house_sales\" configurations that would contain **only files from corresponding directories**. \r\n**\\+** this is a requested change and needed in general and would solve other problems, see https://github.com/huggingface/datasets/issues/4578, would also help with https://github.com/huggingface/datasets/pull/5213 which I'm working on currently\r\n**\\+** would allow users to do just `load_dataset(“inria-soda/tabular-benchmark”, “clf_cat_compass”)`, no `data_files` param required\r\n**\\-** in this specific case it would require restructuring of the data - putting each file in a directory named as a config name (to me personally it doesn't seem to be a big deal) \r\n\r\n2. More or less what we discussed before - add support for manually specifying parameters in the metadata. We can add new metadata yaml field (say, `\"custom_configs_info\"`), so that we can provide smth like:\r\n```yaml\r\n---\r\n...\r\ndataset_info:\r\n ... \r\ncustom_configs_info:\r\n- config_name: reg_cat_house_sales\r\n data_files:\r\n - reg_cat/house_sales.csv\r\n- config_name: clf_cat_compass\r\n data_files:\r\n - clf_cat/compass.csv\r\n...\r\n---\r\n```\r\n**\\+** Would be useful not only for tabular data and not only for `data_files` parameter - any packaged dataset’s viewer can be customized to use specific, non-default parameters. @merveenoyan do you maybe have any other examples/use cases in mind where you want to provide any specific parameters to the viewer? \r\n**\\-** I'm not sure here but assume that it might require changes in interaction with the viewer on the hub side - to parse these configurations, as they not default configurations (not in `BUILDER_CONFIGS` list). cc @severo But probably this can be solved on the `datasets` side too.\r\n\r\nOverall, I would start from implementing the first solution since it's related to what I'm doing now and is super useful for `datasets` in general. And then if we agree that having more flexibility in providing parameters to the viewer is required, I can implement the second one. Let me know what you think :) ",
"> We can add new metadata yaml field (say, \"custom_configs_info\"), so that we can provide smth like:\r\n\r\nLove it ! Some other ideas to name the \"custom_configs_info\" field: \"configs\", \"parameters\", \"config_args\", \"configurations\"\r\n\r\n> it might require changes in interaction with the viewer on the hub side - to parse these configurations, as they not default configurations (not in BUILDER_CONFIGS list)\r\n\r\nIf we update the `get_dataset_config_names()` function in `datasets` in inspect.py we should be fine - that's what the viewer is using\r\n\r\n> Overall, I would start from implementing the first solution since it's related to what I'm doing now and is super useful for datasets in general. And then if we agree that having more flexibility in providing parameters to the viewer is required, I can implement the second one. Let me know what you think :)\r\n\r\nActually I feel like the second solution includes the first use case you mentioned. If you implement the second solution, then users would just have to add a few lines of YAML and their directories would be considered configurations no ? Maybe there's no need to implement two different logics to do the same thing",
"is there any update on this? 🕵🏻",
"@merveenoyan I haven't started working on this yet, working on adding configs to packaged datasets instead: https://github.com/huggingface/datasets/pull/5213 because this both would allow you to solve your issue and is a frequently requested feature.\r\n\r\nadding arbitrary parameters to yaml would be my next task i think!",
"@merveenoyan ignore my comment above, I'm switching to this task now :D",
"I want to be able to create folders in a model.",
"Addressed in #5331 "
] | 2022-11-07T13:27:16 | 2023-07-21T14:36:02 | 2023-07-21T14:36:01 |
CONTRIBUTOR
| null | null | null |
### Feature request
If you go here: https://huggingface.co/datasets/inria-soda/tabular-benchmark/tree/main you will see bunch of folders that has various CSV files. I’d like dataset viewer to show these files instead of only one dataset like it currently does. (and also people to be able to load them as splits instead of loading through `data_files`)
e.g GLUE has various splits on viewer but it’s too overkill to ask people to implement loading script, so it would be better to let them define these in the README file instead.
Also pinging @polinaeterna @lhoestq @adrinjalali
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5209/reactions",
"total_count": 3,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 2,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5209/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5207
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5207/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5207/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5207/events
|
https://github.com/huggingface/datasets/issues/5207
| 1,437,858,506 |
I_kwDODunzps5Vs_rK
| 5,207 |
Connection error of the HuggingFace's dataset Hub due to SSLError with proxy
|
{
"login": "leemgs",
"id": 82404,
"node_id": "MDQ6VXNlcjgyNDA0",
"avatar_url": "https://avatars.githubusercontent.com/u/82404?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/leemgs",
"html_url": "https://github.com/leemgs",
"followers_url": "https://api.github.com/users/leemgs/followers",
"following_url": "https://api.github.com/users/leemgs/following{/other_user}",
"gists_url": "https://api.github.com/users/leemgs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/leemgs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/leemgs/subscriptions",
"organizations_url": "https://api.github.com/users/leemgs/orgs",
"repos_url": "https://api.github.com/users/leemgs/repos",
"events_url": "https://api.github.com/users/leemgs/events{/privacy}",
"received_events_url": "https://api.github.com/users/leemgs/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false | null |
[] | null |
[
"Hi ! It looks like an issue with your python environment, can you make sure you're able to run GET requests to https://huggingface.co using `requests` in python ?",
"Thanks for your reply. Does this mean that I have to use the `do_dataset `function and the `requests `function to download the dataset from the company's proxy environment?\r\n\r\n\r\n* Reference: \r\n```bash\r\n### How to load this dataset directly with the [datasets](https://github.com/huggingface/datasets) library\r\n\r\n\r\n* https://huggingface.co/datasets/moyix/debian_csrc\r\n\r\n* from datasets import load_dataset\r\ndataset = load_dataset(\"moyix/debian_csrc\")\r\n\r\n\r\n\r\n### Or just clone the dataset repo\r\n\r\n\r\ngit lfs install\r\ngit clone https://huggingface.co/datasets/moyix/debian_csrc\r\n# if you want to clone without large files – just their pointers\r\n# prepend your git clone with the following env var:\r\nGIT_LFS_SKIP_SMUDGE=1\r\n```",
"You can use `requests` to see if downloading a file from the Hugging Face Hub works. If so, then `datasets` should work as well. If not, then you have to find another way using an internet connection that works",
"I resolved this issue by applying to \"unblock websites\" at https://huggingface.com in a corporate network environment with a firewall. \r\n",
"> Hi ! It looks like an issue with your python environment, can you make sure you're able to run GET requests to https://huggingface.co using `requests` in python ?\r\n\r\nyes,but still not work\r\n\r\n\r\n\r\n",
"I read https://github.com/huggingface/datasets/blob/main/src/datasets/load.py, it fail when get the dataset metadata, so download_config has not worked.\r\n```python\r\n hf_api = HfApi(config.HF_ENDPOINT)\r\n try:\r\n dataset_info = hf_api.dataset_info(\r\n repo_id=path,\r\n revision=revision,\r\n token=download_config.token,\r\n timeout=100.0,\r\n )\r\n except Exception as e: # noqa catch any exception of hf_hub and consider that the dataset doesn't exist\r\n if isinstance(\r\n e,\r\n (\r\n OfflineModeIsEnabled,\r\n requests.exceptions.ConnectTimeout,\r\n requests.exceptions.ConnectionError,\r\n ),\r\n ):\r\n raise ConnectionError(f\"Couldn't reach '{path}' on the Hub ({type(e).__name__})\")\r\n```\r\nI configure the huggingface_hub api, use configure_http_backend\r\n```python\r\nfrom huggingface_hub import configure_http_backend\r\ndef backend_factory() -> requests.Session:\r\n session = requests.Session()\r\n session.proxies = proxy\r\n session.verify = False\r\n return session\r\n\r\nconfigure_http_backend(backend_factory=backend_factory)\r\n```\r\nIt works.",
"Even tough it does not look like a certificate error in the error message, I had the same error and adding following lines to my code solved my problem.\r\n\r\nimport os\r\nos.environ['CURL_CA_BUNDLE'] = ''",
"@kuikuikuizzZ Could you please explain where the configuration code is added?"
] | 2022-11-07T06:56:23 | 2024-02-28T02:48:23 | null |
NONE
| null | null | null |
### Describe the bug
It's weird. I could not normally connect the dataset Hub of HuggingFace due to a SSLError in my office.
Even when I try to connect using my company's proxy address (e.g., http_proxy and https_proxy),
I'm getting the SSLError issue. What should I do to download the datanet stored in HuggingFace normally?
I welcome any comments. I think those comments will be helpful to me.
* Dataset address - https://huggingface.co/datasets/moyix/debian_csrc/viewer/moyix--debian_csrc
* Log message
```
............ OMISSION ..............
Traceback (most recent call last):
File "/data/home/geunsik-lim/qtlab/./transformers/examples/pytorch/language-modeling/run_clm.py", line 587, in <module>
main()
File "/data/home/geunsik-lim/qtlab/./transformers/examples/pytorch/language-modeling/run_clm.py", line 278, in main
raw_datasets = load_dataset(
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1719, in load_dataset
builder_instance = load_dataset_builder(
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1497, in load_dataset_builder
dataset_module = dataset_module_factory(
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1222, in dataset_module_factory
raise e1 from None
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1179, in dataset_module_factory
raise ConnectionError(f"Couldn't reach '{path}' on the Hub ({type(e).__name__})")
ConnectionError: Couldn't reach 'moyix/debian_csrc' on the Hub (SSLError)
[2022-11-07 15:23:38,476] [INFO] [launch.py:318:sigkill_handler] Killing subprocess 6760
[2022-11-07 15:23:38,476] [ERROR] [launch.py:324:sigkill_handler] ['/home/geunsik-lim/anaconda3/envs/deepspeed/bin/python', '-u', './transformers/examples/pytorch/language-modeling/run_clm.py', '--local_rank=0', '--model_name_or_path=Salesforce/codegen-350M-multi', '--per_device_train_batch_size=1', '--learning_rate', '2e-5', '--num_train_epochs', '1', '--output_dir=./codegen-350M-finetuned', '--overwrite_output_dir', '--dataset_name', 'moyix/debian_csrc', '--cache_dir', '/data/home/geunsik-lim/.cache', '--tokenizer_name', 'Salesforce/codegen-350M-multi', '--block_size', '2048', '--gradient_accumulation_steps', '32', '--do_train', '--fp16', '--deepspeed', 'ds_config_zero2.json'] exits with return code = 1
real 0m7.742s
user 0m4.930s
```
### Steps to reproduce the bug
Steps to reproduce this behavior.
```
(deepspeed) geunsik-lim@ai02:~/qtlab$ ./test_debian_csrc_dataset.py
Traceback (most recent call last):
File "/data/home/geunsik-lim/qtlab/./test_debian_csrc_dataset.py", line 6, in <module>
dataset = load_dataset("moyix/debian_csrc")
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1719, in load_dataset
builder_instance = load_dataset_builder(
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1497, in load_dataset_builder
dataset_module = dataset_module_factory(
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1222, in dataset_module_factory
raise e1 from None
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1179, in dataset_module_factory
raise ConnectionError(f"Couldn't reach '{path}' on the Hub ({type(e).__name__})")
ConnectionError: Couldn't reach 'moyix/debian_csrc' on the Hub (SSLError)
(deepspeed) geunsik-lim@ai02:~/qtlab$
(deepspeed) geunsik-lim@ai02:~/qtlab$
(deepspeed) geunsik-lim@ai02:~/qtlab$
(deepspeed) geunsik-lim@ai02:~/qtlab$ cat ./test_debian_csrc_dataset.py
#!/usr/bin/env python
from datasets import load_dataset
dataset = load_dataset("moyix/debian_csrc")
```
1. Adde proxy address of a company in /etc/profile
2. Download dataset with load_dataset() function of datasets package that is provided by HuggingFace.
3. In this case, the address would be "moyix--debian_csrc".
4. I get the "`ConnectionError: Couldn't reach 'moyix/debian_csrc' on the Hub (SSLError`)" error message.
### Expected behavior
* error message:
ConnectionError: Couldn't reach 'moyix/debian_csrc' on the Hub (SSLError)
### Environment info
* software version information:
```
(deepspeed) geunsik-lim@ai02:~$
(deepspeed) geunsik-lim@ai02:~$ conda list -f pytorch
# packages in environment at /home/geunsik-lim/anaconda3/envs/deepspeed:
#
# Name Version Build Channel
pytorch 1.13.0 py3.10_cuda11.7_cudnn8.5.0_0 pytorch
(deepspeed) geunsik-lim@ai02:~$ conda list -f python
# packages in environment at /home/geunsik-lim/anaconda3/envs/deepspeed:
#
# Name Version Build Channel
python 3.10.6 haa1d7c7_1
(deepspeed) geunsik-lim@ai02:~$ conda list -f datasets
# packages in environment at /home/geunsik-lim/anaconda3/envs/deepspeed:
#
# Name Version Build Channel
datasets 2.6.1 py_0 huggingface
(deepspeed) geunsik-lim@ai02:~$ uname -a
Linux ai02 5.4.0-131-generic #147-Ubuntu SMP Fri Oct 14 17:07:22 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
(deepspeed) geunsik-lim@ai02:~$ cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=20.04
DISTRIB_CODENAME=focal
DISTRIB_DESCRIPTION="Ubuntu 20.04.5 LTS"
```
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5207/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5207/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5206
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5206/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5206/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5206/events
|
https://github.com/huggingface/datasets/issues/5206
| 1,437,223,894 |
I_kwDODunzps5VqkvW
| 5,206 |
Use logging instead of printing to console
|
{
"login": "bilelomrani1",
"id": 16692099,
"node_id": "MDQ6VXNlcjE2NjkyMDk5",
"avatar_url": "https://avatars.githubusercontent.com/u/16692099?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bilelomrani1",
"html_url": "https://github.com/bilelomrani1",
"followers_url": "https://api.github.com/users/bilelomrani1/followers",
"following_url": "https://api.github.com/users/bilelomrani1/following{/other_user}",
"gists_url": "https://api.github.com/users/bilelomrani1/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bilelomrani1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bilelomrani1/subscriptions",
"organizations_url": "https://api.github.com/users/bilelomrani1/orgs",
"repos_url": "https://api.github.com/users/bilelomrani1/repos",
"events_url": "https://api.github.com/users/bilelomrani1/events{/privacy}",
"received_events_url": "https://api.github.com/users/bilelomrani1/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Actually upon closer inspection, it is documented in the code that this behavior is intentional, so I'll close this."
] | 2022-11-05T23:48:02 | 2022-11-06T00:06:00 | 2022-11-06T00:05:59 |
NONE
| null | null | null |
### Describe the bug
Some logs ([here](https://github.com/huggingface/datasets/blob/4a6e1fe2735505efc7e3a3dbd3e1835da0702575/src/datasets/builder.py#L778), [here](https://github.com/huggingface/datasets/blob/4a6e1fe2735505efc7e3a3dbd3e1835da0702575/src/datasets/builder.py#L786), and [here](https://github.com/huggingface/datasets/blob/4a6e1fe2735505efc7e3a3dbd3e1835da0702575/src/datasets/builder.py#L830)) generated by the `DatasetBuilder` are printed to the console instead of passed to `datasets` logger.
### Steps to reproduce the bug
```python
>> import datasets
>> datasets.load_dataset("some-dataset")
Downloading and preparing dataset csv/data to <path>...
Downloading data files: 100%|██████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 7729.06it/s]
Extracting data files: 100%|████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 527.23it/s]
Dataset csv downloaded and prepared to <path>. Subsequent calls will reuse this data.
```
### Expected behavior
The logs should not be printed to the console directly but passed to the logger so that the user can redirect them wherever he wants.
### Environment info
- `datasets` version: 2.6.1
- Platform: macOS-13.0-x86_64-i386-64bit
- Python version: 3.9.15
- PyArrow version: 10.0.0
- Pandas version: 1.5.1
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5206/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5206/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5204
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5204/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5204/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5204/events
|
https://github.com/huggingface/datasets/issues/5204
| 1,437,221,259 |
I_kwDODunzps5VqkGL
| 5,204 |
`push_to_hub` not propagating `token` through `DownloadConfig`
|
{
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false |
{
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"#self-assign",
"@lhoestq can you close this issue as part of the recent #5205 merge? Thanks 🤗 ",
"Thank you :)"
] | 2022-11-05T23:32:20 | 2022-11-08T10:12:09 | 2022-11-08T10:12:08 |
CONTRIBUTOR
| null | null | null |
### Describe the bug
When trying to upload a new 🤗 Dataset to the Hub via Python, and providing the `token` as a parameter to the `Dataset.push_to_hub` function, it just works for the first time, assuming that the dataset didn't exist before.
But when trying to run `Dataset.push_to_hub` again over the same dataset, instead of updating it, it throws a `ConnectionError` when trying to retrieve the `README.md` that may contain some metadata about the dataset, so as to also update it, but since the `token` is not propagated, the `DownloadConfig` provided to the `datasets.utils.file_utils.get_from_cache` function doesn't contain the `use_auth_token` value set to `token`, it's just using the default one which is None/False.
So on, when uploading a dataset via Python with `push_to_hub` with the `token` as a parameter with the HuggingFace API Token as value, it can just be uploaded when the dataset is new, otherwise it fails with to `ConnectionError` due to the `token` not being propagated as `use_auth_token`.
### Steps to reproduce the bug
Let's create a new dataset in our HF account via Python as:
```python
from datasets import Dataset
data = {"a": [1, 2, 3], "b": [4, 5, 6]}
ds = Dataset.from_dict(data)
ds.push_to_hub(repo_id=<HF_USERNAME>/<HF_DATASET>, private=private, token=<HF_TOKEN_HERE>)
```
When we create the `Dataset` for the first time it works and there are no issues, but when trying to actually upload a new version of the same dataset (same name under the same username), we encounter the following issue:
```python
from datasets import Dataset
data = {"a": [1, 2, 3], "b": [4, 5, 6]}
ds = Dataset.from_dict(data)
ds.push_to_hub(repo_id=<HF_USERNAME>/<HF_DATASET>, private=private, token=<HF_TOKEN_HERE>)
>>> ConnectionError: Couldn't reach https://huggingface.co/datasets/alvarobartt/demo/resolve/main/README.md (ConnectionError('Unauthorized for URL https://huggingface.co/datasets/<HF_USERNAME>/<HF_DATASET>/resolve/main/README.md. Please use the parameter `use_auth_token=True` after logging in with `huggingface-cli login`'))
```
### Expected behavior
Ideally, the `token` parameter provided to `push_to_hub` should be propagated and used to download the `README.md` when trying to update a `Dataset`, instead of throwing that exception, so that the authentication can be done directly through code without running `huggingface-cli login`as mentioned at https://huggingface.co/docs/datasets/upload_dataset#upload-with-python.
### Environment info
- `datasets` version: 2.6.1
- Platform: macOS-13.0-arm64-arm-64bit
- Python version: 3.10.8
- PyArrow version: 10.0.0
- Pandas version: 1.5.1
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5204/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5204/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5202
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5202/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5202/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5202/events
|
https://github.com/huggingface/datasets/issues/5202
| 1,435,886,090 |
I_kwDODunzps5VleIK
| 5,202 |
CI fails after bulk edit of canonical datasets
|
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Fixed by: https://huggingface.co/datasets/paws/discussions/1"
] | 2022-11-04T10:51:20 | 2023-02-16T09:11:10 | 2023-02-16T09:11:10 |
MEMBER
| null | null | null |
```
______ test_get_dataset_config_info[paws-labeled_final-expected_splits2] _______
[gw0] linux -- Python 3.7.15 /opt/hostedtoolcache/Python/3.7.15/x64/bin/python
path = 'paws', config_name = 'labeled_final'
expected_splits = ['train', 'test', 'validation']
@pytest.mark.parametrize(
"path, config_name, expected_splits",
[
("squad", "plain_text", ["train", "validation"]),
("dalle-mini/wit", "dalle-mini--wit", ["train"]),
("paws", "labeled_final", ["train", "test", "validation"]),
],
)
def test_get_dataset_config_info(path, config_name, expected_splits):
info = get_dataset_config_info(path, config_name=config_name)
assert info.config_name == config_name
> assert list(info.splits.keys()) == expected_splits
E AssertionError: assert ['test', 'tra... 'validation'] == ['train', 'te... 'validation']
E At index 0 diff: 'test' != 'train'
E Full diff:
E - ['train', 'test', 'validation']
E + ['test', 'train', 'validation']
tests/test_inspect.py:45: AssertionError
_ test_get_dataset_info[paws-expected_configs2-expected_splits_in_first_config2] _
[gw0] linux -- Python 3.7.15 /opt/hostedtoolcache/Python/3.7.15/x64/bin/python
path = 'paws'
expected_configs = ['labeled_final', 'labeled_swap', 'unlabeled_final']
expected_splits_in_first_config = ['train', 'test', 'validation']
@pytest.mark.parametrize(
"path, expected_configs, expected_splits_in_first_config",
[
("squad", ["plain_text"], ["train", "validation"]),
("dalle-mini/wit", ["dalle-mini--wit"], ["train"]),
("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]),
],
)
def test_get_dataset_info(path, expected_configs, expected_splits_in_first_config):
infos = get_dataset_infos(path)
assert list(infos.keys()) == expected_configs
expected_config = expected_configs[0]
assert expected_config in infos
info = infos[expected_config]
assert info.config_name == expected_config
> assert list(info.splits.keys()) == expected_splits_in_first_config
E AssertionError: assert ['test', 'tra... 'validation'] == ['train', 'te... 'validation']
E At index 0 diff: 'test' != 'train'
E Full diff:
E - ['train', 'test', 'validation']
E + ['test', 'train', 'validation']
tests/test_inspect.py:90: AssertionError
______ test_get_dataset_split_names[paws-labeled_final-expected_splits2] _______
[gw0] linux -- Python 3.7.15 /opt/hostedtoolcache/Python/3.7.15/x64/bin/python
path = 'paws', expected_config = 'labeled_final'
expected_splits = ['train', 'test', 'validation']
@pytest.mark.parametrize(
"path, expected_config, expected_splits",
[
("squad", "plain_text", ["train", "validation"]),
("dalle-mini/wit", "dalle-mini--wit", ["train"]),
("paws", "labeled_final", ["train", "test", "validation"]),
],
)
def test_get_dataset_split_names(path, expected_config, expected_splits):
infos = get_dataset_infos(path)
assert expected_config in infos
info = infos[expected_config]
assert info.config_name == expected_config
> assert list(info.splits.keys()) == expected_splits
E AssertionError: assert ['test', 'tra... 'validation'] == ['train', 'te... 'validation']
E At index 0 diff: 'test' != 'train'
E Full diff:
E - ['train', 'test', 'validation']
E + ['test', 'train', 'validation']
```
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5202/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5202/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5200
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5200/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5200/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5200/events
|
https://github.com/huggingface/datasets/issues/5200
| 1,435,831,559 |
I_kwDODunzps5VlQ0H
| 5,200 |
Some links to canonical datasets in the docs are outdated
|
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892861,
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation",
"name": "documentation",
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation"
}
] |
closed
| false | null |
[] | null |
[
"Thanks for catching this, I can go through the docs and replace the links to their corresponding datasets on the Hub!"
