File size: 3,121 Bytes
c4c7dfc
 
 
 
 
 
 
 
0c0193a
 
 
 
 
c4c7dfc
 
 
 
 
fed68e3
 
 
 
c4c7dfc
 
 
 
 
 
 
 
 
 
 
 
3044e6c
c4c7dfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
---
## Introduction

SmallThinker is a family of **on-device native** Mixture-of-Experts (MoE) language models specially designed for local deployment,
co-developed by the **IPADS and School of AI at Shanghai Jiao Tong University** and **Zenergize**.
Designed from the ground up for resource-constrained environments,
SmallThinker brings powerful, private, and low-latency AI directly to your personal devices,
without relying on the cloud.

## Performance
| Model | MMLU | GPQA-diamond | GSM8K | MATH-500 | IFEVAL | LIVEBENCH | HUMANEVAL | Average |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| `SmallThinker-4BA0.6B-Instruct` | 66.11 | 31.31 | 80.02 | 60.60 | 69.69 | 42.20 | 82.32 | 61.75 |
| `Qwen3-0.6B` | 43.31 | 26.77 | 62.85 | 45.6 | 58.41 | 23.1 | 31.71 | 41.67 |
| `Qwen3-1.7B` | 64.19 | 27.78 | 81.88 | 63.6 | 69.50 | 35.60 | 61.59 | 57.73 |
| `Gemma3nE2b-it` | 63.04 | 20.2 | 82.34 | 58.6 | 73.2 | 27.90 | 64.63 | 55.70 |
| `Llama3.2-3B-Instruct` | 64.15 | 24.24 | 75.51 | 40 | 71.16 | 15.30 | 55.49 | 49.41 |
| `Llama-3.2-1B-Instruct` | 45.66 | 22.73 | 1.67 | 14.4 | 48.06 | 13.50 | 37.20 | 26.17 |
## Model Card

<div align="center">

| | |
|:---:|:---:|
| **Architecture** | Mixture-of-Experts (MoE) |
| **Total Parameters** | 4B |
| **Activated Parameters** | 0.6B |
| **Number of Layers** | 32 |
| **Attention Hidden Dimension** | 1536 |
| **MoE Hidden Dimension** (per Expert) | 768 |
| **Number of Attention Heads** | 12 |
| **Number of Experts** | 32 |
| **Selected Experts per Token** | 4 |
| **Vocabulary Size** | 151,936 |
| **Context Length** | 32K |
| **Attention Mechanism** | GQA |
| **Activation Function** | ReGLU |
</div>

## How to Run

### Transformers

The latest version of `transformers` is recommended or `transformers>=4.52.4` is required.
The following contains a code snippet illustrating how to use the model generate content based on given inputs.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

path = "PowerInfer/SmallThinker-4BA0.6B-Instruct"
device = "cuda"

tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)

messages = [
    {"role": "user", "content": "Give me a short introduction to large language model."},
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)

model_outputs = model.generate(
    model_inputs,
    do_sample=True,
    max_new_tokens=1024
)

output_token_ids = [
    model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
]

responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
print(responses)

```

### ModelScope

`ModelScope` adopts Python API similar to (though not entirely identical to) `Transformers`. For basic usage, simply modify the first line of the above code as follows:

```python
from modelscope import AutoModelForCausalLM, AutoTokenizer
```