Upload test_model.py with huggingface_hub
Browse files- test_model.py +46 -0
test_model.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
from peft import PeftModel
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
|
6 |
+
# Detect device
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
print(f"Device set to use: {device}")
|
9 |
+
|
10 |
+
# Load base model and tokenizer
|
11 |
+
base_model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
12 |
+
adapter_repo = "Harish2002/cli-lora-tinyllama"
|
13 |
+
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
15 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
|
16 |
+
model = PeftModel.from_pretrained(base_model, adapter_repo)
|
17 |
+
model = model.to(device)
|
18 |
+
model.eval()
|
19 |
+
|
20 |
+
# Test prompts
|
21 |
+
test_prompts = {
|
22 |
+
"Git": "How do I create a new branch and switch to it in Git?",
|
23 |
+
"Bash": "How to list all files including hidden ones?",
|
24 |
+
"Grep": "How do I search for a pattern in multiple files using grep?",
|
25 |
+
"Tar/Gzip": "How to extract a .tar.gz file?",
|
26 |
+
"Python venv": "How do I activate a virtual environment on Windows?"
|
27 |
+
}
|
28 |
+
|
29 |
+
# Run test and store results
|
30 |
+
results = {}
|
31 |
+
for topic, prompt in test_prompts.items():
|
32 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model.generate(**inputs, max_new_tokens=128)
|
35 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
+
results[topic] = {
|
37 |
+
"question": prompt,
|
38 |
+
"answer": answer
|
39 |
+
}
|
40 |
+
print(f"\n🧪 {topic}:\nQ: {prompt}\nA: {answer}")
|
41 |
+
|
42 |
+
# Save to file
|
43 |
+
with open("test_outputs.json", "w", encoding="utf-8") as f:
|
44 |
+
json.dump(results, f, indent=4)
|
45 |
+
|
46 |
+
print("\n✅ All outputs saved to test_outputs.json")
|