] | 2022-11-04T10:06:21 | 2022-11-07T18:40:20 | 2022-11-07T18:40:20 |
CONTRIBUTOR
| null | null | null |
As we don't have canonical datasets in the github repo anymore, some old links to them doesn't work. I don't know how many of them are there, I found link to SuperGlue here: https://huggingface.co/docs/datasets/dataset_script#multiple-configurations, probably there are more of them. These links should be replaced by links to the corresponding datasets on the Hub.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5200/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5200/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5193
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5193/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5193/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5193/events
|
https://github.com/huggingface/datasets/issues/5193
| 1,433,883,780 |
I_kwDODunzps5Vd1SE
| 5,193 |
"One or several metadata. were found, but not in the same directory or in a parent directory"
|
{
"login": "lambda-science",
"id": 20109584,
"node_id": "MDQ6VXNlcjIwMTA5NTg0",
"avatar_url": "https://avatars.githubusercontent.com/u/20109584?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lambda-science",
"html_url": "https://github.com/lambda-science",
"followers_url": "https://api.github.com/users/lambda-science/followers",
"following_url": "https://api.github.com/users/lambda-science/following{/other_user}",
"gists_url": "https://api.github.com/users/lambda-science/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lambda-science/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lambda-science/subscriptions",
"organizations_url": "https://api.github.com/users/lambda-science/orgs",
"repos_url": "https://api.github.com/users/lambda-science/repos",
"events_url": "https://api.github.com/users/lambda-science/events{/privacy}",
"received_events_url": "https://api.github.com/users/lambda-science/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Also unrelated but still: https://huggingface.co/docs/datasets/image_dataset#generate-the-dataset\r\n```If your loading script passed the test, you should now have a dataset_infos.json file in your dataset folder.```\r\nIt's not the case anymore as it's now in the readme.md, it was confusing to me",
"And here is my data loader script: https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data/blob/main/SDH_16k.py\r\nI have one file archive to download that contains the images for all splits and one `metadata.jsonl` to download that contains the informations about what image goes into what split.",
"Hi @lambda-science! It seems that your repo is recognized as a packaged module [ImageFolder](https://huggingface.co/docs/datasets/main/en/image_dataset#imagefolder), not as a dataset with the custom loading script, because loader looks for a script that has the same name as the dataset repo. So please try to rename your script to `MyoQuant-SDH-Data.py`, this should help.",
"> Hi @lambda-science! It seems that your repo is recognized as a packaged module [ImageFolder](https://huggingface.co/docs/datasets/main/en/image_dataset#imagefolder), not as a dataset with the custom loading script, because loader looks for a script that has the same name as the dataset repo. So please try to rename your script to `MyoQuant-SDH-Data.py`, this should help.\r\n\r\nHi !\r\n\r\nThank you for your answer. That was... embarrassingly easy, sorry for this issue, everything is fixed now ! \r\n\r\nHave a nice day ! :)",
"@lambda-science that's not embarrassing at all! it's actually not clear from the documentation that the script should have the same name, so thank you for the issue, we'll add this information to the docs :) "
] | 2022-11-02T22:46:25 | 2022-11-03T13:39:16 | 2022-11-03T13:35:44 |
NONE
| null | null | null |
### Describe the bug
When loading my own dataset, on loading it I get an error.
Here is my dataset link: https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data
And the error after loading with:
```python
from datasets import load_dataset
load_dataset("corentinm7/MyoQuant-SDH-Data")
```
```python
Downloading readme: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3.34k/3.34k [00:00<00:00, 4.45MB/s]
Using custom data configuration SDH_16k-53e7301a92ab0025
Downloading and preparing dataset None/SDH_16k to /home/corentin/.cache/huggingface/datasets/corentinm7___imagefolder/SDH_16k-53e7301a92ab0025/0.0.0/37fbb85cc714a338bea574ac6c7d0b5be5aff46c1862c1989b20e0771199e93f...
Downloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3.28M/3.28M [00:00<00:00, 4.31MB/s]
Downloading data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.75s/it]
Downloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1.13G/1.13G [00:15<00:00, 74.3MB/s]
Downloading data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:16<00:00, 16.09s/it]
Extracting data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:13<00:00, 13.16s/it]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/corentin/code-project/hugging_face_play/.venv/lib/python3.10/site-packages/datasets/load.py", line 1742, in load_dataset
builder_instance.download_and_prepare(
File "/home/corentin/code-project/hugging_face_play/.venv/lib/python3.10/site-packages/datasets/builder.py", line 814, in download_and_prepare
self._download_and_prepare(
File "/home/corentin/code-project/hugging_face_play/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1423, in _download_and_prepare
super()._download_and_prepare(
File "/home/corentin/code-project/hugging_face_play/.venv/lib/python3.10/site-packages/datasets/builder.py", line 905, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/corentin/code-project/hugging_face_play/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1374, in _prepare_split
for key, record in logging.tqdm(
File "/home/corentin/code-project/hugging_face_play/.venv/lib/python3.10/site-packages/tqdm/std.py", line 1195, in __iter__
for obj in iterable:
File "/home/corentin/code-project/hugging_face_play/.venv/lib/python3.10/site-packages/datasets/packaged_modules/folder_based_builder/folder_based_builder.py", line 394, in _generate_examples
raise ValueError(
ValueError: One or several metadata. were found, but not in the same directory or in a parent directory of /home/corentin/.cache/huggingface/datasets/downloads/extracted/60c4aa8d4da3065bb3d310de4373dffd73bd4dc331aedcb4ee867febe4fdb7cd/validation/sick/2_CG_SDH_TAM_Bin1cKO_ko_pla_4_1640.tif.
```
However the test command is working fine. ```datasets-cli test hugging_face_play/ds_test/SDH_16k.py --save_info --all_configs --force_redownload```
```
Using custom data configuration SDH_16k
Testing builder 'SDH_16k' (1/1)
Downloading and preparing dataset sdh_16k/SDH_16k to /home/corentin/.cache/huggingface/datasets/sdh_16k/SDH_16k/1.0.0/21b584239a638aeeda33cba1ac2ca4869d48e4b4f20fb22274d5a5ddc487659d...
Downloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1.13G/1.13G [00:14<00:00, 76.5MB/s]
Downloading data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:15<00:00, 15.66s/it]
Downloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3.28M/3.28M [00:02<00:00, 1.44MB/s]
Downloading data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:03<00:00, 3.21s/it]
Downloading data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 11586.48it/s]
Extracting data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:13<00:00, 13.42s/it]
Dataset sdh_16k downloaded and prepared to /home/corentin/.cache/huggingface/datasets/sdh_16k/SDH_16k/1.0.0/21b584239a638aeeda33cba1ac2ca4869d48e4b4f20fb22274d5a5ddc487659d. Subsequent calls will reuse this data.
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 605.27it/s]
Dataset card saved at hugging_face_play/ds_test/README.md
Test successful.
```
### Steps to reproduce the bug
Simply run on python
```python
from datasets import load_dataset
load_dataset("corentinm7/MyoQuant-SDH-Data")
```
### Expected behavior
As the test command worked, this error should not appear
### Environment info
- `datasets` version: 2.6.1
- Platform: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31
- Python version: 3.10.6
- PyArrow version: 10.0.0
- Pandas version: 1.5.1
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5193/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5193/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5190
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5190/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5190/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5190/events
|
https://github.com/huggingface/datasets/issues/5190
| 1,433,014,626 |
I_kwDODunzps5VahFi
| 5,190 |
`path` is `None` when downloading a custom audio dataset from the Hub
|
{
"login": "lewtun",
"id": 26859204,
"node_id": "MDQ6VXNlcjI2ODU5MjA0",
"avatar_url": "https://avatars.githubusercontent.com/u/26859204?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lewtun",
"html_url": "https://github.com/lewtun",
"followers_url": "https://api.github.com/users/lewtun/followers",
"following_url": "https://api.github.com/users/lewtun/following{/other_user}",
"gists_url": "https://api.github.com/users/lewtun/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lewtun/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lewtun/subscriptions",
"organizations_url": "https://api.github.com/users/lewtun/orgs",
"repos_url": "https://api.github.com/users/lewtun/repos",
"events_url": "https://api.github.com/users/lewtun/events{/privacy}",
"received_events_url": "https://api.github.com/users/lewtun/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Hi! Yes, this is expected behavior - we do this as a security measure to not leak local paths (this info would be useless on other users' machines anyways) and only push audio bytes. \r\n"
] | 2022-11-02T11:51:25 | 2022-11-02T12:55:02 | 2022-11-02T12:55:02 |
MEMBER
| null | null | null |
### Describe the bug
I've created an [audio dataset](https://huggingface.co/datasets/lewtun/audio-test-push) using the `audiofolder` feature desribed in the [docs](https://huggingface.co/docs/datasets/audio_dataset#audiofolder) and then pushed it to the Hub.
Locally, I can see the `audio.path` feature is of the expected form `path/to/data_dir`, but when I download the dataset from the Hub, I see `audio.path` is `None`
Here's an example:
```python
from datasets import load_dataset
ds = load_dataset("lewtun/audio-test-push")
ds["train"][0]
# {
# "audio": {
# "path": None, <-- Is this expected?
# "array": array(
# [
# 3.97140226e-07,
# 7.30310290e-07,
# 7.56406735e-07,
# ...,
# -1.19636677e-01,
# -1.16811886e-01,
# -1.12441722e-01,
# ]
# ),
# "sampling_rate": 44100,
# },
# "song_id": 0,
# "genre_id": 0,
# "genre": "Electronic",
# }
```
Is this expected behaviour? If yes, feel free to close this issue as it's not a true bug then :)
### Steps to reproduce the bug
1. Create an audio dataset with the `audiofolder` feature
2. Push the dataset to the Hub with `push_to_hub()`
3. Download the Hub dataset and inspect the `audio.path` feature
### Expected behavior
`audio.path` points to the file associated with the audio data
### Environment info
- `datasets` version: 2.6.2.dev0
- Platform: macOS-10.16-x86_64-i386-64bit
- Python version: 3.8.13
- PyArrow version: 9.0.0
- Pandas version: 1.5.1
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5190/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5190/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5189
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5189/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5189/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5189/events
|
https://github.com/huggingface/datasets/issues/5189
| 1,432,769,143 |
I_kwDODunzps5VZlJ3
| 5,189 |
Reduce friction in tabular dataset workflow by eliminating having splits when dataset is loaded
|
{
"login": "merveenoyan",
"id": 53175384,
"node_id": "MDQ6VXNlcjUzMTc1Mzg0",
"avatar_url": "https://avatars.githubusercontent.com/u/53175384?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/merveenoyan",
"html_url": "https://github.com/merveenoyan",
"followers_url": "https://api.github.com/users/merveenoyan/followers",
"following_url": "https://api.github.com/users/merveenoyan/following{/other_user}",
"gists_url": "https://api.github.com/users/merveenoyan/gists{/gist_id}",
"starred_url": "https://api.github.com/users/merveenoyan/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/merveenoyan/subscriptions",
"organizations_url": "https://api.github.com/users/merveenoyan/orgs",
"repos_url": "https://api.github.com/users/merveenoyan/repos",
"events_url": "https://api.github.com/users/merveenoyan/events{/privacy}",
"received_events_url": "https://api.github.com/users/merveenoyan/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
open
| false |
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"I have to admit I'm not a fan of this idea, as this would result in a non-consistent behavior between tabular and non-tabular datasets, which is confusing if done without the context you provided. Instead, we could consider returning a `Dataset` object rather than `DatasetDict` if there is only one split in the generated dataset. But then again, I think this lib is a bit too old to make such changes. @lhoestq @albertvillanova WDYT?\r\n\r\n",
"We can brainstorm here to see how we could make it happen ? And then depending on the options we see if it's a change we can do.\r\n\r\nI'm starting with a first reasoning\r\n\r\nCurrently not passing `split=` in `load_dataset` means \"return a dict with each split\".\r\n\r\nNow what would happen if a dataset has no split ? Ideally it should return one Dataset. And passing `split=` would have no sense. So depending on the dataset content, not passing `split=` should return a dict or a Dataset. In particular, those two cases should work:\r\n```python\r\n# case 1: dataset without split\r\nds = load_dataset(\"dataset_without_split\")\r\nds[0], ds[\"column_name\"], list(ds) # we want this\r\n\r\n# case 2: dataset with splits\r\nds = load_dataset(\"dataset_with_splits\")\r\nds[\"train\"] # this works and can't be changed\r\nds = load_dataset(\"dataset_with_splits\", split=\"train\")\r\nds[0], ds[\"column_name\"], list(ds) # this works and can't be changed\r\n```\r\n\r\nI can see several ideas:\r\n1. allowing `load_dataset` to return a different object based on the dataset content - either a Dataset or a DatasetDict\r\n - we can update `get_dataset_split_names` to return None or a list if users want to know in advance what object will be returned. They can also use `isinstance` _a posteriori_\r\n - but in this case we expect users to be careful when loading datasets and always to extra steps to check if they got a Dataset or DatasetDict\r\n2. merge Dataset and DatasetDict objects\r\n - they already share many functions: map, filter, push_to_hub etc.\r\n - we can define `ds[0]` to be the first item of the first split, and consider that the uses accesses rows from the full table of all the splits concatenated\r\n - however there is a collision when doing `ds[\"column_name\"]` or `ds[\"train\"]` that we need to address: the first returns a list, while the other returns a Dataset.\r\n\r\nWhat are your opinions on those two ideas ? Do you have other ideas in mind ?",
"I like the first idea more (concatenating splits doesn't seem useful, no?). This is a significant breaking change, so I think we should do a poll (or something similar) to gather more info on the actual \"expected behavior\" and wait for Datasets 3.0 if we decide to implement it.\r\n\r\nPS: @thomwolf also suggested the same thing a while ago (https://github.com/huggingface/datasets/issues/743#issuecomment-746074641).",
"I think it's an interesting improvement to the user experience for a case that comes often (no split) so I would definitively support it.\r\n\r\nI would be more in favor of option 2 rather than returning various types of objects from load_dataset and handling carefully the possible collisions indeed",
"Related: if a dataset only has one split, we don't show the splits select control in the dataset viewer on the Hub, eg. compare https://huggingface.co/datasets/hf-internal-testing/fixtures_image_utils/viewer/image/test with https://huggingface.co/datasets/glue/viewer/mnli/test.\r\n\r\nSee https://github.com/huggingface/moon-landing/pull/3858 for more details (internal)",
"I feel like the second idea is a bit more overkill. \r\n@severo I would say it's a bit irrelevant to the problem we have but is a separate problem @polinaeterna is solving at the moment. 😅 (also discussed on slack)",
"OK, sorry for polluting the thread. The relation I saw with the dataset viewer is that from a UX point of view, we hide the concepts of split and configuration whenever possible -> this issue feels like doing the same in the datasets library.",
"I would agree that returning different types based on the content of the dataset might be confusing.\r\n\r\nWe can do something similar to what `fetch_*` or `load_*` from `sklearn.datasets` do, which is to have an arg which changes the type of the returned type. For instance, `load_iris` would return a dict, but `load_iris(..., return_X_y=True)` would return a tuple.\r\n\r\nHere we can have a similar arg such as `return_X` which would then only return a single `DataSet` or an array.",
"> I feel like the second idea is a bit more overkill.\r\n\r\nOverkill in what sense ?\r\n\r\n> Here we can have a similar arg such as return_X which would then only return a single DataSet or an array.\r\n\r\nRight now one can already pass `split=\"all\"` to get one `Dataset` object with all the data in it (unsplit). We could also have something like `return_all=True` so make the API clearer.\r\n\r\n> I would be more in favor of option 2 rather than returning various types of objects from load_dataset and handling carefully the possible collisions indeed\r\n\r\nI think it would be ok to handle the collision by allowing both `ds[\"train\"]` and `ds[\"column_name\"]` (and maybe adding something like `ds.splits` for those who want to iterate over the splits or add new ones)",
"Would it make sense to remove the notion of \"split\" in `load_dataset`? I feel a lof of it comes from the want to have some sort of group of more or less similar dataset. \"train\"/\"test\"/\"validation\" are the traditional ones, but there are some datasets that have much more splits.\r\n\r\nWould it make sense to force `load_dataset` to only load a single `Dataset` object, and fail if it doesn't point to one. And have another method that's like `load_dataset_group_info` that can return a very arbitrary info class (Dict, List whatever), but you need to pass individual infos to `load_dataset` to run anything? Typically I don't think `DatasetDict.map` is really that helpful, but that's my personal opinion. This would help make things more readable (typically knowing if an object is a `Dataset` or a `DatasetDict`)",
"> Would it make sense to remove the notion of \"split\" in load_dataset?\r\n\r\nI think we need to keep it - though in practice people can name the splits whatever they want anyway.\r\n\r\n> Would it make sense to force load_dataset to only load a single Dataset object, and fail if it doesn't point to one.\r\n\r\nWe need to keep backward compatibility ideally - in particular the load_dataset + ds[\"train\"] one",
"> I think we need to keep it - though in practice people can name the splits whatever they want anyway.\r\n\r\nIt was my understanding that the whole issue was that `load_dataset` returned multiple types of objects.\r\n\r\n> We need to keep backward compatibility ideally - in particular the load_dataset + ds[\"train\"] one\r\n\r\nYeah sorry I meant ideally. One can always start developing `load_dataset_v2` can deprecate the first one and remove it in the longer term.",
"> It was my understanding that the whole issue was that load_dataset returned multiple types of objects.\r\n\r\nYes indeed, but we still want to keep a way to load the train/val/test/whatever splits alone ;)",
"@thomasw21's solution is good but it will break backwards compatibility. 😅",
"Started to experiment with merging Dataset and DatasetDict. My plan is to define the splits of a Dataset in Dataset.info.splits (already exists, but never used). A Dataset would then be the concatenation of its splits if they exist.\r\n\r\nNot sure yet this is the way to go. My plan is to play with it and see and share it with you, so we can see if it makes sense from a UX point of view.",
"So just to make sure that I understand the current direction, people will have to be extra careful when handling splits right?\r\nImagine \"potato\" a dataset containing train/validation split:\r\n```\r\nload_dataset(\"potato\") # returns the concatenation of all the splits\r\n```\r\nPreviously the design would force you to choose a split (it would raise otherwise), or manually concat them if you really wanted to play with concatenated splits. Now it would potentially run without raising for a bit of time until you figure out that you've been training on both train and validation split.\r\n\r\nWould it make sense to use a dataset specific default instead of using the concatenation, typically \"potato\" dataset's default would be train?\r\n```\r\nload_dataset(\"potato\") # returns \"train\" split\r\nload_dataset(\"potato\", split=\"train\") # returns \"train\" split\r\nload_dataset(\"potato\", split=\"validation\") # returns \"validation\" split\r\nconcatenate_datasets([load_dataset(\"potato\", split=\"train\"), load_dataset(\"potato\", split=\"validation\")]) # returns concatenation\r\n```",
"> load_dataset(\"potato\") # returns \"train\" split\r\n\r\nTo avoid a breaking change we need to be able to do `load_dataset(\"potato\")[\"validation\"]` as well.\r\n\r\nIn that case I'd wonder where the validation split comes from, since the rows of the dataset wouldn't contain the validation split according to your example. That's why I'm more in favor of concatenating.\r\n\r\nA dataset is one table, that optionally has some split info about subsets (e.g. for training an evaluation)\r\n\r\nThis also allows anyone to re-split the dataset the way they want if they're not happy with the default:\r\n\r\n```python\r\nds = load_dataset(\"potato\").train_test_split(test_size=0.2)\r\ntrain_ds = ds[\"train\"]\r\ntest_ds = ds[\"test\"]\r\n```",
"Just thinking about this, we could just have `to_dataframe()` as `load_dataset(\"blah\").to_dataframe()` to get the whole dataset, and not change anything else.",
"I have a first implementation of option 2 (merging Dataset and DatasetDict) in this PR: https://github.com/huggingface/datasets/pull/5301/\r\n\r\nFeel free to play with it if you're interested, and let me know what you think. In this PR, a dataset is one table that optionally has some split info about subsets.",
"@adrinjalali we already have [to_pandas](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.to_pandas) AFAIK that essentially does the same thing (for a dataset, not for a dataset dict), I was wondering if it makes sense to have this as I don't know portion of people who load non-tabular datasets into dataframes. @lhoestq I saw your PR and it will break a lot of things imo, WDYT of this option? ",
"> we already have [to_pandas](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.to_pandas) AFAIK that essentially does the same thing (for a dataset, not for a dataset dict)\r\n\r\nyes correct :)\r\n\r\n> I saw your PR and it will break a lot of things imo\r\n\r\nDo you have concrete examples you can share ?\r\n\r\n> WDYT of this option?\r\n\r\nThe to_dataframe option ? I think it not enough, since you'd still get a `DatasetDict({\"train\": Dataset()})` if you load a dataset with no splits (e.g. one CSV), and this doesn't really make sense.\r\n\r\nNote that in the PR I opened you can do\r\n```python\r\nds = load_dataset(\"dataset_with_just_one_csv\") # Dataset type\r\ndf = load_dataset(\"dataset_with_just_one_csv\").to_pandas() # DataFrame type\r\n```",
"@lhoestq no I think @adrinjalali and I meant when user calls `to_dataframe` if there's only train split in `DatasetDict` we could directly load that into dataframe. This might cause a confusion given there's to_pandas but I think it's more intuitive and least breaking change. (given people -who use `datasets` for tabular workflows- will eventually call `to_pandas` anyway) ",
"So in that case it would be fine to still end up with a dataset dict with a \"train\" split ?",
"yeah what I mean is this:\r\n\r\n```py\r\ndataset = load_dataset(\"blah\")\r\n\r\n# deal with a split of the dataset\r\ntrain = dataset[\"train\"]\r\ntrain_df = dataset[\"train\"].to_dataframe()\r\n\r\n# deal with the whole dataset\r\ndataset_df = dataset.to_dataframe()\r\n```\r\n\r\nSo we do two things to improve tabular experience:\r\n- allow datasets to have a single split\r\n- add `to_dataframe` to the root dict level so that users can simply call `df = load_dataset(\"blah\").to_dataframe()` and have it in their `pandas.DataFrame` object.",
"Ok ! Note that we already have `Dataset.to_pandas()` so for consistency I'd call it `DatasetDict.to_pandas()` as well, does it sound good to you ? This is something we can add pretty easily",
"yeah that sounds perfect @lhoestq !",
"> So just to make sure that I understand the current direction, people will have to be extra careful when handling splits right?\r\n\r\nWe can raise an error if someone does `load_dataset(...)[0]` if the dataset is made of several splits, and return the first example if there's one or zero splits (i.e. when it's not ambiguous). Had this idea from the dicussions in #5312 WDYT @thomasw21 ?",
"> We can raise an error if someone does load_dataset(...)[0] if the dataset is made of several splits,\r\n\r\nBut then how is that different to have the distinction between DatasetDict and Dataset then? Is it just that \"default behaviour when there are no splits or single split, it returns directly the split when there's no ambiguity\".\r\n\r\nAlso I was wondering how the concatenation could have heavy impacts when running mapping functions/filtering in batch? Typically can batch be somehow mixed?",
"> But then how is that different to have the distinction between DatasetDict and Dataset then?\r\n\r\nBecause it doesn't make sense to be able to do `example = ds[0]` or `examples = list(ds)` on a class named `DatasetDict` of type `Dict[str, Dataset]`.\r\n\r\n> Also I was wondering how the concatenation could have heavy impacts when running mapping functions/filtering in batch? Typically can batch be somehow mixed?\r\n\r\nNo, we run each function on each split separated",
"> Because it doesn't make sense to be able to do example = ds[0] or examples = list(ds) on a class named DatasetDict of type Dict[str, Dataset].\r\n\r\nHum but you're still going to raise an exception in both those cases with your current change no? (actually list(ds) would return the name of the splits no?)\r\n\r\n> No, we run each function on each split separated\r\n\r\nNice!"
