Add CUDA library setup script for easy environment configuration
Browse files- setup_cuda_libs.sh +41 -0
setup_cuda_libs.sh
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# PyTorch CUDA Library Setup Script
|
3 |
+
# This script sets up the necessary library paths for PyTorch CUDA support
|
4 |
+
|
5 |
+
echo "Setting up PyTorch CUDA library paths..."
|
6 |
+
|
7 |
+
# Check if conda environment is active
|
8 |
+
if [ -z "$CONDA_PREFIX" ]; then
|
9 |
+
echo "❌ Error: No conda environment detected. Please activate a conda environment first."
|
10 |
+
echo "Example: conda activate your_env_name"
|
11 |
+
exit 1
|
12 |
+
fi
|
13 |
+
|
14 |
+
# Create activation directory
|
15 |
+
ACTIVATE_DIR="$CONDA_PREFIX/etc/conda/activate.d"
|
16 |
+
mkdir -p "$ACTIVATE_DIR"
|
17 |
+
|
18 |
+
# Create activation script
|
19 |
+
cat > "$ACTIVATE_DIR/pytorch_cuda_libs.sh" << 'EOF'
|
20 |
+
#!/bin/bash
|
21 |
+
# Set up NVIDIA CUDA library paths for PyTorch
|
22 |
+
|
23 |
+
# Find all NVIDIA library directories
|
24 |
+
NVIDIA_LIB_PATH=$(find $CONDA_PREFIX -path "*/nvidia/*/lib" -type d 2>/dev/null | tr '\n' ':')
|
25 |
+
CUSPARSELT_LIB_PATH=$(find $CONDA_PREFIX -path "*/cusparselt/lib" -type d 2>/dev/null | tr '\n' ':')
|
26 |
+
|
27 |
+
# Add to LD_LIBRARY_PATH
|
28 |
+
export LD_LIBRARY_PATH="${NVIDIA_LIB_PATH}${CUSPARSELT_LIB_PATH}${LD_LIBRARY_PATH}"
|
29 |
+
EOF
|
30 |
+
|
31 |
+
# Make script executable
|
32 |
+
chmod +x "$ACTIVATE_DIR/pytorch_cuda_libs.sh"
|
33 |
+
|
34 |
+
echo "✅ CUDA library setup complete!"
|
35 |
+
echo "📁 Activation script created at: $ACTIVATE_DIR/pytorch_cuda_libs.sh"
|
36 |
+
echo ""
|
37 |
+
echo "🔄 To apply changes, reactivate your conda environment:"
|
38 |
+
echo " conda deactivate && conda activate $(basename $CONDA_PREFIX)"
|
39 |
+
echo ""
|
40 |
+
echo "🧪 Test PyTorch CUDA support:"
|
41 |
+
echo " python -c \"import torch; print(f'PyTorch {torch.__version__} - CUDA: {torch.cuda.is_available()}')\""
|