Datasets:
metadata
dataset_name: lit2vec-tldr-bart-dataset
pretty_name: Lit2Vec TL;DR Chemistry Dataset
tags:
- summarization
- chemistry
- scientific-papers
- knowledge-graphs
license: cc-by-4.0
task_categories:
- summarization
language:
- en
size_categories:
- 10K<n<100K
Lit2Vec TL;DR Chemistry Dataset
Summary
The Lit2Vec TL;DR Chemistry Dataset is a curated collection of 19,992 chemistry research abstracts paired with short, TL;DR-style abstractive summaries.
It was created to support research in scientific text summarization, semantic indexing, and domain-specific knowledge graph construction.
Unlike generic summarization datasets, this corpus is:
- Legally reusable → all abstracts are sourced from CC-BY licensed publications
- Domain-specific → chemistry and closely related fields (materials science, chemical engineering, environmental science, etc.)
- Schema-consistent → each summary follows a concise “methods–results–significance” style
Dataset Structure
Splits
- Train: 17,992 records
- Validation: 999 records
- Test: 1,001 records
Example Record
{
"corpus_id": 250384325,
"doi": "10.3390/biom12070947",
"title": "Diffusion of Vanadium Ions in Artificial Saliva...",
"authors": [
"Sónia I. G. Fangaia",
"A. M. Cabral",
"P. Nicolau",
"Fernando Guerra",
"M. Rodrigo",
"A. C. Ribeiro",
"A. Valente",
"M. A. Esteso"
],
"venue": "Biomolecules",
"year": 2022,
"fields_of_study": ["Chemistry", "Medicine"],
"publication_date": "2022-07-01",
"abstract": "In this study, diffusion coefficients of ammonium vanadate ...",
"summary": "The study measured diffusion coefficients of ammonium vanadate in artificial saliva ...",
"license_type": "cc-by",
"license_publisher": "MDPI AG",
"license_url": "https://www.mdpi.com/2218-273X/12/7/947/pdf?version=1657252511",
"source_url": "https://www.semanticscholar.org/paper/1ca8e174a4bc3eebcf0eb328e8582f0008a01c06"
}
Features
corpus_id
(int): Semantic Scholar corpus IDdoi
(string): Digital Object Identifiertitle
(string): Paper titleauthors
(list[string]): Author namesvenue
(string): Journal or conferenceyear
(int): Publication yearfields_of_study
(list[string]): Disciplinary categoriespublication_date
(string, ISO date): Publication dateabstract
(string): Full research abstractsummary
(string): TL;DR-style summary (target label)license_type
(string): License (always “cc-by”)license_publisher
(string): Publisher namelicense_url
(string): OA license link or PDF linksource_url
(string): Semantic Scholar source page
Usage
from datasets import load_dataset
DATASET_ID = "Bocklitz-Lab/lit2vec-tldr-bart-dataset"
# Prefer the modern `token=` param; fall back to use_auth_token if your version needs it.
try:
ds = load_dataset(
DATASET_ID,
split=None, # get all splits if defined
token=True, # uses your cached HF login
revision="main", # avoid refs/convert/parquet unless we ask for it
cache_dir="./.hf_cache_fresh",
download_mode="force_redownload",
)
except TypeError:
# Older versions
ds = load_dataset(
DATASET_ID,
split=None,
use_auth_token=True,
revision="main",
cache_dir="./.hf_cache_fresh",
download_mode="force_redownload",
)
print(ds)
print(ds["train"][0]["abstract"])
print(ds["train"][0]["summary"])
Applications
- Abstractive summarization training (BART, DistilBART, T5, LLaMA fine-tuning)
- Information retrieval in chemistry and materials science
- Knowledge graph population from structured summaries
- Domain-specific semantic search engines
Licensing
- All abstracts are sourced from CC BY 4.0 licensed publications.
- Summaries are machine-generated and also distributed under CC BY 4.0.
- Attribution information (publisher, OA URL, DOI) is included in the metadata for each record.
Citation
If you use this dataset, please cite:
@dataset{lit2vec_tldr_2025,
author = {Mahmoud Amiri, Thomas bocklitz},
title = {Lit2Vec TL;DR Chemistry Dataset},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/datasets/Bocklitz-Lab/lit2vec-tldr-bart-dataset}},
note = {Submitted to Nature Scientific Data}
}
Acknowledgements
- Built using Semantic Scholar Open Research Corpus (S2ORC)