|
---
|
|
dataset_name: lit2vec-tldr-bart-dataset
|
|
pretty_name: Lit2Vec TL;DR Chemistry Dataset
|
|
tags:
|
|
- summarization
|
|
- chemistry
|
|
- scientific-papers
|
|
- knowledge-graphs
|
|
license: cc-by-4.0
|
|
task_categories:
|
|
- summarization
|
|
language:
|
|
- en
|
|
size_categories:
|
|
- 10K<n<100K
|
|
---
|
|
|
|
# Lit2Vec TL;DR Chemistry Dataset
|
|
|
|
## Summary
|
|
|
|
The **Lit2Vec TL;DR Chemistry Dataset** is a curated collection of **19,992 chemistry research abstracts** paired with **short, TL;DR-style abstractive summaries**.
|
|
It was created to support research in **scientific text summarization**, **semantic indexing**, and **domain-specific knowledge graph construction**.
|
|
|
|
Unlike generic summarization datasets, this corpus is:
|
|
|
|
- **Legally reusable** → all abstracts are sourced from **CC-BY licensed publications**
|
|
- **Domain-specific** → chemistry and closely related fields (materials science, chemical engineering, environmental science, etc.)
|
|
- **Schema-consistent** → each summary follows a concise “methods–results–significance” style
|
|
|
|
|
|
|
|
---
|
|
|
|
## Dataset Structure
|
|
|
|
### Splits
|
|
|
|
- **Train**: 17,992 records
|
|
- **Validation**: 999 records
|
|
- **Test**: 1,001 records
|
|
|
|
### Example Record
|
|
|
|
```json
|
|
{
|
|
"corpus_id": 250384325,
|
|
"doi": "10.3390/biom12070947",
|
|
"title": "Diffusion of Vanadium Ions in Artificial Saliva...",
|
|
"authors": [
|
|
"Sónia I. G. Fangaia",
|
|
"A. M. Cabral",
|
|
"P. Nicolau",
|
|
"Fernando Guerra",
|
|
"M. Rodrigo",
|
|
"A. C. Ribeiro",
|
|
"A. Valente",
|
|
"M. A. Esteso"
|
|
],
|
|
"venue": "Biomolecules",
|
|
"year": 2022,
|
|
"fields_of_study": ["Chemistry", "Medicine"],
|
|
"publication_date": "2022-07-01",
|
|
"abstract": "In this study, diffusion coefficients of ammonium vanadate ...",
|
|
"summary": "The study measured diffusion coefficients of ammonium vanadate in artificial saliva ...",
|
|
"license_type": "cc-by",
|
|
"license_publisher": "MDPI AG",
|
|
"license_url": "https://www.mdpi.com/2218-273X/12/7/947/pdf?version=1657252511",
|
|
"source_url": "https://www.semanticscholar.org/paper/1ca8e174a4bc3eebcf0eb328e8582f0008a01c06"
|
|
}
|
|
````
|
|
|
|
---
|
|
|
|
## Features
|
|
|
|
* `corpus_id` (int): Semantic Scholar corpus ID
|
|
* `doi` (string): Digital Object Identifier
|
|
* `title` (string): Paper title
|
|
* `authors` (list\[string]): Author names
|
|
* `venue` (string): Journal or conference
|
|
* `year` (int): Publication year
|
|
* `fields_of_study` (list\[string]): Disciplinary categories
|
|
* `publication_date` (string, ISO date): Publication date
|
|
* `abstract` (string): Full research abstract
|
|
* `summary` (string): TL;DR-style summary (target label)
|
|
* `license_type` (string): License (always “cc-by”)
|
|
* `license_publisher` (string): Publisher name
|
|
* `license_url` (string): OA license link or PDF link
|
|
* `source_url` (string): Semantic Scholar source page
|
|
|
|
---
|
|
|
|
## Usage
|
|
|
|
```python
|
|
from datasets import load_dataset
|
|
|
|
DATASET_ID = "Bocklitz-Lab/lit2vec-tldr-bart-dataset"
|
|
|
|
# Prefer the modern `token=` param; fall back to use_auth_token if your version needs it.
|
|
try:
|
|
ds = load_dataset(
|
|
DATASET_ID,
|
|
split=None, # get all splits if defined
|
|
token=True, # uses your cached HF login
|
|
revision="main", # avoid refs/convert/parquet unless we ask for it
|
|
cache_dir="./.hf_cache_fresh",
|
|
download_mode="force_redownload",
|
|
)
|
|
except TypeError:
|
|
# Older versions
|
|
ds = load_dataset(
|
|
DATASET_ID,
|
|
split=None,
|
|
use_auth_token=True,
|
|
revision="main",
|
|
cache_dir="./.hf_cache_fresh",
|
|
download_mode="force_redownload",
|
|
)
|
|
|
|
print(ds)
|
|
print(ds["train"][0]["abstract"])
|
|
print(ds["train"][0]["summary"])
|
|
```
|
|
|
|
---
|
|
|
|
## Applications
|
|
|
|
* **Abstractive summarization training** (BART, DistilBART, T5, LLaMA fine-tuning)
|
|
* **Information retrieval** in chemistry and materials science
|
|
* **Knowledge graph population** from structured summaries
|
|
* **Domain-specific semantic search engines**
|
|
|
|
---
|
|
|
|
## Licensing
|
|
|
|
* All abstracts are sourced from **CC BY 4.0 licensed publications**.
|
|
* Summaries are **machine-generated** and also distributed under **CC BY 4.0**.
|
|
* Attribution information (publisher, OA URL, DOI) is included in the metadata for each record.
|
|
|
|
---
|
|
|
|
## Citation
|
|
|
|
If you use this dataset, please cite:
|
|
|
|
```bibtex
|
|
@dataset{lit2vec_tldr_2025,
|
|
author = {Mahmoud Amiri, Thomas bocklitz},
|
|
title = {Lit2Vec TL;DR Chemistry Dataset},
|
|
year = {2025},
|
|
publisher = {Hugging Face},
|
|
howpublished = {\url{https://huggingface.co/datasets/Bocklitz-Lab/lit2vec-tldr-bart-dataset}},
|
|
note = {Submitted to Nature Scientific Data}
|
|
}
|
|
```
|
|
|
|
---
|
|
|
|
## Acknowledgements
|
|
|
|
* Built using **Semantic Scholar Open Research Corpus (S2ORC)** |