] | 2022-11-02T09:15:02 | 2022-12-06T12:13:17 | null |
CONTRIBUTOR
| null | null | null |
### Feature request
Sorry for cryptic name but I'd like to explain using code itself. When I want to load a specific dataset from a repository (for instance, this: https://huggingface.co/datasets/inria-soda/tabular-benchmark)
```python
from datasets import load_dataset
dataset = load_dataset("inria-soda/tabular-benchmark", data_files=["reg_cat/house_sales.csv"], streaming=True)
print(next(iter(dataset["train"])))
```
`datasets` library is essentially designed for people who'd like to use benchmark datasets on various modalities to fine-tune their models, and these benchmark datasets usually have pre-defined train and test splits. However, for tabular workflows, having train and test splits usually ends up model overfitting to validation split so usually the users would like to do validation techniques like `StratifiedKFoldCrossValidation` or when they tune for hyperparameters they do `GridSearchCrossValidation` so often the behavior is to create their own splits. Even [in this paper](https://hal.archives-ouvertes.fr/hal-03723551) a benchmark is introduced but the split is done by authors.
It's a bit confusing for average tabular user to try and load a dataset and see `"train"` so it would be nice if we would not load dataset into a split called `train `by default.
```diff
from datasets import load_dataset
dataset = load_dataset("inria-soda/tabular-benchmark", data_files=["reg_cat/house_sales.csv"], streaming=True)
-print(next(iter(dataset["train"])))
+print(next(iter(dataset)))
```
### Motivation
I explained it above 😅
### Your contribution
I think this is quite a big change that seems small (e.g. how to determine datasets that will not be load to train split?), it's best if we discuss first!
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5189/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5189/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5186
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5186/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5186/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5186/events
|
https://github.com/huggingface/datasets/issues/5186
| 1,432,045,011 |
I_kwDODunzps5VW0XT
| 5,186 |
Incorrect error message when Dataset.from_sql fails and sqlalchemy not installed
|
{
"login": "nateraw",
"id": 32437151,
"node_id": "MDQ6VXNlcjMyNDM3MTUx",
"avatar_url": "https://avatars.githubusercontent.com/u/32437151?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nateraw",
"html_url": "https://github.com/nateraw",
"followers_url": "https://api.github.com/users/nateraw/followers",
"following_url": "https://api.github.com/users/nateraw/following{/other_user}",
"gists_url": "https://api.github.com/users/nateraw/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nateraw/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nateraw/subscriptions",
"organizations_url": "https://api.github.com/users/nateraw/orgs",
"repos_url": "https://api.github.com/users/nateraw/repos",
"events_url": "https://api.github.com/users/nateraw/events{/privacy}",
"received_events_url": "https://api.github.com/users/nateraw/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false |
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Hi! The first `Dataset.from_sql` call also outputs the \"ImportError: Using URI string without sqlalchemy installed.\" message, but you also get \"During handling of the above exception another exception occurred: ...\" after which the ValueError is printed. I agree that this behavior makes it easy to miss the original error. \r\n\r\nI think we can improve this by not throwing the writer's ValueError if the error from a dataset script is already being handled to make debugging easier. @lhoestq @albertvillanova wdyt?",
"Yup ! Alternatively the error can be raised in sql.py before generating the examples ? In `_info` for example",
"yea @lhoestq that would probably be good. The 2nd error is useless if the 1st error is the real reason it failed. "
] | 2022-11-01T20:25:51 | 2022-11-15T18:24:39 | 2022-11-15T18:24:39 |
CONTRIBUTOR
| null | null | null |
### Describe the bug
When calling `Dataset.from_sql` (in my case, with sqlite3), it fails with a message ```ValueError: Please pass `features` or at least one example when writing data``` when I don't have `sqlalchemy` installed.
### Steps to reproduce the bug
Make a new sqlite db with `sqlite3` and `pandas` from a remote [URL](https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv).
```python
import sqlite3
import pandas as pd
from datasets import Dataset
conn = sqlite3.connect('us_covid_data.db')
df = pd.read_csv('https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv')
df.to_sql('states', conn, if_exists='replace')
```
Then if you try to query this DB like this:
```python
ds = Dataset.from_sql('''SELECT * from states WHERE state=="New York";''', "sqlite:///us_covid_data.db")
```
You run into the error I described above:
```ValueError: Please pass `features` or at least one example when writing data```
However, if you try to pass features, as the error suggests, then you get an error that tells you the underlying problem...
```python
from datasets import Dataset, Features, Value
features = Features({
'date': Value('date32'),
'label': Value('string'),
'fips': Value('int32'),
'cases': Value('int32'),
'deaths': Value('int32')
})
ds = Dataset.from_sql(
'''SELECT * from states WHERE state=="New York";''',
"sqlite:///us_covid_data.db",
features=features
)
```
Which results in the actual underlying error: `ImportError: Using URI string without sqlalchemy installed.`
### Expected behavior
Instead of `ValueError` about needing to pass features, we should provide the actual underlying error about not having SQLAlchemy installed when it isn't found in the environment.
### Environment info
- `datasets` version: 2.6.1
- Platform: macOS-10.16-x86_64-i386-64bit
- Python version: 3.8.10
- PyArrow version: 10.0.0
- Pandas version: 1.2.5
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5186/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5186/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5185
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5185/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5185/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5185/events
|
https://github.com/huggingface/datasets/issues/5185
| 1,432,021,611 |
I_kwDODunzps5VWupr
| 5,185 |
Allow passing a subset of output features to Dataset.map
|
{
"login": "sanderland",
"id": 48946947,
"node_id": "MDQ6VXNlcjQ4OTQ2OTQ3",
"avatar_url": "https://avatars.githubusercontent.com/u/48946947?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sanderland",
"html_url": "https://github.com/sanderland",
"followers_url": "https://api.github.com/users/sanderland/followers",
"following_url": "https://api.github.com/users/sanderland/following{/other_user}",
"gists_url": "https://api.github.com/users/sanderland/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sanderland/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanderland/subscriptions",
"organizations_url": "https://api.github.com/users/sanderland/orgs",
"repos_url": "https://api.github.com/users/sanderland/repos",
"events_url": "https://api.github.com/users/sanderland/events{/privacy}",
"received_events_url": "https://api.github.com/users/sanderland/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
open
| false | null |
[] | null |
[] | 2022-11-01T20:07:20 | 2022-11-01T20:07:34 | null |
CONTRIBUTOR
| null | null | null |
### Feature request
Currently, map does one of two things to the features (if I'm not mistaken):
* when you do not pass features, types are assumed to be equal to the input if they can be cast, and inferred otherwise
* when you pass a full specification of features, output features are set to this
However, sometimes you want to just pass some of the output types, particularly when the first of these modes makes an incorrect type. This currently crashes.
### Motivation
To give a little background: this problem appears in converting labels to ids, where the labels happen to be floats rather than strings
Consider the following use of map to convert from float to int
```python
data = Dataset.from_dict({'y':[1.0,2.0,3.0]})
mapped = data.map(lambda r: {'y': int(r['y'])})
mapped['y'] # is floats, not ints
```
The result is a float again, since after the mapping operation it forces the old datatypes back on the data.
Passing `features=Features({"y": Value(dtype="int64")})` to map works in principle, but then extending it a little to e.g.
```python
def format_data(r):
return {**tokenizer(r["text"]), "y": int(r["y"])}
data = Dataset.from_dict({"y": [1.0, 2.0, 3.0], "text": ["one", "two", "three"]})
mapped = data.map(
format_data,
features=Features({'y': Value(dtype="int64")}),
remove_columns=["text"],
)
```
Results in a crash in dataset internals, as it expects either all or no output features to be specified.
Of course one can pass a full feature specification, but this becomes tokenizer specific and very awkward.
### Your contribution
I've looked at `write_batch` and particularly `col_type = features[col] if features else None`, but checking for `col in features` here makes it fail elsewhere, but the structure makes it hard to understand how and why. I do not think I would have the time myself to get to the bottom of this anytime soon.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5185/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5185/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5183
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5183/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5183/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5183/events
|
https://github.com/huggingface/datasets/issues/5183
| 1,431,418,066 |
I_kwDODunzps5VUbTS
| 5,183 |
Loading an external dataset in a format similar to conll2003
|
{
"login": "Taghreed7878",
"id": 112555442,
"node_id": "U_kgDOBrV1sg",
"avatar_url": "https://avatars.githubusercontent.com/u/112555442?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Taghreed7878",
"html_url": "https://github.com/Taghreed7878",
"followers_url": "https://api.github.com/users/Taghreed7878/followers",
"following_url": "https://api.github.com/users/Taghreed7878/following{/other_user}",
"gists_url": "https://api.github.com/users/Taghreed7878/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Taghreed7878/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Taghreed7878/subscriptions",
"organizations_url": "https://api.github.com/users/Taghreed7878/orgs",
"repos_url": "https://api.github.com/users/Taghreed7878/repos",
"events_url": "https://api.github.com/users/Taghreed7878/events{/privacy}",
"received_events_url": "https://api.github.com/users/Taghreed7878/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[] | 2022-11-01T13:18:29 | 2022-11-02T11:57:50 | 2022-11-02T11:57:50 |
NONE
| null | null | null |
I'm trying to load a custom dataset in a Dataset object, it's similar to conll2003 but with 2 columns only (word entity), I used the following script:
features = datasets.Features(
{"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=["B-PER", .... etc.]))}
)
from datasets import Dataset
INPUT_COLUMNS = "tokens ner_tags".split(" ")
def read_conll(file):
#all_labels = []
example = {col: [] for col in INPUT_COLUMNS}
idx = 0
with open(file) as f:
for line in f:
if line:
if line.startswith("-DOCSTART-") and example["tokens"] != []:
print(idx, example)
yield idx, example
idx += 1
example = {col: [] for col in INPUT_COLUMNS}
elif line == "\n" or (line.startswith("-DOCSTART-") and example["tokens"] == []):
continue
else:
row_cols = line.split(" ")
for i, col in enumerate(example):
example[col] = row_cols[i].rstrip()
dset = Dataset.from_generator(read_conll, gen_kwargs={"file": "/content/new_train.txt"}, features = features)
The following error happened:
[/usr/local/lib/python3.7/dist-packages/datasets/utils/py_utils.py](https://localhost:8080/#) in <genexpr>(.0)
285 for key in unique_values(itertools.chain(*dicts)): # set merge all keys
286 # Will raise KeyError if the dict don't have the same keys
--> 287 yield key, tuple(d[key] for d in dicts)
288
TypeError: tuple indices must be integers or slices, not str
What does this mean and what should I modify?
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5183/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5183/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5182
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5182/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5182/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5182/events
|
https://github.com/huggingface/datasets/issues/5182
| 1,431,029,547 |
I_kwDODunzps5VS8cr
| 5,182 |
Add notebook / other resource links to the task-specific data loading guides
|
{
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
closed
| false |
{
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Yea this would be great! We would need an object detection tutorial notebook too if it doesn't already exist there. ",
"There is one: https://huggingface.co/docs/datasets/object_detection.\r\n\r\nI will start the work. "
] | 2022-11-01T07:57:26 | 2022-11-03T01:49:57 | 2022-11-03T01:49:57 |
MEMBER
| null | null | null |
Does it make sense to include links to notebooks / scripts that show how to use a dataset for training / fine-tuning a model?
For example, here in [https://huggingface.co/docs/datasets/image_classification] we could include a mention of https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb.
Applies to https://huggingface.co/docs/datasets/object_detection as well.
Cc: @osanseviero @nateraw
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5182/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5182/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5181
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5181/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5181/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5181/events
|
https://github.com/huggingface/datasets/issues/5181
| 1,431,027,102 |
I_kwDODunzps5VS72e
| 5,181 |
Add a guide for semantic segmentation
|
{
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892861,
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation",
"name": "documentation",
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation"
}
] |
closed
| false |
{
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Sure this sounds great! Would this be pure torchvision, albumentations, or something else?",
"I am considering `torchvision` and `albumentations`. Also [works with TensorFlow](https://github.com/deep-diver/segformer-tf-transformers/blob/main/notebooks/TFSegFormer_Finetune.ipynb). \r\n\r\nI am assigning the issue to myself then. "
] | 2022-11-01T07:54:50 | 2022-11-04T18:23:36 | 2022-11-04T18:23:36 |
MEMBER
| null | null | null |
Currently, we have these guides for object detection and image classification:
* https://huggingface.co/docs/datasets/object_detection
* https://huggingface.co/docs/datasets/image_classification
I am proposing adding a similar guide for semantic segmentation.
I am happy to contribute a PR for it.
Cc: @osanseviero @nateraw
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5181/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5181/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5180
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5180/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5180/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5180/events
|
https://github.com/huggingface/datasets/issues/5180
| 1,431,012,438 |
I_kwDODunzps5VS4RW
| 5,180 |
An example or recommendations for creating large image datasets?
|
{
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false | null |
[] | null |
[
"The beam utilities allow to prepare a dataset as parquet in your cloud storage. From my perspective this CLI is not super easy to use, but we've been working on a new python API to prepare a dataset in your cloud storage:\r\n```python\r\nfrom datasets import load_dataset_builder\r\n\r\nbuilder = load_dataset_builder(\"c4\", \"en\")\r\nbuilder.download_and_prepapre(\"s3://my-bucket/c4\", file_format=\"parquet\")\r\n```\r\n\r\nAnd to use Beam you can do:\r\n```python\r\nbeam_runner = ... # one of \"SparkRunner\", \"DataFlowRunner\", \"DirectRunner\", etc.\r\nbeam_options = ...\r\n\r\nbuilder.download_and_prepapre(\r\n \"s3://my-bucket/c4\",\r\n file_format=\"parquet\",\r\n beam_runner=beam_runner,\r\n beam_options=beam_options\r\n)\r\n```\r\n\r\nThough Beam can be used ONLY if there is a dataset script based on the `BeamBasedBuilder` right now - it doesn't work on an arbitrary dataset (see [wikipedia.py](https://huggingface.co/datasets/wikipedia/blob/main/wikipedia.py) for example).",
"Thanks! \r\n\r\nWould be nice to have something similar for creating large image datasets. "
] | 2022-11-01T07:38:38 | 2022-11-02T10:17:11 | null |
MEMBER
| null | null | null |
I know that Apache Beam and `datasets` have [some connector utilities](https://huggingface.co/docs/datasets/beam). But it's a little unclear what we mean by "But if you want to run your own Beam pipeline with Dataflow, here is how:". What does that pipeline do?
As a user, I was wondering if we have this support for creating large image datasets. If so, we should mention that [here](https://huggingface.co/docs/datasets/image_dataset).
Cc @lhoestq
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5180/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5180/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5179
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5179/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5179/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5179/events
|
https://github.com/huggingface/datasets/issues/5179
| 1,430,826,100 |
I_kwDODunzps5VSKx0
| 5,179 |
`map()` fails midway due to format incompatibility
|
{
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] |
closed
| false | null |
[] | null |
[
"Cc: @lhoestq ",
"You can end up with a list instead of a tensor if all the tensors inside the list can't be stacked together - can you make sure all your inputs are tensors with the same shape ?",
"Is there an easy way to ensure it?",
"You can make sure your `tokenize` function always return tensors of the same shape",
"I modified my `tokenize()` function to be like so:\r\n\r\n```py\r\ndef tokenize(batch):\r\n return tokenizer(batch[\"text\"], padding=\"longest\")\r\n```\r\n\r\nso that the padding always happens w.r.t to the length of the longest sequence in a batch. The issue still persists. Is there any other way? ",
"tbh I though your first implementation was fine\r\n```python\r\ndef tokenize(batch):\r\n return tokenizer(batch[\"text\"], padding=True, truncation=True)\r\n```\r\n\r\nMaybe you can try to see what the erroring data looks like by adding a try/except in `get_test_accuracy` ?",
"This is what I got. \r\n\r\nFor the non-erroring data, it looks like (without the labels):\r\n\r\n```\r\ntensor([[ 101, 10047, 3110, ..., 0, 0, 0],\r\n [ 101, 1045, 2514, ..., 0, 0, 0],\r\n [ 101, 1045, 2514, ..., 0, 0, 0],\r\n ...,\r\n [ 101, 1045, 2005, ..., 0, 0, 0],\r\n [ 101, 1045, 2572, ..., 0, 0, 0],\r\n [ 101, 10047, 7481, ..., 0, 0, 0]]) 128\r\ntensor([[1, 1, 1, ..., 0, 0, 0],\r\n [1, 1, 1, ..., 0, 0, 0],\r\n [1, 1, 1, ..., 0, 0, 0],\r\n ...,\r\n [1, 1, 1, ..., 0, 0, 0],\r\n [1, 1, 1, ..., 0, 0, 0],\r\n [1, 1, 1, ..., 0, 0, 0]]) 128\r\n```\r\n\r\nFor the erroring part:\r\n\r\n```\r\n[tensor([ 101, 1045, 2064, 2102, 2393, 3110, 2066, 2242, 6355, 3047, 2004, 2574,\r\n 2004, 1996, 8629, 2357, 2125, 4299, 1045, 2071, 2424, 2009, 2006, 7858,\r\n 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r\n 0, 0, 0, 0, 0, 0]), tensor([ 101, 10047, 5458, 1997, 3110, 11654, 1998, 11055, 102, 0,\r\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r\n 0, 0, 0, 0, 0, 0]), tensor([ 101, 1045, 2074, 2064, 2102, 6073, 1996, 3110, 2008, 2026,\r\n 14982, 2000, 5587, 2203, 16650, 29563, 2030, 2569, 4506, 2052,\r\n 2191, 1037, 2738, 11552, 2208, 17044, 14540, 2100, 3375, 102,\r\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r\n 0, 0, 0, 0, 0, 0]),\r\n...\r\n\r\n[tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\r\n 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),\r\n...\r\n```\r\n\r\nI also tried investigating the shapes of the individual entries within a `batch` without the labels:\r\n\r\n```py\r\ndef get_test_accuracy(model):\r\n def fn(batch): \r\n try:\r\n inputs = {k:v.to(device) for k,v in batch.items() \r\n if k in tokenizer.model_input_names}\r\n with torch.no_grad():\r\n output = model(**inputs)\r\n pred_label = torch.argmax(output.logits, axis=-1)\r\n return {\"predicted_label\": pred_label.cpu().numpy()}\r\n except:\r\n for k in batch:\r\n if k != \"label\":\r\n for i in range(len(batch[k])):\r\n print(batch[k][i].shape)\r\n return fn\r\n```\r\n\r\nThey are:\r\n\r\n```\r\n...\r\ntorch.Size([66])\r\ntorch.Size([66])\r\ntorch.Size([66])\r\ntorch.Size([66])\r\ntorch.Size([66])\r\ntorch.Size([66])\r\ntorch.Size([66])\r\ntorch.Size([66])\r\ntorch.Size([66])\r\ntorch.Size([66])\r\ntorch.Size([66])\r\ntorch.Size([66])\r\ntorch.Size([66])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\ntorch.Size([69])\r\n```\r\n\r\nThere are differing shapes. I understand if I set `batch_size=None` in `emotions_encoded = emotions.map(tokenize, batched=True)` the problem should be fixed as the whole dataset would be treated as a single batch. But is there a way to do that in batches? ",
"If you use the same batch_size for your two maps, you should get the exact same batches - therefore all containing the same shapes",
"Oh I see. Thanks. Closing this issue. "
] | 2022-11-01T03:57:59 | 2022-11-08T11:35:26 | 2022-11-08T11:35:26 |
MEMBER
| null | null | null |
### Describe the bug
I am using the `emotion` dataset from Hub for sequence classification. After training the model, I am using it to generate predictions for all the entries present in the `validation` split of the dataset.
