|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
## Introduction |
|
|
|
SmallThinker is a family of **on-device native** Mixture-of-Experts (MoE) language models specially designed for local deployment, |
|
co-developed by the **IPADS and School of AI at Shanghai Jiao Tong University** and **Zenergize**. |
|
Designed from the ground up for resource-constrained environments, |
|
SmallThinker brings powerful, private, and low-latency AI directly to your personal devices, |
|
without relying on the cloud. |
|
|
|
## Performance |
|
| Model | MMLU | GPQA-diamond | GSM8K | MATH-500 | IFEVAL | LIVEBENCH | HUMANEVAL | Average | |
|
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | |
|
| `SmallThinker-4BA0.6B-Instruct` | 66.11 | 31.31 | 80.02 | 60.60 | 69.69 | 42.20 | 82.32 | 61.75 | |
|
| `Qwen3-0.6B` | 43.31 | 26.77 | 62.85 | 45.6 | 58.41 | 23.1 | 31.71 | 41.67 | |
|
| `Qwen3-1.7B` | 64.19 | 27.78 | 81.88 | 63.6 | 69.50 | 35.60 | 61.59 | 57.73 | |
|
| `Gemma3nE2b-it` | 63.04 | 20.2 | 82.34 | 58.6 | 73.2 | 27.90 | 64.63 | 55.70 | |
|
| `Llama3.2-3B-Instruct` | 64.15 | 24.24 | 75.51 | 40 | 71.16 | 15.30 | 55.49 | 49.41 | |
|
| `Llama-3.2-1B-Instruct` | 45.66 | 22.73 | 1.67 | 14.4 | 48.06 | 13.50 | 37.20 | 26.17 | |
|
## Model Card |
|
|
|
<div align="center"> |
|
|
|
| | | |
|
|:---:|:---:| |
|
| **Architecture** | Mixture-of-Experts (MoE) | |
|
| **Total Parameters** | 4B | |
|
| **Activated Parameters** | 0.6B | |
|
| **Number of Layers** | 32 | |
|
| **Attention Hidden Dimension** | 1536 | |
|
| **MoE Hidden Dimension** (per Expert) | 768 | |
|
| **Number of Attention Heads** | 12 | |
|
| **Number of Experts** | 32 | |
|
| **Selected Experts per Token** | 4 | |
|
| **Vocabulary Size** | 151,936 | |
|
| **Context Length** | 32K | |
|
| **Attention Mechanism** | GQA | |
|
| **Activation Function** | ReGLU | |
|
</div> |
|
|
|
## How to Run |
|
|
|
### Transformers |
|
|
|
The latest version of `transformers` is recommended or `transformers>=4.52.4` is required. |
|
The following contains a code snippet illustrating how to use the model generate content based on given inputs. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
path = "PowerInfer/SmallThinker-4BA0.6B-Instruct" |
|
device = "cuda" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True) |
|
|
|
messages = [ |
|
{"role": "user", "content": "Give me a short introduction to large language model."}, |
|
] |
|
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device) |
|
|
|
model_outputs = model.generate( |
|
model_inputs, |
|
do_sample=True, |
|
max_new_tokens=1024 |
|
) |
|
|
|
output_token_ids = [ |
|
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs)) |
|
] |
|
|
|
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0] |
|
print(responses) |
|
|
|
``` |
|
|
|
### ModelScope |
|
|
|
`ModelScope` adopts Python API similar to (though not entirely identical to) `Transformers`. For basic usage, simply modify the first line of the above code as follows: |
|
|
|
```python |
|
from modelscope import AutoModelForCausalLM, AutoTokenizer |
|
``` |
|
|
|
|