rjurney commited on
Commit
2ca55d2
·
verified ·
1 Parent(s): 79dbc7d

Major update to README.md for model card

Browse files
Files changed (1) hide show
  1. README.md +39 -34
README.md CHANGED
@@ -11,31 +11,30 @@ tags:
11
  - loss:ContrastiveLoss
12
  base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
13
  widget:
14
- - source_sentence: مانوئلا دی سنتا
15
  sentences:
16
- - Renko Kitagawa
17
- - هانس هيرمان وير
18
- - Ди Чента, Мануэла
19
- - source_sentence: يورى جافريلوف
20
  sentences:
21
- - Wiktor Pinczuk
22
- - Natalia Germanovna DIRKS
23
- - Світлана Євгенівна Савицька
24
- - source_sentence: Џуди Колинс
25
  sentences:
26
- - Collins
27
- - Aisha Muhammed Abdul Salam
28
- - Phonic Boy On Dope
29
- - source_sentence: ויליאם בלייר
30
  sentences:
31
- - The Hon. Mr Justice Blair
32
- - Queen Ingrid of Denmark
33
- - Herman van Rompuy
34
- - source_sentence: Saif al-Arab GADAFI
35
  sentences:
36
- - Максім Недасекаў
37
- - Mervyn Allister King
38
- - Paul d. scully-power
39
  pipeline_tag: sentence-similarity
40
  library_name: sentence-transformers
41
  metrics:
@@ -48,7 +47,7 @@ metrics:
48
  - cosine_ap
49
  - cosine_mcc
50
  model-index:
51
- - name: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-name-matcher-original
52
  results:
53
  - task:
54
  type: binary-classification
@@ -83,9 +82,9 @@ model-index:
83
  name: Cosine Mcc
84
  ---
85
 
86
- # sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-name-matcher-original
87
 
88
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
89
 
90
  ## Model Details
91
 
@@ -101,9 +100,9 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [s
101
 
102
  ### Model Sources
103
 
104
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
105
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
106
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
107
 
108
  ### Full Model Architecture
109
 
@@ -129,14 +128,15 @@ Then you can load this model and run inference.
129
  from sentence_transformers import SentenceTransformer
130
 
131
  # Download from the 🤗 Hub
132
- model = SentenceTransformer("sentence_transformers_model_id")
133
- # Run inference
134
- sentences = [
135
- 'Saif al-Arab GADAFI',
136
- 'Максім Недасекаў',
137
- 'Mervyn Allister King',
138
  ]
139
- embeddings = model.encode(sentences)
 
140
  print(embeddings.shape)
141
  # [3, 384]
142
 
@@ -144,6 +144,11 @@ print(embeddings.shape)
144
  similarities = model.similarity(embeddings, embeddings)
145
  print(similarities.shape)
146
  # [3, 3]
 
 
 
 
 
147
  ```
148
 
149
  <!--
@@ -157,7 +162,7 @@ print(similarities.shape)
157
  <!--
158
  ### Downstream Usage (Sentence Transformers)
159
 
160
- You can finetune this model on your own dataset.
161
 
162
  <details><summary>Click to expand</summary>
163
 
 
11
  - loss:ContrastiveLoss
12
  base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
13
  widget:
14
+ - source_sentence: Russell Jurney
15
  sentences:
16
+ - Russell H. Jurney
17
+ - Russ Jurney
18
+ - Русс Джерни
19
+ - source_sentence: Ben Lorica
20
  sentences:
21
+ - Benjamin Lorica
22
+ - 罗瑞卡
23
+ - 罗睿姬
24
+ - source_sentence: Yevgeny Prigozhin
25
  sentences:
26
+ - Евге́ний Ви́кторович Приго́жин
27
+ - Y. Prighozhin
28
+ - source_sentence: M.R. James
 
29
  sentences:
30
+ - Montague Rhodes James
31
+ - J.R. James
32
+ - Mr. James
33
+ - source_sentence: Muhammad Ali
34
  sentences:
35
+ - مُحَمَّد عَلِيّ
36
+ - Mohammed Ali
37
+ - Sonny Liston
38
  pipeline_tag: sentence-similarity
39
  library_name: sentence-transformers
40
  metrics:
 
47
  - cosine_ap
48
  - cosine_mcc
49
  model-index:
50
+ - name: Graphlet-AI/eridu
51
  results:
52
  - task:
53
  type: binary-classification
 
82
  name: Cosine Mcc
83
  ---
84
 
85
+ # Graphlet-AI/eridu
86
 
87
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) for person and company name matching using the [Open Sanctions matcher training data](https://www.opensanctions.org/docs/pairs/). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used as part of a deep, fuzzy entity resolution process.
88
 
89
  ## Model Details
90
 
 
100
 
101
  ### Model Sources
102
 
103
+ - **Documentation:** [Graphlet-AI/eridu Documentation](https://github.com/Graphlet-AI/eridu)
104
+ - **Repository:** [Graphlet-AI/eridu on GitHub](https://github.com/Graphlet-AI/eridu)
105
+ - **Hugging Face:** [Graphlet-AI/eridu on Hugging Face](https://huggingface.co/Graphlet-AI/eridu)
106
 
107
  ### Full Model Architecture
108
 
 
128
  from sentence_transformers import SentenceTransformer
129
 
130
  # Download from the 🤗 Hub
131
+ model = SentenceTransformer("Graphlet-AI/eridu")
132
+
133
+ names = [
134
+ "Russell Jurney",
135
+ "Russ Jurney",
136
+ "Русс Джерни",
137
  ]
138
+
139
+ embeddings = model.encode(names)
140
  print(embeddings.shape)
141
  # [3, 384]
142
 
 
144
  similarities = model.similarity(embeddings, embeddings)
145
  print(similarities.shape)
146
  # [3, 3]
147
+
148
+ print(similarities.numpy())
149
+ # [[0.9999999 0.99406826 0.99406105]
150
+ # [0.9940683 1. 0.9969202 ]
151
+ # [0.99406105 0.9969202 1. ]]
152
  ```
153
 
154
  <!--
 
162
  <!--
163
  ### Downstream Usage (Sentence Transformers)
164
 
165
+ You can fine-tune this model on your own dataset.
166
 
167
  <details><summary>Click to expand</summary>
168