|
--- |
|
base_model: |
|
- Qwen/Qwen-Image |
|
base_model_relation: quantized |
|
tags: |
|
- dfloat11 |
|
- df11 |
|
- lossless compression |
|
- 70% size, 100% accuracy |
|
--- |
|
|
|
# DFloat11 Compressed Model: `Qwen/Qwen-Image` |
|
|
|
This is a **DFloat11 losslessly compressed** version of the original `Qwen/Qwen-Image` model. It reduces model size by **32%** compared to the original BFloat16 model, while maintaining **bit-identical outputs** and supporting **efficient GPU inference**. |
|
|
|
🔥🔥🔥 Thanks to DFloat11 compression, Qwen-Image can now run on **a single 32GB GPU**, or on **a single 16GB GPU with CPU offloading**, while maintaining full model quality. 🔥🔥🔥 |
|
|
|
### 📊 Performance Comparison |
|
|
|
| Model | Model Size | Peak GPU Memory (1328x1328 image generation) | Generation Time (A100 GPU) | |
|
|-------------------------------------------|------------|----------------------------------------------|----------------------------| |
|
| Qwen-Image (BFloat16) | ~41 GB | OOM | - | |
|
| Qwen-Image (DFloat11) | 28.42 GB | 29.74 GB | 100 seconds | |
|
| Qwen-Image (DFloat11 + GPU Offloading) | 28.42 GB | 16.68 GB | 260 seconds | |
|
|
|
### 🔧 How to Use |
|
|
|
1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*: |
|
|
|
```bash |
|
pip install -U dfloat11[cuda12] |
|
``` |
|
|
|
2. Install or upgrade diffusers: |
|
|
|
```bash |
|
pip install git+https://github.com/huggingface/diffusers |
|
``` |
|
|
|
3. Save the following code to a Python file `qwen_image.py`: |
|
|
|
```python |
|
from diffusers import DiffusionPipeline, QwenImageTransformer2DModel |
|
import torch |
|
from transformers.modeling_utils import no_init_weights |
|
from dfloat11 import DFloat11Model |
|
import argparse |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Generate images using Qwen-Image model') |
|
parser.add_argument('--cpu_offload', action='store_true', help='Enable CPU offloading') |
|
parser.add_argument('--cpu_offload_blocks', type=int, default=None, help='Number of transformer blocks to offload to CPU') |
|
parser.add_argument('--no_pin_memory', action='store_true', help='Disable memory pinning') |
|
parser.add_argument('--prompt', type=str, default='A coffee shop entrance features a chalkboard sign reading "Qwen Coffee 😊 $2 per cup," with a neon light beside it displaying "通义千问". Next to it hangs a poster showing a beautiful Chinese woman, and beneath the poster is written "π≈3.1415926-53589793-23846264-33832795-02384197".', |
|
help='Text prompt for image generation') |
|
parser.add_argument('--negative_prompt', type=str, default=' ', |
|
help='Negative prompt for image generation') |
|
parser.add_argument('--aspect_ratio', type=str, default='16:9', choices=['1:1', '16:9', '9:16', '4:3', '3:4'], |
|
help='Aspect ratio of generated image') |
|
parser.add_argument('--num_inference_steps', type=int, default=50, |
|
help='Number of denoising steps') |
|
parser.add_argument('--true_cfg_scale', type=float, default=4.0, |
|
help='Classifier free guidance scale') |
|
parser.add_argument('--seed', type=int, default=42, |
|
help='Random seed for generation') |
|
parser.add_argument('--output', type=str, default='example.png', |
|
help='Output image path') |
|
parser.add_argument('--language', type=str, default='en', choices=['en', 'zh'], |
|
help='Language for positive magic prompt') |
|
return parser.parse_args() |
|
|
|
args = parse_args() |
|
|
|
model_name = "Qwen/Qwen-Image" |
|
|
|
with no_init_weights(): |
|
transformer = QwenImageTransformer2DModel.from_config( |
|
QwenImageTransformer2DModel.load_config( |
|
model_name, subfolder="transformer", |
|
), |
|
).to(torch.bfloat16) |
|
|
|
DFloat11Model.from_pretrained( |
|
"DFloat11/Qwen-Image-DF11", |
|
device="cpu", |
|
cpu_offload=args.cpu_offload, |
|
cpu_offload_blocks=args.cpu_offload_blocks, |
|
pin_memory=not args.no_pin_memory, |
|
bfloat16_model=transformer, |
|
) |
|
|
|
pipe = DiffusionPipeline.from_pretrained( |
|
model_name, |
|
transformer=transformer, |
|
torch_dtype=torch.bfloat16, |
|
) |
|
pipe.enable_model_cpu_offload() |
|
|
|
positive_magic = { |
|
"en": "Ultra HD, 4K, cinematic composition.", # for english prompt, |
|
"zh": "超清,4K,电影级构图" # for chinese prompt, |
|
} |
|
|
|
# Generate with different aspect ratios |
|
aspect_ratios = { |
|
"1:1": (1328, 1328), |
|
"16:9": (1664, 928), |
|
"9:16": (928, 1664), |
|
"4:3": (1472, 1140), |
|
"3:4": (1140, 1472), |
|
} |
|
|
|
width, height = aspect_ratios[args.aspect_ratio] |
|
|
|
image = pipe( |
|
prompt=args.prompt + positive_magic[args.language], |
|
negative_prompt=args.negative_prompt, |
|
width=width, |
|
height=height, |
|
num_inference_steps=args.num_inference_steps, |
|
true_cfg_scale=args.true_cfg_scale, |
|
generator=torch.Generator(device="cuda").manual_seed(args.seed) |
|
).images[0] |
|
|
|
image.save(args.output) |
|
|
|
max_memory = torch.cuda.max_memory_allocated() |
|
print(f"Max memory: {max_memory / (1000 ** 3):.2f} GB") |
|
``` |
|
|
|
4. To run without CPU offloading (32GB VRAM required): |
|
```bash |
|
python qwen_image.py |
|
``` |
|
|
|
To run with CPU offloading (16GB VRAM required): |
|
```bash |
|
python qwen_image.py --cpu_offload |
|
``` |
|
|
|
If you are getting out-of-CPU-memory errors, try limiting the number of offloaded blocks or disabling memory-pinning: |
|
```bash |
|
# Offload only 16 blocks (offloading more blocks uses less GPU memory and more CPU memory; offloading less blocks is faster): |
|
python qwen_image.py --cpu_offload --cpu_offload_blocks 16 |
|
|
|
# Disable memory-pinning (the most memory efficient way, but could be slower): |
|
python qwen_image.py --cpu_offload --no_pin_memory |
|
``` |
|
|
|
|
|
### 🔍 How It Works |
|
|
|
We apply **Huffman coding** to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU. |
|
|
|
The result is a model that is **~32% smaller**, delivers **bit-identical outputs**, and achieves performance **comparable to the original** BFloat16 model. |
|
|
|
Learn more in our [research paper](https://arxiv.org/abs/2504.11651). |
|
|
|
### 📄 Learn More |
|
|
|
* **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651) |
|
* **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11) |
|
* **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11) |
|
|