```py
def get_test_accuracy(model):
def fn(batch):
inputs = {k:v.to(device) for k,v in batch.items()
if k in tokenizer.model_input_names}
with torch.no_grad():
output = model(**inputs)
pred_label = torch.argmax(output.logits, axis=-1)
return {"predicted_label": pred_label.cpu().numpy()}
return fn
```
This is how the `get_test_accuracy()` is being used:
```py
emotions = load_dataset("emotion")
def tokenize(batch):
return tokenizer(batch["text"], padding=True, truncation=True)
emotions_encoded = emotions.map(tokenize, batched=True)
emotions_encoded.set_format("torch",
columns=["input_ids", "attention_mask", "label"])
new_dataset = emotions_encoded["validation"].map(
accuracy_fn, batched=True, batch_size=128
)
```
Complete code is available in the Colab Notebook provided below.
The `map()` process fails midway giving:
```shell
AttributeError Traceback (most recent call last)
<ipython-input-8-ad24ac288eb4> in <module>
2
3 new_dataset = emotions_encoded["validation"].map(
----> 4 accuracy_fn, batched=True, batch_size=128
5 )
7 frames
/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in map(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc)
2588 new_fingerprint=new_fingerprint,
2589 disable_tqdm=disable_tqdm,
-> 2590 desc=desc,
2591 )
2592 else:
/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs)
582 self: "Dataset" = kwargs.pop("self")
583 # apply actual function
--> 584 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
585 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
586 for dataset in datasets:
/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs)
549 }
550 # apply actual function
--> 551 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
552 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
553 # re-apply format to the output
/usr/local/lib/python3.7/dist-packages/datasets/fingerprint.py in wrapper(*args, **kwargs)
478 # Call actual function
479
--> 480 out = func(self, *args, **kwargs)
481
482 # Update fingerprint of in-place transforms + update in-place history of transforms
/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in _map_single(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, disable_tqdm, desc, cache_only)
2970 indices,
2971 check_same_num_examples=len(input_dataset.list_indexes()) > 0,
-> 2972 offset=offset,
2973 )
2974 except NumExamplesMismatchError:
/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in apply_function_on_filtered_inputs(inputs, indices, check_same_num_examples, offset)
2850 if with_rank:
2851 additional_args += (rank,)
-> 2852 processed_inputs = function(*fn_args, *additional_args, **fn_kwargs)
2853 if update_data is None:
2854 # Check if the function returns updated examples
<ipython-input-6-4e0d280426f6> in fn(batch)
1 def get_test_accuracy(model):
2 def fn(batch):
----> 3 inputs = {k:v.to(device) for k,v in batch.items()
4 if k in tokenizer.model_input_names}
5 with torch.no_grad():
<ipython-input-6-4e0d280426f6> in <dictcomp>(.0)
2 def fn(batch):
3 inputs = {k:v.to(device) for k,v in batch.items()
----> 4 if k in tokenizer.model_input_names}
5 with torch.no_grad():
6 output = model(**inputs)
AttributeError: 'list' object has no attribute 'to'
```
As you'd notice in the notebook, the process fails _midway_ and not at the beginning.
Is this expected?
### Steps to reproduce the bug
Colab Notebook:
https://colab.research.google.com/gist/sayakpaul/d1570d537faf39040d02d77b1ed7de07/scratchpad.ipynb
### Expected behavior
The mapping process should complete as is. If you switch the `split` to `test` it works as expected.
### Environment info
Colab
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5179/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5179/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5178
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5178/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5178/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5178/events
|
https://github.com/huggingface/datasets/issues/5178
| 1,430,800,810 |
I_kwDODunzps5VSEmq
| 5,178 |
Unable to download the Chinese `wikipedia`, the dumpstatus.json not found!
|
{
"login": "beyondguo",
"id": 37113676,
"node_id": "MDQ6VXNlcjM3MTEzNjc2",
"avatar_url": "https://avatars.githubusercontent.com/u/37113676?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/beyondguo",
"html_url": "https://github.com/beyondguo",
"followers_url": "https://api.github.com/users/beyondguo/followers",
"following_url": "https://api.github.com/users/beyondguo/following{/other_user}",
"gists_url": "https://api.github.com/users/beyondguo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/beyondguo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/beyondguo/subscriptions",
"organizations_url": "https://api.github.com/users/beyondguo/orgs",
"repos_url": "https://api.github.com/users/beyondguo/repos",
"events_url": "https://api.github.com/users/beyondguo/events{/privacy}",
"received_events_url": "https://api.github.com/users/beyondguo/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"In the dumps page of the wiki (https://dumps.wikimedia.org/zhwiki/), I found the following dumps:\r\n```\r\nIndex of /zhwiki/\r\n[../](https://dumps.wikimedia.org/)\r\n[20220701/](https://dumps.wikimedia.org/zhwiki/20220701/) 21-Aug-2022 01:48 -\r\n[20220720/](https://dumps.wikimedia.org/zhwiki/20220720/) 02-Sep-2022 01:48 -\r\n[20220801/](https://dumps.wikimedia.org/zhwiki/20220801/) 21-Sep-2022 01:44 -\r\n[20220820/](https://dumps.wikimedia.org/zhwiki/20220820/) 01-Oct-2022 09:39 -\r\n[20220901/](https://dumps.wikimedia.org/zhwiki/20220901/) 20-Oct-2022 09:44 -\r\n[20220920/](https://dumps.wikimedia.org/zhwiki/20220920/) 23-Sep-2022 12:06 -\r\n[20221001/](https://dumps.wikimedia.org/zhwiki/20221001/) 04-Oct-2022 15:10 -\r\n[20221020/](https://dumps.wikimedia.org/zhwiki/20221020/) 01-Nov-2022 03:15 -\r\n[latest/](https://dumps.wikimedia.org/zhwiki/latest/) 01-Nov-2022 03:15 -\r\n```\r\n\r\nMaybe the older dumps are not available which caused the downloading failure? \r\n\r\nHowever, when I changed to the newer version:\r\n```\r\ndata = load_dataset('wikipedia', '20220701.zh', beam_runner='DirectRunner')\r\n```\r\n\r\nit shows:\r\n```\r\nValueError: BuilderConfig 20220701.zh not found. Available: ['20220301.aa', '20220301.ab', '20220301.ace', '20220301.ady', '20220301.af', '20220301.ak', '20220301.als', '20220301.am', '20220301.an', '20220301.ang', '20220301.ar', '20220301.arc', '20220301.arz', '20220301.as', '20220301.ast', '20220301.atj', '20220301.av', '20220301.ay', '20220301.az', '20220301.azb', '20220301.ba', '20220301.bar', '20220301.bat-smg', '20220301.bcl', '20220301.be', '20220301.be-x-old', '20220301.bg', '20220301.bh', '20220301.bi', '20220301.bjn', '20220301.bm', '20220301.bn', '20220301.bo', '20220301.bpy', '20220301.br', '20220301.bs', '20220301.bug', '20220301.bxr', '20220301.ca', '20220301.cbk-zam', '20220301.cdo', '20220301.ce', '20220301.ceb', '20220301.ch', '20220301.cho', '20220301.chr', '20220301.chy', '20220301.ckb', '20220301.co', '20220301.cr', '20220301.crh', '20220301.cs', '20220301.csb', '20220301.cu', '20220301.cv', '20220301.cy', '20220301.da', '20220301.de', '20220301.din', '20220301.diq', '20220301.dsb', '20220301.dty', '20220301.dv', '20220301.dz', '20220301.ee', '20220301.el', '20220301.eml', '20220301.en', '20220301.eo', '20220301.es', '20220301.et', '20220301.eu', '20220301.ext', '20220301.fa', '20220301.ff', '20220301.fi', '20220301.fiu-vro', '20220301.fj', '20220301.fo', '20220301.fr', '20220301.frp', '20220301.frr', '20220301.fur', '20220301.fy', '20220301.ga', '20220301.gag', '20220301.gan', '20220301.gd', '20220301.gl', '20220301.glk', '20220301.gn', '20220301.gom', '20220301.gor', '20220301.got', '20220301.gu', '20220301.gv', '20220301.ha', '20220301.hak', '20220301.haw', '20220301.he', '20220301.hi', '20220301.hif', '20220301.ho', '20220301.hr', '20220301.hsb', '20220301.ht', '20220301.hu', '20220301.hy', '20220301.ia', '20220301.id', '20220301.ie', '20220301.ig', '20220301.ii', '20220301.ik', '20220301.ilo', '20220301.inh', '20220301.io', '20220301.is', '20220301.it', '20220301.iu', '20220301.ja', '20220301.jam', '20220301.jbo', '20220301.jv', '20220301.ka', '20220301.kaa', '20220301.kab', '20220301.kbd', '20220301.kbp', '20220301.kg', '20220301.ki', '20220301.kj', '20220301.kk', '20220301.kl', '20220301.km', '20220301.kn', '20220301.ko', '20220301.koi', '20220301.krc', '20220301.ks', '20220301.ksh', '20220301.ku', '20220301.kv', '20220301.kw', '20220301.ky', '20220301.la', '20220301.lad', '20220301.lb', '20220301.lbe', '20220301.lez', '20220301.lfn', '20220301.lg', '20220301.li', '20220301.lij', '20220301.lmo', '20220301.ln', '20220301.lo', '20220301.lrc', '20220301.lt', '20220301.ltg', '20220301.lv', '20220301.mai', '20220301.map-bms', '20220301.mdf', '20220301.mg', '20220301.mh', '20220301.mhr', '20220301.mi', '20220301.min', '20220301.mk', '20220301.ml', '20220301.mn', '20220301.mr', '20220301.mrj', '20220301.ms', '20220301.mt', '20220301.mus', '20220301.mwl', '20220301.my', '20220301.myv', '20220301.mzn', '20220301.na', '20220301.nah', '20220301.nap', '20220301.nds', '20220301.nds-nl', '20220301.ne', '20220301.new', '20220301.ng', '20220301.nl', '20220301.nn', '20220301.no', '20220301.nov', '20220301.nrm', '20220301.nso', '20220301.nv', '20220301.ny', '20220301.oc', '20220301.olo', '20220301.om', '20220301.or', '20220301.os', '20220301.pa', '20220301.pag', '20220301.pam', '20220301.pap', '20220301.pcd', '20220301.pdc', '20220301.pfl', '20220301.pi', '20220301.pih', '20220301.pl', '20220301.pms', '20220301.pnb', '20220301.pnt', '20220301.ps', '20220301.pt', '20220301.qu', '20220301.rm', '20220301.rmy', '20220301.rn', '20220301.ro', '20220301.roa-rup', '20220301.roa-tara', '20220301.ru', '20220301.rue', '20220301.rw', '20220301.sa', '20220301.sah', '20220301.sat', '20220301.sc', '20220301.scn', '20220301.sco', '20220301.sd', '20220301.se', '20220301.sg', '20220301.sh', '20220301.si', '20220301.simple', '20220301.sk', '20220301.sl', '20220301.sm', '20220301.sn', '20220301.so', '20220301.sq', '20220301.sr', '20220301.srn', '20220301.ss', '20220301.st', '20220301.stq', '20220301.su', '20220301.sv', '20220301.sw', '20220301.szl', '20220301.ta', '20220301.tcy', '20220301.te', '20220301.tet', '20220301.tg', '20220301.th', '20220301.ti', '20220301.tk', '20220301.tl', '20220301.tn', '20220301.to', '20220301.tpi', '20220301.tr', '20220301.ts', '20220301.tt', '20220301.tum', '20220301.tw', '20220301.ty', '20220301.tyv', '20220301.udm', '20220301.ug', '20220301.uk', '20220301.ur', '20220301.uz', '20220301.ve', '20220301.vec', '20220301.vep', '20220301.vi', '20220301.vls', '20220301.vo', '20220301.wa', '20220301.war', '20220301.wo', '20220301.wuu', '20220301.xal', '20220301.xh', '20220301.xmf', '20220301.yi', '20220301.yo', '20220301.za', '20220301.zea', '20220301.zh', '20220301.zh-classical', '20220301.zh-min-nan', '20220301.zh-yue', '20220301.zu']\r\n```\r\n\r\nSo I guess adding the latest dumps versions to the `BuilderConfig` may solve the problem? But how to add it?",
"Hi, @beyondguo, thanks for reporting.\r\n\r\nYou have all the information in the dataset card: https://huggingface.co/datasets/wikipedia\r\n\r\n> Then, you can load any subset of Wikipedia per language and per date this way:\r\n> ```python\r\n> from datasets import load_dataset\r\n> \r\n> load_dataset(\"wikipedia\", language=\"sw\", date=\"20220120\", beam_runner=...) \r\n> ```\r\n> where you can pass as beam_runner any Apache Beam supported runner for (distributed) data processing (see [here](https://beam.apache.org/documentation/runners/capability-matrix/)). Pass \"DirectRunner\" to run it on your machine.\r\n> \r\n> You can find the full list of languages and dates [here](https://dumps.wikimedia.org/backup-index.html).\r\n\r\nNote that you have to pass the language and date as keyword arguments, and the available dates depend on the language and can be found on Wikimedia website.",
"Also:\r\n> Some subsets of Wikipedia have already been processed by HuggingFace, and you can load them just with:\r\n> ```python\r\n> load_dataset(\"wikipedia\", \"20220301.en\")\r\n> ```\r\n> The list of pre-processed subsets is:\r\n> - \"20220301.de\"\r\n> - \"20220301.en\"\r\n> - \"20220301.fr\"\r\n> - \"20220301.frr\"\r\n> - \"20220301.it\"\r\n> - \"20220301.simple\""
] | 2022-11-01T03:17:55 | 2022-11-02T08:27:15 | 2022-11-02T08:24:29 |
NONE
| null | null | null |
### Describe the bug
I tried:
`data = load_dataset('wikipedia', '20220301.zh', beam_runner='DirectRunner')`
and
`data = load_dataset("wikipedia", language="zh", date="20220301", beam_runner='DirectRunner')`
but both got:
`FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/zhwiki/20220301/dumpstatus.json`
the full report is:
```
FileNotFoundError Traceback (most recent call last)
<ipython-input-13-d07c5021090c> in <module>
1 from datasets import load_dataset
2
----> 3 data = load_dataset("wikipedia", language="zh", date="20220301", beam_runner='DirectRunner')<?, ?it/s]
/opt/conda/lib/python3.8/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs)
1740
1741 # Download and prepare data
-> 1742 builder_instance.download_and_prepare(
1743 download_config=download_config,
1744 download_mode=download_mode,
/opt/conda/lib/python3.8/site-packages/datasets/builder.py in download_and_prepare(self, output_dir, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, storage_options, **download_and_prepare_kwargs)
812 **download_and_prepare_kwargs,
813 }
--> 814 self._download_and_prepare(
815 dl_manager=dl_manager,
816 verify_infos=verify_infos,
/opt/conda/lib/python3.8/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs)
1645 options=beam_options,
1646 )
-> 1647 super()._download_and_prepare(
1648 dl_manager, verify_infos=False, pipeline=pipeline, **prepare_splits_kwargs
1649 ) # TODO handle verify_infos in beam datasets
/opt/conda/lib/python3.8/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
881 split_dict = SplitDict(dataset_name=self.name)
882 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)
--> 883 split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
884
885 # Checksums verification
~/.cache/huggingface/modules/datasets_modules/datasets/wikipedia/aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559/wikipedia.py in _split_generators(self, dl_manager, pipeline)
943 info_url = _base_url(lang) + _INFO_FILE
944 # Use dictionary since testing mock always returns the same result.
--> 945 downloaded_files = dl_manager.download_and_extract({"info": info_url})
946
947 xml_urls = []
/opt/conda/lib/python3.8/site-packages/datasets/download/download_manager.py in download_and_extract(self, url_or_urls)
431 extracted_path(s): `str`, extracted paths of given URL(s).
432 """
--> 433 return self.extract(self.download(url_or_urls))
434
435 def get_recorded_sizes_checksums(self):
/opt/conda/lib/python3.8/site-packages/datasets/download/download_manager.py in download(self, url_or_urls)
308
309 start_time = datetime.now()
--> 310 downloaded_path_or_paths = map_nested(
311 download_func,
312 url_or_urls,
/opt/conda/lib/python3.8/site-packages/datasets/utils/py_utils.py in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, parallel_min_length, types, disable_tqdm, desc)
427 num_proc = 1
428 if num_proc <= 1 or len(iterable) < parallel_min_length:
--> 429 mapped = [
430 _single_map_nested((function, obj, types, None, True, None))
431 for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)
/opt/conda/lib/python3.8/site-packages/datasets/utils/py_utils.py in <listcomp>(.0)
428 if num_proc <= 1 or len(iterable) < parallel_min_length:
429 mapped = [
--> 430 _single_map_nested((function, obj, types, None, True, None))
431 for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)
432 ]
/opt/conda/lib/python3.8/site-packages/datasets/utils/py_utils.py in _single_map_nested(args)
329 # Singleton first to spare some computation
330 if not isinstance(data_struct, dict) and not isinstance(data_struct, types):
--> 331 return function(data_struct)
332
333 # Reduce logging to keep things readable in multiprocessing with tqdm
/opt/conda/lib/python3.8/site-packages/datasets/download/download_manager.py in _download(self, url_or_filename, download_config)
335 # append the relative path to the base_path
336 url_or_filename = url_or_path_join(self._base_path, url_or_filename)
--> 337 return cached_path(url_or_filename, download_config=download_config)
338
339 def iter_archive(self, path_or_buf: Union[str, io.BufferedReader]):
/opt/conda/lib/python3.8/site-packages/datasets/utils/file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs)
186 if is_remote_url(url_or_filename):
187 # URL, so get it from the cache (downloading if necessary)
--> 188 output_path = get_from_cache(
189 url_or_filename,
190 cache_dir=cache_dir,
/opt/conda/lib/python3.8/site-packages/datasets/utils/file_utils.py in get_from_cache(url, cache_dir, force_download, proxies, etag_timeout, resume_download, user_agent, local_files_only, use_etag, max_retries, use_auth_token, ignore_url_params, download_desc)
533 )
534 elif response is not None and response.status_code == 404:
--> 535 raise FileNotFoundError(f"Couldn't find file at {url}")
536 _raise_if_offline_mode_is_enabled(f"Tried to reach {url}")
537 if head_error is not None:
FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/zhwiki/20220301/dumpstatus.json
```
### Steps to reproduce the bug
`data = load_dataset('wikipedia', '20220301.zh', beam_runner='DirectRunner')`
### Expected behavior
download the data
### Environment info
python3.6
latest datasets/transformers version
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5178/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5178/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5176
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5176/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5176/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5176/events
|
https://github.com/huggingface/datasets/issues/5176
| 1,430,214,539 |
I_kwDODunzps5VP1eL
| 5,176 |
prepare dataset for cloud storage doesn't work
|
{
"login": "araonblake",
"id": 27285078,
"node_id": "MDQ6VXNlcjI3Mjg1MDc4",
"avatar_url": "https://avatars.githubusercontent.com/u/27285078?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/araonblake",
"html_url": "https://github.com/araonblake",
"followers_url": "https://api.github.com/users/araonblake/followers",
"following_url": "https://api.github.com/users/araonblake/following{/other_user}",
"gists_url": "https://api.github.com/users/araonblake/gists{/gist_id}",
"starred_url": "https://api.github.com/users/araonblake/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/araonblake/subscriptions",
"organizations_url": "https://api.github.com/users/araonblake/orgs",
"repos_url": "https://api.github.com/users/araonblake/repos",
"events_url": "https://api.github.com/users/araonblake/events{/privacy}",
"received_events_url": "https://api.github.com/users/araonblake/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"It looks like an issue with `gcsfs`, are you able to instantiate a `GCSFileSystem` manually ?",
"closing since it was probably due to gcsfs"
] | 2022-10-31T17:28:57 | 2023-03-28T09:11:46 | 2023-03-28T09:11:45 |
NONE
| null | null | null |
### Describe the bug
Following the [documentation](https://huggingface.co/docs/datasets/filesystems#load-and-save-your-datasets-using-your-cloud-storage-filesystem) and [this PR](https://github.com/huggingface/datasets/pull/4724), I was downloading and storing huggingface dataset to cloud storage.
