Qwen-Image-DF11 / README.md
LeanQuant's picture
Update README.md
e78d713 verified
---
base_model:
- Qwen/Qwen-Image
base_model_relation: quantized
tags:
- dfloat11
- df11
- lossless compression
- 70% size, 100% accuracy
---
# DFloat11 Compressed Model: `Qwen/Qwen-Image`
This is a **DFloat11 losslessly compressed** version of the original `Qwen/Qwen-Image` model. It reduces model size by **32%** compared to the original BFloat16 model, while maintaining **bit-identical outputs** and supporting **efficient GPU inference**.
🔥🔥🔥 Thanks to DFloat11 compression, Qwen-Image can now run on **a single 32GB GPU**, or on **a single 16GB GPU with CPU offloading**, while maintaining full model quality. 🔥🔥🔥
### 📊 Performance Comparison
| Model | Model Size | Peak GPU Memory (1328x1328 image generation) | Generation Time (A100 GPU) |
|-------------------------------------------|------------|----------------------------------------------|----------------------------|
| Qwen-Image (BFloat16) | ~41 GB | OOM | - |
| Qwen-Image (DFloat11) | 28.42 GB | 29.74 GB | 100 seconds |
| Qwen-Image (DFloat11 + GPU Offloading) | 28.42 GB | 16.68 GB | 260 seconds |
### 🔧 How to Use
1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*:
```bash
pip install -U dfloat11[cuda12]
```
2. Install or upgrade diffusers:
```bash
pip install git+https://github.com/huggingface/diffusers
```
3. Save the following code to a Python file `qwen_image.py`:
```python
from diffusers import DiffusionPipeline, QwenImageTransformer2DModel
import torch
from transformers.modeling_utils import no_init_weights
from dfloat11 import DFloat11Model
import argparse
def parse_args():
parser = argparse.ArgumentParser(description='Generate images using Qwen-Image model')
parser.add_argument('--cpu_offload', action='store_true', help='Enable CPU offloading')
parser.add_argument('--cpu_offload_blocks', type=int, default=None, help='Number of transformer blocks to offload to CPU')
parser.add_argument('--no_pin_memory', action='store_true', help='Disable memory pinning')
parser.add_argument('--prompt', type=str, default='A coffee shop entrance features a chalkboard sign reading "Qwen Coffee 😊 $2 per cup," with a neon light beside it displaying "通义千问". Next to it hangs a poster showing a beautiful Chinese woman, and beneath the poster is written "π≈3.1415926-53589793-23846264-33832795-02384197".',
help='Text prompt for image generation')
parser.add_argument('--negative_prompt', type=str, default=' ',
help='Negative prompt for image generation')
parser.add_argument('--aspect_ratio', type=str, default='16:9', choices=['1:1', '16:9', '9:16', '4:3', '3:4'],
help='Aspect ratio of generated image')
parser.add_argument('--num_inference_steps', type=int, default=50,
help='Number of denoising steps')
parser.add_argument('--true_cfg_scale', type=float, default=4.0,
help='Classifier free guidance scale')
parser.add_argument('--seed', type=int, default=42,
help='Random seed for generation')
parser.add_argument('--output', type=str, default='example.png',
help='Output image path')
parser.add_argument('--language', type=str, default='en', choices=['en', 'zh'],
help='Language for positive magic prompt')
return parser.parse_args()
args = parse_args()
model_name = "Qwen/Qwen-Image"
with no_init_weights():
transformer = QwenImageTransformer2DModel.from_config(
QwenImageTransformer2DModel.load_config(
model_name, subfolder="transformer",
),
).to(torch.bfloat16)
DFloat11Model.from_pretrained(
"DFloat11/Qwen-Image-DF11",
device="cpu",
cpu_offload=args.cpu_offload,
cpu_offload_blocks=args.cpu_offload_blocks,
pin_memory=not args.no_pin_memory,
bfloat16_model=transformer,
)
pipe = DiffusionPipeline.from_pretrained(
model_name,
transformer=transformer,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
positive_magic = {
"en": "Ultra HD, 4K, cinematic composition.", # for english prompt,
"zh": "超清,4K,电影级构图" # for chinese prompt,
}
# Generate with different aspect ratios
aspect_ratios = {
"1:1": (1328, 1328),
"16:9": (1664, 928),
"9:16": (928, 1664),
"4:3": (1472, 1140),
"3:4": (1140, 1472),
}
width, height = aspect_ratios[args.aspect_ratio]
image = pipe(
prompt=args.prompt + positive_magic[args.language],
negative_prompt=args.negative_prompt,
width=width,
height=height,
num_inference_steps=args.num_inference_steps,
true_cfg_scale=args.true_cfg_scale,
generator=torch.Generator(device="cuda").manual_seed(args.seed)
).images[0]
image.save(args.output)
max_memory = torch.cuda.max_memory_allocated()
print(f"Max memory: {max_memory / (1000 ** 3):.2f} GB")
```
4. To run without CPU offloading (32GB VRAM required):
```bash
python qwen_image.py
```
To run with CPU offloading (16GB VRAM required):
```bash
python qwen_image.py --cpu_offload
```
If you are getting out-of-CPU-memory errors, try limiting the number of offloaded blocks or disabling memory-pinning:
```bash
# Offload only 16 blocks (offloading more blocks uses less GPU memory and more CPU memory; offloading less blocks is faster):
python qwen_image.py --cpu_offload --cpu_offload_blocks 16
# Disable memory-pinning (the most memory efficient way, but could be slower):
python qwen_image.py --cpu_offload --no_pin_memory
```
### 🔍 How It Works
We apply **Huffman coding** to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU.
The result is a model that is **~32% smaller**, delivers **bit-identical outputs**, and achieves performance **comparable to the original** BFloat16 model.
Learn more in our [research paper](https://arxiv.org/abs/2504.11651).
### 📄 Learn More
* **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651)
* **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11)
* **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11)