File size: 7,218 Bytes
ff195eb e78d713 195a01d ff195eb e78d713 195a01d ff195eb e78d713 195a01d e78d713 195a01d ff195eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
base_model:
- Qwen/Qwen-Image
base_model_relation: quantized
tags:
- dfloat11
- df11
- lossless compression
- 70% size, 100% accuracy
---
# DFloat11 Compressed Model: `Qwen/Qwen-Image`
This is a **DFloat11 losslessly compressed** version of the original `Qwen/Qwen-Image` model. It reduces model size by **32%** compared to the original BFloat16 model, while maintaining **bit-identical outputs** and supporting **efficient GPU inference**.
🔥🔥🔥 Thanks to DFloat11 compression, Qwen-Image can now run on **a single 32GB GPU**, or on **a single 16GB GPU with CPU offloading**, while maintaining full model quality. 🔥🔥🔥
### 📊 Performance Comparison
| Model | Model Size | Peak GPU Memory (1328x1328 image generation) | Generation Time (A100 GPU) |
|-------------------------------------------|------------|----------------------------------------------|----------------------------|
| Qwen-Image (BFloat16) | ~41 GB | OOM | - |
| Qwen-Image (DFloat11) | 28.42 GB | 29.74 GB | 100 seconds |
| Qwen-Image (DFloat11 + GPU Offloading) | 28.42 GB | 16.68 GB | 260 seconds |
### 🔧 How to Use
1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*:
```bash
pip install -U dfloat11[cuda12]
```
2. Install or upgrade diffusers:
```bash
pip install git+https://github.com/huggingface/diffusers
```
3. Save the following code to a Python file `qwen_image.py`:
```python
from diffusers import DiffusionPipeline, QwenImageTransformer2DModel
import torch
from transformers.modeling_utils import no_init_weights
from dfloat11 import DFloat11Model
import argparse
def parse_args():
parser = argparse.ArgumentParser(description='Generate images using Qwen-Image model')
parser.add_argument('--cpu_offload', action='store_true', help='Enable CPU offloading')
parser.add_argument('--cpu_offload_blocks', type=int, default=None, help='Number of transformer blocks to offload to CPU')
parser.add_argument('--no_pin_memory', action='store_true', help='Disable memory pinning')
parser.add_argument('--prompt', type=str, default='A coffee shop entrance features a chalkboard sign reading "Qwen Coffee 😊 $2 per cup," with a neon light beside it displaying "通义千问". Next to it hangs a poster showing a beautiful Chinese woman, and beneath the poster is written "π≈3.1415926-53589793-23846264-33832795-02384197".',
help='Text prompt for image generation')
parser.add_argument('--negative_prompt', type=str, default=' ',
help='Negative prompt for image generation')
parser.add_argument('--aspect_ratio', type=str, default='16:9', choices=['1:1', '16:9', '9:16', '4:3', '3:4'],
help='Aspect ratio of generated image')
parser.add_argument('--num_inference_steps', type=int, default=50,
help='Number of denoising steps')
parser.add_argument('--true_cfg_scale', type=float, default=4.0,
help='Classifier free guidance scale')
parser.add_argument('--seed', type=int, default=42,
help='Random seed for generation')
parser.add_argument('--output', type=str, default='example.png',
help='Output image path')
parser.add_argument('--language', type=str, default='en', choices=['en', 'zh'],
help='Language for positive magic prompt')
return parser.parse_args()
args = parse_args()
model_name = "Qwen/Qwen-Image"
with no_init_weights():
transformer = QwenImageTransformer2DModel.from_config(
QwenImageTransformer2DModel.load_config(
model_name, subfolder="transformer",
),
).to(torch.bfloat16)
DFloat11Model.from_pretrained(
"DFloat11/Qwen-Image-DF11",
device="cpu",
cpu_offload=args.cpu_offload,
cpu_offload_blocks=args.cpu_offload_blocks,
pin_memory=not args.no_pin_memory,
bfloat16_model=transformer,
)
pipe = DiffusionPipeline.from_pretrained(
model_name,
transformer=transformer,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
positive_magic = {
"en": "Ultra HD, 4K, cinematic composition.", # for english prompt,
"zh": "超清,4K,电影级构图" # for chinese prompt,
}
# Generate with different aspect ratios
aspect_ratios = {
"1:1": (1328, 1328),
"16:9": (1664, 928),
"9:16": (928, 1664),
"4:3": (1472, 1140),
"3:4": (1140, 1472),
}
width, height = aspect_ratios[args.aspect_ratio]
image = pipe(
prompt=args.prompt + positive_magic[args.language],
negative_prompt=args.negative_prompt,
width=width,
height=height,
num_inference_steps=args.num_inference_steps,
true_cfg_scale=args.true_cfg_scale,
generator=torch.Generator(device="cuda").manual_seed(args.seed)
).images[0]
image.save(args.output)
max_memory = torch.cuda.max_memory_allocated()
print(f"Max memory: {max_memory / (1000 ** 3):.2f} GB")
```
4. To run without CPU offloading (32GB VRAM required):
```bash
python qwen_image.py
```
To run with CPU offloading (16GB VRAM required):
```bash
python qwen_image.py --cpu_offload
```
If you are getting out-of-CPU-memory errors, try limiting the number of offloaded blocks or disabling memory-pinning:
```bash
# Offload only 16 blocks (offloading more blocks uses less GPU memory and more CPU memory; offloading less blocks is faster):
python qwen_image.py --cpu_offload --cpu_offload_blocks 16
# Disable memory-pinning (the most memory efficient way, but could be slower):
python qwen_image.py --cpu_offload --no_pin_memory
```
### 🔍 How It Works
We apply **Huffman coding** to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU.
The result is a model that is **~32% smaller**, delivers **bit-identical outputs**, and achieves performance **comparable to the original** BFloat16 model.
Learn more in our [research paper](https://arxiv.org/abs/2504.11651).
### 📄 Learn More
* **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651)
* **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11)
* **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11)
|