```
from datasets import load_dataset, load_dataset_builder
dataset = load_dataset_builder("wikipedia", "20220301.en", cache_dir='LOCAL_PATH')
dataset.download_and_prepare("gs://Bucket_NAME", file_format="parquet")
```
The above code successfully downloaded dataset, however, it returns error from `download_and_prepare`.
> Traceback (most recent call last):
> File "/shared/zhuiai/research/wiki/wiki/gcsfs.py", line 12, in <module>
> dataset.download_and_prepare("gs://upgen/dataset/wiki", file_format="parquet")
> File "/shared/zhuiai/.conda/envs/wiki/lib/python3.9/site-packages/datasets/builder.py", line 671, in download_and_prepare
> fs_token_paths = fsspec.get_fs_token_paths(output_dir, storage_options=storage_options)
> File "/shared/zhuiai/.conda/envs/wiki/lib/python3.9/site-packages/fsspec/core.py", line 635, in get_fs_token_paths
> cls = get_filesystem_class(protocol)
> File "/shared/zhuiai/.conda/envs/wiki/lib/python3.9/site-packages/fsspec/registry.py", line 234, in get_filesystem_class
> register_implementation(protocol, _import_class(bit["class"]))
> File "/shared/zhuiai/.conda/envs/wiki/lib/python3.9/site-packages/fsspec/registry.py", line 257, in _import_class
> mod = importlib.import_module(mod)
> File "/shared/zhuiai/.conda/envs/wiki/lib/python3.9/importlib/__init__.py", line 127, in import_module
> return _bootstrap._gcd_import(name[level:], package, level)
> File "<frozen importlib._bootstrap>", line 1030, in _gcd_import
> File "<frozen importlib._bootstrap>", line 1007, in _find_and_load
> File "<frozen importlib._bootstrap>", line 986, in _find_and_load_unlocked
> File "<frozen importlib._bootstrap>", line 680, in _load_unlocked
> File "<frozen importlib._bootstrap_external>", line 850, in exec_module
> File "<frozen importlib._bootstrap>", line 228, in _call_with_frames_removed
> File "/shared/zhuiai/research/wiki/wiki/gcsfs.py", line 12, in <module>
> dataset.download_and_prepare("gs://upgen/dataset/wiki", file_format="parquet")
> File "/shared/zhuiai/.conda/envs/wiki/lib/python3.9/site-packages/datasets/builder.py", line 671, in download_and_prepare
> fs_token_paths = fsspec.get_fs_token_paths(output_dir, storage_options=storage_options)
> File "/shared/zhuiai/.conda/envs/wiki/lib/python3.9/site-packages/fsspec/core.py", line 635, in get_fs_token_paths
> cls = get_filesystem_class(protocol)
> File "/shared/zhuiai/.conda/envs/wiki/lib/python3.9/site-packages/fsspec/registry.py", line 234, in get_filesystem_class
> register_implementation(protocol, _import_class(bit["class"]))
> File "/shared/zhuiai/.conda/envs/wiki/lib/python3.9/site-packages/fsspec/registry.py", line 258, in _import_class
> return getattr(mod, name)
> AttributeError: partially initialized module 'gcsfs' has no attribute 'GCSFileSystem' (most likely due to a circular import)
### Steps to reproduce the bug
1. pip install datasets==2.6.1 gcsfs==2022.8.2
2. Run the following code will reproduce the issue (change `LOCAL_PATH` and `Bucket_NAME` accordingly)
```
from datasets import load_dataset, load_dataset_builder
dataset = load_dataset_builder("wikipedia", "20220301.en", cache_dir='LOCAL_PATH')
dataset.download_and_prepare("gs://Bucket_NAME", file_format="parquet")
```
### Expected behavior
Expecting successful downloading dataset and uploading it to cloud storage.
### Environment info
- `datasets` version: 2.6.1
- Platform: Linux-5.15.0-25-generic-x86_64-with-glibc2.35
- Python version: 3.9.12
- PyArrow version: 7.0.0
- Pandas version: 1.5.1
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5176/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5176/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5175
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5175/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5175/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5175/events
|
https://github.com/huggingface/datasets/issues/5175
| 1,428,696,231 |
I_kwDODunzps5VKCyn
| 5,175 |
Loading an external NER dataset
|
{
"login": "Taghreed7878",
"id": 112555442,
"node_id": "U_kgDOBrV1sg",
"avatar_url": "https://avatars.githubusercontent.com/u/112555442?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Taghreed7878",
"html_url": "https://github.com/Taghreed7878",
"followers_url": "https://api.github.com/users/Taghreed7878/followers",
"following_url": "https://api.github.com/users/Taghreed7878/following{/other_user}",
"gists_url": "https://api.github.com/users/Taghreed7878/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Taghreed7878/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Taghreed7878/subscriptions",
"organizations_url": "https://api.github.com/users/Taghreed7878/orgs",
"repos_url": "https://api.github.com/users/Taghreed7878/repos",
"events_url": "https://api.github.com/users/Taghreed7878/events{/privacy}",
"received_events_url": "https://api.github.com/users/Taghreed7878/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[] | 2022-10-30T09:31:55 | 2022-11-01T13:15:49 | 2022-11-01T13:15:49 |
NONE
| null | null | null |
I need to use huggingface datasets to load a custom dataset similar to conll2003 but with more entities and each the files contain only two columns: word and ner tag.
I tried this code snnipet that I found here as an answer to a similar issue:
from datasets import Dataset
INPUT_COLUMNS = "ID Text NER".split()
def read_conll(file):
example = {col: [] for col in INPUT_COLUMNS}
idx = 0
with open(file) as f:
for line in f:
if line.startswith("-DOCSTART-") or line == "\n" or not line:
if example[next(iter(example))]:
yield idx, example
idx += 1
example = {col: [] for col in INPUT_COLUMNS}
else:
row_cols = line.split()
for i, col in enumerate(example):
example[col] = row_cols[i].rstrip()
train = Dataset.from_generator(read_conll, gen_kwargs={"file": "some_path"})
But the following error happened:
ValueError: Please pass `features` or at least one example when writing data
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5175/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5175/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5172
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5172/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5172/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5172/events
|
https://github.com/huggingface/datasets/issues/5172
| 1,425,523,114 |
I_kwDODunzps5U98Gq
| 5,172 |
Inconsistency behavior between handling local file protocol and other FS protocols
|
{
"login": "leoleoasd",
"id": 37735580,
"node_id": "MDQ6VXNlcjM3NzM1NTgw",
"avatar_url": "https://avatars.githubusercontent.com/u/37735580?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/leoleoasd",
"html_url": "https://github.com/leoleoasd",
"followers_url": "https://api.github.com/users/leoleoasd/followers",
"following_url": "https://api.github.com/users/leoleoasd/following{/other_user}",
"gists_url": "https://api.github.com/users/leoleoasd/gists{/gist_id}",
"starred_url": "https://api.github.com/users/leoleoasd/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/leoleoasd/subscriptions",
"organizations_url": "https://api.github.com/users/leoleoasd/orgs",
"repos_url": "https://api.github.com/users/leoleoasd/repos",
"events_url": "https://api.github.com/users/leoleoasd/events{/privacy}",
"received_events_url": "https://api.github.com/users/leoleoasd/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false | null |
[] | null |
[] | 2022-10-27T12:03:20 | 2022-10-27T12:05:19 | null |
NONE
| null | null | null |
### Describe the bug
These lines us used during load_from_disk:
```
if is_remote_filesystem(fs):
dest_dataset_dict_path = extract_path_from_uri(dataset_dict_path)
else:
fs = fsspec.filesystem("file")
dest_dataset_dict_path = dataset_dict_path
```
If a local FS is given, then it will the URL as the path name. If a remote Fs is given, then it will use the path of the URL. This is an inconsistent behavior when handling a file: when using remote FS, you must write a URL, but for local FS, even if you passed LocalFileSystem as `fs` you still can't use a `file://` URL. It will be recognized as a directory named `file:`.
### Steps to reproduce the bug
```
import fsspec.core
url = "hdfs:///somewhere/MNIST"
# url = "file:///somewhere/MNIST"
fs, path = fsspec.core.url_to_fs(url)
fs.ls(path) # this will always work
load_from_disk(path, fs) # only works for local FS
load_from_disk(url, fs) # only works for remote FS
```
### Expected behavior
one of `url` or `path` should always work
I think we extract path from given URL by using `fsspec.core.url_to_fs` instead of using `is_remote_filesystem` and `extract_path_from_uri` will fix this, since:
```
fsspec.core.url_to_fs("/somewhere/MNIST") -> LocalFs, '/somewhere/MNIST'
fsspec.core.url_to_fs("file:///somewhere/MNIST") -> LocalFs, '/somewhere/MNIST'
fsspec.core.url_to_fs("hdfs:///somewhere/MNIST") -> HDFS, '/somewhere/MNIST'
```
and
```
fsspec.core.url_to_fs("file:///somewhere/MNIST") == fsspec.core.url_to_fs("/somewhere/MNIST")
```
In theory, this wouldn't break anything, since giving local path and remote uri still works. It will only affect local URI (make it works too)
### Environment info
- `datasets` version: 2.5.1
- Platform: Linux-5.4.205.1**HIDDEN**
- Python version: 3.7.10
- PyArrow version: 8.0.0
- Pandas version: 1.2.4
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5172/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5172/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5170
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5170/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5170/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5170/events
|
https://github.com/huggingface/datasets/issues/5170
| 1,425,301,835 |
I_kwDODunzps5U9GFL
| 5,170 |
[Caching] Deterministic hashing of torch tensors
|
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
closed
| false | null |
[] | null |
[] | 2022-10-27T09:15:15 | 2022-11-02T17:18:43 | 2022-11-02T17:18:43 |
MEMBER
| null | null | null |
Currently this fails
```python
import torch
from datasets.fingerprint import Hasher
t = torch.tensor([1.])
def func(x):
return t + x
hash1 = Hasher.hash(func)
t = torch.tensor([1.])
hash2 = Hasher.hash(func)
assert hash1 == hash2
```
Also as noticed in https://discuss.huggingface.co/t/dataset-cant-cache-models-outputs/24945, using a model in a `map` function doesn't work well with caching. Indeed the `bert-base-uncased` model has a different hash every time you reload it. Supporting torch tensors may also help in this case.
This can be fixed by registering a custom pickling functions for torch tensors - as we did for other objects such as CodeType, FunctionType and Regex in `py_utils.py`
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5170/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5170/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5165
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5165/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5165/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5165/events
|
https://github.com/huggingface/datasets/issues/5165
| 1,423,616,677 |
I_kwDODunzps5U2qql
| 5,165 |
Memory explosion when trying to access 4d tensors in datasets cast to torch or np
|
{
"login": "clefourrier",
"id": 22726840,
"node_id": "MDQ6VXNlcjIyNzI2ODQw",
"avatar_url": "https://avatars.githubusercontent.com/u/22726840?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/clefourrier",
"html_url": "https://github.com/clefourrier",
"followers_url": "https://api.github.com/users/clefourrier/followers",
"following_url": "https://api.github.com/users/clefourrier/following{/other_user}",
"gists_url": "https://api.github.com/users/clefourrier/gists{/gist_id}",
"starred_url": "https://api.github.com/users/clefourrier/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/clefourrier/subscriptions",
"organizations_url": "https://api.github.com/users/clefourrier/orgs",
"repos_url": "https://api.github.com/users/clefourrier/repos",
"events_url": "https://api.github.com/users/clefourrier/events{/privacy}",
"received_events_url": "https://api.github.com/users/clefourrier/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false | null |
[] | null |
[] | 2022-10-26T08:14:47 | 2022-10-26T08:14:47 | null |
MEMBER
| null | null | null |
### Describe the bug
When trying to access an item by index, in a datasets.Dataset cast to torch/np using `set_format` or `with_format`, we get a memory explosion if the item contains 4d (or above) tensors.
### Steps to reproduce the bug
MWE:
```python
from datasets import load_dataset
import numpy as np
def create_4d_tensor(item):
i = item["num_nodes"]
item["x_big"] = np.random.rand(i, 2*i, int(i/2), 1) + 1 # we create a big 4d tensor
return item
if __name__ == "__main__":
dataset = load_dataset(path=f"graphs-datasets/PROTEINS")
# This works
print(dataset["train"].format)
print(dataset["train"][0].keys())
dataset = dataset.map(
create_4d_tensor,
batched=False,
writer_batch_size=100,
)
# This works
print(dataset["train"].format)
print(dataset["train"][0].keys())
dataset.set_format("torch")
print(dataset["train"].format)
# This gets killed :(
print(dataset["train"][0].keys())
```
The problem likely comes from `format_table` [here](https://cs.github.com/huggingface/datasets/blob/f09f781be3278156ce3aa6ec90c1926b1846a78f/src/datasets/arrow_dataset.py#L2328)
### Expected behavior
No memory explosion when trying to access dataset items after cast.
### Environment info
- `datasets` version: 2.3.2
- Platform: Linux-5.14.0-1054-oem-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyArrow version: 8.0.0
- Pandas version: 1.4.3
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5165/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5165/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5162
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5162/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5162/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5162/events
|
https://github.com/huggingface/datasets/issues/5162
| 1,422,461,112 |
I_kwDODunzps5UyQi4
| 5,162 |
Pip-compile: Could not find a version that matches dill<0.3.6,>=0.3.6
|
{
"login": "Rijgersberg",
"id": 8604946,
"node_id": "MDQ6VXNlcjg2MDQ5NDY=",
"avatar_url": "https://avatars.githubusercontent.com/u/8604946?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Rijgersberg",
"html_url": "https://github.com/Rijgersberg",
"followers_url": "https://api.github.com/users/Rijgersberg/followers",
"following_url": "https://api.github.com/users/Rijgersberg/following{/other_user}",
"gists_url": "https://api.github.com/users/Rijgersberg/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Rijgersberg/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Rijgersberg/subscriptions",
"organizations_url": "https://api.github.com/users/Rijgersberg/orgs",
"repos_url": "https://api.github.com/users/Rijgersberg/repos",
"events_url": "https://api.github.com/users/Rijgersberg/events{/privacy}",
"received_events_url": "https://api.github.com/users/Rijgersberg/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Thanks for reporting, @Rijgersberg.\r\n\r\nWe were waiting for the release of `dill` 0.3.6, that happened 2 days ago (24 Oct 2022): https://github.com/uqfoundation/dill/releases/tag/dill-0.3.6\r\n- See comment: https://github.com/huggingface/datasets/pull/4397#discussion_r880629543\r\n\r\nAlso `multiprocess` 0.70.14 was released 2 days ago: https://github.com/uqfoundation/multiprocess/releases/tag/multiprocess-0.70.14\r\n\r\nWe are addressing this issue to align dependencies.",
"In your specific setup, I guess the compatible configuration is with `multiprocess` 0.70.13 (instead of 0.70.14).",
"@Rijgersberg this issue is fixed. It will be available in our next `datasets` release.",
"Thanks!",
"> @Rijgersberg this issue is fixed. It will be available in our next `datasets` release.\n\nAny chance you have a eta? ",
"@StefanSamba we are disussing about making a release early this week.",
"@Rijgersberg, please also that you can make `pip-compile` work by using the backtracking resolver (instead of the legacy one): https://pip-tools.readthedocs.io/en/latest/#a-note-on-resolvers\r\n```\r\npip-compile --resolver=backtracking requirements.in\r\n```\r\nThis resolver will automatically use `multiprocess` 0.70.13 version. "
] | 2022-10-25T13:23:50 | 2022-11-14T08:25:37 | 2022-10-28T05:38:15 |
NONE
| null | null | null |
### Describe the bug
When using `pip-compile` (part of `pip-tools`) to generate a pinned requirements file that includes `datasets`, a version conflict of `dill` appears.
It is caused by a transitive dependency conflict between `datasets` and `multiprocess`.
### Steps to reproduce the bug
```bash
$ echo "datasets" > requirements.in
$ pip install pip-tools
$ pip-compile requirements.in
Could not find a version that matches dill<0.3.6,>=0.3.6 (from datasets==2.6.1->-r requirements.in (line 1))
Tried: 0.2, 0.2, 0.2.1, 0.2.1, 0.2.2, 0.2.2, 0.2.3, 0.2.3, 0.2.4, 0.2.4, 0.2.5, 0.2.5, 0.2.6, 0.2.7, 0.2.7.1, 0.2.8, 0.2.8.1, 0.2.8.2, 0.2.9, 0.3.0, 0.3.1, 0.3.1.1, 0.3.2, 0.3.3, 0.3.3, 0.3.4, 0.3.4, 0.3.5, 0.3.5, 0.3.5.1, 0.3.5.1, 0.3.6, 0.3.6
Skipped pre-versions: 0.1a1, 0.2a1, 0.2a1, 0.2b1, 0.2b1
There are incompatible versions in the resolved dependencies:
dill<0.3.6 (from datasets==2.6.1->-r requirements.in (line 1))
dill>=0.3.6 (from multiprocess==0.70.14->datasets==2.6.1->-r requirements.in (line 1))
```
### Expected behavior
A correctly generated file `requirements.txt` with pinned dependencies
### Environment info
Tested with versions `2.6.1, 2.6.0, 2.5.2` on Python 3.8 and 3.10 on Ubuntu 20.04LTS and Python 3.10 on MacOS 12.6 (M1).
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5162/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5162/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5161
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5161/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5161/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5161/events
|
https://github.com/huggingface/datasets/issues/5161
| 1,422,371,748 |
I_kwDODunzps5Ux6uk
| 5,161 |
Dataset can’t cache model’s outputs
|
{
"login": "jongjyh",
"id": 37979232,
"node_id": "MDQ6VXNlcjM3OTc5MjMy",
"avatar_url": "https://avatars.githubusercontent.com/u/37979232?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jongjyh",
"html_url": "https://github.com/jongjyh",
"followers_url": "https://api.github.com/users/jongjyh/followers",
"following_url": "https://api.github.com/users/jongjyh/following{/other_user}",
"gists_url": "https://api.github.com/users/jongjyh/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jongjyh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jongjyh/subscriptions",
"organizations_url": "https://api.github.com/users/jongjyh/orgs",
"repos_url": "https://api.github.com/users/jongjyh/repos",
"events_url": "https://api.github.com/users/jongjyh/events{/privacy}",
"received_events_url": "https://api.github.com/users/jongjyh/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Addressed in https://github.com/huggingface/datasets/pull/5191 (torch.Tensor objects now produce deterministic hashes)"
] | 2022-10-25T12:19:00 | 2022-11-03T16:12:52 | 2022-11-03T16:12:51 |
NONE
| null | null | null |
### Describe the bug
Hi,
I try to cache some outputs of teacher model( Knowledge Distillation ) by using map function of Dataset library, while every time I run my code, I still recompute all the sequences. I tested Bert Model like this, I got different hash every single run, so any idea to deal with this?
