File size: 3,305 Bytes
e4e7a8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
base_model: bigcode/starencoder
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: stack-edu-classifier-go
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# stack-edu-classifier-go

This model is a fine-tuned version of [bigcode/starencoder](https://huggingface.co/bigcode/starencoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3999
- Precision: 0.5624
- Recall: 0.2985
- F1 Macro: 0.3294
- Accuracy: 0.5640
- F1 Binary Minimum3: 0.6539

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 256
- seed: 0
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 128
- total_eval_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 20

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1 Macro | Accuracy | F1 Binary Minimum3 |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:--------:|:--------:|:------------------:|
| No log        | 0       | 0     | 4.5815          | 0.0004    | 0.1667 | 0.0007   | 0.0022   | 0                  |
| 0.4211        | 1.4451  | 1000  | 0.4201          | 0.4406    | 0.2753 | 0.2931   | 0.5507   | 0.6478             |
| 0.4039        | 2.8902  | 2000  | 0.4134          | 0.3772    | 0.2738 | 0.2876   | 0.5521   | 0.6465             |
| 0.405         | 4.3353  | 3000  | 0.4097          | 0.4386    | 0.2797 | 0.2979   | 0.5642   | 0.6287             |
| 0.3997        | 5.7803  | 4000  | 0.4122          | 0.4282    | 0.2856 | 0.3020   | 0.5675   | 0.6163             |
| 0.4135        | 7.2254  | 5000  | 0.4058          | 0.5497    | 0.2862 | 0.3084   | 0.5673   | 0.6401             |
| 0.3915        | 8.6705  | 6000  | 0.4051          | 0.5559    | 0.2911 | 0.3162   | 0.5594   | 0.6525             |
| 0.3873        | 10.1156 | 7000  | 0.4035          | 0.5652    | 0.2868 | 0.3113   | 0.5618   | 0.6511             |
| 0.3981        | 11.5607 | 8000  | 0.4020          | 0.5510    | 0.2890 | 0.3108   | 0.5693   | 0.6414             |
| 0.3855        | 13.0058 | 9000  | 0.4074          | 0.5470    | 0.2879 | 0.3104   | 0.5708   | 0.6192             |
| 0.3863        | 14.4509 | 10000 | 0.4003          | 0.5196    | 0.3047 | 0.3370   | 0.5664   | 0.6534             |
| 0.3784        | 15.8960 | 11000 | 0.4007          | 0.5616    | 0.2919 | 0.3179   | 0.5622   | 0.6516             |
| 0.3982        | 17.3410 | 12000 | 0.4034          | 0.5658    | 0.2910 | 0.3159   | 0.5595   | 0.6635             |
| 0.4013        | 18.7861 | 13000 | 0.3999          | 0.5624    | 0.2985 | 0.3294   | 0.5640   | 0.6539             |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1