Mahmoud Amiri
update readme
e75b3aa
---
dataset_name: lit2vec-tldr-bart-dataset
pretty_name: Lit2Vec TL;DR Chemistry Dataset
tags:
- summarization
- chemistry
- scientific-papers
- knowledge-graphs
license: cc-by-4.0
task_categories:
- summarization
language:
- en
size_categories:
- 10K<n<100K
---
# Lit2Vec TL;DR Chemistry Dataset
## Summary
The **Lit2Vec TL;DR Chemistry Dataset** is a curated collection of **19,992 chemistry research abstracts** paired with **short, TL;DR-style abstractive summaries**.
It was created to support research in **scientific text summarization**, **semantic indexing**, and **domain-specific knowledge graph construction**.
Unlike generic summarization datasets, this corpus is:
- **Legally reusable** → all abstracts are sourced from **CC-BY licensed publications**
- **Domain-specific** → chemistry and closely related fields (materials science, chemical engineering, environmental science, etc.)
- **Schema-consistent** → each summary follows a concise “methods–results–significance” style
---
## Dataset Structure
### Splits
- **Train**: 17,992 records
- **Validation**: 999 records
- **Test**: 1,001 records
### Example Record
```json
{
"corpus_id": 250384325,
"doi": "10.3390/biom12070947",
"title": "Diffusion of Vanadium Ions in Artificial Saliva...",
"authors": [
"Sónia I. G. Fangaia",
"A. M. Cabral",
"P. Nicolau",
"Fernando Guerra",
"M. Rodrigo",
"A. C. Ribeiro",
"A. Valente",
"M. A. Esteso"
],
"venue": "Biomolecules",
"year": 2022,
"fields_of_study": ["Chemistry", "Medicine"],
"publication_date": "2022-07-01",
"abstract": "In this study, diffusion coefficients of ammonium vanadate ...",
"summary": "The study measured diffusion coefficients of ammonium vanadate in artificial saliva ...",
"license_type": "cc-by",
"license_publisher": "MDPI AG",
"license_url": "https://www.mdpi.com/2218-273X/12/7/947/pdf?version=1657252511",
"source_url": "https://www.semanticscholar.org/paper/1ca8e174a4bc3eebcf0eb328e8582f0008a01c06"
}
````
---
## Features
* `corpus_id` (int): Semantic Scholar corpus ID
* `doi` (string): Digital Object Identifier
* `title` (string): Paper title
* `authors` (list\[string]): Author names
* `venue` (string): Journal or conference
* `year` (int): Publication year
* `fields_of_study` (list\[string]): Disciplinary categories
* `publication_date` (string, ISO date): Publication date
* `abstract` (string): Full research abstract
* `summary` (string): TL;DR-style summary (target label)
* `license_type` (string): License (always “cc-by”)
* `license_publisher` (string): Publisher name
* `license_url` (string): OA license link or PDF link
* `source_url` (string): Semantic Scholar source page
---
## Usage
```python
from datasets import load_dataset
DATASET_ID = "Bocklitz-Lab/lit2vec-tldr-bart-dataset"
# Prefer the modern `token=` param; fall back to use_auth_token if your version needs it.
try:
ds = load_dataset(
DATASET_ID,
split=None, # get all splits if defined
token=True, # uses your cached HF login
revision="main", # avoid refs/convert/parquet unless we ask for it
cache_dir="./.hf_cache_fresh",
download_mode="force_redownload",
)
except TypeError:
# Older versions
ds = load_dataset(
DATASET_ID,
split=None,
use_auth_token=True,
revision="main",
cache_dir="./.hf_cache_fresh",
download_mode="force_redownload",
)
print(ds)
print(ds["train"][0]["abstract"])
print(ds["train"][0]["summary"])
```
---
## Applications
* **Abstractive summarization training** (BART, DistilBART, T5, LLaMA fine-tuning)
* **Information retrieval** in chemistry and materials science
* **Knowledge graph population** from structured summaries
* **Domain-specific semantic search engines**
---
## Licensing
* All abstracts are sourced from **CC BY 4.0 licensed publications**.
* Summaries are **machine-generated** and also distributed under **CC BY 4.0**.
* Attribution information (publisher, OA URL, DOI) is included in the metadata for each record.
---
## Citation
If you use this dataset, please cite:
```bibtex
@dataset{lit2vec_tldr_2025,
author = {Mahmoud Amiri, Thomas bocklitz},
title = {Lit2Vec TL;DR Chemistry Dataset},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/datasets/Bocklitz-Lab/lit2vec-tldr-bart-dataset}},
note = {Submitted to Nature Scientific Data}
}
```
---
## Acknowledgements
* Built using **Semantic Scholar Open Research Corpus (S2ORC)**