### Steps to reproduce the bug
1. run below code
2. get different hash
```
from transformers import BertModel
from transformers import AutoTokenizer
import torch
token = ['hello']
model = BertModel.from_pretrained("bert-base-uncased").eval()
tok = AutoTokenizer.from_pretrained("bert-base-uncased")
def abcd():
with torch.no_grad():
out = model(**tok(token,return_tensors='pt'))[0]
# out = tok(token)
return out
from datasets.fingerprint import Hasher
my_func = abcd
print(Hasher.hash(my_func))
print(abcd())
```
### Expected behavior
I wanna cache all the model output
### Environment info
datasets:2.5.0
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5161/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5161/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5160
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5160/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5160/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5160/events
|
https://github.com/huggingface/datasets/issues/5160
| 1,422,193,938 |
I_kwDODunzps5UxPUS
| 5,160 |
Automatically add filename for image/audio folder
|
{
"login": "patrickvonplaten",
"id": 23423619,
"node_id": "MDQ6VXNlcjIzNDIzNjE5",
"avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/patrickvonplaten",
"html_url": "https://github.com/patrickvonplaten",
"followers_url": "https://api.github.com/users/patrickvonplaten/followers",
"following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}",
"gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}",
"starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions",
"organizations_url": "https://api.github.com/users/patrickvonplaten/orgs",
"repos_url": "https://api.github.com/users/patrickvonplaten/repos",
"events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}",
"received_events_url": "https://api.github.com/users/patrickvonplaten/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
open
| false |
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
},
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
},
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Also cc @anton-l ",
"BTW the exact same holds true for the audio folder",
"I'm fine with adding a new column with the file name personally. Not sure how breaking this is though",
"@patrickvonplaten do you mean just filename or full relative path inside the repo?\r\nI think it shouldn't be breaking, at least I cannot come up with any case where it is. Maybe @mariosasko can?\r\n\r\nalso I think that the problem here and in general is that Image/AudioFolder has default configuration which implies automatic label creation if there is not metadata file. It can be changed when you load the dataset with `load_dataset` but not on it's Hub page. \r\n\r\n",
"> also I think that the problem here and in general Image/AudioFolder has default configuration which implies automatic label creation if there is not metadata file\r\n\r\nYea I agree it's often the wrong default. We can also imagine adding the builder's parameters as YAML in the repo.",
"@lhoestq yes I also got the idea of some YAML config! not sure of what priority it is though.",
"but it would actually also solve this issue: https://github.com/huggingface/datasets/issues/5153",
"I meant just the file name (no path) that would already be super helpful IMO :-) (maybe dir+filename if there are dirs in the folder)",
"@patrickvonplaten one more time, to be sure I understand you.\r\nFor example, we have data structure like this:\r\n```\r\n├─ data/\r\n│ └─ subdir/\r\n│ └── cats/\r\n│ ├── 0.jpg\r\n│ ├── 1.jpg\r\n│ └── 2.jpg\r\n│ └── dogs/\r\n│ ├── 0.jpg\r\n│ ├── 1.jpg\r\n│ └── 2.jpg\r\n└── another_subdir/\r\n ├── 10.jpg\r\n ├── 11.jpg\r\n └── 12.jpg\r\n```\r\nIs it okay to provide `\"data/subdir/cats/0.jpg\"`, `\"data/subdir/dogs/0.jpg\"`, `\"data/another_subdir/10.jpg\"`?\r\nI think providing just filenames might be confusing if they are not unique, as in this example. ",
"Yes I think the relative path as you proposed makes a lot of sense :-) "
] | 2022-10-25T09:56:49 | 2022-10-26T16:51:46 | null |
CONTRIBUTOR
| null | null | null |
### Feature request
When creating a custom audio of image dataset, it would be great to automatically have access to the filename. It should be both:
a) Automatically displayed in the viewer
b) Automatically added as a column to the dataset when doing `load_dataset`
In `diffusers` our test rely quite heavily on images and audio files now and it's a bit tedious at the moment to download specific images from a datasets repo.
E.g. we have a dataset of images for tests in `diffusers`: https://huggingface.co/datasets/hf-internal-testing/diffusers-images
where it would be extremely nice to have direct access to the filename both visually on the datasets page (@severo ) as well as via the `load_datasets` function. We currently have some akward functionality to download images by path name: https://github.com/huggingface/diffusers/blob/2fb8fafa4b761f6fc144cf75a6f6f0ea6af3a1c1/src/diffusers/utils/testing_utils.py#L131
It would be much nicer to just go over `load_dataset(...)`
### Motivation
Intuitively the filename is something people understand directly. E.g if you upload a folder of images online, it's nice if you recognize the image as well as the filename next to it directly and that you're able to use it right away.
The label on the other hand is less intuitive to understand as you haven't added it yourself.
### Your contribution
Not sure if I have the time to add it myself anytime soon, but it would help us a lot for `diffusers`.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5160/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5160/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5158
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5158/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5158/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5158/events
|
https://github.com/huggingface/datasets/issues/5158
| 1,422,059,287 |
I_kwDODunzps5UwucX
| 5,158 |
Fix language and license tag names in all Hub datasets
|
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 4564477500,
"node_id": "LA_kwDODunzps8AAAABEBBmPA",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution",
"name": "dataset contribution",
"color": "0e8a16",
"default": false,
"description": "Contribution to a dataset script"
}
] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"There are currently 402 datasets with deprecated \"languages\" or \"licenses\".",
"hey @albertvillanova ,i would love to work on this issue if you like.",
"Hi @ayushthe1, thanks for your offer.\r\n\r\nBut as you can see, I self-assigned this issue.\r\n\r\nI have already fixed 200 out of the 402 datasets. My script is still running and fixing the rest.\r\n\r\nFor example: https://huggingface.co/datasets/fhamborg/news_sentiment_newsmtsc/discussions/2/files",
"Thanks for your time. Will try next time. 😇",
"@ayushthe1 feel free to take one of the non-assigned open issues: https://github.com/huggingface/datasets/issues",
"This is done."
] | 2022-10-25T08:19:29 | 2022-10-25T11:27:26 | 2022-10-25T10:42:19 |
MEMBER
| null | null | null |
While working on this:
- #5137
we realized there are still many datasets with deprecated "languages" and "licenses" tag names (instead of "language" and "license").
This is a blocking issue: no subsequent PR can be opened to modify their metadata: a ValueError will be thrown.
We should fix the "language" and "license" tag names in all Hub datasets.
TODO:
- [x] Fix language and license tag names in 402 Hub datasets
CC: @julien-c
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5158/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5158/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5157
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5157/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5157/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5157/events
|
https://github.com/huggingface/datasets/issues/5157
| 1,421,703,577 |
I_kwDODunzps5UvXmZ
| 5,157 |
Consistent caching between python and jupyter
|
{
"login": "gpucce",
"id": 32967787,
"node_id": "MDQ6VXNlcjMyOTY3Nzg3",
"avatar_url": "https://avatars.githubusercontent.com/u/32967787?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gpucce",
"html_url": "https://github.com/gpucce",
"followers_url": "https://api.github.com/users/gpucce/followers",
"following_url": "https://api.github.com/users/gpucce/following{/other_user}",
"gists_url": "https://api.github.com/users/gpucce/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gpucce/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gpucce/subscriptions",
"organizations_url": "https://api.github.com/users/gpucce/orgs",
"repos_url": "https://api.github.com/users/gpucce/repos",
"events_url": "https://api.github.com/users/gpucce/events{/privacy}",
"received_events_url": "https://api.github.com/users/gpucce/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
closed
| false |
{
"login": "gpucce",
"id": 32967787,
"node_id": "MDQ6VXNlcjMyOTY3Nzg3",
"avatar_url": "https://avatars.githubusercontent.com/u/32967787?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gpucce",
"html_url": "https://github.com/gpucce",
"followers_url": "https://api.github.com/users/gpucce/followers",
"following_url": "https://api.github.com/users/gpucce/following{/other_user}",
"gists_url": "https://api.github.com/users/gpucce/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gpucce/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gpucce/subscriptions",
"organizations_url": "https://api.github.com/users/gpucce/orgs",
"repos_url": "https://api.github.com/users/gpucce/repos",
"events_url": "https://api.github.com/users/gpucce/events{/privacy}",
"received_events_url": "https://api.github.com/users/gpucce/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "gpucce",
"id": 32967787,
"node_id": "MDQ6VXNlcjMyOTY3Nzg3",
"avatar_url": "https://avatars.githubusercontent.com/u/32967787?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gpucce",
"html_url": "https://github.com/gpucce",
"followers_url": "https://api.github.com/users/gpucce/followers",
"following_url": "https://api.github.com/users/gpucce/following{/other_user}",
"gists_url": "https://api.github.com/users/gpucce/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gpucce/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gpucce/subscriptions",
"organizations_url": "https://api.github.com/users/gpucce/orgs",
"repos_url": "https://api.github.com/users/gpucce/repos",
"events_url": "https://api.github.com/users/gpucce/events{/privacy}",
"received_events_url": "https://api.github.com/users/gpucce/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Hi ! Maybe it's possible to have a consistent hash for a function defined in `__main__` and a function define in a notebook.\r\n\r\nHowever for functions imported from another location, pickle uses the location to identify the code, so in that case we can't do much I believe.\r\n\r\nWould it be ok for you if we only try to do this for functions in `__main__` / jupyter ?\r\n\r\nIf you'd like to contribute, you can read this part of the code and let me know if you have questions:\r\n\r\nhttps://github.com/huggingface/datasets/blob/7feeb5648a63b6135a8259dedc3b1e19185ee4c7/src/datasets/utils/py_utils.py#L617-L643\r\n\r\nI think the key here would be to also ignore the \"co_filename\" of functions defined in `__main__`",
"Seems like a good solution, I will start a PR and see if I understood the changes needed. Thanks!"
] | 2022-10-25T01:34:33 | 2022-11-02T15:43:22 | 2022-11-02T15:43:22 |
CONTRIBUTOR
| null | null | null |
### Feature request
I hope this is not my mistake, currently if I use `load_dataset` from a python session on a custom dataset to do the preprocessing, it will be saved in the cache and in other python sessions it will be loaded from the cache, however calling the same from a jupyter notebook does not work, meaning the preprocessing starts from scratch.
If adjusting the hashes is impossible, is there a way to manually set dataset fingerprint to "force" this behaviour?
### Motivation
If this is not already the case and I am doing something wrong, it would be useful to have the two fingerprints consistent so one can create the dataset once and then try small things on jupyter without preprocessing everything again.
### Your contribution
I am happy to try a PR if you give me some pointers where the changes should happen
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5157/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5157/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5156
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5156/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5156/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5156/events
|
https://github.com/huggingface/datasets/issues/5156
| 1,421,667,125 |
I_kwDODunzps5UvOs1
| 5,156 |
Unable to download dataset using Azure Data Lake Gen 2
|
{
"login": "clarissesimoes",
"id": 87379512,
"node_id": "MDQ6VXNlcjg3Mzc5NTEy",
"avatar_url": "https://avatars.githubusercontent.com/u/87379512?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/clarissesimoes",
"html_url": "https://github.com/clarissesimoes",
"followers_url": "https://api.github.com/users/clarissesimoes/followers",
"following_url": "https://api.github.com/users/clarissesimoes/following{/other_user}",
"gists_url": "https://api.github.com/users/clarissesimoes/gists{/gist_id}",
"starred_url": "https://api.github.com/users/clarissesimoes/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/clarissesimoes/subscriptions",
"organizations_url": "https://api.github.com/users/clarissesimoes/orgs",
"repos_url": "https://api.github.com/users/clarissesimoes/repos",
"events_url": "https://api.github.com/users/clarissesimoes/events{/privacy}",
"received_events_url": "https://api.github.com/users/clarissesimoes/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false | null |
[] | null |
[
"Hi ! From the `adlfs` docs, there are two filesystems you can use:\r\n> To use the Gen1 filesystem:\r\n> - known_implementations[‘adl’] = {‘class’: ‘adlfs.AzureDatalakeFileSystem’}\r\n> \r\n> To use the Gen2 filesystem:\r\n> - known_implementations[‘abfs’] = {‘class’: ‘adlfs.AzureBlobFileSystem’}\r\n\r\nIf I'm not mistaken you're using the second one - so you should use `abfs://` instead of `adl://`, and also run this at the beginning of your script:\r\n```python\r\nfrom fsspec.registry import known_implementations\r\nknown_implementations['abfs'] = {'class': 'adlfs.AzureDatalakeFileSystem'}\r\n```\r\n\r\n",
"Thank you @lhoestq . Great call.\r\nUsing the default class from `known_implementations` dict solved my problem\r\n```\r\nknown_implementations[‘abfs’] = {‘class’: ‘adlfs.AzureBlobFileSystem’}\r\n```\r\nI'm closing this issue.",
"> Thank you @lhoestq . Great call. Using the default class from `known_implementations` dict solved my problem\r\n> \r\n> ```\r\n> known_implementations[‘abfs’] = {‘class’: ‘adlfs.AzureBlobFileSystem’}\r\n> ```\r\n> \r\n> I'm closing this issue.\r\n\r\nHi so here `Saving serialized datasets\r\n\r\nAfter you have processed your dataset, you can save it to your cloud storage with [Dataset.save_to_disk()](https://huggingface.co/docs/datasets/v2.17.0/en/package_reference/main_classes#datasets.Dataset.save_to_disk):` what is the encoded dataset I have failed to save it ",
"Uploading failed ? Did you get an error message ?"
] | 2022-10-25T00:43:18 | 2024-02-15T09:48:36 | 2022-11-17T23:37:08 |
NONE
| null | null | null |
### Describe the bug
When using the DatasetBuilder method with the credentials for the cloud storage Azure Data Lake (adl) Gen2, the following error is showed:
```
Traceback (most recent call last):
File "download_hf_dataset.py", line 143, in <module>
main()
File "download_hf_dataset.py", line 102, in main
builder.download_and_prepare(save_dir, storage_options=storage_options, max_shard_size="250MB", file_format="parquet")
File "/home/clarisses/miniconda3/envs/hf_datasets_env/lib/python3.8/site-packages/datasets/builder.py", line 671, in download_and_prepare
fs_token_paths = fsspec.get_fs_token_paths(output_dir, storage_options=storage_options)
File "/home/clarisses/miniconda3/envs/hf_datasets_env/lib/python3.8/site-packages/fsspec/core.py", line 639, in get_fs_token_paths
fs = cls(**options)
File "/home/clarisses/miniconda3/envs/hf_datasets_env/lib/python3.8/site-packages/fsspec/spec.py", line 76, in __call__
obj = super().__call__(*args, **kwargs)
TypeError: __init__() got an unexpected keyword argument 'account_name'
```
If I don't pass the storage_options argument (leave it as None), it requires the credentials used in ADL Gen 1:
`TypeError: __init__() missing 3 required positional arguments: 'tenant_id', 'client_id', and 'client_secret'`
Thus, it is not possible to download a dataset from the cloud using Azure Data Lake (adl) Gen2.
### Steps to reproduce the bug
Assuming that you have an account on Azure and at Storage Account that can be used for reproduce:
1. Create a dict with the format to connect to Azure Data Lake Gen 2
```
storage_options = {"account_name": ACCOUNT_NAME, "account_key": ACCOUNT_KEY) # gen 2 filesystem
```
2. Create a dataset builder for any HF hosted dataset
```
builder = load_dataset_builder(dataset_name)
```
3. Try to download the dataset passing the storage_options as an argument
```
save_dir = 'adl://my_save_dir'
builder.download_and_prepare(save_dir, storage_options=storage_options, max_shard_size="250MB", file_format="parquet")
```
### Expected behavior
Not seeing the error mentioned above and being able to download the dataset to the provided path on ADL
### Environment info
- `datasets` version: 2.6.1
- Platform: Linux-5.15.0-46-generic-x86_64-with-glibc2.17
- Python version: 3.8.13
- PyArrow version: 9.0.0
- Pandas version: 1.5.1
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5156/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5156/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5153
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5153/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5153/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5153/events
|
https://github.com/huggingface/datasets/issues/5153
| 1,420,833,457 |
I_kwDODunzps5UsDKx
| 5,153 |
default Image/AudioFolder infers labels when there is no metadata files even if there is only one dir
|
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] |
closed
| false |
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Makes sense! For the last structure, we could count the path segments (delimited by \"/\" for URLs and `os.sep` for local paths) to ensure all inferred labels are on the same level. Otherwise, I think it's safe to assume they are meaningless and ignore them.\r\n"
] | 2022-10-24T13:28:18 | 2022-11-15T16:31:10 | 2022-11-15T16:31:09 |
CONTRIBUTOR
| null | null | null |
### Describe the bug
By default FolderBasedBuilder infers labels if there is not metadata files, even if it's meaningless (for example, they are in a single directory or in the root folder, see this repo as an example: https://huggingface.co/datasets/patrickvonplaten/audios
As this is a corner case for quick exploration of images or audios on the Hub.
### Steps to reproduce the bug
If you have directory like this:
```
repo
image1.jpg
image2.jpg
image3.jpg
```
or
```
repo
data
image1.jpg
image2.jpg
image3.jpg
```
doing `ds = load_dataset(repo)` would create `label` feature:
```python
print(ds["train"][0])
>> {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x375 at 0x7FB5326468E0>, 'label': 0}
```
Also, if you have the following structure:
```
repo
data
image1.jpg
image2.jpg
image3.jpg
image4.jpg
image5.jpg
image6.jpg
```
it will infer two labels:
```python
print(ds["train"][0])
print(ds["train"][-1])
>> {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x375 at 0x7FB5326468E0>, 'label': 1}
>> {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x415 at 0x7FB5326555B0>, 'label': 0}
```
### Expected behavior
We should have only one base feature (Image/Audio) in such cases.
### Environment info
all versions of `datasets`
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5153/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5153/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5152
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5152/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5152/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5152/events
|
https://github.com/huggingface/datasets/issues/5152
| 1,420,808,919 |
I_kwDODunzps5Ur9LX
| 5,152 |
refactor FolderBasedBuilder and Image/AudioFolder tests
|
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 2851292821,
"node_id": "MDU6TGFiZWwyODUxMjkyODIx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/refactoring",
"name": "refactoring",
"color": "B67A40",
"default": false,
"description": "Restructuring existing code without changing its external behavior"
}
] |
open
| false | null |
[] | null |
[] | 2022-10-24T13:11:52 | 2022-10-24T13:11:52 | null |
CONTRIBUTOR
| null | null | null |
Tests for FolderBasedBuilder, ImageFolder and AudioFolder are mostly duplicating each other. They need to be refactored and Audio/ImageFolder should have only tests specific to the loader.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5152/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5152/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5151
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5151/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5151/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5151/events
|
https://github.com/huggingface/datasets/issues/5151
| 1,420,791,163 |
I_kwDODunzps5Ur417
| 5,151 |
Add support to create different configs with `push_to_hub` (+ inferring configs from directories with package managers?)
|
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
open
| false |
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"also asked in https://discuss.huggingface.co/t/create-multiple-dataset-configs-with-push-to-hub-method/25480"
] | 2022-10-24T12:59:18 | 2022-11-04T14:55:20 | null |
CONTRIBUTOR
| null | null | null |
Now one can push only different splits within one default config of a dataset.
Would be nice to allow something like:
```
ds.push_to_hub(repo_name, config=config_name)
```
I'm not sure, but this will probably require changes in `data_files.py` patterns. If so, it would also allow to create different configs for packaged modules datasets.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5151/reactions",
"total_count": 2,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 1
}
|
https://api.github.com/repos/huggingface/datasets/issues/5151/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5150
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5150/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5150/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5150/events
|
https://github.com/huggingface/datasets/issues/5150
| 1,420,684,999 |
I_kwDODunzps5Ure7H
| 5,150 |
Problems after upgrading to 2.6.1
|
{
"login": "pietrolesci",
"id": 61748653,
"node_id": "MDQ6VXNlcjYxNzQ4NjUz",
"avatar_url": "https://avatars.githubusercontent.com/u/61748653?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pietrolesci",
"html_url": "https://github.com/pietrolesci",
"followers_url": "https://api.github.com/users/pietrolesci/followers",
"following_url": "https://api.github.com/users/pietrolesci/following{/other_user}",
"gists_url": "https://api.github.com/users/pietrolesci/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pietrolesci/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pietrolesci/subscriptions",
"organizations_url": "https://api.github.com/users/pietrolesci/orgs",
"repos_url": "https://api.github.com/users/pietrolesci/repos",
"events_url": "https://api.github.com/users/pietrolesci/events{/privacy}",
"received_events_url": "https://api.github.com/users/pietrolesci/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false | null |
[] | null |
[
"Hi! I can't reproduce the error following these steps. Can you please provide a reproducible example?",
"I faced the same issue:\r\n\r\n### Repro\r\n```\r\n!pip install datasets==2.6.1\r\nimport datasets as Dataset\r\ndataset = Dataset.from_pandas(dataframe)\r\ndataset.save_to_disk(local)\r\n\r\n!pip install datasets==2.5.2\r\nimport datasets as Dataset\r\ndataset = Dataset.load_from_disk(local)\r\n```\r\n\r\n",
"@Lokiiiiii And what are the contents of the \"dataframe\" in your example?",
"I bumped into the issue too. @Lokiiiiii thanks for steps. I \"solved\" if for now by `pip install datasets>=2.6.1` everywhere.",
"Hi all, \r\nI experienced the same issue. \r\nPlease note that the pull request is related to the IMDB example provided in the doc, and is a fix for that, in that context, to make sure that people can follow the doc example and have a working system. \r\nIt does not provide a fix for Datasets itself. ",
"im getting the same error.\r\n- using the base AWS HF container that uses a datasets <2.\r\n- updating the AWS HF container to use dataset 2.4\r\n",
"Same here, running on our SageMaker pipelines. It's only happening for some but not all of our saved Datasets.",
"I am also receiving this error on Sagemaker but not locally, I have noticed that this occurs when the `.dataset/` folder does not contain a single file like:\r\n\r\n`dataset.arrow`\r\n\r\nbut instead contains multiple files like:\r\n\r\n`data-00000-of-00002.arrow`\r\n`data-00001-of-00002.arrow`\r\n\r\nI think that it may have something to do with this recent PR that updated the behaviour of `dataset.save_to_disk` by introducing sharding: https://github.com/huggingface/datasets/pull/5268\r\n\r\nFor now I can get around this by forcing datasets==2.8.0 on machine that creates dataset and in the huggingface instance for training (by running this at the start of training script `os.system(\"pip install datasets==2.8.0\")`)\r\n\r\nTo ensure the dataset is a single shard when saving the dataset locally:\r\n\r\n```python3\r\ndataset.flatten_indices().save_to_disk('path/to/dataset', num_shards=1)\r\n```\r\n\r\n and then manually changing the name afterwards from `path/to/dataset/data-00000-of-00001.arrow` to `path/to/dataset/dataset.arrow` and updating the `path/to/dataset/state.json` to reflect this name change. i.e. by changing `state.json` to this:\r\n\r\n```javascript\r\n{\r\n \"_data_files\": [\r\n {\r\n \"filename\": \"dataset.arrow\"\r\n }\r\n ],\r\n \"_fingerprint\": \"420086f0636f8727\",\r\n \"_format_columns\": null,\r\n \"_format_kwargs\": {},\r\n \"_format_type\": null,\r\n \"_output_all_columns\": false,\r\n \"_split\": null\r\n}\r\n```",
"Does anyone know if this has been resolved?"
