|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel |
|
import torch |
|
import json |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print(f"Device set to use: {device}") |
|
|
|
|
|
base_model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" |
|
adapter_repo = "Harish2002/cli-lora-tinyllama" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model_name) |
|
base_model = AutoModelForCausalLM.from_pretrained(base_model_name) |
|
model = PeftModel.from_pretrained(base_model, adapter_repo) |
|
model = model.to(device) |
|
model.eval() |
|
|
|
|
|
test_prompts = { |
|
"Git": "How do I create a new branch and switch to it in Git?", |
|
"Bash": "How to list all files including hidden ones?", |
|
"Grep": "How do I search for a pattern in multiple files using grep?", |
|
"Tar/Gzip": "How to extract a .tar.gz file?", |
|
"Python venv": "How do I activate a virtual environment on Windows?" |
|
} |
|
|
|
|
|
results = {} |
|
for topic, prompt in test_prompts.items(): |
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model.generate(**inputs, max_new_tokens=128) |
|
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
results[topic] = { |
|
"question": prompt, |
|
"answer": answer |
|
} |
|
print(f"\n🧪 {topic}:\nQ: {prompt}\nA: {answer}") |
|
|
|
|
|
with open("test_outputs.json", "w", encoding="utf-8") as f: |
|
json.dump(results, f, indent=4) |
|
|
|
print("\n✅ All outputs saved to test_outputs.json") |
|
|