SoyVitou commited on
Commit
213d902
·
verified ·
1 Parent(s): c1719e3

Update README with CUDA library setup instructions and correct NumPy version

Browse files
Files changed (1) hide show
  1. README.md +21 -7
README.md CHANGED
@@ -25,7 +25,7 @@ Complete PyTorch ML stack with all dependencies - no conflicts, easy installatio
25
  - **Python:** 3.10 compatible
26
  - **PyTorch:** 2.7.1 + CUDA 12.6
27
  - **Transformers:** 4.52.3
28
- - **NumPy:** 1.26.4 (compatible version)
29
  - **SciPy:** 1.15.2
30
  - **All Dependencies:** 80+ wheels, fully tested together
31
 
@@ -53,11 +53,24 @@ subprocess.run(["pip", "install"] + [f"{wheel_path}/*.whl"], shell=True)
53
  # 1. Download repository
54
  git clone https://huggingface.co/RDHub/pytorch_python_310
55
 
56
- # 2. Install everything
57
  cd pytorch_python_310
58
- pip install lib_wheel/*.whl
59
-
60
- # 3. Test (optional)
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  python -c "import torch; print(f'PyTorch {torch.__version__} - CUDA: {torch.cuda.is_available()}')"
62
  ```
63
 
@@ -67,7 +80,7 @@ python -c "import torch; print(f'PyTorch {torch.__version__} - CUDA: {torch.cuda
67
  |---------|---------|---------|
68
  | PyTorch | 2.7.1 | 3.10 |
69
  | Transformers | 4.52.3 | 3.10 |
70
- | NumPy | 1.26.4 | 3.10 |
71
  | CUDA | 12.6 | - |
72
 
73
  ## 🎯 Use Cases
@@ -83,8 +96,9 @@ Perfect for:
83
 
84
  - **No dependency conflicts** - all versions tested together
85
  - **Offline ready** - no internet needed after download
86
- - **CUDA included** - ready for GPU training
87
  - **Linux x86_64** compatible
 
88
 
89
  ---
90
 
 
25
  - **Python:** 3.10 compatible
26
  - **PyTorch:** 2.7.1 + CUDA 12.6
27
  - **Transformers:** 4.52.3
28
+ - **NumPy:** 2.0.2 (compatible version)
29
  - **SciPy:** 1.15.2
30
  - **All Dependencies:** 80+ wheels, fully tested together
31
 
 
53
  # 1. Download repository
54
  git clone https://huggingface.co/RDHub/pytorch_python_310
55
 
56
+ # 2. Install everything with requirements file for correct versions
57
  cd pytorch_python_310
58
+ pip install -r lib_wheel/requirements.txt --find-links lib_wheel --no-index
59
+
60
+ # 3. Set up CUDA libraries (for conda environments)
61
+ # Create activation script for automatic library path setup
62
+ mkdir -p $CONDA_PREFIX/etc/conda/activate.d
63
+ cat > $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh << 'EOF'
64
+ #!/bin/bash
65
+ # Set up NVIDIA CUDA library paths for PyTorch
66
+ NVIDIA_LIB_PATH=$(find $CONDA_PREFIX -path "*/nvidia/*/lib" -type d 2>/dev/null | tr '\n' ':')
67
+ CUSPARSELT_LIB_PATH=$(find $CONDA_PREFIX -path "*/cusparselt/lib" -type d 2>/dev/null | tr '\n' ':')
68
+ export LD_LIBRARY_PATH="${NVIDIA_LIB_PATH}${CUSPARSELT_LIB_PATH}${LD_LIBRARY_PATH}"
69
+ EOF
70
+ chmod +x $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh
71
+
72
+ # 4. Reactivate environment and test
73
+ conda deactivate && conda activate your_env_name
74
  python -c "import torch; print(f'PyTorch {torch.__version__} - CUDA: {torch.cuda.is_available()}')"
75
  ```
76
 
 
80
  |---------|---------|---------|
81
  | PyTorch | 2.7.1 | 3.10 |
82
  | Transformers | 4.52.3 | 3.10 |
83
+ | NumPy | 2.0.2 | 3.10 |
84
  | CUDA | 12.6 | - |
85
 
86
  ## 🎯 Use Cases
 
96
 
97
  - **No dependency conflicts** - all versions tested together
98
  - **Offline ready** - no internet needed after download
99
+ - **CUDA included** - ready for GPU training with library path setup
100
  - **Linux x86_64** compatible
101
+ - **Requires conda environment** - for automatic CUDA library path management
102
 
103
  ---
104