medical-qa-t5-lora / README.md
Adilbai's picture
Model save
a47e2a4 verified
|
raw
history blame
2.5 kB
metadata
library_name: peft
license: apache-2.0
base_model: google-t5/t5-base
tags:
  - generated_from_trainer
model-index:
  - name: medical-qa-t5-lora
    results: []

medical-qa-t5-lora

This model is a fine-tuned version of google-t5/t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.3794 16.8 50 1.9909
1.2119 33.4 100 0.4473
0.2431 50.0 150 0.0048
0.0343 66.8 200 0.0008
0.0118 83.4 250 0.0003
0.0068 100.0 300 0.0002
0.0042 116.8 350 0.0001
0.0028 133.4 400 0.0001
0.002 150.0 450 0.0000
0.0015 166.8 500 0.0000
0.0012 183.4 550 0.0000
0.0017 200.0 600 0.0000
0.0012 216.8 650 0.0000
0.0008 233.4 700 0.0000
0.0006 250.0 750 0.0000
0.0006 266.8 800 0.0000
0.0004 283.4 850 0.0000
0.0004 300.0 900 0.0000
0.0004 316.8 950 0.0000
0.0004 333.4 1000 0.0000

Framework versions

  • PEFT 0.14.0
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1