] | 2022-10-24T11:32:36 | 2023-12-14T14:20:28 | null |
NONE
| null | null | null |
### Describe the bug
Loading a dataset_dict from disk with `load_from_disk` is now creating a `KeyError "length"` that was not occurring in v2.5.2.
Context:
- Each individual dataset in the dict is created with `Dataset.from_pandas`
- The dataset_dict is create from a dict of `Dataset`s, e.g., `DatasetDict({"train": train_ds, "validation": val_ds})
- The pandas dataframe, besides text columns, has a column with a dictionary inside and potentially different keys in each row. Correctly the `Dataset.from_pandas` function adds `key: None` to all dictionaries in each row so that the schema can be correctly inferred.
### Steps to reproduce the bug
Steps to reproduce:
- Upgrade to datasets==2.6.1
- Create a dataset from pandas dataframe with `Dataset.from_pandas`
- Create a dataset_dict from a dict of `Dataset`s, e.g., `DatasetDict({"train": train_ds, "validation": val_ds})
- Save to disk with the `save` function
### Expected behavior
Same as in v2.5.2, that is load from disk without errors
### Environment info
- `datasets` version: 2.6.1
- Platform: Linux-5.4.209-129.367.amzn2int.x86_64-x86_64-with-glibc2.26
- Python version: 3.9.13
- PyArrow version: 9.0.0
- Pandas version: 1.5.1
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5150/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5150/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5148
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5148/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5148/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5148/events
|
https://github.com/huggingface/datasets/issues/5148
| 1,420,219,222 |
I_kwDODunzps5UptNW
| 5,148 |
Cannot find the rvl_cdip dataset
|
{
"login": "santule",
"id": 20509836,
"node_id": "MDQ6VXNlcjIwNTA5ODM2",
"avatar_url": "https://avatars.githubusercontent.com/u/20509836?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/santule",
"html_url": "https://github.com/santule",
"followers_url": "https://api.github.com/users/santule/followers",
"following_url": "https://api.github.com/users/santule/following{/other_user}",
"gists_url": "https://api.github.com/users/santule/gists{/gist_id}",
"starred_url": "https://api.github.com/users/santule/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/santule/subscriptions",
"organizations_url": "https://api.github.com/users/santule/orgs",
"repos_url": "https://api.github.com/users/santule/repos",
"events_url": "https://api.github.com/users/santule/events{/privacy}",
"received_events_url": "https://api.github.com/users/santule/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Hi, @santule.\r\n\r\nWe have transferred all dataset scripts from GitHub to the Hugging Face Hub: https://huggingface.co/datasets\r\n- Concretely, you have \"rvl_cdip\" here: https://huggingface.co/datasets/rvl_cdip\r\n\r\nTo be able to load them, you should update your `datasets` library:\r\n```\r\npip install -U datasets\r\n```",
"thank you, it worked"
] | 2022-10-24T04:57:42 | 2022-10-24T12:23:47 | 2022-10-24T06:25:28 |
NONE
| null | null | null |
Hi,
I am trying to use load_dataset to load the official "rvl_cdip" dataset but getting an error.
dataset = load_dataset("rvl_cdip")
Couldn't find 'rvl_cdip' on the Hugging Face Hub either: FileNotFoundError: Couldn't find the file at https://raw.githubusercontent.com/huggingface/datasets/master/datasets/rvl_cdip/rvl_cdip.py
Regards,
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5148/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5148/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5147
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5147/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5147/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5147/events
|
https://github.com/huggingface/datasets/issues/5147
| 1,419,522,275 |
I_kwDODunzps5UnDDj
| 5,147 |
Allow ignoring kwargs inside fn_kwargs during dataset.map's fingerprinting
|
{
"login": "falcaopetri",
"id": 8387736,
"node_id": "MDQ6VXNlcjgzODc3MzY=",
"avatar_url": "https://avatars.githubusercontent.com/u/8387736?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/falcaopetri",
"html_url": "https://github.com/falcaopetri",
"followers_url": "https://api.github.com/users/falcaopetri/followers",
"following_url": "https://api.github.com/users/falcaopetri/following{/other_user}",
"gists_url": "https://api.github.com/users/falcaopetri/gists{/gist_id}",
"starred_url": "https://api.github.com/users/falcaopetri/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/falcaopetri/subscriptions",
"organizations_url": "https://api.github.com/users/falcaopetri/orgs",
"repos_url": "https://api.github.com/users/falcaopetri/repos",
"events_url": "https://api.github.com/users/falcaopetri/events{/privacy}",
"received_events_url": "https://api.github.com/users/falcaopetri/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
open
| false | null |
[] | null |
[
"Hi ! In the `transformers` issue the object to not hash is a `Pool` - I think you can instantiate it inside your function instead of passing it as a parameter. It's good practice that your function and all its fn_kwargs are picklable, in case you want to parallelize `map` using `num_proc>1`\r\n\r\nFor the other case `def fn(example, verbose=False):` however, I agree it would be nice to let the user specify that \"verbose\" needs to be ignored.\r\n\r\nDo you think providing a decorator could help ? Maybe\r\n```python\r\[email protected](ignore_kwargs=[\"verbose\"])\r\ndef func(example, verbose=False):\r\n ...\r\n```",
"Hi @lhoestq! Thanks for your response.\r\n\r\nA `Pool` shouldn't be instantiated within the function, because there's a huge overhead in doing so. The main idea is that the same `Pool` should be used across all function calls. Parallel `map` is not helpful/desired in that specific scenario, because the heavy parallel computation is done by another lib (`pyctcdecode`, called within `transformer`'s model inference code).\r\n\r\nBut yes, it makes sense to be able to leverage parallel processing by just doing `num_proc>1` when possible.\r\n\r\nYour decorator suggestions seems like a pretty clean API to me. I didn't find a `datasets.hashing` module though. Would it be created for this specific purpose? Any downsides in just using `datasets.fingerprint`?\r\n\r\nAnd would `datasets.hashing.register` just add some metadata to `func` in your approach (so it could be inspected from `fingerprint_transform`)?\r\n\r\nAnd looking to the `datasets.Dataset` API, `.filter` would also benefited from this.",
"> Would it be created for this specific purpose? Any downsides in just using datasets.fingerprint?\r\n\r\nThis can also go in datasets.fingerprint indeed - but maybe datasets.hashing tells more about what the register function does (i.e. register this function to have a custom hashing) ?\r\n\r\n> And would datasets.hashing.register just add some metadata to func in your approach (so it could be inspected from fingerprint_transform)?\r\n\r\nYup that's the idea :)\r\n\r\n> And looking to the datasets.Dataset API, .filter would also benefited from this.\r\n\r\nIndeed !\r\n\r\n-----\r\n\r\nIf you would like to contribute this you can assign yourself to this issue by posting #self-assign\r\nAnd of course if you have questions or if I can help, feel free to ping me !",
"> This can also go in datasets.fingerprint indeed - but maybe datasets.hashing tells more about what the register function does (i.e. register this function to have a custom hashing) ?\r\n\r\nSure, it makes sense.\r\n\r\n---\r\n\r\nI don't plan to work on it right now, so I'll let it unassigned in case somebody wants to join. I'll get back at it as soon as possible though.\r\n"
] | 2022-10-22T21:46:38 | 2022-11-01T22:19:07 | null |
NONE
| null | null | null |
### Feature request
`dataset.map` accepts a `fn_kwargs` that is passed to `fn`. Currently, the whole `fn_kwargs` is used by `fingerprint_transform` to calculate the new fingerprint.
I'd like to be able to inform `fingerprint_transform` which `fn_kwargs` shoud/shouldn't be taken into account during hashing.
Of course, users should be aware to properly use this new feature, just like the internal usages of `fingerprint_transform` [does](https://github.com/huggingface/datasets/blob/2699593b33ee63d17aad2a2bfddedd38a8df57b8/src/datasets/arrow_dataset.py#L2700).
### Motivation
This is originally motivated by https://github.com/huggingface/transformers/pull/18351#issuecomment-1263588680.
Nonetheless, consider a more general processing function that accepts a kwarg that does not influence it's output:
```python
def fn(example, verbose=False):
...
```
Then `dataset.map(fn, verbose=True)` would not benefit from dataset caching.
I'm not sure if other methods in the `Dataset` API could benefit from this feature.
### Your contribution
Based on `fingerprint_transform `'s `wrapper` function [here](https://github.com/huggingface/datasets/blob/c59cc34fcd2a369d27b77cc678017f5976a926a9/src/datasets/fingerprint.py#L443), it seems to me that it should be possible to make `.map`/`._map_single` accept something like `fn_use_fingerprint_kwargs`/`fn_ignore_fingerprint_kwargs` (probably another arg name). This would then be used by `fingerprint_transform.wrapper` to better/more flexibly hash the transformation.
I could contribute with a PR if this feature and approach look good to you.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5147/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5147/timeline
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5145
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5145/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5145/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5145/events
|
https://github.com/huggingface/datasets/issues/5145
| 1,418,005,452 |
I_kwDODunzps5UhQvM
| 5,145 |
Dataset order is not deterministic with ZIP archives and `iter_files`
|
{
"login": "fxmarty",
"id": 9808326,
"node_id": "MDQ6VXNlcjk4MDgzMjY=",
"avatar_url": "https://avatars.githubusercontent.com/u/9808326?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/fxmarty",
"html_url": "https://github.com/fxmarty",
"followers_url": "https://api.github.com/users/fxmarty/followers",
"following_url": "https://api.github.com/users/fxmarty/following{/other_user}",
"gists_url": "https://api.github.com/users/fxmarty/gists{/gist_id}",
"starred_url": "https://api.github.com/users/fxmarty/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/fxmarty/subscriptions",
"organizations_url": "https://api.github.com/users/fxmarty/orgs",
"repos_url": "https://api.github.com/users/fxmarty/repos",
"events_url": "https://api.github.com/users/fxmarty/events{/privacy}",
"received_events_url": "https://api.github.com/users/fxmarty/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"Thanks for reporting ! The issue doesn't come from shuffling, but from `beans` row order not being deterministic:\r\n\r\nhttps://huggingface.co/datasets/beans/blob/main/beans.py uses `dl_manager.iter_files` on ZIP archives and the file order doesn't seen to be deterministic and changes across machines",
"Thank you for noticing indeed!",
"This is still a bug, so I'd keep this one open if you don't mind ;)",
"Besides the linked PR, to make the loading process fully deterministic, I believe we should also sort the data files [here](https://github.com/huggingface/datasets/blob/df4bdd365f2abb695f113cbf8856a925bc70901b/src/datasets/data_files.py#L276) and [here](https://github.com/huggingface/datasets/blob/df4bdd365f2abb695f113cbf8856a925bc70901b/src/datasets/data_files.py#L485) (e.g. fsspec's `LocalFileSystem.glob` relies on `os.scandir`, which yields the contents in arbitrary order). My concern is the overhead of these sorts... Maybe we could introduce a new flag to `load_dataset` similar to TFDS' [`shuffle_files`](https://www.tensorflow.org/datasets/determinism#determinism_when_reading) or sort only if the number of data files is small?",
"We already return the result sorted at the end of `_resolve_single_pattern_locally` and `_resolve_single_pattern_in_dataset_repository` if I'm not mistaken",
"@lhoestq Oh, you are right. Feel free to ignore my comment.",
"I think the corresponding PR is ready to be merged :hugs: ",
"@albertvillanova Thanks for the fix!"
] | 2022-10-21T09:00:03 | 2022-10-27T09:51:49 | 2022-10-27T09:51:10 |
CONTRIBUTOR
| null | null | null |
### Describe the bug
For the `beans` dataset (did not try on other), the order of samples is not the same on different machines. Tested on my local laptop, github actions machine, and ec2 instance. The three yield a different order.
### Steps to reproduce the bug
In a clean docker container or conda environment with datasets==2.6.1, run
```python
from datasets import load_dataset
from pprint import pprint
data = load_dataset("beans", split="validation")
pprint(data["image_file_path"])
```
### Expected behavior
The order of the images is the same on all machines.
### Environment info
On the EC2 instance:
```
- `datasets` version: 2.6.1
- Platform: Linux-4.14.291-218.527.amzn2.x86_64-x86_64-with-glibc2.2.5
- Python version: 3.7.10
- PyArrow version: 9.0.0
- Pandas version: 1.3.5
- Numpy version: not checked
```
On my local laptop:
```
- `datasets` version: 2.6.1
- Platform: Linux-5.15.0-50-generic-x86_64-with-glibc2.35
- Python version: 3.9.12
- PyArrow version: 7.0.0
- Pandas version: 1.3.5
- Numpy version: 1.23.1
```
On github actions:
```
- `datasets` version: 2.6.1
- Platform: Linux-5.15.0-1022-azure-x86_64-with-glibc2.2.5
- Python version: 3.8.14
- PyArrow version: 9.0.0
- Pandas version: 1.5.1
- Numpy version: 1.23.4
```
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5145/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5145/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5144
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5144/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5144/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5144/events
|
https://github.com/huggingface/datasets/issues/5144
| 1,417,974,731 |
I_kwDODunzps5UhJPL
| 5,144 |
Inconsistent documentation on map remove_columns
|
{
"login": "zhaowei-wang-nlp",
"id": 22047467,
"node_id": "MDQ6VXNlcjIyMDQ3NDY3",
"avatar_url": "https://avatars.githubusercontent.com/u/22047467?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/zhaowei-wang-nlp",
"html_url": "https://github.com/zhaowei-wang-nlp",
"followers_url": "https://api.github.com/users/zhaowei-wang-nlp/followers",
"following_url": "https://api.github.com/users/zhaowei-wang-nlp/following{/other_user}",
"gists_url": "https://api.github.com/users/zhaowei-wang-nlp/gists{/gist_id}",
"starred_url": "https://api.github.com/users/zhaowei-wang-nlp/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/zhaowei-wang-nlp/subscriptions",
"organizations_url": "https://api.github.com/users/zhaowei-wang-nlp/orgs",
"repos_url": "https://api.github.com/users/zhaowei-wang-nlp/repos",
"events_url": "https://api.github.com/users/zhaowei-wang-nlp/events{/privacy}",
"received_events_url": "https://api.github.com/users/zhaowei-wang-nlp/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892861,
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation",
"name": "documentation",
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation"
},
{
"id": 1935892865,
"node_id": "MDU6TGFiZWwxOTM1ODkyODY1",
"url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate",
"name": "duplicate",
"color": "cfd3d7",
"default": true,
"description": "This issue or pull request already exists"
},
{
"id": 1935892877,
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue",
"name": "good first issue",
"color": "7057ff",
"default": true,
"description": "Good for newcomers"
},
{
"id": 4614514401,
"node_id": "LA_kwDODunzps8AAAABEwvm4Q",
"url": "https://api.github.com/repos/huggingface/datasets/labels/hacktoberfest",
"name": "hacktoberfest",
"color": "DF8D62",
"default": false,
"description": ""
}
] |
closed
| false | null |
[] | null |
[
"Thanks for reporting, @zhaowei-wang-nlp.\r\n\r\nYou are right, the documentation is confusing on the behavior of `remove_columns`. We should better explain it. ",
"This is a duplicate of https://github.com/huggingface/datasets/issues/2343.",
"I'm closing this issue because as @mariosasko pointed out, it is a duplicate of:\r\n- #2343"
] | 2022-10-21T08:37:53 | 2022-11-15T14:15:10 | 2022-11-15T14:15:10 |
NONE
| null | null | null |
### Describe the bug
The page [process](https://huggingface.co/docs/datasets/process) says this about the parameter `remove_columns` of the function `map`:
When you remove a column, it is only removed after the example has been provided to the mapped function.
So it seems that the `remove_columns` parameter removes after the mapped functions.
However, another page, [the documentation of the function map](https://huggingface.co/docs/datasets/v2.6.1/en/package_reference/main_classes#datasets.Dataset.map.remove_columns) says:
Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding columns with names in remove_columns, these columns will be kept.
So one page says "after the mapped function" and another says "before the mapped function."
Is there something wrong?
### Steps to reproduce the bug
Not about code.
### Expected behavior
consistent about the descriptions of the behavior of the parameter `remove_columns` in the function `map`.
### Environment info
datasets V2.6.0
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5144/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5144/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5143
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5143/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5143/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5143/events
|
https://github.com/huggingface/datasets/issues/5143
| 1,416,837,186 |
I_kwDODunzps5UczhC
| 5,143 |
DownloadManager Git LFS support
|
{
"login": "Muennighoff",
"id": 62820084,
"node_id": "MDQ6VXNlcjYyODIwMDg0",
"avatar_url": "https://avatars.githubusercontent.com/u/62820084?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Muennighoff",
"html_url": "https://github.com/Muennighoff",
"followers_url": "https://api.github.com/users/Muennighoff/followers",
"following_url": "https://api.github.com/users/Muennighoff/following{/other_user}",
"gists_url": "https://api.github.com/users/Muennighoff/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Muennighoff/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Muennighoff/subscriptions",
"organizations_url": "https://api.github.com/users/Muennighoff/orgs",
"repos_url": "https://api.github.com/users/Muennighoff/repos",
"events_url": "https://api.github.com/users/Muennighoff/events{/privacy}",
"received_events_url": "https://api.github.com/users/Muennighoff/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
closed
| false | null |
[] | null |
[
"Hey ! Actually it works, just pass the right URL ;)\r\nThe URL must be the one with “/resolve/”\r\n\r\ne.g. https://huggingface.co/datasets/imagenet-1k/resolve/main/data/test_images.tar.gz\r\n\r\nYou can even pass a relative path to the dl_manager instead, like `dl_manager.download(\"data/test_images.tar.gz\")`",
"Amazing it works, thanks!"
] | 2022-10-20T15:29:29 | 2022-10-20T17:17:10 | 2022-10-20T17:17:10 |
CONTRIBUTOR
| null | null | null |
### Feature request
Maybe I'm mistaken but the `DownloadManager` does not support extracting git lfs files out of the box right?
Using `dl_manager.download()` or `dl_manager.download_and_extract()` still returns lfs files afaict.
Is there a good way to write a dataset loading script for a repo with lfs files?
