from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel import torch import json # Detect device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Device set to use: {device}") # Load base model and tokenizer base_model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" adapter_repo = "Harish2002/cli-lora-tinyllama" tokenizer = AutoTokenizer.from_pretrained(base_model_name) base_model = AutoModelForCausalLM.from_pretrained(base_model_name) model = PeftModel.from_pretrained(base_model, adapter_repo) model = model.to(device) model.eval() # Test prompts test_prompts = { "Git": "How do I create a new branch and switch to it in Git?", "Bash": "How to list all files including hidden ones?", "Grep": "How do I search for a pattern in multiple files using grep?", "Tar/Gzip": "How to extract a .tar.gz file?", "Python venv": "How do I activate a virtual environment on Windows?" } # Run test and store results results = {} for topic, prompt in test_prompts.items(): inputs = tokenizer(prompt, return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=128) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) results[topic] = { "question": prompt, "answer": answer } print(f"\n🧪 {topic}:\nQ: {prompt}\nA: {answer}") # Save to file with open("test_outputs.json", "w", encoding="utf-8") as f: json.dump(results, f, indent=4) print("\n✅ All outputs saved to test_outputs.json")