eridu / README.md
rjurney's picture
Major update to README.md for model card
2ca55d2 verified
|
raw
history blame
17.6 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:2130620
  - loss:ContrastiveLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
  - source_sentence: Russell Jurney
    sentences:
      - Russell H. Jurney
      - Russ Jurney
      - Русс Джерни
  - source_sentence: Ben Lorica
    sentences:
      - Benjamin Lorica
      - 罗瑞卡
      - 罗睿姬
  - source_sentence: Yevgeny Prigozhin
    sentences:
      - Евге́ний Ви́кторович Приго́жин
      - Y. Prighozhin
  - source_sentence: M.R. James
    sentences:
      - Montague Rhodes James
      - J.R. James
      - Mr. James
  - source_sentence: Muhammad Ali
    sentences:
      - مُحَمَّد عَلِيّ
      - Mohammed Ali
      - Sonny Liston
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - cosine_mcc
model-index:
  - name: Graphlet-AI/eridu
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: sentence transformers paraphrase multilingual MiniLM L12 v2
          type: sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2
        metrics:
          - type: cosine_accuracy
            value: 0.9905380542935456
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.6790644526481628
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9856131536880567
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.6790644526481628
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9816899806664392
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9895678092399404
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9977983578816215
            name: Cosine Ap
          - type: cosine_mcc
            value: 0.9785817179348335
            name: Cosine Mcc

Graphlet-AI/eridu

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 for person and company name matching using the Open Sanctions matcher training data. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used as part of a deep, fuzzy entity resolution process.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Graphlet-AI/eridu")

names = [
    "Russell Jurney",
    "Russ Jurney",
    "Русс Джерни",
]

embeddings = model.encode(names)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

print(similarities.numpy())
# [[0.9999999  0.99406826 0.99406105]
#  [0.9940683  1.         0.9969202 ]
#  [0.99406105 0.9969202  1.        ]]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9905
cosine_accuracy_threshold 0.6791
cosine_f1 0.9856
cosine_f1_threshold 0.6791
cosine_precision 0.9817
cosine_recall 0.9896
cosine_ap 0.9978
cosine_mcc 0.9786

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,130,620 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 3 tokens
    • mean: 9.28 tokens
    • max: 57 tokens
    • min: 3 tokens
    • mean: 9.11 tokens
    • max: 65 tokens
    • min: 0.0
    • mean: 0.34
    • max: 1.0
  • Samples:
    sentence1 sentence2 label
    ג'ק וייט Jack White 1.0
    Абдуллоҳ Гул Савицкая Светлана 0.0
    ショーン・ジャスティン・ペン شان پن 1.0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 266,328 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 3 tokens
    • mean: 9.27 tokens
    • max: 79 tokens
    • min: 3 tokens
    • mean: 8.99 tokens
    • max: 61 tokens
    • min: 0.0
    • mean: 0.32
    • max: 1.0
  • Samples:
    sentence1 sentence2 label
    Анатолий Николаевич Герасимов Anatoli Nikolajewitsch Gerassimow 1.0
    Igor Stanislavovitsj Prokopenko Angelo Lauricella 0.0
    Кофе, Линда Святлана Яўгенаўна Савіцкая 0.0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 5000
  • per_device_eval_batch_size: 5000
  • gradient_accumulation_steps: 4
  • weight_decay: 0.02
  • num_train_epochs: 10
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • optim: adafactor
  • gradient_checkpointing: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 5000
  • per_device_eval_batch_size: 5000
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.02
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adafactor
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: True
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap
-1 -1 - - 0.7195
0.9368 100 - 0.0083 0.9597
1.8712 200 - 0.0043 0.9877
2.8056 300 - 0.0028 0.9936
3.7400 400 - 0.0021 0.9954
4.6745 500 0.0224 0.0016 0.9964
5.6089 600 - 0.0015 0.9970
6.5433 700 - 0.0014 0.9974
7.4778 800 - 0.0013 0.9975
8.4122 900 - 0.0013 0.9977
9.3466 1000 0.0052 0.0012 0.9978
9.9087 1060 - 0.0012 0.9978
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.9
  • Sentence Transformers: 3.4.1
  • Transformers: 4.51.3
  • PyTorch: 2.7.0+cu126
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}