loubnabnl's picture
loubnabnl HF Staff
Model save
e4e7a8b verified
|
raw
history blame
3.31 kB
metadata
base_model: bigcode/starencoder
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: stack-edu-classifier-go
    results: []

stack-edu-classifier-go

This model is a fine-tuned version of bigcode/starencoder on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3999
  • Precision: 0.5624
  • Recall: 0.2985
  • F1 Macro: 0.3294
  • Accuracy: 0.5640
  • F1 Binary Minimum3: 0.6539

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 256
  • seed: 0
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy F1 Binary Minimum3
No log 0 0 4.5815 0.0004 0.1667 0.0007 0.0022 0
0.4211 1.4451 1000 0.4201 0.4406 0.2753 0.2931 0.5507 0.6478
0.4039 2.8902 2000 0.4134 0.3772 0.2738 0.2876 0.5521 0.6465
0.405 4.3353 3000 0.4097 0.4386 0.2797 0.2979 0.5642 0.6287
0.3997 5.7803 4000 0.4122 0.4282 0.2856 0.3020 0.5675 0.6163
0.4135 7.2254 5000 0.4058 0.5497 0.2862 0.3084 0.5673 0.6401
0.3915 8.6705 6000 0.4051 0.5559 0.2911 0.3162 0.5594 0.6525
0.3873 10.1156 7000 0.4035 0.5652 0.2868 0.3113 0.5618 0.6511
0.3981 11.5607 8000 0.4020 0.5510 0.2890 0.3108 0.5693 0.6414
0.3855 13.0058 9000 0.4074 0.5470 0.2879 0.3104 0.5708 0.6192
0.3863 14.4509 10000 0.4003 0.5196 0.3047 0.3370 0.5664 0.6534
0.3784 15.8960 11000 0.4007 0.5616 0.2919 0.3179 0.5622 0.6516
0.3982 17.3410 12000 0.4034 0.5658 0.2910 0.3159 0.5595 0.6635
0.4013 18.7861 13000 0.3999 0.5624 0.2985 0.3294 0.5640 0.6539

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1