### Motivation
/
### Your contribution
/
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5143/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5143/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5137
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5137/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5137/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5137/events
|
https://github.com/huggingface/datasets/issues/5137
| 1,414,642,723 |
I_kwDODunzps5UUbwj
| 5,137 |
Align task tags in dataset metadata
|
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 4564477500,
"node_id": "LA_kwDODunzps8AAAABEBBmPA",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution",
"name": "dataset contribution",
"color": "0e8a16",
"default": false,
"description": "Contribution to a dataset script"
}
] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"I removed all the invalid task_ids in datasts without namespace, based on the <s>(internal)</s> types.ts",
"(Types.ts is not internal it's public)",
"I have opened PRs to fix the task_ids in all datasets within a namespace as well.\r\n\r\nWorking on task_categories...",
"For future reference: this fix had some complications\r\n\r\nWhen trying to open a PR to fix the task tags, an exception was thrown if:\r\n- the metadata contained \"languages\" or \"licenses\" (instead of \"language\" or \"license\")\r\n- the metadata contained a non-valid language: `en-US` (instead of `en`), `no` (instead of `'no'`),...\r\n- the metadata contained a non-valid license\r\n- either `task_categories` or `task_ids` was not an array (a dict for each config)\r\n- the metadata contained non-valid tag names\r\n\r\nErrors:\r\n```\r\nValueError: - Error: \"languages\" is deprecated. Use \"language\" instead.\r\n```\r\n```\r\nValueError: - Error: \"licenses\" is deprecated. Use \"license\" instead.\r\n```\r\n```\r\nValueError: - Error: \"language[17]\" must only contain lowercase characters\r\n```\r\n```\r\nValueError: - Error: \"language[0]\" with value \"cz, de, it\" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like \"code\", \"multilingual\". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.\r\n```\r\n```\r\nValueError: - Error: \"task_ids\" must be an array\r\n```",
"All Hub datasets are done.",
"great job! did you have feedback from Hub users/i.E. repo authors?",
"Yes, @julien-c. These are some of the feedbacks:\r\n- Most people just thank for the fix: [cahya/librivox-indonesia](https://huggingface.co/datasets/cahya/librivox-indonesia/discussions/1#6357cd8a292a050ebd705f84), [TurkuNLP/xlsum-fi](https://huggingface.co/datasets/TurkuNLP/xlsum-fi/discussions/1#6357828aa1f8ad1c31bcbe46), [coastalcph/fairlex](https://huggingface.co/datasets/coastalcph/fairlex/discussions/4#6351a527a8e595171ab1aef2)\r\n- Why are we changing their task names? [joelito/lextreme](https://huggingface.co/datasets/joelito/lextreme/discussions/1#6351b576fe367c0d9b12041b)\r\n - I take note of this for the next bulk operation; besides the PR title, we should also add a description to explain the reason for the change and also maybe putting a link to some pertinent GH Issue page\r\n- Some of them ask where to find the list of the supported task values is: [dennlinger/klexikon](https://huggingface.co/datasets/dennlinger/klexikon/discussions/3#6356b3ea80f8cb3ab777ac5c), [lmqg/qg_jaquad](https://huggingface.co/datasets/lmqg/qg_jaquad/discussions/1#635262467e4cc3135fd09f58)\r\n - Currently, the list is here: https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L85\r\n - Maybe we could made them more easily accessible\r\n- Some people do not agree about current \"hierarchy\":\r\n - text-scoring: [emrecan/nli_tr_for_simcse](https://huggingface.co/datasets/emrecan/nli_tr_for_simcse/discussions/1#6357c1b128792d8cdd51e9f9) (but referring to [emrecan/nli_tr_for_simcse](https://huggingface.co/datasets/emrecan/nli_tr_for_simcse/discussions/2/files))\r\n - Before \"text-scoring\" was a task_category, with task_ids [\"semantic-similarity-scoring\", \"sentiment-scoring\"]\r\n - Now all three are task_ids [\"text-scoring\", \"semantic-similarity-scoring\", \"sentiment-scoring\"] under the task_category \"text-classification\"\r\n - People complain that their scoring tasks are not classification task\r\n - binary-classification: why don't we have binary-classification? We have multi-class-classification, multi-label-classification and sentiment-classification, but not binary-classification\r\n - symbolic-regression: [yoshitomo-matsubara/srsd-feynman_hard](https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_hard/discussions/2#63614194c12a09b8a31457cc), [yoshitomo-matsubara/srsd-feynman_medium](https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_medium/discussions/2#6361418aeee0d27f04379e43), [yoshitomo-matsubara/srsd-feynman_easy](https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_easy/discussions/2#6361416e00905b1ffb8d0112)\r\n - Why don't we have symbolic-regression task?\r\n\r\nNOTE: I'm editing this comment to add more feedback",
"As someone with feedback on the updates (which I highly appreciate seeing included here :D), a few comments from a \"user perspective\": \r\n\r\n* I think the general confusion for me was also surrounding the hierarchy; it doesn't really become super clear (even when using the tagger space) that one is a subset of the other, especially since it seems to be still possible to include fine-grained tasks without the \"parent category\"?\r\n* The datasets explorer still shows tags that are no longer valid (e.g., super specific ones such as `summarization-other-paper-abstract-generation`, but also ones that should be `task_categories`, such as `summarization`). I'm assuming this will be fixed soon, but until then it can confuse people who don't understand why they suddenly can't use seemingly still valid tags anymore.\r\n* As I mentioned to @albertvillanova, having a dedicated page in the docs with explanations (especially wrt the difference between `task_categories` and `task_ids`) would be super helpful. However, I think it would have been sufficient to just include some description in the dataset PRs where you can link to the Github/other discussion on the topic :) That way, I can check myself what changes are expected to happen.\r\n\r\nThanks again for the streamlining process, I personally learned a fair bit about the tagging structure in the meantime!\r\nBest,\r\nDennis",
"Thanks to you both for your feedback! super useful! cc'ing @osanseviero too 🙂\r\n\r\n> The datasets explorer still shows tags that are no longer valid\r\n\r\nwait which explorer is that? is it https://huggingface.co/datasets/viewer/ ?\r\n",
"Sorry, this one: https://huggingface.co/datasets \r\nAnd then selecting the \"Fine-Grained Tasks\".",
"good feedback! we'll improve this",
"Super useful feedback, thanks a lot!",
"- Some people do not agree about current \"hierarchy\":\r\n - symbolic-regression: [yoshitomo-matsubara/srsd-feynman_hard](https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_hard/discussions/2#63614194c12a09b8a31457cc), [yoshitomo-matsubara/srsd-feynman_medium](https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_medium/discussions/2#6361418aeee0d27f04379e43), [yoshitomo-matsubara/srsd-feynman_easy](https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_easy/discussions/2#6361416e00905b1ffb8d0112)\r\n - Why don't we have symbolic-regression task?",
"@albertvillanova \r\nThank you for sharing our voice here!\r\n\r\nYes, we want `symbolic-regression` to be listed as a task. This task has been attracting attention from the machine learning/deep learning community, and unfortunately existing symbolic regression datasets are de-centralized in the community (hosted at individual platforms like author website, github, etc).\r\nIt would be great for the community if Hugging Face can support the task."
] | 2022-10-19T09:41:42 | 2022-11-10T05:25:58 | 2022-10-25T06:17:00 |
MEMBER
| null | null | null |
## Describe
Once we have agreed on a common naming for task tags for all open source projects, we should align on them.
## Steps
- [x] Align task tags in canonical datasets
- [x] task_categories: 4 datasets
- [x] task_ids (by @lhoestq)
- [x] Open PRs in community datasets
- [x] task_categories: 451 datasets
- [x] task_ids: 556 datasets
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5137/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5137/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5135
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5135/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5135/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5135/events
|
https://github.com/huggingface/datasets/issues/5135
| 1,414,413,519 |
I_kwDODunzps5UTjzP
| 5,135 |
Update docs once dataset scripts transferred to the Hub
|
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892861,
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation",
"name": "documentation",
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation"
}
] |
closed
| false |
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null |
[] | 2022-10-19T06:58:19 | 2022-10-20T08:10:01 | 2022-10-20T08:10:01 |
MEMBER
| null | null | null |
## Describe the bug
As discussed in:
- https://github.com/huggingface/hub-docs/pull/423#pullrequestreview-1146083701
we should update our docs once dataset scripts have been transferred to the Hub (and removed from GitHub):
- #4974
Concretely:
- [x] Datasets on GitHub (legacy): https://huggingface.co/docs/datasets/main/en/share#datasets-on-github-legacy
- [x] ADD_NEW_DATASET: https://github.com/huggingface/datasets/blob/main/ADD_NEW_DATASET.md
- ...
This PR complements the work of:
- #5067
This PR is a follow-up of PRs:
- #3777
CC: @julien-c
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5135/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5135/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5134
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5134/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5134/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5134/events
|
https://github.com/huggingface/datasets/issues/5134
| 1,413,623,687 |
I_kwDODunzps5UQi-H
| 5,134 |
Raise ImportError instead of OSError if required extraction library is not installed
|
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 1935892877,
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue",
"name": "good first issue",
"color": "7057ff",
"default": true,
"description": "Good for newcomers"
},
{
"id": 4614514401,
"node_id": "LA_kwDODunzps8AAAABEwvm4Q",
"url": "https://api.github.com/repos/huggingface/datasets/labels/hacktoberfest",
"name": "hacktoberfest",
"color": "DF8D62",
"default": false,
"description": ""
}
] |
closed
| false |
{
"login": "ayushthe1",
"id": 114604338,
"node_id": "U_kgDOBtS5Mg",
"avatar_url": "https://avatars.githubusercontent.com/u/114604338?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ayushthe1",
"html_url": "https://github.com/ayushthe1",
"followers_url": "https://api.github.com/users/ayushthe1/followers",
"following_url": "https://api.github.com/users/ayushthe1/following{/other_user}",
"gists_url": "https://api.github.com/users/ayushthe1/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ayushthe1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ayushthe1/subscriptions",
"organizations_url": "https://api.github.com/users/ayushthe1/orgs",
"repos_url": "https://api.github.com/users/ayushthe1/repos",
"events_url": "https://api.github.com/users/ayushthe1/events{/privacy}",
"received_events_url": "https://api.github.com/users/ayushthe1/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "ayushthe1",
"id": 114604338,
"node_id": "U_kgDOBtS5Mg",
"avatar_url": "https://avatars.githubusercontent.com/u/114604338?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ayushthe1",
"html_url": "https://github.com/ayushthe1",
"followers_url": "https://api.github.com/users/ayushthe1/followers",
"following_url": "https://api.github.com/users/ayushthe1/following{/other_user}",
"gists_url": "https://api.github.com/users/ayushthe1/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ayushthe1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ayushthe1/subscriptions",
"organizations_url": "https://api.github.com/users/ayushthe1/orgs",
"repos_url": "https://api.github.com/users/ayushthe1/repos",
"events_url": "https://api.github.com/users/ayushthe1/events{/privacy}",
"received_events_url": "https://api.github.com/users/ayushthe1/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"hey ,i would like to work on this issue . Please assign it to me.",
"hey @mariosasko , i made a pr for this issue. Could you please review it.\r\nAlso i found multiple `OSError` in `extract.py` file which i thought could be replaced too but wasn't sure about them.\r\nPlease do tell if that also needs to be done."
] | 2022-10-18T17:53:46 | 2022-10-25T15:56:59 | 2022-10-25T15:56:59 |
CONTRIBUTOR
| null | null | null |
According to the official Python docs, `OSError` should be thrown in the following situations:
> This exception is raised when a system function returns a system-related error, including I/O failures such as “file not found” or “disk full” (not for illegal argument types or other incidental errors).
Hence, it makes more sense to raise `ImportError` instead of `OSError` when the required extraction/decompression library is not installed.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5134/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5134/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5133
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5133/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5133/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5133/events
|
https://github.com/huggingface/datasets/issues/5133
| 1,413,623,462 |
I_kwDODunzps5UQi6m
| 5,133 |
Tensor operation not functioning in dataset mapping
|
{
"login": "xinghaow99",
"id": 50691954,
"node_id": "MDQ6VXNlcjUwNjkxOTU0",
"avatar_url": "https://avatars.githubusercontent.com/u/50691954?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/xinghaow99",
"html_url": "https://github.com/xinghaow99",
"followers_url": "https://api.github.com/users/xinghaow99/followers",
"following_url": "https://api.github.com/users/xinghaow99/following{/other_user}",
"gists_url": "https://api.github.com/users/xinghaow99/gists{/gist_id}",
"starred_url": "https://api.github.com/users/xinghaow99/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/xinghaow99/subscriptions",
"organizations_url": "https://api.github.com/users/xinghaow99/orgs",
"repos_url": "https://api.github.com/users/xinghaow99/repos",
"events_url": "https://api.github.com/users/xinghaow99/events{/privacy}",
"received_events_url": "https://api.github.com/users/xinghaow99/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] |
closed
| false | null |
[] | null |
[
"Hi! The Torch ops in your snippet are not equivalent to the NumPy ones, hence the difference. You can get the same behavior by replacing the line `feature = torch.mean(feature, dim=1)` with `feature = feature.squeeze().mean(1)` .",
"> Hi! The Torch ops in your snippet are not equivalent to the NumPy ones, hence the difference. You can get the same behavior by replacing the line `feature = torch.mean(feature, dim=1)` with `feature = feature.squeeze().mean(1)` .\r\n\r\nThank you. "
] | 2022-10-18T17:53:35 | 2022-10-19T04:15:45 | 2022-10-19T04:15:44 |
NONE
| null | null | null |
## Describe the bug
I'm doing a torch.mean() operation in data preprocessing, and it's not working.
## Steps to reproduce the bug
```
from transformers import pipeline
import torch
import numpy as np
from datasets import load_dataset
device = 'cuda:0'
raw_dataset = load_dataset("glue", "sst2")
feature_extraction = pipeline('feature-extraction', 'bert-base-uncased', device=device)
def extracted_data(examples):
# feature = torch.tensor(feature_extraction(examples['sentence'], batch_size=16), device=device)
# feature = torch.mean(feature, dim=1)
feature = np.asarray(feature_extraction(examples['sentence'], batch_size=16)).squeeze().mean(1)
print(feature.shape)
return {'feature': feature}
extracted_dataset = raw_dataset.map(extracted_data, batched=True, batch_size=16)
```
## Results
When running with torch.mean(), the shape printed out is [16, seq_len, 768], which is exactly the same before the operation. While numpy works just fine, which gives [16, 768].
## Environment info
- `datasets` version: 2.6.1
- Platform: Linux-4.4.0-142-generic-x86_64-with-glibc2.31
- Python version: 3.10.6
- PyArrow version: 9.0.0
- Pandas version: 1.5.0
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5133/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5133/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5132
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5132/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5132/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5132/events
|
https://github.com/huggingface/datasets/issues/5132
| 1,413,607,306 |
I_kwDODunzps5UQe-K
| 5,132 |
Depracate `num_proc` parameter in `DownloadManager.extract`
|
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 1935892877,
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue",
"name": "good first issue",
"color": "7057ff",
"default": true,
"description": "Good for newcomers"
},
{
"id": 4614514401,
"node_id": "LA_kwDODunzps8AAAABEwvm4Q",
"url": "https://api.github.com/repos/huggingface/datasets/labels/hacktoberfest",
"name": "hacktoberfest",
"color": "DF8D62",
"default": false,
"description": ""
}
] |
closed
| false |
{
"login": "ayushthe1",
"id": 114604338,
"node_id": "U_kgDOBtS5Mg",
"avatar_url": "https://avatars.githubusercontent.com/u/114604338?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ayushthe1",
"html_url": "https://github.com/ayushthe1",
"followers_url": "https://api.github.com/users/ayushthe1/followers",
"following_url": "https://api.github.com/users/ayushthe1/following{/other_user}",
"gists_url": "https://api.github.com/users/ayushthe1/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ayushthe1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ayushthe1/subscriptions",
"organizations_url": "https://api.github.com/users/ayushthe1/orgs",
"repos_url": "https://api.github.com/users/ayushthe1/repos",
"events_url": "https://api.github.com/users/ayushthe1/events{/privacy}",
"received_events_url": "https://api.github.com/users/ayushthe1/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"login": "ayushthe1",
"id": 114604338,
"node_id": "U_kgDOBtS5Mg",
"avatar_url": "https://avatars.githubusercontent.com/u/114604338?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ayushthe1",
"html_url": "https://github.com/ayushthe1",
"followers_url": "https://api.github.com/users/ayushthe1/followers",
"following_url": "https://api.github.com/users/ayushthe1/following{/other_user}",
"gists_url": "https://api.github.com/users/ayushthe1/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ayushthe1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ayushthe1/subscriptions",
"organizations_url": "https://api.github.com/users/ayushthe1/orgs",
"repos_url": "https://api.github.com/users/ayushthe1/repos",
"events_url": "https://api.github.com/users/ayushthe1/events{/privacy}",
"received_events_url": "https://api.github.com/users/ayushthe1/received_events",
"type": "User",
"site_admin": false
}
] | null |
[
"I can take this! #self-assign",
"#self-assign",
"@lazarust i'm already working on this issue :smile: ",
"#self-assign",
"hey @mariosasko , i made a pr for this issue. Could you please review it."
] | 2022-10-18T17:41:05 | 2022-10-25T15:56:46 | 2022-10-25T15:56:46 |
CONTRIBUTOR
| null | null | null |
The `num_proc` parameter is only present in `DownloadManager.extract` but not in `StreamingDownloadManager.extract`, making it impossible to support streaming in the dataset scripts that use it (`openwebtext` and `the_pile_stack_exchange`). We can avoid this situation by deprecating this parameter and passing `DownloadConfig`'s `num_proc` to `map_nested` instead, as it's done in `DownloadManager.download`.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5132/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5132/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5131
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5131/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5131/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5131/events
|
https://github.com/huggingface/datasets/issues/5131
| 1,413,534,863 |
I_kwDODunzps5UQNSP
| 5,131 |
WikiText 103 tokenizer hangs
|
{
"login": "TrentBrick",
"id": 12433427,
"node_id": "MDQ6VXNlcjEyNDMzNDI3",
"avatar_url": "https://avatars.githubusercontent.com/u/12433427?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/TrentBrick",
"html_url": "https://github.com/TrentBrick",
"followers_url": "https://api.github.com/users/TrentBrick/followers",
"following_url": "https://api.github.com/users/TrentBrick/following{/other_user}",
"gists_url": "https://api.github.com/users/TrentBrick/gists{/gist_id}",
"starred_url": "https://api.github.com/users/TrentBrick/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/TrentBrick/subscriptions",
"organizations_url": "https://api.github.com/users/TrentBrick/orgs",
"repos_url": "https://api.github.com/users/TrentBrick/repos",
"events_url": "https://api.github.com/users/TrentBrick/events{/privacy}",
"received_events_url": "https://api.github.com/users/TrentBrick/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] |
closed
| false | null |
[] | null |
[
"any updates on this? It happens to me on [OpenWikiText-20%](https://huggingface.co/datasets/Bingsu/openwebtext_20p) dataset, but not on [OpenWebText-10k](https://huggingface.co/datasets/stas/openwebtext-10k). This is really strange because I don't change anything else in my running script.\r\n\r\ntransformers version 4.18.0.dev0\r\ndatasets version 1.18.0"
] | 2022-10-18T16:44:00 | 2023-08-08T08:42:40 | 2023-07-21T14:41:51 |
NONE
| null | null | null |
See issue here: https://github.com/huggingface/transformers/issues/19702
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5131/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5131/timeline
| null |
completed
|
https://api.github.com/repos/huggingface/datasets/issues/5129
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5129/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5129/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5129/events
|
https://github.com/huggingface/datasets/issues/5129
| 1,413,031,664 |
I_kwDODunzps5UOSbw
| 5,129 |
unexpected `cast` or `class_encode_column` result after `rename_column`
|
{
"login": "quaeast",
"id": 35144675,
"node_id": "MDQ6VXNlcjM1MTQ0Njc1",
"avatar_url": "https://avatars.githubusercontent.com/u/35144675?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/quaeast",
"html_url": "https://github.com/quaeast",
"followers_url": "https://api.github.com/users/quaeast/followers",
"following_url": "https://api.github.com/users/quaeast/following{/other_user}",
"gists_url": "https://api.github.com/users/quaeast/gists{/gist_id}",
"starred_url": "https://api.github.com/users/quaeast/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/quaeast/subscriptions",
"organizations_url": "https://api.github.com/users/quaeast/orgs",
"repos_url": "https://api.github.com/users/quaeast/repos",
"events_url": "https://api.github.com/users/quaeast/events{/privacy}",
"received_events_url": "https://api.github.com/users/quaeast/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] |
closed
| false | null |
[] | null |
[
"Hi! Unfortunately, I can't reproduce this issue locally (in Python 3.7/3.10) or in Colab. I would assume this is due to a bug we fixed in the latest release, but your version is up-to-date, so I'm not sure if there is something we can do to help...",
"Hi, 方子东. I tried running the code with exact the same configuration (both datasets 2.5.2 and 2.6.1, python, pyarrow, pandas), but on Linux. The results seem to be the expected `{<pyarrow.Int64Scalar: 4>, <pyarrow.Int64Scalar: 2>, <pyarrow.Int64Scalar: 3>, <pyarrow.Int64Scalar: 0>, <pyarrow.Int64Scalar: 1>}`.\r\nI don't have a Mac device. I can't verify whether this is a M1 chip-specific problem.",
"I've just tested the code on my M1 Mac, and it behaves as expected.",
"> Hi! Unfortunately, I can't reproduce this issue locally (in Python 3.7/3.10) or in Colab. I would assume this is due to a bug we fixed in the latest release, but your version is up-to-date, so I'm not sure if there is something we can do to help...\r\n\r\nThank you for your attention and feel sorry to take your time. Since this is a bug of old version, I think mybe my problem is because `cast` operation directaly used cached data generated by older verion of `datasets`. I tried to deleted the cached data and I got expected result.\r\n"
] | 2022-10-18T11:15:24 | 2022-10-19T03:02:26 | 2022-10-19T03:02:26 |
NONE
| null | null | null |
## Describe the bug
When invoke `cast` or `class_encode_column` to a colunm renamed by `rename_column` , it will convert all the variables in this column into one variable. I also run this script in version 2.5.2, this bug does not appear. So I switched to the older version.
## Steps to reproduce the bug
```python
from datasets import load_dataset
dataset = load_dataset("amazon_reviews_multi", "en")
data = dataset['train']
data = data.remove_columns(
[
"review_id",
"product_id",
"reviewer_id",
"review_title",
"language",
"product_category",
]
)
data = data.rename_column("review_body", "text")
data1 = data.class_encode_column("stars")
print(set(data1.data.columns[0]))
# output: {<pyarrow.Int64Scalar: 4>, <pyarrow.Int64Scalar: 2>, <pyarrow.Int64Scalar: 3>, <pyarrow.Int64Scalar: 0>, <pyarrow.Int64Scalar: 1>}
data = data.rename_column("stars", "label")
print(set(data.data.columns[0]))
# output: {<pyarrow.Int32Scalar: 5>, <pyarrow.Int32Scalar: 4>, <pyarrow.Int32Scalar: 1>, <pyarrow.Int32Scalar: 3>, <pyarrow.Int32Scalar: 2>}
data2 = data.class_encode_column("label")
print(set(data2.data.columns[0]))
# output: {<pyarrow.Int64Scalar: 0>}
```
## Expected results
the last print should be:
{<pyarrow.Int64Scalar: 4>, <pyarrow.Int64Scalar: 2>, <pyarrow.Int64Scalar: 3>, <pyarrow.Int64Scalar: 0>, <pyarrow.Int64Scalar: 1>}
## Actual results
but it output:
{<pyarrow.Int64Scalar: 0>}
## Environment info
- `datasets` version: 2.6.1
- Platform: macOS-12.5.1-arm64-arm-64bit
- Python version: 3.10.6
- PyArrow version: 9.0.0
- Pandas version: 1.5.0
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/5129/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/5129/timeline
| null |
completed
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.